Science.gov

Sample records for afterglow spectral energy

  1. CORRELATED SPECTRAL AND TEMPORAL BEHAVIOR OF LATE-TIME AFTERGLOWS OF GAMMA-RAY BURSTS

    SciTech Connect

    Dado, Shlomo; Dar, Arnon

    2012-12-20

    The cannonball (CB) model of gamma-ray bursts (GRBs) predicts that the asymptotic behavior of the spectral energy density of GRB afterglows is a power law in time and in frequency, and the difference between the temporal and spectral power-law indices, {alpha}{sub X} - {beta}{sub X}, is restricted to the values 0, 1/2, and 1. Here we report the distributions of the values {alpha}{sub X} and {beta}{sub X}, and their difference for a sample of 315 Swift GRBs. This sample includes all Swift GRBs that were detected before 2012 August 1, whose X-ray afterglow extended well beyond 1 day and the estimated error in {alpha}{sub X} - {beta}{sub X} was {<=}0.25. The values of {alpha}{sub X} were extracted from the CB-model fits to the entire light curves of their X-ray afterglow while the spectral index was extracted by the Swift team from the time-integrated X-ray afterglow of these GRBs. We found that the distribution of the difference {alpha}{sub X} - {beta}{sub X} for these 315 Swift GRBs has three narrow peaks around 0, 1/2, and 1 whose widths are consistent with being due to the measurement errors, in agreement with the CB-model prediction.

  2. Unified GRB Paradigm: Correlation between Afterglow Beaming Fraction and Gamma-ray Spectral Lag

    NASA Astrophysics Data System (ADS)

    Norris, J. P.

    2001-12-01

    Without redshifts, studies of the pulse structures in gamma-ray bursts (GRBs) were largely phenomenological. Now that approximately twenty GRBs have associated redshifts, it is clear that cosmological GRBs exhibit a large dynamic range in observed luminosity and total energy. Thus from afterglow measurements, inferences on the physics of GRB spectral/temporal properties become possible. For a subset of bursts where redshifts and BATSE data are available, a correlation between luminosity and spectral lag has been reported (Norris, Marani & Bonnell 2001, ApJ 534, 248). It has also been demonstrated from breaks in GRB afterglow temporal decays (e.g., Frail et al. 2001, ApJL, accepted) that GRBs manifest a wide dynamic range in opening angle, or beaming fraction -- implying more uniform isotropic luminosities and energies for GRBs. Even more exciting, the beaming fraction and average spectral lag appear to be correlated (both being related to luminosity), signaling a profound, but indirect, link between the gamma-ray and afterglow phases. While the sample is still small, and the analysis techniques for beaming fraction and spectral lag are still being refined, it is possible to extend observed BATSE distributions and prognosticate on distributional properties of GRBs, such as luminosity and redshift, that should be observable by Swift.

  3. GRB 070125 and the environments of spectral-line poor afterglow absorbers

    NASA Astrophysics Data System (ADS)

    De Cia, A.; Starling, R. L. C.; Wiersema, K.; van der Horst, A. J.; Vreeswijk, P. M.; Björnsson, G.; de Ugarte Postigo, A.; Jakobsson, P.; Levan, A. J.; Rol, E.; Schulze, S.; Tanvir, N. R.

    2011-11-01

    GRB 070125 is among the most energetic bursts detected and the most extensively observed so far. Nevertheless, unresolved issues are still open in the literature on the physics of the afterglow and on the gamma-ray burst (GRB) environment. In particular, GRB 070125 was claimed to have exploded in a galactic halo environment, based on the uniqueness of the optical spectrum and the non-detection of an underlying host galaxy. In this work we collect all publicly available data and address these issues by modelling the near-infrared to X-ray spectral energy distribution (SED) and studying the high signal-to-noise ratio Very Large Telescope/FOcal Reducer/low dispersion Spectrograph afterglow spectrum in comparison with a larger sample of GRB absorbers. The SED reveals a synchrotron cooling break in the ultraviolet, low equivalent hydrogen column density and little reddening caused by a Large Magellanic Cloud type or Small Magellanic Cloud type extinction curve. From the weak Mg II absorption at z= 1.5477 in the spectrum, we derived log N(Mg II) = 12.96+0.13- 0.18 and upper limits on the ionic column density of several metals. These suggest that the GRB absorber is most likely a Lyman limit system with a 0.03 < Z < 1.3 Z⊙ metallicity. The comparison with other GRB absorbers places GRB 070125 at the low end of the absorption-line equivalent width distribution, confirming that weak spectral features and spectral-line poor absorbers are not so uncommon in afterglow spectra. Moreover, we show that the effect of photoionization on the gas surrounding the GRB, combined with a low N(H I) along a short segment of the line of sight within the host galaxy, can explain the lack of spectral features in GRB 070125. Finally, the non-detection of an underlying galaxy is consistent with a faint GRB host galaxy, well within the GRB host brightness distribution. Thus, the possibility that GRB 070125 is simply located in the outskirts of a gas-rich, massive star-forming region inside its

  4. X-RAY SPECTRAL COMPONENTS OBSERVED IN THE AFTERGLOW OF GRB 130925A

    SciTech Connect

    Bellm, Eric C.; Forster, Karl; Harrison, Fiona A.; Madsen, Kristin K.; Perley, Daniel A.; Rana, Vikram R.; Barrière, Nicolas M.; Boggs, Steven E.; Craig, William W.; Bhalerao, Varun; Cenko, S. Bradley; Christensen, Finn E.; Fryer, Chris L.; Hailey, Charles J.; Horesh, Assaf; Ofek, Eran O.; Kouveliotou, Chryssa; Reynolds, Stephen P.; Stern, Daniel; and others

    2014-04-01

    We have identified spectral features in the late-time X-ray afterglow of the unusually long, slow-decaying GRB 130925A using NuSTAR, Swift/X-Ray Telescope, and Chandra. A spectral component in addition to an absorbed power law is required at >4σ significance, and its spectral shape varies between two observation epochs at 2 × 10{sup 5} and 10{sup 6} s after the burst. Several models can fit this additional component, each with very different physical implications. A broad, resolved Gaussian absorption feature of several keV width improves the fit, but it is poorly constrained in the second epoch. An additive blackbody or second power-law component provide better fits. Both are challenging to interpret: the blackbody radius is near the scale of a compact remnant (10{sup 8} cm), while the second power-law component requires an unobserved high-energy cutoff in order to be consistent with the non-detection by Fermi/Large Area Telescope.

  5. X-Ray Spectral Components Observed in the Afterglow of GRB 130925A

    NASA Technical Reports Server (NTRS)

    Bellm, Eric C.; Barriere, Nicolas M.; Bhalerao, Varun; Boggs, Steven E.; Cenko, S. Bradley; Christensen, Finn E.; Craig, William W.; Forster, Karl; Fryer, Chris L.; Hailey, Charles J.; Harrison, Fiona A.; Horesh, Assaf; Kouveliotou, Chryssa; Madsen, Kristin K.; Miller, Jon M.; Ofek, Eran O.; Perley, Daniel A.; Rana, Vikram R.; Miller, Jon M.; Stern, Daniel; Tomsick, John A.; Zhang, William W.

    2014-01-01

    We have identified spectral features in the late-time X-ray afterglow of the unusually long, slow-decaying GRB 130925A using NuSTAR, Swift/X-Ray Telescope, and Chandra. A spectral component in addition to an absorbed power law is required at greater than 4 less than 1 significance, and its spectral shape varies between two observation epochs at 2 x 10 (sup 5) and 10 (sup 6) seconds after the burst. Several models can fit this additional component, each with very different physical implications. A broad, resolved Gaussian absorption feature of several kiloelectronvolts width improves the fit, but it is poorly constrained in the second epoch. An additive blackbody or second power-law component provide better fits. Both are challenging to interpret: the blackbody radius is near the scale of a compact remnant (10 (sup 8) centimeters), while the second power-law component requires an unobserved high-energy cutoff in order to be consistent with the non-detection by Fermi/Large Area Telescope.

  6. On the Electron Energy Distribution Index of Swift Gamma-ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Curran, P. A.; Evans, P. A.; de Pasquale, M.; Page, M. J.; van der Horst, A. J.

    2010-06-01

    The electron energy distribution index, p, is a fundamental parameter of the synchrotron emission from a range of astronomical sources. Here we examine one such source of synchrotron emission, gamma-ray burst (GRB) afterglows observed by the Swift satellite. Within the framework of the blast wave model, we examine the constraints placed on the distribution of p by the observed X-ray spectral indices and parameterize the distribution. We find that the observed distribution of spectral indices are inconsistent with an underlying distribution of p composed of a single discrete value but consistent with a Gaussian distribution centered at p = 2.36 and having a width of 0.59. Furthermore, accepting that the underlying distribution is a Gaussian, we find that the majority (gsim94%) of GRB afterglows in our sample have cooling break frequencies less than the X-ray frequency.

  7. The air afterglow revisited

    NASA Technical Reports Server (NTRS)

    Kaufman, F.

    1972-01-01

    The air afterglow, 0 + NO2 chemiluminescence, is discussed in terms of fluorescence, photodissociation, and quantum theoretical calculations of NO2. The experimental results presented include pressure dependence, M-dependence, spectral dependence of P and M, temperature dependence, and infrared measurements. The NO2 energy transfer model is also discussed.

  8. Energy Injection in Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Laskar, Tanmoy; Berger, Edo; Margutti, Raffaella; Perley, Daniel; Zauderer, B. Ashley; Sari, Re'em; Fong, Wen-fai

    2015-11-01

    We present multi-wavelength observations and modeling of gamma-ray bursts (GRBs) that exhibit a simultaneous re-brightening in their X-ray and optical light curves, and are also detected at radio wavelengths. We show that the re-brightening episodes can be modeled by injection of energy into the blastwave and that in all cases the energy injection rate falls within the theoretical bounds expected for a distribution of energy with ejecta Lorentz factor. Our measured values of the circumburst density, jet opening angle, and beaming-corrected kinetic energy are consistent with the distribution of these parameters for long-duration GRBs at both z˜ 1 and z≳ 6, suggesting that the jet launching mechanism and environment of these events are similar to that of GRBs that do not have bumps in their light curves. However, events exhibiting re-brightening episodes have lower radiative efficiencies than average, suggesting that a majority of the kinetic energy of the outflow is carried by slow-moving ejecta, which is further supported by steep measured distributions of the ejecta energy as a function of Lorentz factor. We do not find evidence for reverse shocks over the energy injection period, implying that the onset of energy injection is a gentle process. We further show that GRBs exhibiting simultaneous X-ray and optical re-brightenings are likely the tail of a distribution of events with varying rates of energy injection, forming the most extreme events in their class. Future X-ray observations of GRB afterglows with Swift and its successors will thus likely discover several more such events, while radio follow-up and multi-wavelength modeling of similar events will unveil the role of energy injection in GRB afterglows.

  9. Spectral softening in the X-RAY afterglow of GRB 130925A as predicted by the dust scattering model

    SciTech Connect

    Zhao, Yi-Nan; Shao, Lang

    2014-07-01

    Gamma-ray bursts (GRBs) usually occur in a dense star-forming region with a massive circumburst medium. The small-angle scattering of intense prompt X-ray emission off the surrounding dust grains will have observable consequences and sometimes can dominate the X-ray afterglow. In most of the previous studies, only the Rayleigh-Gans (RG) approximation is employed for describing the scattering process, which works accurately for the typical size of grains (with radius of a ≤ 0.1 μm) in the diffuse interstellar medium. When the size of the grains may significantly increase, as in a more dense region where GRBs would occur, the RG approximation may not be valid enough for modeling detailed observational data. In order to study the temporal and spectral properties of the scattered X-ray emission more accurately with potentially larger dust grains, we provide a practical approach using the series expansions of anomalous diffraction (AD) approximation based on the complicated Mie theory. We apply our calculations to understand the puzzling X-ray afterglow of recently observed GRB 130925A that showed a significant spectral softening. We find that the X-ray scattering scenarios with either AD or RG approximation adopted could well reproduce both the temporal and spectral profile simultaneously. Given the plateau present in the early X-ray light curve, a typical distribution of smaller grains as in the interstellar medium would be suggested for GRB 130925A.

  10. Spectral Softening in the X-Ray Afterglow of GRB 130925A as Predicted by the Dust Scattering Model

    NASA Astrophysics Data System (ADS)

    Zhao, Yi-Nan; Shao, Lang

    2014-07-01

    Gamma-ray bursts (GRBs) usually occur in a dense star-forming region with a massive circumburst medium. The small-angle scattering of intense prompt X-ray emission off the surrounding dust grains will have observable consequences and sometimes can dominate the X-ray afterglow. In most of the previous studies, only the Rayleigh-Gans (RG) approximation is employed for describing the scattering process, which works accurately for the typical size of grains (with radius of a <= 0.1 μm) in the diffuse interstellar medium. When the size of the grains may significantly increase, as in a more dense region where GRBs would occur, the RG approximation may not be valid enough for modeling detailed observational data. In order to study the temporal and spectral properties of the scattered X-ray emission more accurately with potentially larger dust grains, we provide a practical approach using the series expansions of anomalous diffraction (AD) approximation based on the complicated Mie theory. We apply our calculations to understand the puzzling X-ray afterglow of recently observed GRB 130925A that showed a significant spectral softening. We find that the X-ray scattering scenarios with either AD or RG approximation adopted could well reproduce both the temporal and spectral profile simultaneously. Given the plateau present in the early X-ray light curve, a typical distribution of smaller grains as in the interstellar medium would be suggested for GRB 130925A.

  11. Comparison of Three Afterglow Morphologies

    SciTech Connect

    Salmonson, J D; Rossi, E; Lazzati, D

    2003-12-23

    Herein we compare three functional families for afterglow morphologies: the homogeneous afterglow with constant shock surface energy density, the structured afterglow for which the energy density decays as a power-law as a function of viewer angle, and the gaussian afterglow which has an exponential decay of energy density with viewer angle. We simulate observed lightcurves and polarization curves for each as seen from a variety of observer vantage points. We find that the homogeneous jet is likely inconsistent with observations and suggest that the future debate on the structure of afterglow jets will be between the other two candidates.

  12. A Search for Early High-Energy Afterglows in BATSE Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2003-01-01

    The scope of this project was to perform a detailed search for the early high-energy afterglow component of gamma-ray bursts (GRBs) in the BATSE GRB data archive. GRBs are believed to be the product of shock waves generated in a relativistic outflow from the demise of extremely massive stars and/or binary neutron star mergers. The outflow undeniably encounters the ambient medium of the progenitor object and another shock wave is set up. A forward shock propagates into the medium and a reverse shock propagates through the ejecta. This "external" shock dissipates the kinetic energy of the ejecta in the form of radiation via synchrotron losses and slows the outflow eventually to a non-relativistic state. Radiation from the forward external shock is therefore expected to be long-lived, lasting days, weeks, and even months. This radiation is referred to as the 'afterglow'.

  13. Radio observations of GRB 100418a: Test of an energy injection model explaining long-lasting GRB afterglows

    SciTech Connect

    Moin, A.; Wang, Z.; Chandra, P.; Miller-Jones, J. C. A.; Tingay, S. J.; Reynolds, C.; Taylor, G. B.; Frail, D. A.; Phillips, C. J.

    2013-12-20

    We present the results of our radio observational campaign of gamma-ray burst (GRB) 100418a, for which we used the Australia Telescope Compact Array, the Very Large Array, and the Very Long Baseline Array. GRB 100418a was a peculiar GRB with unusual X-ray and optical afterglow profiles featuring a plateau phase with a very shallow rise. This observed plateau phase was believed to be due to a continued energy injection mechanism that powered the forward shock, giving rise to an unusual and long-lasting afterglow. The radio afterglow of GRB 100418a was detectable several weeks after the prompt emission. We conducted long-term monitoring observations of the afterglow and attempted to test the energy injection model advocating that the continuous energy injection is due to shells of material moving at a wide range of Lorentz factors. We obtained an upper limit of γ < 7 for the expansion rate of the GRB 100418a radio afterglow, indicating that the range-of-Lorentz factor model could only be applicable for relatively slow-moving ejecta. A preferred explanation could be that continued activity of the central engine may have powered the long-lasting afterglow.

  14. Linear and circular polarimetry observations of gamma-ray burst afterglows

    NASA Astrophysics Data System (ADS)

    Wiersema, K.

    2013-07-01

    Follow-up observations of large numbers of gamma-ray burst (GRB) afterglows, facilitated by the Swift satellite, have produced a large sample of spectral energy distributions and light curves, from which the basic micro- and macrophysical parameters of afterglows may be derived. However, a number of phenomena have been observed that defy explanation by simple versions of the standard fireball model, leading to a variety of new models. Polarimetry has shown great promise as a diagnosis of afterglow physics, probing the magnetic field properties of the afterglow and geometrical effects (e.g. jet breaks). Unfortunately, high quality polarimetry of a significant sample of afterglows is difficult to acquire, requiring specialised instrumentation and observing modes. In this talk I will review the recent successes in afterglow polarimetry, also showing first results of new instruments and observing campaigns. I will particularly focus on jet breaks.

  15. 'Self-absorbed' GeV light curves of gamma-ray burst afterglows

    SciTech Connect

    Panaitescu, A.; Vestrand, W. T.; Woźniak, P.

    2014-06-10

    We investigate the effect that the absorption of high-energy (above 100 MeV) photons produced in gamma-ray burst afterglow shocks has on the light curves and spectra of Fermi Large Area Telescope (LAT) afterglows. Afterglows produced by the interaction of a relativistic outflow with a wind-like medium peak when the blast wave deceleration sets in, and the afterglow spectrum could be hardening before that peak, as the optical thickness to pair formation is decreasing. In contrast, in afterglows produced in the interaction with a homogeneous medium, the optical thickness to pair formation should increase and yield a light curve peak when it reaches unity, followed by a fast light curve decay, accompanied by spectral softening. If energy is injected in the blast wave, then the accelerated increase of the optical thickness yields a convex afterglow light curve. Other features, such as a double-peak light curve or a broad hump, can arise from the evolution of the optical thickness to photon-photon absorption. Fast decays and convex light curves are seen in a few LAT afterglows, but the expected spectral softening is rarely seen in (and difficult to measure with) LAT observations. Furthermore, for the effects of photon-photon attenuation to shape the high-energy afterglow light curve without attenuating it too much, the ejecta initial Lorentz factor must be in a relatively narrow range (50-200), which reduces the chance of observing those effects.

  16. The Detectability of Orphan Afterglows

    NASA Astrophysics Data System (ADS)

    Nakar, Ehud; Piran, Tsvi; Granot, Jonathan

    2002-11-01

    The realization that gamma-ray bursts (GRBs) release a constant amount of energy implies that post-jet-break afterglow evolution is largely universal. For a given redshift, all afterglows should be detected up to a fixed observer angle. We estimate the observed magnitude and the implied detectability of orphan afterglows. We show that for reasonable limiting magnitudes (mlim=25), orphan afterglows will typically be detected from small (~10°) angles away from the GRB jet axis. A detected orphan afterglow generally corresponds to a ``near miss'' of a GRB whose jet is pointing just slightly away from us. With our most optimistic parameters, we expect that 15 orphan afterglows will be recorded in the Sloan Digital Sky Survey, and 35 transients will be recorded in a dedicated 2 m class telescope operating full time for a year in an orphan afterglow search. The rate is smaller by a factor of 15 for our ``canonical'' parameters. We show that for a given facility, an optimal survey should be shallower, covering a larger area, rather than deeper. The limiting magnitude should not be, however, lower than ~23, as in this case, more transients from on-axis GRBs will be discovered than orphan afterglows. About 15% of the transients could be discovered with a second exposure of the same area provided that it follows after 3, 4, and 8 days for mlim=23, 25, and 27, respectively.

  17. The Supercritical Pile GRB Model: The Prompt to Afterglow Evolution

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2008-01-01

    The 'Supercritical Pile' is a very economical gamma ray burst (GRB) model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at an energy sim 1 MeV. We extend this model to include also the evolution of the RBW Lorentz factor Gamma and thus follow the spectral and temporal features of this model into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model can be the sources of rich time evolution which we have begun to explore. In particular, one can this way obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the nu F spectra. Furthermore, the existence of a kinematic threshold in this model provides for a operational distinction of the prompt and afterglow GRB stages; in fact, the afterglow stage sets in when the RBW Lorentz factor cannot anymore fulfill the kinematic condition for pair formation in the photon - proton pair production reactions that constitute the fundamental process for the dissipation of the blast wave kinetic energy. We present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  18. The Energy Budget of GRBs Based on a Large Sample of Prompt and Afterglow Observations

    NASA Astrophysics Data System (ADS)

    Wygoda, N.; Guetta, D.; Mandich, M. A.; Waxman, E.

    2016-06-01

    We compare the isotropic equivalent 15-2000 keV γ-ray energy, E γ , emitted by a sample of 91 swift Gamma-Ray Bursts with known redshifts, with the isotropic equivalent fireball energy, E fb, as estimated within the fireball model framework from X-ray afterglow observations of these bursts. The uncertainty in E γ , which spans the range of ˜1051 to ˜1053.5 erg, is ≈25% on average, due mainly to the extrapolation from the BAT detector band to the 15-2000 keV band. The uncertainty in E fb is approximately a factor of 2, due mainly to the X-ray measurements’ scatter. We find E γ and E fb to be tightly correlated. The average(std) of {η }γ 11 {hr}\\equiv {{log}}10({E}γ /(3{\\varepsilon }{{e}}{E}{{fb}}11 {hr})) are -0.34(0.60), and the upper limit on the intrinsic spread of η γ is approximately 0.5 ({\\varepsilon }{{e}} is the fraction of energy carried by electrons and {E}{{fb}}x {hr} is inferred from the X-ray flux at x hours). {E}{{fb}}3 {hr} and {E}{{fb}}11 {hr} are similar, with an average(std) of {{log}}10({E}{{fb}}3 {hr}/{E}{{fb}}11 {hr}) of 0.04(0.28). The small variance of η γ implies that burst-to-burst variations in {\\varepsilon }{{e}} and in the efficiency of fireball energy conversion to γ-rays are small, and suggests that both are of order unity. The small variance of η γ and the similarity of {E}{{fb}}3 {hr} and {E}{{fb}}11 {hr} further imply that deviations from a simple fireball model description, if present, are small. This puts stringent constraints on models incorporating such modifications (due e.g., to radiative losses, energy injection, off-axis viewing).

  19. The Energy Budget of GRBs Based on a Large Sample of Prompt and Afterglow Observations

    NASA Astrophysics Data System (ADS)

    Wygoda, N.; Guetta, D.; Mandich, M. A.; Waxman, E.

    2016-06-01

    We compare the isotropic equivalent 15–2000 keV γ-ray energy, E γ , emitted by a sample of 91 swift Gamma-Ray Bursts with known redshifts, with the isotropic equivalent fireball energy, E fb, as estimated within the fireball model framework from X-ray afterglow observations of these bursts. The uncertainty in E γ , which spans the range of ˜1051 to ˜1053.5 erg, is ≈25% on average, due mainly to the extrapolation from the BAT detector band to the 15–2000 keV band. The uncertainty in E fb is approximately a factor of 2, due mainly to the X-ray measurements’ scatter. We find E γ and E fb to be tightly correlated. The average(std) of {η }γ 11 {hr}\\equiv {{log}}10({E}γ /(3{\\varepsilon }{{e}}{E}{{fb}}11 {hr})) are ‑0.34(0.60), and the upper limit on the intrinsic spread of η γ is approximately 0.5 ({\\varepsilon }{{e}} is the fraction of energy carried by electrons and {E}{{fb}}x {hr} is inferred from the X-ray flux at x hours). {E}{{fb}}3 {hr} and {E}{{fb}}11 {hr} are similar, with an average(std) of {{log}}10({E}{{fb}}3 {hr}/{E}{{fb}}11 {hr}) of 0.04(0.28). The small variance of η γ implies that burst-to-burst variations in {\\varepsilon }{{e}} and in the efficiency of fireball energy conversion to γ-rays are small, and suggests that both are of order unity. The small variance of η γ and the similarity of {E}{{fb}}3 {hr} and {E}{{fb}}11 {hr} further imply that deviations from a simple fireball model description, if present, are small. This puts stringent constraints on models incorporating such modifications (due e.g., to radiative losses, energy injection, off-axis viewing).

  20. The Supercritical Pile GRB Model: The Prompt to Afterglow Evolution

    NASA Technical Reports Server (NTRS)

    Mastichiadis, A.; Kazanas, D.

    2009-01-01

    The "Supercritical Pile" is a very economical GRB model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at energy approx. 1 MeV. We extend this model to include the evolution of the RBW Lorentz factor Gamma and thus follow its spectral and temporal features into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model can be the sources of rich time evolution which we have began to explore. In particular. one can this may obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the (nu)F(sub nu), spectra. In this note we present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  1. An investigation into the role of metastable argon atoms in the afterglow plasma of a low pressure discharge

    NASA Astrophysics Data System (ADS)

    Strauss, J. A.; Ferreira, N. P.; Human, H. G. C.

    An investigation into the behaviour of metastable argon atoms in a low pressure (250 Pa) pulsed electrical discharge was undertaken in an effort to find the cause of the persisting emission from sputtered metal atoms in the afterglow of an atomic fluorimeter. Results obtained by time-resolved emission and absorption measurements of several argon and copper spectral lines indicate that low energy electrons in the afterglow are converted to high energy electrons via the recombination of electrons with argon ions and the subsequent collisions of pairs of metastable argon atoms. The high energy electrons excite the sputtered metal atoms to give rise to a slow decaying emission tail in the afterglow. A probable change in the electron energy distribution in the afterglow may also have an effect on the observed emission. This phenomenon may be reduced by the use of a suitable quenching gas.

  2. GRB050525A : Multiband modelling of the afterglow

    NASA Astrophysics Data System (ADS)

    Resmi, Lekshmi; Misra, Kuntal; Castro-Tirado, Alberto

    2011-08-01

    The Swift era has posed a challenge to the standard blast-wave model of Gamma Ray Burst afterglows. The achromatic steepening of the afterglow lightcurves (`jet break') considered in the model as the signature of outflow collimation, has become almost rare. Several afterglows exhibited complex lightcurves that did not confirm by the predicted spectral--temporal `closure relations' of the blastwave model. Here we present optical observations and broadband modelling of the afterglow of GRB0505025A, a bright burst detected and followed up by Swift. We find that the overall evolution of the afterglow can not be explained by a single forward shock emission, though the late time evolution is compatible with the predictions of the standard afterglow model, including a jet break. We explain the afterglow evolution based on a two-component jet model and estimate the physical parameters.

  3. GAMMA-RAY BURSTS IN THE FERMI ERA: THE SPECTRAL ENERGY DISTRIBUTION OF THE PROMPT EMISSION

    SciTech Connect

    Massaro, F.; Grindlay, J. E.; Paggi, A.

    2010-05-10

    Gamma-ray bursts (GRBs) show evidence of different light curves, duration, afterglows, and host galaxies and explode within a wide redshift range. However, their spectral energy distributions (SEDs) appear to be very similar, showing a curved shape. Band et al. proposed a phenomenological description of the integrated spectral shape for the GRB prompt emission, the so-called Band function. In this Letter, we suggest an alternative scenario to explain the curved shape of GRB SEDs: the log-parabolic model. In comparison with the Band spectral shape our model is statistically favored because it fits the GRB spectra with one parameter less than the Band function and is motivated by a theoretical acceleration scenario. The new Fermi observations of GRBs will be crucial for disentangling these two models.

  4. A Decade of Short-duration Gamma-ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Fong, Wen-fai

    2014-10-01

    The afterglows of gamma-ray bursts (GRBs) provide a unique way to study the explosion properties and sub-parsec environments of these catastrophic events. Indeed, observational campaigns to characterize the afterglows of long GRBs (duration > 2 sec) have lent crucial insight to their massive star progenitors. Short GRBs, which are linked to the mergers of two compact objects, are discovered at a significantly lower rate and have faint afterglows, thus making an understanding of their basic explosion properties more challenging. In this talk, I describe an observational campaign to characterize the afterglows of short GRBs over the past decade, spanning radio to X-ray wavelengths. I use the temporal and spectral behavior of their afterglows to quantify their kinetic energy scales, circumburst densities, and jet opening angles for the first time. I explore any trends between these explosion properties and their host galaxies. Finally, since compact object mergers are the premier candidates for Advanced LIGO detection, I assess the implications for electromagnetic counterparts to gravitational waves.

  5. GLAST Prospects for Swift-Era Afterglows

    SciTech Connect

    Gou, L.J.; Meszaros, P.; /Penn State U.

    2011-11-23

    We calculate the GeV spectra of gamma-ray burst afterglows produced by inverse Compton scattering of these objects sub-MeV emission. We improve on earlier treatments by using refined afterglow parameters and new model developments motivated by recent Swift observations. We present time-dependent GeV spectra for standard, constant-parameter models, as well as for models with energy injection and with time-varying parameters, for a range of burst parameters. We evaluate the limiting redshift to which such afterglows can be detected by the GLAST Large Area Telescope, as well as by AGILE.

  6. The SEDs and Host Galaxies of the Dustiest GRB Afterglows

    NASA Technical Reports Server (NTRS)

    Kruhler, T.; Greiner, J.; Schady, P.; Savaglio, S.; Afonso, P. M. J.; Clemens, C.; Elliott, J.; Filgas, R.; Gruber, D.; Kann, D. A.; Klose, S.; Kupcu-Yoldas, A.; McBreen, S.; Olivares, E.; Pierini, D.; Rau, A.; Rossi, A.; Nardini, M.; Nicuesa Guelbenzu, A.; Sudilovsky, V.; Updike, A. C.

    2011-01-01

    The afterglows and host galaxies of long gamma-ray bursts (GRBs) offer unique opportunities to study star-forming galaxies in the high-z Universe, Until recently, however. the information inferred from GRB follow-up observations was mostly limited to optically bright afterglows. biasing all demographic studies against sight-lines that contain large amounts of dust. Aims. Here we present afterglow and host observations for a sample of bursts that are exemplary of previously missed ones because of high visual extinction (A(sub v) (Sup GRB) approx > 1 mag) along the sight-line. This facilitates an investigation of the properties, geometry and location of the absorbing dust of these poorly-explored host galaxies. and a comparison to hosts from optically-selected samples. Methods. This work is based on GROND optical/NIR and Swift/XRT X-ray observations of the afterglows, and multi-color imaging for eight GRB hosts. The afterglow and galaxy spectral energy distributions yield detailed insight into physical properties such as the dust and metal content along the GRB sight-line as well as galaxy-integrated characteristics like the host's stellar mass, luminosity. color-excess and star-formation rate. Results. For the eight afterglows considered in this study we report for the first time the redshift of GRBs 081109 (z = 0.97S7 +/- 0.0005). and the visual extinction towards GRBs 0801109 (A(sub v) (Sup GRB) = 3.4(sup +0.4) (sub -0.3) mag) and l00621A (A(sub v) (Sup GRB) = 3.8 +/- 0.2 mag), which are among the largest ever derived for GRB afterglows. Combined with non-extinguished GRBs. there is a strong anti-correlation between the afterglow's metals-to-dust ratio and visual extinction. The hosts of the dustiest afterglows are diverse in their properties, but on average redder(((R - K)(sub AB)) approximates 1.6 mag), more luminous ( approximates 0.9 L (sup *)) and massive ((log M(sup *) [M(solar]) approximates 9.8) than the hosts of optically-bright events. We hence probe

  7. Afterglow Complex Plasma

    SciTech Connect

    Samarian, A. A.; Boufendi, L.; Mikikian, M.

    2008-09-07

    The review of the first detailed experimental and theoretical studies of complex plasma in RF discharge afterglow is presented. The studies have been done in a frame of FAST collaborative research project between Complex Plasma Laboratory of the University of Sydney and the GREMI laboratory of Universite d'Orleans. We examined the existing models of plasma decay, presents experimental observations of dust dynamics under different afterglow complex plasma conditions, presents the experimental data obtained (in particular the presence of positively charged particles in discharge afterglow), discusses the use of dust particles as a probe to study the diffusion losses in afterglow plasmas.

  8. iPTF14yb: The First Discovery of a Gamma-Ray Burst Afterglow Independent of a High-Energy Trigger

    DOE PAGES

    Cenko, S. Bradley; Urban, Alex L.; Perley, Daniel A.; Horesh, Assaf; Corsi, Alessandra; Fox, Derek B.; Cao, Yi; Kasliwal, Mansi M.; Lien, Amy; Arcavi, Iair; et al

    2015-04-20

    We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous (Msub>r ≈ ₋27.8 mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB140226A. This marks the rst unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically dis- tant relativistic explosions) based on iPTF observations, inferring an all-sky value ofmore » $$R_{rel}$$ = 610yr-1 (68% con dence interval of 110{2000 yr-1). Our derived rate is consistent (within the large uncer- tainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we brie y discuss the implications of the nondetection to date of bona de \\orphan" afterglows (i.e., those lacking de- tectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.« less

  9. iPTF14yb: The First Discovery of a Gamma-Ray Burst Afterglow Independent of a High-Energy Trigger

    SciTech Connect

    Cenko, S. Bradley; Urban, Alex L.; Perley, Daniel A.; Horesh, Assaf; Corsi, Alessandra; Fox, Derek B.; Cao, Yi; Kasliwal, Mansi M.; Lien, Amy; Arcavi, Iair; Bloom, Joshua S.; Butler, Nat R.; Cucchiara, Antonino; Diego, José A. de; Filippenko, Alexei V.; Gal-Yam, Avishay; Gehrels, Neil; Georgiev, Leonid; Gonzalez, J. Jesus; Graham, John F.; Greiner, Jochen; Kann, D. Alexander; Klein, Christopher R.; Knust, Fabian; Kulkarni, S. R.; Kutyrev, Alexander; Laher, Russ; Lee, William H.; Nugent, Peter E.; Xavier Prochaska, J.; Rubin, Adam; Urata, Yuji; Varela, Karla; Watson, Alan M.; Wozniak, Przemek R.

    2015-04-20

    We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous (Msub>r ≈ ₋27.8 mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB140226A. This marks the rst unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically dis- tant relativistic explosions) based on iPTF observations, inferring an all-sky value of $R_{rel}$ = 610yr-1 (68% con dence interval of 110{2000 yr-1). Our derived rate is consistent (within the large uncer- tainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we brie y discuss the implications of the nondetection to date of bona de \\orphan" afterglows (i.e., those lacking de- tectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.

  10. iPTF14yb: The First Discovery of a Gamma-Ray Burst Afterglow Independent of a High-Energy Trigger

    NASA Technical Reports Server (NTRS)

    Cenko, S. Bradley; Urban, Alex L.; Perley, Daniel A.; Horesh, Assaf; Corsi, Alessandra; Fox, Derek B.; Cao, Yi; Kasliwal, Mansi M.; Lien, Amy; Arcavi, Iair; Bloom, Joshua S.; Butler, Nat R.; Cucchiara, Antonino; De Diego, Jose A.; Filippenko, Alexei V.; Gal-Yam, Avishay; Gehrels, Neil; Georgiev, Leonid; Gonzalez, J. Jesus; Graham, John F.; Greiner, Jochen; Kann, D. Alexander; Klein, Christopher R.; Knust, Fabian; Kutyrev, Alexander

    2015-01-01

    We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous (Mr >> -27.8 mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB 140226A. This marks the first unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically distant relativistic explosions) based on iPTF observations, inferring an all-sky value of Rrel = 610/yr (68% confidence interval of 110-2000/yr). Our derived rate is consistent (within the large uncertainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we briefly discuss the implications of the nondetection to date of bona fide "orphan" afterglows (i.e., those lacking detectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.

  11. iPTF14yb: The First Discovery of a Gamma-Ray Burst Afterglow Independent of a High-energy Trigger

    NASA Astrophysics Data System (ADS)

    Cenko, S. Bradley; Urban, Alex L.; Perley, Daniel A.; Horesh, Assaf; Corsi, Alessandra; Fox, Derek B.; Cao, Yi; Kasliwal, Mansi M.; Lien, Amy; Arcavi, Iair; Bloom, Joshua S.; Butler, Nat R.; Cucchiara, Antonino; de Diego, José A.; Filippenko, Alexei V.; Gal-Yam, Avishay; Gehrels, Neil; Georgiev, Leonid; Jesús González, J.; Graham, John F.; Greiner, Jochen; Kann, D. Alexander; Klein, Christopher R.; Knust, Fabian; Kulkarni, S. R.; Kutyrev, Alexander; Laher, Russ; Lee, William H.; Nugent, Peter E.; Prochaska, J. Xavier; Ramirez-Ruiz, Enrico; Richer, Michael G.; Rubin, Adam; Urata, Yuji; Varela, Karla; Watson, Alan M.; Wozniak, Przemek R.

    2015-04-01

    We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous ({{M}r}≈ -27.8 mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB 140226A. This marks the first unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically distant relativistic explosions) based on iPTF observations, inferring an all-sky value of {{\\Re }rel}=610 yr-1 (68% confidence interval of 110-2000 yr-1). Our derived rate is consistent (within the large uncertainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we briefly discuss the implications of the nondetection to date of bona fide “orphan” afterglows (i.e., those lacking detectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.

  12. Simulation Study Of Early Afterglows Observed With Swift

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-Ichi; Hededal, C.; Hardee, P.; Mizuno, Y.; Fishman, G. J.

    2006-09-01

    A 3-D relativistic particle-in-cell code has been used to simulate the dynamics of forward and reverse shocks with thin and thick shells within the parameter constraints provided by present Swift observations and the present models of GRB emission. Our 3-D RPIC simulations have provided the dynamics of collisionless shocks in electron-ion and electron-positron plasmas with and without initial ambient magnetic fields and revealed the importance of ``jitter radiation'' with prompt and afterglow spectra due to the inhomogeneous magnetic fields generated by the Weibel instability. It is different from synchrotron radiation, which is usually assumed to be the dominant radiation process. We have investigated gamma-ray burst emissions from prompt, early, and late afterglows considering microscopic processes. Based on our previous investigation of the Weibel instability for each stage of evolution of ejecta propagating in the ISM, we have incorporated the plasma conditions (relativistic jets) with the density and composition of the plasmas, the magnetic field strength ($\\sigma$-values (the ratio of the electromagnetic energy flux to the particle energy flux)) and its direction, and the Lorentz factor for the different stages in prompt and afterglows. Systematic simulation studies of the relativistic collisionless shocks, associated particle acceleration, magnetic field generation and self-consistent radiation provide insight into undetermined issues in prompt and afterglows observed by Swift. Self-consistently calculated lightcurves, spectra, spectral evolutions, and polarization as function of viewing angle will be done to light a shed on recent new observations by Swift, in particular, X-ray flares, early steep decay, and shallow decay.

  13. The Very Bright and Nearby GRB130427A: the Extra Hard Spectral Component and Implications for Very High-Energy Gamma-Ray Observations of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin Thomas

    2014-03-01

    The extended high-energy gamma-ray (>100 MeV) emission occurring after the prompt gamma-ray bursts (GRBs) is usually characterized by a single power-law spectrum, which has been explained as the afterglow synchrotron radiation. We report on the Fermi Large Area Telescope (LAT) observations of the >100 MeV emission from the very bright and nearby GRB 130427A, up to 100 GeV. By performing time-resolved spectral fits of GRB 130427A, we found a strong evidence of an extra hard spectral component above a few GeV that exists in the extended high-energy emission of this GRB. This extra spectral component may represent the first clear evidence of the long sought-after afterglow inverse Compton emission. Prospects for observations at the very high-energy gamma-rays, i.e., above 100 GeV, are described.

  14. NuSTAR OBSERVATIONS OF GRB 130427A ESTABLISH A SINGLE COMPONENT SYNCHROTRON AFTERGLOW ORIGIN FOR THE LATE OPTICAL TO MULTI-GEV EMISSION

    SciTech Connect

    Kouveliotou, C.; Racusin, J. L.; Gehrels, N.; McEnery, J. E.; Zhang, W. W.; Bellm, E.; Harrison, F. A.; Vianello, G.; Oates, S.; Fryer, C. L.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Dermer, C. D.; Hailey, C. J.; Melandri, A.; Tagliaferri, G.; Mundell, C. G.; Stern, D. K. E-mail: granot@openu.ac.il

    2013-12-10

    GRB 130427A occurred in a relatively nearby galaxy; its prompt emission had the largest GRB fluence ever recorded. The afterglow of GRB 130427A was bright enough for the Nuclear Spectroscopic Telescope ARray (NuSTAR) to observe it in the 3-79 keV energy range long after its prompt emission (∼1.5 and 5 days). This range, where afterglow observations were previously not possible, bridges an important spectral gap. Combined with Swift, Fermi, and ground-based optical data, NuSTAR observations unambiguously establish a single afterglow spectral component from optical to multi-GeV energies a day after the event, which is almost certainly synchrotron radiation. Such an origin of the late-time Fermi/Large Area Telescope >10 GeV photons requires revisions in our understanding of collisionless relativistic shock physics.

  15. GRB 110530A: Peculiar Broad Bump and Delayed Plateau in Early Optical Afterglows

    NASA Astrophysics Data System (ADS)

    Zhong, Shu-Qing; Xin, Li-Ping; Liang, En-Wei; Wei, Jian-Yan; Urata, Yuji; Huang, Kui-Yun; Qiu, Yu-Lei; Deng, Can-Min; Wang, Yuan-Zhu; Deng, Jin-Song

    2016-11-01

    We report our very early optical observations of GRB 110530A and investigate its jet properties together with its X-ray afterglow data. A peculiar broad onset bump followed by a plateau is observed in its early R band afterglow light curve. The optical data in the other bands and the X-ray data are well consistent with the temporal feature of the R band light curve. Our joint spectral fits of the optical and X-ray data show that they are in the same regime, with a photon index of ∼1.70. The optical and X-ray afterglow light curves are well fitted with the standard external shock model by considering a delayed energy injection component. Based on our modeling results, we find that the radiative efficiency of the gamma-ray burst jet is ∼ 1 % and the magnetization parameter of the afterglow jet is \\lt 0.04 with a derived extremely low {ε }B (the ratio of shock energy to the magnetic field) of (1.64+/- 0.25)× {10}-6. These results indicate that the jet may be matter dominated. A discussion on delayed energy injection from the accretion of the late fall-back material of its pre-supernova star is also presented.

  16. Observational Signatures of High-Energy Emission during the Shallow Decay Phase of Gamma-Ray Burst X-Ray Afterglows

    NASA Astrophysics Data System (ADS)

    Yu, Y. W.; Liu, X. W.; Dai, Z. G.

    2007-12-01

    The widely existing shallow decay phase of the X-ray afterglows of gamma-ray bursts (GRBs) is generally accepted to be due to long-lasting energy injection. The outflows carrying the injecting energy, based on the component that is dominant in energy, fall into two possible types: baryon-dominated and lepton-dominated ones. The former type of outflow could be ejecta that is ejected during the prompt phase of a GRB and consists of a series of baryonic shells with a distribution of Lorentz factors, and the latter type could be an electron-positron pair wind that is driven by the postburst central engine. We here provide a unified description for the dynamics of fireballs based on these two types of energy injection and calculate the corresponding high-energy photon emission by considering synchrotron radiation and inverse Compton scattering (including synchrotron self-Compton and combined inverse Compton) of electrons. We find that, in the two energy-injection models, there is a plateau (even a hump) in high-energy light curves during the X-ray shallow decay phase. In particular, a considerable fraction of the injecting energy in the lepton-dominated model can be shared by the long-lasting reverse shock since it is relativistic. Furthermore, almost all of the energy of the reverse shock is carried by leptons, and thus, the inverse Compton emission is enhanced dramatically. Therefore, this model predicts more significant high-energy afterglow emission than the baryon-dominated model. We argue that these observational signatures would be used to discriminate between different energy-injection models in the upcoming Gamma-Ray Large Area Space Telescope (GLAST) era.

  17. Detailed optical and near-infrared polarimetry, spectroscopy and broad-band photometry of the afterglow of GRB 091018: polarization evolution

    NASA Astrophysics Data System (ADS)

    Wiersema, K.; Curran, P. A.; Krühler, T.; Melandri, A.; Rol, E.; Starling, R. L. C.; Tanvir, N. R.; van der Horst, A. J.; Covino, S.; Fynbo, J. P. U.; Goldoni, P.; Gorosabel, J.; Hjorth, J.; Klose, S.; Mundell, C. G.; O'Brien, P. T.; Palazzi, E.; Wijers, R. A. M. J.; D'Elia, V.; Evans, P. A.; Filgas, R.; Gomboc, A.; Greiner, J.; Guidorzi, C.; Kaper, L.; Kobayashi, S.; Kouveliotou, C.; Levan, A. J.; Rossi, A.; Rowlinson, A.; Steele, I. A.; de Ugarte Postigo, A.; Vergani, S. D.

    2012-10-01

    Follow-up observations of large numbers of gamma-ray burst (GRB) afterglows, facilitated by the Swift satellite, have produced a large sample of spectral energy distributions and light curves, from which their basic micro- and macro-physical parameters can in principle be derived. However, a number of phenomena have been observed that defy explanation by simple versions of the standard fireball model, leading to a variety of new models. Polarimetry can be a major independent diagnostic of afterglow physics, probing the magnetic field properties and internal structure of the GRB jets. In this paper we present the first high-quality multi-night polarimetric light curve of a Swift GRB afterglow, aimed at providing a well-calibrated data set of a typical afterglow to serve as a benchmark system for modelling afterglow polarization behaviour. In particular, our data set of the afterglow of GRB 091018 (at redshift z = 0.971) comprises optical linear polarimetry (R band, 0.13-2.3 d after burst); circular polarimetry (R band) and near-infrared linear polarimetry (Ks band). We add to that high-quality optical and near-infrared broad-band light curves and spectral energy distributions as well as afterglow spectroscopy. The linear polarization varies between 0 and 3 per cent, with both long and short time-scale variability visible. We find an achromatic break in the afterglow light curve, which corresponds to features in the polarimetric curve. We find that the data can be reproduced by jet break models only if an additional polarized component of unknown nature is present in the polarimetric curve. We probe the ordered magnetic field component in the afterglow through our deep circular polarimetry, finding Pcirc < 0.15 per cent (2σ), the deepest limit yet for a GRB afterglow, suggesting ordered fields are weak, if at all present. Our simultaneous R- and Ks-band polarimetry shows that dust-induced polarization in the host galaxy is likely negligible.

  18. Prompt and Afterglow Emission Properties of Gamma-Ray Bursts with Spectroscopically Identified Supernovae

    NASA Technical Reports Server (NTRS)

    Kaneko, Yuki; Ramirez-Ruiz, Enrico; Patel, Sandeep K.; Kouveliotou, Chryssa; Granot, Jonathan; Rol, Evert; Woosley, Stan; in'tZand, Jean J. M.; vanderHorst, Alexander; Wijers, Ralph A. M. J.; Strom, Richard

    2006-01-01

    We present a detailed spectral analysis of the prompt and afterglow emission of four nearby GRBs (GRBs 980425, 030329, 031203, and 060218) that were spectroscopically found to be associated with type Ib/c supernovae. For each event, we investigated its spectral and luminosity evolution and estimated the total energy budget based on the broadband observations. We discuss the properties of the four events in comparison to general burst population, and infer the physical parameters involved in creation of these nearby GRB-SN events

  19. An inverse Compton origin for the 55 GeV photon in the late afterglow of GRB 130907A

    SciTech Connect

    Tang, Qing-Wen; Wang, Xiang-Yu; Tam, Pak-Hin Thomas E-mail: phtam@phys.nthu.edu.tw

    2014-06-20

    The extended high-energy gamma-ray (>100 MeV) emission which occurs well after the prompt gamma-ray bursts (GRBs) is usually explained as the afterglow synchrotron radiation. Here we report the analysis of Fermi Large Area Telescope observations of GRB 130907A. A 55 GeV photon compatible with the position of the burst was found about 5 hr after the prompt phase. The probability that this photon is associated with GRB 130907A is higher than 99.96%. The energy of this photon exceeds the maximum synchrotron photon energy at this time and its occurrence thus challenges the synchrotron mechanism as the origin for the extended high-energy >10 GeV emission. Modeling of the broadband spectral energy distribution suggests that such high energy photons can be produced by the synchrotron self-Compton emission of the afterglow.

  20. Synchrotron and inverse-Compton emissions from pairs formed in GRB afterglows (analytical treatment)

    SciTech Connect

    Panaitescu, A.; Vestrand, W. T.

    2014-10-01

    We calculate the synchrotron and inverse-Compton emissions from pairs formed in gamma-ray burst (GRB) afterglows from high-energy photons (above 100 MeV), assuming a power-law photon spectrum C {sub ν}∝ν{sup –2} and considering only the pairs generated from primary high-energy photons. The essential properties of these pairs (number, minimal energy, cooling energy, distribution with energy) and of their emission (peak flux, spectral breaks, spectral slope) are set by the observables GeV fluence Φ(t) = Ft and spectrum, and by the Lorentz factor, Γ, and magnetic field, B, of the source of high-energy photons, at observer time, t. Optical and X-ray pseudo light curves, F {sub ν}(Γ), are calculated for the given B; proper synchrotron self-Compton light curves are calculated by setting the dynamics Γ(t) of the high-energy photon source to be that of a decelerating, relativistic shock. It is found that the emission from pairs can accommodate the flux and decays of the optical flashes measured during the prompt (GRB) phase, but it decays faster than the X-ray plateaus observed during the delayed (afterglow) phase. The brightest pair optical emission is obtained for 100 < Γ < 500, and depends mostly on the GeV fluence, being independent of the source redshift. Emission from pairs formed during the GRB phase offers an alternate explanation to reverse-shock optical flashes. These two models may be distinguished based on their corresponding flux decay index-spectral slope relations, different correlations with the Large Area Telescope fluence, or through modeling of the afterglow multiwavelength data.

  1. The afterglow of XRF 071031: Evidence for correlated optical and X-ray flares

    SciTech Connect

    Kruehler, T.; Greiner, J.; Clemens, C.; McBreen, S.; Klose, S.; Rossi, A.; Yoldas, A. Kuepcue

    2009-05-25

    We present a densely sampled early light curve of the optical/near-infrared (NIR) afterglow of the X-Ray Flash (XRF) 071031 at z 2.692. Continuous observations in seven photometric bands from g' to K{sub S} simultaneously with the Gamma Ray Burst Optical Near-Infrared Detector (GROND) at the 2.2 m MPI/ESO telescope on LaSilla were performed between 4 minutes and 7 hours after the burst. The optical/NIR light curve is dominated by an early increase in brightness which can be attributed to the apparent onset of the forward shock (FS) emission. In addition, there are several bumps which are superimposed onto the overall rise and decay. Significant flaring is also visible in the Swift X-Ray Telescope (XRT) light curve at early and late times. The broadband data enables detailed studies of the connection between the X-ray and optical/NIR afterglow and its colour evolution during the first night post burst. We find evidence of spectral hardening in the optical spectral energy distribution contemporaneous with the emergence of the bumps from an underlying afterglow component. The bumps in the optical/NIR light curve can be associated with flares in the X-ray regime suggesting late central engine activity as the common origin.

  2. Spectral unfolding of fast neutron energy distributions

    NASA Astrophysics Data System (ADS)

    Mosby, Michelle; Jackman, Kevin; Engle, Jonathan

    2015-10-01

    The characterization of the energy distribution of a neutron flux is difficult in experiments with constrained geometry where techniques such as time of flight cannot be used to resolve the distribution. The measurement of neutron fluxes in reactors, which often present similar challenges, has been accomplished using radioactivation foils as an indirect probe. Spectral unfolding codes use statistical methods to adjust MCNP predictions of neutron energy distributions using quantified radioactive residuals produced in these foils. We have applied a modification of this established neutron flux characterization technique to experimentally characterize the neutron flux in the critical assemblies at the Nevada National Security Site (NNSS) and the spallation neutron flux at the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL). Results of the unfolding procedure are presented and compared with a priori MCNP predictions, and the implications for measurements using the neutron fluxes at these facilities are discussed.

  3. SWIFT Discovery of Gamma-ray Bursts without Jet Break Feature in their X-ray Afterglows

    NASA Technical Reports Server (NTRS)

    Sato, G.; Yamazaki, R.; Sakamoto, T.; Takahashi, T; Nakazawa, K.; Nakamura, T.; Toma, K.; Hullinger, D.; Tashiro, M.; Parsons, A. M.; Krimm, H. A.; Barthelmy, S. D.; Gehrels, N.; Burrows, D. N.; O'Brien, P. T.; Osborne, J. P.; Chincarini, G.; Lamb, D. Q.

    2007-01-01

    We analyze Swift gamma-ray bursts (GRBs) and X-ray afterglows for three GRBs with spectroscopic redshift determinations - GRB 050401, XRF 050416a, and GRB 050525a. We find that the relation between spectral peak energy and isotropic energy of prompt emissions (the Amati relation) is consistent with that for the bursts observed in pre-Swift era. However, we find that the X-ray afterglow lightcurves, which extend up to 10 - 70 days, show no sign of the jet break that is expected in the standard framework of collimated outflows. We do so by showing that none of the X-ray afterglow lightcurves in our sample satisfies the relation between the spectral and temporal indices that is predicted for the phase after jet break. The jet break time can be predicted by inverting the tight empirical relation between the peak energy of the spectrum and the collimation-corrected energy of the prompt emission (the Ghirlanda relation). We find that there are no temporal breaks within the predicted time intervals in X-ray band. This requires either that the Ghirlanda relation has a larger scatter than previously thought, that the temporal break in X-rays is masked by some additional source of X-ray emission, or that it does not happen because of some unknown reason.

  4. Signature of a Spin-up Magnetar from Multi-band Afterglow Rebrightening of GRB 100814A

    NASA Astrophysics Data System (ADS)

    Yu, Y. B.; Huang, Y. F.; Wu, X. F.; Xu, M.; Geng, J. J.

    2015-06-01

    In recent years, more and more gamma-ray bursts (GRBs) with late rebrightenings in their multi-band afterglows have revealed the late-time activity of their central engines. GRB 100814A is a special case among the well-sampled events, with complex temporal and spectral evolution. The single power-law shallow decay index of the optical light curve observed by GROND between 640 s and 10 ks is {{α }opt}=0.57+/- 0.02, which apparently conflicts with expectations from the simple external shock model. In particular, there is remarkable rebrightening in the optical to near-infrared bands at late times, challenging the external shock model with synchrotron emission coming from the interaction of the blast wave with the surrounding interstellar medium. In this paper, we invoke a magnetar with spin evolution to explain the complex multi-band afterglow emission of GRB 100814A. The initial shallow decay phase in the optical bands and the plateau in the X-ray can be explained as being due to energy injection from a spin-down magnetar. At late times, with materials from the fall-back disk falling onto the central object of the burster, the angular momentum of the accreted materials is transferred to the magnetar, which leads to a spin up process. As a result, the magnetic dipole radiation luminosity will increase, resulting in significant rebrightening of the optical afterglow. We show that the model can well reproduce the observed multi-band afterglow emission.

  5. Optical flashes from internal pairs formed in gamma-ray burst afterglows

    DOE PAGES

    Panaitescu, A.

    2015-06-09

    We develop a numerical formalism for calculating the distribution with energy of the (internal) pairs formed in a relativistic source from unscattered MeV–TeV photons. For gamma-ray burst (GRB) afterglows, this formalism is more suitable if the relativistic reverse shock that energizes the ejecta is the source of the GeV photons. The number of pairs formed is set by the source GeV output (calculated from the Fermi-LAT fluence), the unknown source Lorentz factor, and the unmeasured peak energy of the LAT spectral component. We show synchrotron and inverse-Compton light curves expected from pairs formed in the shocked medium and identify some criteria for testing a pair origin of GRB optical counterparts. Pairs formed in bright LAT afterglows with a Lorentz factor in the few hundreds may produce bright optical counterparts (more » $$R\\lt 10$$) lasting for up to one hundred seconds. As a result, the number of internal pairs formed from unscattered seed photons decreases very strongly with the source Lorentz factor, thus bright GRB optical counterparts cannot arise from internal pairs if the afterglow Lorentz factor is above several hundreds.« less

  6. Optical flashes from internal pairs formed in gamma-ray burst afterglows

    SciTech Connect

    Panaitescu, A.

    2015-06-09

    We develop a numerical formalism for calculating the distribution with energy of the (internal) pairs formed in a relativistic source from unscattered MeV–TeV photons. For gamma-ray burst (GRB) afterglows, this formalism is more suitable if the relativistic reverse shock that energizes the ejecta is the source of the GeV photons. The number of pairs formed is set by the source GeV output (calculated from the Fermi-LAT fluence), the unknown source Lorentz factor, and the unmeasured peak energy of the LAT spectral component. We show synchrotron and inverse-Compton light curves expected from pairs formed in the shocked medium and identify some criteria for testing a pair origin of GRB optical counterparts. Pairs formed in bright LAT afterglows with a Lorentz factor in the few hundreds may produce bright optical counterparts ($R\\lt 10$) lasting for up to one hundred seconds. As a result, the number of internal pairs formed from unscattered seed photons decreases very strongly with the source Lorentz factor, thus bright GRB optical counterparts cannot arise from internal pairs if the afterglow Lorentz factor is above several hundreds.

  7. The Spectral Energy Distributions of Fermi Blazars

    NASA Astrophysics Data System (ADS)

    Fan, J. H.; Yang, J. H.; Liu, Y.; Luo, G. Y.; Lin, C.; Yuan, Y. H.; Xiao, H. B.; Zhou, A. Y.; Hua, T. X.; Pei, Z. Y.

    2016-10-01

    In this paper, multiwavelength data are compiled for a sample of 1425 Fermi blazars to calculate their spectral energy distributions (SEDs). A parabolic function, {{log}}{(ν {F}ν )={P}1({{log}}ν -{P}2)}2+{P}3, is used for SED fitting. Synchrotron peak frequency ({log}{ν }{{p}}), spectral curvature (P1), peak flux ({ν }{{p}}{F}{ν {{p}}}), and integrated flux (ν {F}ν ) are successfully obtained for 1392 blazars (461 flat-spectrum radio quasars [FSRQs], 620 BL Lacs [BLs], and 311 blazars of uncertain type [BCUs]; 999 sources have known redshifts). Monochromatic luminosity at radio 1.4 GHz, optical R band, X-ray at 1 keV and γ-ray at 1 GeV, peak luminosity, integrated luminosity, and effective spectral indices of radio to optical ({α }{{RO}}) and optical to X-ray ({α }{{OX}}) are calculated. The “Bayesian classification” is employed to log {ν }{{p}} in the rest frame for 999 blazars with available redshift, and the results show that three components are enough to fit the log {ν }{{p}} distribution; there is no ultra-high peaked subclass. Based on the three components, the subclasses of blazars using the acronyms of Abdo et al. are classified, and some mutual correlations are also studied. Conclusions are finally drawn as follows: (1) SEDs are successfully obtained for 1392 blazars. The fitted peak frequencies are compared with common sources from available samples. (2) Blazars are classified as low synchrotron peak sources if log {ν }{{p}}({Hz})≤slant 14.0, intermediate synchrotron peak sources if 14.0\\lt {log} {ν }{{p}}({Hz})≤slant 15.3, and high synchrotron peak sources if {log} {ν }{{p}}({Hz})\\gt 15.3. (3) Gamma-ray emissions are strongly correlated with radio emissions. Gamma-ray luminosity is also correlated with synchrotron peak luminosity and integrated luminosity. (4) There is an anticorrelation between peak frequency and peak luminosity within the whole blazar sample. However, there is a marginally positive correlation for high

  8. SPECTRAL ENERGY DISTRIBUTIONS OF ACCRETING PROTOPLANETS

    SciTech Connect

    Eisner, J. A.

    2015-04-10

    Planets are often invoked as the cause of inferred gaps or inner clearings in transition disks. These putative planets would interact with the remnant circumstellar disk, accreting gas and generating substantial luminosity. Here I explore the expected appearance of accreting protoplanets at a range of evolutionary states. I compare synthetic spectral energy distributions with the handful of claimed detections of substellar-mass companions in transition disks. While observed fluxes of candidate companions are generally compatible with accreting protoplanets, challenges remain in reconciling the extended structure inferred in observed objects with the compact emission expected from protoplanets or circumplanetary disks. I argue that a large fraction of transition disks should harbor bright protoplanets, and that more may be detected as larger telescopes open up additional parameter space.

  9. MULTI-WAVELENGTH AFTERGLOWS OF FAST RADIO BURSTS

    SciTech Connect

    Yi, Shuang-Xi; Gao, He; Zhang, Bing

    2014-09-01

    The physical origin of fast radio bursts (FRBs) is unknown. Detecting electromagnetic counterparts to FRBs in other wavelengths is essential to measure their distances and to determine their physical origin. Assuming that at least some of them are of cosmological origin, we calculate their afterglow light curves in multiple wavelengths (X-rays, optical, and radio) by assuming a range of total kinetic energies and redshifts. We focus on forward shock emission, but also consider the possibility that some of the FRBs might have bright reverse shock emission. In general, FRB afterglows are too faint to be detected by current detectors. Only if an FRB has a very low radiative efficiency in radio (hence, a very large kinetic energy), and when it is close enough to observe can its afterglow be detected in the optical and radio bands. We discuss observational strategies for detecting these faint afterglows using future telescopes such as Large Synoptic Survey Telescope and Expanded Very Large Array.

  10. Afterglow Observations Shed New Light on the Nature of X-ray Flashes

    SciTech Connect

    Granot, J

    2005-02-17

    X-ray flashes (XRFs) and X-ray rich gamma-ray bursts (XRGRBs) share many observational characteristics with long duration ({approx}> 2 s) GRBs, but the reason for which the spectral energy distribution of their prompt emission peaks at lower photon energies, E{sub p}, is still a subject of debate. Although many different models have been invoked in order to explain the lower values of E{sub p}, their implications for the afterglow emission were not considered in most cases, mainly because observations of XRF afterglows have become available only recently. Here we examine the predictions of the various XRF models for the afterglow emission, and test them against the observations of XRF 030723 and XRGRB 041006, the events with the best monitored afterglow light curves in their respective class. We show that most existing XRF models are hard to reconcile with the observed afterglow light curves, which are very flat at early times. Such light curves are, however, naturally produced by a roughly uniform jet with relatively sharp edges that is viewed off-axis (i.e. from outside of the jet aperture). This type of model self consistently accommodates both the observed prompt emission and the afterglow light curves of XRGRB 041006 and XRF 030723, implying viewing angles {theta}{sub obs} from the jet axis of ({theta}{sub obs}-{theta}{sub 0}) {approx} 0.15 {theta}{sub 0} and ({theta}{sub obs}-{theta}{sub 0}) {approx} {theta}{sub 0}, respectively, where {theta}{sub 0} {approx} 3{sup o} is the half-opening angle of the jet. This suggests that GRBs, XRGRBs and XRFs are intrinsically similar relativistic jets viewed from different angles. It is then natural to identify GRBs with {gamma}({theta}{sub obs} - {theta}{sub 0}) {approx}< 1, XRGRBs with 1 {approx}< ({theta}{sub obs} - {theta}{sub 0}) {approx}< a few, and XRFs with {gamma}({theta}{sub obs} - {theta}{sub 0}) {approx}> a few, where {gamma} is the Lorentz factor of the outflow near the edge of the jet from which most of the

  11. Phenomenology of reverse-shock emission in the optical afterglows of gamma-ray bursts

    SciTech Connect

    Japelj, J.; Kopač, D.; Gomboc, A.; Kobayashi, S.; Harrison, R.; Virgili, F. J.; Mundell, C. G.; Guidorzi, C.; Melandri, A. E-mail: andreja.gomboc@fmf.uni-lj.si

    2014-04-20

    We use a parent sample of 118 gamma-ray burst (GRB) afterglows, with known redshift and host galaxy extinction, to separate afterglows with and without signatures of dominant reverse-shock (RS) emission and to determine which physical conditions lead to a prominent reverse-shock emission. We identify 10 GRBs with reverse-shock signatures: 990123, 021004, 021211, 060908, 061126, 080319B, 081007, 090102, 090424, and 130427A. By modeling their optical afterglows with reverse- and forward-shock analytic light curves and using Monte Carlo simulations, we estimate the parameter space of the physical quantities describing the ejecta and circumburst medium. We find that physical properties cover a wide parameter space and do not seem to cluster around any preferential values. Comparing the rest-frame optical, X-ray, and high-energy properties of the larger sample of non-RS-dominated GRBs, we show that the early-time (<1 ks) optical spectral luminosity, X-ray afterglow luminosity, and γ-ray energy output of our reverse-shock dominated sample do not differ significantly from the general population at early times. However, the GRBs with dominant reverse-shock emission have fainter than average optical forward-shock emission at late times (>10 ks). We find that GRBs with an identifiable reverse-shock component show a high magnetization parameter R {sub B} = ε{sub B,r}/ε{sub B,f} ∼ 2-10{sup 4}. Our results are in agreement with the mildly magnetized baryonic jet model of GRBs.

  12. Kinematics of Gamma-Ray Burst and their Relationship to Afterglows

    SciTech Connect

    Salmonson, J D

    2001-12-17

    A strong correlation is reported between gamma-ray burst (GRB) pulse lags and afterglow jet-break times for the set of bursts (seven) with known redshifts, luminosities, pulse lags, and jet-break times. This may be a valuable clue toward understanding the connection between the burst and afterglow phases of these events. The relation is roughly linear (i.e. doubling the pulse lag in turn doubles the jet break time) and thus implies a simple relationship between these quantities. We suggest that this correlation is due to variation among bursts of emitter Doppler factor. Specifically, an increased speed or decreased angle of velocity, with respect to the observed line-of-site, of burst ejecta will result in shorter perceived pulse lags in GRBs as well as quicker evolution of the external shock of the afterglow to the time when the jet becomes obvious, i.e. the jet-break time. Thus this observed variation among GRBs may result from a perspective effect due to different observer angles of a morphologically homogeneous populations of GRBs. Also, a conjecture is made that peak luminosities not only vary inversely with burst timescale, but also are directly proportional to the spectral break energy. If true, this could provide important information for explaining the source of this break.

  13. Discovery of the Low-Redshift Afterglow of GRB 011121 and Its Progenitor Supernova 2001ke

    NASA Astrophysics Data System (ADS)

    Garnavich, P. M.; Stanek, K. Z.; Wyrzykowski, L.; Infante, L.; Bendek, E.; Holland, S. T.; Bersier, D.; Jha, S.; Matheson, T.; Kirshner, R. P.; Phillips, M. M.; Krisciunas, K.; Carlberg, R.

    2002-05-01

    We identify and present the first optical observations of the afterglow of the Gamma-Ray Burst (GRB) 011121. Images were obtained with the OGLE 1.3m telescope in BVRI passbands, starting 10.3;hours after the burst. The temporal analysis of our data indicates a steep decay, independent of wavelength with Fν t{-1.72+/- 0.05}. There is no evidence for a break in the light curve earlier than 2.5 days after the burst. The spectral energy distribution determined from the early broad-band photometry is a power-law with Fν ν {-0.46+/- 0.10} after correcting for a large Galactic extinction. Spectra, obtained with the Magellan 6.5m Baade telescope, reveal narrow emission lines from the host galaxy and these provide a redshift of z=0.36, which is the lowest measured redshift for an optical afterglow. We also present late R and J-band observations of the afterglow ~ 14;days after the burst. The late-time photometry shows a large deviation from the initial decline and our data combined with Hubble Space Telescope photometry provide strong evidence for a supernova peaking less than 10 rest-frame days after the GRB. This is the best evidence to date that classical, long gamma-ray bursts are generated by core-collapse supernovae. This work is partially supported by NASA LTSA grant NAG5-9364.

  14. Extremely Soft X-Ray Flash as the Indicator of Off-axis Orphan GRB Afterglow

    NASA Astrophysics Data System (ADS)

    Urata, Yuji; Huang, Kuiyun; Yamazaki, Ryo; Sakamoto, Takanori

    2015-06-01

    We verified the off-axis jet model of X-ray flashes (XRFs) and examined a discovery of off-axis orphan gamma-ray burst (GRB) afterglows. The XRF sample was selected on the basis of the following three factors: (1) a constraint on the lower peak energy of the prompt spectrum {E}{obs}{src}, (2) redshift measurements, and (3) multicolor observations of an earlier (or brightening) phase. XRF 020903 was the only sample selected on the basis of these criteria. A complete optical multicolor afterglow light curve of XRF 020903 obtained from archived data and photometric results in the literature showed an achromatic brightening around 0.7 days. An off-axis jet model with a large observing angle (0.21 rad, which is twice the jet opening half-angle, {θ }{jet}) can naturally describe the achromatic brightening and the prompt X-ray spectral properties. This result indicates the existence of off-axis orphan GRB afterglow light curves. Events with a larger viewing angle (\\gt ∼ 2{θ }{jet}) could be discovered using an 8 m class telescope with wide-field imagers such as the Subaru Hyper-Suprime-Cam and the Large Synoptic Survey Telescope.

  15. Prompt and Afterglow Emmision Properties of Gamma-ray Bursts with Spectroscopically Identified Supernovae

    NASA Technical Reports Server (NTRS)

    Kaneko, Yuki; Ramirez-Ruiz, Enrico; Granot, Jonathan; Kouveliotou, Chryssa; Woosley, Stan E.; Patel, Sandeep K.; Rol, Evert; In'TZant, Jean J. M.; VanDerHorst, Alexander J.; Wijers, Ralph A. M. J.; Strom, Richard

    2007-01-01

    We present a detailed spectral analysis of the prompt and afterglow emission of four nearby long-soft gamma-ray bursts (GRBs 980425,030329,031203, and 060218) that were spectroscopically found to be associated with Type IC supernovae and compare them to the general GRB population. For each event, we investigate the spectral and luminosity evolution and estimate the total energy budget based on broadband observations. The observational inventory for these events has become rich enough to allow estimates of their energy content in relativistic and subrelativistic form. The result is a global portrait of the effects of the physical processes responsible for producing long-soft GRBs. In particular, we find that the values of the energy released in mildly relativistic out8ows appears to have a sigruficantly smaller scatter than those found in highly relativistic ejecta. This is consistent with a picture in which the energy released inside the progenitor star is roughly standard, while the fracti

  16. Study of argon-oxygen flowing afterglow

    NASA Astrophysics Data System (ADS)

    Mazánková, V.; Trunec, D.; Navrátil, Z.; Raud, J.; Krčma, F.

    2016-06-01

    The reaction kinetics in argon-oxygen flowing afterglow (post-discharge) was studied using NO titration and optical emission spectroscopy. The flowing DC post-discharge in argon-oxygen mixture was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 90 W. The O(3P) atom concentration was determined by NO titration at different places along the flow tube. The optical emission spectra were also measured along the flow tube. Argon spectral lines, oxygen lines at 777 nm and 844.6 nm and atmospheric A-band of {{\\text{O}}2} were identified in the spectra. Rotational temperature of {{\\text{O}}2} was determined from the oxygen atmospheric A-band and also the outer wall temperature of the flow tube was measured by a thermocouple and by an IR thermometer. A zero-dimensional kinetic model for the reactions in the afterglow was developed. This model allows the time dependencies of particle concentrations and of gas temperature to be calculated. The wall recombination probability for O(3P) atoms {γ\\text{O≤ft(\\text{P}\\right)}}=≤ft(1.63+/- 0.06\\right)× {{10}-3} and wall deactivation probability for {{\\text{O}}2} (b {{}1}Σ\\text{g}+ ) molecules {γ{{\\text{O}2}≤ft(\\text{b}\\right)}}=≤ft(1.7+/- 0.1\\right)× {{10}-3} were determined from the fit of model results to experimental data. Sensitivity analysis was applied for the analysis of kinetic model in order to reveal the most important reactions in the model. The calculated gas temperature increases in the afterglow and then decreases at later afterglow times after reaching the maximum. This behavior is in good agreement with the spatial rotational temperature dependence. A similar trend was also observed at outer wall temperature measurement.

  17. Study of argon–oxygen flowing afterglow

    NASA Astrophysics Data System (ADS)

    Mazánková, V.; Trunec, D.; Navrátil, Z.; Raud, J.; Krčma, F.

    2016-06-01

    The reaction kinetics in argon–oxygen flowing afterglow (post-discharge) was studied using NO titration and optical emission spectroscopy. The flowing DC post-discharge in argon–oxygen mixture was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 90 W. The O(3P) atom concentration was determined by NO titration at different places along the flow tube. The optical emission spectra were also measured along the flow tube. Argon spectral lines, oxygen lines at 777 nm and 844.6 nm and atmospheric A-band of {{\\text{O}}2} were identified in the spectra. Rotational temperature of {{\\text{O}}2} was determined from the oxygen atmospheric A-band and also the outer wall temperature of the flow tube was measured by a thermocouple and by an IR thermometer. A zero-dimensional kinetic model for the reactions in the afterglow was developed. This model allows the time dependencies of particle concentrations and of gas temperature to be calculated. The wall recombination probability for O(3P) atoms {γ\\text{O≤ft(\\text{P}\\right)}}=≤ft(1.63+/- 0.06\\right)× {{10}-3} and wall deactivation probability for {{\\text{O}}2} (b {{}1}Σ\\text{g}+ ) molecules {γ{{\\text{O}2}≤ft(\\text{b}\\right)}}=≤ft(1.7+/- 0.1\\right)× {{10}-3} were determined from the fit of model results to experimental data. Sensitivity analysis was applied for the analysis of kinetic model in order to reveal the most important reactions in the model. The calculated gas temperature increases in the afterglow and then decreases at later afterglow times after reaching the maximum. This behavior is in good agreement with the spatial rotational temperature dependence. A similar trend was also observed at outer wall temperature measurement.

  18. THE PROPERTIES OF THE 2175 A EXTINCTION FEATURE DISCOVERED IN GRB AFTERGLOWS

    SciTech Connect

    Zafar, Tayyaba; Watson, Darach; Eliasdottir, Ardis; Fynbo, Johan P. U.; Kruehler, Thomas; Leloudas, Giorgos; Schady, Patricia; Greiner, Jochen; Jakobsson, Pall; Thoene, Christina C.; Perley, Daniel A.; Morgan, Adam N.; Bloom, Joshua E-mail: darach@dark-cosmology.dk

    2012-07-01

    The unequivocal, spectroscopic detection of the 2175 A bump in extinction curves outside the Local Group is rare. To date, the properties of the bump have been examined in only two gamma-ray burst (GRB) afterglows (GRB 070802 and GRB 080607). In this work, we analyze in detail the detections of the 2175 Angstrom-Sign extinction bump in the optical spectra of two further GRB afterglows: GRB 080605 and 080805. We gather all available optical/near-infrared photometric, spectroscopic, and X-ray data to construct multi-epoch spectral energy distributions (SEDs) for both GRB afterglows. We fit the SEDs with the Fitzpatrick and Massa model with a single or broken power law. We also fit a sample of 38 GRB afterglows, known to prefer a Small Magellanic Cloud (SMC)-type extinction curve, with the same model. We find that the SEDs of GRB 080605 and GRB 080805 at two epochs are fit well with a single power law with a derived extinction of A{sub V} = 0.52{sup +0.13}{sub -0.16} and 0.50{sup +0.13}{sub -0.10}, and 2.1{sup +0.7}{sub -0.6} and 1.5 {+-} 0.2, respectively. While the slope of the extinction curve of GRB 080805 is not well constrained, the extinction curve of GRB 080605 has an unusual very steep far-UV rise together with the 2175 A bump. Such an extinction curve has previously been found in only a small handful of sightlines in the Milky Way. One possible explanation of such an extinction curve may be dust arising from two different regions with two separate grain populations, however we cannot distinguish the origin of the curve. We finally compare the four 2175 A bump sightlines to the larger GRB afterglow sample and to Local Group sightlines. We find that while the width and central positions of the bumps are consistent with what is observed in the Local Group, the relative strength of the detected bump (A{sub bump}) for GRB afterglows is weaker for a given A{sub V} than for almost any Local Group sightline. Such dilution of the bump strength may offer tentative

  19. The distribution of equivalent widths in long GRB afterglow spectra

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, A.; Fynbo, J. P. U.; Thöne, C. C.; Christensen, L.; Gorosabel, J.; Milvang-Jensen, B.; Schulze, S.; Jakobsson, P.; Wiersema, K.; Sánchez-Ramírez, R.; Leloudas, G.; Zafar, T.; Malesani, D.; Hjorth, J.

    2012-12-01

    Context. The extreme brightness of gamma-ray burst (GRB) afterglows and their simple spectral shape make them ideal beacons to study the interstellar medium of their host galaxies through absorption line spectroscopy at almost any redshift. Aims: We describe the distribution of rest-frame equivalent widths (EWs) of the most prominent absorption features in GRB afterglow spectra, providing the means to compare individual spectra to the sample and identify its peculiarities. Methods: Using 69 low-resolution GRB afterglow spectra, we conduct a study of the rest-frame EWs distribution of features with an average rest-frame EW larger than 0.5 Å. To compare an individual GRB with the sample, we develop EW diagrams as a graphical tool, and we give a catalogue with diagrams for the 69 spectra. We introduce a line strength parameter (LSP) that allows us to quantify the strength of the absorption features in a GRB spectrum as compared to the sample by a single number. Using the distributions of EWs of single-species features, we derive the distribution of their column densities by a curve of growth (CoG) fit. Results: We find correlations between the LSP and the extinction of the GRB, the UV brightness of the host galaxies and the neutral hydrogen column density. However, we see no significant evolution of the LSP with the redshift. There is a weak correlation between the ionisation of the absorbers and the energy of the GRB, indicating that, either the GRB event is responsible for part of the ionisation, or that galaxies with high-ionisation media produce more energetic GRBs. Spectral features in GRB spectra are, on average, 2.5 times stronger than those seen in QSO intervening damped Lyman-α (DLA) systems and slightly more ionised. In particular we find a larger excess in the EW of C ivλλ1549 relative to QSO DLAs, which could be related to an excess of Wolf-Rayet stars in the environments of GRBs. From the CoG fitting we obtain an average number of components in the

  20. Anatomy of a dark burst - the afterglow of GRB 060108

    NASA Astrophysics Data System (ADS)

    Oates, S. R.; Mundell, C. G.; Piranomonte, S.; Page, K. L.; de Pasquale, M.; Monfardini, A.; Melandri, A.; Zane, S.; Guidorzi, C.; Malesani, D.; Gomboc, A.; Bannister, N.; Blustin, A. J.; Capalbi, M.; Carter, D.; D'Avanzo, P.; Kobayashi, S.; Krimm, H. A.; O'Brien, P. T.; Page, M. J.; Smith, R. J.; Steele, I. A.; Tanvir, N.

    2006-10-01

    We present a multiwavelength study of GRB 060108 - the 100th gamma-ray burst discovered by Swift. The X-ray flux and light curve (three segments plus a flare) detected with the X-ray Telescope are typical of Swift long bursts. We report the discovery of a faint optical afterglow detected in deep BVRi'-band imaging obtained with the Faulkes Telescope North beginning 2.75 min after the burst. The afterglow is below the detection limit of the Ultraviolet/Optical Telescope within 100 s of the burst, while is evident in K-band images taken with the United Kingdom Infrared Telescope 45 min after the burst. The optical light curve is sparsely sampled. Observations taken in the R and i' bands can be fitted either with a single power-law decay in flux, F(t) ~ t-α where α = 0.43 +/- 0.08, or with a two-segment light curve with an initial steep decay α1 < 0.88 +/- 0.2, flattening to a slope α2 ~ 0.31 +/- 0.12. A marginal evidence for rebrightening is seen in the i' band. Deep R-band imaging obtained ~12 d post-burst with the Very Large Telescope reveals a faint, extended object (R ~ 23.5mag) at the location of the afterglow. Although the brightness is compatible with the extrapolation of the slow decay with index α2, significant flux is likely due to a host galaxy. This implies that the optical light curve had a break before 12 d, akin to what observed in the X-rays. We derive the maximum photometric redshift z < 3.2 for GRB 060108. We find that the spectral energy distribution at 1000 s after the burst, from the optical to the X-ray range, is best fitted by a simple power law, Fν ~ ν-β, with βOX = 0.54 and a small amount of extinction. The optical to X-ray spectral index (βOX) confirms GRB 060108 to be one of the optically darkest bursts detected. Our observations rule out a high redshift as the reason for the optical faintness of GRB 060108. We conclude that a more likely explanation is a combination of an intrinsic optical faintness of the burst, a hard optical

  1. Multiwavelength Observations of GRB 110731A: GeV Emission from Onset to Afterglow

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Asano, K.; Baldini, L.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bellazzini, R.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Granot, J.; Greiner, J.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jackson, M. S.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Mészáros, P.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Romoli, C.; Roth, M.; Ryde, F.; Sanchez, D. A.; Sgrò, C.; Siskind, E. J.; Sonbas, E.; Spinelli, P.; Stamatikos, M.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Gruber, D.; Bhat, P. N.; Bissaldi, E.; Briggs, M. S.; Burgess, J. M.; Connaughton, V.; Foley, S.; Kippen, R. M.; Kouveliotou, C.; McBreen, S.; McGlynn, S.; Paciesas, W. S.; Pelassa, V.; Preece, R.; Rau, A.; van der Horst, A. J.; von Kienlin, A.; Kann, D. A.; Filgas, R.; Klose, S.; Krühler, T.; Fukui, A.; Sako, T.; Tristram, P. J.; Oates, S. R.; Ukwatta, T. N.; Littlejohns, O.

    2013-02-01

    We report on the multiwavelength observations of the bright, long gamma-ray burst GRB 110731A, by the Fermi and Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that GRB 110731A shares many features with bright Large Area Telescope bursts observed by Fermi during the first three years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power-law component and temporally extended high-energy emission. In addition, this is the first GRB for which simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. The observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparency constraint for the prompt signal and the spectral and temporal analysis of the forward-shock afterglow emission independently lead to an estimate of the bulk Lorentz factor of the jet Γ ~ 500-550.

  2. The plateau phase of gamma-ray burst afterglows in the thick-shell scenario

    NASA Astrophysics Data System (ADS)

    Leventis, K.; Wijers, R. A. M. J.; van der Horst, A. J.

    2014-01-01

    We present analytic calculations of synchrotron radiation from the forward and the reverse shock of gamma-ray burst blast waves, in the thick-shell scenario (i.e. when the reverse shock is relativistic). We show that this scenario can naturally account for the plateau phase, observed early in the afterglows of about half the bursts detected by Swift. We generalize our approach to include power-law luminosity of the central engine and show that when radiation from both regions (forward and reverse shock) is taken into account, a wide range of possibilities emerge, including chromatic and achromatic breaks, frequency-dependent spectral evolution during the injection break and widely varying decay indices in different bands. For both the forward and the reverse shock, we derive formulas for the spectral parameters and the observed flux in different power-law segments of the spectrum, as a function of observer time. We explore the Fb-tb relation (between the observed time of the end of the plateau phase and the flux at that point) in the framework of the presented model and show that model predictions favour the reverse shock as the dominant source of emission in both optical and X-rays. As case studies, we present simultaneous fits to X-ray and optical/IR afterglow data of GRB 080928 and GRB 090423. We identify the end of the plateau phase with the cessation of energy injection and infer the corresponding upper limits to central-engine activity, which are about 1 h for the former and 1.5 h for the latter. We conclude that smooth energy injection through the reverse shock is a plausible explanation for the plateau phase of gamma-ray burst afterglows. During that phase, radiation from the reverse shock is likely to be important, or even dominant, and should be taken into account when fitting model parameters to observations.

  3. The afterglow and the host galaxy of GRB 011211

    NASA Astrophysics Data System (ADS)

    Jakobsson, P.; Hjorth, J.; Fynbo, J. P. U.; Gorosabel, J.; Pedersen, K.; Burud, I.; Levan, A.; Kouveliotou, C.; Tanvir, N.; Fruchter, A.; Rhoads, J.; Grav, T.; Hansen, M. W.; Michelsen, R.; Andersen, M. I.; Jensen, B. L.; Pedersen, H.; Thomsen, B.; Weidinger, M.; Bhargavi, S. G.; Cowsik, R.; Pandey, S. B.

    2003-09-01

    We present optical, near-infrared, and X-ray observations of the optical afterglow (OA) of the X-ray rich, long-duration gamma-ray burst GRB 011211. Hubble Space Telescope (HST) data obtained 14, 26, 32, and 59 days after the burst, show the host galaxy to have a morphology that is fairly typical of blue galaxies at high redshift. We measure its magnitude to be R = 24.95 +/- 0.11. We detect a break in the OA R-band light curve which is naturally accounted for by a collimated outflow geometry. By fitting a broken power-law to the data we find a best fit with a break 1.56 +/- 0.02 days after the burst, a pre-break slope of alpha1 = -0.95 +/- 0.02, and a post-break slope of alpha2 = -2.11 +/- 0.07. The UV-optical spectral energy distribution (SED) around 14 hours after the burst is best fit with a power-law with index beta = -0.56 +/- 0.19 reddened by an SMC-like extinction law with a modest AV = 0.08 +/- 0.08 mag. By comparison, from the XMM-Newton X-ray data at around the same time, we find a decay index of alphaX = -1.62 +/- 0.36 and a spectral index of betaX = -1.21+0.10-0.15. Interpolating between the UV-optical and X-ray implies that the cooling frequency is located close to ~ 1016 Hz in the observer frame at the time of the observations. We argue, using the various temporal and spectral indices above, that the most likely afterglow model is that of a jet expanding into an external environment that has a constant mean density rather than a wind-fed density structure. We estimate the electron energy index for this burst to be p ~ 2.3. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden. Based on observations made with ESO Telescopes at the Paranal Observatory by GRACE under programme ID 69.D-0701. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the

  4. A possible bright blue supernova in the afterglow of GRB020305

    SciTech Connect

    Gorosabel, J.; Fynbo, J.P.U.; Fruchter, A.; Levan, A.; Hjorth,J.; Nugent, P.; Castro-Tirado, A.J.; Castro Ceron, J.M.; Rhoads, J.; Bersier, D.; Burud, I.

    2005-07-01

    We report on ground-based and HST(+STIS) imaging of the afterglow and host galaxy of the Gamma-Ray Burst (GRB) of March 5, 2002. The GRB occurred in a R=25.17+-0.14 galaxy, which apparently is part of an interacting system. The light curve of the optical afterglow shows are brightening, or at least a plateau, 12-16 days after the gamma-ray event. UBVRIK' multi-band imaging of the afterglow {approx}12 days after the GRB reveals a blue spectral energy distribution (SED). The SED is consistent with a power-law with a spectral index of beta=-0.63+-0.16,but there is tentative evidence for deviations away from a power-law. Unfortunately, a spectroscopic redshift has not been secured for GRB020305. From the SED we impose a redshift upper limit of z<{approx}2.8,hence excluding the pseudo redshift of 4.6 reported for this burst. We discuss the possibilities for explaining the light curve, SED and host galaxy properties for GRB 020305. The most natural interpretation of the light curve and the SED is an associated supernova (SN). Our data can not precisely determine the redshift of the GRB. The most favored explanation is a low redshift (z{approx}0.2) SN, but a higher redshift(z>{approx}0.5) SN can not be excluded. We also discuss less likely scenarios not based on SNe, like a burst occurring in a z=2.5 galaxy with an extinction curve similar to that of the Milky Way.

  5. The ultra-long GRB 111209A. II. Prompt to afterglow and afterglow properties

    SciTech Connect

    Stratta, G.; Gendre, B.; Boër, M.; Atteia, J. L.; Coward, D. M.; Howell, E.; De Pasquale, M.; Oates, S.; Klotz, A.; Piro, L.

    2013-12-10

    The 'ultra-long' gamma-ray burst GRB 111209A at redshift z = 0.677 is the longest GRB ever observed thus far, with a rest frame prompt emission duration of ∼4 hr. In order to explain the burst exceptional longevity, a low-metallicity blue supergiant progenitor was invoked. In this article we further constrain the phenomenology and progenitor properties of this peculiar GRB by performing a multiband temporal and spectral analysis of both the prompt and the afterglow emission. We use proprietary and publicly available data from Swift, Konus WIND, XMM-Newton, and TAROT, as well as from other ground-based optical and radio telescopes. We find some peculiar properties that are possibly connected to the exceptional nature of this burst, namely: (1) an unprecedented large optical delay of 410 ± 50 s between the peak time in gamma-rays and the peak time in the optical of a marked multiwavelength flare; (2) multiwavelength prompt emission spectral modeling requires a certain amount of dust in the circumburst environment. The dust produces a rest frame visual extinction of A{sub V} = 0.3-1.5 mag, and may undergo destruction at late times; and (3) we detect the presence of a hard spectral extra power-law component at the end of the X-ray steep steep decay phase and before the start of the X-ray afterglow, which has never been revealed thus far in past GRBs. The optical afterglow shows more usual properties; it has a flux power-law decay with an index of 1.6 ± 0.1 and a late rebrightening feature observed at ∼1.1 the day after the first Burst Alert Telescope trigger. We discuss our findings in the context of several possible interpretations that have been given thus far of the complex multiband GRB phenomenology and propose a binary channel formation for the blue supergiant progenitor.

  6. The Supercritical Pile Gamma-Ray Burst Model: The GRB Afterglow Steep Decline and Plateau Phase

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Kazanas, D.; Mastichiadis, A.

    2013-01-01

    We present a process that accounts for the steep decline and plateau phase of the Swift X-Ray Telescope (XRT) light curves, vexing features of gamma-ray burst (GRB) phenomenology. This process is an integral part of the "supercritical pile" GRB model, proposed a few years ago to account for the conversion of the GRB kinetic energy into radiation with a spectral peak at E(sub pk) is approx. m(sub e)C(exp 2). We compute the evolution of the relativistic blast wave (RBW) Lorentz factor Gamma to show that the radiation-reaction force due to the GRB emission can produce an abrupt, small (approx. 25%) decrease in Gamma at a radius that is smaller (depending on conditions) than the deceleration radius R(sub D). Because of this reduction, the kinematic criticality criterion of the "supercritical pile" is no longer fulfilled. Transfer of the proton energy into electrons ceases and the GRB enters abruptly the afterglow phase at a luminosity smaller by approx. m(sub p)/m(sub e) than that of the prompt emission. If the radius at which this slow-down occurs is significantly smaller than R(sub D), the RBW internal energy continues to drive the RBW expansion at a constant (new) Gamma and its X-ray luminosity remains constant until R(sub D) is reached, at which point it resumes its more conventional decay, thereby completing the "unexpected" XRT light curve phase. If this transition occurs at R is approx. equal to R(sub D), the steep decline is followed by a flux decrease instead of a "plateau," consistent with the conventional afterglow declines. Besides providing an account of these peculiarities, the model suggests that the afterglow phase may in fact begin before the RBW reaches R is approx. equal to R(sub D), thus providing novel insights into GRB phenomenology.

  7. GRB 110731A: Early Afterglow in Stellar Wind Powered By a Magnetized Outflow

    NASA Astrophysics Data System (ADS)

    Fraija, N.

    2015-05-01

    One of the most energetic gamma-ray bursts, GRB 110731A, was observed from an optical to GeV energy range. Previous analysis of the prompt phase revealed similarities between the Large Area Telescope (LAT) bursts observed by Fermi: (1) a delayed onset of the high-energy emission (\\gt 100 MeV), (2) a short-lasting bright peak at later times, and (3) a temporally extended component from this phase, lasting hundreds of seconds. Additionally to the prompt phase, multiwavelength observations over different epochs showed that the spectral energy distribution was better fitted by a wind afterglow model. We present a leptonic model based on an early afterglow that evolves in a stellar wind of its progenitor. We apply this model to interpret the temporally extended LAT emission and the brightest LAT peak exhibited by the prompt phase of GRB 110731A. Additionally, using the same set of parameters, we describe the multiwavelength afterglow observations. The origin of the temporally extended LAT, X-ray, and optical flux is explained through synchrotron radiation from the forward shock (FS) and the brightest LAT peak is described, evoking the synchrotron self-Compton emission from the reverse shock (RS). The bulk Lorentz factor required in this model (Γ ≃ 520) lies in the range of values demanded for most LAT-detected GRBs. We show that the strength of the magnetic field in the RS region is ∼50 times stronger than that in the FS region. This result suggests that, for GRB 110731A, the central engine is likely entrained with strong magnetic fields.

  8. The Supercritical Pile Gamma-Ray Burst Model: The GRB Afterglow Steep Decline and Plateau Phase

    NASA Astrophysics Data System (ADS)

    Sultana, J.; Kazanas, D.; Mastichiadis, A.

    2013-12-01

    We present a process that accounts for the steep decline and plateau phase of the Swift X-Ray Telescope (XRT) light curves, vexing features of gamma-ray burst (GRB) phenomenology. This process is an integral part of the "supercritical pile" GRB model, proposed a few years ago to account for the conversion of the GRB kinetic energy into radiation with a spectral peak at E pk ~ mec 2. We compute the evolution of the relativistic blast wave (RBW) Lorentz factor Γ to show that the radiation-reaction force due to the GRB emission can produce an abrupt, small (~25%) decrease in Γ at a radius that is smaller (depending on conditions) than the deceleration radius RD . Because of this reduction, the kinematic criticality criterion of the "supercritical pile" is no longer fulfilled. Transfer of the proton energy into electrons ceases and the GRB enters abruptly the afterglow phase at a luminosity smaller by ~mp /me than that of the prompt emission. If the radius at which this slow-down occurs is significantly smaller than RD , the RBW internal energy continues to drive the RBW expansion at a constant (new) Γ and its X-ray luminosity remains constant until RD is reached, at which point it resumes its more conventional decay, thereby completing the "unexpected" XRT light curve phase. If this transition occurs at R ~= RD , the steep decline is followed by a flux decrease instead of a "plateau," consistent with the conventional afterglow declines. Besides providing an account of these peculiarities, the model suggests that the afterglow phase may in fact begin before the RBW reaches R ~= RD , thus providing novel insights into GRB phenomenology.

  9. THERMAL EMISSIONS SPANNING THE PROMPT AND THE AFTERGLOW PHASES OF THE ULTRA-LONG GRB 130925A

    SciTech Connect

    Basak, Rupal; Rao, A. R. E-mail: arrao@tifr.res.in

    2015-07-01

    GRB 130925A is an ultra-long gamma-ray burst (GRB), and it shows clear evidence for thermal emission in the soft X-ray data of the Swift/X-ray Telescope (XRT; ∼0.5 keV), lasting until the X-ray afterglow phase. Due to the long duration of the GRB, the burst could be studied in hard X-rays with high-resolution focusing detectors (NuSTAR). The blackbody temperature, as measured by the Swift/XRT, shows a decreasing trend until the late phase (Piro et al.) whereas the high-energy data reveal a significant blackbody component during the late epochs at an order of magnitude higher temperature (∼5 keV) compared to contemporaneous low energy data (Bellm et al.). We resolve this apparent contradiction by demonstrating that a model with two black bodies and a power law (2BBPL) is consistent with the data right from the late prompt emission to the afterglow phase. Both blackbodies show a similar cooling behavior up to late times. We invoke a structured jet, having a fast spine and a slower sheath layer, to identify the location of these blackbodies. Independent of the physical interpretation, we propose that the 2BBPL model is a generic feature of the prompt emission of all long GRBs, and the thermal emission found in the afterglow phase of different GRBs reflects the lingering thermal component of the prompt emission with different timescales. We strengthen this proposal by pointing out a close similarity between the spectral evolutions of this GRB and GRB 090618, a source with significant wide band data during the early afterglow phase.

  10. The Onset of Gamma-Ray Burst Afterglow

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shiho; Zhang, Bing

    2007-02-01

    We discuss the reference time t0 of afterglow light curves in the context of the standard internal-external shock model. The decay index of early afterglow is very sensitive to the reference time one chooses. In order to understand the nature of early afterglow, it is essential to take a correct reference time. Our simple analytic model provides a framework for understanding special relativistic effects involved in early afterglow phase. We evaluate light curves of reverse shock emission as well as those of forward shock emission, based on full hydrodynamic calculations. We show that the reference time does not shift significantly even in the thick-shell case. For external shock emission components, measuring times from the beginning of the prompt emission is a good approximation and it does not cause an early steep decay. In the thin-shell case, the energy transfer time from fireball ejecta to ambient medium typically extends to thousands of seconds. This might be related to the shallow decay phases observed in early X-ray afterglow at least for some bursts.

  11. Radio rebrightening of the GRB afterglow by the accompanying supernova

    NASA Astrophysics Data System (ADS)

    Barniol Duran, R.; Giannios, D.

    2015-12-01

    The gamma-ray burst (GRB) jet powers the afterglow emission by shocking the surrounding medium, and radio afterglow can now be routinely observed to almost a year after the explosion. Long-duration GRBs are accompanied by supernovae (SNe) that typically contain much more energy than the GRB jet. Here we consider the fact that the SN blast wave will also produce its own afterglow (supernova remnant emission), which will peak at much later time (since it is non-relativistic), when the SN blast wave transitions from a coasting phase to a decelerating Sedov-Taylor phase. We predict that this component will peak generally a few tens of years after the explosion and it will outshine the GRB powered afterglow well-before its peak emission. In the case of GRB 030329, where the external density is constrained by the ˜10-year coverage of the radio GRB afterglow, the radio emission is predicted to start rising over the next decade and to continue to increase for the following decades up to a level of ˜ mJy. Detection of the SN-powered radio emission will greatly advance our knowledge of particle acceleration in ˜0.1c shocks.

  12. The source of multi spectral energy of solar energetic electron

    SciTech Connect

    Herdiwijaya, Dhani

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  13. Rapid UBVRI Follow-up of the Highly Collimated Optical Afterglow of GRB 010222

    NASA Astrophysics Data System (ADS)

    Stanek, Krzysztof Z.; Garnavich, Peter M.; Jha, Saurabh; Kilgard, Roy E.; McDowell, Jonathan C.; Bersier, David; Challis, Peter M.; Falco, Emilio; Quinn, Jason L.

    2001-12-01

    We present the earliest optical observations of the optical counterpart to the gamma-ray burst (GRB) 010222, obtained with the Fred L. Whipple Observatory 1.2 m telescope in UBVRI passbands, starting 3.64 hr after the burst (0.4 hr after public notification of the burst localization). We also present late R-band observations of the afterglow obtained with the 1.8 m Vatican Advanced Technology Telescope ~25 days after the burst. The temporal analysis of our data joined with published data indicates a steepening decay, independent of wavelength, asymptotically approaching Fν~t-0.80+/-0.05 at early times (t<<1 day) and Fν~t-1.30+/-0.05 at late times, with a sharp break at tb=0.72+/-0.10 days. This is the second earliest observed break of any afterglow (after GRB 980519), which clearly indicates the importance of rapid multiband follow-up for GRB afterglow research. The optical spectral energy distribution, corrected for small Galactic reddening, can be fitted fairly well by a single power law with Fν~ν-1.07+/-0.09. However, when we fit using our BVRI data only, we obtain a shallower slope of -0.88+/-0.10, in excellent agreement with the slope derived from our low-resolution spectrum (-0.89+/-0.03). The spectral slope and light-curve decay slopes we derive are not consistent with a jet model despite the presence of a temporal break. Significant host dust extinction with a starburst reddening law would flatten the spectral index to match jet predictions and still be consistent with the observed spectral energy distribution. We derive an opening angle of 2.1d, smaller than any listed in the recent compilation of Frail et al. The total beamed energy corrected for the jet geometry is 4×1050 ergs, very close to the ``standard'' value of 5×1050 ergs found by Frail et al. for a number of other bursts with light-curve breaks. Based on observations collected at the FLWO 1.2 m telescope and the 1.8 m VATT.

  14. GRB 030329: 3 years of radio afterglow monitoring.

    PubMed

    van der Horst, A J; Kamble, A; Wijers, R A M J; Resmi, L; Bhattacharya, D; Rol, E; Strom, R; Kouveliotou, C; Oosterloo, T; Ishwara-Chandra, C H

    2007-05-15

    Radio observations of gamma-ray burst (GRB) afterglows are essential for our understanding of the physics of relativistic blast waves, as they enable us to follow the evolution of GRB explosions much longer than the afterglows in any other wave band. We have performed a 3-year monitoring campaign of GRB 030329 with the Westerbork Synthesis Radio Telescopes and the Giant Metrewave Radio Telescope. Our observations, combined with observations at other wavelengths, have allowed us to determine the GRB blast wave physical parameters, such as the total burst energy and the ambient medium density, as well as to investigate the jet nature of the relativistic outflow. Further, by modelling the late-time radio light curve of GRB 030329, we predict that the Low-Frequency Array (30-240 MHz) will be able to observe afterglows of similar GRBs, and constrain the physics of the blast wave during its non-relativistic phase.

  15. GRB 030329: 3 years of radio afterglow monitoring.

    PubMed

    van der Horst, A J; Kamble, A; Wijers, R A M J; Resmi, L; Bhattacharya, D; Rol, E; Strom, R; Kouveliotou, C; Oosterloo, T; Ishwara-Chandra, C H

    2007-05-15

    Radio observations of gamma-ray burst (GRB) afterglows are essential for our understanding of the physics of relativistic blast waves, as they enable us to follow the evolution of GRB explosions much longer than the afterglows in any other wave band. We have performed a 3-year monitoring campaign of GRB 030329 with the Westerbork Synthesis Radio Telescopes and the Giant Metrewave Radio Telescope. Our observations, combined with observations at other wavelengths, have allowed us to determine the GRB blast wave physical parameters, such as the total burst energy and the ambient medium density, as well as to investigate the jet nature of the relativistic outflow. Further, by modelling the late-time radio light curve of GRB 030329, we predict that the Low-Frequency Array (30-240 MHz) will be able to observe afterglows of similar GRBs, and constrain the physics of the blast wave during its non-relativistic phase. PMID:17293318

  16. Spectral kinetic energy transfer in turbulent premixed reacting flows.

    PubMed

    Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E

    2016-05-01

    Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.

  17. Spectral kinetic energy transfer in turbulent premixed reacting flows

    NASA Astrophysics Data System (ADS)

    Towery, C. A. Z.; Poludnenko, A. Y.; Urzay, J.; O'Brien, J.; Ihme, M.; Hamlington, P. E.

    2016-05-01

    Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.

  18. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Kashiyama, Kazumi; Mészáros, Peter

    2016-09-01

    Tenuous wind bubbles, which are formed by the spin-down activity of central compact remnants, are relevant in some models of fast radio bursts (FRBs) and superluminous supernovae (SNe). We study their high-energy signatures, focusing on the role of pair-enriched bubbles produced by young magnetars, rapidly rotating neutron stars, and magnetized white dwarfs. (i) First, we study the nebular properties and the conditions allowing for escape of high-energy gamma-rays and radio waves, showing that their escape is possible for nebulae with ages of ≳10-100 yr. In the rapidly rotating neutron star scenario, we find that radio emission from the quasi-steady nebula itself may be bright enough to be detected especially at sub-mm frequencies, which is relevant as a possible counterpart of pulsar-driven SNe and FRBs. (ii) Secondly, we consider the fate of bursting emission in the nebulae. We suggest that an impulsive burst may lead to a highly relativistic flow, which would interact with the nebula. If the shocked nebula is still relativistic, pre-existing non-thermal particles in the nebula can be significantly boosted by the forward shock, leading to short-duration (maybe millisecond or longer) high-energy gamma-ray flashes. Possible dissipation at the reverse shock may also lead to gamma-ray emission. (iii) After such flares, interactions with the baryonic ejecta may lead to afterglow emission with a duration of days to weeks. In the magnetar scenario, this burst-in-bubble model leads to the expectation that nearby (≲10-100 Mpc) high-energy gamma-ray flashes may be detected by the High-Altitude Water Cherenkov Observatory and the Cherenkov Telescope Array, and the subsequent afterglow emission may be seen by radio telescopes such as the Very Large Array. (iv) Finally, we discuss several implications specific to FRBs, including constraints on the emission regions and limits on soft gamma-ray counterparts.

  19. Circular polarization in the optical afterglow of GRB 121024A.

    PubMed

    Wiersema, K; Covino, S; Toma, K; van der Horst, A J; Varela, K; Min, M; Greiner, J; Starling, R L C; Tanvir, N R; Wijers, R A M J; Campana, S; Curran, P A; Fan, Y; Fynbo, J P U; Gorosabel, J; Gomboc, A; Götz, D; Hjorth, J; Jin, Z P; Kobayashi, S; Kouveliotou, C; Mundell, C; O'Brien, P T; Pian, E; Rowlinson, A; Russell, D M; Salvaterra, R; di Serego Alighieri, S; Tagliaferri, G; Vergani, S D; Elliott, J; Fariña, C; Hartoog, O E; Karjalainen, R; Klose, S; Knust, F; Levan, A J; Schady, P; Sudilovsky, V; Willingale, R

    2014-05-01

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.

  20. Circular polarization in the optical afterglow of GRB 121024A

    NASA Astrophysics Data System (ADS)

    Wiersema, K.; Covino, S.; Toma, K.; van der Horst, A. J.; Varela, K.; Min, M.; Greiner, J.; Starling, R. L. C.; Tanvir, N. R.; Wijers, R. A. M. J.; Campana, S.; Curran, P. A.; Fan, Y.; Fynbo, J. P. U.; Gorosabel, J.; Gomboc, A.; Götz, D.; Hjorth, J.; Jin, Z. P.; Kobayashi, S.; Kouveliotou, C.; Mundell, C.; O'Brien, P. T.; Pian, E.; Rowlinson, A.; Russell, D. M.; Salvaterra, R.; di Serego Alighieri, S.; Tagliaferri, G.; Vergani, S. D.; Elliott, J.; Fariña, C.; Hartoog, O. E.; Karjalainen, R.; Klose, S.; Knust, F.; Levan, A. J.; Schady, P.; Sudilovsky, V.; Willingale, R.

    2014-05-01

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.

  1. Circular polarization in the optical afterglow of GRB 121024A.

    PubMed

    Wiersema, K; Covino, S; Toma, K; van der Horst, A J; Varela, K; Min, M; Greiner, J; Starling, R L C; Tanvir, N R; Wijers, R A M J; Campana, S; Curran, P A; Fan, Y; Fynbo, J P U; Gorosabel, J; Gomboc, A; Götz, D; Hjorth, J; Jin, Z P; Kobayashi, S; Kouveliotou, C; Mundell, C; O'Brien, P T; Pian, E; Rowlinson, A; Russell, D M; Salvaterra, R; di Serego Alighieri, S; Tagliaferri, G; Vergani, S D; Elliott, J; Fariña, C; Hartoog, O E; Karjalainen, R; Klose, S; Knust, F; Levan, A J; Schady, P; Sudilovsky, V; Willingale, R

    2014-05-01

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets. PMID:24776800

  2. Spectrophotometric analysis of gamma-ray burst afterglow extinction curves with X-Shooter

    NASA Astrophysics Data System (ADS)

    Japelj, J.; Covino, S.; Gomboc, A.; Vergani, S. D.; Goldoni, P.; Selsing, J.; Cano, Z.; D'Elia, V.; Flores, H.; Fynbo, J. P. U.; Hammer, F.; Hjorth, J.; Jakobsson, P.; Kaper, L.; Kopač, D.; Krühler, T.; Melandri, A.; Piranomonte, S.; Sánchez-Ramírez, R.; Tagliaferri, G.; Tanvir, N. R.; de Ugarte Postigo, A.; Watson, D.; Wijers, R. A. M. J.

    2015-07-01

    We use gamma-ray burst (GRB) afterglow spectra observed with the VLT/X-Shooter spectrograph to measure rest-frame extinction in GRB lines-of-sight by modelling the broadband near-infrared (NIR) to X-ray afterglow spectral energy distributions (SEDs). Our sample consists of nine Swift GRBs, of which eight belong to the long-duration and one to the short-duration class. Dust is modelled using the average extinction curves of the Milky Way and the two Magellanic Clouds. We derive the rest-frame extinction of the entire sample, which fall in the range 0 ≲ AV ≲ 1.2. Moreover, the SMC extinction curve is the preferred extinction curve template for the majority of our sample, a result that is in agreement with those commonly observed in GRB lines of sights. In one analysed case (GRB 120119A), the common extinction curve templates fail to reproduce the observed extinction. To illustrate the advantage of using the high-quality, X-Shooter afterglow SEDs over the photometric SEDs, we repeat the modelling using the broadband SEDs with the NIR-to-UV photometric measurements instead of the spectra. The main result is that the spectroscopic data, thanks to a combination of excellent resolution and coverage of the blue part of the SED, are more successful in constraining extinction curves and therefore dust properties in GRB hosts with respect to photometric measurements. In all cases but one the extinction curve of one template is preferred over the others. We show that themodelled values of the extinction AV and the spectral slope, obtained through spectroscopic and photometric SED analysis, can differ significantly for individual events, though no apparent trend in the differences is observed. Finally we stress that, regardless of the resolution of the optical-to-NIR data, the SED modelling gives reliable results only when the fit is performed on a SED covering a broader spectral region (in our case extending to X-rays). Based on observations collected at the European

  3. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (< 400 km). The -5/3 spectra is presumably related to 3D turbulence which is dominated by the classical Kolmogrov energy cascade. The -3 spectra is related to 2D turbulence, which is dominated by strong forward scatter of enstrophy and weak forward scatter of energy. In classical 2D turbulence theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation

  4. Spectral light management for solar energy conversion systems

    NASA Astrophysics Data System (ADS)

    Stanley, Cameron; Mojiri, Ahmad; Rosengarten, Gary

    2016-06-01

    Due to the inherent broadband nature of the solar radiation, combined with the narrow spectral sensitivity range of direct solar to electricity devices, there is a massive opportunity to manipulate the solar spectrum to increase the functionality and efficiency of solar energy conversion devices. Spectral splitting or manipulation facilitates the efficient combination of both high-temperature solar thermal systems, which can absorb over the entire solar spectrum to create heat, and photovoltaic cells, which only convert a range of wavelengths to electricity. It has only recently been possible, with the development of nanofabrication techniques, to integrate micro- and nano-photonic structures as spectrum splitters/manipulators into solar energy conversion devices. In this paper, we summarize the recent developments in beam splitting techniques, and highlight some relevant applications including combined PV-thermal collectors and efficient algae production, and suggest paths for future development in this field.

  5. A Tool For Exploring Spectral Energy Distributions in the Classroom

    NASA Astrophysics Data System (ADS)

    Stanford, Darryl; Seebode, S.; Drumheller, D.; Howell, S. B.; Hoard, D. W.

    2011-01-01

    The calculation of spectral type, temperature, radius and distance is often the first step in the study of stars and stellar systems. Spectral energy distributions or SEDs are of paramount importance in the determination of these quantities. We have created an innovative tool that enables high school and college physics and astronomy instructors and their students, to evaluate these parameters. This tool includes templates of main sequence stars with spectral types from O5 to M5 and associated lesson plans. Instructors can use it in a classroom setting and design lab exercises around it. Students can use it for research, determining stellar radii, distances, as well as cluster membership of stellar samples. More complex, multi-component SEDs can be used to investigate stellar systems, with dust disks, as well as, the dusty nuclei of starburst galaxies. The tool is in google documents format, easily downloadable and modifiable by interested parties, and will be accessible on the College of San Mateo astronomy website (http://gocsm.net/astronomy/), Teachers and students can add template data for other spectral types and luminosity classes, for their own projects. This study is part of the NASA/IPAC Teacher Archive Research Project (NITARP).

  6. The late X-ray afterglow of gamma-ray bursts.

    PubMed

    Willingale, Richard; O'Brien, Paul T

    2007-05-15

    We have developed a functional fit which can be used to represent the entire temporal decay of the X-ray afterglow of gamma-ray bursts (GRBs). The fit delineates and parameterizes well-defined phases for the decay: the prompt emission; an initial steep decay; a shallow plateau phase; and finally, a powerlaw afterglow. For 20% of GRBs, the plateau phase is weak, or not seen, and the initial powerlaw decay becomes the final afterglow.We compare the temporal decay parameters and X-ray spectral indices for 107 GRBs discovered by Swift with the expectations of the standard fireball model including a search for possible jet breaks. For approximately 50% of GRBs, the observed afterglow is in accord with the model, but for the rest the temporal and spectral properties are not as expected. We identify a few possible jet breaks, but there are many examples where such breaks are predicted but are absent. We also find that the start time of the final afterglow decay, Ta, is associated with the peak of the prompt gamma-ray emission spectrum, Epeak, just as optical jet-break times, tj, are associated with Epeak in the Ghirlanda relation.

  7. Study of argon flowing afterglow with nitrogen injection

    SciTech Connect

    Mazánková, V.; Krčma, F.; Trunec, D.

    2013-10-28

    In this work, the reaction kinetics in argon flowing afterglow with nitrogen addition was studied by optical emission spectroscopy. The DC flowing post-discharge in pure argon was created in quartz tube at the total gas pressure of 1000 Pa and discharge power of 60 W. The nitrogen was added into the afterglow at the distance of 9 cm behind the active discharge. The optical emission spectra were measured along the flow tube. The argon spectral lines and after nitrogen addition also nitrogen second positive system (SPS) were identified in the spectra. The measurement of spatial dependence of SPS intensity showed a very slow decay of the intensity and the decay rate did not depend on the nitrogen concentration. In order to explain this behavior a kinetic model for reaction in afterglow was developed. This model showed that C {sup 3}Π{sub u} state of molecular nitrogen, which is the upper state of SPS emission, is produced by excitation transfer from argon metastables to nitrogen molecules. However, the argon metastables are also produced at Ar{sub 2}{sup +} ion recombination with electrons and this limits the decay of argon metastable concentration and it results in very slow decay of SPS intensity.

  8. Prompt and Afterglow Emission Properties of Gamma-Ray Bursts with Spectroscopically Identified Supernovae

    NASA Technical Reports Server (NTRS)

    Kaneko, Yuki; Ramirez-Ruiz, Enrico; Granot, Jonathan; Kouveliotou, Chryssa; Woosley, Stan E.; Patel, Sandeep K.; Rol, Evert; In'TZand, Jean J. M.; VanDerHorst, Alexander J.; Wuers, Ralph A. M. J.; Strom, Richard

    2007-01-01

    We present a detailed spectral analysis of the prompt and afterglow emission of four nearby long-soft gamma-ray bursts (GRBs 980425,030329,031203, and 060218) that were spectroscopically found to be associated with Type Ic supernovae and compare them to the general GRB population. For each event, we investigate the spectral and luminosity evolution and estimate the total energy budget based on broadband observations. The observational inventory for these events has become rich enough to allow estimates of their energy content in relativistic and subrelativistic form. The result is a global portrait of the effects of the physical processes responsible for producing long-soft GRBs. In particular, we find that the values of the energy released in mildly relativistic outflows appears to have a significantly smaller scatter than those found in highly relativistic ejecta. This is consistent with a picture in which the energy released inside the progenitor star is roughly standard, while the fraction of that energy that ends up in highly relativistic ejecta outside the star can vary dramatically between different events.

  9. Prompt and Afterglow Emission Properties of Gamma-Ray Bursts with Spectroscopically Identified Supernovae

    SciTech Connect

    Kaneko, Yuki; Ramirez-Ruiz, E.; Granot, J.; Kouveliotou, C.; Woosley, S.E.; Patel, S.K.; Rol, E.; Zand, J.J.M.in't; a; Wijers, R.A.M.J.; Strom, R.; /USRA, Huntsville /Princeton, Inst. Advanced Study /UC, Santa Cruz /KIPAC, Menlo Park /NASA, Marshall /Leicester U. /SRON, Utrecht /Utrecht, Astron. Inst. /Amsterdam U., Astron. Inst. /NFRA, Dwingeloo

    2006-07-12

    We present a detailed spectral analysis of the prompt and afterglow emission of four nearby long-soft gamma-ray bursts (GRBs 980425, 030329, 031203, and 060218) that were spectroscopically found to be associated with type Ic supernovae, and compare them to the general GRB population. For each event, we investigate the spectral and luminosity evolution, and estimate the total energy budget based upon broadband observations. The observational inventory for these events has become rich enough to allow estimates of their energy content in relativistic and sub-relativistic form. The result is a global portrait of the effects of the physical processes responsible for producing long-soft GRBs. In particular, we find that the values of the energy released in mildly relativistic outflows appears to have a significantly smaller scatter than those found in highly relativistic ejecta. This is consistent with a picture in which the energy released inside the progenitor star is roughly standard, while the fraction of that energy that ends up in highly relativistic ejecta outside the star can vary dramatically between different events.

  10. Hidden in the light: Magnetically induced afterglow from trapped chameleon fields

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Mota, David F.; Shaw, Douglas J.

    2008-01-01

    We propose an afterglow phenomenon as a unique trace of chameleon fields in optical experiments. The vacuum interaction of a laser pulse with a magnetic field can lead to a production and subsequent trapping of chameleons in the vacuum chamber, owing to their mass dependence on the ambient matter density. Magnetically induced reconversion of the trapped chameleons into photons creates an afterglow over macroscopic timescales that can conveniently be searched for by current optical experiments. We show that the chameleon parameter range accessible to available laboratory technology is comparable to scales familiar from astrophysical stellar energy-loss arguments. We analyze quantitatively the afterglow properties for various experimental scenarios and discuss the role of potential background and systematic effects. We conclude that afterglow searches represent an ideal tool to aim at the production and detection of cosmologically relevant scalar fields in the laboratory.

  11. SYNCHROTRON SELF-COMPTON EMISSION AS THE ORIGIN OF THE GAMMA-RAY AFTERGLOW OBSERVED IN GRB 980923

    SciTech Connect

    Fraija, N.; Gonzalez, M. M.; Lee, W. H. E-mail: magda@astro.unam.mx

    2012-05-20

    GRB 980923 was one of the brightest bursts observed by the Burst and Transient Source Experiment. Previous studies have detected two distinct components in addition to the main prompt episode, which is well described by a Band function. The first of these is a tail with a duration of {approx_equal} 400 s, while the second is a high-energy component lasting {approx_equal} 2 s. We summarize the observations and argue for a unified model in which the tail can be understood as the early {gamma}-ray afterglow from forward shock synchrotron emission, while the high-energy component arises from synchrotron self-Compton from the reverse shock. Consistency between the main assumption of thick shell emission and agreement between the observed and computed values for fluxes, break energies, starting times, and spectral indices leads to a requirement that the ejecta must be highly magnetized.

  12. Short GRB Prompt and Afterglow Correlations

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2007-01-01

    The Swift data set on short GRBs has now grown large enough to study correlations of key parameters. The goal is to compare long and short bursts to better understand similarities and differences in the burst origins. In this study we consider the both prompt and afterglow fluxes. It is found that the optical, X-ray and gamma-ray emissions are linearly correlated - stronger bursts tend to have brighter afterglows, and bursts with brighter X-ray afterglow tend to have brighter optical afterglow. Both the prompt and afterglow fluxes are, on average, lower for short bursts than for long. Although there are short GRBs with undetected optical emission, there is no evidence for "dark" short bursts with anomalously low opt/X ratios. The weakest short bursts have a low X-ray/gamma-ray ratio.

  13. PANCHROMATIC OBSERVATIONS OF THE TEXTBOOK GRB 110205A: CONSTRAINING PHYSICAL MECHANISMS OF PROMPT EMISSION AND AFTERGLOW

    SciTech Connect

    Zheng, W.; Shen, R. F.; Sakamoto, T.; Beardmore, A. P.; De Pasquale, M.; Wu, X. F.; Zhang, B.; Gorosabel, J.; Urata, Y.; Sugita, S.; Pozanenko, A.; Sahu, D. K.; Im, M.; Ukwatta, T. N.; Andreev, M.; Klunko, E. E-mail: rfshen@astro.utoronto.ca; and others

    2012-06-01

    We present a comprehensive analysis of a bright, long-duration (T{sub 90} {approx} 257 s) GRB 110205A at redshift z = 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb, and BOOTES telescopes when the gamma-ray burst (GRB) was still radiating in the {gamma}-ray band, with optical light curve showing correlation with {gamma}-ray data. Nearly 200 s of observations were obtained simultaneously from optical, X-ray, to {gamma}-ray (1 eV to 5 MeV), which makes it one of the exceptional cases to study the broadband spectral energy distribution during the prompt emission phase. In particular, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard synchrotron emission model in the fast cooling regime. Shortly after prompt emission ({approx}1100 s), a bright (R = 14.0) optical emission hump with very steep rise ({alpha} {approx} 5.5) was observed, which we interpret as the reverse shock (RS) emission. It is the first time that the rising phase of an RS component has been closely observed. The full optical and X-ray afterglow light curves can be interpreted within the standard reverse shock (RS) + forward shock (FS) model. In general, the high-quality prompt and afterglow data allow us to apply the standard fireball model to extract valuable information, including the radiation mechanism (synchrotron), radius of prompt emission (R{sub GRB} {approx} 3 Multiplication-Sign 10{sup 13} cm), initial Lorentz factor of the outflow ({Gamma}{sub 0} {approx} 250), the composition of the ejecta (mildly magnetized), the collimation angle, and the total energy budget.

  14. Dual-Energy Spectral CT: Various Clinical Vascular Applications.

    PubMed

    Machida, Haruhiko; Tanaka, Isao; Fukui, Rika; Shen, Yun; Ishikawa, Takuya; Tate, Etsuko; Ueno, Eiko

    2016-01-01

    Single-source dual-energy (DE) computed tomography (CT) with fast switching of tube voltage allows projection-based image reconstruction, substantial reduction of beam-hardening effects, reconstruction of accurate monochromatic images and material decomposition images (MDIs), and detailing of material composition by using x-ray spectral information. In vascular applications, DE CT is expected to overcome limitations of standard single-energy CT angiography, including patient exposure to nephrotoxic contrast medium and carcinogenic radiation, insufficient contrast vascular enhancement, interference from metallic and beam-hardening artifacts and severe vessel calcification, and limited tissue characterization and perfusion assessment. Acquisition of low-energy monochromatic images and iodine/water MDIs can reasonably reduce contrast agent dose and improve vessel enhancement. Acquisition of virtual noncontrast images, such as water/iodine MDIs, can reduce overall radiation exposure by replacing true noncontrast CT in each examination. Acquisition of monochromatic images by using metal artifact reduction software or acquisition of iodine/water MDIs can reduce metal artifacts with preserved or increased vessel contrast, and subtraction of monochromatic images between two energy levels can subtract coils composed of dense metallic materials. Acquisition of iodine/calcium (ie, hydroxyapatite) MDIs permits subtraction of vessel calcification and improves vessel lumen delineation. Sensitive detection of lipid-rich plaque can be achieved by using fat/water MDIs, the spectral Hounsfield unit curve (energy level vs CT attenuation), and a histogram of effective atomic numbers included in an image. Various MDIs are useful for accurate differentiation among materials with high attenuation values, including contrast medium, calcification, and fresh hematoma. Iodine/water MDIs are used to assess organ perfusion, such as in the lungs and myocardium. Understanding these DE CT

  15. Curvature of the spectral energy distributions of blazars

    SciTech Connect

    Chen, Liang

    2014-06-20

    In this paper, spectral energy distributions (SED) of both synchrotron and inverse Compton (IC) components of a sample of Fermi bright blazars are fitted by a log-parabolic law. The second-degree term of the log parabola measures the curvature of an SED. We find a statistically significant correlation between the synchrotron peak frequency and its curvature. This result is in agreement with the theoretical prediction and confirms previous studies that dealt with a single source with observations at various epochs or a small sample. If a broken power law is employed to fit the SED, the difference between the two spectral indices (i.e., |α{sub 2} – α{sub 1}|) can be considered a 'surrogate' of the SED curvature. We collect data from the literature and find a correlation between the synchrotron peak frequency and the spectral difference. We do not find a significant correlation between the IC peak frequency and its curvature, which may be caused by a complicated seed photon field. It is also found that the synchrotron curvatures are on average larger than those of IC curvatures, and there is no correlation between these two parameters. As suggested by previous works, both the log-parabolic law of the SED and the above correlation can be explained by statistical and/or stochastic particle accelerations. Based on a comparison of the slops of the correlation, our result seems to favor stochastic acceleration mechanisms and emission processes. Additional evidence, including SED modeling, particle acceleration simulation, and comparisons between some predictions and empirical relations/correlations, also seems to support the idea that the electron energy distribution (and/or synchrotron SED) may be log-parabolic.

  16. Broad band spectral energy distribution studies of Fermi bright blazars

    NASA Astrophysics Data System (ADS)

    Monte, C.; Giommi, P.; Cavazzuti, E.; Gasparrini, D.; Rainò, S.; Fuhrmann, L.; Angelakis, E.; Villata, M.; Raiteri, C. M.; Perri, M.; Richards, J.

    2011-02-01

    The Fermi Gamma-ray Space Telescope was successfully launched on June 11, 2008 and has already opened a new era for gamma-ray astronomy. The Large Area Telescope (LAT), the main instrument on board Fermi, presents a significant improvement in sensitivity over its predecessor EGRET, due to its large field of view and effective area, combined with its excellent timing capabilities. The preliminary results of the Spectral Energy Distribution Analysis performed on a sample of bright blazars are presented. For this study, the data from the first three months of data collection of Fermi have been used. The analysis is extended down to radio, mm, near-IR, optical, UV and X-ray bands and up to TeV energies based on unprecedented sample of simultaneous multi-wavelength observations by GASP-WEBT.

  17. Wave spectral energy variability in the northeast Pacific

    USGS Publications Warehouse

    Bromirski, P.D.; Cayan, D.R.; Flick, R.E.

    2005-01-01

    The dominant characteristics of wave energy variability in the eastern North Pacific are described from NOAA National Data Buoy Center (NDBC) buoy data collected from 1981 to 2003. Ten buoys at distributed locations were selected for comparison based on record duration and data continuity. Long-period (LP) [T > 12] s, intermediate-period [6 ??? T ??? 12] s, and short-period [T < 6] s wave spectral energy components are considered separately. Empirical orthogonal function (EOF) analyses of monthly wave energy anomalies reveal that all three wave energy components exhibit similar patterns of spatial variability. The dominant mode represents coherent heightened (or diminished) wave energy along the West Coast from Alaska to southern California, as indicated by composites of the 700 hPa height field. The second EOF mode reveals a distinct El Nin??o-Southern Oscillation (ENSO)-associated spatial distribution of wave energy, which occurs when the North Pacific storm track is extended unusually far south or has receded to the north. Monthly means and principal components (PCs) of wave energy levels indicate that the 1997-1998 El Nin??o winter had the highest basin-wide wave energy within this record, substantially higher than the 1982-1983 El Nin??o. An increasing trend in the dominant PC of LP wave energy suggests that storminess has increased in the northeast Pacific since 1980. This trend is emphasized at central eastern North Pacific locations. Patterns of storminess variability are consistent with increasing activity in the central North Pacific as well as the tendency for more extreme waves in the south during El Nin??o episodes and in the north during La Nin??a. Copyright 2005 by the American Geophysical Union.

  18. PROBING EXTRAGALACTIC DUST THROUGH NEARBY GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Liang, S. L.; Li Aigen E-mail: lia@missouri.ed

    2010-02-10

    The quantities and wavelength dependencies of the dust extinction along the lines of sight toward 33 nearby gamma-ray bursts (GRBs) with redshifts z < 2 are derived from fitting their afterglow spectral energy distributions. Unlike previous studies which often assume a specific extinction law like that of the Milky Way (MW) and the Large and Small Magellanic Clouds (LMC/SMC), our approach-we call it the 'Drude' approach-is more flexible in determining the true wavelength dependence of the extinction (while the shape of the extinction curve inferred from that relying on a priori assumption of a template extinction law is, of course, fixed). The extinction curves deduced from the Drude approach display a wide diversity of shapes, ranging from relatively flat curves to curves which are featureless and steeply rise toward the far-ultraviolet, and from curves just like that of the MW, LMC, and SMC to curves resembling that of the MW and LMC but lacking the 2175 A bump. The visual extinction A{sub V} derived from the Drude approach is generally larger by a factor of {approx}2-5 than that inferred by assuming a SMC-type template extinction law. Consistent with previous studies, the extinction-to-gas ratio is mostly smaller than that of the MW, and does not seem to correlate with the shape of the extinction curve. It is shown that the standard silicate-graphite interstellar grain model closely reproduces the extinction curves of all 33 GRBs host galaxies. For these 33 bursts at z < 2, we find no evidence for the evolution of the dust extinction, dust sizes, and relative abundances of silicate to graphite on redshifts.

  19. Fermi energy 5f spectral weight variation in uranium alloys

    SciTech Connect

    Denlinger, J.D.; Clack, J.; Allen, J.W.

    1997-04-01

    Uranium materials display a wide range of thermal, electrical and magnetic properties, often exotic. For more than a decade there have been efforts to use photoemission spectroscopy to develop a systematic and unified understanding of the 5f electron states giving rise to this behavior. These efforts have been hampered by a paucity of systems where changes in transport properties are accompanied by substantial spectral changes, so as to allow an attempt to correlate the two kinds of properties within some model. The authors have made resonant photoemission measurements to extract the 5f spectral weight in three systems which show varying degrees of promise of permitting such an attempt, Y{sub 1{minus}x}U{sub x}Pd{sub 3}, U(Pd{sub x}Pt{sub 1{minus}x}){sub 3} and U(Pd{sub x}Cu{sub 1{minus}x}){sub 5}. They have also measured U 4f core level spectra. The 4f spectra can be modeled with some success by the impurity Anderson model (IAM), and the 5f spectra are currently being analyzed in that framework. The IAM characterizes the 5f-electrons of a single site by an f binding energy {epsilon}{sub f}, an f Coulomb interaction and a hybridization V to conduction electrons. Latent in the model are the phenomena of 5f mixed valence and the Kondo effect.

  20. AGN Spectral Energy Distributions of GLAST Telescope Network Program Objects

    NASA Astrophysics Data System (ADS)

    Adkins, Jeff; Lacy, Mark; Daou, Doris; Rapp, Steve; Stefaniak, Linda

    2005-03-01

    The Gamma-Ray Large Area Space Telescope (GLAST) has a proposed observing list that includes AGNs and Polars bright enough to be observed optically by amateurs and students. This observing list is maintained by the "GLAST Telescope Network" (GTN) and includes a number of objects that have yet to be observed by the Spitzer Space Telescope. Our project will observe one of these objects with the Spitzer MIPS and the IRAC instruments to determine their Spectral Energy Distribution (SED), which will be compared to a computer model of disk emission in order to determine what component of the SED is due to the disk and what component is due to synchrotron radiation induced by the jets. In addition we will observe our program objects prior to, simultaneously with, and after Spitzer observes them. This gives a direct connection from Spitzer research to student activities in the classroom.

  1. Gamma-ray bursts: afterglows from cylindrical jets

    NASA Astrophysics Data System (ADS)

    Cheng, K. S.; Huang, Y. F.; Lu, T.

    2001-08-01

    Nearly all previous discussions on beaming effects in gamma-ray bursts (GRBs) have assumed a conical geometry. However, more and more observations on relativistic jets in radio galaxies, active galactic nuclei, and `microquasars' in the Galaxy have shown that many of these outflows are not conical, but cylindrical, i.e. they maintain constant cross-sections at large scales. Thus it is necessary to discuss the possibility of gamma-ray bursts being due to highly collimated cylindrical jets, not conical ones. Here we study the dynamical evolution of cylindrical jets and discuss their afterglows. Both analytical and numerical results are presented. It is shown that when the lateral expansion is not taken into account, a cylindrical jet typically remains highly relativistic for ~108-109s. During this relativistic phase, the optical afterglow at first decays as Sν~t-p/2, where p is the index characterizing the power-law energy distribution of electrons. Then the light curve steepens to Sν~t-(p+1)/2 due to cooling of electrons. After entering the non-relativistic phase (i.e. t>=1011s), the afterglow is Sν~t-(5p-4)/6. However, if the cylindrical jet expands laterally at the comoving sound speed, then the decay becomes Sν~t-p and Sν~t-(15p-21)/10-t-(15p-20)/10 in the ultrarelativistic and in the non-relativistic phase respectively. Note that in both cases the light curve turns flatter after the relativistic-Newtonian transition point, which differs markedly from the behaviour of a conical jet. It is suggested that some GRBs with afterglows decaying as t-1.1-t-1.3 may be due to cylindrical jets, not necessarily isotropic fireballs.

  2. TWO POPULATIONS OF GAMMA-RAY BURST RADIO AFTERGLOWS

    SciTech Connect

    Hancock, P. J.; Gaensler, B. M.; Murphy, T.

    2013-10-20

    The detection rate of gamma-ray burst (GRB) afterglows is ∼30% at radio wavelengths, much lower than in the X-ray (∼95%) or optical (∼70%) bands. The cause of this low radio detection rate has previously been attributed to limited observing sensitivity. We use visibility stacking to test this idea, and conclude that the low detection rate is instead due to two intrinsically different populations of GRBs: radio-bright and radio-faint. We calculate that no more than 70% of GRB afterglows are truly radio-bright, leaving a significant population of GRBs that lack a radio afterglow. These radio-bright GRBs have higher gamma-ray fluence, isotropic energies, X-ray fluxes, and optical fluxes than the radio-faint GRBs, thus confirming the existence of two physically distinct populations. We suggest that the gamma-ray efficiency of the prompt emission is responsible for the difference between the two populations. We also discuss the implications for future radio and optical surveys.

  3. Gamma-Ray Bursts: The Afterglow Revolution

    NASA Astrophysics Data System (ADS)

    Galama, Titus J.; Sari, Re'em

    GRBs were discovered with the Vela satellites, whose main purpose was to verify compliance with the 1963 Limited Nuclear Test Ban Treaty. Since their discovery these events, which emit the bulk of their energy in the 0.1 - 1.0 MeV range, and whose durations span milliseconds to tens of minutes, posed one of the great unsolved problems in astrophysics. GRBs are formed in extreme relativistic outflows and provide important information about highly relativistic acceleration mechanisms. Until 1997, no counterparts (quiescent as well as transient) could be found and observations did not provide a direct measurement of their distance. The breakthrough came in early 1997, when the Wide Field Cameras aboard the Italian-Dutch BeppoSAX satellite allowed rapid and accurate localization of GRBs. Follow-up on these positions resulted in the discovery of X-ray, optical and radio afterglows. These observations revealed that GRBs come from 'cosmological' distances, and that they are by far the most luminous photon sources in the Universe, with peak luminosities in γ rays up to 1052 erg/s, and total energy budgets up to several times 1053-54 erg (for assumed isotropic emission). Evidence is accumulating, however, that GRB outflow is collimated in the form of jets and when corrected for the geometry of the outflow the energies of GRBs appear to cluster around 5 x 1050 ergs- very comparable to that of supernovae. GRBs are rare phenomena with an overall rate about 2000 times smaller than that of supernovae. Indirect evidence in the last several years shows that a fraction of GRBs may be related to a peculiar type of supernova explosions. Theoretical work has shown that these supernovae most likely mark the birth events of stellar mass black holes as the final products of the evolution of very massive stars. A fundamental question is whether there are also other processes that can drive such an engine, for example the coalescence of a double neutron-star system. Finally, the

  4. Dust Cloud Dynamics in Complex Plasma Afterglow

    SciTech Connect

    Layden, B.; Samarian, A. A.; Vladimirov, S. V.; Coueedel, L.

    2008-09-07

    Experimental observations of dust cloud dynamics in a RF discharge afterglow are presented. Image analysis is used to extract information from videos taken of the plasma. Estimations of the mean confining electric field have been made for different experimental conditions using a model for the contraction of the dust cloud. Dust particle trajectories in the late afterglow evidence the co-existence of positively and negatively charged dust particles.

  5. The spectral energy distribution of Zeta Puppis and HD 50896

    NASA Technical Reports Server (NTRS)

    Holm, A. V.; Cassinelli, J. P.

    1977-01-01

    The ultraviolet spectral energy distribution of the O5f star Zeta Pup and the WN5 star HD 50896 are derived from OAO-2 observations with the calibration of Bless, Code, and Fairchild (1976). An estimate of the interstellar reddening (0.12 magnitude) of the Wolf-Rayet star is determined from the size of the characteristic interstellar extinction bump at 4.6 inverse microns. After correction for extinction, both stars show a flat energy distribution in the ultraviolet. The distribution of HD 50896 from 1100 A to 2 microns is in good agreement with results of extended model atmospheres, but some uncertainty remains because of the interstellar-extinction correction. The absolute energy distribution of Zeta Pup is fitted by a 42,000-K plane-parallel model if the model's flux is adjusted for the effects of electron scattering in the stellar wind and for UV line blanketing that was determined empirically from high-resolution Copernicus satellite observations. To achieve this fit, it is necessary to push both the spectroscopically determined temperature and the ultraviolet calibration to the limits of their probable errors.

  6. Luminosity Correlations for Gamma-Ray Bursts and Implications for Their Prompt and Afterglow Emission Mechanisms

    NASA Astrophysics Data System (ADS)

    Sultana, J.; Kazanas, D.; Fukumura, K.

    2012-10-01

    We present the relation between the (z- and k-corrected) spectral lags, τ, for the standard Swift energy bands 50-100 keV and 100-200 keV and the peak isotropic luminosity, L iso (a relation reported first by Norris et al.), for a subset of 12 long Swift gamma-ray bursts (GRBs) taken from a recent study of this relation by Ukwatta et al. The chosen GRBs are also a subset of the Dainotti et al. sample, a set of Swift GRBs of known redshift, employed in establishing a relation between the (GRB frame) luminosity, LX , of the shallow (or constant) flux portion of the typical X-Ray Telescope GRB-afterglow light curve and the (GRB frame) time of transition to the normal decay rate, T brk. We also present the LX -T brk relation using only the bursts common in the two samples. The two relations exhibit a significant degree of correlation (ρ = -0.65 for the L iso-τ and ρ = -0.88 for the LX -T brk relation) and have surprisingly similar best-fit power-law indices (-1.19 ± 0.17 for L iso-τ and -1.10 ± 0.03 for LX -T brk). Even more surprisingly, we noted that although τ and T brk represent different GRB time variables, it appears that the first relation (L iso-τ) extrapolates into the second one for timescales τ ~= T brk. This fact suggests that these two relations have a common origin, which we conjecture to be kinematic. This relation adds to the recently discovered relations between properties of the prompt and afterglow GRB phases, indicating a much more intimate relation between these two phases than hitherto considered.

  7. Gamma-ray burst radio afterglows from Population III stars: simulation methods and detection prospects with SKA precursors

    NASA Astrophysics Data System (ADS)

    Macpherson, D.; Coward, D.

    2015-10-01

    We investigate the prospects of detecting radio afterglows from long Gamma-Ray Bursts (GRBs) from Population III (Pop III) progenitors using the Square Kilometre Array (SKA) precursor instruments MWA (Murchison Widefield Array) and ASKAP (Australian SKA Pathfinder). We derive a realistic model of GRB afterglows that encompasses the widest range of plausible physical parameters and observation angles. We define the best case scenario of Pop III GRB energy and redshift distributions. Using probability distribution functions fitted to the observed microphysical parameters of long GRBs, we simulate a large number of Pop III GRB afterglows to find the global probability of detection. We find that ASKAP may be able to detect 35 per cent of Pop III GRB afterglows in the optimistic case, and 27 per cent in the pessimistic case. A negligible number will be detectable by MWA in either case. Detections per image for ASKAP, found by incorporating intrinsic rates with detectable time-scales, are as high as ˜6000 and as low as ˜11, which shows the optimistic case is unrealistic. We track how the afterglow flux density changes over various time intervals and find that, because of their very slow variability, the cadence for blind searches of these afterglows should be as long as possible. We also find Pop III GRBs at high redshift have radio afterglow light curves that are indistinguishable from those of regular long GRBs in the more local Universe.

  8. The Late Peaking Afterglow of GR8 100418A

    NASA Technical Reports Server (NTRS)

    Marshall, Frank; Antonelli, L. A.; Burrows, D. N.; Covino, S.; dePasquale, M.; Evans, P. A.; Fugazza, D.; Holland, S. T.; Liang, E. W.; OBrien, P. T.; Osborne, J. P.; Pagani, C.; Sakamoto, T.; Siegel, M. H.; Wu, X. F.; Zhang, B.

    2010-01-01

    GRB 100418A is a long Gamma-Ray Burst at redshift z=0.6235 discovered with the Swift Gamma-Ray Burst Explorer with unusual optical and X-ray light curves ' After an initial short-lived, rapid decline in X-rays, the optical and X-ray light curves observed with Swift are approximately flat or rising slightly out to at least approx.7 ks after the trigger, peak at approx.50 ks, and then follow an approximately power-law decay. Such a long optical plateau and late peaking is rarely seen in 6R8 afterglows. Observations with REM during a gap in the Swift coverage indicate a bright optical flare at approx.25 ks, The long plateau phase of the afterglow is interpreted using either a model with continuous injection of energy into the forward shock of the burst or a model in which the 'et of the burst is viewed off-axis. In both models the isotropic kinetic energy in the late afterglow after the plateau phase is >100 times the 10(exp 51) erg of the prompt isotropic gamma-ray energy release. The energy injection model is favored because the off-axis 'et model would require the intrinsic $T f801$ for the GR8 'et viewed on-axis to be very short, approx.10 ms, and the intrinsic isotropic gamma-ray energy release and the true jet energy to be much higher than the typical values of known short GRBs^ The non-detection of a 'et break up to approx.2 Ms indicates a jet half-opening angle of at least 14 degrees, and a relatively high collimation-corrected 'et energy of at least 10(exp 52) erg.

  9. On the afterglow and host galaxy of GRB 021004: A comprehensivestudy with the Hubble Space Telescope1

    SciTech Connect

    Fynbo, J.P.U.; Gorosabel, J.; Smette, A.; Fruchter, A.; Hjorth,J.; Pedersen, K.; Levan, A.; Burud, I.; Sahu, K.; Vreeswijk, P.M.; Bergeron, E.; Kouveliotou1, C.; Tanvir, N.; Thorsett11, S.E.; Wijers,R.A.M.J.; Castro Ceron, J.M.; Castro-Tirado, A.; Garnavich, P.; Holland,S.T.; Jakobsson, P.; Moller, P.; Nugent, P.; Pian, E.; Rhoads, J.; Thomsen, B.; Watson, D.; Woosley, S.

    2004-12-01

    We report on Hubble Space Telescope (HST) observations of the late-time afterglow and host galaxy of GRB 021004 (z = 2.33).Although this gamma-ray burst (GRB) is one of the best observed so far in terms of sampling in the time domain, multi-wavelength coverage and polarimetric observations, there is large disagreement between different measurements and interpretations of this burst in the literature. We have observed the field of GRB 021004 with the HST at multiple epochs from 3 days until almost 10 months after the burst. With STI S prism and G430L spectroscopy we cover the spectral region from about 2000 Angstrom to 5700 Angstrom corresponding to 600 1700 Angstrom in the rest frame. From the limit on the flux recovery bluewards of the Lyman-limit we constrain the H I column density to be above 1 x 1018 cm-2 (5 sigma). Based on ACS and N ICMOS imaging we find that the afterglow evolved a chromatically within the errors (any variation must be less then 5 percent) during the period of HST observations. The color changes observed by other authors during the first four days must be related to a 'noisy' phenomenon superimposed on an afterglow component with a constant spectral shape. This also means that the cooling break has remained on the blue side of the optical part of the spectrum for at least two weeks after the explosion. The optical to X-ray slope OX is consistent with being the same at 1.4 and 52.4 days after the burst. This indicates that the cooling frequency is constant and hence, according to fireball models, that the circumburst medium has a constant density profile. The late-time slope of the light curve (alpha 2, F nu proportional to t-alpha2) is in the range 2 = 1.8-1.9, although inconsistent with a single power-law. This could be due to a late-time flattening caused by the transition to non-relativistic expansion or due to excess emission (a 'bump' in the light curve) about 7 days afterburst. The host galaxy is like most previously studied GRB hosts

  10. Enhanced photovoltaic energy conversion using thermally based spectral shaping

    NASA Astrophysics Data System (ADS)

    Bierman, David M.; Lenert, Andrej; Chan, Walker R.; Bhatia, Bikram; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N.

    2016-06-01

    Solar thermophotovoltaic devices have the potential to enhance the performance of solar energy harvesting by converting broadband sunlight to narrow-band thermal radiation tuned for a photovoltaic cell. A direct comparison of the operation of a photovoltaic with and without a spectral converter is the most critical indicator of the promise of this technology. Here, we demonstrate enhanced device performance through the suppression of 80% of unconvertible photons by pairing a one-dimensional photonic crystal selective emitter with a tandem plasma-interference optical filter. We measured a solar-to-electrical conversion rate of 6.8%, exceeding the performance of the photovoltaic cell alone. The device operates more efficiently while reducing the heat generation rates in the photovoltaic cell by a factor of two at matching output power densities. We determined the theoretical limits, and discuss the implications of surpassing the Shockley-Queisser limit. Improving the performance of an unaltered photovoltaic cell provides an important framework for the design of high-efficiency solar energy converters.

  11. AFTERGLOW OBSERVATIONS OF FERMI LARGE AREA TELESCOPE GAMMA-RAY BURSTS AND THE EMERGING CLASS OF HYPER-ENERGETIC EVENTS

    SciTech Connect

    Cenko, S. B.; Butler, N. R.; Cobb, B. E.; Cucchiara, A.; Bloom, J. S.; Perley, D. A.; Filippenko, A. V.; Frail, D. A.; Harrison, F. A.; Haislip, J. B.; Reichart, D. E.; Ivarsen, K. M.; LaCluyze, A. P.; Berger, E.; Chandra, P.; Fox, D. B.; Prochaska, J. X.; Kasliwal, M. M.; Kulkarni, S. R.

    2011-05-01

    We present broadband (radio, optical, and X-ray) light curves and spectra of the afterglows of four long-duration gamma-ray bursts (GRBs; GRBs 090323, 090328, 090902B, and 090926A) detected by the Gamma-Ray Burst Monitor and Large Area Telescope (LAT) instruments on the Fermi satellite. With its wide spectral bandpass, extending to GeV energies, Fermi is sensitive to GRBs with very large isotropic energy releases (10{sup 54} erg). Although rare, these events are particularly important for testing GRB central-engine models. When combined with spectroscopic redshifts, our afterglow data for these four events are able to constrain jet collimation angles, the density structure of the circumburst medium, and both the true radiated energy release and the kinetic energy of the outflows. In agreement with our earlier work, we find that the relativistic energy budget of at least one of these events (GRB 090926A) exceeds the canonical value of 10{sup 51} erg by an order of magnitude. Such energies pose a severe challenge for models in which the GRB is powered by a magnetar or a neutrino-driven collapsar, but remain compatible with theoretical expectations for magnetohydrodynamical collapsar models (e.g., the Blandford-Znajek mechanism). Our jet opening angles ({theta}) are similar to those found for pre-Fermi GRBs, but the large initial Lorentz factors ({Gamma}{sub 0}) inferred from the detection of GeV photons imply {theta}{Gamma}{sub 0} {approx} 70-90, values which are above those predicted in magnetohydrodynamic models of jet acceleration. Finally, we find that these Fermi-LAT events preferentially occur in a low-density circumburst environment, and we speculate that this might result from the lower mass-loss rates of their lower-metallicity progenitor stars. Future studies of Fermi-LAT afterglows at radio wavelengths with the order-of-magnitude improvement in sensitivity offered by the Extended Very Large Array should definitively establish the relativistic energy

  12. Gamma-ray Burst Afterglows as Probes of Environment and Blastwave Physics: Absorption by Host Galaxy Gas and Dust, Circumburst Media and the Distribution of P

    NASA Technical Reports Server (NTRS)

    Starling, R. L. C.; Wijers, R. a. M. J.; Curran, P.; Rol, E.; Wiersema, K.; Kouveliotou, C.; vanderHorst, A. J.

    2006-01-01

    We use a new approach to obtain limits on the absorbing columns towards a sample of 10 Gamma-ray Bursts observed by BeppoSAX from simultaneous fits to X-ray, optical and IR data, in counts space and including the effects of metallicity. For half the afterglows the best-fitting model to the SED includes SMC-like extinction (as opposed to LMC or MW) and in one LMC-like extinction, and in no cases is there a preference for MW-like extinction. Gas-to-dust ratios generally do not match those of the 3 standard and most well-known extinction models of SMC, LMC and MW, but tend to be higher. We compare the results from this method to those of previous works using other methods. We constrain the jet models for a subsample of the bursts by constraining the cooling break position and power law spectral slopes, allowing the injected electron energy index to be measured. We derive secure values of p from our spectral fits and comparison with the temporal optical and X-ray slopes for 4 afterglows. The mean of these single value, suggesting that either external factors such as circumburst medium play a strong role or that the microphysics is not identical for each GRB. For GRB 971214 we find that the circumburst medium has a wind-like density profile and the cooling frequency appears to be moving to higher frequencies.

  13. The Case for Anisotropic Afterglow Efficiency Within Gamma-Ray Burst Jets

    SciTech Connect

    Eichler, David; Granot, Jonathan; /KIPAC, Menlo Park

    2005-10-05

    Early X-ray afterglows recently detected by Swift frequently show a phase of very shallow flux decay lasting from a few hundred seconds up to {approx} 10{sup 4} s, followed by a steeper, more familiar decay. We suggest that the flat early part of the light curve may be a combination of the decaying tail of the prompt emission and the delayed onset of the afterglow emission observed from viewing angles slightly outside the edge of the jet, as predicted previously. This would imply that a significant fraction of viewers have a very small external shock energy along their line of sight and a very high {gamma}-ray to kinetic energy ratio. The early flat phase in the afterglow light curve implies, according to this or other interpretations, a very large {gamma}-ray efficiency, typically {approx}> 90%, which is very difficult to produce by internal shocks.

  14. Infrared Spectral Energy Distributions of Nearby Dwarf Carbon Stars

    NASA Astrophysics Data System (ADS)

    Lowrance, Patrick

    2014-06-01

    The discovery of G77-61 (Dahn et al. 1977) -- a star with a carbon-rich spectrum a mere 58 pc away and therefore of relatively low luminosity -- led to the recognition that _dwarf_ carbon (dC) stars exist. As more dCs are now known, the accepted paradigm of the presence of atmospheric carbon is that dCs must contain a white dwarf secondary. While the white dwarf companion was going through an AGB stage, it deposited carbon-rich material in the atmosphere of the lower-mass (and now brighter) dwarf star. Indeed, a handful of the dC's have exhibited radial velocity signatures consistent with this picture. To allow for the carbon to still be present in the atmosphere past the AGB stage, a replenishing outer shell or disk has been proposed. Current understanding of the formation and evolution of a dC is, however, limited by the small number of objects and observations. We present a full range of fluxes and flux limits from 1 - 160 um including 2MASS, WISE, Spitzer, and Herschel observations for a list of the nearest carbon dwarfs. We reconstruct the spectral energy distribution exploring the mid-infrared region where any residual debris disks would be detectable. The carbon dwarfs have been historically studied in the visible, and these new infrared observations provide a picture of the circumstellar dust.

  15. Gamma Ray Bursts Spectral-Energy correlations: recent results

    NASA Astrophysics Data System (ADS)

    Ghirlanda, Giancarlo

    2011-02-01

    The correlations between the rest frame peak of the νFν spectrum of GRBs (Epeak) and their isotropic energy (Eiso) or luminosity (Liso) could have several implications for the understanding of the GRB prompt emission. These correlations are presently founded on the time-averaged spectral properties of a sample of 95 bursts, with measured redshifts, collected by different instruments in the last 13 years (pre-Fermi). One still open issue is wether these correlations have a physical origin or are due to instrumental selection effects. By studying 10 long and 14 short GRBs detected by Fermi we find that a strong time-resolved correlation between Epeak and the luminosity Liso is present within individual GRBs and that it is consistent with the time-integrated correlation. This result is a direct proof of the existence in both short and long GRBs of a similar physical link between the hardness and the luminosity which is not due to instrumental selection effects. The origin of the Epeak - Liso correlation should be searched in the radiation mechanism of the prompt emission.

  16. The Far-Infrared Spectral Energy Distributions of Quasars

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.; West, Donald K. (Technical Monitor)

    2001-01-01

    The origin of the infrared emission in Active Galactic Nuclei (AGN), whose strength is comparable to the optical/ultraviolet (OUV) emission, is generally thought to be a combination of thermal emission from dust and non-thermal, synchrotron emission. Although data are sparse, particularly in the far-infrared, the broad wavelength range of this emission suggests a wide range of temperatures and a combination of AGN and starburst heating mechanisms. The strength of the non-thermal emission is expected to be related to the radio emission. While this scenario is well-established, basic questions, such as the spatial and temperature distribution of the dust, the relative importance of AGN and starburst heating, and the significance of the non-thermal contribution remain largely undetermined. The wide wavelength range of the Infrared Space Observatory (ISO) combined with its arcmin spatial resolution and increased sensitivity facilitated the observation of a larger subset of the AGN population than previously covered, allowing these questions to be investigated in more detail. This paper will review the spectral energy distributions (SED) of AGN with particular emphasis on the infrared emission and on ISO's contributions to our knowledge. Preliminary results from ISO observations of X-ray selected and high-redshift AGN will be described.

  17. Simulated galaxy interactions as probes of merger spectral energy distributions

    SciTech Connect

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars; Hayward, Christopher C.; Brassington, Nicola

    2014-04-10

    We present the first systematic comparison of ultraviolet-millimeter spectral energy distributions (SEDs) of observed and simulated interacting galaxies. Our sample is drawn from the Spitzer Interacting Galaxy Survey and probes a range of galaxy interaction parameters. We use 31 galaxies in 14 systems which have been observed with Herschel, Spitzer, GALEX, and 2MASS. We create a suite of GADGET-3 hydrodynamic simulations of isolated and interacting galaxies with stellar masses comparable to those in our sample of interacting galaxies. Photometry for the simulated systems is then calculated with the SUNRISE radiative transfer code for comparison with the observed systems. For most of the observed systems, one or more of the simulated SEDs match reasonably well. The best matches recover the infrared luminosity and the star formation rate of the observed systems, and the more massive systems preferentially match SEDs from simulations of more massive galaxies. The most morphologically distorted systems in our sample are best matched to the simulated SEDs that are close to coalescence, while less evolved systems match well with the SEDs over a wide range of interaction stages, suggesting that an SED alone is insufficient for identifying the interaction stage except during the most active phases in strongly interacting systems. This result is supported by our finding that the SEDs calculated for simulated systems vary little over the interaction sequence.

  18. Propagation of spectral functions and dilepton production at SIS energies

    SciTech Connect

    Wolf, Gy.; Kaempfer, B.; Zetenyi, M.

    2012-06-15

    The time evolution of vector meson spectral functions is studied within a BUU-type transport model. Applications focus on {rho} and {omega} mesons being important pieces for the interpretation of the dielectron invariant mass spectrum. Since the evolution of the spectral functions is driven by the local density, the inmedium modifications turn out to compete, in this approach, with the known vacuum contributions.

  19. THE AFTERGLOW AND ULIRG HOST GALAXY OF THE DARK SHORT GRB 120804A

    SciTech Connect

    Berger, E.; Zauderer, B. A.; Margutti, R.; Laskar, T.; Fong, W.; Chornock, R.; Dupuy, T. J.; Levan, A.; Tunnicliffe, R. L.; Mangano, V.; Fox, D. B.; Tanvir, N. R.; Menten, K. M.; Hjorth, J.; Roth, K.

    2013-03-10

    We present the optical discovery and subarcsecond optical and X-ray localization of the afterglow of the short GRB 120804A, as well as optical, near-IR, and radio detections of its host galaxy. X-ray observations with Swift/XRT, Chandra, and XMM-Newton extending to {delta}t Almost-Equal-To 19 days reveal a single power-law decline. The optical afterglow is faint, and comparison to the X-ray flux indicates that GRB 120804A is ''dark'', with a rest-frame extinction of A {sup host}{sub V} Almost-Equal-To 2.5 mag (at z = 1.3). The intrinsic neutral hydrogen column density inferred from the X-ray spectrum, N{sub H,{sub int}}(z = 1.3) Almost-Equal-To 2 Multiplication-Sign 10{sup 22} cm{sup -2}, is commensurate with the large extinction. The host galaxy exhibits red optical/near-IR colors. Equally important, JVLA observations at Almost-Equal-To 0.9-11 days reveal a constant flux density of F{sub {nu}}(5.8 GHz) = 35 {+-} 4 {mu}Jy and an optically thin spectrum, unprecedented for GRB afterglows, but suggestive instead of emission from the host galaxy. The optical/near-IR and radio fluxes are well fit with the scaled spectral energy distribution of the local ultraluminous infrared galaxy (ULIRG) Arp 220 at z Almost-Equal-To 1.3, with a resulting star formation rate of x Almost-Equal-To 300 M{sub Sun} yr{sup -1}. The inferred extinction and small projected offset (2.2 {+-} 1.2 kpc) are also consistent with the ULIRG scenario, as is the presence of a companion galaxy at the same redshift and with a separation of about 11 kpc. The limits on radio afterglow emission, in conjunction with the observed X-ray and optical emission, require a circumburst density of n {approx} 10{sup -3} cm{sup -3}, an isotropic-equivalent energy scale of E{sub {gamma},{sub iso}} Almost-Equal-To E{sub K,{sub iso}} Almost-Equal-To 7 Multiplication-Sign 10{sup 51} erg, and a jet opening angle of {theta}{sub j} {approx}> 11 Degree-Sign . The expected fraction of luminous infrared galaxies in the short GRB

  20. Study of nitrogen flowing afterglow with mercury vapor injection

    SciTech Connect

    Mazánková, V. Krčma, F.; Trunec, D.

    2014-10-21

    The reaction kinetics in nitrogen flowing afterglow with mercury vapor addition was studied by optical emission spectroscopy. The DC flowing post-discharge in pure nitrogen was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 130 W. The mercury vapors were added into the afterglow at the distance of 30 cm behind the active discharge. The optical emission spectra were measured along the flow tube. Three nitrogen spectral systems – the first positive, the second positive, and the first negative, and after the mercury vapor addition also the mercury resonance line at 254 nm in the spectrum of the second order were identified. The measurement of the spatial dependence of mercury line intensity showed very slow decay of its intensity and the decay rate did not depend on the mercury concentration. In order to explain this behavior, a kinetic model for the reaction in afterglow was developed. This model showed that the state Hg(6 {sup 3}P{sub 1}), which is the upper state of mercury UV resonance line at 254 nm, is produced by the excitation transfer from nitrogen N{sub 2}(A{sup 3}Σ{sup +}{sub u}) metastables to mercury atoms. However, the N{sub 2}(A{sup 3}Σ{sup +}{sub u}) metastables are also produced by the reactions following the N atom recombination, and this limits the decay of N{sub 2}(A{sup 3}Σ{sup +}{sub u}) metastable concentration and results in very slow decay of mercury resonance line intensity. It was found that N atoms are the most important particles in this late nitrogen afterglow, their volume recombination starts a chain of reactions which produce excited states of molecular nitrogen. In order to explain the decrease of N atom concentration, it was also necessary to include the surface recombination of N atoms to the model. The surface recombination was considered as a first order reaction and wall recombination probability γ = (1.35 ± 0.04) × 10{sup −6} was determined from the experimental data. Also

  1. MEAN SPECTRAL ENERGY DISTRIBUTIONS AND BOLOMETRIC CORRECTIONS FOR LUMINOUS QUASARS

    SciTech Connect

    Krawczyk, Coleman M.; Richards, Gordon T.; Mehta, Sajjan S.; Vogeley, Michael S.; Gallagher, S. C.; Leighly, Karen M.; Ross, Nicholas P.; Schneider, Donald P.

    2013-05-01

    We explore the mid-infrared (mid-IR) through ultraviolet (UV) spectral energy distributions (SEDs) of 119,652 luminous broad-lined quasars with 0.064 < z < 5.46 using mid-IR data from Spitzer and WISE, near-infrared data from the Two Micron All Sky Survey and UKIDSS, optical data from the Sloan Digital Sky Survey, and UV data from the Galaxy Evolution Explorer. The mean SED requires a bolometric correction (relative to 2500 A) of BC{sub 2500A} =2.75 {+-} 0.40 using the integrated light from 1 {mu}m-2 keV, and we further explore the range of bolometric corrections exhibited by individual objects. In addition, we investigate the dependence of the mean SED on various parameters, particularly the UV luminosity for quasars with 0.5 {approx}< z {approx}< 3 and the properties of the UV emission lines for quasars with z {approx}> 1.6; the latter is a possible indicator of the strength of the accretion disk wind, which is expected to be SED-dependent. Luminosity-dependent mean SEDs show that, relative to the high-luminosity SED, low-luminosity SEDs exhibit a harder (bluer) far-UV spectral slope ({alpha}{sub UV}), a redder optical continuum, and less hot dust. Mean SEDs constructed instead as a function of UV emission line properties reveal changes that are consistent with known Principal Component Analysis trends. A potentially important contribution to the bolometric correction is the unseen extreme UV (EUV) continuum. Our work suggests that lower-luminosity quasars and/or quasars with disk-dominated broad emission lines may require an extra continuum component in the EUV that is not present (or much weaker) in high-luminosity quasars with strong accretion disk winds. As such, we consider four possible models and explore the resulting bolometric corrections. Understanding these various SED-dependent effects will be important for accurate determination of quasar accretion rates.

  2. The puzzling afterglow of GRB 050721: a rebrightening seen in the optical but not in the X-ray

    SciTech Connect

    Antonelli, L. A.; Romano, P.; Testa, V.; D'Elia, V.; Guetta, D.; Torii, K.; Malesani, D.

    2007-08-21

    We present here the analysis of the early and late multiwavelength afterglow emission, as observed by Swift a small robotic telescope, and the VLT. We compare early observations with late afterglow observations obtained with Swift and the VLT and we observe an intense rebrightening in the optical band at about one day after the burst which is not present in the X-ray band. The lack of detection in X-ray of such a strong rebrightening at lower energies may be described with a variable external density profile. In such a scenario, the combined X-ray and optical observations allow us to derive that the matter density located at {approx} 1017 cm from the burst is about a factor of 10 higher than in the inner region. This is the first time in which a rebrightening has been observed in the optical afterglow of a GRB that is clearly absent in the X-ray afterglow.

  3. The prompt-early afterglow connection in gamma-ray bursts: implications for the early afterglow physics

    NASA Astrophysics Data System (ADS)

    Hascoët, R.; Daigne, F.; Mochkovitch, R.

    2014-07-01

    The early X-ray afterglow of gamma-ray bursts revealed by Swift carried many surprises. Following an initial steep decay the light curve often exhibits a plateau phase that can last up to several 104 s, with in addition the presence of flares in 50 per cent of the cases. We focus in this paper on the plateau phase whose origin remains highly debated. We confront several newly discovered correlations between prompt and afterglow quantities (isotropic emitted energy in gamma-rays, luminosity and duration of the plateau) to several models proposed for the origin of plateaus in order to check if they can account for these observed correlations. We first show that the scenario of plateau formation by energy injection into the forward shock leads to an efficiency crisis for the prompt phase and therefore study two possible alternatives: the first one still takes place within the framework of the standard forward shock model but allows for a variation of the microphysics parameters to reduce the radiative efficiency at early times; in the second scenario the early afterglow results from a long-lived reverse shock. Its shape then depends on the distribution of energy as a function of Lorentz factor in the ejecta. In both cases, we first present simple analytical estimates of the plateau luminosity and duration and then compute detailed light curves. In the two considered scenarios we find that plateaus following the observed correlations can be obtained under the condition that specific additional ingredients are included. In the forward shock scenario, the preferred model supposes a wind external medium and a microphysics parameter ɛe that first varies as n-ξ (n being the external density), with ξ ˜ 1 to get a flat plateau, before staying constant below a critical density n0. To produce a plateau in the reverse shock scenario the ejecta must contain a tail of low Lorentz factor with a peak of energy deposition at Γ ≳ 10.

  4. X-ray excited ZnS:Cu,Co afterglow nanoparticles for photodynamic activation

    NASA Astrophysics Data System (ADS)

    Ma, Lun; Zou, Xiaoju; Bui, Brian; Chen, Wei; Song, Kwang Hyun; Solberg, Timothy

    2014-07-01

    Copper and cobalt co-doped ZnS (ZnS:Cu,Co) afterglow nanoparticles were conjugated to photosensitizer tetrabromorhodamine-123 (TBrRh123) and efficient energy transfer from the nanoparticles to TBrRh123 was observed. In addition to their X-ray excited luminescence, the ZnS:Cu,Co nanoparticles also show long lasting afterglow, which continuously serve as a light source for photodynamic therapy (PDT) activation. Compared to TBrRh123 or ZnS:Cu,Co alone, the ZnS:Cu,Co-TBrRh123 conjugates show low dark toxicity but high X-ray induced toxicity to human prostate cancer cells. The results indicate that the ZnS:Cu,Co afterglow nanoparticles have a good potential for PDT activation.

  5. Implications of the Early X-Ray Afterglow Light Curves of Swift GRBs

    SciTech Connect

    Granot, Jonathan; Konigl, Arieh; Piran, Tsvi; /Hebrew U.

    2006-01-17

    According to current models, gamma-ray bursts (GRBs) are produced when the energy carried by a relativistic outflow is dissipated and converted into radiation. The efficiency of this process, {epsilon}{sub {gamma}}, is one of the critical factors in any GRB model. The X-ray afterglow light curves of Swift GRBs show an early stage of flattish decay. This has been interpreted as reflecting energy injection. When combined with previous estimates, which have concluded that the kinetic energy of the late ({approx}> 10 hr) afterglow is comparable to the energy emitted in {gamma}-rays, this interpretation implies very high values of {epsilon}{sub {gamma}}, corresponding to {approx}> 90% of the initial energy being converted into {gamma}-rays. Such a high efficiency is hard to reconcile with most models, including in particular the popular internal-shocks model. We re-analyze the derivation of the kinetic energy from the afterglow X-ray flux and re-examine the resulting estimates of the efficiency. We confirm that, if the flattish decay arises from energy injection and the pre-Swift broad-band estimates of the kinetic energy are correct, then {epsilon}{sub {gamma}} {approx}> 0.9. We discuss various issues related to this result, including an alternative interpretation of the light curve in terms of a two-component outflow model, which we apply to the X-ray observations of GRB 050315. We point out, however, that another interpretation of the flattish decay--a variable X-ray afterglow efficiency (e.g., due to a time dependence of afterglow shock microphysical parameters)--is possible. We also show that direct estimates of the kinetic energy from the late X-ray afterglow flux are sensitive to the assumed values of the shock microphysical parameters and suggest that broad-band afterglow fits might have underestimated the kinetic energy (e.g., by overestimating the fraction of electrons that are accelerated to relativistic energies). Either one of these possibilities implies a

  6. Bright x-ray flares in gamma-ray burst afterglows.

    PubMed

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  7. rf-generated ambient-afterglow plasma

    SciTech Connect

    Shakir, Shariff; Mynampati, Sandhya; Pashaie, Bijan; Dhali, Shirshak K.

    2006-04-01

    Atmospheric pressure plasmas have gained importance due to their potential application in polymer surface treatment, surface cleaning of metals, thin film deposition, and destruction of biological hazards. In this paper a radio-frequency driven atmospheric pressure afterglow plasma source in argon and helium is discussed. The light intensity measurement shows that the radio-frequency discharge is continuous in time unlike the intermittent nature of a low frequency dielectric-barrier discharge. The discharge, under ambient conditions, can be generated in argon, helium, and nitrogen. Spectroscopic measurements show that metastables are capable of producing oxygen atoms and other excited species. The argon afterglow, in particular, is capable of dissociating oxygen molecules in the ambient gas. An afterglow model has been developed to study the interaction of the plasma with the ambient gas. Results from applications of the plasma to surface treatment of metals and polymers, and bacterial decontamination are briefly discussed.

  8. GRB afterglows in the nonrelativistic phase

    NASA Astrophysics Data System (ADS)

    Huang, Y. F.; Lu, T.

    2008-10-01

    When discussing the afterglows of gamma-ray bursts analytically, it is usually assumed that the external shock is always ultra-relativisitc, with the bulk Lorentz factor much larger than 1. However, we show that the deceleration of the external shock is actually very quick. The afterglow may typically enter the nonrelativistic phase in several days to teens of days, and may even enter the deep Newtonian phase in tens of days to several months. One thus should be careful in using those familiar analytical expressions that are derived only under the ultra-relativistic assumption. To explain the observed afterglows that typically last for a few weeks to several months, we need to consider the dynamics and radiation in the nonrelativisitic phase.

  9. Quasar Spectral Energy Distributions As A Function Of Physical Property

    NASA Astrophysics Data System (ADS)

    Townsend, Shonda; Ganguly, R.; Stark, M. A.; Derseweh, J. A.; Richmond, J. M.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). In turn, models of outflows have shown particular sensitivity to the shape of the spectral energy distribution (SED), depending on the UV luminosity to transfer momentum to the gas, the X-ray luminosity to regulate how efficiently that transfer can be, etc. To investigate how SED changes with physical properties, we follow up on Richards et al. (2006), who constructed SEDs with varying luminosity. Here, we construct SEDs as a function of redshift, and physical property (black hole mass, bolometric luminosity, Eddington ratio) for volume limited samples drawn from the Sloan Digital Sky Survey, with photometry supplemented from 2MASS, WISE, GALEX, ROSAT, and Chandra. To estimate black hole masses, we adopt the scaling relations from Greene & Ho (2005) based on the H-alpha emission line FWHM. This requires redshifts less than 0.4. To construct volume-limited subsamples, we begin by adopting g=19.8 as a nominal limiting magnitude over which we are guaranteed to detect z<0.4 quasars. At redshift 0.4, we are complete down to Mg=-21.8, which yields 3300 objects from Data Release 7. At z=0.1, we are complete down to Mg=-18.5. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.

  10. Modelling and interpreting spectral energy distributions of galaxies with BEAGLE

    NASA Astrophysics Data System (ADS)

    Chevallard, Jacopo; Charlot, Stéphane

    2016-10-01

    We present a new-generation tool to model and interpret spectral energy distributions (SEDs) of galaxies, which incorporates in a consistent way the production of radiation and its transfer through the interstellar and intergalactic media. This flexible tool, named BEAGLE (for BayEsian Analysis of GaLaxy sEds), allows one to build mock galaxy catalogues as well as to interpret any combination of photometric and spectroscopic galaxy observations in terms of physical parameters. The current version of the tool includes versatile modelling of the emission from stars and photoionized gas, attenuation by dust and accounting for different instrumental effects, such as spectroscopic flux calibration and line spread function. We show a first application of the BEAGLE tool to the interpretation of broad-band SEDs of a published sample of ˜ 10^4 galaxies at redshifts 0.1 ≲ z ≲ 8. We find that the constraints derived on photometric redshifts using this multipurpose tool are comparable to those obtained using public, dedicated photometric-redshift codes and quantify this result in a rigorous statistical way. We also show how the post-processing of BEAGLE output data with the PYTHON extension PYP-BEAGLE allows the characterization of systematic deviations between models and observations, in particular through posterior predictive checks. The modular design of the BEAGLE tool allows easy extensions to incorporate, for example, the absorption by neutral galactic and circumgalactic gas, and the emission from an active galactic nucleus, dust and shock-ionized gas. Information about public releases of the BEAGLE tool will be maintained on http://www.jacopochevallard.org/beagle.

  11. Constructing and Analyzing Spectral Energy Distributions with the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Laurino, Omar; Busko, I.; Cresitello-Dittmar, M.; D'Abrusco, R.; Doe, S.; Evans, J.; Pevunova, O.; Norris, P.

    2013-01-01

    Spectral energy distributions (SEDs) are a common and useful means of assessing the relative contributions of different emission processes occurring within an object. Iris, the Virtual Astronomical Observatory (VAO) SED tool, seamlessly combines key features of several existing astronomical software applications to streamline and enhance the SED analysis process. With Iris, users may build and display SEDs, browse data and metadata and apply filters to them, fit models to SEDs, and calculate confidence limits on best-fit parameters. SED data may be built from a number of sources using the SED Builder. Iris supports the Simple Application Messaging Protocol for interoperability with other Virtual Observatory applications, like the VAO Data Discovery tool, and can directly fetch SEDs from the NASA Extragalactic Database SED service. Particular attention has been paid to the integration of user spectrophotometric data from files in several different formats. File readers for custom formats can be provided at runtime, as well as custom models to fit the data, as template libraries for template fitting or arbitrary python functions. New functionalities can be added by installing plugins, i.e. third party components that are developed using the Iris Software Development Kit. The VAO was established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. Iris Individual components have also been supported by the National Aeronautics and Space Administration (NASA) through the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the NASA contract NAS8-03060, and by the Space Telescope Science Institute, operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. This research has made use of the NASA/IPAC Extragalactic Database which is operated by the Jet Propulsion Laboratory, California Institute of

  12. Revisiting the dispersion measure of fast radio bursts associated with gamma-ray burst afterglows

    SciTech Connect

    Yu, Yun-Wei

    2014-12-01

    Some fast radio bursts (FRBs) are expected to be associated with the afterglow emission of gamma-ray bursts (GRBs), while a short-lived, supermassive neutron star (NS) forms during the GRBs. I investigate the possible contributions to the dispersion measure (DM) of the FRBs from the GRB ejecta and the wind blown from the precollapsing NS. On the one hand, sometimes an internal X-ray plateau afterglow could be produced by the NS wind, which indicates that a great number of electron-positron pairs are carried by the wind. If the pair-generation radius satisfies a somewhat rigorous condition, the relativistic and dense wind would contribute a high DM to the associated FRB, which can be comparable to and even exceed the DM contributed by the intergalactic medium. On the other hand, if the wind only carries a Goldreich-Julian particle flux, its DM contribution would become negligible; meanwhile, the internal plateau afterglow would not appear. Alternatively, the FRB should be associated with a GRB afterglow produced by the GRB external shock, i.e., an energy-injection-caused shallow-decay afterglow or a normal single-power-law afterglow if the impulsive energy release of the GRB is high enough. In the latter case, the DM contributed by the high-mass GRB ejecta could be substantially important, in particular, for an environment of main-sequence stellar wind. In summary, a careful assessment on the various DM contributors could be required for the cosmological application of the expected FRB-GRB association. The future DM measurements of GRB-associated FRBs could provide a constraint on the physics of NS winds.

  13. The Achromatic Light Curve of the Optical Afterglow of GRB 030226 at a Redshift of z Approximately 2

    NASA Technical Reports Server (NTRS)

    Klose, S.; Greiner, J.; Rau, A.; Henden, A. A.; Hartmann, D. H.; Zeh, A.; Masetti, N.; Guenther, E.; Stecklum, B.; Lindsay, K.

    2003-01-01

    Abstract. We report on optical and near-infrared (NIR) follow-up observations of the afterglow of GRB 030226, mainly performed with the telescopes at ESO La Silla and Paranal, with additional data obtained at other places. Our first observations started 0.2 days after the burst when the afterglow was at a magnitude of R approximately equal to 19 . One week later the magnitude of the afterglow had fallen to R=25, and at two weeks after the burst it could no longer be detected (R > 26). Our VLT blueband spectra show two absorption line systems at redshifts z = 1.962 +/- 0.001 and at z = 1.986 +/- 0.001, placing the redshift of the burster close to 2. Within our measurement errors no evidence for variations in the line strengths has been found between 0.2 and 1.2 days after the burst. An overabundance of alpha-group elements might indicate that the burst occurred in a chemically young interstellar region shaped by the nucleosynthesis from type II supernovae. The spectral slope of the afterglow shows no signs for cosmic dust along the line of sight in the GRB host galaxy, which itself remained undetected (R > 26.2). At the given redshift no supernova component affected the light from the GRB afterglow, so that the optical transient was essentially only powered by the radiation from the GRB fireball, allowing for a detailed investigation of the color evolution of the afterglow light. In our data set no obvious evidence for color changes has been found before, during, or after the smooth break in the light curve approximately 1 day after the burst. In comparison with investigations by others, our data favor the interpretation that the afterglow began to develop into a homogeneous interstellar medium before the break in the light curve became apparent.

  14. Observation on long afterglow of Tb{sup 3+} in CaWO{sub 4}

    SciTech Connect

    Wu, Haoyi; Hu, Yihua; Kang, Fengwen; Chen, Li; Wang, Xiaojuan; Ju, Guifang; Mu, Zhongfei

    2011-12-15

    Graphical abstract: The afterglow of Tb{sup 3+} is observed in CaWO{sub 4} matrix. The main emission of the afterglow is ascribed to the {sup 5}D{sub 4} {yields} {sup 7}F{sub 5} and {sup 5}D{sub 4} {yields} {sup 7}F{sub 6}. Emission due to {sup 5}D{sub 3} {yields} {sup 7}F{sub 4} and {sup 5}D{sub 3} {yields} {sup 7}F{sub 5} is weak. The cross-relaxation dominate the afterglow emission and it enhances the transition from {sup 5}D{sub 4} whereas from {sup 5}D{sub 3}. Highlights: Black-Right-Pointing-Pointer A green long afterglow is observed from Tb{sup 3+} in CaWO{sub 4} matrix. Black-Right-Pointing-Pointer Two traps which may have a strong influence on the afterglow properties are revealed by TL. Black-Right-Pointing-Pointer A mechanism model based on energy transfer from WO{sub 4}{sup 2-} group to Tb{sup 3+} followed by cross-relaxation is proposed. -- Abstract: The Tb{sup 3+} doped CaWO{sub 4} phosphors are synthesized via high temperature solid state reaction. The X-ray diffraction shows that small amount of Tb{sup 3+} does not have a significant influence on the structure of CaWO{sub 4}. A broad absorption band of the WO{sub 4}{sup 2-} group is observed from photoluminescence and the energy transfer from WO{sub 4}{sup 2-} group to Tb{sup 3+} ions induces the f-f transition. The cross-relaxation between two adjacent Tb{sup 3+} ions weakens {sup 5}D{sub 3}-{sup 7}F{sub j} transitions and enhances the {sup 5}D{sub 4}-{sup 7}F{sub j} transitions, leading to a green long afterglow of the phosphors. The thermoluminescence curves centered around 75 Degree-Sign C reveal the trap depth for afterglow generation is about 0.74-0.77 eV. The optimum Tb{sup 3+} concentration for afterglow properties is about 1%. A deep hole trap is induced when Tb{sup 3+} concentration exceeds 1% and it suppresses the thermoluminescence and the decay properties.

  15. Advances in flowing afterglow and selected-ion flow tube techniques

    NASA Astrophysics Data System (ADS)

    Squires, Robert R.

    1992-09-01

    New developments in flowing afterglow and selected-ion flow tube (SIFT) techniques are briefly reviewed. Particular emphasis is given to the new chemical and physical information that can be obtained with use of the tandem flowing afterglow-triple quadrupole apparatus developed in the author's laboratory. Several outstanding recent achievements in the design and utilization of flowing afterglow and SIFT instruments in other laboratories are briefly highlighted that illustrate the power and flexibility of flow-tube-based methods. These include isotope tracer experiments with the tandem flowing afterglow-SIFT instrument in Boulder, studies of large molecular cluster ions with the variable temperature facility at Penn State, and gas-phase metal ion reactions with the laser ablation/fast flow reactor in Madison. Recent applications of the flowing afterglow-triple quadrupole instrument in our laboratory have made use of collision-induced dissociation (CID) as a tool for synthesizing novel ions and for obtaining new thermo-chemical information from threshold energy measurements. Collision-induced decar☐ylation of organic car☐ylate ions provides access to a variety of unusual and highly basic carbanions that cannot be generated with conventional ion sources. The formation and properties of saturated alkyl ions and studies of gas-phase reactions of the methyl anion are briefly described. We have developed a new method for carrying out "preparative CID" in a flowing afterglow with use of a mini-drift tube; some recent applications of this new ion source are presented. Measurement of CID thresholds for simple cleavage reactions of thermalized ions can provide accurate measures of bond strengths, gas-phase acidities and basicities, and heats of formation for ions and reactive neutral species. Applications of this approach in the thermochemical characterization of carbenes, benzynes and biradicals are described. Future prospects for the continued development of flow

  16. The behaviour of negative oxygen ions in the afterglow of a reactive HiPIMS discharge

    NASA Astrophysics Data System (ADS)

    Bowes, M.; Bradley, J. W.

    2014-07-01

    Using a single Langmuir probe, the temporal evolution of the oxygen negative ion, n-, and electron, ne, densities in the afterglow of a reactive HiPIMS discharge operating in argon-oxygen gas mixtures have been determined. The magnetron was equipped with a titanium target and operated in ‘poisoned’ mode at a frequency of 100 Hz with a pulse width of 100 µs for a range of oxygen partial pressures, {p_{O_{2}}}/{p_{total}} = 0.0{{-}}0.5 . In the initial afterglow, the density of the principle negative ion in the discharge (O-) was of the order of 1016 m-3 for all conditions. The O- concentration was found to decay slowly with characteristic decay times between 585 µs and 1.2 ms over the oxygen partial pressure range. Electron densities were observed to fall more rapidly, resulting in long-lived highly electronegative afterglow plasmas where the ratio, α = n-/ne, was found to reach values up to 672 (±100) for the highest O2 partial pressure. By comparing results to a simple plasma-chemical model, we speculate that with increased {p_{O_{2}}}/{p_{total}} ratio, more O- ions are formed in the afterglow via dissociative electron attachment to highly excited metastable oxygen molecules, with the latter being formed during the active phase of the discharge. After approximately 2.5 ms into the off-time, the afterglow degenerates into an ion-ion plasma and negative ions are free to impinge upon the chamber walls and grounded substrates with flux densities of the order of 1018 m-2 s-1, which is around 10% of the positive ion flux measured during the on-time. This illustrates the potential importance of the long afterglow in reactive HiPIMS, which can act as a steady source of low energy O- ions to a growing thin film at the substrate during periods of reduced positive ion bombardment.

  17. The Spectral Energy Distribution of the Coldest Known Brown Dwarf

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Esplin, T. L.

    2016-09-01

    WISE J085510.83–071442.5 (hereafter WISE 0855–0714) is the coldest known brown dwarf (∼250 K) and the fourth-closest known system to the Sun (2.2 pc). It has been previously detected only in the J band and two mid-IR bands. To better measure its spectral energy distribution (SED), we have performed deep imaging of WISE 0855–0714 in six optical and near-IR bands with Gemini Observatory, the Very Large Telescope, and the Hubble Space Telescope. Five of the bands show detections, although one detection is marginal (S/N ∼ 3). We also have obtained two epochs of images with the Spitzer Space Telescope for use in refining the parallax of the brown dwarf. By combining astrometry from this work and previous studies, we have derived a parallax of 0.449 ± 0.008″ (2.23 ± 0.04 pc). We have compared our photometry for WISE 0855–0714 to data for known Y dwarfs and to the predictions of three suites of models by Saumon et al. and Morley et al. that are defined by the presence or absence of clouds and nonequilibrium chemistry. Our estimates of Y ‑ J and J ‑ H for WISE 0855–0714 are redder than colors of other Y dwarfs, confirming a predicted reversal of near-IR colors to redder values at temperatures below 300–400 K. In color–magnitude diagrams, no single suite of models provides a clearly superior match to the sequence formed by WISE 0855–0714 and other Y dwarfs. Instead, the best-fitting model changes from one diagram to the next. Similarly, all of the models have substantial differences from the SED of WISE 0855–0714. As a result, we are currently unable to constrain the presence of clouds or nonequilibrium chemistry in its atmosphere. Based on observations made with the Spitzer Space Telescope, the NASA/ESA Hubble Space Telescope, Gemini Observatory, and the ESO Telescopes at Paranal Observatory.

  18. The Spectral Energy Distribution of the Coldest Known Brown Dwarf

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Esplin, T. L.

    2016-09-01

    WISE J085510.83-071442.5 (hereafter WISE 0855-0714) is the coldest known brown dwarf (˜250 K) and the fourth-closest known system to the Sun (2.2 pc). It has been previously detected only in the J band and two mid-IR bands. To better measure its spectral energy distribution (SED), we have performed deep imaging of WISE 0855-0714 in six optical and near-IR bands with Gemini Observatory, the Very Large Telescope, and the Hubble Space Telescope. Five of the bands show detections, although one detection is marginal (S/N ˜ 3). We also have obtained two epochs of images with the Spitzer Space Telescope for use in refining the parallax of the brown dwarf. By combining astrometry from this work and previous studies, we have derived a parallax of 0.449 ± 0.008″ (2.23 ± 0.04 pc). We have compared our photometry for WISE 0855-0714 to data for known Y dwarfs and to the predictions of three suites of models by Saumon et al. and Morley et al. that are defined by the presence or absence of clouds and nonequilibrium chemistry. Our estimates of Y - J and J - H for WISE 0855-0714 are redder than colors of other Y dwarfs, confirming a predicted reversal of near-IR colors to redder values at temperatures below 300-400 K. In color-magnitude diagrams, no single suite of models provides a clearly superior match to the sequence formed by WISE 0855-0714 and other Y dwarfs. Instead, the best-fitting model changes from one diagram to the next. Similarly, all of the models have substantial differences from the SED of WISE 0855-0714. As a result, we are currently unable to constrain the presence of clouds or nonequilibrium chemistry in its atmosphere. Based on observations made with the Spitzer Space Telescope, the NASA/ESA Hubble Space Telescope, Gemini Observatory, and the ESO Telescopes at Paranal Observatory.

  19. GRB 021211 as a Faint Analogue of GRB 990123: Exploring the Similarities and Differences in the Optical Afterglows

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; Bersier, David; Bloom, J. S.; Garnavich, Peter M.; Caldwell, Nelson; Challis, Peter; Kirshner, Robert; Luhman, Kevin; McLeod, Brian; Stanek, K. Z.

    2004-01-01

    We present BVR(sub c)JHK(sub s) photometry of the optical afterglow of the gamma-ray burst GRB 021211 taken at the Magellan, MMT, and WIYN observatories between 0.7 and 50 days after the burst. We find an intrinsic spectral slope at optical and near-infrared wavelengths of 0.69 +/- 0.14 at 0.87 days. The optical decay during the first day is almost identical to that of GRB 990123 except that GRB 021211's optical afterglow was intrinsically approximately 38 times fainter and the transition from the reverse shock to the forward shock may have occurred earlier than it did for GRB 990123. We find no evidence for a jet break or the cooling break passing through optical frequencies during the first day after the burst. There is weak evidence for a break in the J-band decay between 0.89 and 1.87 days which may be due to a jet. The optical and infrared data are consistent with a relativistic fireball where the shocked electrons are in the slow cooling regime and the electron index is 2.3 +/- 0.1. The burst appears to have occurred in a homogeneous ambient medium. Our analysis suggests that the jet of GRB 021211 may have a small opening angle (1.4 deg-4.4 deg) and that the total gamma-ray energy is much less than the canonical value of 1.33 x 10(exp 51) erg. If, this is the case then most of the energy of the burst may be in another form such as a frozen magnetic field, in supernova ejecta, or in a second jet component. The host galaxy of GRB 021211 is subluminous and has a star formation rate of at least 1 solar mass/yr.

  20. IN SEARCH OF PROGENITORS FOR SUPERNOVALESS GAMMA-RAY BURSTS 060505 AND 060614: RE-EXAMINATION OF THEIR AFTERGLOWS

    SciTech Connect

    Xu, D.; Fynbo, J. P. U.; Sollerman, J.; Watson, D.; Hjorth, J.; Starling, R. L. C.; O'Brien, P. T.; Yost, S.; Foley, S.

    2009-05-01

    GRB 060505 and GRB 060614 are nearby long-duration gamma-ray bursts (LGRBs) without accompanying supernovae (SNe) down to very strict limits. They thereby challenge the conventional LGRB-SN connection and naturally give rise to the question: are there other peculiar features in their afterglows which would help shed light on their progenitors? To answer this question, we combine new observational data with published data and investigate the multiband temporal and spectral properties of the two afterglows. We find that both afterglows can be well interpreted within the framework of the jetted standard external shock wave model, and that the afterglow parameters for both bursts fall well within the range observed for other LGRBs. Hence, from the properties of the afterglows there is nothing to suggest that these bursts should have another progenitor than other LGRBs. Recently, Swift-discovered GRB 080503 also has the spike + tail structure during its prompt {gamma}-ray emission seemingly similar to GRB 060614. We analyze the prompt emission of this burst and find that this GRB is actually a hard-spike + hard-tail burst with a spectral lag of 0.8 {+-} 0.4 s during its tail emission. Thus, the properties of the prompt emission of GRB 060614 and GRB 080503 are clearly different, motivating further thinking of GRB classification (and even identification of faint core-collapse SNe). Finally, we note that, whereas the progenitor of the two SN-less bursts remains uncertain, the core-collapse origin for the SN-less bursts would be quite certain if a windlike environment can be observationally established, e.g., from an optical decay faster than the X-ray decay in the afterglow's slow cooling phase.

  1. On the Afterglow and Host Galaxy of GRB 021004: A Comprehensive Study with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Fynbo, J. P. U.; Gorosabel, J.; Smette, A.; Fruchter, A.; Hjorth, J.; Pedersen, K.; Levan, A.; Burud, I.; Sahu, K.; Vreeswijk, P. M.; Bergeron, E.; Kouveliotou, C.; Tanvir, N.; Thorsett, S. E.; Wijers, R. A. M. J.; Castro Cerón, J. M.; Castro-Tirado, A.; Garnavich, P.; Holland, S. T.; Jakobsson, P.; Møller, P.; Nugent, P.; Pian, E.; Rhoads, J.; Thomsen, B.; Watson, D.; Woosley, S.

    2005-11-01

    starburst galaxy with no evidence for dust and with strong Lyα emission. The star formation rate of the host is about 10 Msolar yr-1 on the basis of both the strength of the UV continuum and the Lyα luminosity. The spectral energy distribution of the host implies an age in the range 30-100 Myr for the dominant stellar population. The afterglow was located very close (~100 pc) to the center of the host, implying that the progenitor was possibly associated with a circumnuclear starburst. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 9074 and 9405.

  2. On the Afterglow and Progenitor of FRB 150418

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    2016-05-01

    Keane et al. recently detected a fading radio source following FRB 150418, leading to the identification of a putative host galaxy at z = 0.492 ± 0.008. Assuming that the fading source is the afterglow of FRB 150418, I model the afterglow and constrain the isotropic energy of the explosion to be a few 1050 erg, comparable to that of a short-duration gamma-ray burst (GRB). The outflow may have a jet opening angle of ˜0.22 rad, so that the beaming-corrected energy is below 1049 erg. The results rule out most fast radio burst (FRB) progenitor models for this FRB, but may be consistent with either of the following two scenarios. The first scenario invokes a merger of an NS-NS binary, which produced an undetected short GRB and a supra-massive neutron star, which subsequently collapsed into a black hole, probably hundreds of seconds after the short GRB. The second scenario invokes a merger of a compact star binary (BH-BH, NS-NS, or BH-NS) system whose pre-merger dynamical magnetospheric activities made the FRB, which is followed by an undetected short GRB-like transient. The gravitational-wave (GW) event GW 150914 would be a sister of FRB 150418 in this second scenario. In both cases, one expects an exciting prospect of GW/FRB/GRB associations.

  3. FROM ENGINE TO AFTERGLOW: COLLAPSARS NATURALLY PRODUCE TOP-HEAVY JETS AND EARLY-TIME PLATEAUS IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Duffell, Paul C.; MacFadyen, Andrew I. E-mail: macfadyen@nyu.edu

    2015-06-20

    We demonstrate that the steep decay and long plateau in the early phases of gamma-ray burst X-ray afterglows are naturally produced in the collapsar model, by a means ultimately related to the dynamics of relativistic jet propagation through a massive star. We present two-dimensional axisymmetric hydrodynamical simulations that start from a collapsar engine and evolve all the way through the late afterglow phase. The resultant outflow includes a jet core that is highly relativistic after breaking out of the star, but becomes baryon loaded after colliding with a massive outer shell, corresponding to mass from the stellar atmosphere of the progenitor star which became trapped in front of the jet core at breakout. The prompt emission produced before or during this collision would then have the signature of a high Lorentz factor jet, but the afterglow is produced by the amalgamated post-collision ejecta that has more inertia than the original highly relativistic jet core and thus has a delayed deceleration. This naturally explains the early light curve behavior discovered by Swift, including a steep decay and a long plateau, without invoking late-time energy injection from the central engine. The numerical simulation is performed continuously from engine to afterglow, covering a dynamic range of over 10 orders of magnitude in radius. Light curves calculated from the numerical output demonstrate that this mechanism reproduces basic features seen in early afterglow data. Initial steep decays are produced by internal shocks, and the plateau corresponds to the coasting phase of the outflow.

  4. Spectral properties of mesons in hot and dense matter from energy weighted sum rules

    SciTech Connect

    Cabrera, D.; Polls, A.; Ramos, A.; Tolos, L.

    2010-12-28

    Energy weighted sum rules for the spectral function of mesons are derived, both in cold nuclear matter and at finite temperature, by matching the Dyson propagator with its spectral Lehmann representation at low and high energies. We illustrate our results by calculating the sum rules for specific models of the kaon and pion self-energy in a nuclear medium. We find satisfactory results from the lower energy weight sum rules, which reflect the contributions from the different quasi-particle and collective modes of the meson spectral function, and show examples of the sensitivity of the sum rules to model approximations. Finally, we discuss applications in asymmetric nuclear matter and in the study of the spectral properties of vector mesons.

  5. Perspective on Afterglows: Numerically Computed Views, Light Curves, and the Analysis of Homogeneous and Structured Jets with Lateral Expansion

    NASA Astrophysics Data System (ADS)

    Salmonson, Jay D.

    2003-08-01

    Herein I present numerical calculations of light curves of homogeneous and structured afterglows with various lateral expansion rates as seen from any vantage point. Such calculations allow for direct simulation of observable quantities for complex afterglows with arbitrary energy distributions and lateral expansion paradigms. A simple, causal model is suggested for lateral expansion of the jet as it evolves: namely, that the lateral expansion kinetic energy derives from the forward kinetic energy. As such, the homogeneous jet model shows that lateral expansion is important at all times in the afterglow evolution and that analytical scaling laws do a poor job at describing the afterglow decay before and after the break. In particular, I find that lateral expansion does not cause a break in the light curve as had been predicted. A primary purpose of this paper is to study structured afterglows, which do a good job of reproducing global relationships and correlations in the data and thus suggest the possibility of a universal afterglow model. Simulations of structured jets show a general trend in which jet breaks become more pronounced with increasing viewing angle with respect to the jet axis. In fact, under certain conditions a bump can occur in the light curve at the jet-break time. I derive scaling relations for this bump and suggest that it may be a source of some bumps in observed light curves such as that of GRB 000301C. A couple of lateral expansion models are tested over a range of efficiencies and viewing angles, and it is found that lateral expansion can, in some cases, substantially sharpen the jet break. I show flux surface contour maps and simulated images of the afterglows that give insight into how they evolve and determine their light curves.

  6. Energies of GRB blast waves and prompt efficiencies as implied by modelling of X-ray and GeV afterglows

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Nava, Lara; Duran, Rodolfo Barniol; Piran, Tsvi

    2015-11-01

    We consider a sample of 10 gamma-ray bursts with long-lasting ( ≳ 102 s) emission detected by Fermi/Large Area Telescope and for which X-ray data around 1 d are also available. We assume that both the X-rays and the GeV emission are produced by electrons accelerated at the external forward shock, and show that the X-ray and the GeV fluxes lead to very different estimates of the initial kinetic energy of the blast wave. The energy estimated from GeV is on average ˜50 times larger than the one estimated from X-rays. We model the data (accounting also for optical detections around 1 d, if available) to unveil the reason for this discrepancy and find that good modelling within the forward shock model is always possible and leads to two possibilities: (i) either the X-ray emitting electrons (unlike the GeV emitting electrons) are in the slow-cooling regime or (ii) the X-ray synchrotron flux is strongly suppressed by Compton cooling, whereas, due to the Klein-Nishina suppression, this effect is much smaller at GeV energies. In both cases the X-ray flux is no longer a robust proxy for the blast wave kinetic energy. On average, both cases require weak magnetic fields (10-6 ≲ ɛB ≲ 10-3) and relatively large isotropic kinetic blast wave energies 10^{53} erg<{E}_{0,kin}<10^{55} erg corresponding to large lower limits on the collimated energies, in the range 10^{52} erg<{E}_{θ ,kin}<5× 10^{52} erg for an ISM (interstellar medium) environment with n ˜ 1 cm-3 and 10^{52} erg<{E}_{θ ,kin}<10^{53} erg for a wind environment with A* ˜ 1. These energies are larger than those estimated from the X-ray flux alone, and imply smaller inferred values of the prompt efficiency mechanism, reducing the efficiency requirements on the still uncertain mechanism responsible for prompt emission.

  7. Cosmic ray spectral deformation caused by energy determination errors

    NASA Astrophysics Data System (ADS)

    Carlson, Per; Wannemark, Conny

    2005-08-01

    Using simulation methods, distortion effects on energy spectra caused by errors in the energy determination have been investigated. For cosmic ray proton spectra falling steeply with kinetic energy E as E-2.7, significant effects appear. When magnetic spectrometers are used to determine the energy, the relative error increases linearly with the energy and distortions with a sinusoidal form appear starting at an energy that depends significantly on the error distribution but at an energy lower than that corresponding to the maximum detectable rigidity of the spectrometer. The effect should be taken into consideration when comparing data from different experiments, often having different error distributions.

  8. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, J. L.; Oates, S. R.; Schady, P.; Burrows, D. N.; de Pasquale, M.; Donato, D.; Gehrels, N.; Koch, S.; McEnery, J.; Piran, T.; Roming, P.; Sakamoto, T.; Swenson, C.; Virgili, F.; Wanderman, D.; Zhang, B.

    2011-01-01

    The new and extreme population of GRBs detected by Fermi-LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT GRBs and the well studied, fainter, less energetic GRBs detected by Swift-BAT is only beginning to be explored by multiwavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi-GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  9. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, Judith I.

    2011-01-01

    The new and extreme population of GRBs detected by Fermi-LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT GRBs and the well studied, fainter, less energetic GRBs detected by Swift-BAT is only beginning to be explored by multi-wavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi-GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  10. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, Judith L.; Oates, S. R.; Schady, P.; Burrows, D. N.; dePasquale, M.; Donato, D.; Gehrels, N.; Koch, S.; McEnery, J.; Piran, T.; Roming, P.; Sakamoto, T.; Swenson, C.; Troja, E.; Vasileiou, V.; Virgili, F.; Wanderman, D.; Zhang, B.

    2011-01-01

    The new and extreme population of GRBs detected by Fermi -LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust dataset of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT detected GRBs and the well studied, fainter, less energetic GRBs detected by Swift -BAT is only beginning to be explored by multi-wavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi -GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  11. The hidden X-ray breaks in afterglow light curves

    SciTech Connect

    Curran, P. A.; Wijers, R. A. M. J.; Horst, A. J. van der; Starling, R. L. C.

    2008-05-22

    Gamma-Ray Burst (GRB) afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX, or pre-Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light curves of these bursts. If these breaks are truly missing, it has serious consequences for the interpretation of GRB jet collimation and energy requirements, and the use of GRBs as standard candles.Here we address the issue of X-ray breaks which are possibly 'hidden' and hence the light curves are misinterpreted as being single power-laws. We show how a number of precedents, including GRB 990510 and GRB 060206, exist for such hidden breaks and how, even with the well sampled light curves of the Swift era, these breaks may be left misidentified. We do so by synthesising X-ray light curves and finding general trends via Monte Carlo analysis. Furthermore, in light of these simulations, we discuss how to best identify achromatic breaks in afterglow light curves via multi-wavelength analysis.

  12. SPIN EVOLUTION OF MILLISECOND MAGNETARS WITH HYPERACCRETING FALLBACK DISKS: IMPLICATIONS FOR EARLY AFTERGLOWS OF GAMMA-RAY BURSTS

    SciTech Connect

    Dai, Z. G.; Liu Ruoyu E-mail: ryliu@nju.edu.cn

    2012-11-01

    The shallow decay phase or plateau phase of early afterglows of gamma-ray bursts (GRBs), discovered by Swift, is currently understood as being due to energy injection to a relativistic blast wave. One natural scenario for energy injection invokes a millisecond magnetar as the central engine of GRBs because the conventional model of a pulsar predicts a nearly constant magnetic-dipole-radiation luminosity within the spin-down timescale. However, we note that significant brightening occurs in some early afterglows, which apparently conflicts with the above scenario. Here we propose a new model to explain this significant brightening phenomena by considering a hyperaccreting fallback disk around a newborn millisecond magnetar. We show that for typical values of the model parameters, sufficient angular momentum of the accreted matter is transferred to the magnetar and spins it up. It is this spin-up that leads to a dramatic increase of the magnetic-dipole-radiation luminosity with time and thus significant brightening of an early afterglow. Based on this model, we carry out numerical calculations and fit well early afterglows of 12 GRBs assuming sufficiently strong fallback accretion. If the accretion is very weak, our model turns out to be the conventional energy-injection scenario of a pulsar. Therefore, our model can provide a unified explanation for the shallow decay phase, plateaus, and significant brightening of early afterglows.

  13. 40 CFR Table E-2 to Subpart E of... - Spectral Energy Distribution and Permitted Tolerance for Conducting Radiative Tests

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Spectral Energy Distribution and..., Table E-2 Table E-2 to Subpart E of Part 53—Spectral Energy Distribution and Permitted Tolerance for Conducting Radiative Tests Characteristic Spectral Region Ultraviolet Visible Infrared Bandwidth (µm) 0.28...

  14. 40 CFR Table E-2 to Subpart E of... - Spectral Energy Distribution and Permitted Tolerance for Conducting Radiative Tests

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Spectral Energy Distribution and..., Table E-2 Table E-2 to Subpart E of Part 53—Spectral Energy Distribution and Permitted Tolerance for Conducting Radiative Tests Characteristic Spectral Region Ultraviolet Visible Infrared Bandwidth (µm) 0.28...

  15. 40 CFR Table E-2 to Subpart E of... - Spectral Energy Distribution and Permitted Tolerance for Conducting Radiative Tests

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Spectral Energy Distribution and... E-2 Table E-2 to Subpart E of Part 53—Spectral Energy Distribution and Permitted Tolerance for Conducting Radiative Tests Characteristic Spectral Region Ultraviolet Visible Infrared Bandwidth (µm) 0.28...

  16. Energy-discriminative performance of a spectral micro-CT system.

    PubMed

    He, Peng; Yu, Hengyong; Bennett, James; Ronaldson, Paul; Zainon, Rafidah; Butler, Anthony; Butler, Phil; Wei, Biao; Wang, Ge

    2013-01-01

    Experiments were performed to evaluate the energy-discriminative performance of a spectral (multi-energy) micro-CT system. The system, designed by MARS (Medipix All Resolution System) Bio-Imaging Ltd. (Christchurch, New Zealand), employs a photon-counting energy-discriminative detector technology developed by CERN (European Organization for Nuclear Research). We used the K-edge attenuation characteristics of some known materials to calibrate the detector's photon energy discrimination. For tomographic analysis, we used the compressed sensing (CS) based ordered-subset simultaneous algebraic reconstruction techniques (OS-SART) to reconstruct sample images, which is effective to reduce noise and suppress artifacts. Unlike conventional CT, the principal component analysis (PCA) method can be applied to extract and quantify additional attenuation information from a spectral CT dataset. Our results show that the spectral CT has a good energy-discriminative performance and provides more attenuation information than the conventional CT. PMID:24004864

  17. Simulation and physical model based gamma-ray burst afterglow analysis

    NASA Astrophysics Data System (ADS)

    van Eerten, H. J.

    2015-09-01

    Advances in our numerical and theoretical understanding of gamma-ray burst afterglow processes allow us to construct models capable of dealing with complex relativistic jet dynamics and non-thermal emission, that can be compared directly to data from instruments such as Swift. Because afterglow blast waves and power law spectra are intrinsically scale-invariant under changes of explosion energy and medium density, templates can be generated from large-scale hydrodynamics simulations. This allows for iterative template-based model fitting using the physical model parameters (quantifying the properties of the burster, emission and observer) directly as fit variables. Here I review how such an approach to afterglow analysis works in practice, paying special attention to the underlying model assumptions, possibilities, caveats and limitations of this type of analysis. Because some model parameters can be degenerate in certain regions of parameter space, or unconstrained if data in a limited number of a bands is available, a Bayesian approach is a natural fit. The main features of the standard afterglow model are reviewed in detail.

  18. BRIGHT BROADBAND AFTERGLOWS OF GRAVITATIONAL WAVE BURSTS FROM MERGERS OF BINARY NEUTRON STARS

    SciTech Connect

    Gao He; Ding Xuan; Wu Xuefeng; Zhang Bing; Dai Zigao E-mail: zhang@physics.unlv.edu

    2013-07-10

    If double neutron star mergers leave behind a massive magnetar rather than a black hole, then a bright early afterglow can follow the gravitational wave burst (GWB) even if there is no short gamma-ray burst (SGRB)-GWB association or if there is an association but the SGRB does not beam toward Earth. Besides directly dissipating the proto-magnetar wind, as suggested by Zhang, here we suggest that the magnetar wind could push the ejecta launched during the merger process and, under certain conditions, would reach a relativistic speed. Such a magnetar-powered ejecta, when interacting with the ambient medium, would develop a bright broadband afterglow due to synchrotron radiation. We study this physical scenario in detail and present the predicted X-ray, optical, and radio light curves for a range of magnetar and ejecta parameters. We show that the X-ray and optical light curves usually peak around the magnetar spin-down timescale ({approx}10{sup 3}-10{sup 5} s), reaching brightnesses readily detectable by wide-field X-ray and optical telescopes, and remain detectable for an extended period. The radio afterglow peaks later, but is much brighter than the case without a magnetar energy injection. Therefore, such bright broadband afterglows, if detected and combined with GWBs in the future, would be a probe of massive millisecond magnetars and stiff equations of state for nuclear matter.

  19. The Swift XRT: Observations of Early X-ray Afterglows

    SciTech Connect

    Burrows, David N.; Kennea, J. A.; Nousek, J. A.; Osborne, J. P.; O'Brien, P. T.; Chincarini, G.; Tagliaferri, G.; Giommi, P.; Zhang, B.

    2006-05-19

    During the first year of operations of the Swift observatory, the X-ray Telescope has made a number of discoveries concerning the nature of X-ray afterglows of both long and short GRBs. We highlight the key findings, which include rapid declines at early times, a standard template of afterglow light curve shapes, common flaring, and the discovery of the first short GRB afterglow.

  20. LUMINOSITY CORRELATIONS FOR GAMMA-RAY BURSTS AND IMPLICATIONS FOR THEIR PROMPT AND AFTERGLOW EMISSION MECHANISMS

    SciTech Connect

    Sultana, J.; Kazanas, D.; Fukumura, K.

    2012-10-10

    We present the relation between the (z- and k-corrected) spectral lags, {tau}, for the standard Swift energy bands 50-100 keV and 100-200 keV and the peak isotropic luminosity, L{sub iso} (a relation reported first by Norris et al.), for a subset of 12 long Swift gamma-ray bursts (GRBs) taken from a recent study of this relation by Ukwatta et al. The chosen GRBs are also a subset of the Dainotti et al. sample, a set of Swift GRBs of known redshift, employed in establishing a relation between the (GRB frame) luminosity, L{sub X} , of the shallow (or constant) flux portion of the typical X-Ray Telescope GRB-afterglow light curve and the (GRB frame) time of transition to the normal decay rate, T{sub brk}. We also present the L{sub X} -T{sub brk} relation using only the bursts common in the two samples. The two relations exhibit a significant degree of correlation ({rho} = -0.65 for the L{sub iso}-{tau} and {rho} = -0.88 for the L{sub X} -T{sub brk} relation) and have surprisingly similar best-fit power-law indices (-1.19 {+-} 0.17 for L{sub iso}-{tau} and -1.10 {+-} 0.03 for L{sub X} -T{sub brk}). Even more surprisingly, we noted that although {tau} and T{sub brk} represent different GRB time variables, it appears that the first relation (L{sub iso}-{tau}) extrapolates into the second one for timescales {tau} {approx_equal} T{sub brk}. This fact suggests that these two relations have a common origin, which we conjecture to be kinematic. This relation adds to the recently discovered relations between properties of the prompt and afterglow GRB phases, indicating a much more intimate relation between these two phases than hitherto considered.

  1. The X-ray afterglows of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Watson, D.

    2014-07-01

    Gamma-ray bursts are renowned for being the brightest explosions since the Big Bang. They are extremely useful probes with which to study the cosmos, primarily because of their bright afterglows. While the afterglow is panchromatic, the X-ray afterglow has proved extremely useful: the first localisations of both short and long-duration GRBs were made via their X-ray afterglows, an X-ray afterglow is associated with almost every burst, and spectroscopy of the X-ray afterglow informs us of the material close to the GRB as well as providing an unobscured measurement of the afterglow flux for virtually every GRB. We now have an incredibly rich database of ten years worth of GRBs and their afterglows from the Swift satellite, where its rapid autonomous repointing has allowed its X-Ray Telescope to be on target only minutes after the GRB. Here I will review what we have learnt from the X-ray afterglows of GRBs and describe some exciting recent results.

  2. Pink splash of active nitrogen in the discharge afterglow

    SciTech Connect

    Akishev, Yu. S.; Grushin, M. E.; Karal'nik, V. B.; Petryakov, A. V.; Trushkin, N. I.

    2007-09-15

    Results are presented from experimental studies of the glow dynamics of active nitrogen in the stage of its excitation by a current pulse and during the discharge afterglow. The mechanism is proposed for the generation of a light splash in a highly activated nitrogen after the end of its pulsed excitation. The key role in the generation of this splash is played by the D-V processes, by which the dissociation energy is transferred to the vibrational degrees of freedom in the course of recombination of nitrogen atoms, and the V-E processes, by which the vibrational energy of highly excited molecules N{sub 2}(X, v {>=} 25-27) is transferred to the emitting electronic states N{sub 2}(B, v) after the V-V delay. Results of simulations based on the mechanism proposed are also presented.

  3. Gamma ray burst outflows and afterglows

    NASA Astrophysics Data System (ADS)

    Morsony, Brian J.

    2008-08-01

    We carry out a theoretical investigation of jet propagation in Gamma Ray Bursts and examine the jitter radiation mechanism as a means of producing prompt and afterglow emission. We study the long-term evolution of relativistic jets in collapsars and examine the effects of viewing angle on the subsequent gamma ray bursts. Our simulations allow us to single out three phases in the jet evolution: a precursor phase in which relativistic material turbulently shed from the head of the jet first emerges from the star; a shocked jet phase where a fully shocked jet of material is emerging; and an unshocked jet phase where the jet consists of a free-streaming, unshocked core surrounded by a thin boundary layer of shocked jet material. We also carry out a series of simulations with central engines that vary on long time periods comparable to the breakout time of the jet, on short time periods (0.1s) much less than the breakout time, and finally that decay as a power law at late times. We conclude that rapid variability seen in prompt GRB emission, as well as shallow decays and flares seen in the X-ray afterglow, can be caused by central engine variability. Finally, we present a detailed computation of the jitter radiation spectrum, including self-absorption, for electrons inside Weibel-like shock- generated magnetic fields. We apply our results to the case of the prompt and afterglow emission of gamma-ray bursts. We conclude that jitter and synchrotron afterglows can be distinguished from each other with good quality observations. However, it is unlikely that the difference can explain the peculiar behavior of several recent observations, such as flat X-ray slopes and uncorrelated optical and X-ray behavior.

  4. Spectrally Enhanced Lighting Program Implementation for Energy Savings: Field Evaluation

    SciTech Connect

    Gordon, Kelly L.; Sullivan, Gregory P.; Armstrong, Peter R.; Richman, Eric E.; Matzke, Brett D.

    2006-08-22

    This report provides results from an evaluation PNNL conducted of a spectrally enhanced lighting demonstration project. PNNL performed field measurements and occupant surveys at three office buildings in California before and after lighting retrofits were made in August and December 2005. PNNL measured the following Overhead lighting electricity demand and consumption, Light levels in the workspace, Task lighting use, and Occupant ratings of satisfaction with the lighting. Existing lighting, which varied in each building, was replaced with lamps with correlated color temperature (CCT) of 5000 Kelvin, color rendering index (CRI) of 85, of varying wattages, and lower ballast factor electronic ballasts. The demonstrations were designed to decrease lighting power loads in the three buildings by 22-50 percent, depending on the existing installed lamps and ballasts. The project designers hypothesized that this reduction in electrical loads could be achieved by the change to higher CCT lamps without decreasing occupant satisfaction with the lighting.

  5. Guided-wave approaches to spectrally selective energy absorption

    NASA Technical Reports Server (NTRS)

    Stegeman, G. I.; Burke, J. J.

    1987-01-01

    Results of experiments designed to demonstrate spectrally selective absorption in dielectric waveguides on semiconductor substrates are reported. These experiments were conducted with three waveguides formed by sputtering films of PSK2 glass onto silicon-oxide layers grown on silicon substrates. The three waveguide samples were studied at 633 and 532 nm. The samples differed only in the thickness of the silicon-oxide layer, specifically 256 nm, 506 nm, and 740 nm. Agreement between theoretical predictions and measurements of propagation constants (mode angles) of the six or seven modes supported by these samples was excellent. However, the loss measurements were inconclusive because of high scattering losses in the structures fabricated (in excess of 10 dB/cm). Theoretical calculations indicated that the power distribution among all the modes supported by these structures will reach its steady state value after a propagation length of only 1 mm. Accordingly, the measured loss rates were found to be almost independent of which mode was initially excited. The excellent agreement between theory and experiment leads to the conclusion that low loss waveguides confirm the predicted loss rates.

  6. GAMMA-RAY BURST AFTERGLOW SCALING RELATIONS FOR THE FULL BLAST WAVE EVOLUTION

    SciTech Connect

    Van Eerten, Hendrik J.; MacFadyen, Andrew I.

    2012-03-10

    We demonstrate that gamma-ray burst afterglow spectra and light curves can be calculated for arbitrary explosion and radiation parameters by scaling the peak flux and the critical frequencies connecting different spectral regimes. Only one baseline calculation needs to be done for each jet opening angle and observer angle. These calculations are done numerically using high-resolution relativistic hydrodynamical afterglow blast wave simulations which include the two-dimensional dynamical features of expanding and decelerating afterglow blast waves. Any light curve can then be generated by applying scaling relations to the baseline calculations. As a result, it is now possible to fully fit for the shape of the jet break, e.g., at early-time X-ray and optical frequencies. In addition, late-time radio calorimetry can be improved since the general shape of the transition into the Sedov-Taylor regime is now known for arbitrary explosion parameters so the exact moment when the Sedov-Taylor asymptote is reached in the light curve is no longer relevant. When calculating the baselines, we find that the synchrotron critical frequency {nu}{sub m} and the cooling break frequency {nu}{sub c} are strongly affected by the jet break. The {nu}{sub m} temporal slope quickly drops to the steep late-time Sedov-Taylor slope, while the cooling break {nu}{sub c} first steepens and then rises to meet the level of its shallow late-time asymptote.

  7. CORRELATED OPTICAL AND X-RAY FLARES IN THE AFTERGLOW OF XRF 071031

    SciTech Connect

    Kruehler, T.; Greiner, J.; McBreen, S.; Afonso, P.; Clemens, C.; Filgas, R.; Yoldas, A.; Klose, S.; Rossi, A.; Yoldas, A. Kuepcue; Szokoly, G. P.

    2009-05-20

    We present a densely sampled early light curve of the optical/near-infrared (NIR) afterglow of the X-Ray Flash (XRF) 071031 at z = 2.692. Simultaneous and continuous observations in seven photometric bands from g' to K{sub S} with GROND (Gamma-Ray Burst Optical/Near-InfraRed Detector) at the 2.2-m MPI/ESO telescope on LaSilla were performed between 4 minutes and 7 hr after the burst. The light curve consists of 547 individual points which allows us to study the early evolution of the optical transient associated with XRF 071031 in great detail. The optical/NIR light curve is dominated by an early increase in brightness which can be attributed to the apparent onset of the forward shock emission. There are several bumps which are superimposed onto the overall rise and decay. Significant flaring is also visible in the Swift X-Ray Telescope (XRT) light curve from early to late times. The availability of high-quality, broadband data enables detailed studies of the connection between the X-ray and optical/NIR afterglow and its color evolution during the first night postburst. We find evidence of spectral hardening in the optical bands contemporaneous with the emergence of the bumps from an underlying afterglow component. The bumps in the optical/NIR light curve can be associated with flares in the X-ray regime suggesting late central engine activity as the common origin.

  8. Energy Criterion for the Spectral Stability of Discrete Breathers.

    PubMed

    Kevrekidis, Panayotis G; Cuevas-Maraver, Jesús; Pelinovsky, Dmitry E

    2016-08-26

    Discrete breathers are ubiquitous structures in nonlinear anharmonic models ranging from the prototypical example of the Fermi-Pasta-Ulam model to Klein-Gordon nonlinear lattices, among many others. We propose a general criterion for the emergence of instabilities of discrete breathers analogous to the well-established Vakhitov-Kolokolov criterion for solitary waves. The criterion involves the change of monotonicity of the discrete breather's energy as a function of the breather frequency. Our analysis suggests and numerical results corroborate that breathers with increasing (decreasing) energy-frequency dependence are generically unstable in soft (hard) nonlinear potentials.

  9. Energy Criterion for the Spectral Stability of Discrete Breathers

    NASA Astrophysics Data System (ADS)

    Kevrekidis, Panayotis G.; Cuevas-Maraver, Jesús; Pelinovsky, Dmitry E.

    2016-08-01

    Discrete breathers are ubiquitous structures in nonlinear anharmonic models ranging from the prototypical example of the Fermi-Pasta-Ulam model to Klein-Gordon nonlinear lattices, among many others. We propose a general criterion for the emergence of instabilities of discrete breathers analogous to the well-established Vakhitov-Kolokolov criterion for solitary waves. The criterion involves the change of monotonicity of the discrete breather's energy as a function of the breather frequency. Our analysis suggests and numerical results corroborate that breathers with increasing (decreasing) energy-frequency dependence are generically unstable in soft (hard) nonlinear potentials.

  10. Energy Criterion for the Spectral Stability of Discrete Breathers.

    PubMed

    Kevrekidis, Panayotis G; Cuevas-Maraver, Jesús; Pelinovsky, Dmitry E

    2016-08-26

    Discrete breathers are ubiquitous structures in nonlinear anharmonic models ranging from the prototypical example of the Fermi-Pasta-Ulam model to Klein-Gordon nonlinear lattices, among many others. We propose a general criterion for the emergence of instabilities of discrete breathers analogous to the well-established Vakhitov-Kolokolov criterion for solitary waves. The criterion involves the change of monotonicity of the discrete breather's energy as a function of the breather frequency. Our analysis suggests and numerical results corroborate that breathers with increasing (decreasing) energy-frequency dependence are generically unstable in soft (hard) nonlinear potentials. PMID:27610856

  11. Evolution of dust content in galaxies probed by gamma-ray burst afterglows

    NASA Astrophysics Data System (ADS)

    Kuo, Tzu-Ming; Hirashita, Hiroyuki; Zafar, Tayyaba

    2013-12-01

    Because of their brightness, gamma-ray burst (GRB) afterglows are viable targets for investigating the dust content in their host galaxies. Simple intrinsic spectral shapes of GRB afterglows allow us to derive the dust extinction. Recently, the extinction data of GRB afterglows are compiled up to redshift z = 6.3, in combination with hydrogen column densities and metallicities. This data set enables us to investigate the relation between dust-to-gas ratio and metallicity out to high redshift for a wide metallicity range. By applying our evolution models of dust content in galaxies, we find that the dust-to-gas ratios derived from GRB afterglow extinction data are excessively high such that they can be explained with a fraction of gas-phase metals condensed into dust (fin) ˜ 1, while theoretical calculations on dust formation in the wind of asymptotic giant branch stars and in the ejecta of Type II supernovae suggest a much more moderate condensation efficiency (fin ˜ 0.1). Efficient dust growth in dense clouds has difficulty in explaining the excessive dust-to-gas ratio at metallicities Z/Z⊙ < ɛ, where ɛ is the star formation efficiency of the dense clouds. However, if ɛ is as small as 0.01, the dust-to-gas ratio at Z ˜ 10-2 Z⊙ can be explained with nH ≳ 106 cm-3. Therefore, a dense environment hosting dust growth is required to explain the large fraction of metals condensed into dust, but such clouds should have low star formation efficiencies to avoid rapid metal enrichment by stars.

  12. Afterglows from the largest explosions in the universe

    PubMed Central

    Hartmann, Dieter H.

    1999-01-01

    The distinction of “largest explosions in the universe” has been bestowed on cosmic gamma-ray bursts. Their afterglows are brighter than supernovae and therefore are called hypernovae. Photometry and spectroscopy of these afterglows have provided major breakthroughs in our understanding of this mysterious phenomenon. PMID:10220364

  13. Nonthermal X-ray Spectral Flattening toward Low Energies in Early Impulsive Flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2007-01-01

    The determination of the low-energy cutoff to nonthermal electron distributions is critical to the calculation of the nonthermal energy in solar flares. The most direct evidence for low-energy cutoffs is flattening of the power-law, nontherma1 X-ray spectra at low energies. However, because of the plasma preheating often seen in flares, the thermal emissions at low energies may hide such spectral flattening of the nonthermal component. We select a category of flares, which we call "early impulsive flares", in which the > 25 keV hard X-ray (HXR) flux increase is delayed by less than 30 s after the flux increase at lower energies. Thus, the plasma preheating in these flares is minimal, so the nonthermal spectrum can be determined to lower energies than in flares with significant preheating. Out of a sample of 33 early impulsive flares observed by the Ramaty High Energy Solar Spectroscopy Imager (RHESSI), 9 showed spectral flattening toward low energies. In these events, the break energy of the double power-law fit to the HXR spectra lies in the range of 10-50 keV, significantly lower than the value we have seen for other flares that do not show such early impulsive emissions. In particular, it correlates with the HXR flux. After correcting the spatially-integrated spectra for albedo from isotropically emitted X-rays and using RHESSI imaging spectroscopy to exclude the extended albedo halo, we find that albedo associated with isotropic or nearly isotropic electrons can only account for the spectral flattening in 3 flares near Sun center. The spectral flattening in the remaining 6 flares is found to be consistent with the existence of a low-energy cutoff in the electron spectrum, falling in the range of 15-50 keV, which also correlates with the HXR flux.

  14. Evidence for a Canonical GRB Afterglow Light Curve in the Swift/XRT Data

    NASA Technical Reports Server (NTRS)

    Nousek, J. A.; Kouveliotou, C.; Grupe, D.; Page, K.; Granot, J.; Ramirez-Ruiz, E.; Patel, S. K.; Burrows, D. N.; Mangano, V.; Barthelmy, S.

    2005-01-01

    We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) detected with the Swift X-ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power law segments. These power law segments are separated by two corresponding break times. On top of this canonical behavior of the early X-ray light curve, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long lasting sporadx activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission: from photons that are radiated at large angles relative to our line of sight. The first break in the light curve takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve. This energy injection increases the energy of the afterglow shock by at least a factor of f greater than or approx. equal to 4, and augments the already severe requirements for the efficiency of the prompt gamma-ray emission.

  15. Residual dust charges in discharge afterglow

    SciTech Connect

    Coueedel, L.; Mikikian, M.; Boufendi, L.; Samarian, A. A.

    2006-08-15

    An on-ground measurement of dust-particle residual charges in the afterglow of a dusty plasma was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force. It was found that positively charged, negatively charged, and neutral dust particles coexisted for more than 1 min after the discharge was switched off. The mean residual charge for 200-nm-radius particles was measured. The dust particle mean charge is about -5e at a pressure of 1.2 mbar and about -3e at a pressure of 0.4 mbar.

  16. UNFOLD using a temporal subtraction and spectral energy comparison technique.

    PubMed

    Wu, Yijing; Jeong, Eun-Kee; Parker, Dennis L; Alexander, Andrew L

    2002-09-01

    In dynamic MRI, several methods have been demonstrated to increase acquisition speed by decreasing the number of sequential phase encodings. The UNFOLD technique interleaves the measurements of k-space, reconstructs aliased images from each k-space interleaf, and applies a temporal low-pass filter to obtain the nonaliased images. However, low-pass filter resolution of the nonaliased images fails if there is overlap between the spatially aliased temporal spectra. In this study a subtraction method was used to remove the static portion of the image. The aliased and nonaliased dynamic portions are then resolved by comparing the temporal energy of bands in the power spectrum. This method was combined with the 3D 2 x 2 UNFOLD (a factor of 2 interleaves in two directions) technique. The combination resulted in a factor of 4 improvement in acquisition speed. Application of this method to a time-resolved, contrast-enhanced flow phantom study is presented.

  17. Spectrally selective, matched emitters for thermophotovoltaic energy conversion fabricated by tape casting process

    NASA Astrophysics Data System (ADS)

    Ferguson, Lucian Garret

    The thermophotovoltaic (TPV) generator converts radiant energy from a high temperature emitter element into electric power using infrared responding photovoltaic cells. Spectral control is a primary issue in TPV applications. Conventional TPV generators have relied on filters to achieve selectivity and spectral control with near-blackbody ceramic emitters. Several practical problems have limited the success of this approach, particularly the present lack of a satisfactory wide-band infrared filter. A new, spectrally selective emitter is described in this work, and will be called the "bandgap matched emitter" because its emissive power spectrum is very efficiently matched with the infrared response of the GaSb photovoltaic cell. The superior spectral efficiency has been achieved with a novel combination of spectrally active, transition-metal dopants within an infrared-transparent magnesium oxide ceramic matrix. High mechanical integrity, thermal shock resistance, excellent heat transfer characteristics, and near-ideal spectral efficiency have all been achieved for the first time by fabricating composite emitters from thin sheets of flexible ceramic ribbons made by the tape casting process.

  18. Localness of energy cascade in hydrodynamic turbulence, II. Sharp spectral filter

    SciTech Connect

    Aluie, Hussein; Eyink, Gregory L

    2009-01-01

    We investigate the scale-locality of subgrid-scale (SGS) energy flux and interband energy transfers defined by the sharp spectral filter. We show by rigorous bounds, physical arguments, and numerical simulations that the spectral SGS flux is dominated by local triadic interactions in an extended turbulent inertial range. Interband energy transfers are also shown to be dominated by local triads if the spectral bands have constant width on a logarithmic scale. We disprove in particular an alternative picture of 'local transfer by nonlocal triads,' with the advecting wavenumber mode at the energy peak. Although such triads have the largest transfer rates of all individual wavenumber triads, we show rigorously that, due to their restricted number, they make an asymptotically negligible contribution to energy flux and log-banded energy transfers at high wavenumbers in the inertial range. We show that it is only the aggregate effect of a geometrically increasing number of local wavenumber triads which can sustain an energy cascade to small scales. Furthermore, nonlocal triads are argued to contribute even less to the space-average energy flux than is implied by our rigorous bounds, because of additional cancellations from scale-decorrelation effects. We can thus recover the -4/3 scaling of nonlocal contributions to spectral energy flux predicted by Kraichnan's abridged Lagrangian-history direct-interaction approximation and test-field model closures. We support our results with numerical data from a 512{sup 3} pseudospectral simulation of isotropic turbulence with phase-shift dealiasing. We also discuss a rigorous counterexample of Eyink [Physica D 78, 222 (1994)], which showed that nonlocal wavenumber triads may dominate in the sharp spectral flux (but not in the SGS energy flux for graded filters). We show that this mathematical counter example fails to satisfy reasonable physical requirements for a turbulent velocity field, which are employed in our proof of scale

  19. Afterglow Population Studies from Swift Follow-Up Observations of Fermi LAT GRBs

    NASA Technical Reports Server (NTRS)

    Racusin, Judith L.; Oates, S. R.; McEnery, J.; Vasileiou, V.; Troja, E.; Gehrels, N.

    2010-01-01

    The small population of Fermi LAT detected GRBs discovered over the last year has been providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 5 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into other components of GRB emission structure. We explore the new ability to utilize both of these observatories to study the same GRBs over 10 orders of magnitude in energy, although not always concurrently. Almost all LAT GRBs that have been followed-up by Swift within 1-day have been clearly detected and carefully observed. We will present the context of the lower-energy afterglows of this special subset of GRBs that has > 100 MeV emission compared to the hundreds in the Swift database that may or may not have been observed by LAT, and theorize upon the relationship between these properties and the origin of the high energy gamma-ray emission.

  20. ENERGY LEVELS AND SPECTRAL LINES OF SINGLY IONIZED MANGANESE (Mn II)

    SciTech Connect

    Kramida, Alexander; Sansonetti, Jean E.

    2013-04-01

    This compilation revises the previously recommended list of energy levels of singly ionized manganese (Mn II) and provides a comprehensive list of observed spectral lines and transition probabilities in this spectrum. The new level optimization takes into account critically assessed uncertainties of measured wavelengths and includes about a hundred high-precision wavelengths determined by laser spectroscopy and Fourier transform techniques. Uncertainties of 63% of energy levels and 74% of Ritz wavelengths are reduced by a factor of three on average.

  1. Afterglow Radiation from Gamma Ray Bursts

    SciTech Connect

    Desmond, Hugh; /Leuven U. /SLAC

    2006-08-28

    Gamma-ray bursts (GRB) are huge fluxes of gamma rays that appear randomly in the sky about once a day. It is now commonly accepted that GRBs are caused by a stellar object shooting off a powerful plasma jet along its rotation axis. After the initial outburst of gamma rays, a lower intensity radiation remains, called the afterglow. Using the data from a hydrodynamical numerical simulation that models the dynamics of the jet, we calculated the expected light curve of the afterglow radiation that would be observed on earth. We calculated the light curve and spectrum and compared them to the light curves and spectra predicted by two analytical models of the expansion of the jet (which are based on the Blandford and McKee solution of a relativistic isotropic expansion; see Sari's model [1] and Granot's model [2]). We found that the light curve did not decay as fast as predicted by Sari; the predictions by Granot were largely corroborated. Some results, however, did not match Granot's predictions, and more research is needed to explain these discrepancies.

  2. Analysis of two scenarios for the early optical emission of the gamma-ray burst afterglows 990123 and 021211

    NASA Astrophysics Data System (ADS)

    Panaitescu, A.; Kumar, P.

    2004-09-01

    The optical light curves of gamma-ray burst (GRB) afterglows 990123 and 021211 exhibit a steep decay at 100-600 s after the burst, the decay becoming slower after about 10 min. We investigate two scenarios for the fast decaying early optical emission of these GRB afterglows. In the reverse-forward shock scenario, this emission arises in the reverse shock crossing the GRB ejecta, the mitigation of the light-curve decay occurring when the forward shock emission overtakes that from the reverse shock. Both a homogeneous and wind-like circumburst medium are considered. In the wind-bubble scenario, the steeply decaying, early optical emission arises from the forward shock interacting with a r-2 bubble, with a negligible contribution from the reverse shock, the slower decay starting when the blast wave reaches the bubble termination shock and enters a homogeneous region of the circumburst medium. We determine the shock microphysical parameters, ejecta kinetic energy and circumburst density, which accommodate the radio and optical measurements of the GRB afterglows 990123 and 021211. We find that, for a homogeneous medium, the radio and optical emissions of the afterglow 990123 can be accommodated by the reverse-forward shock scenario if the microphysical parameters behind the two shocks differ substantially. A wind-like circumburst medium also allows the reverse-forward shock scenario to account for the radio and optical properties of the afterglows 990123 and 021211, but the required wind densities are at least 10 times smaller than those of Galactic Wolf-Rayet stars. The wind-bubble scenario requires a variation of the microphysical parameters when the afterglow fireball reaches the wind termination shock, which seems a contrived feature.

  3. An Array of Frequency Selective Bolometers (FSB) for the Spectral Energy Distribution (SPEED) Camera

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Ali, S.; O'Dell, C.; Timbie, P. T.; Bier, A.; Campano, B.; Chen, T. C.; Cottingham, D. A.; Sharp, E.; Cheng, E. S.

    2003-01-01

    The SPEED camera is being developed to study the spectral energy distributions of high redshift galaxies using the Heinrich Hertz Telescope (HHT) in Arizona. SPEED requires a small cryogenic detector array of 2x2 pixels with each pixel having four frequency bands in the 150-350 GHz range. Here we describe the development of the detector array of these high efficiency FSBs. The FSB design provides the multi-pixel multi-spectral band capability required for SPEED in a compact stackable array. The SPEED bolometers will use proximity effect superconducting transition edge sensors as their temperature-sensing element allowing for higher levels of multiplexing in future applications.

  4. Determination of Cosmological Parameters from GRB Correlation between E_iso (gamma) and Afterglow Flux

    NASA Astrophysics Data System (ADS)

    Hannachi, Zitouni; Guessoum, Nidhal; Azzam, Walid

    2016-07-01

    Context: We use the correlation relations between the energy emitted by the GRBs in their prompt phases and the X-ray afterglow fluxes, in an effort to constrain cosmological parameters and construct a Hubble diagram at high redshifts, i.e. beyond those found in Type Ia supernovae. Methods: We use a sample of 128 Swift GRBs, which we have selected among more than 800 ones observed until July 2015. The selection is based on a few observational constraints: GRB flux higher than 0.4 photons/cm^2/s in the band 15-150 keV; spectrum fitted with simple power law; redshift accurately known and given; and X-ray afterglow observed and flux measured. The statistical method of maximum likelihood is then used to determine the best cosmological parameters (Ω_M, Ω_L) that give the best correlation between the isotropic gamma energies E_{iso} and the afterglow fluxes at the break time t_{b}. The χ^2 statistical test is also used as a way to compare results from two methods. Results & Conclusions: Although the number of GRBs with high redshifts is rather small, and despite the notable dispersion found in the data, the results we have obtained are quite encouraging and promising. The values of the cosmological parameters obtained here are close to those currently used.

  5. Shock-wave-induced enhancement of optical emission in nitrogen afterglow plasma

    SciTech Connect

    Siefert, N.; Ganguly, B.N.; Bletzinger, P.

    2005-12-15

    This paper reports measurements of optical emission enhancement at the shock front of Mach 1.5 to Mach 3.5 shockwaves propagating in the afterglow of a 0.75 Torr nitrogen glow discharge. Electrically-generated shocks pass through the afterglow and create noticeable enhancements of the B {sup 3}{pi}{sub g}-A {sup 3}{sigma}{sub u}{sup +} and C {sup 3}{pi}{sub u}-B {sup 3}{pi}{sub g} transitions of nitrogen. Under our discharge conditions, the electron Debye length was approximately the same magnitude as the shock thickness; this allows the possibility of a space-charge region extending beyond the neutral shockwave discontinuity. Previous researchers have measured enhancement in the B {sup 3}{pi}{sub g}-A {sup 3}{sigma}{sub u}{sup +} optical emission at the shock front, but only in the active discharge. Fibers connected to photomultipler tubes measure the optical emission from the discharge. Laser deflection measures the shock velocity. The data reveals that the emission enhancement increases with Mach number, and also indicates that the emission enhancement decreases exponentially with time in the afterglow. Since the discharge voltage has already been shut off, the energy needed to create the emission enhancement cannot come from the power supply. We conclude that under our discharge conditions there is an increase in the already non-equilibrium energy of the electrons at the shock front via a shockwave-induced strong double layer.

  6. Shock-wave-induced enhancement of optical emission in nitrogen afterglow plasma.

    PubMed

    Siefert, N; Ganguly, B N; Bletzinger, P

    2005-12-01

    This paper reports measurements of optical emission enhancement at the shock front of Mach 1.5 to Mach 3.5 shockwaves propagating in the afterglow of a 0.75 Torr nitrogen glow discharge. Electrically-generated shocks pass through the afterglow and create noticeable enhancements of the B 3Pig-A 3Sigma+u and C 3Piu-B 3Pig transitions of nitrogen. Under our discharge conditions, the electron Debye length was approximately the same magnitude as the shock thickness; this allows the possibility of a space-charge region extending beyond the neutral shockwave discontinuity. Previous researchers have measured enhancement in the B 3Pig-A 3Sigma+u optical emission at the shock front, but only in the active discharge. Fibers connected to photomultipler tubes measure the optical emission from the discharge. Laser deflection measures the shock velocity. The data reveals that the emission enhancement increases with Mach number, and also indicates that the emission enhancement decreases exponentially with time in the afterglow. Since the discharge voltage has already been shut off, the energy needed to create the emission enhancement cannot come from the power supply. We conclude that under our discharge conditions there is an increase in the already non-equilibrium energy of the electrons at the shock front via a shockwave-induced strong double layer.

  7. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; DePasquale, Massimiliano; Mao, Jirong; Sakamoto, Taka; Shady, Patricia; Covino, Stefano; Yi-Zhong, Fan; Zhi-Ping, Jin; D'Avanzo, Paolo; Antonelli, Angelo; D'Elia, Valerio; Chincarini, Guido; Fiore, Fabrizio; Pandey, Shashi Bhushan

    2011-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet Optical Telescope with ground-based optical and infrared data obtained using the REM and ROTSE telescopes to construct a detailed data set extending from 86 s to approx. 100000 s after the BAT trigger. Our data cover a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 5000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.

  8. GRB 081029: A GAMMA-RAY BURST WITH A MULTI-COMPONENT AFTERGLOW

    SciTech Connect

    Holland, Stephen T.; Sakamoto, Takanori; De Pasquale, Massimiliano; Schady, Patricia; Mao, Jirong; Covino, Stefano; Jin, Zhi-Ping; D'Avanzo, Paolo; Chincarini, Guido; Fan, Yi-Zhong; Antonelli, Angelo; D'Elia, Valerio; Fiore, Fabrizio; Pandey, Shashi Bhushan; Cobb, Bethany E.

    2012-01-20

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3 m telescopes to construct a detailed data set extending from 86 s to {approx}100000 s after the BAT trigger. Our data cover a wide energy range from 10 keV to 0.77 eV (1.24 A-16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray-burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray-burst jets are complex and will require detailed modeling to fully understand them.

  9. Low-Energy Study of Gamma-Ray Bursts Having Spectral Line Features

    NASA Technical Reports Server (NTRS)

    Pangia, Michael J.

    2003-01-01

    Gamma-ray bursts (GRBs) are energetic, short-duration emissions of gamma-rays. The Burst and Transient Source Experiment (BATSE) that was onboard NASA s Compton Gamma-Ray Observatory has done much to advance our understanding of GRBs. Perhaps foremost is to establish that GRBs originate from astronomical sources that exist well beyond our galaxy. Another area in which BATSE has been instrumental is to provide high-resolution data that can be used in spectral studies. Before BATSE, there were many reports of GRB spectra containing what appeared to be spectral absorption lines, whereas Briggs, after an extensive computer search of 117 bright BATSE GRBs, reported finding only one case that might be an absorption line and ten cases that might be emission lines. None of the eleven BATSE cases were definitively identified as spectral lines, and Briggs indicated reasons as to why the pre-BATSE reports should not be taken as conclusive. It remains an open question as to what these spectral-like features are, or if they are even real. The purpose of this work is, for the subset of the eleven BATSE GRBs for which low-energy data are available from two BATSE's Spectroscopy Detectors (SDs), to include these data in the spectral analysis. Such a study will provide additional constraints on the model spectral functions to better ascertain the reality of the line features. The spectral analysis program used was RMFIT. Of the six GRBs that met the selection criteria, the analysis was performed on only three of them due to a lack of time.

  10. Advection and the Efficiency of Spectral Energy Transfer in Two-Dimensional Turbulence.

    PubMed

    Fang, Lei; Ouellette, Nicholas T

    2016-09-01

    We report measurements of the geometric alignment of the small-scale turbulent stress and the large-scale rate of strain that together lead to the net flux of energy from small scales to large scales in two-dimensional turbulence. We find that the instantaneous alignment between these two tensors is weak and, thus, that the spectral transport of energy is inefficient. We show, however, that the strain rate is much better aligned with the stress at times in the past, suggesting that the differential advection of the two is responsible for the inefficient spectral transfer. We provide evidence for this conjecture by measuring the alignment statistics conditioned on weakly changing stress history. Our results give new insight into the relationship between scale-to-scale energy transfer, geometric alignment, and advection in turbulent flows.

  11. Advection and the Efficiency of Spectral Energy Transfer in Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Fang, Lei; Ouellette, Nicholas T.

    2016-09-01

    We report measurements of the geometric alignment of the small-scale turbulent stress and the large-scale rate of strain that together lead to the net flux of energy from small scales to large scales in two-dimensional turbulence. We find that the instantaneous alignment between these two tensors is weak and, thus, that the spectral transport of energy is inefficient. We show, however, that the strain rate is much better aligned with the stress at times in the past, suggesting that the differential advection of the two is responsible for the inefficient spectral transfer. We provide evidence for this conjecture by measuring the alignment statistics conditioned on weakly changing stress history. Our results give new insight into the relationship between scale-to-scale energy transfer, geometric alignment, and advection in turbulent flows.

  12. Advection and the Efficiency of Spectral Energy Transfer in Two-Dimensional Turbulence.

    PubMed

    Fang, Lei; Ouellette, Nicholas T

    2016-09-01

    We report measurements of the geometric alignment of the small-scale turbulent stress and the large-scale rate of strain that together lead to the net flux of energy from small scales to large scales in two-dimensional turbulence. We find that the instantaneous alignment between these two tensors is weak and, thus, that the spectral transport of energy is inefficient. We show, however, that the strain rate is much better aligned with the stress at times in the past, suggesting that the differential advection of the two is responsible for the inefficient spectral transfer. We provide evidence for this conjecture by measuring the alignment statistics conditioned on weakly changing stress history. Our results give new insight into the relationship between scale-to-scale energy transfer, geometric alignment, and advection in turbulent flows. PMID:27636478

  13. A spectral-Lagrangian Boltzmann solver for a multi-energy level gas

    SciTech Connect

    Munafò, Alessandro; Haack, Jeffrey R.; Gamba, Irene M.; Magin, Thierry E.

    2014-05-01

    In this paper a spectral-Lagrangian method is proposed for the full, non-linear Boltzmann equation for a multi-energy level gas typical of a hypersonic re-entry flow. Internal energy levels are treated as separate species and inelastic collisions (leading to internal energy excitation and relaxation) are accounted for. The formulation developed can also be used for the case of a gas mixture made of monatomic gases without internal energy (where only elastic collisions occur). The advantage of the spectral-Lagrangian method lies in the generality of the algorithm in use for the evaluation of the elastic and inelastic collision operators, as well as the conservation of mass, momentum and energy during collisions. The latter is realized through the solution of constrained optimization problems. The computational procedure is based on the Fourier transform of the partial elastic and inelastic collision operators and exploits the fact that these can be written as weighted convolutions in Fourier space with no restriction on the cross-section model. The feasibility of the proposed approach is demonstrated through numerical examples for both space homogeneous and in-homogeneous problems. Computational results are compared with those obtained by means of the DSMC method in order to assess the accuracy of the proposed spectral-Lagrangian method.

  14. Local spectral properties of Luttinger liquids: scaling versus nonuniversal energy scales

    NASA Astrophysics Data System (ADS)

    Schuricht, D.; Andergassen, S.; Meden, V.

    2013-01-01

    Motivated by recent scanning tunneling and photoemission spectroscopy measurements on self-organized gold chains on a germanium surface, we reinvestigate the local single-particle spectral properties of Luttinger liquids. In the first part we use the bosonization approach to exactly compute the local spectral function of a simplified field theoretical low-energy model and take a closer look at scaling properties as a function of the ratio of energy and temperature. Translational-invariant Luttinger liquids as well as those with an open boundary (cut chain geometry) are considered. We explicitly show that the scaling functions of both set-ups have the same analytical form. The scaling behavior suggests a variety of consistency checks which can be performed on measured data to experimentally verify Luttinger liquid behavior. In the second part we approximately compute the local spectral function of a microscopic lattice model—the extended Hubbard model—close to an open boundary using the functional renormalization group. We show that it follows the field theoretical prediction in the low-energy regime as a function of energy and temperature, and point out the importance of nonuniversal energy scales inherent to any microscopic model. The spatial dependence of this spectral function is characterized by oscillatory behavior and an envelope function which follows a power law in accordance with the field theoretical continuum model. Interestingly, for the lattice model we find a phase shift which is proportional to the two-particle interaction and not accounted for in the standard bosonization approach to Luttinger liquids with an open boundary. We briefly comment on the effects of several one-dimensional branches cutting the Fermi energy and Rashba spin-orbit interaction.

  15. Peak of spectral energy distribution plays an important role in intra-day variability of blazars?

    NASA Astrophysics Data System (ADS)

    Gupta, Alok C.; Kalita, Nibedita; Gaur, Haritma; Duorah, Kalpana

    2016-10-01

    Blazars can be divided into two sub-classes namely high energy and low energy peaked blazars. In spectral energy distribution, the first synchrotron hump of the former class peaks in UV/X-rays and in IR/optical bands for the latter class. The peak of the spectral energy distribution seems to be responsible for variability properties of these classes of blazars in X-ray and optical bands. Since, in low energy peaked blazars, the X-ray bands lies well below the synchrotron hump, one expects that the highest energy electrons available for the synchrotron emission would have slower effect of variability on X-ray intra-day time-scale. In this paper, by taking the advantage of a sample of 12 low energy peaked blazars with total 50 observations from XMM-Newton since its launch, we confirm that this class is less variable in X-ray bands. We found that out of 50 observational light curves, genuine intra-day variability is present in only two of light curves i.e 4 per cent. Similar results we obtained from our earlier optical intra-day variability studies of high energy peaked blazars where out of 144 light curves, only genuine intra-day variability was detected in 6 light curves i.e ˜4 per cent. Since, X-ray bands lie below the peak of the spectral energy distribution of LSPs where inverse Compton mechanism is dominating rather than synchrotron radiation at the peak of the optical band, leads to slower variability in the X-ray bands. Hence, reducing their intra-day variability in X-ray bands as compared to the variability in optical bands.

  16. Optimizing indoor illumination quality and energy efficiency using a spectrally tunable lighting system to augment natural daylight.

    PubMed

    Hertog, W; Llenas, A; Carreras, J

    2015-11-30

    This article demonstrates the benefits of complementing a daylight-lit environment with a spectrally tunable illumination system. The spectral components of daylight present in the room are measured by a low-cost miniature spectrophotometer and processed through a number of optimization algorithms, carefully trading color fidelity for energy efficiency. Spectrally-tunable luminaires provide only those wavelengths that ensure that either the final illumination spectrum inside the room is kept constant or carefully follows the dynamic spectral pattern of natural daylight. Analyzing the measured data proves that such a hybrid illumination system brings both unprecendented illumination quality and significant energy savings.

  17. Latitudinal and Energy Dependence of Energetic Neutral Atom Spectral Indices Measured by the Interstellar Boundary Explorer

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Allegrini, F.; Dayeh, M. A.; Funsten, H.; Heerikhuisen, J.; McComas, D. J.; Fuselier, S. A.; Pogorelov, N.; Schwadron, N. A.; Zank, G. P.; Zirnstein, E. J.

    2015-04-01

    We investigate the latitudinal and energy dependence of the globally distributed 0.5-6 keV energetic neutral atom (ENA) spectra measured by the Interstellar Boundary Explorer (IBEX) during the first 3 yrs of the mission. Our results are: (1) the ENA spectral indices at the two lowest energies (0.89 and 1.47 keV) exhibit no clear trend with ecliptic latitude θ, while those at ˜2.29 and ˜3.41 keV exhibit a clear latitudinal pattern; flatter spectra occur above 60° latitude and steeper spectra occur ±30° of the equator. (2) The latitudinal dependence of the spectral indices at different energies can be represented by the cosine function γ ={{a}0}+{{a}1}cos ({{a}2}θ ) with unique offsets, amplitudes, and phase angles; the higher energy ENA indices transition to successively larger amplitudes within ±45° of the equator. Our results confirm the previously reported latitudinal organization of the ENA spectra and their remarkable similarity to that of the solar wind (SW) speed observed by Ulysses in the inner heliosphere. While earlier studies showed that the ˜0.5-6 keV globally distributed ENA spectral indices could be represented as single power laws over much of the sky, our new results indicate that this is an over-simplification because the spectral indices have an energy and latitude dependence. This dependence is an important factor that must be taken into consideration by models and simulations that seek to map the IBEX ENA observations back to the latitudinal profile of the SW speed structure observed in the inner heliosphere.

  18. Gamma-Ray Burst Afterglows as Probes of Environment and Blast Wave Physics. II. The Distribution of rho and Structure of the Circumburst Medium

    NASA Technical Reports Server (NTRS)

    Starling, R. L. C.; vanderHorst, A. J.; Rol, E.; Wijers, R. A. M. J.; Kouveliotou, C.; Wiersema, K.; Curran, P. A.; Weltervrede, P.

    2008-01-01

    We constrain blast wave parameters and the circumburst media ofa subsample of 10 BeppoSAX gamma-ray bursts (GRBs). For this sample we derive the values of the injected electron energy distribution index, p, and the density structure index of the circumburst medium, k, from simultaneous spectral fits to their X-ray, optical, and NIR afterglow data. The spectral fits have been done in count space and include the effects ofmetallicity, and are compared with the previously reported optical and X-ray temporal behavior. Using the blast wave model and some assumptions which include on-axis viewing and standard jet structure, constant blast wave energy, and no evolution of the microphysical parameters, we find a mean value ofp for the sample as a whole of 9.... oa -0.003.0" 2 a_ statistical analysis of the distribution demonstrates that the p-values in this sample are inconsistent with a single universal value forp at the 3 _ level or greater, which has significant implications for particle acceleration models. This approach provides us with a measured distribution ofcircumburst density structures rather than considering only the cases of k ----0 (homogeneous) and k - 2 (windlike). We find five GRBs for which k can be well constrained, and in four of these cases the circumburst medium is clearly windlike. The fifth source has a value of 0 < k < 1, consistent with a homogeneous circumburst medium.

  19. GAMMA-RAY BURST AFTERGLOW LIGHT CURVES FROM A LORENTZ-BOOSTED SIMULATION FRAME AND THE SHAPE OF THE JET BREAK

    SciTech Connect

    Van Eerten, Hendrik; MacFadyen, Andrew

    2013-04-20

    The early stages of decelerating gamma-ray burst (GRB) afterglow jets have been notoriously difficult to resolve numerically using two-dimensional hydrodynamical simulations even at very high resolution, due to the extreme thinness of the blast wave and high outflow Lorentz factors. However, these resolution issues can be avoided by performing the simulations in a boosted frame, which makes it possible to calculate afterglow light curves from numerically computed flows in sufficient detail to accurately quantify the shape of the jet break and the post-break steepening of the light curve. Here, we study afterglow jet breaks for jets with opening angles of 0.05, 0.1, and 0.2 radians decelerating in a surrounding medium of constant density, observed at various angles ranging from on-axis to the edge of the jet. A single set of scale-invariant functions describing the time evolution of afterglow synchrotron spectral break frequencies and peak flux, depending only on jet opening angle and observer angle, are all that is needed to reconstruct light curves for arbitrary explosion energy, circumburst density and synchrotron particle distribution power law slope p. These functions are presented in the paper. Their time evolutions change directly following the jet break, although an earlier reported temporary post-break steepening of the cooling break is found to have been resolution-induced. We compare synthetic light curves to fit functions using sharp power law breaks as well as smooth power law transitions. We confirm our earlier finding that the measured jet break time is very sensitive to the angle of the observer and can be postponed significantly. We find that the difference in temporal indices across the jet break is larger than theoretically anticipated and is about -(0.5 + 0.5p) below the cooling break and about -(0.25 + 0.5p) above the cooling break, both leading to post-break slopes of roughly about 0.25 - 1.3p, although different observer angles, jet opening

  20. Deriving star formation histories from photometry using energy balance spectral energy distribution modelling

    NASA Astrophysics Data System (ADS)

    Smith, Daniel J. B.; Hayward, Christopher C.

    2015-10-01

    Panchromatic spectral energy distribution fitting is a critical tool for determining the physical properties of distant galaxies, such as their stellar mass and star formation rate. One widely used method is the publicly available MAGPHYS code. We build on our previous analysis by presenting some modifications which enable MAGPHYS to automatically estimate galaxy star formation histories (SFHs), including uncertainties, based on ultraviolet to far-infrared photometry. We use state-of-the art synthetic photometry derived by performing three-dimensional dust radiative transfer on hydrodynamic simulations of isolated disc and merging galaxies to test how well the modified MAGPHYS is able to recover SFHs under idealized conditions, where the true SFH is known. We find that while the SFH of the model with the best fit to the synthetic photometry is a poor representation of the true SFH (showing large variations with the line of sight to the galaxy and spurious bursts of star formation), median-likelihood SFHs generated by marginalizing over the default MAGPHYS libraries produce robust estimates of the smoothly varying isolated disc simulation SFHs. This preference for the median-likelihood SFH is quantitatively underlined by our estimates of χ ^2_SFH (analogous to the χ2 goodness-of-fit estimator) and Δ M / M (the integrated absolute mass discrepancy between the model and true SFH) that strongly prefer the median-likelihood SFHs over those that best fit the UV-to-far-IR photometry. In contrast, we are unable to derive a good estimate of the SFH for the merger simulations (either best fit or median likelihood) despite being able to obtain a reasonable fit to the simulated photometry, likely because the analytic SFHs with bursts superposed in the standard MAGPHYS library are insufficiently general/realistic.

  1. Rydberg state, metastable, and electron dynamics in the low-pressure argon afterglow

    NASA Astrophysics Data System (ADS)

    Tsankov, Tsanko V.; Johnsen, Rainer; Czarnetzki, Uwe

    2015-12-01

    In this work a time-dependent collisional-radiative model for recombining plasmas is developed. It tracks the collisional and radiative capture of electrons into highly-excited (Rydberg) states and their consecutive deexcitation through collisions and radiation to the ground or the metastable state. The model allows the calculation of the net recombination rate and the electron energy gain by recombination. It is coupled to the volume-averaged balance equations for the electron density and temperature. The numerical solution of these equations includes a model for the diffusion cooling of the electrons (Celik et al 2012 Phys. Rev. E 85 046407) and a simplified model for the gas cooling. Using as only input the experimentally determined initial values of the electron density and temperature, gas temperature and metastable density, the temporal evolution of all parameters in the afterglow is calculated and compared with measurements. The results reproduce very well the measured quantities (electron density, light emission and metastable density) without the need to invoke adjustable parameters. This gives confidence in the validity of the model that allows it to be used not only to deepen the understanding of afterglow plasmas but also to tailor their properties as required for applications. The analysis of the model results further shows that gas heating and cooling must be explicitly taken into account to reproduce experimental observations. The electron heating by recombination is another process that is important for the good agreement. Both of these effects were largely ignored in previous works on afterglows.

  2. Imprints of Electron-Positron Winds on the Multiwavelength Afterglows of Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Geng, J. J.; Wu, X. F.; Huang, Y. F.; Li, L.; Dai, Z. G.

    2016-07-01

    Optical rebrightenings in the afterglows of some gamma-ray bursts (GRBs) are unexpected within the framework of the simple external shock model. While it has been suggested that the central engines of some GRBs are newly born magnetars, we aim to relate the behaviors of magnetars to the optical rebrightenings. A newly born magnetar will lose its rotational energy in the form of Poynting-flux, which may be converted into a wind of electron-positron pairs through some magnetic dissipation processes. As proposed by Dai, this wind will catch up with the GRB outflow and a long-lasting reverse shock (RS) would form. By applying this scenario to GRB afterglows, we find that the RS propagating back into the electron-positron wind can lead to an observable optical rebrightening and a simultaneous X-ray plateau (or X-ray shallow decay). In our study, we select four GRBs (i.e., GRB 080413B, GRB 090426, GRB 091029, and GRB 100814A), of which the optical afterglows are well observed and show clear rebrightenings. We find that they can be well interpreted. In our scenario, the spin-down timescale of the magnetar should be slightly smaller than the peak time of the rebrightening, which can provide a clue to the characteristics of the magnetar.

  3. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector.

    PubMed

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-09-21

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97-1.01 and NRMSEs of 0.20-4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17-0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  4. Electrical characterization of the flowing afterglow of N{sub 2} and N{sub 2}/O{sub 2} microwave plasmas at reduced pressure

    SciTech Connect

    Afonso Ferreira, J.; Stafford, L. Leonelli, R.; Ricard, A.

    2014-04-28

    A cylindrical Langmuir probe was used to analyze the spatial distribution of the number density of positive ions and electrons as well as the electron energy distribution function (EEDF) in the flowing afterglow of a 6 Torr N{sub 2} and N{sub 2}/O{sub 2} plasma sustained by a propagating electromagnetic surface wave in the microwave regime. In pure N{sub 2} discharges, ion densities were in the mid 10{sup 14} m{sup −3} in the pink afterglow and in the mid 10{sup 12} m{sup −3} early in the late afterglow. In both pink and late afterglows, the ion population was much higher than the electron population, indicating non-macroscopically neutral media. The EEDF was close to a Maxwellian with an electron temperature of 0.5 ± 0.1 eV, except in the pink afterglow where the temperature rose to 1.1 ± 0.2 eV. This latter behavior is ascribed to N{sub 2} vibration-vibration pumping in the pink afterglow that increases the concentration of high N{sub 2} vibrational states and thus rises the electron temperature by vibration-electron collisions. After addition of small amounts of O{sub 2} in the nominally pure N{sub 2} discharge, the charged particles densities and average electron energy first strongly increased and then decreased with increasing O{sub 2} concentration. Based on these data and the evolution of the N{sub 2}{sup +}(B) band emission intensities, it is concluded that a significant change in the positive ion composition of the flowing afterglow occurs, going from N{sub 2}{sup +} in nominally pure N{sub 2} discharges to NO{sup +} after addition of trace amounts of O{sub 2} in N{sub 2}.

  5. Latitude, Energy, and Time Variations of Energetic Neutral Atom Spectral indices Measured by IBEX

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; McComas, D. J.; Dayeh, M. A.; Funsten, H. O.; Schwadron, N.; Heerikhuisen, J.; Fuselier, S. A.; Allegrini, F.; Pogorelov, N.; Zank, G. P.

    2015-12-01

    We investigate the latitude, energy, and time variations of the globally distributed ~0.5-6 keV energetic neutral atom (ENA) spectra measured by the Interstellar Boundary Explorer (IBEX) during the first 5 years of the mission. Our previous results based on the first 3 years of IBEX observations showed that the ENA spectral indices at the two lowest energies (~0.89 and 1.47 keV) exhibit no clear trend with ecliptic latitude θ, while those at ~2.29 and ~3.41 keV exhibit a clear latitudinal pattern; flatter spectra occur above 60° latitude and steeper spectra occur ±30° of the equator. While these results confirmed the previously reported latitudinal organization of the ENA spectra and their remarkable similarity to that of the solar wind (SW) speed observed by Ulysses in the inner heliosphere, we also showed that, unlike previous reports, the ~0.5-6 keV globally distributed ENA spectral indices could not be represented as single power laws over much of the sky, and that they depend on energy and latitude. In this work we extend the above results to include years 4 and 5 of IBEX observations and investigate if the spectral indices vary as a function of time. Finally, we discuss implications of our results on models and simulations that seek to map the IBEX ENA observations back to the latitudinal profile of the SW speed structure observed in the inner heliosphere.

  6. Latitude, Energy, and Time Variations of Energetic Neutral Atom Spectral indices Measured by IBEX

    NASA Astrophysics Data System (ADS)

    Desai, Mihir; Heerikhuisen, Jacob; McComas, David; Funsten, Herbert; Pogorelov, Nikolai; Zank, Gary; Schwadron, Nathan; Fuselier, Stephen; Allegrini, Frederic; Dayeh, Maher A.

    2016-07-01

    We investigate the latitude, energy, and time variations of the globally distributed 0.5-6 keV energetic neutral atom (ENA) spectra measured by the Interstellar Boundary Explorer (IBEX) during the first 5 years of the mission. Our previous results based on the first 3 years of IBEX observations showed that the ENA spectral indices at the two lowest energies (0.89 and 1.47 keV) exhibit no clear trend with ecliptic latitude θ, while those at ˜2.29 and ˜3.41 keV exhibit a clear latitudinal pattern; flatter spectra occur above 60° latitude and steeper spectra occur within ±30° of the equator. While these results confirmed the previously reported latitudinal organization of the ENA spectra and their remarkable similarity to that of the solar wind (SW) speed observed by Ulysses in the inner heliosphere, we also showed that, unlike previous reports, the ˜0.5-6 keV globally distributed ENA spectral indices could not be represented as single power laws over much of the sky, and that they depend on energy and latitude. In this paper we extend the above results to include years 4 and 5 of IBEX observations and investigate if the spectral indices vary as a function of time. Finally, we discuss implications of our results on models and simulations that seek to map the IBEX ENA observations back to the latitudinal profile of the SW speed structure observed in the inner heliosphere.

  7. The Spectral Energy Distribution of the Seyfert Galaxy Ton S180

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Romano, P.; Kraemer, S. B.; George, I. M.; Yaqoob, T.; Crenshaw, D. M.; Storm, J.; Alloin, D.; Lazzaro, D.; DaSilva, L.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We present spectral results from a multi-satellite, broad-band campaign on the Narrow-line Seyfert 1 galaxy Ton S180 performed at the end of 1999. We discuss the spectral-energy distribution of the source, combining simultaneous Chandra, ASCA and EUVE data with contemporaneous FUSE, HST, and ground-based optical and infrared data. The resulting SED shows that most of the, energy is emitted in the 10 - 100 eV regime, which must be dominated by the primary energy source. No spectral turnover is evident in the UV regime. This, the strong soft X-ray emission, and the overall shape of the SED indicate that emission from the accretion disk peaks between 15 and 100 eV. High resolution FUSE spectra showing UV absorption due to OVI and the lack of detectable X-ray absorption in the Candra spectrum demonstrate the presence of a low column density of highly ionized gas along our line of sight.

  8. Picosecond fluorescence of simple photosynthetic membranes: Evidence of spectral inhomogeneity and directed energy transfer

    NASA Astrophysics Data System (ADS)

    Pullerits, Tōnu; Freiberg, Arvi

    1991-01-01

    The picosecond time-domain singlet excitation transfer and trapping kinetics in photosynthetic membranes in case of low excitation intensities is studied by numerical integration of the appropriate master equation. The essential features of our two-dimensional-lattice random walk model are spectral heterogeneity of the light-harvesting antenna, inclusion of temperature effects, nonabsolute excitation trap, correlation between spectral and spatial parameters. A reasonably good agreement between theoretical and experimental fluorescence decay kinetics for purple photosynthetic bacterium Rhodospirillum rubrum is achieved only by assuming relatively large spectral inhomogeneity. From this comparison the average excitation lifetime on the lattice site is estimated to be 5-8 ps at the effective nearest neighbour lattice distance of 32 Å. If the model is correct, the relatively slow hopping rate determines that excitation transfer and trapping in R. rubrum at active photosynthesis conditions is a diffusion-limited process. The invariably present spectral disorder of photosynthetic systems promoting directed energy transfer serves for higher light-utilizing efficiency.

  9. Investigation on luminescence enhancement and decay characteristics of long afterglow nanophosphors for dark-vision display applications

    NASA Astrophysics Data System (ADS)

    Swati, G.; Chawla, S.; Mishra, S.; Rajesh, B.; Vijayan, N.; Sivaiah, B.; Dhar, A.; Haranath, D.

    2015-04-01

    Long afterglow SrAl2O4:Eu2+,Dy3+ nanophosphors were synthesized via a facile but effectual auto-combustion technique followed by post-annealing treatment at elevated temperatures. The influence of various fuels during synthesis and thereafter improvement in the luminescence decay characteristics under various illuminant irradiations of long afterglow nanophosphors have been reported. Extensive studies on structural, morphological and luminescent properties of the as-synthesized afterglow nanophosphors have been presented. Powder X-ray diffraction studies confirm the presence of high-purity, single-phase monoclinic nanophosphors. HRTEM investigations confirm the formation of nanophosphors of particle size less than 50 nm. Photoluminescence emission is attributed to the characteristic d-f transition (4f65d1→4f7) of Eu2+ ions and was positioned at 512 nm. As-synthesized nanophosphors exhibit considerable confinement effects resulting into blue shift in emission maxima as compared to their bulk counterparts. The mechanism underlined for long afterglow has been discussed using trapping-detrapping model. The nanophosphor being multifunctional finds many interesting applications including dark-vision display, energy storage, fingerprint detection, in vivo and in vitro biological staining, etc.

  10. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    SciTech Connect

    Levan, A. J.; Tanvir, N. R.; Wiersema, K.; Fruchter, A. S.; Hounsell, R. A.; Graham, J.; Hjorth, J.; Fynbo, J. P. U.; Pian, E.; Mazzali, P.; Perley, D. A.; Cano, Z.; Cenko, S. B.; Kouveliotou, C.; Misra, K.

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  11. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    NASA Technical Reports Server (NTRS)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; Cenko, S. B.; Fynbo, J. P. U.; Kouveliotou, C.; Pe'er, A.; Misra, K.; Wiersema, K.

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  12. Hubble Space Telescope Observations of the Afterglow, Supernova, and Host Galaxy Associated with the Extremely Bright GRB 130427A

    NASA Astrophysics Data System (ADS)

    Levan, A. J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; Cenko, S. B.; Fynbo, J. P. U.; Kouveliotou, C.; Pe'er, A.; Misra, K.; Wiersema, K.

    2014-09-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E iso > 1054 erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ~17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v ph ~ 15, 000 km s-1). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v ph ~ 30, 000 km s-1), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ~4 kpc from the nucleus of a moderately star forming (1 M ⊙ yr-1), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  13. Gamma-Ray Burst Afterglows as Probes of Environment and Blastwave Physics II: The Distribution of p and Structure of the Circumburst Medium

    NASA Technical Reports Server (NTRS)

    Starling, R. L. C.; vanderHorst, A. J.; Rol, E.; Wijers, R. A. M. J.; Kouveliotou, C.; Wiersema, K.; Curran, P. A.; Weltevrede, P.

    2007-01-01

    We constrain blastwave parameters and the circumburst media of a subsample of BeppoSAX Gamma-Ray Bursts. For this sample we derive the values of the injected electron energy distribution index, p, and the density structure index of the circumburst medium, k, from simultaneous spectral fits to their X-ray, optical and nIR afterglow data. The spectral fits have been done in count space and include the effects of metallicity, and are compared with the previously reported optical and X-ray temporal behaviour. Assuming the fireball model, we can find a mean value of p for the sample as a whole of 2.035. A statistical analysis Of the distribution demonstrates that the p values in this sample are inconsistent with a single universal value for p at the 3sigma level or greater. This approach provides us with a measured distribution of circumburst density structures rather than considering only the cases of k = 0 (homogeneous) and k = 2 (wind-like). We find five GRBs for which k can be well constrained, and in four of these cases the circumburst medium is clearly wind-like. The fifth source has a value of 0 less than or equal to k less than or equal to 1, consistent with a homogeneous circumburst medium.

  14. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  15. Chemical abundances associated with gamma-ray bursts: nucleosynthesis in afterglows

    NASA Astrophysics Data System (ADS)

    Hu, Tao; Wang, Min

    2014-03-01

    Gamma-ray burst (GRB) ejecta carries huge amounts of energy expanding into the surrounding medium and heats up these materials, making it possible that nucleosynthesis can take place in such hot sites in afterglow stage. Here, we study possible changes in chemical abundances in the GRB afterglow processes of Wolf-Rayet (WR) star wind environments (Case A) and constant density surroundings (Case B). We find that the light element of lithium-beryllium-boron could occur in the afterglows via He+He process and spallation reactions. Some isotopes of F, Ne, Mg, Al, Si, P, S and Fe-group elements are also new species formed in the afterglows via proton-, neutron- and α-capture. The results show that the nucleosynthetic yields might be a diagnostic of the GRB's ambient environment. Our calculations indicate that Mg, Al, Si, P, Cr, Mn, Fe and Co have trended to appear in Case A, while Ne, Ti and Ni trend to occur in Case B. Furthermore, although some species have occurred both in Cases A and B, their mass fractions are quite different in these two cases. Here, we show that the mass fractions of 7Li, 7Be, 24Mg and 30Si are higher in Case A than that in Case B, but 18F gives an opposite conclusion. Nucleosynthetic outputs might also be an indice to estimate the luminosity-temperature relation factor β. In this study, when β reduces, the mass abundances of 11B and 20Ne are higher in Case B than that in Case A; in contrast, as the β becomes larger, this trend would be reversed; therefore, perhaps we could select the above elements as the indicators to estimate the properties of the surroundings around the GRBs. We also suggest that the spectroscopic observations of a GRB afterglow could only reveal the nucleosynthetic outputs from the interaction site between the GRB jet and its ambient matter, but could not represent the original composition of the pre-GRB surrounding medium.

  16. The radio-ultraviolet spectral energy distribution of the jet in 3C 273

    NASA Astrophysics Data System (ADS)

    Jester, S.; Röser, H.-J.; Meisenheimer, K.; Perley, R.

    2005-02-01

    We present deep VLA and HST observations of the large-scale jet in 3C 273 matched to 0.3 arcsec resolution. The observed spectra show a significant flattening in the infrared-ultraviolet wavelength range. The jet's emission cannot therefore be assumed to arise from a single electron population and requires the presence of an additional emission component. The observed smooth variations of the spectral indices along the jet imply that the physical conditions vary correspondingly smoothly. We determine the maximum particle energy for the optical jet using synchrotron spectral fits. The slow decline of the maximum energy along the jet implies particle reacceleration acting along the entire jet. In addition to the already established global anti-correlation between maximum particle energy and surface brightness, we find a weak positive correlation between small-scale variations in maximum particle energy and surface brightness. The origin of these conflicting global and local correlations is unclear, but they provide tight constraints for reacceleration models. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract No. NAS5-26555. These observations are associated with proposals #5980 and #7848. Also based on observations obtained at the NRAO's VLA. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  17. Spectral wave flow attenuation within submerged canopies: Implications for wave energy dissipation

    NASA Astrophysics Data System (ADS)

    Lowe, Ryan J.; Falter, James L.; Koseff, Jeffrey R.; Monismith, Stephen G.; Atkinson, Marlin J.

    2007-05-01

    Communities of benthic organisms can form very rough surfaces (canopies) on the seafloor. Previous studies have shown that an oscillatory flow induced by monochromatic surface waves will drive more flow inside a canopy than a comparable unidirectional current. This paper builds on these previous studies by investigating how wave energy is attenuated within canopies under spectral wave conditions, or random wave fields defined by many frequencies. A theoretical model is first developed to predict how flow attenuation within a canopy varies among the different wave components and predicts that shorter-period components will generally be more effective at driving flow within a canopy than longer-period components. To investigate the model performance, a field experiment was conducted on a shallow reef flat in which flow was measured both inside and above a model canopy array. Results confirm that longer-period components in the spectrum are significantly more attenuated than shorter-period components, in good agreement with the model prediction. This paper concludes by showing that the rate at which wave energy is dissipated by a canopy is closely linked to the flow structure within the canopy. Under spectral wave conditions, wave energy within a model canopy array is dissipated at a greater rate among the shorter-period wave components. These observations are consistent with previous observations of how wave energy is dissipated by the bottom roughness of a coral reef.

  18. ENERGY-DEPENDENT POWER SPECTRAL STATES AND ORIGIN OF APERIODIC VARIABILITY IN BLACK HOLE BINARIES

    SciTech Connect

    Yu Wenfei; Zhang Wenda

    2013-06-20

    We found that the black hole candidate MAXI J1659-152 showed distinct power spectra, i.e., power-law noise (PLN) versus band-limited noise (BLN) plus quasi-periodic oscillations (QPOs) below and above about 2 keV, respectively, in observations with Swift and the Rossi X-ray Timing Explorer during the 2010 outburst, indicating a high energy cutoff of the PLN and a low energy cutoff of the BLN and QPOs around 2 keV. The emergence of the PLN and the fading of the BLN and QPOs initially took place below 2 keV when the source entered the hard intermediate state and settled in the soft state three weeks later. The evolution was accompanied by the emergence of the disk spectral component and decreases in the amplitudes of variability in the soft and hard X-ray bands. Our results indicate that the PLN is associated with an optically thick disk in both hard and intermediate states, and the power spectral state is independent of the X-ray energy spectral state in a broadband view. We suggest that in the hard or intermediate state, the BLN and QPOs emerge from the innermost hot flow subjected to Comptonization, while the PLN originates from the optically thick disk farther out. The energy cutoffs of the PLN and the BLN or QPOs then follow the temperature of the seed photons from the inner edge of the optically thick disk, while the high frequency cutoff of the PLN follows the orbital frequency of the inner edge of the optically thick disk as well.

  19. Energy-dependent Power Spectral States and Origin of Aperiodic Variability in Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Yu, Wenfei; Zhang, Wenda

    2013-06-01

    We found that the black hole candidate MAXI J1659-152 showed distinct power spectra, i.e., power-law noise (PLN) versus band-limited noise (BLN) plus quasi-periodic oscillations (QPOs) below and above about 2 keV, respectively, in observations with Swift and the Rossi X-ray Timing Explorer during the 2010 outburst, indicating a high energy cutoff of the PLN and a low energy cutoff of the BLN and QPOs around 2 keV. The emergence of the PLN and the fading of the BLN and QPOs initially took place below 2 keV when the source entered the hard intermediate state and settled in the soft state three weeks later. The evolution was accompanied by the emergence of the disk spectral component and decreases in the amplitudes of variability in the soft and hard X-ray bands. Our results indicate that the PLN is associated with an optically thick disk in both hard and intermediate states, and the power spectral state is independent of the X-ray energy spectral state in a broadband view. We suggest that in the hard or intermediate state, the BLN and QPOs emerge from the innermost hot flow subjected to Comptonization, while the PLN originates from the optically thick disk farther out. The energy cutoffs of the PLN and the BLN or QPOs then follow the temperature of the seed photons from the inner edge of the optically thick disk, while the high frequency cutoff of the PLN follows the orbital frequency of the inner edge of the optically thick disk as well.

  20. Emission spectrum of a sporadic fireball afterglow

    NASA Astrophysics Data System (ADS)

    Madiedo, J.; Trigo-Rodríguez, J.

    2014-07-01

    A mag. -11 fireball was imaged over southern Spain on April 14, 2013 at 22:35:49.8 ± 0.1s UTC. Its emission spectrum was also obtained. This event was assigned the SPMN code 140413 after the recording date. By the end of its atmospheric path, it exhibited a very bright flare which resulted in a persistent train whose spectrum was recorded. Here we present a preliminary analysis of this event and focus special attention on the evolution of the main emission lines in the spectrum of the afterglow. An array of low-lux CCD video devices (models 902H and 902H Ultimate from Watec Co.) operating from our stations at Sevilla and El Arenosillo was employed to record the SPMN140413 fireball. The operation of these systems is explained in [1,2]. Some of these are configured as spectrographs by attaching holographic diffraction gratings (1000 lines/mm) to the objective lens [3]. To calculate the atmospheric trajectory, radiant, and orbit we have employed our AMALTHEA software, which follows the planes intersection method [4]. The spectrum was analyzed with our CHIMET application [5]. The parent meteoroid impacted the atmosphere with an initial velocity of 28.9 ± 0.3 km/s and the fireball began at a height of 104.4 ± 0.5 km. The event ended at 80.7 ± 0.5 km above the ground level, with the main flare taking place at 83 ± 0.5 km. The calculated radiant and orbital parameters confirm the sporadic nature of the bolide. The calibrated emission spectrum shows that the most important contributions correspond to the Na I-1 (588.9 nm) and Mg I-2 (517.2 nm) multiplets. In the ultraviolet, the contribution from the H and K lines from Ca was also identified. As usual in meteor spectra, most of the lines correspond to Fe I. The train spectrum was recorded during about 0.12 seconds. This provided the evolution with time of the intensity of the emission lines in this signal. The contributions from Mg I, Na I, Ca I, Fe I, Ca II, and O I were identified in the afterglow, with the Na I-1

  1. Very High Energy Observations of Gamma Ray Bursts with the Whipple/VERITAS Telescopes

    SciTech Connect

    Horan, D.; Badran, H.M.; Blaylock, G.; Bond, I.H.; Boyle, P.J.; Bradbury, S.M.; Buckley, J.H.; Byrum, K.; Carter-Lewis, D.A.; Celik, O.; Cogan, P.; Cui, W.; Daniel, M.K.; Calle Perez, I. de la; Duke, C.; Falcone, A.; Fegan, D.J.; Fegan, S.J.; Finley, J.P.; Fortson, L.F.

    2005-02-21

    Gamma-ray Burst (GRB) observations at Very High Energies (VHE, E > 100 GeV) can impose tight constraints on some GRB emission models. Many GRB after-glow models predict a VHE component similar to that seen in blazars and supernova remnants, in which the GRB spectral energy distribution has a double-peaked shape extending into the VHE regime. Consistent with this afterglow scenario, EGRET detected delayed high energy emission from all five bright BATSE GRBs that occurred within its field of view. GRB observations have had high priority in the observing program at the Whipple 10m Telescope and will continue to be high priority targets when the next generation observatory VERITAS comes online. Upper limits on the VHE emission from ten GRBs observed with the Whipple Telescope are reported here.

  2. Evidence for a Canonical GRB Afterglow Light Curve in the Swift/XRT Data

    SciTech Connect

    Nousek, J.A.; Kouveliotou, C.; Grupe, D.; Page, K.; Granot, J.; Ramirez-Ruiz, E.; Patel, S.K.; Burrows, D.N.; Mangano, V.; Barthelmy, S.; Beardmore, A.P.; Campana, S.; Capalbi, M.; Chincarini, G.; Cusumano, G.; Falcone, A.D.; Gehrels, N.; Giommi, P.; Goad, M.; Godet, O.; Hurkett, C.; /Penn State U., Astron. Astrophys. /NASA, Marshall /Leicester U. /KIPAC, Menlo Park /Princeton, Inst. Advanced Study /NASA, Marshall /IASF, Palermo /Brera Observ. /Frascati /Milan Bicocca U. /NASA, Goddard

    2005-08-17

    We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) detected with the Swift X-ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power law segments: (1) an initial very steep decay ({infinity} t{sup -a} with 3 {approx}< a{sub 1} {approx}< 5) , followed by (2) a very shallow decay (0.2 {approx}< a{sub 2} {approx}< 0.8), and finally (3) a somewhat steeper decay (1 {approx}< a{sub 3} {approx}< 1.5). These power law segments are separated by two corresponding break times, 300 s {approx}< t{sub break,1} {approx}< 500 s and 10{sup 3} s {approx}< t{sub break,2} {approx}< 10{sup 4} s. On top of this canonical behavior of the early X-ray light curve, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long lasting sporadic activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission, from photons that are radiated at large angles relative to our line of sight. The first break in the light curve (t{sub break,1}) takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay (a{sub 2}) likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve (t{sub break,2}). This energy injection increases the energy of the afterglow shock by at least a factor of f {approx}> 4, and augments the already severe requirements for the efficiency of the prompt gamma-ray emission.

  3. Calibrating image plate sensitivity in the 700 to 5000 eV spectral energy range

    NASA Astrophysics Data System (ADS)

    Haugh, Michael J.; Lee, Joshua; Romano, Edward; Schneider, Marilyn

    2013-09-01

    This paper describes a method to calibrate image plate sensitivity for use in the low energy spectral range. Image plates, also known as photostimulable luminescence (PSL) detectors, have often proved to be a valuable tool as a detector for plasma physics studies. Their advantages of large dynamic range, high stopping power, and resistance to neutron damage sometimes outweigh the problems of limited resolution and the remote processing required. The neutron damage resistance is required when the X-ray source is producing a high neutron flux. The Static X-ray Imager (SXI) is a key diagnostic on the National Ignition Facility (NIF) target chamber at LLNL for use in determining the symmetry of the laser beams. The SXI is essential to proper interpretation of the data from the Dante diagnostic to determine the X-ray radiation temperature. It is comprised of two diagnostics located at the top and the bottom of the target chamber. The usual detector is a large array CCD camera. For shots giving high yields of neutrons, the camera would not only be blinded by the neutrons, it would be damaged. To get around this problem, an image plate (IP) is used as the detector. The NIF application covers the energy range from 700 to 5000 eV. The type of image plates typically used for plasma physics are the Fuji BAS-MS, BAS-SR, and BAS-TR models. All models consist of an X-ray sensitive material made of BaF(Br,I):Eu2+ embedded in a plastic binder. X-rays incident on the phosphor ionize the Eu 2+ producing Eu3+ and free electrons that are trapped in lattice defects (F-centers) produced by the absence of halogen ions in the BaF2 crystal. An image plate readout scanner irradiates the IP with a red laser causing reduction of the Eu3+ and emission of a blue photon. The photon is collected using a photomultiplier and digitized to make an electronic image. Image plates are cleared of all F-centers by putting them under a bright light for about 10 minutes. They are then ready for producing a

  4. The low-extinction afterglow in the solar-metallicity host galaxy of γ-ray burst 110918A

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Krühler, T.; Greiner, J.; Savaglio, S.; Olivares, F.; Rau, E. A.; de Ugarte Postigo, A.; Sánchez-Ramírez, R.; Wiersema, K.; Schady, P.; Kann, D. A.; Filgas, R.; Nardini, M.; Berger, E.; Fox, D.; Gorosabel, J.; Klose, S.; Levan, A.; Nicuesa Guelbenzu, A.; Rossi, A.; Schmidl, S.; Sudilovsky, V.; Tanvir, N. R.; Thöne, C. C.

    2013-08-01

    Galaxies selected through long γ-ray bursts (GRBs) could be of fundamental importance when mapping the star formation history out to the highest redshifts. Before using them as efficient tools in the early Universe, however, the environmental factors that govern the formation of GRBs need to be understood. Metallicity is theoretically thought to be a fundamental driver in GRB explosions and energetics, but it is still, even after more than a decade of extensive studies, not fully understood. This is largely related to two phenomena: a dust-extinction bias, which prevented high-mass and thus likely high-metallicity GRB hosts from being detected in the first place, and a lack of efficient instrumentation, which limited spectroscopic studies, including metallicity measurements, to the low-redshift end of the GRB host population. The subject of this work is the very energetic GRB 110918A (Eγ,iso = 1.9 × 1054 erg), for which we measure a redshift of z = 0.984. GRB 110918A gave rise to a luminous afterglow with an intrinsic spectral slope of β = 0.70, which probed a sight-line with little extinction (AGRBV = 0.16 mag) and soft X-ray absorption (NH,X = (1.6 ± 0.5) × 1021 cm-2) typical of the established distributions of afterglow properties. However, photometric and spectroscopic follow-up observations of the galaxy hosting GRB 110918A, including optical/near-infrared photometry with the Gamma-Ray burst Optical Near-infrared Detector and spectroscopy with the Very Large Telescope/X-shooter, reveal an all but average GRB host in comparison to the z ~ 1 galaxies selected through similar afterglows to date. It has a large spatial extent with a half-light radius of R1/2 ~ 10 kpc, the highest stellar mass for z < 1.9 (log (M∗/M⊙) = 10.68 ± 0.16), and an Hα-based star formation rate of SFRHα = 41+28-16M⊙ yr-1. We measure a gas-phase extinction of AgasV ~ 1.8 mag through the Balmer decrement and one of the largest host-integrated metallicities ever of around solar

  5. Low-energy spectral features of supernova (anti)neutrinos in inverted hierarchy

    SciTech Connect

    Fogli, G. L.; Marrone, A.; Tamborra, I.; Lisi, E.; Mirizzi, A.

    2008-11-01

    In the dense supernova core, self-interactions may align the flavor polarization vectors of {nu} and {nu} and induce collective flavor transformations. Different alignment Ansaetze are known to describe approximately the phenomena of synchronized or bipolar oscillations and the split of {nu} energy spectra. We discuss another phenomenon observed in some numerical experiments in inverted hierarchy, showing features akin to a low-energy split of {nu} spectra. The phenomenon appears to be approximately described by another alignment Ansatz which, in the considered scenario, reduces the (nonadiabatic) dynamics of all energy modes to only two {nu} plus two {nu} modes. The associated spectral features, however, appear to be fragile when passing from single to multiangle simulations.

  6. Latitude, Energy, and Time Variations of Energetic Neutral Atom Spectral indices Measured by IBEX

    NASA Astrophysics Data System (ADS)

    Desai, Mihir; McComas, David; Dayeh, Maher; Funsten, Herbert; Schwadron, Nathan; Heerikhuisen, Jacob; Fuselier, Stephen; Pogorelov, Nikolai; Zank, Gary; Allegrini, Frederic

    2016-04-01

    We investigate the latitude, energy, and time variations of the globally distributed 0.5-6 keV energetic neutral atom (ENA) spectra measured by the Interstellar Boundary Explorer (IBEX) during the first 5 years of the mission. Our previous results based on the first 3 years of IBEX observations showed that the ENA spectral indices at the two lowest energies (0.89 and 1.47 keV) exhibit no clear trend with ecliptic latitude θ, while those at ˜2.29 and ˜3.41 keV exhibit a clear latitudinal pattern; flatter spectra occur above 60° latitude and steeper spectra occur ±30° of the equator. While these results confirmed the previously reported latitudinal organization of the ENA spectra and their remarkable similarity to that of the solar wind (SW) speed observed by Ulysses in the inner heliosphere, we also showed that, unlike previous reports, the ˜0.5-6 keV globally distributed ENA spectral indices could not be represented as single power laws over much of the sky, and that they depend on energy and latitude. In this work we extend the above results to include years 4 and 5 of IBEX observations and investigate if the spectral indices vary as a function of time. Finally, we discuss implications of our results on models and simulations that seek to map the IBEX ENA observations back to the latitudinal profile of the SW speed structure observed in the inner heliosphere. We also discuss the implications of these new results for observational requirements for upcoming missions like IMAP.

  7. The Next Generation Atlas of Quasar Spectral Energy Distributions from Radio to X-Rays

    NASA Astrophysics Data System (ADS)

    Shang, Zhaohui; Brotherton, Michael S.; Wills, Beverley J.; Wills, D.; Cales, Sabrina L.; Dale, Daniel A.; Green, Richard F.; Runnoe, Jessie C.; Nemmen, Rodrigo S.; Gallagher, Sarah C.; Ganguly, Rajib; Hines, Dean C.; Kelly, Benjamin J.; Kriss, Gerard A.; Li, Jun; Tang, Baitian; Xie, Yanxia

    2011-09-01

    We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. by using high-quality data obtained with several space- and ground-based telescopes, including NASA's Great Observatories. We present an atlas of SEDs of 85 optically bright, non-blazar quasars over the electromagnetic spectrum from radio to X-rays. The heterogeneous sample includes 27 radio-quiet and 58 radio-loud quasars. Most objects have quasi-simultaneous ultraviolet-optical spectroscopic data, supplemented with some far-ultraviolet spectra, and more than half also have Spitzer mid-infrared Infrared Spectrograph spectra. The X-ray spectral parameters are collected from the literature where available. The radio, far-infrared, and near-infrared photometric data are also obtained from either the literature or new observations. We construct composite SEDs for radio-loud and radio-quiet objects and compare these to those of Elvis et al., finding that ours have similar overall shapes, but our improved spectral resolution reveals more detailed features, especially in the mid- and near-infrared.

  8. THE NEXT GENERATION ATLAS OF QUASAR SPECTRAL ENERGY DISTRIBUTIONS FROM RADIO TO X-RAYS

    SciTech Connect

    Shang Zhaohui; Li Jun; Xie Yanxia; Brotherton, Michael S.; Cales, Sabrina L.; Dale, Daniel A.; Runnoe, Jessie C.; Kelly, Benjamin J.; Wills, Beverley J.; Wills, D.; Green, Richard F.; Nemmen, Rodrigo S.; Ganguly, Rajib; Hines, Dean C.; Kriss, Gerard A.; Tang, Baitian

    2011-09-01

    We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. by using high-quality data obtained with several space- and ground-based telescopes, including NASA's Great Observatories. We present an atlas of SEDs of 85 optically bright, non-blazar quasars over the electromagnetic spectrum from radio to X-rays. The heterogeneous sample includes 27 radio-quiet and 58 radio-loud quasars. Most objects have quasi-simultaneous ultraviolet-optical spectroscopic data, supplemented with some far-ultraviolet spectra, and more than half also have Spitzer mid-infrared Infrared Spectrograph spectra. The X-ray spectral parameters are collected from the literature where available. The radio, far-infrared, and near-infrared photometric data are also obtained from either the literature or new observations. We construct composite SEDs for radio-loud and radio-quiet objects and compare these to those of Elvis et al., finding that ours have similar overall shapes, but our improved spectral resolution reveals more detailed features, especially in the mid- and near-infrared.

  9. Spectral Energy Distribution of Markarian 501: Quiescent State Versus Extreme Outburst

    NASA Astrophysics Data System (ADS)

    Acciari, V. A.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Böttcher, M.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Dickherber, R.; Duke, C.; Errando, M.; Falcone, A.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Huang, D.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Madhavan, A. S.; Maier, G.; McArthur, S.; McCann, A.; Moriarty, P.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pichel, A.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Steele, D.; Swordy, S. P.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wood, M.; Zitzer, B.; VERITAS Collaboration; Aleksić, J.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Dazzi, F.; De Angelis, A.; De Cea del Pozo, E.; De Lotto, B.; De Maria, M.; De Sabata, F.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Errando, M.; Ferenc, D.; Fonseca, M. V.; Font, L.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giavitto, G.; Godinović, N.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Kranich, D.; Krause, J.; La Barbera, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Lorenz, E.; Majumdar, P.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Struebig, J. C.; Suric, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Vankov, H.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Paneque, D.; Hayashida, M.

    2011-03-01

    The very high energy (VHE; E > 100 GeV) blazar Markarian 501 (Mrk 501) has a well-studied history of extreme spectral variability and is an excellent laboratory for studying the physical processes within the jets of active galactic nuclei. However, there are few detailed multiwavelength studies of Mrk 501 during its quiescent state, due to its low luminosity. A short-term multiwavelength study of Mrk 501 was coordinated in 2009 March, focusing around a multi-day observation with the Suzaku X-ray satellite and including γ-ray data from VERITAS, MAGIC, and the Fermi Gamma-ray Space Telescope with the goal of providing a well-sampled multiwavelength baseline measurement of Mrk 501 in the quiescent state. The results of these quiescent-state observations are compared to the historically extreme outburst of 1997 April 16, with the goal of examining variability of the spectral energy distribution (SED) between the two states. The derived broadband SED shows the characteristic double-peaked profile. We find that the X-ray peak shifts by over two orders of magnitude in photon energy between the two flux states while the VHE peak varies little. The limited shift in the VHE peak can be explained by the transition to the Klein-Nishina (KN) regime. Synchrotron self-Compton models are matched to the data and the implied KN effects are explored.

  10. Uncovering the Spectral Energy Distribution in Active Galaxies Using High Ionization Mid-Infrared Emission Lines

    NASA Technical Reports Server (NTRS)

    Melendez, M.; Kraemer, S. B.; Weaver, K. A.; Mushotzky, R. F.

    2011-01-01

    The shape of the spectral energy distribution of active galaxies in the EUV soft X-ray band (13.6 eV to 1 keV) is uncertain because obscuration by dust and gas can hamper our view of the continuum. To investigate the shape of the spectral energy distribution in this energy band, we have generated a set of photoionization models which reproduce the small dispersion found in correlations between high-ionization mid-infrared emission lines in a sample of hard X-ray selected AGN. Our calculations show that a broken power-law continuum model is sufficient to reproduce the [Ne V]14.32 microns/[Ne III], [Ne V]24.32 microns/[O IV]25.89 micron and [O IV] 25.89 microns/[Ne III] ratios, and does not require the addition of a "big bump" EUV model component. We constrain the EUV-soft X-ray slope, alpha(sub i), to be between 1.5 - 2.0 and derive a best fit of alpha(sub i) approx. 1.9 for Seyfert 1 galaxies, consistent with previous studies of intermediate redshift quasars. If we assume a blue bump model, most sources in our sample have derived temperatures between T(sub BB) = 10(exp 5.18) K to 10(exp 5.7) K, suggesting that the peak of this component spans a large range of energies extending from approx. (Lambda)600 A to > (Lambda)1900 A. In this case, the best fitting peak energy that matches the mid-infrared line ratios of Seyfert 1 galaxies occurs between approx. (Lambda)700-(Lambda)1000 A. Despite the fact that our results do not rule out the presence of an EUV bump, we conclude that our power-law model produces enough photons with energies > 4 Ry to generate the observed amount of mid-infrared emission in our sample of BAT AGN.

  11. Gamma-ray burst afterglows as probes of their host galaxies and the cosmos

    NASA Astrophysics Data System (ADS)

    Cucchiara, Antonino

    2010-12-01

    Gamma-ray Bursts (GRBs) represent the sole class of catastrophic phenomena seen over almost the entire history of the Universe. Their extreme luminosities in high energy gamma-ray radiation make them readily detectable, even with relatively small satellite-based detectors, out to the earliest cosmic epochs. Moreover, the brilliance of their fading afterglow light, routinely observed in X-ray, optical, near-infrared, and radio wavelengths, allows them to be exploited -- for hours, days, or weeks -- as cosmic lighthouses, probing the conditions of gas and dust along the line of sight, through their host galaxies and the cosmos at large. Since the November 2004 launch of Swift, this GRB-focused NASA mission has discovered more than 500 GRBs, in almost all cases reporting the burst coordinates to ground-based observers within seconds of the event. The availability of prompt burst positions from Swift, combined with promptly-reported flux measurements from instruments on Swift and an array of ground-based robotic telescopes, have enabled targeted spectroscopic campaigns that have gathered detailed observations of the young, bright afterglows of hundreds of these events. This thesis reports the results of my own efforts over the past 5 years, analyzing imaging and spectroscopic observations of Swift-detected GRBs as triggered according to my own requests, or as gathered from public data archives. In Chapter 2, I discuss our follow-up campaign for GRB090429B, one of our best "extreme redshift" (z > 8) candidates. This burst followed closely on the spectroscopicallyconfirmed z = 8.2 GRB090423, and our multiwavelength observations and SED modeling demonstrate the value and limitation of such studies, in cases where a spectroscopic redshift cannot be gathered in a timely fashion. I also address the importance of such extreme-redshift events from a cosmological perspective. In Chapter 3, I use high-resolution GRB afterglow spectra to study the properties of intervening

  12. Discharge characteristics of dielectric materials examined in mono-, dual-, and spectral energy electron charging environments

    NASA Technical Reports Server (NTRS)

    Coakley, P.; Treadway, M.; Wild, N.; Kitterer, B.

    1985-01-01

    The effects of midenergy electrons on the charge and discharge characteristics of spacecraft dielectric materials and the data base from which basic discharge models can be formulated is expanded. Thin dielectric materials were exposed to low, mid combined low and mid, and spectral energy electron environments. Three important results are presented: (1) it determined electron environments that lead to dielectric discharges at potentials less negative than -5 kV; (2) two types of discharges were identified that dominate the kinds of discharges seen; and (3) it is shown that, for the thin dielectric materials tested, the worst-case discharges observed in the various environments are similar.

  13. The NIR to UV Spectral Energy Distributions of Gamma-Ray Bright Blazars

    NASA Astrophysics Data System (ADS)

    Malmrose, Michael P.; Marscher, Alan P.; Jorstad, Svetlana G.

    2015-01-01

    In the small fraction of quasars classified as blazars, relatively unprocessed radiation from the accretion disk, known as the big blue bump (BBB) in the spectral energy distribution (SED), mixes with synchrotron radiation from the jet at optical-UV wavelengths. Decoupling of the contribution to the SED from these two components can be accomplished through the use of spectropolarimetric observations. The spectral index, αs, of the synchrotron emission is revealed from observations at Steward Observatory of the polarized flux spectrum at λ= 4000-7000 Å in the observer's frame. The BBB emission is then obtained by fitting a two-component model of the form Fν = A ναs+ B ναBBB to the full spectrum and fixing αBBB, the spectral index of the BBB, to 1/3. Another prominent emission feature of AGN is from an IR-emitting dusty molecular torus located ~1-10 pc from the central engine. The spectral signature of the dusty torus is also intertwined with synchrotron emission. Using near-IR (NIR) and optical observations with a time baseline of several years, we separate the NIR and optical SED of a number of gamma-ray bright blazars into a rapidly variable and a relatively constant component. Subtracting the former component, from synchrotron radiation, allows the hidden dust component to be revealed. We can also attempt to use the dataset to determine the variability (if any) of the the BBB and dust emission. If successful, this would allow us to determine the radiation environment encountered by electrons in the jet, important for inverse Compton models designed to explain gamma-ray production in blazars. This research has been supported in part by NASA Fermi Guest Investigator grants NNX11AQ03G and NNX11AO40G.

  14. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors

    PubMed Central

    Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2016-01-01

    The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved. PMID:27171153

  15. A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.; Snow, Martin; Harder, Jerald; Chapman, Gary; Cookson, Angela

    2015-10-01

    A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.

  16. Prompt, early and afterglow optical observations of five γ-ray bursts: GRB 100901A, GRB 100902A, GRB 100905A, GRB 100906A and GRB 101020A

    NASA Astrophysics Data System (ADS)

    Gorbovskoy, E. S.; Lipunova, G. V.; Lipunov, V. M.; Kornilov, V. G.; Belinski, A. A.; Shatskiy, N. I.; Tyurina, N. V.; Kuvshinov, D. A.; Balanutsa, P. V.; Chazov, V. V.; Kuznetsov, A.; Zimnukhov, D. S.; Kornilov, M. V.; Sankovich, A. V.; Krylov, A.; Ivanov, K. I.; Chvalaev, O.; Poleschuk, V. A.; Konstantinov, E. N.; Gress, O. A.; Yazev, S. A.; Budnev, N. M.; Krushinski, V. V.; Zalozhnich, I. S.; Popov, A. A.; Tlatov, A. G.; Parhomenko, A. V.; Dormidontov, D. V.; Senik, V.; Yurkov, V. V.; Sergienko, Yu. P.; Varda, D.; Kudelina, I. P.; Castro-Tirado, A. J.; Gorosabel, J.; Sánchez-Ramírez, R.; Jelinek, M.; Tello, J. C.

    2012-04-01

    We present the results of the prompt, early and afterglow optical observations of five γ-ray bursts (GRBs): GRB 100901A, GRB 100902A, GRB 100905A, GRB 100906A and GRB 101020A. These observations were made with the Mobile Astronomical System of TElescope-Robots in Russia (MASTER-II Net), the 1.5-m telescope of the Sierra Nevada Observatory and the 2.56-m Nordic Optical Telescope. For two sources, GRB 100901A and GRB 100906A, we detected optical counterparts and obtained light curves starting before the cessation of γ-ray emission, at 113 and 48 s after the trigger, respectively. Observations of GRB 100906A were conducted in two polarizing filters. Observations of the other three bursts gave the upper limits on the optical flux; their properties are briefly discussed. A more detailed analysis of GRB 100901A and GRB 100906A, supplemented by Swift data, provides the following results and indicates different origins for the prompt optical radiation in the two bursts. The light-curve patterns and spectral distributions suggest that there is a common production site for the prompt optical and high-energy emission in GRB 100901A. The results of the spectral fits for GRB 100901A in the range from optical to X-ray favour power-law energy distributions and a consistent value of the optical extinction in the host galaxy. GRB 100906A produced a smoothly peaking optical light curve, suggesting that the prompt optical radiation in this GRB originated in a front shock. This is supported by a spectral analysis. We have found that the Amati and Ghirlanda relations are satisfied for GRB 100906A. We obtain an upper limit on the value of the optical extinction on the host of GRB 100906A.

  17. Spectral Energy Distribution and Bolometric Luminosity of the Cool Brown Dwarf Gliese 229B

    NASA Technical Reports Server (NTRS)

    Matthews, K.; Nakajima, T.; Kulkarni, S. R.; Oppenheimer, B. R.

    1996-01-01

    Infrared broadband photometry of the cool brown dwarf Gliese 229B extending in wavelength from 0.8 to 10.5 micron is reported. These results are derived from both new data and reanalyzed, previously published data. Existing spectral data reported have been rereduced and recalibrated. The close proximity of the bright Gliese 229A to the dim Gliese 229B required the use of special techniques for the observations and also for the data analysis. We describe these procedures in detail. The observed luminosity between 0.8 and 10.5 micron is (4.9 +/- 0.6) x 10(exp -6) solar luminosity. The observed spectral energy distribution is in overall agreement with a dust-free model spectrum by Tsuji et al. for T(eff) approx. equal to 900 K. If this model is used to derive the bolometric correction, the best estimate of the bolometric luminosity is 6.4 x 10(exp -6) solar luminosity and 50% of this luminosity ties between 1 and 2.5 microns. Our best estimate of the effective temperature is 900 K. From the observed near-infrared spectrum and the spectral energy distribution, the brightness temperatures (T(sub B) are estimated. The highest, T(sub B) = 1640 K, is seen at the peak of the J band spectrum, while the lowest, T(sub B) is less than or equal to 600 K, is at 3.4 microns, which corresponds to the location of the fundamental methane band.

  18. Green chemistry-mediated synthesis of nanostructures of afterglow phosphor

    NASA Astrophysics Data System (ADS)

    Sharma, Pooja; Haranath, D.; Chander, Harish; Singh, Sukhvir

    2008-04-01

    Various nanostructures of SrAl 2O 4:Eu 2+, Dy 3+ (SAC) afterglow phosphor were prepared in a single-step reaction using a green chemistry-mediated modified combustion process. The evolution of hazardous NxOx gases during the customary combustion reaction was completely eliminated by employing an innovative complex formation route. Another fascinating feature of the process was that, a slight change in the processing conditions ensured the synthesis of either nanoparticles or nanowires. The photoluminescence spectrum of nanophosphor showed a slight blue shift in emission (˜511 nm) as compared to the bulk phosphor (˜520 nm). The afterglow (decay) profiles of SAC nanoparticles, nanowires and bulk phosphor were compared. The chemistry underlying the nanostructure synthesis and the probable afterglow mechanism were discussed.

  19. Altitudinal dependence of meteor radio afterglows measured via optical counterparts

    NASA Astrophysics Data System (ADS)

    Obenberger, K. S.; Holmes, J. M.; Dowell, J. D.; Schinzel, F. K.; Stovall, K.; Sutton, E. K.; Taylor, G. B.

    2016-09-01

    Utilizing the all-sky imaging capabilities of the first station of the Long Wavelength Array along with a host of all-sky optical cameras, we have now observed 44 optical meteor counterparts to radio afterglows. Combining these observations, we have determined the geographic positions of all 44 afterglows. Comparing the number of radio detections as a function of altitude above sea level to the number of expected bright meteors, we find a strong altitudinal dependence characterized by a cutoff below ˜90 km, below which no radio emission occurs, despite the fact that many of the observed optical meteors penetrated well below this altitude. This cutoff suggests that wave damping from electron collisions is an important factor for the evolution of radio afterglows. This finding agrees with the hypothesis that the emission is the result of electron plasma wave emission.

  20. Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows

    NASA Astrophysics Data System (ADS)

    Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal

    2014-10-01

    All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m2 mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems.

  1. Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows.

    PubMed

    Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal

    2014-10-16

    All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m(2) mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems.

  2. Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows.

    PubMed

    Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal

    2014-01-01

    All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m(2) mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems. PMID:25321890

  3. Planck Early Results. XV. Spectral Energy Distributions and Radio Continuum Spectra of Northern Extragalactic Radio Sources

    NASA Technical Reports Server (NTRS)

    Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit, A.; Berdyugin, A.; Bernard, J. P.; Bersanelli, M.; Bhatia, R.; Bonaldi, A.; Bonavera, L.; Gehrels, N.

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  4. Predicting Electron Energy Flux Using Ground-Based Multi-Spectral Auroral Imaging

    NASA Astrophysics Data System (ADS)

    Grubbs, G. A.; Samara, M.; Michell, R.; Redmon, R. J.

    2013-12-01

    High-resolution, multi-spectral auroral observations can now be routinely acquired using the Multi-spectral Observatory Of Sensitive EMCCDs (MOOSE), currently installed in Poker Flat, AK. Observations from the past 2 auroral seasons have yielded many simultaneous auroral observations in 4 different emission lines (427.8 nm, 557.7 nm, 630 nm, and 844.6 nm). From these data, the brightness of the absolute auroral emissions will be calculated. Combined with atmospheric modeling, auroral emission brightness will be used to predict the total energy flux and characteristic energy of the electrons responsible for the aurora. The theory behind this method is only developed for auroral measurements in the magnetic zenith, and therefore it is not known to what extent it can be applied off zenith. All-sky auroral image data will be examined and compared with DMSP satellite overpasses to quantify the extent to which the model can make predictions off-zenith, creating an empirical model that could then be applied to the many cases without overpasses. This will lead to large-scale 2-D maps of electron precipitation characteristics which can contribute to global ionospheric models.

  5. Incident-energy-dependent spectral weight of resonant inelastic x-ray scattering in doped cuprates

    NASA Astrophysics Data System (ADS)

    Tsutsui, Kenji; Tohyama, Takami

    2016-08-01

    We theoretically investigate the incident-photon energy ωi dependence of resonant inelastic x-ray scattering (RIXS) tuned for the Cu L edge in cuprate superconductors by using the exact diagonalization technique for a single-band Hubbard model. Depending on the value of core-hole Coulomb interaction in the intermediate state, RIXS for non-spin-flip channel shows either a ωi-dependent fluorescencelike or ωi-independent Raman-like behavior for hole doping. An analysis of x-ray absorption suggests that the core-hole Coulomb interaction is larger than on-site Coulomb interaction in the Hubbard model, resulting in a fluorescencelike behavior in RIXS consistent with recent RIXS experiments. A shift on the high-energy side of the center of spectral distribution is also predicted for electron-doped systems though spectral weight is small. Main structures in the spin-flip channel exhibit a Raman-like behavior as expected, accompanied with a fluorescencelike behavior with small intensity.

  6. VERITAS observations and spectral energy distribution of H 1426+428 BL Lac

    NASA Astrophysics Data System (ADS)

    Khassen, Y.

    2014-07-01

    The VERITAS array of 12-m atmospheric-Cherenkov telescopes in southern Arizona is one of the world's most sensitive detectors of astrophysical very high energy (VHE) γ-rays above 100 GeV. We present results from VERITAS observations of the BL Lac object H 1426+428. The VERITAS array has been monitoring this source since 2007 and has accumulated over 35 hours of data. The source was first detected in the VHE range by the Whipple 10-m γ-ray telescope in 2002 during a flaring state. It is classified as an extreme high-frequency peaked BL Lac (HBL), with the peak of the synchrotron emission lying above 100 keV, even during low states. The spectral energy distribution of H 1426+428, including contemporaneous VERITAS, Fermi-LAT, Swift XRT/UVOT and optical data, will be presented.

  7. Nonlinear spectral and lifetime management in upconversion nanoparticles by controlling energy distribution.

    PubMed

    Wang, Yu; Deng, Renren; Xie, Xiaoji; Huang, Ling; Liu, Xiaogang

    2016-03-28

    Optical tuning of lanthanide-doped upconversion nanoparticles has attracted considerable attention over the past decade because this development allows the advance of new frontiers in energy conversion, materials science, and biological imaging. Here we present a rational approach to manipulating the spectral profile and lifetime of lanthanide emission in upconversion nanoparticles by tailoring their nonlinear optical properties. We demonstrate that the incorporation of energy distributors, such as surface defects or an extra amount of dopants, into a rare-earth-based host lattice alters the decay behavior of excited sensitizers, thus markedly improving the emitters' sensitivity to excitation power. This work provides insight into mechanistic understanding of upconversion phenomena in nanoparticles and also enables exciting new opportunities of using these nanomaterials for photonic applications.

  8. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; De Pasquale, Massimiliano; Mao, Jirong; Sakamoto, Takanori; Schady, Patricia; Covino, Stefano; Fan, Yi-Zhong; Jin, Zhi-Ping; D'Avanzo, Paolo; Antonelli, Angelo; D'Elia, Valerio; Ohincarini, Guido; Fiore, Fabrizio; Pandey, Shashi Bhushan; Cobb, Bethany E.

    2012-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift Ultra Violet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3-m telescopes to construct a detailed data set extending from 86 s to approx.100,000 s after the BAT trigger. Our data covers a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.injection

  9. The origin of the plateau and late rebrightening in the afterglow of GRB 120326A

    SciTech Connect

    Hou, S. J.; Lu, J. F.; Geng, J. J.; Wang, K.; Huang, Y. F.; Dai, Z. G.; Wu, X. F.

    2014-04-20

    GRB 120326A is an unusual gamma-ray burst (GRB) that has a long plateau and a very late rebrightening in both X-ray and optical bands. The similar behavior of the optical and X-ray light curves suggests that they may share a common origin. The long plateau starts at several hundred seconds and ends at tens of thousands of seconds, and the peak time of the late rebrightening is about 30,000 s. We analyze the energy injection model by means of numerical and analytical solutions, considering both the wind environment and the interstellar medium environment for GRB afterglows. We particularly study the influence of the injection starting time, ending time, stellar wind density (or density of the circumburst environment), and injection luminosity on the shape of the afterglow light curves, respectively. In the wind model, we find that the light curve is largely affected by the parameters and that there is a 'bump' in the late stage. In the wind environment, we found that the longer the energy is injected, the more obvious the rebrightening will be. We also find that the peak time of the bump is determined by the stellar wind density. We use the late continuous injection model to interpret the unusual afterglow of GRB 120326A. The model fits the observational data well; however, we find that the timescale of the injection must be higher than 10,000 s, which implies that the timescale of the central engine activity must also be more than 10,000 s. This information can give useful constraints on the central engines of GRBs—we consider a newborn millisecond pulsar with a strong magnetic field to be the central engine. On the other hand, our results suggest that the circumburst environment of GRB 120326A is very likely a stellar wind.

  10. THE AFTERGLOW AND ENVIRONMENT OF THE SHORT GRB 111117A

    SciTech Connect

    Margutti, R.; Berger, E.; Fong, W.; Zauderer, B. A.; Soderberg, A. M.; Milisavljevic, D.; Sanders, N.; Cenko, S. B.; Greiner, J.; Cucchiara, A.

    2012-09-01

    We present multi-wavelength observations of the afterglow of the short GRB 111117A, and follow-up observations of its host galaxy. From rapid optical and radio observations, we place limits of r {approx}> 25.5 mag at {delta}t Almost-Equal-To 0.55 days and F{sub {nu}}(5.8 GHz) {approx}< 18 {mu}Jy at {delta}t Almost-Equal-To 0.50 days, respectively. However, using a Chandra observation at {delta}t Almost-Equal-To 3.0 days we locate the absolute position of the X-ray afterglow to an accuracy of 0.''22 (1{sigma}), a factor of about six times better than the Swift/XRT position. This allows us to robustly identify the host galaxy and to locate the burst at a projected offset of 1.''25 {+-} 0.''20 from the host centroid. Using optical and near-IR observations of the host galaxy we determine a photometric redshift of z = 1.3{sup +0.3}{sub -0.2}, one of the highest for any short gamma-ray burst (GRB), leading to a projected physical offset for the burst of 10.5 {+-} 1.7 kpc, typical of previous short GRBs. At this redshift, the isotropic {gamma}-ray energy is E{sub {gamma},iso} Almost-Equal-To 3.0 Multiplication-Sign 10{sup 51} erg (rest-frame 23-2300 keV) with a peak energy of E{sub pk} Almost-Equal-To 850-2300 keV (rest-frame). In conjunction with the isotropic X-ray energy, GRB 111117A appears to follow our recently reported E{sub x,iso}-E{sub {gamma},iso}-E{sub pk} universal scaling. Using the X-ray data along with the optical and radio non-detections, we find that for a blastwave kinetic energy of E{sub K,iso} Almost-Equal-To E{sub {gamma},iso} erg, the circumburst density is n{sub 0} Almost-Equal-To 3 Multiplication-Sign 10{sup -4} - 1 cm{sup -3} (for a range of {epsilon}{sub B} = 0.001-0.1). Similarly, from the non-detection of a break in the X-ray light curve at {delta}t {approx}< 3 days, we infer a minimum opening angle for the outflow of {theta}{sub j} {approx}> 3-10 Degree-Sign (depending on the circumburst density). We conclude that Chandra observations of short

  11. Spectral characteristics and meridional variations of energy transformations during the first and second special observation periods of FGGE

    NASA Technical Reports Server (NTRS)

    Kung, E. C.; Tanaka, H.

    1984-01-01

    The global features and meridional spectral energy transformation variations of the first and second special observation periods of the First Global GARP Experiment (FGGE) are investigated, together with the latitudinal distribution of the kinetic energy balance. Specific seasonal characteristics are shown by the spectral distributions of the global transformations between (1) zonal mean and eddy components of the available potential energy, (2) the zonal mean and eddy components of the kinetic energy, and (3) the available potential energy and the kinetic energy. Maximum kinetic energy production is found to occur at subtropical latitudes, with a secondary maximum at higher middle latitudes. Between these two regions, there is another region characterized by the adiabatic destruction of kinetic energy above the lower troposphere.

  12. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    PubMed

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  13. Multiwavelength observations of the energetic GRB 080810: detailed mapping of the broad-band spectral evolution

    NASA Astrophysics Data System (ADS)

    Page, K. L.; Willingale, R.; Bissaldi, E.; Postigo, A. De Ugarte; Holland, S. T.; McBreen, S.; O'Brien, P. T.; Osborne, J. P.; Prochaska, J. X.; Rol, E.; Rykoff, E. S.; Starling, R. L. C.; Tanvir, N. R.; van der Horst, A. J.; Wiersema, K.; Zhang, B.; Aceituno, F. J.; Akerlof, C.; Beardmore, A. P.; Briggs, M. S.; Burrows, D. N.; Castro-Tirado, A. J.; Connaughton, V.; Evans, P. A.; Fynbo, J. P. U.; Gehrels, N.; Guidorzi, C.; Howard, A. W.; Kennea, J. A.; Kouveliotou, C.; Pagani, C.; Preece, R.; Perley, D.; Steele, I. A.; Yuan, F.

    2009-11-01

    GRB 080810 was one of the first bursts to trigger both Swift and the Fermi Gamma-ray Space Telescope. It was subsequently monitored over the X-ray and UV/optical bands by Swift, in the optical by Robotic Optical Transient Search Experiment (ROTSE) and a host of other telescopes, and was detected in the radio by the Very Large Array. The redshift of z = 3.355 +/- 0.005 was determined by Keck/High Resolution Echelle Spectrometer (HIRES) and confirmed by RTT150 and NOT. The prompt gamma/X-ray emission, detected over 0.3-103 keV, systematically softens over time, with Epeak moving from ~600 keV at the start to ~40 keV around 100s after the trigger; alternatively, this spectral evolution could be identified with the blackbody temperature of a quasi-thermal model shifting from ~60 to ~3keV over the same time interval. The first optical detection was made at 38s, but the smooth, featureless profile of the full optical coverage implies that this is originated from the afterglow component, not from the pulsed/flaring prompt emission. Broad-band optical and X-ray coverage of the afterglow at the start of the final X-ray decay (~8ks) reveals a spectral break between the optical and X-ray bands in the range of 1015-2 × 1016Hz. The decay profiles of the X-ray and optical bands show that this break initially migrates blueward to this frequency and then subsequently drifts redward to below the optical band by ~3 × 105s. GRB 080810 was very energetic, with an isotropic energy output for the prompt component of 3 × 1053 and 1.6 × 1052 erg for the afterglow; there is no evidence for a jet break in the afterglow up to 6d following the burst. This paper is dedicated to the memory of Professor Martin Turner, who sadly passed away during its writing. Martin was an influential figure in X-ray Astronomy and an excellent PhD supervisor. He will be greatly missed. E-mail: kpa@star.le.ac.uk ‡ NASA postdoctoral program fellow.

  14. Spin-Dependent Dissociative Excitation in a Laser Pumped Afterglow.

    NASA Astrophysics Data System (ADS)

    Bohler, Christopher Lee

    The energy and spin dependence of dissociating collisions between two types of noble gas metastable atoms and cadmium dihalide molecules have been studied in a flowing afterglow apparatus. The fluorescence spectra obtained in the range of 3000-7600 A which result from the Ar( ^{3}P_2) + CdX_2 interactions indicate a dominant dissociative excitation production mechanism. On the other hand, for the He(2^3S _1) + CdX_2 collisions, there appears to be competition between dissociative excitation and other "dark" channels. The emission spectra are further used to narrow the uncertainty in the currently accepted values for the dissociation energy of the CdX _2 molecules. The Wigner spin rule (conservation of total electronic spin) was verified for these processes as shown by the dominance of final state triplet production as compared to the virtual absence of singlet spin state production. In an attempt to further study the spin dependence of the dissociative excitation process, transfer of the longitudinal component of the electronic spin from oriented He(2 ^3S_1) atoms to Cd(6 ^3S_1) atoms was monitored. These data showed a null result for the transfor of the spin component, but were limited by a 3% systematic error of the apparatus. The spin dependent measurements rely on the ability to spin-polarize the He(2^3S _1) atoms by laser optical pumping methods. Four laser materials which exhibit promising characteristics for this procedure have been studied, and the results are presented for Nd^{3+}:YAP, La_{rm 1-x}Nd _{rm x}MgAl_ {11}O_{19}, Nd^{3+}:LiNbO _3, and Nd^{3+} :Silicate fibers.

  15. Gamma-Ray Bursts and Afterglows: a Multi-Wavelength Study in the Swift Era

    NASA Astrophysics Data System (ADS)

    Yu, Y. W.

    2010-01-01

    Gamma-ray bursts (GRBs), which are generally followed by long-lasting low-frequency afterglow emission, are short and intense pulses of gamma-rays observed from the sky in arbitrary directions. In order to observe the multi-wavelength emission at the early afterglow phase and even the prompt emission phase, NASA launched the Swift satellite on Nov. 20th 2004. Swift can localize GRBs within about 10 seconds. A brief review on the recent progress in observations and theories in the Swift era is given in Chapter 1. This paper focuses on the features of the early afterglows and the multi-wavelength prompt emission. In Chapters 2 and 3, we try to explain the shallow-decaying X-ray afterglows and X-ray flares, both of which are unaccountable in the standard afterglow model. (1) It is widely accepted that the shallow decay phase indicates a continuous energy injection into the GRB blast wave, and this energy could be released from the central engine after the burst. Based on the knowledge of the evolution of a pulsar wind, we argue that the injected flow interacting with the GRB blast wave is an ultra-relativistic kinetic-energy flow (i.e., wind) rather than pure electromagnetic waves. Therefore, a relativistic wind bubble (RWB) including a pair of shocks will be formed. Our numerical calculations and the fitting results show that the emission from an RWB can well account for the X-ray shallow decay phase. (2) For the X-ray flares that are attributed to some intermediate late activities of the central engine, we analyze the detailed dynamics of late internal shocks which directly produce the flare emission. Comparing the theoretical results with the lower limits of the observational luminosities and the profiles of the flare light curves, we find some constraints on the properties of the pre-collision shells, which are directly determined by the central object. In Chapter 4, we investigate the high-energy afterglow emission during the shallow decay phase in two models, i

  16. Gamma-Ray Bursts and Afterglows: a Multi-Wavelength Study in the Swift Era

    NASA Astrophysics Data System (ADS)

    Yu, Y. W.

    2010-01-01

    Gamma-ray bursts (GRBs), which are generally followed by long-lasting low-frequency afterglow emission, are short and intense pulses of gamma-rays observed from the sky in arbitrary directions. In order to observe the multi-wavelength emission at the early afterglow phase and even the prompt emission phase, NASA launched the Swift satellite on Nov. 20th 2004. Swift can localize GRBs within about 10 seconds. A brief review on the recent progress in observations and theories in the Swift era is given in Chapter 1. This paper focuses on the features of the early afterglows and the multi-wavelength prompt emission. In Chapters 2 and 3, we try to explain the shallow-decaying X-ray afterglows and X-ray flares, both of which are unaccountable in the standard afterglow model. (1) It is widely accepted that the shallow decay phase indicates a continuous energy injection into the GRB blast wave, and this energy could be released from the central engine after the burst. Based on the knowledge of the evolution of a pulsar wind, we argue that the injected flow interacting with the GRB blast wave is an ultra-relativistic kinetic-energy flow (i.e., wind) rather than pure electromagnetic waves. Therefore, a relativistic wind bubble (RWB) including a pair of shocks will be formed. Our numerical calculations and the fitting results show that the emission from an RWB can well account for the X-ray shallow decay phase. (2) For the X-ray flares that are attributed to some intermediate late activities of the central engine, we analyze the detailed dynamics of late internal shocks which directly produce the flare emission. Comparing the theoretical results with the lower limits of the observational luminosities and the profiles of the flare light curves, we find some constraints on the properties of the pre-collision shells, which are directly determined by the central object. In Chapter 4, we investigate the high-energy afterglow emission during the shallow decay phase in two models, i

  17. SINGLE-STAR H II REGIONS AS A PROBE OF MASSIVE STAR SPECTRAL ENERGY DISTRIBUTIONS

    SciTech Connect

    Zastrow, Jordan; Oey, M. S.; Pellegrini, E. W.

    2013-06-01

    The shape of OB-star ionizing spectral energy distributions (SEDs) is a critical component in many diagnostics of galaxy and interstellar medium properties. To quantitatively examine the shape of the OB-star SED, we compare long slit observations of single-star, Large Magellanic Cloud H II regions to the predictions from CLOUDY photoionization simulations that use CoStar, TLUSTY, and WM-basic stellar atmosphere models as the ionizing source. For each atmosphere model, we run grids of H II region simulations with the effective temperature (T{sub eff}) of the star as a free parameter. The best SEDs from each atmosphere code are found by matching the predicted emission-line spectra with those observed from the nebulae. By assuming a clumpy gas distribution, all atmosphere codes are able to reproduce the observed emission lines, except at the highest energy transitions {approx}> 40 eV. Taking into account both low and high energy transitions, we find that simulations using WM-basic produce the best agreement with the observed line ratios. The rates of ionizing photons from different atmosphere models vary systematically with the relative hardness of the SEDs. However, in general the rates produced by the model SEDs, for standard log(g) = 4.0 models, are consistent with the rates derived from the H{alpha} luminosities. We find that our effective temperatures inferred from the nebular ionization balance are consistent with those predicted by conventional photospheric-based calibrations from the literature. We suggest that future spectral type to T{sub eff} calibrations can be constructed from nebular data.

  18. Nitric oxide kinetics in the afterglow of a diffuse plasma filament

    NASA Astrophysics Data System (ADS)

    Burnette, D.; Montello, A.; Adamovich, I. V.; Lempert, W. R.

    2014-08-01

    A suite of laser diagnostics is used to study kinetics of vibrational energy transfer and plasma chemical reactions in a nanosecond pulse, diffuse filament electric discharge and afterglow in N2 and dry air at 100 Torr. Laser-induced fluorescence of NO and two-photon absorption laser-induced fluorescence of O and N atoms are used to measure absolute, time-resolved number densities of these species after the discharge pulse, and picosecond coherent anti-Stokes Raman spectroscopy is used to measure time-resolved rotational temperature and ground electronic state N2(v = 0-4) vibrational level populations. The plasma filament diameter, determined from plasma emission and NO planar laser-induced fluorescence images, remains nearly constant after the discharge pulse, over a few hundred microseconds, and does not exhibit expansion on microsecond time scale. Peak temperature in the discharge and the afterglow is low, T ≈ 370 K, in spite of significant vibrational nonequilibrium, with peak N2 vibrational temperature of Tv ≈ 2000 K. Significant vibrational temperature rise in the afterglow is likely caused by the downward N2-N2 vibration-vibration (V-V) energy transfer. Simple kinetic modeling of time-resolved N, O, and NO number densities in the afterglow, on the time scale longer compared to relaxation and quenching time of excited species generated in the plasma, is in good agreement with the data. In nitrogen, the N atom density after the discharge pulse is controlled by three-body recombination and radial diffusion. In air, N, NO and O concentrations are dominated by the reverse Zel'dovich reaction, N + NO → N2 + O, and ozone formation reaction, O + O2 + M → O3 + M, respectively. The effect of vibrationally excited nitrogen molecules and excited N atoms on NO formation kinetics is estimated to be negligible. The results suggest that NO formation in the nanosecond pulse discharge is dominated by reactions of excited electronic states of nitrogen, occurring on

  19. Modeling the Multi-band Afterglow of GRB 130831A: Evidence for a Spinning-down Magnetar Dominated by Gravitational Wave Losses?

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, Y. F.; Zong, H. S.

    2016-06-01

    The X-ray afterglow of GRB 130831A shows an “internal plateau” with a decay slope of ˜0.8, followed by a steep drop at around 105 s with a slope of ˜6. After the drop, the X-ray afterglow continues with a much shallower decay. The optical afterglow exhibits two segments of plateaus separated by a luminous optical flare, followed by a normal decay with a slope basically consistent with that of the late-time X-ray afterglow. The decay of the internal X-ray plateau is much steeper than what we expect in the simplest magnetar model. We propose a scenario in which the magnetar undergoes gravitational-wave-driven r-mode instability, and the spin-down is dominated by gravitational wave losses up to the end of the steep plateau, so that such a relatively steep plateau can be interpreted as the internal emission of the magnetar wind and the sharp drop can be produced when the magnetar collapses into a black hole. This scenario also predicts an initial X-ray plateau lasting for hundreds of seconds with an approximately constant flux which is compatible with observation. Assuming that the magnetar wind has a negligible contribution in the optical band, we interpret the optical afterglow as the forward shock emission by invoking the energy injection from a continuously refreshed shock following the prompt emission phase. It is shown that our model can basically describe the temporal evolution of the multi-band afterglow of GRB 130831A.

  20. DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg{sup 2}: iPTF13bxl AND GRB 130702A

    SciTech Connect

    Singer, Leo P.; Brown, Duncan A.; Bradley Cenko, S.; Gehrels, Neil; McEnery, Julie; Kasliwal, Mansi M.; Mulchaey, John; Perley, Daniel A.; Kulkarni, S. R.; Bellm, Eric; Barlow, Tom; Cao, Yi; Horesh, Assaf; Ofek, Eran O.; Arcavi, Iair; Nugent, Peter E.; Bloom, Joshua S.; Corsi, Alessandra; Frail, Dale A.; Masci, Frank J.; and others

    2013-10-20

    We report the discovery of the optical afterglow of the γ-ray burst (GRB) 130702A, identified upon searching 71 deg{sup 2} surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt γ-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for ∼10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era.

  1. Iris: Constructing and Analyzing Spectral Energy Distributions with the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Laurino, O.; Budynkiewicz, J.; Busko, I.; Cresitello-Dittmar, M.; D'Abrusco, R.; Doe, S.; Evans, J.; Pevunova, O.

    2014-05-01

    We present Iris 2.0, the latest release of the Virtual Astronomical Observatory application for building and analyzing Spectral Energy Distributions (SEDs). With Iris, users may read in and display SEDs inspect and edit any selection of SED data, fit models to SEDs in arbitrary spectral ranges, and calculate confidence limits on best-fit parameters. SED data may be loaded into the application from VOTable and FITS files compliant with the International Virtual Observatoy Alliance interoperable data models, or retrieved directly from NED or the Italian Space Agency Science Data Center; data in non-standard formats may also be converted within the application. Users may seamlessy exchange data between Iris and other Virtual Observatoy tools using the Simple Application Messaging Protocol. Iris 2.0 also provides a tool for redshifting, interpolating, and measuring integratd fluxes, and allows simple aperture corrections for individual points and SED segments. Custom Python functions, template models and template libraries may be imported into Iris for fitting SEDs. Iris may be extended through Java plugins; users can install third-party packages, or develop their own plugin using Iris' Software Development Kit. Iris 2.0 is available for Linux and Mac OS X systems.

  2. The spectral energy distribution of compact jets powered by internal shocks

    NASA Astrophysics Data System (ADS)

    Malzac, Julien

    2014-09-01

    Internal shocks caused by fluctuations of the outflow velocity are likely to power the radio-to-IR emission of the compact jets of X-ray binaries. The dynamics of internal shocks and the resulting spectral energy distribution (SED) of the jet are very sensitive to the time-scales and amplitudes of the velocity fluctuations injected at the base of the jet. I present a new code designed to simulate the synchrotron emission of a compact jet powered by internal shocks. I also develop a semi-analytical formalism allowing one to estimate the observed SED of the jet as a function of the Power Spectral Density (PSD) of the assumed fluctuations of the Lorentz factor. I discuss the cases of a sine modulation of the Lorentz factor and Lorentz factor fluctuations with a power-law PSD shape. Independently of the details of the model, the observed nearly flat SEDs are obtained for PSDs of Lorentz factor fluctuations that are close to a flicker noise spectrum (i.e. P(f ) ∝ 1/f ). The model also presents a strong wavelength-dependent variability that is similar to that observed in these sources.

  3. Spectral energy distributions and model atmosphere parameters of the quadruple system ADS11061.

    NASA Astrophysics Data System (ADS)

    Al-Wardat, M. A.

    2002-06-01

    The spectral energy distribution between λ 3700 Å, and λ 8100 Å, of the two subsystems 41Dra and 40Dra of the multiple system ADS11061 has been introduced with a description of methodology of getting the spectra on Carl-Zeiss-Jena 1 m telescope of Special Astrophysical Observatory. The spectral type and luminosity class for each of them have been deduced and compared with earlier investigations, the B,V, and R magnitudes and B-V colour indices have been computed, the interstellar reddening of both subsystems have been calculated and an envelope around 40Dra has been suggested, model atmosphere parameters of the subsystem 40Dra' components have been derived: TeffBa =6100 degr K, TeffBb =6100 degr K, lg gBa=4.03, lg gBb=4.20, RBa=1.82R⊙, RBb=1.44R⊙, and finally the formation and evolution of the system have been discussed depending on the filament fragmentation process.

  4. THE ULTRAVIOLET-TO-MID-INFRARED SPECTRAL ENERGY DISTRIBUTION OF WEAK EMISSION LINE QUASARS

    SciTech Connect

    Lane, Ryan A.; Shemmer, Ohad; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A. E-mail: ohad@unt.edu

    2011-12-20

    We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 {<=} z {<=} 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame {approx}0.1-5 {mu}m spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line of sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.

  5. THE SPECTRAL ENERGY DISTRIBUTION OF THE CARINA NEBULA FROM FAR-INFRARED TO RADIO WAVELENGTHS

    SciTech Connect

    Salatino, M.; De Bernardis, P.; Masi, S.; Polenta, G.

    2012-03-20

    Multi-wavelength observations are necessary for understanding the physical properties of astrophysical sources. In this paper, we use observations in the far-infrared to radio range to derive the spectral energy distribution (SED) of the Carina nebula. To do this, we carefully subtract the irregularly varying diffuse emission from the Galactic plane, which can be of the order of 10% of the nebula flux at these wavelengths. We find that the far-infrared SED can be modeled as emission from a dust population with a single temperature T{sub d} = (34.5{sup +2.0}{sub -1.8}) K and with a spectral index of emissivity {alpha} = -1.37{sup +0.09}{sub -0.08}. We also find a total infrared luminosity of the nebula of (7.4{sup +2.5}{sub -1.4}) Multiplication-Sign 10{sup 6} L{sub Sun} and, assuming a single temperature of the dust, a mass of the dust of (9500{sup +4600}{sub -3500}) M{sub Sun }.

  6. A CORRELATED STUDY OF OPTICAL AND X-RAY AFTERGLOWS OF GRBs

    SciTech Connect

    Li, Liang; Ryde, Felix; Wu, Xue-Feng; Huang, Yong-Feng; Tang, Qing-Wen; Geng, Jin-Jun; Wang, Xiang-Gao; Liang, En-Wei; Liang, Yun-Feng; Zhang, Bin-Bin; Wang, Yu; Wei, Jian-Yan; Zhang, Bing E-mail: liang.li@fysik.su.se

    2015-05-20

    We study an extensive sample of 87 gamma-ray bursts (GRBs) for which there are well-sampled and simultaneous optical and X-ray light curves. We extract the cleanest possible signal of the afterglow component and compare the temporal behaviors of the X-ray light curve, observed by Swift XRT, and optical data, observed by UVOT and ground-based telescopes for each individual burst. Overall we find that 62% of the GRBs are consistent with the standard afterglow model. When more advanced modeling is invoked, up to 91% of the bursts in our sample may be consistent with the external-shock model. A large fraction of these bursts are consistent with occurring in a constant interstellar density medium (61%) while only 39% of them occur in a wind-like medium. Only nine cases have afterglow light curves that exactly match the standard fireball model prediction, having a single power-law decay in both energy bands that are observed during their entire duration. In particular, for the bursts with chromatic behavior, additional model assumptions must be made over limited segments of the light curves in order for these bursts to fully agree with the external-shock model. Interestingly, for 54% of the X-ray and 40% of the optical band observations, the end of the shallow decay (t{sup ∼−0.5}) period coincides with the jet-break (t{sup ∼−p}) time, causing an abrupt change in decay slope. The fraction of the burst that is consistent with the external-shock model is independent of the observational epochs in the rest frame of GRBs. Moreover, no cases can be explained by the cooling frequency crossing the X-ray or optical band.

  7. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  8. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  9. Afterglow processes responsible for memory effect in nitrogen

    SciTech Connect

    Pejovic, M. M.; Nesic, N. T.; Pejovic, M. M.; Zivanovic, E. N.

    2012-07-01

    The mechanisms responsible for memory effect in nitrogen at 6.6 mbars have been analysed based on experimental data of electrical breakdown time delay as a function of afterglow period. The analysis has shown that positive ions remaining from previous discharge, as well as metastable and highly vibrationally excited molecules, are responsible for memory effect in the early afterglow. These molecules lead to the formation of positive ions in mutual collisions in the afterglow. Positive ions initiate secondary electron emission from the cathode of a nitrogen-filled tube when voltage higher than static breakdown voltage is applied on the electrodes. On the other hand, N({sup 4}S) atoms have a large influence on memory effect in late afterglow. They recombine on the cathode surface forming metastable molecules, which release secondary electrons in collision with the cathode. The higher values of electrical breakdown time delay in the case of the tube with borosilicate glass walls than in the case of the tube with copper walls are a consequence of faster de-excitation of neutral active particles on the glass. Indirect confirmation of this assumption has been obtained when the tubes were irradiated with gamma radiation.

  10. The Optical Afterglow of a Short Gamma-ray Burst

    NASA Technical Reports Server (NTRS)

    Hjorth, Jens; Watson, Darach; Flynbo, Johan P.U.; Price, Paul A.; Jensen, Brian L.; Jorgensen, Uffe G.; Kubas, Daniel; Gorosabel, Javier; Jakobssonk, Pall; Sollerman, Jesper

    2005-01-01

    It has long been known that there are two classes of gamma-ray bursts (GRBs), principally distinguished by their durations. The breakthrough in our understanding of long-duration GRBs (greater than 2 seconds in duration), that ultimately linked them with energetic Type Ic supernovae, came about from the discovery of their long-lived X-ray and optical "afterglow", when precise and rapid localizations of the sources could finally be obtained. Recently, X-ray localizations have become available for short (less than 2 seconds in duration) GRBs, a hitherto elusive GRB population, that has evaded optical detection for more than thirty years. Here we report the discovery of transient optical emission (R approximately 23 mag) associated with a short GRB. This first short GRB afterglow is localized with sub-arcsecond accuracy onto the outskirts of a blue dwarf galaxy. Unless the optical and X-ray afterglow arise from different mechanisms our observations 33 h after the GRB suggest that, analogously to long GRBs, we observe synchrotron emission from ultrarelativistic ejecta (ZZZ CAN WE LIMIT GAMMA?). In contrast, we did not detect a bright supernova, as found in most nearby long GRB afterglows, which suggests a different origidstrongly constrain the nature of the short GRB progenitors.

  11. Afterglow processes responsible for memory effect in nitrogen

    NASA Astrophysics Data System (ADS)

    Pejović, M. M.; Nešić, N. T.; Pejović, M. M.; Živanović, E. N.

    2012-07-01

    The mechanisms responsible for memory effect in nitrogen at 6.6 mbars have been analysed based on experimental data of electrical breakdown time delay as a function of afterglow period. The analysis has shown that positive ions remaining from previous discharge, as well as metastable and highly vibrationally excited molecules, are responsible for memory effect in the early afterglow. These molecules lead to the formation of positive ions in mutual collisions in the afterglow. Positive ions initiate secondary electron emission from the cathode of a nitrogen-filled tube when voltage higher than static breakdown voltage is applied on the electrodes. On the other hand, N(S4) atoms have a large influence on memory effect in late afterglow. They recombine on the cathode surface forming N2(AΣ3u+) metastable molecules, which release secondary electrons in collision with the cathode. The higher values of electrical breakdown time delay in the case of the tube with borosilicate glass walls than in the case of the tube with copper walls are a consequence of faster de-excitation of neutral active particles on the glass. Indirect confirmation of this assumption has been obtained when the tubes were irradiated with gamma radiation.

  12. ON PARTICLE ACCELERATION RATE IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Sagi, Eran; Nakar, Ehud

    2012-04-10

    It is well known that collisionless shocks are major sites of particle acceleration in the universe, but the details of the acceleration process are still not well understood. The particle acceleration rate, which can shed light on the acceleration process, is rarely measured in astrophysical environments. Here, we use observations of gamma-ray burst (GRB) afterglows, which are weakly magnetized relativistic collisionless shocks in ion-electron plasma, to constrain the rate of particle acceleration in such shocks. We find, based on X-ray and GeV afterglows, an acceleration rate that is most likely very fast, approaching the Bohm limit, when the shock Lorentz factor is in the range of {Gamma} {approx} 10-100. In that case X-ray observations may be consistent with no amplification of the magnetic field in the shock upstream region. We examine the X-ray afterglow of GRB 060729, which is observed for 642 days showing a sharp decay in the flux starting about 400 days after the burst, when the shock Lorentz factor is {approx}5. We find that inability to accelerate X-ray-emitting electrons at late time provides a natural explanation for the sharp decay, and that also in that case acceleration must be rather fast, and cannot be more than a 100 times slower than the Bohm limit. We conclude that particle acceleration is most likely fast in GRB afterglows, at least as long as the blast wave is ultrarelativistic.

  13. The First Swift Ultraviolet/Optical Telescope GRB Afterglow Catalog

    NASA Astrophysics Data System (ADS)

    Roming, P. W. A.; Koch, T. S.; Oates, S. R.; Porterfield, B. L.; Vanden Berk, D. E.; Boyd, P. T.; Holland, S. T.; Hoversten, E. A.; Immler, S.; Marshall, F. E.; Page, M. J.; Racusin, J. L.; Schneider, D. P.; Breeveld, A. A.; Brown, P. J.; Chester, M. M.; Cucchiara, A.; DePasquale, M.; Gronwall, C.; Hunsberger, S. D.; Kuin, N. P. M.; Landsman, W. B.; Schady, P.; Still, M.

    2009-01-01

    We present the first Swift Ultraviolet/Optical Telescope (UVOT) gamma-ray burst (GRB) afterglow catalog. The catalog contains data from over 64,000 independent UVOT image observations of 229 GRBs first detected by Swift, the High Energy Transient Explorer 2 (HETE2), the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), and the Interplanetary Network (IPN). The catalog covers GRBs occurring during the period from 2005 January 17 to 2007 June 16 and includes ~86% of the bursts detected by the Swift Burst Alert Telescope (BAT). The catalog provides detailed burst positional, temporal, and photometric information extracted from each of the UVOT images. Positions for bursts detected at the 3σ level are provided with a nominal accuracy, relative to the USNO-B1 catalog, of ~0farcs25. Photometry for each burst is given in three UV bands, three optical bands, and a "white" or open filter. Upper limits for magnitudes are reported for sources detected below 3σ. General properties of the burst sample and light curves, including the filter-dependent temporal slopes, are also provided. The majority of the UVOT light curves, for bursts detected at the 3σ level, can be fit by a single power-law, with a median temporal slope (α) of 0.96, beginning several hundred seconds after the burst trigger and ending at ~1 × 105 s. The median UVOT v-band (~5500 Å) magnitude at 2000 s for a sample of "well"-detected bursts is 18.02. The UVOT flux interpolated to 2000 s after the burst, shows relatively strong correlations with both the prompt Swift BAT fluence, and the Swift X-ray flux at 11 hr after the trigger.

  14. GRB Orphan Afterglows in Present and Future Radio Transient Surveys

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Burlon, D.; Ghisellini, G.; Salvaterra, R.; Bernardini, M. G.; Campana, S.; Covino, S.; D'Avanzo, P.; D'Elia, V.; Melandri, A.; Murphy, T.; Nava, L.; Vergani, S. D.; Tagliaferri, G.

    2014-05-01

    Orphan Afterglows (OA) are slow transients produced by Gamma Ray Bursts seen off-axis that become visible on timescales of days/years at optical/NIR and radio frequencies, when the prompt emission at high energies (X and γ rays) has already ceased. Given the typically estimated jet opening angle of GRBs θjet ~ 3°, for each burst pointing to the Earth there should be a factor ~ 700 more GRBs pointing in other directions. Despite this, no secure OAs have been detected so far. Through a population synthesis code we study the emission properties of the population of OA at radio frequencies. OAs reach their emission peak on year-timescales and they last for a comparable amount of time. The typical peak fluxes (which depend on the observing frequency) are of few μJy in the radio band with only a few OA reaching the mJy level. These values are consistent with the upper limits on the radio flux of SN Ib/c observed at late times. We find that the OA radio number count distribution has a typical slope - 1.7 at high fluxes and a flatter ( - 0.4) slope at low fluxes with a break at a frequency-dependent flux. Our predictions of the OA rates are consistent with the (upper) limits of recent radio surveys and archive searches for radio transients. Future radio surveys like VAST/ASKAP at 1.4 GHz should detect ~ 3 × 10- 3 OA deg- 2 yr- 1, MeerKAT and EVLA at 8.4 GHz should see ~ 3 × 10- 1 OA deg- 2 yr- 1. The SKA, reaching the μJy flux limit, could see up to ~ 0.2 - 1.5 OA deg- 2 yr- 1. These rates also depend on the duration of the OA above a certain flux limit and we discuss this effect with respect to the survey cadence.

  15. Spectral Energy Distributions of 2XMM-selected AGN and VO tools

    NASA Astrophysics Data System (ADS)

    Gil-Merino, R.

    2009-07-01

    We present here how to use several programs from the Virtual Observatory in a particular science case: the construction of spectral energy distributions of a selection of active galactic nuclei from a sample of unidentified objects in the 2XMM catalogue. The study of statistical properties of different families of astronomical objects is now at hand. Due to technical development in computer facilities, more and more data are now available and accessible. It is therefore a need to build software tools that are able to handle large amount of data, launch numerous queries to different databases and analyse all those outputs on your screen. The European Virtual Observatory has developed a number of toolboxes which are designed to help in all these tasks.

  16. Advanced spectral fiber optic sensor systems and their application in energy facility monitoring

    NASA Astrophysics Data System (ADS)

    Willsch, Reinhardt; Ecke, Wolfgang; Bosselmann, Thomas; Willsch, Michael; Lindner, Eric; Bartelt, Hartmut

    2011-06-01

    Various spectral-encoded fiber optic sensor concepts and advanced system solutions for application in energy facility monitoring have been investigated. The technological maturity, high performance and reliability of multiplexed fiber Bragg grating (FBG) sensor arrays and networks for the measurement of temperature, dynamic strain, air flow, and magnetic field distributions in electric power generators increasing their efficiency will be demonstrated by selected examples of field testing under harsh environmental conditions. For high-temperature combustion monitoring in gas turbines, beside silica FBGs with enhanced temperature stability also sapphire FBGs and Fabry-Perot sensors have been tested and evaluated as well as fiber-based black-body thermal radiation sensors. Finally, the potential of FBG sensors for application in cryo-energetic facilities such as super-conductive high-power motors and experimental nuclear fusion reactors will be discussed.

  17. Spectral and energy parameters of multiband barrier-discharge KrBr excilamps

    SciTech Connect

    Avdeev, S M; Erofeev, M V; Skakun, V S; Sosnin, E A; Suslov, A I; Tarasenko, V F; Schitz, D V

    2008-07-31

    The spectral and energy characteristics of multiband barrier-discharge coaxial KrBr excilamps are studied experimentally at pressures from a few tens of Torr to 0.4 atm. It is shown that an increase in the Br{sub 2} concentration reduces the emission intensity of KrBr* molecules with respect to the emission intensity of Br{sub 2}* molecules and reduces the total emission power of the excilamp. This can be explained by the nonradiative decay of exciplex KrBr* molecules caused by their quenching by molecular bromine. The emission power and efficiency in the Kr:Br{sub 2} = 400:1 mixture at a pressure of {approx}230 Torr and a discharge gap of 8.5 mm were 4.8 W and 2.4%, respectively. (laser applications and other topics in quantum electronics)

  18. Spectral energy distributions of the brightest Palomar-Green quasars at intermediate redshifts

    NASA Technical Reports Server (NTRS)

    Tripp, Todd M.; Bechtold, Jill; Green, Richard F.

    1994-01-01

    We have combined low-dispersion International Ultraviolet Explorer (IUE) spectra with the optical/near-IR spectrophotometry of Neugebauer et al. (1987) in order to study the spectral energy distributions of seven of the brightest Palomar-Green (PG) quasars at intermediate redshifts (Z(sub em) greater than or equal to 0.9 and less than or equal to 1.5). Some of these PG quasars are barely detectable in long IUE exposures, so we have used the Gaussian Extraction (GEX) technique to maximize the signal-to-noise of the IUE data, and we have co-added all spectra available from the IUE archive for each QSO unless the ultraviolet spectra varied significantly from one exposure to the next. We have corrected the spectral energy distributions for Milky Way reddening using the observed neutral hydrogen column densities on each sight line and the gas-to-dust relation recently derived by Diplas & Savage. Six of the seven quasars are detected down to lambda much less than 700 A in the rest frame, and consequently continuum reddening due to dust in the immediate vicinity of the quasar can have a dramatic effect on the spectral energy distributions. In order to explore the possible importance of intrinsic continuum reddening, we have assembled a heuristic extinction curve which extends to lambda much less than 912 A. Using this heuristic extinction curve, we derive reasonable upper limits on the intrinsic E(B-V) for each quasar. We briefly discuss some of the implications of the derived intrinsic continuum reddening limits. We use geometrically thin accretion disk models to derive the black hole masses and accretion rates implied by the spectral energy distributions. Even if we neglect intrinsic reddening, we find that a large fraction of the quasars require super-Eddington accretion rates (which is not consistent with the thin disk assumption). Comparison of the data in this paper to a large body of data from the literature on the accretion disk M(sub BH) - M dot grid calculated

  19. Measuring of the nonlocal EDF of penning electrons by the wall electrode in the plasma afterglow

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Kapustin, Kirill; Sayfutdinov, Almaz

    2014-10-01

    In was patented ionization detector for gas analysis, based on the method of collisional electron spectroscopy (CES), which allows working at a high gas pressure. The CES method provides an opportunity to analyze energy of nonlocal electrons released during Penning ionization of atomic or molecular impurities by metastable helium atoms. In this case, the EDF of fast electrons will be narrow peaks that correspond to the energies of their appearance in Penning ionization. To realize the CES method at high (atmospheric) pressure the plasma gap must be small L < 0.1 mm. In this condition the traditional Langmuir probe is impossible to use for measuring the EDF. To overcome this difficulty in was proposed to use afterglow plasma and one of the electrodes as a measuring probe for the registration of EDF of fast penning electrons. In this paper we simulate the afterglow of argon discharge between parallel electrodes and show that EDF and electron sources of Penning ionization are determined by the first derivative of the current to the wall electrode with respect to potential. This work was supported by RSCF and SPbSU.

  20. THE UNUSUAL RADIO AFTERGLOW OF THE ULTRA-LONG GAMMA-RAY BURST GRB 130925A

    SciTech Connect

    Horesh, Assaf; Cenko, S. Bradley; Perley, Daniel A.; Kulkarni, S. R.; Hallinan, Gregg; Bellm, Eric

    2015-10-10

    GRB 130925A is one of the recent additions to the growing family of ultra-long gamma-ray bursts (GRBs; T90 ≳1000 s). While the X-ray emission of ultra-long GRBs have been studied extensively in the past, no comprehensive radio data set has been obtained so far. We report here the early discovery of an unusual radio afterglow associated with the ultra-long GRB 130925A. The radio emission peaks at low-frequencies (∼7 GHz) at early times, only 2.2 days after the burst occurred. More notably, the radio spectrum at frequencies above 10 GHz exhibits a rather steep cut-off, compared to other long GRB radio afterglows. This cut-off can be explained if the emitting electrons are either mono-energetic or originate from a rather steep, dN/dE ∝ E{sup −4}, power-law energy distribution. An alternative electron acceleration mechanism may be required to produce such an electron energy distribution. Furthermore, the radio spectrum exhibits a secondary underlying and slowly varying component. This may hint that the radio emission we observed is comprised of emission from both a reverse and a forward shock. We discuss our results in comparison with previous works that studied the unusual X-ray spectrum of this event and discuss the implications of our findings on progenitor scenarios.

  1. Synthetic infrared images and spectral energy distributions of a young low-mass stellar cluster

    NASA Astrophysics Data System (ADS)

    Kurosawa, Ryuichi; Harries, Tim J.; Bate, Matthew R.; Symington, Neil H.

    2004-07-01

    We present three-dimensional Monte Carlo radiative-transfer models of a very young (<105 yr old) low-mass (50 Msolar) stellar cluster containing 23 stars and 27 brown dwarfs. The models use the density and the stellar mass distributions from the large-scale smoothed particle hydrodynamics (SPH) simulation of the formation of a low-mass stellar cluster by Bate, Bonnell and Bromm. Using adaptive mesh refinement, the SPH density is mapped to the radiative-transfer grid without loss of resolution. The temperature of the ISM and the circumstellar dust is computed using Lucy's Monte Carlo radiative equilibrium algorithm. Based on this temperature, we compute the spectral energy distributions of the whole cluster and the individual objects. We also compute simulated far-infrared Spitzer Space Telescope (SST) images (24-, 70-, and 160-μm bands) and construct colour-colour diagrams (near-infrared HKL and mid-infrared SST bands). The presence of accretion discs around the light sources influences the morphology of the dust temperature structure on a large scale (up to several 104 au). A considerable fraction of the interstellar dust is underheated compared with a model without the accretion discs because the radiation from the light sources is blocked/shadowed by the discs. The spectral energy distribution (SED) of the model cluster with accretion discs shows excess emission at λ= 3-30 μm and λ > 500 μm, compared with that without accretion discs. While the former excess is caused by the warm dust present in the discs, the latter is caused by the presence of the underheated (shadowed) dust. Our model with accretion discs around each object shows a similar distribution of spectral index (2.2-20 μm) values (i.e. Class 0-III sources) to that seen in the ρ Ophiuchus cloud. We confirm that the best diagnostics for identifying objects with accretion discs are mid-infrared (λ= 3-10 μm) colours (e.g. SST IRAC bands) rather than HKL colours.

  2. Testing one-zone synchrotron-self-Compton models with spectral energy distributions of Mrk 421

    NASA Astrophysics Data System (ADS)

    Zhu, Qianqian; Yan, Dahai; Zhang, Pengfei; Yin, Qian-Qing; Zhang, Li; Zhang, Shuang-Nan

    2016-09-01

    We test one-zone synchrotron self-Compton (SSC) models with high-quality multiwavelength spectral energy distribution (SED) data of Mrk 421. We use Markov chain Monte Carlo (MCMC) technique to fit twelve day-scale SEDs of Mrk 421 with one-zone SSC models. Three types of electron energy distribution (EED), a log-parabola (LP) EED, a power-law log-parabola (PLLP) EED and a broken power-law (BPL) EED, are assumed in fits. We find that the one-zone SSC model with the PLLP EED provides successful fits to all the twelve SEDs. However, the one-zone SSC model with the LP and BPL EEDs fail to provide acceptable fits to the highest energy X-ray data or GeV data in several states. We therefore conclude that the one-zone SSC model works well in explaining the SEDs of Mrk 421, and the PLLP EED is preferred over the LP and BPL EEDs for Mrk 421 during the flare in March 2010. We derive magnetic field B' ˜ 0.01 G, Doppler factor δD ˜30-50, and the curvature parameter of EED r ˜ 1-10 in the model with the PLLP EED. The evolutions of model parameters are explored. The physical implications of our results are discussed.

  3. Spectral Characterizations of the Clouds and the Earth's Radiant Energy System (CERES) Thermistor Bolometers using Fourier Transform Spectrometer (FTS) Techniques

    NASA Technical Reports Server (NTRS)

    Thornhill, K. Lee; Bitting, Herbert; Lee, Robert B., III; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1998-01-01

    Fourier Transform Spectrometer (FTS) techniques are being used to characterize the relative spectral response, or sensitivity, of scanning thermistor bolometers in the infrared (IR) region (2 - >= 100-micrometers). The bolometers are being used in the Clouds and the Earth's Radiant Energy System (CERES) program. The CERES measurements are designed to provide precise, long term monitoring of the Earth's atmospheric radiation energy budget. The CERES instrument houses three bolometric radiometers, a total wavelength (0.3- >= 150-micrometers) sensor, a shortwave (0.3-5-micrometers) sensor, and an atmospheric window (8-12-micrometers) sensor. Accurate spectral characterization is necessary for determining filtered radiances for longwave radiometric calibrations. The CERES bolometers spectral response's are measured in the TRW FTS Vacuum Chamber Facility (FTS - VCF), which uses a FTS as the source and a cavity pyroelectric trap detector as the reference. The CERES bolometers and the cavity detector are contained in a vacuum chamber, while the FTS source is housed in a GN2 purged chamber. Due to the thermal time constant of the CERES bolometers, the FTS must be operated in a step mode. Data are acquired in 6 IR spectral bands covering the entire longwave IR region. In this paper, the TRW spectral calibration facility design and data measurement techniques are described. Two approaches are presented which convert the total channel FTS data into the final CERES spectral characterizations, producing the same calibration coefficients (within 0.1 percent). The resulting spectral response curves are shown, along with error sources in the two procedures. Finally, the impact of each spectral response curve on CERES data validation will be examined through analysis of filtered radiance values from various typical scene types.

  4. Spectral Energy Transfer and Dissipation of Magnetic Energy from Fluid to Kinetic Scales

    SciTech Connect

    Bowers, K.; Li, H.

    2007-01-19

    We investigate the magnetic energy transfer from the fluid to kinetic scales and dissipation processes using three-dimensional fully kinetic particle-in-cell plasma simulations. The nonlinear evolution of a sheet pinch is studied where we show that it exhibits both fluid scale global relaxation and kinetic scale collisionless reconnection at multiple resonant surfaces. The interactions among collisionless tearing modes destroy the original flux surfaces and produce stochastic fields, along with generating sheets and filaments of intensified currents. In addition, the magnetic energy is transferred from the original shear length scale both to the large scales due to the global relaxation and to the smaller, kinetic scales for dissipation. The dissipation is dominated by the thermal or pressure effect in the generalized Ohm's law, and electrons are preferentially accelerated.

  5. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum.

    PubMed

    Magdaong, Nikki M; LaFountain, Amy M; Hacking, Kirsty; Niedzwiedzki, Dariusz M; Gibson, George N; Cogdell, Richard J; Frank, Harry A

    2016-02-01

    Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer. PMID:26048106

  6. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum.

    PubMed

    Magdaong, Nikki M; LaFountain, Amy M; Hacking, Kirsty; Niedzwiedzki, Dariusz M; Gibson, George N; Cogdell, Richard J; Frank, Harry A

    2016-02-01

    Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer.

  7. Global spectral energy distributions of the Large Magellanic Cloud with interstellar dust

    NASA Astrophysics Data System (ADS)

    Kim, Sungeun; Kwon, Eunjoo; Jeong, Kyoung-Sook; Kim, Kihun; Cho, Chiyoung; Chung, Eun Jung

    2014-01-01

    The effects of dust on infrared emission vary among galaxies of different morphological types. We investigated integrated spectral energy distributions (SEDs) in infrared and submillimeter/millimeter emissions from the Large Magellanic Cloud (LMC) based on observations from the Herschel Space Observatory (HSO) and near- to mid-infrared observations from the Spitzer Space Telescope (SST). We also used IRAS and WMAP observations to constrain the SEDs and present the results of radiative transfer calculations using the spectrophotometric galaxy model. We explain the observations by using dust models with different grain size distributions in the interstellar medium of the LMC, noting that the LMC has undergone processes that differ from those in the Milky Way. We determined a spectral index and a normalization factor in the range of -3.5 to -3.45 with grain radii in the range of 1 nm-300 nm for the silicate grain and 2 nm-1 μm for the graphite grain. The best fit to the observed SED was obtained with a spectral index of -3.47, similar to the value derived by Piovan et al. (Mon. Not. R. Astron. Soc. 366(3):923, 2006a). The grain size distribution is described using a power law but with a break that is introduced below a b , where a larger exponent is used. Changing the graphite grain size distribution significantly changed the SED pattern within the observational uncertainties. Based on the SED fits to the observations from submillimeter wavelengths to infrared radiation from the LMC using GRASIL (Silva et al., Astrophys. J. 509(1):103, 1998), we obtained a reasonable set of parameter values in chemical and geometric space together with the grain size distributions (Weingartner and Draine, Astrophys. J. 548(1):296, 2001) and a modified MRN model with the LMC extinction curve (Piovan et al., Mon. Not. R. Astron. Soc. 366(3):923, 2006a). For a given set of parameters including the disc scale height, synthesis of the starlight spectrum, optical depth, escape time scale

  8. The TANAMI Multiwavelength Program: Dynamic spectral energy distributions of southern blazars

    NASA Astrophysics Data System (ADS)

    Krauß, F.; Wilms, J.; Kadler, M.; Ojha, R.; Schulz, R.; Trüstedt, J.; Edwards, P. G.; Stevens, J.; Ros, E.; Baumgartner, W.; Beuchert, T.; Blanchard, J.; Buson, S.; Carpenter, B.; Dauser, T.; Falkner, S.; Gehrels, N.; Gräfe, C.; Gulyaev, S.; Hase, H.; Horiuchi, S.; Kreikenbohm, A.; Kreykenbohm, I.; Langejahn, M.; Leiter, K.; Lovell, J. E. J.; Müller, C.; Natusch, T.; Nesci, R.; Pursimo, T.; Phillips, C.; Plötz, C.; Quick, J.; Tzioumis, A. K.; Weston, S.

    2016-06-01

    Context. Simultaneous broadband spectral and temporal studies of blazars are an important tool for investigating active galactic nuclei (AGN) jet physics. Aims: We study the spectral evolution between quiescent and flaring periods of 22 radio-loud AGN through multiepoch, quasi-simultaneous broadband spectra. For many of these sources these are the first broadband studies. Methods: We use a Bayesian block analysis of Fermi/LAT light curves to determine time ranges of constant flux for constructing quasi-simultaneous spectral energy distributions (SEDs). The shapes of the resulting 81 SEDs are described by two logarithmic parabolas and a blackbody spectrum where needed. Results: The peak frequencies and luminosities agree well with the blazar sequence for low states with higher luminosity implying lower peak frequencies. This is not true for sources in high states. The γ-ray photon index in Fermi/LAT correlates with the synchrotron peak frequency in low and intermediate states. No correlation is present in high states. The black hole mass cannot be determined from the SEDs. Surprisingly, the thermal excess often found in FSRQs at optical/UV wavelengths can be described by blackbody emission and not an accretion disk spectrum. Conclusions: The so-called harder-when-brighter trend, typically seen in X-ray spectra of flaring blazars, is visible in the blazar sequence. Our results for low and intermediate states, as well as the Compton dominance, are in agreement with previous results. Black hole mass estimates using recently published parameters are in agreement with some of the more direct measurements. For two sources, estimates disagree by more than four orders of magnitude, possibly owing to boosting effects. The shapes of the thermal excess seen predominantly in flat spectrum radio quasars are inconsistent with a direct accretion disk origin. Tables of the fluxes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or

  9. Star formation relations and CO spectral line energy distributions across the J-ladder and redshift

    SciTech Connect

    Greve, T. R.; Leonidaki, I.; Xilouris, E. M.; Weiß, A.; Henkel, C.; Zhang, Z.-Y.; Van der Werf, P.; Meijerink, R.; Aalto, S.; Armus, L.; Díaz-Santos, T.; Evans, A. S.; Fischer, J.; Gao, Y.; González-Alfonso, E.; Harris, A.; Naylor, D. A.; Smith, H. A.; Spaans, M.; and others

    2014-10-20

    We present FIR [50-300 μm]–CO luminosity relations (i.e., log L{sub FIR}=αlog L{sub CO}{sup ′}+β) for the full CO rotational ladder from J = 1-0 up to J = 13-12 for a sample of 62 local (z ≤ 0.1) (Ultra) Luminous Infrared Galaxies (LIRGs; L {sub IR[8-1000} {sub μm]} > 10{sup 11} L {sub ☉}) using data from Herschel SPIRE-FTS and ground-based telescopes. We extend our sample to high redshifts (z > 1) by including 35 submillimeter selected dusty star forming galaxies from the literature with robust CO observations, and sufficiently well-sampled FIR/submillimeter spectral energy distributions (SEDs), so that accurate FIR luminosities can be determined. The addition of luminous starbursts at high redshifts enlarge the range of the FIR–CO luminosity relations toward the high-IR-luminosity end, while also significantly increasing the small amount of mid-J/high-J CO line data (J = 5-4 and higher) that was available prior to Herschel. This new data set (both in terms of IR luminosity and J-ladder) reveals linear FIR–CO luminosity relations (i.e., α ≅ 1) for J = 1-0 up to J = 5-4, with a nearly constant normalization (β ∼ 2). In the simplest physical scenario, this is expected from the (also) linear FIR–(molecular line) relations recently found for the dense gas tracer lines (HCN and CS), as long as the dense gas mass fraction does not vary strongly within our (merger/starburst)-dominated sample. However, from J = 6-5 and up to the J = 13-12 transition, we find an increasingly sublinear slope and higher normalization constant with increasing J. We argue that these are caused by a warm (∼100 K) and dense (>10{sup 4} cm{sup –3}) gas component whose thermal state is unlikely to be maintained by star-formation-powered far-UV radiation fields (and thus is no longer directly tied to the star formation rate). We suggest that mechanical heating (e.g., supernova-driven turbulence and shocks), and not cosmic rays, is the more likely source of energy for

  10. Star Formation Relations and CO Spectral Line Energy Distributions across the J-ladder and Redshift

    NASA Astrophysics Data System (ADS)

    Greve, T. R.; Leonidaki, I.; Xilouris, E. M.; Weiß, A.; Zhang, Z.-Y.; van der Werf, P.; Aalto, S.; Armus, L.; Díaz-Santos, T.; Evans, A. S.; Fischer, J.; Gao, Y.; González-Alfonso, E.; Harris, A.; Henkel, C.; Meijerink, R.; Naylor, D. A.; Smith, H. A.; Spaans, M.; Stacey, G. J.; Veilleux, S.; Walter, F.

    2014-10-01

    We present FIR [50-300 μm]-CO luminosity relations (i.e., log L_FIR = α log L\\prime _CO + β) for the full CO rotational ladder from J = 1-0 up to J = 13-12 for a sample of 62 local (z <= 0.1) (Ultra) Luminous Infrared Galaxies (LIRGs; L IR[8-1000 μm] > 1011 L ⊙) using data from Herschel SPIRE-FTS and ground-based telescopes. We extend our sample to high redshifts (z > 1) by including 35 submillimeter selected dusty star forming galaxies from the literature with robust CO observations, and sufficiently well-sampled FIR/submillimeter spectral energy distributions (SEDs), so that accurate FIR luminosities can be determined. The addition of luminous starbursts at high redshifts enlarge the range of the FIR-CO luminosity relations toward the high-IR-luminosity end, while also significantly increasing the small amount of mid-J/high-J CO line data (J = 5-4 and higher) that was available prior to Herschel. This new data set (both in terms of IR luminosity and J-ladder) reveals linear FIR-CO luminosity relations (i.e., α ~= 1) for J = 1-0 up to J = 5-4, with a nearly constant normalization (β ~ 2). In the simplest physical scenario, this is expected from the (also) linear FIR-(molecular line) relations recently found for the dense gas tracer lines (HCN and CS), as long as the dense gas mass fraction does not vary strongly within our (merger/starburst)-dominated sample. However, from J = 6-5 and up to the J = 13-12 transition, we find an increasingly sublinear slope and higher normalization constant with increasing J. We argue that these are caused by a warm (~100 K) and dense (>104 cm-3) gas component whose thermal state is unlikely to be maintained by star-formation-powered far-UV radiation fields (and thus is no longer directly tied to the star formation rate). We suggest that mechanical heating (e.g., supernova-driven turbulence and shocks), and not cosmic rays, is the more likely source of energy for this component. The global CO spectral line energy

  11. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF MARKARIAN 421: THE MISSING PIECE OF ITS SPECTRAL ENERGY DISTRIBUTION

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Bastieri, D.; Bonamente, E.; Bouvier, A.; Brigida, M.; Bruel, P. E-mail: anita.reimer@uibk.ac.at E-mail: justin.finke@nrl.navy.mil

    2011-08-01

    We report on the {gamma}-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) {gamma}-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index {Gamma} = 1.78 {+-} 0.02 and average photon flux F(> 0.3 GeV) = (7.23 {+-} 0.16) x 10{sup -8} ph cm{sup -2} s{sup -1}. Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor {approx}3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in {gamma}-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.

  12. Fermi Large Area Telescope Observations of Markarian 421: The Missing Piece of its Spectral Energy Distribution

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Escande, L.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fuhrmann, L.; Fukazawa, Y.; Fukuyama, T.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Georganopoulos, M.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Max-Moerbeck, W.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pavlidou, V.; Pearson, T. J.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Readhead, A.; Reimer, A.; Reimer, O.; Reyes, L. C.; Richards, J. L.; Ritz, S.; Roth, M.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stawarz, Ł.; Stevenson, M.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wehrle, A. E.; Winer, B. L.; Wood, K. S.; Yang, Z.; Yatsu, Y.; Ylinen, T.; Zensus, J. A.; Ziegler, M.; Fermi LAT Collaboration; Aleksić, J.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Dazzi, F.; de Angelis, A.; De Cea del Pozo, E.; Delgado Mendez, C.; De Lotto, B.; De Maria, M.; De Sabata, F.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giavitto, G.; Godinovi, N.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Kranich, D.; Krause, J.; La Barbera, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; López, M.; Lorenz, E.; Majumdar, P.; Makariev, E.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, J.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, T.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Struebig, J. C.; Suric, T.; Takalo, L. O.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Vankov, H.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Villata, M.; Raiteri, C.; Aller, H. D.; Aller, M. F.; Chen, W. P.; Jordan, B.; Koptelova, E.; Kurtanidze, O. M.; Lähteenmäki, A.; McBreen, B.; Larionov, V. M.; Lin, C. S.; Nikolashvili, M. G.; Reinthal, R.; Angelakis, E.; Capalbi, M.; Carramiñana, A.

    2011-08-01

    We report on the γ-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) γ-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Γ = 1.78 ± 0.02 and average photon flux F(> 0.3 GeV) = (7.23 ± 0.16) × 10-8 ph cm-2 s-1. Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor ~3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in γ-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.

  13. A frequency selective bolometer camera for measuring millimeter spectral energy distributions

    NASA Astrophysics Data System (ADS)

    Logan, Daniel William

    2009-06-01

    Bolometers are the most sensitive detectors for measuring millimeter and submillimeter wavelength astrophysical signals. Cameras comprised of arrays of bolometers have already made significant contributions to the field of astronomy. A challenge for bolometer cameras is obtaining observations at multiple wavelengths. Traditionally, observing in multiple bands requires a partial disassembly of the instrument to replace bandpass filters, a task which prevents immediate spectral interrogation of a source. More complex cameras have been constructed to observe in several bands using beam splitters and dichroic filters, but the added complexity leads to physically larger instruments with reduced efficiencies. The SPEctral Energy Distribution camera (SPEED) is a new type of bolometer camera designed to efficiently observe in multiple wavebands without the need for excess bandpass filters and beam splitters. SPEED is a ground-based millimeter-wave bolometer camera designed to observe at 2.1, 1.3, 1.1, and 0.85 mm simultaneously. SPEED makes use of a new type of bolometer, the frequency selective bolometer (FSB), to observe all of the wavebands within each of the camera's four pixels. FSBs incorporate frequency selective dipole surfaces as absorbing elements allowing each detector to absorb a single, narrow band of radiation and pass all other radiation with low loss. Each FSB also contains a superconducting transition-edge sensor (TES) that acts as a sensitive thermistor for measuring the temperature of the FSB. This thesis describes the development of the SPEED camera and FSB detectors. The design of the detectors used in the instrument is described as well as the the general optical performance of frequency selective dipole surfaces. Laboratory results of both the optical and thermal properties of millimeter- wave FSBs are also presented. The SPEED instrument and its components are highlighted and the optical design of the optics which couple SPEED to the Heinrich Hertz

  14. The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Dale, Daniel A.; Helou, George; Contursi, Alessandra; Silbermann, Nancy A.; Kolhatkar, Sonali

    2001-03-01

    We present a new phenomenological model for the spectral energy distribution of normal star-forming galaxies between 3 and 1100 μm. A sequence of realistic galaxy spectra are constructed from a family of dust emission curves assuming a power-law distribution of dust mass over a wide range of interstellar radiation fields. For each interstellar radiation field heating intensity, we combine emission curves for large and very small grains and aromatic feature carriers. The model is constrained by IRAS and ISOCAM broadband photometric and ISOPHOT spectrophotometric observations for our sample of 69 normal galaxies; the model reproduces well the empirical spectra and infrared color trends. These model spectra allow us to determine the infrared energy budget for normal galaxies and in particular to translate far-infrared fluxes into total (bolometric) infrared fluxes. The 20-42 μm range appears to show the most significant growth in relative terms as the activity level increases, suggesting that the 20-42 μm continuum may be the best dust emission tracer of current star formation in galaxies. The redshift dependence of infrared color-color diagrams and the far-infrared-to-radio correlation for galaxies are also explored.

  15. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  16. Spectral Analysis of Submesoscale Energy Cascades Using Subtropical North Atlantic Sea Surface Temperature Fields

    NASA Astrophysics Data System (ADS)

    Iskin, E.; Schloesser, F.; Cornillon, P. C.

    2014-12-01

    Mixing parameterizations of current climate models could be improved by a better understanding of energy cascades in the submesoscale ocean (1 - 10 km). This study uses spectral analysis to compare energy cascades in two different data sets that resolve processes of about 1 km scale. The first data set consists of 20 years of in situ measurements from an acoustic Doppler current profiler (ADCP, temperature and velocity) and about 10 years of in situ data from a thermosalinograph (TSG, temperature and salinity) both mounted on the Oleander, a container vessel that makes weekly trips from New Jersey to Bermuda. The second data set consists of global sea surface skin temperature data from the Visible-Infrared Imager-Radiometer Suite (VIIRS) mounted on the Soumi-NPP NASA spacecraft. The slopes of the ADCP and TSG potential energy spectra are between -2.4 and -2.6, the similarity suggesting they represent the same physical processes. Because the TSG produces higher resolution data than the ADCP, the TSG energy spectrum better resolves processes at scales < 10 km. When separated by region, the TSG energy spectra have different slopes in three distinct regions along the Oleander track: on the continental shelf and in the Gulf Stream the slopes are about -2.7, and in the Sargasso Sea the slope is about -2.5. All slopes determined from the temperature structure functions for the same regions are between 1.0 and 1.3, with the Sargasso Sea slope being the lowest of the four (the three separated regions and the entire Oleander track). In theory, the energy spectrum slope (n) and the structure function slope (p) should be related by n = p + 1 if the underlying physical processes are both isotropic and homogeneous. The deviations from theory may result from failure of this assumption and/or from the contribution of multiple processes to the spectra, which are combined differently for structure functions than for energy spectra. Of interest here is that our estimates show

  17. The Giant Flare From SGR 1806-20 And Its Radio Afterglow

    SciTech Connect

    Taylor, G.B.; Granot, J.; /KIPAC, Menlo Park

    2006-09-26

    The multi-wavelength observations of the 2004 December 27 Giant Flare (GF) from SGR 1806-20 and its long-lived radio afterglow are briefly reviewed. The GF appears to have been produced by a dramatic reconfiguration of the magnetic field near the surface of the neutron star, possibly accompanied by fractures in the crust. The explosive release of over 10{sup 46} erg (isotropic equivalent) powered a one-sided mildly relativistic outflow. The outflow produced a new expanding radio nebula, that is still visible over a year after the GF. Also considered are the constraints on the total energy in the GF, the energy and mass in the outflow, and on the external density, as well as possible implications for short {gamma}-ray bursts and potential signatures in high energy neutrinos, photons, or cosmic rays. Some possible future observations of this and other GFs are briefly discussed.

  18. Applying an accurate spherical model to gamma-ray burst afterglow observations

    NASA Astrophysics Data System (ADS)

    Leventis, K.; van der Horst, A. J.; van Eerten, H. J.; Wijers, R. A. M. J.

    2013-05-01

    We present results of model fits to afterglow data sets of GRB 970508, GRB 980703 and GRB 070125, characterized by long and broad-band coverage. The model assumes synchrotron radiation (including self-absorption) from a spherical adiabatic blast wave and consists of analytic flux prescriptions based on numerical results. For the first time it combines the accuracy of hydrodynamic simulations through different stages of the outflow dynamics with the flexibility of simple heuristic formulas. The prescriptions are especially geared towards accurate description of the dynamical transition of the outflow from relativistic to Newtonian velocities in an arbitrary power-law density environment. We show that the spherical model can accurately describe the data only in the case of GRB 970508, for which we find a circumburst medium density n ∝ r-2. We investigate in detail the implied spectra and physical parameters of that burst. For the microphysics we show evidence for equipartition between the fraction of energy density carried by relativistic electrons and magnetic field. We also find that for the blast wave to be adiabatic, the fraction of electrons accelerated at the shock has to be smaller than 1. We present best-fitting parameters for the afterglows of all three bursts, including uncertainties in the parameters of GRB 970508, and compare the inferred values to those obtained by different authors.

  19. Afterglows, Redshifts, and Properties of Swift Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Berger, E.; Kulkarni, S. R.; Fox, D. B.; Soderberg, A. M.; Harrison, F. A.; Nakar, E.; Kelson, D. D.; Gladders, M. D.; Mulchaey, J. S.; Oemler, A.; Dressler, A.; Cenko, S. B.; Price, P. A.; Schmidt, B. P.; Frail, D. A.; Morrell, N.; Gonzalez, S.; Krzeminski, W.; Sari, R.; Gal-Yam, A.; Moon, D.-S.; Penprase, B. E.; Jayawardhana, R.; Scholz, A.; Rich, J.; Peterson, B. A.; Anderson, G.; McNaught, R.; Minezaki, T.; Yoshii, Y.; Cowie, L. L.; Pimbblet, K.

    2005-11-01

    We present optical, near-IR, and radio follow-up of 16 Swift bursts, including our discovery of nine afterglows and a redshift determination for three. These observations, supplemented by data from the literature, provide an afterglow recovery rate of 52% in the optical/near-IR, much higher than in previous missions (BeppoSAX, HETE-2, INTEGRAL, and IPN). The optical/near-IR afterglows of Swift events are on average 1.8 mag fainter at t=12 hr than those of previous missions. The X-ray afterglows are similarly fainter than those of pre-Swift bursts. In the radio the limiting factor is the VLA threshold, and the detection rate for Swift bursts is similar to that for past missions. The redshift distribution of pre-Swift bursts peaked at z~1, whereas the six Swift bursts with measured redshifts are distributed evenly between 0.7 and 3.2. From these results we conclude that (1) the pre-Swift distributions were biased in favor of bright events and low-redshift events, (2) the higher sensitivity and accurate positions of Swift result in a better representation of the true burst redshift and brightness distributions (which are higher and dimmer, respectively), and (3) ~10% of the bursts are optically dark, as a result of a high redshift and/or dust extinction. We remark that the apparent lack of low-redshift, low-luminosity Swift bursts and the lower event rate than prelaunch estimates (90 vs. 150 per year) are the result of a threshold that is similar to that of BATSE. In view of these inferences, afterglow observers may find it advisable to make significant changes in follow-up strategies of Swift events. The faintness of the afterglows means that large telescopes should be employed as soon as the burst is localized. Sensitive observations in RIz and near-IR bands will be needed to discriminate between a typical z~2 burst with modest extinction and a high-redshift event. Radio observations will be profitable for a small fraction (~10%) of events. Finally, we suggest that

  20. 40 CFR Table E-2 to Subpart E of... - Spectral Energy Distribution and Permitted Tolerance for Conducting Radiative Tests

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Permitted Tolerance for Conducting Radiative Tests E Table E-2 to Subpart E of Part 53 Protection of... Reference Methods and Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 Pt. 53, Subpt. E, Table E-2 Table E-2 to Subpart E of Part 53—Spectral Energy Distribution and Permitted Tolerance...

  1. 40 CFR Table E-2 to Subpart E of... - Spectral Energy Distribution and Permitted Tolerance for Conducting Radiative Tests

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Permitted Tolerance for Conducting Radiative Tests E Table E-2 to Subpart E of Part 53 Protection of... Reference Methods and Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 Pt. 53, Subpt. E, Table E-2 Table E-2 to Subpart E of Part 53—Spectral Energy Distribution and Permitted Tolerance...

  2. Implication of the Observable Spectral Cutoff Energy Evolution in XTE J1550-564

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational appearances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow examination of the photon upscattering under different accretion regimes. We revisit of RXTE data collected from the black hole X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high energy cutoff of the power law part of the spectrum. For the 1998 outburst the Iran- sition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy which then showed a sharp reversal to a clear increasing trend during the further evolution towards the very high and high-soft states. However, the 2000 outburst showed only the decreasing part of this pattern. Notably, the photon indexes corresponding to the cutoff increase for the 1998 event are much higher than the index values reached during the 2000 rise transition. We attribute this difference in the cutoff' energy behav- for to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization in photon upscattering. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions the bulk motion takes a leading role in boosting the input soft photons. Monte Carlo simulations of the The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational apperances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow

  3. Detection of gallbladder stones by dual-energy spectral computed tomography imaging

    PubMed Central

    Chen, An-Liang; Liu, Ai-Lian; Wang, Sheng; Liu, Jing-Hong; Ju, Ye; Sun, Mei-Yu; Liu, Yi-Jun

    2015-01-01

    AIM: To evaluate the detectability of gallbladder stones by dual-energy spectral computed tomography (CT) imaging. METHODS: Totally 217 patients with surgically confirmed gallbladder stones were retrospectively analyzed who underwent single-source dual-energy CT scanning from August 2011 to December 2013. Polychromatic images were acquired. And post-processing software was used to reconstruct monochromatic (40 keV and 140 keV) images, and calcium-lipid pair-wise base substance was selected to acquire calcium base images and lipid base images. The above 5 groups of images were evaluated by two radiologists separately with 10-year experience in CT image reading. In the 5 groups of images, the cases in the positive group and negative group were counted and then the detection rate was calculated. The inter-observer agreement on the scoring results was analyzed by Kappa test, and the scoring results were analyzed by Wilcoxon test, with P < 0.05 indicating that the difference was statistically significant. The stone detection results of the 5 groups of images were analyzed by χ2 test. RESULTS: There was good inter-observer agreement (κ = 0.772). In 217 patients with gallbladder stones, there was a statistically significant difference in stone visualization between spectral images (40 keV, 140 keV, calcium base and lipid base images) and polychromatic images (P < 0.05). 40 keV monochromatic images were better than 140 keV monochromatic images (4.90 ± 0.35 vs 4.53 ± 1.15, P < 0.05), and calcium base images were superior to lipid base images (4.91 ± 0.43 vs 4.77 ± 0.63, P < 0.05), but there was no statistically significant difference between 40 keV monochromatic images and calcium base images (4.90 ± 0.35 vs 4.91 ± 0.43, P > 0.05). In 217 gallbladder stone patients, there were 21, 3, 28, 5 and 12 negative stone cases in polychromatic images, 40 keV images, 140 keV images, calcium base images and lipid base images, respectively, and the differences among the five

  4. Measurement of energy contrast of amplified ultrashort pulses using cross-polarized wave generation and spectral interferometry.

    PubMed

    Iliev, Marin; Meier, Amanda K; Galloway, Benjamin; Adams, Daniel E; Squier, Jeff A; Durfee, Charles G

    2014-07-28

    We present a method using spectral interferometry (SI) to characterize a pulse in the presence of an incoherent background such as amplified spontaneous emission (ASE). The output of a regenerative amplifier is interfered with a copy of the pulse that has been converted using third-order cross-polarized wave generation (XPW). The ASE shows as a pedestal background in the interference pattern. The energy contrast between the short-pulse component and the ASE is retrieved. The spectra of the interacting beams are obtained through an improvement to the self-referenced spectral interferometry (SRSI) analysis. PMID:25089416

  5. Analysis and Visualization of Multiwavelength Spectral Energy Distributions in the NASA/IPAC Extragalactic Database (NED)

    NASA Astrophysics Data System (ADS)

    Mazzarella, Joseph M.; Madore, Barry F.; Bennett, Judy; Corwin, Harold; Helou, George; Kelly, Anne; Schmitz, Marion; Skiff, Brian

    2002-12-01

    The NASA/IPAC Extragalactic Database (NED,http://ned.ipac.caltech.edu/) currently contains over 4.5 million photometric measurements covering the electromagnetic spectrum from gamma rays through radio wavelengths for objects that are being cross-correlated among major sky surveys (e.g., SDSS, 2MASS, IRAS, NVSS, FIRST) and thousands of smaller, but unique and important, catalogs and journal articles. The ability to retrieve photometric data (including uncertainties, aperture information, and references) and display spectral energy distributions (SEDs) for individual objects has been available in NED for six years. In this paper we summarize recent enhancements that enable construction of large panchromatic data sets to facilitate multi-dimensional photometric analysis. The database can now be queried for samples of objects that meet flux constraints at any wavelength(e.g., objects with any available 20cm flux, or objects with fν10μm] > 5.0Jy). The ability to utilize criteria involving flux ratios (e.g., objects with fν[20cm]/fν[60μm] > 0.5) is under development. Such queries can be jointly combined with additional constraints on sky area, redshifts, object types, or sample membership, and the data are output with consistent physical units required for comparative analysis. Some results derived from fused photometric data in NED are presented to highlight the large number and diversity of available SEDs.

  6. What Shapes the Far-infrared Spectral Energy Distributions of Galaxies?

    NASA Astrophysics Data System (ADS)

    Safarzadeh, Mohammadtaher; Hayward, Christopher C.; Ferguson, Henry C.; Somerville, Rachel S.

    2016-02-01

    To explore the connection between the global physical properties of galaxies and their far-infrared (FIR) spectral energy distributions (SEDs), we study the variation in the FIR SEDs of a set of 51 hydrodynamically simulated galaxies, both mergers and isolated systems representative of low- and high-redshift galaxies, that are generated by performing dust radiative transfer in post-processing. We study the FIR SEDs using principal component (PC) analysis, and find that 97% of the variance in the sample can be explained by two PCs. The first PC characterizes the wavelength of the peak of the FIR SED, and the second encodes the breadth of the SED. We find that the coefficients of both PCs can be predicted well using a double power law in terms of the IR luminosity and dust mass, which suggests that these two physical properties are the primary determinants of galaxies’ FIR SED shapes. Incorporating galaxy sizes does not significantly improve our ability to predict the FIR SEDs. Our results suggest that the observed redshift evolution in the effective dust temperature at a fixed IR luminosity is not driven by geometry: the SEDs of z∼ 2-3 ultraluminous IR galaxies (ULIRGs) are cooler than those of local ULIRGs, not because the high-redshift galaxies are more extended, but rather because they have higher dust masses at fixed IR luminosity. Finally, based on our simulations, we introduce a two-parameter set of SED templates that depend on both IR luminosity and dust mass.

  7. Spectral energy analysis of locally resonant nanophononic metamaterials by molecular simulations

    NASA Astrophysics Data System (ADS)

    Honarvar, Hossein; Hussein, Mahmoud I.

    2016-02-01

    A nanophononic metamaterial is a new type of nanostructured material that features an array, or a forest, of intrinsically distributed resonating substructures. Each substructure exhibits numerous local resonances, each of which may hybridize with the phonon dispersion of the underlying host material, causing significant reductions in the group velocities and consequently a reduction in the lattice thermal conductivity. In this Rapid Communication, molecular dynamics simulations are utilized to investigate both the dynamics and the thermal transport properties of a nanophononic metamaterial configuration consisting of a freely suspended silicon membrane with an array of silicon nanopillars standing on the surface. The simulations yield results consistent with earlier lattice-dynamics-based predictions which showed a reduction in the thermal conductivity due to the presence of the local resonators. Using a spectral energy density approach, in which only simulation data are utilized and no a priori information on the nanostructure resonant phonon modes is provided, we show direct evidence of the existence of resonance hybridizations as an inherent mechanism contributing to the slowing down of thermal transport in the host medium.

  8. Modelling the spectral energy distribution of the red giant in RS Ophiuchi: evidence for irradiation

    NASA Astrophysics Data System (ADS)

    Pavlenko, Ya. V.; Kaminsky, B.; Rushton, M. T.; Evans, A.; Woodward, C. E.; Helton, L. A.; O'Brien, T. J.; Jones, D.; Elkin, V.

    2016-02-01

    We present an analysis of optical and infrared spectra of the recurrent nova RS Oph obtained during between 2006 and 2009. The best fit to the optical spectrum for 2006 September 28 gives Teff = 3900 K for log g = 2.0, while for log g = 0.0 we find Teff = 4700 K, and a comparison with template stellar spectra provides Teff ˜ 4500 K. The observed spectral energy distribution (SED), and the intensities of the emission lines, vary on short (≲1 d) time-scales, due to disc variability. We invoke a simple one-component model for the accretion disc, and a model with a hot boundary layer, with high (˜3.9 × 10-6 M⊙ yr-1) and low (˜2 × 10-8 M⊙ yr-1) accretion rates, respectively. Fits to the accretion disc-extracted infrared spectrum (2008 July 15) yield effective temperatures for the red giant of {T_eff}= 3800 ± 100 K (log g = 2.0) and {T_eff}= 3700 ± 100 K (log g = 0.0). Furthermore, using a more sophisticated approach, we reproduced the optical and infrared SEDs of the red giant in the RS Oph system with a two-component model atmosphere, in which 90 per cent of the surface has Teff = 3600 K and 10 per cent has Teff = 5000 K. Such structure could be due to irradiation of the red giant by the white dwarf.

  9. SEDEBLEND: a new method for deblending spectral energy distributions in confused imaging

    NASA Astrophysics Data System (ADS)

    MacKenzie, Todd P.; Scott, Douglas; Swinbank, Mark

    2016-11-01

    For high-redshift submillimetre or millimetre sources detected with single-dish telescopes, interferometric follow-up has shown that many are multiple submillimetre galaxies blended together. Confusion-limited Herschel observations of such targets are also available, and these sample the peak of their spectral energy distribution (SED) in the far-infrared. Many methods for analysing these data have been adopted, but most follow the traditional approach of extracting fluxes before model SEDs are fit, which has the potential to erase important information on degeneracies among fitting parameters and glosses over the intricacies of confusion noise. Here, we adapt the forward-modelling method that we originally developed to disentangle a high-redshift strongly lensed galaxy group, in order to tackle this general problem in a more statistically rigorous way, by combining source deblending and SED fitting into the same procedure. We call this method `SEDeblend'. As an application, we derive constraints on far-infrared luminosities and dust temperatures for sources within the ALMA follow-up of the LABOCA Extended Chandra Deep Field South Submillimetre Survey. We find an average dust temperature for an 870-μm-selected sample of (33.9 ± 2.4) K for the full survey. When selection effects of the sample are considered, we find no evidence that the average dust temperature evolves with redshift for sources with redshifts greater than about 1.5, when compared to those with redshifts between 0.1 and 1.5.

  10. SURVEY DESIGN FOR SPECTRAL ENERGY DISTRIBUTION FITTING: A FISHER MATRIX APPROACH

    SciTech Connect

    Acquaviva, Viviana; Gawiser, Eric; Bickerton, Steven J.; Grogin, Norman A.; Guo Yicheng; Lee, Seong-Kook

    2012-04-10

    The spectral energy distribution (SED) of a galaxy contains information on the galaxy's physical properties, and multi-wavelength observations are needed in order to measure these properties via SED fitting. In planning these surveys, optimization of the resources is essential. The Fisher Matrix (FM) formalism can be used to quickly determine the best possible experimental setup to achieve the desired constraints on the SED-fitting parameters. However, because it relies on the assumption of a Gaussian likelihood function, it is in general less accurate than other slower techniques that reconstruct the probability distribution function (PDF) from the direct comparison between models and data. We compare the uncertainties on SED-fitting parameters predicted by the FM to the ones obtained using the more thorough PDF-fitting techniques. We use both simulated spectra and real data, and consider a large variety of target galaxies differing in redshift, mass, age, star formation history, dust content, and wavelength coverage. We find that the uncertainties reported by the two methods agree within a factor of two in the vast majority ({approx}90%) of cases. If the age determination is uncertain, the top-hat prior in age used in PDF fitting to prevent each galaxy from being older than the universe needs to be incorporated in the FM, at least approximately, before the two methods can be properly compared. We conclude that the FM is a useful tool for astronomical survey design.

  11. AGN Spectral Energy Distributions of GLAST Telescope Network Program Objects II

    NASA Astrophysics Data System (ADS)

    Adkins, Jeff; Lacy, Mark; Rapp, Steve; Stefaniak, Linda

    2006-03-01

    The Gamma-Ray Large Area Space Telescope (GLAST) has a proposed observing list that includes AGNs and Polars bright enough to be observed optically by amateurs and students. This observing list is maintained by the "GLAST Telescope Network" (GTN) and includes a number of objects that have yet to be observed by the Spitzer Space Telescope. In the first year of the Spitzer Teacher Observing Program, our project observed one of these objects (4C 29.45) with the Spitzer MIPS and the IRAC instruments as well as ground based instruments. These observations were used to determine its Spectral Energy Distribution (SED), which was compared to a model of disk emission in order to determine if there was a component of the SED due to synchrotron radiation induced by the jets. In this proposal we will observe another target from the list and expand our efforts to create simultaneous observations through radio telescopes, optical telescopes (large and small), and other instruments as the opportunity arises.

  12. AGN Spectral Energy Distribution of GLAST Telescope Network Program Object 4C 29.45

    NASA Astrophysics Data System (ADS)

    Adkins, J.; Stefaniak, L.; Rapp, S.; Hinckley, B.; Lacy, M.

    2006-06-01

    The Gamma-Ray Large Area Space Telescope (GLAST) to be launched in 2006 has a proposed observing list that includes AGNs and Polars bright enough to be observed optically by amateurs and students. This observing list is maintained by the GLAST Telescope Network (GTN) and includes a number of objects that have yet to be observed by the Spitzer Space Telescope. Our project observed one of these objects, 4C 29.45, with the Spitzer MIPS and the IRAC instruments and also using ground based telescopes. Observations were made in seven infrared bands with Spitzer. Additional observations made from the ground by students, amateur astronomers, and small college observatories in R,V, and I were nearly simultaneous with the Spitzer observations. We have used this data to construct the Spectral Energy Distribution (SED) of 4C 29.45. We compare these data to models of the dust emission from the torus, sychrotron emission from the radio core, and thermal emission from the accretion disk to determine the relative importance of the different emission mechanisms in this object as a function of wavelength.

  13. Evaluation of a spectral subtraction strategy to suppress reverberant energy in cochlear implant devices.

    PubMed

    Kokkinakis, Kostas; Runge, Christina; Tahmina, Qudsia; Hu, Yi

    2015-07-01

    The smearing effects of room reverberation can significantly impair the ability of cochlear implant (CI) listeners to understand speech. To ameliorate the effects of reverberation, current dereverberation algorithms focus on recovering the direct sound from the reverberated signal by inverse filtering the reverberation process. This contribution describes and evaluates a spectral subtraction (SS) strategy capable of suppressing late reflections. Late reflections are the most detrimental to speech intelligibility by CI listeners as reverberation increases. By tackling only the late part of reflections, it is shown that users of CI devices can benefit from the proposed strategy even in highly reverberant rooms. The proposed strategy is also compared against an ideal reverberant (binary) masking approach. Speech intelligibility results indicate that the proposed SS solution is able to suppress additive reverberant energy to a degree comparable to that achieved by an ideal binary mask. The added advantage is that the SS strategy proposed in this work can allow for a potentially real-time implementation in clinical CI processors.

  14. COASTING EXTERNAL SHOCK IN WIND MEDIUM: AN ORIGIN FOR THE X-RAY PLATEAU DECAY COMPONENT IN SWIFT GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Shen Rongfeng; Matzner, Christopher D. E-mail: matzner@astro.utoronto.ca

    2012-01-01

    The plateaus observed in about one half of the early X-ray afterglows are the most puzzling feature in gamma-ray bursts (GRBs) detected by Swift. By analyzing the temporal and spectral indices of a large X-ray plateau sample, we find that 55% can be explained by external, forward shock synchrotron emission produced by a relativistic ejecta coasting in a {rho}{proportional_to}r{sup -2}, wind-like medium; no energy injection into the shock is needed. After the ejecta collects enough medium and transitions to the adiabatic, decelerating blast wave phase, it produces the post-plateau decay. For those bursts consistent with this model, we find an upper limit for the initial Lorentz factor of the ejecta, {Gamma}{sub 0} {<=} 46({epsilon}{sub e}/0.1){sup -0.24}({epsilon}{sub B}/0.01){sup 0.17}; the isotropic equivalent total ejecta energy is E{sub iso} {approx} 10{sup 53}({epsilon}{sub e}/0.1){sup -1.3}({epsilon}{sub B}/0.01){sup -0.09}(t{sub b} /10{sup 4} s) erg, where {epsilon}{sub e} and {epsilon}{sub B} are the fractions of the total energy at the shock downstream that are carried by electrons and the magnetic field, respectively, and t{sub b} is the end of the plateau. Our finding supports Wolf-Rayet stars as the progenitor stars of some GRBs. It raises intriguing questions about the origin of an intermediate-{Gamma}{sub 0} ejecta, which we speculate is connected to the GRB jet emergence from its host star. For the remaining 45% of the sample, the post-plateau decline is too rapid to be explained in the coasting-in-wind model, and energy injection appears to be required.

  15. Effect of secondary emission on the argon plasma afterglow with large dust density

    SciTech Connect

    Denysenko, I. B.; Azarenkov, N. A.; Burmaka, G. P.; Stefanović, I.

    2015-02-15

    A zero-dimensional, space-averaged model for argon plasma afterglow with large dust density is developed. In the model, three groups of electrons in the plasma afterglow are assumed: (i) thermal electrons with Maxwellian distribution, (ii) energetic electrons generated by metastable-metastable collisions (metastable pooling), and (iii) secondary electrons generated at collisions of ions with the electrodes, which have sufficiently large negative voltages in the afterglow. The model calculates the time-dependencies for electron densities in plasma afterglow based on experimental decay times for metastable density and electrode bias. The effect of secondary emission on electron density in the afterglow is estimated by varying secondary emission yields. It is found that this effect is less important than metastable pooling. The case of dust-free plasma afterglow is considered also, and it is found that in the afterglow the effect of secondary emission may be more important than metastable pooling. The secondary emission may increase thermal electron density n{sub e} in dust-free and dusty plasma afterglows on a few ten percentages. The calculated time dependencies for n{sub e} in dust-free and dusty plasma afterglows describe well the experimental results.

  16. Plastic Damping of Alfvén Waves in Magnetar Flares and Delayed Afterglow Emission

    NASA Astrophysics Data System (ADS)

    Li, Xinyu; Beloborodov, Andrei M.

    2015-12-01

    Magnetar flares generate Alfvén waves bouncing in the closed magnetosphere with energy up to ∼ {10}46 erg. We show that on a timescale of 10 ms the waves are transmitted into the star and form a compressed packet of high energy density. This packet strongly shears the stellar crust and initiates a plastic flow, heating the crust and melting it hundreds of meters below the surface. A fraction of the deposited plastic heat is eventually conducted to the stellar surface, contributing to the surface afterglow months to years after the flare. A large fraction of heat is lost to neutrino emission or conducted into the core of the neutron star.

  17. Spectroscopic Observations of the Bright Afterglow of GRB021004

    NASA Astrophysics Data System (ADS)

    Harrison, Fiona

    2001-09-01

    One of the holy grails of gamma-ray burst research is to detect X-ray line signatures from an afterglow with high statistical significance. Of all possible observations, this perhaps offers the best chance of constraining the GRB mechanism and environment, and could provide the "smoking gun" signature connecting GRBs to massive stellar deaths. In order to accomplish this, we know long observations within one day of the event are necessary.

  18. DISCOVERY OF SMOOTHLY EVOLVING BLACKBODIES IN THE EARLY AFTERGLOW OF GRB 090618: EVIDENCE FOR A SPINE–SHEATH JET?

    SciTech Connect

    Basak, Rupal; Rao, A. R. E-mail: arrao@tifr.res.in

    2015-10-20

    GRB 090618 is a bright gamma-ray burst (GRB) with multiple pulses. It shows evidence of thermal emission in the initial pulses as well as in the early afterglow phase. Because high-resolution spectral data from the Swift/X-ray Telescope (XRT) are available for the early afterglow, we investigate the shape and evolution of the thermal component in this phase using data from the Swift/Burst Alert Telescope (BAT), the Swift/XRT, and the Fermi/Gamma-ray Burst Monitor detectors. An independent fit to the BAT and XRT data reveals two correlated blackbodies with monotonically decreasing temperatures. Hence, we investigated the combined data with a model consisting of two blackbodies and a power law (2BBPL), a model suggested for several bright GRBs. We elicit the following interesting features of the 2BBPL model: (1) the same model is applicable from the peak of the last pulse in the prompt emission to the afterglow emission, (2) the ratio of temperatures and the fluxes of the two blackbodies remains constant throughout the observations, (3) the blackbody temperatures and fluxes show a monotonic decrease with time, with the BB fluxes dropping about a factor of two faster than that of the power-law (PL) emission, and (4) attributing the blackbody emission to photospheric emissions, we find that the photospheric radii increase very slowly with time, and the lower-temperature blackbody shows a larger emitting radius than that of the higher-temperature blackbody. We find some evidence that the underlying shape of the nonthermal emission is a cutoff power law rather than a PL. We sketch a spine–sheath jet model to explain our observations.

  19. Spectral Modeling of Residual Stress and Stored Elastic Strain Energy in Thermal Barrier Coatings

    SciTech Connect

    Donegan, Sean; Rolett, Anthony

    2013-12-31

    Solutions to the thermoelastic problem are important for characterizing the response under temperature change of refractory systems. This work extends a spectral fast Fourier transform (FFT) technique to analyze the thermoelastic behavior of thermal barrier coatings (TBCs), with the intent of probing the local origins of failure in TBCs. The thermoelastic FFT (teFFT) approach allows for the characterization of local thermal residual stress and strain fields, which constitute the origins of failure in TBC systems. A technique based on statistical extreme value theory known as peaks-over-threshold (POT) is developed to quantify the extreme values ("hot spots") of stored elastic strain energy (i.e., elastic energy density, or EED). The resolution dependence of the teFFT method is assessed through a sensitivity study of the extreme values in EED. The sensitivity study is performed both for the local (point-by-point) eld distributions as well as the grain scale eld distributions. A convergence behavior to a particular distribution shape is demonstrated for the local elds. The grain scale fields are shown to exhibit a possible convergence to a maximum level of EED. To apply the teFFT method to TBC systems, 3D synthetic microstructures are created to approximate actual TBC microstructures. The morphology of the grains in each constituent layer as well as the texture is controlled. A variety of TBC materials, including industry standard materials and potential future materials, are analyzed using the teFFT. The resulting hot spots are quantified using the POT approach. A correlation between hot spots in EED and interface rumpling between constituent layers is demonstrated, particularly for the interface between the bond coat (BC) and the thermally grown oxide (TGO) layer.

  20. The Late Afterglow and Host Galaxy of GRB 990712.

    PubMed

    Hjorth; Holland; Courbin; Dar; Olsen; Scodeggio

    2000-05-10

    We present deep Hubble Space Telescope (HST) imaging, as well as ground-based imaging and spectroscopy, of the optical afterglow associated with the long-duration gamma-ray burst GRB 990712 and its host galaxy. The data were obtained 48-123 days after the burst occurred. The magnitudes of the host (R=21.9, V=22.5) and optical afterglow (R=25.4, V=25.8, 47.7 days after the burst) favor a scenario in which the optical light follows a pure power-law decay with an index of alpha approximately -1.0. We find no evidence for a contribution from a supernova like SN 1998bw. This suggests that either there are multiple classes of long-duration gamma-ray bursts or that the peak luminosity of the supernova was more than 1.5 mag fainter than SN 1998bw. The HST images and EFOSC2 spectra indicate that the gamma-ray burst was located in a bright, extended feature (possibly a star-forming region) 1.4 kpc from the nucleus of a 0.2L*B galaxy at z=0.434, possibly a Seyfert 2 galaxy. The late-time afterglow and host galaxy of GRB 990712 bear some resemblance to those of GRB 970508. PMID:10813669

  1. Spectral computed tomography for quantitative decomposition of vulnerable plaques using a dual-energy technique: a Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Jo, B. D.; Park, S.-J.; Kim, H. M.; Kim, D. H.; Kim, H.-J.

    2016-02-01

    A spectral computed tomography (CT) system based on an energy-resolved photon-counting Cadmium Zinc Telluride (CZT) detector with a dual energy technique can provide spectral information and can possibly distinguish between two or more materials with a single X-ray exposure using energy thresholds. This work provides the potential for three-material decomposition of vulnerable plaques using two inverse fitting functions. Additionally, there exists the possibility of using gold nanoparticles as a contrast agent for the spectral CT system in conjunction with a CZT photon-counting detector. In this simulation study, we used fan beam CT geometry that consisted of a 90 kVp X-ray spectrum and performed calculations by using the SpekCal program (REAL Software, Inc.) with Monte Carlo simulations. A basic test phantom was imaged with the spectral CT system for the calibration and decomposition process. This phantom contained three different materials, including lipid, iodine and gold nanoparticles, with six holes 3 mm in diameter. In addition to reducing pile-up and charge sharing effect, the photon counting detector was considered an ideal detector. Then, the accuracy of material decomposition techniques with two inverse fitting functions were evaluated between decomposed images and reference images in terms of root mean square error (RMSE). The results showed that decomposed images had a good volumetric fraction for each material, and the RMSE between the measured and true volumes of lipid, iodine and gold nanoparticle fractions varied from 12.51% to 1.29% for inverse fitting functions. The study indicated that spectral CT in conjunction with a CZT photon-counting detector in conjunction with a dual energy technique can be used to identifying materials and may be a promising modality for quantifying material properties of vulnerable plaques.

  2. The Interplay of the NIR to UV Spectral Energy Distributions of Gamma-Ray Bright Blazars

    NASA Astrophysics Data System (ADS)

    Malmrose, Michael P.; Marscher, Alan P.; Jorstad, Svetlana G.

    2014-06-01

    The small fraction of AGN in which a relativistic jet is aligned with the observer’s lineof sight are classified as blazars. Radiation from the accretion disk and perhaps the jetis absorbed and reprocessed through various structures inside the AGN, and subsequentlyre-emitted across a broad range of frequencies. In some blazars, relatively unprocessedradiation from the accretion disk is visible in the optical-UV portion of the spectrum. Inspectral energy distributions (SEDs) this produces the so-called Big Blue Bump (BBB).Measuring the strength of the BBB emission is complicated by the fact that the synchrotronemission from the relativistic jet is also prominent in the same portion of the SED.We separate the unpolarized BBB emission of a sample of blazars from the polarized synchrotron emission present in the optical-UV emission through the use spectropolarimetric observations spanning λ= 4000-7000 Å in the observer’s frame. With the assumption that the BBB emission is unpolarized, the spectral index of the synchrotron emission, αs, is determined from the polarized flux spectrum. The strength of the BBB then follows by fitting a two component model of the form Fν = A ν-αs + B ν-αBBB , where αBBB is the spectral index of the BBB and is set to 5/3. We combine these observations with a time series of photometric observations spanning the NIR (J, H, and Ks ) and the optical (u‧ , g‧ , r‧ , i‧ , and z‧ ) spectrum. This yields a time baseline ofseveral years for a sample of gamma-ray bright blazars to determine the variability of the BBB and to trace its impact on both the NIR emission from the torus, as well as any effect on gamma-ray production. Any such variability indicates that the structure of the accretion disc evolves appreciably on time scales of few years. Coupling of BBB emission with dust emission will help determine the size scale of the inner-most radius of the torus. This is needed to determine the radiation environment of the torus

  3. The radio spectral energy distribution of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α < -0.8; %), but we also find ultra-steep SEDs (α < -1.3; %). In particular, IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by

  4. Summary of the workshop on gamma-ray burst afterglows at the 34th COSPAR meeting

    NASA Astrophysics Data System (ADS)

    Craig Wheeler, J.

    2004-01-01

    A summary is given of the presentations at the COSPAR workshop on γ-ray bursts with some personal commentary on the contributions, the SN/GRB connection, and on the role of magnetic fields in γ-ray bursts and their afterglows. Of special interest were the accumulated arguments for strong collimation and associated reduction in the total required energy for γ-ray bursts. Significant discussion was also devoted to the issues associated with iron and metal lines in X-ray spectra. It is important to note that some of the afterglows seem to require ambient densities ≪1 g cm -3, rather incompatible with a massive star environment. Of associated difficulty is the fact that few, if any, afterglows seem consistent with the r-2 wind expected for a massive star model. There are reasons to think that if γ-ray bursts are associated with supernovae they are of Type Ic. This suggests that any wind present might be rich in carbon and oxygen, not hydrogen or helium. If γ-ray bursts are narrowly collimated, then the burst is only probing a small portion of any wind, perhaps just that time-dependent and isotropic structure directly along the rotation axis. The characteristics of "hypernovae" may be the result of orientation effects in a mildly inhomogeneous set of progenitors, rather than requiring an excessive total energy or luminosity. The recent event GRB 021004 provided a rich photometric and spectroscopic record and perhaps the most direct evidence yet for the association of a specific γ-ray burst with a massive star progenitor. If the magnetic field plays a significant role in launching a relativistic γ-ray burst jet from within a collapsing star, then the magnetic field may also play a role in the propagation, collimation, and stability of that jet within and beyond the star. The magneto-rotational instability (MRI) can operate under conditions of moderate rotation. This means that the MRI will be at work generating strong fields exponentially rapidly even as the

  5. Bolometric correction and spectral energy distribution of cool stars in Galactic clusters

    NASA Astrophysics Data System (ADS)

    Buzzoni, A.; Patelli, L.; Bellazzini, M.; Pecci, F. Fusi; Oliva, E.

    2010-04-01

    We have investigated the relevant trend of the bolometric correction (BC) at the cool-temperature regime of red giant stars and its possible dependence on stellar metallicity. Our analysis relies on a wide sample of optical-infrared spectroscopic observations, along the 3500 Å ==> 2.5μm wavelength range, for a grid of 92 red giant stars in five (three globular + two open) Galactic clusters, along the full metallicity range covered by the bulk of the stars, -2.2 <= [Fe/H] <= +0.4. Synthetic BVRCIC JHK photometry from the derived spectral energy distributions allowed us to obtain robust temperature (Teff) estimates for each star, within +/-100K or less. According to the appropriate temperature estimate, blackbody extrapolation of the observed spectral energy distribution allowed us to assess the unsampled flux beyond the wavelength limits of our survey. For the bulk of our red giants, this fraction amounted to 15 per cent of the total bolometric luminosity, a figure that raises up to 30 per cent for the coolest targets (Teff <~ 3500K). Overall, we obtain stellar Mbol values with an internal accuracy of a few percentages. Even neglecting any correction for lost luminosity etc., we would be overestimating Mbol by <~0.3mag, in the worst cases. Making use of our new data base, we provide a set of fitting functions for the V and K BC versus Teff and versus (B - V) and (V - K) broad-band colours, valid over the interval 3300 <= Teff <= 5000K, especially suited for red giants. The analysis of the BCV and BCK estimates along the wide range of metallicity spanned by our stellar sample shows no evident drift with [Fe/H]. Things may be different for the B-band correction, where the blanketing effects are more and more severe. A drift of Δ(B - V) versus [Fe/H] is in fact clearly evident from our data, with metal-poor stars displaying a `bluer' (B - V) with respect to the metal-rich sample, for fixed Teff. Our empirical bolometric corrections are in good overall agreement with

  6. CO SPECTRAL LINE ENERGY DISTRIBUTIONS OF INFRARED-LUMINOUS GALAXIES AND ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Papadopoulos, Padeli P.; Van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M. E-mail: pvdwerf@strw.leidenuniv.n E-mail: xilouris@astro.noa.g

    2010-06-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L {sub IR}(8-1000 {mu}m) {approx}> 10{sup 11} L {sub sun}), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L {sub IR}>10{sup 12} L {sub sun}), and two powerful local active galactic nuclei (AGNs)-the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293-using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C{sup +} line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these

  7. BayeSED: A General Approach to Fitting the Spectral Energy Distribution of Galaxies

    NASA Astrophysics Data System (ADS)

    Han, Yunkun; Han, Zhanwen

    2014-11-01

    We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large Ks -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has been performed for the first time. We found that the 2003 model by Bruzual & Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the Ks -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.

  8. Spectral Energy Distribution Models for Low-Luminosity Active Galactic Nuclei in LINERs

    NASA Technical Reports Server (NTRS)

    Nemmen, Rodrigo S.; Storchi-Bergmann, Thaisa; Eracleous, Michael

    2012-01-01

    Low-luminosity active galactic nuclei (LLAGNs) represent the bulk of the AGN population in the present-day universe and they trace the low-level accreting supermassive black holes. In order to probe the accretion and jet physical properties in LLAGNs as a class, we model the broadband radio to X-rays spectral energy distributions (SEDs) of 21 LLAGNs in low-ionization nuclear emission-line regions (LINERs) with a coupled accretion-jet model. The accretion flow is modeled as an inner ADAF outside of which there is a truncated standard thin disk. We find that the radio emission is severely underpredicted by ADAF models and is explained by the relativistic jet. The origin of the X-ray radiation in most sources can be explained by three distinct scenarios: the X-rays can be dominated by emission from the ADAF, or the jet, or the X-rays can arise from a jet-ADAF combination in which both components contribute to the emission with similar importance. For 3 objects both the jet and ADAF fit equally well the X-ray spectrum and can be the dominant source of X-rays whereas for 11 LLAGNs a jet-dominated model accounts better than the ADAF-dominated model for the data. The individual and average SED models that we computed can be useful for different studies of the nuclear emission of LLAGNs. From the model fits, we estimate important parameters of the central engine powering LLAGNs in LINERs, such as the mass accretion rate and the mass-loss rate in the jet and the jet power - relevant for studies of the kinetic feedback from jets.

  9. BayeSED: A GENERAL APPROACH TO FITTING THE SPECTRAL ENERGY DISTRIBUTION OF GALAXIES

    SciTech Connect

    Han, Yunkun; Han, Zhanwen E-mail: zhanwenhan@ynao.ac.cn

    2014-11-01

    We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large K{sub s} -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has been performed for the first time. We found that the 2003 model by Bruzual and Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the K{sub s} -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.

  10. Surface Temperature and Synthetic Spectral Energy Distributions for Rotationally Deformed Stars

    NASA Astrophysics Data System (ADS)

    Lovekin, C. C.; Deupree, R. G.; Short, C. I.

    2006-05-01

    Extreme deformation of a stellar surface, such as that produced by rapid rotation, causes the surface temperature and gravity to vary significantly with latitude. Thus, the spectral energy distribution (SED) of a nonspherical star could differ significantly from the SED of a spherical star with the same average temperature and luminosity. Calculation of the SED of a deformed star is often approximated as a composite of several spectra, each produced by a plane-parallel model of given effective temperature and gravity. The weighting of these spectra over the stellar surface, and hence the inferred effective temperature and luminosity, will be dependent on the inclination of the rotation axis of the star with respect to the observer, as well as the temperature and gravity distribution on the stellar surface. Here we calculate the surface conditions of rapidly rotating stars with a two-dimensional stellar structure and evolution code and compare the effective temperature distribution to that predicted by von Zeipel's law. We calculate the composite spectrum for a deformed star by interpolating within a grid of intensity spectra of plane-parallel model atmospheres and integrating over the surface of the star. This allows us to examine the SED for effects of inclination and degree of deformation based on the two-dimensional models. Using this method, we find that the deduced variation of effective temperature with inclination can be as much as 3000 K for an early B star, depending on the details of the underlying model. As a test case for our models, we examine the rapidly rotating star Achernar (α Eri, HD 10144). Recent interferometric observations have determined the star to be quite oblate. Combined with the ultraviolet SED measured by the OAO 2 satellite, we are able to make direct comparisons with observations.

  11. The imprint of rapid star formation quenching on the spectral energy distributions of galaxies

    NASA Astrophysics Data System (ADS)

    Ciesla, L.; Boselli, A.; Elbaz, D.; Boissier, S.; Buat, V.; Charmandaris, V.; Schreiber, C.; Béthermin, M.; Baes, M.; Boquien, M.; De Looze, I.; Fernández-Ontiveros, J. A.; Pappalardo, C.; Spinoglio, L.; Viaene, S.

    2016-01-01

    In high density environments, the gas content of galaxies is stripped, leading to a rapid quenching of their star formation activity. This dramatic environmental effect, which is not related to typical passive evolution, is generally not taken into account in the star formation histories (SFHs) usually assumed to perform spectral energy distribution (SED) fitting of these galaxies, yielding a poor fit of their stellar emission and, consequently, biased estimate of the star formation rate (SFR). In this work, we aim at reproducing this rapid quenching using a truncated delayed SFH that we implemented in the SED fitting code CIGALE. We show that the ratio between the instantaneous SFR and the SFR just before the quenching (rSFR) is well constrained as long as rest-frame UV data are available. This SED modeling is applied to the Herschel Reference Survey (HRS) containing isolated galaxies and sources falling in the dense environment of the Virgo cluster. The latter are Hi-deficient because of ram pressure stripping. We show that the truncated delayed SFH successfully reproduces their SED, while typical SFH assumptions fail. A good correlation is found between rSFR and Hi-def, the parameter that quantifies the gas deficiency of cluster galaxies, meaning that SED fitting results can be used to provide a tentative estimate of the gas deficiency of galaxies for which Hi observations are not available. The HRS galaxies are placed on the SFR-M∗ diagram showing that the Hi-deficient sources lie in the quiescent region, thus confirming previous studies. Using the rSFR parameter, we derive the SFR of these sources before quenching and show that they were previously on the main sequence relation. We show that the rSFR parameter is also recovered well for deeply obscured high redshift sources, as well as in the absence of IR data. SED fitting is thus a powerful tool for identifying galaxies that underwent a rapid star formation quenching.

  12. Spectral Energy Distribution Analysis of Class I and Class II FU Orionis Stars

    NASA Astrophysics Data System (ADS)

    Gramajo, Luciana V.; Rodón, Javier A.; Gómez, Mercedes

    2014-06-01

    FU Orionis stars (FUors) are eruptive pre-main sequence objects thought to represent quasi-periodic or recurring stages of enhanced accretion during the low-mass star-forming process. We characterize the sample of known and candidate FUors in a homogeneous and consistent way, deriving stellar and circumstellar parameters for each object. We emphasize the analysis in those parameters that are supposed to vary during the FUor stage. We modeled the spectral energy distributions of 24 of the 26 currently known FUors, using the radiative transfer code of Whitney et al. We compare our models with those obtained by Robitaille et al. for Taurus class II and I sources in quiescence periods by calculating the cumulative distribution of the different parameters. FUors have more massive disks: we find that ~80% of the disks in FUors are more massive than any Taurus class II and I sources in the sample. Median values for the disk mass accretion rates are ~10-7 M ⊙ yr-1 versus ~10-5 M ⊙ yr-1 for standard young stellar objects (YSOs) and FUors, respectively. While the distributions of envelope mass accretion rates for class I FUors and standard class I objects are similar, FUors, on average, have higher envelope mass accretion rates than standard class II and class I sources. Most FUors (~70%) have envelope mass accretion rates above 10-7 M ⊙ yr-1. In contrast, 60% of the classical YSO sample has an accretion rate below this value. Our results support the current scenario in which changes experimented by the circumstellar disk explain the observed properties of these stars. However, the increase in the disk mass accretion rate is smaller than theoretically predicted, although in good agreement with previous determinations.

  13. Spectral energy distribution analysis of class I and class II FU Orionis stars

    SciTech Connect

    Gramajo, Luciana V.; Gómez, Mercedes; Rodón, Javier A. E-mail: mercedes@oac.uncor.edu

    2014-06-01

    FU Orionis stars (FUors) are eruptive pre-main sequence objects thought to represent quasi-periodic or recurring stages of enhanced accretion during the low-mass star-forming process. We characterize the sample of known and candidate FUors in a homogeneous and consistent way, deriving stellar and circumstellar parameters for each object. We emphasize the analysis in those parameters that are supposed to vary during the FUor stage. We modeled the spectral energy distributions of 24 of the 26 currently known FUors, using the radiative transfer code of Whitney et al. We compare our models with those obtained by Robitaille et al. for Taurus class II and I sources in quiescence periods by calculating the cumulative distribution of the different parameters. FUors have more massive disks: we find that ∼80% of the disks in FUors are more massive than any Taurus class II and I sources in the sample. Median values for the disk mass accretion rates are ∼10{sup –7} M {sub ☉} yr{sup –1} versus ∼10{sup –5} M {sub ☉} yr{sup –1} for standard young stellar objects (YSOs) and FUors, respectively. While the distributions of envelope mass accretion rates for class I FUors and standard class I objects are similar, FUors, on average, have higher envelope mass accretion rates than standard class II and class I sources. Most FUors (∼70%) have envelope mass accretion rates above 10{sup –7} M {sub ☉} yr{sup –1}. In contrast, 60% of the classical YSO sample has an accretion rate below this value. Our results support the current scenario in which changes experimented by the circumstellar disk explain the observed properties of these stars. However, the increase in the disk mass accretion rate is smaller than theoretically predicted, although in good agreement with previous determinations.

  14. ON THE FORMATION OF Lyalpha EMISSION FROM RESONANTLY SCATTERED CONTINUUM PHOTONS OF GAMMA-RAY BURST's AFTERGLOW

    SciTech Connect

    Xu Wen; Wu Xiangping

    2010-02-20

    The continuum spectrum of gamma-ray burst's (GRB) afterglow at Lyalpha wavelength is known to be otherwise featureless except for the existence of a pair of smooth damping wings. Resonant scattering of photons with the ambient neutral hydrogen around the GRB may alter this picture. We study the formation and evolution of the spectral imprint of these resonantly scattered photons in the context of GRB's afterglow. Based on an analytic model that includes photons that are scattered only once, as well as a complete treatment of all the scatterings using Monte Carlo simulations, we are able to calculate the spectrum and luminosity of this Lyalpha emission from a very early moment up to a late epoch. We find that the amount, the motion, and the geometry of the neutral hydrogen around the GRB, together with the time behavior of the source are the crucial factors that affect the predicted luminosity and spectral profile. The flux of the Lyalpha emission is found to be mainly contributed by photons that are scattered only once. The flux is of the order 10{sup -4}-10{sup -9} relative to the undecayed maximum flux of the transmitted continuum, making the feature negligible but potentially observable. If not obscured by the host galaxy's damped Lyalpha absorption systems or intergalactic neutral hydrogen, the feature may appear sometime from 1 hr to several years when the directly transmitted light has faded away. This scattered emission feature can be distinguished from Lyalpha photons of other origins by its luminosity evolution and by its gradual narrowing of profile with time. The typical timescale for spectral variance is that of the light crossing time of a hydrogen clump close to the GRB. If observed, the resonant peaks' time-dependent behavior is a scanning probe on the distribution of neutral hydrogen in GRB's immediate neighborhood.

  15. Self organized criticality in an one dimensional magnetized grid. Application to GRB X-ray afterglows

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Mocanu, Gabriela; Stroia, Nicoleta

    2015-05-01

    A simplified one dimensional grid is used to model the evolution of magnetized plasma flow. We implement diffusion laws similar to those so-far used to model magnetic reconnection with Cellular Automata. As a novelty, we also explicitly superimpose a background flow. The aim is to numerically investigate the possibility that Self-Organized Criticality appears in a one dimensional magnetized flow. The cellular automaton's cells store information about the parameter relevant to the evolution of the system being modelled. Under the assumption that this parameter stands for the magnetic field, the magnetic energy released by one grid cell during one individual relaxation event is also computed. Our results show that indeed in this system Self-Organized Criticality is established. The possible applications of this model to the study of the X-ray afterglows of GRBs is also briefly considered.

  16. Infrared Spectral Energy Distribution Decomposition of WISE-selected, Hyperluminous Hot Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Han, Yunkun; Nikutta, Robert; Drouart, Guillaume; Knudsen, Kirsten K.

    2016-06-01

    We utilize a Bayesian approach to fit the observed mid-IR-to-submillimeter/millimeter spectral energy distributions (SEDs) of 22 WISE-selected and submillimeter-detected, hyperluminous hot dust-obscured galaxies (Hot DOGs), with spectroscopic redshift ranging from 1.7 to 4.6. We compare the Bayesian evidence of a torus plusgraybody (Torus+GB) model with that of a torus-only (Torus) model and find that the Torus+GB model has higher Bayesian evidence for all 22 Hot DOGs than the torus-only model, which presents strong evidence in favor of the Torus+GB model. By adopting the Torus+GB model, we decompose the observed IR SEDs of Hot DOGs into torus and cold dust components. The main results are as follows. (1) Hot DOGs in our submillimeter-detected sample are hyperluminous ({L}{IR}≥slant {10}13{L}ȯ ), with torus emission dominating the IR energy output. However, cold dust emission is non-negligible, contributing on average ˜ 24% of total IR luminosity. (2) Compared to QSO and starburst SED templates, the median SED of Hot DOGs shows the highest luminosity ratio between mid-IR and submillimeter at rest frame, while it is very similar to that of QSOs at ˜ 10{--}50 μ {{m}}, suggesting that the heating sources of Hot DOGs should be buried AGNs. (3) Hot DOGs have high dust temperatures ({T}{dust}˜ 72 K) and high IR luminosity of cold dust. The {T}{dust}{--}{L}{IR} relation of Hot DOGs suggests that the increase in IR luminosity for Hot DOGs is mostly due to the increase of the dust temperature, rather than dust mass. Hot DOGs have lower dust masses than submillimeter galaxies (SMGs) and QSOs within a similar redshift range. Both high IR luminosity of cold dust and relatively low dust mass in Hot DOGs can be expected by their relatively high dust temperatures. (4) Hot DOGs have high dust-covering factors (CFs), which deviate from the previously proposed trend of the dust CF decreasing with increasing bolometric luminosity. Finally, we can reproduce the observed

  17. Infrared Spectral Energy Distribution Decomposition of WISE-selected, Hyperluminous Hot Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Han, Yunkun; Nikutta, Robert; Drouart, Guillaume; Knudsen, Kirsten K.

    2016-06-01

    We utilize a Bayesian approach to fit the observed mid-IR-to-submillimeter/millimeter spectral energy distributions (SEDs) of 22 WISE-selected and submillimeter-detected, hyperluminous hot dust-obscured galaxies (Hot DOGs), with spectroscopic redshift ranging from 1.7 to 4.6. We compare the Bayesian evidence of a torus plusgraybody (Torus+GB) model with that of a torus-only (Torus) model and find that the Torus+GB model has higher Bayesian evidence for all 22 Hot DOGs than the torus-only model, which presents strong evidence in favor of the Torus+GB model. By adopting the Torus+GB model, we decompose the observed IR SEDs of Hot DOGs into torus and cold dust components. The main results are as follows. (1) Hot DOGs in our submillimeter-detected sample are hyperluminous ({L}{IR}≥slant {10}13{L}⊙ ), with torus emission dominating the IR energy output. However, cold dust emission is non-negligible, contributing on average ˜ 24% of total IR luminosity. (2) Compared to QSO and starburst SED templates, the median SED of Hot DOGs shows the highest luminosity ratio between mid-IR and submillimeter at rest frame, while it is very similar to that of QSOs at ˜ 10{--}50 μ {{m}}, suggesting that the heating sources of Hot DOGs should be buried AGNs. (3) Hot DOGs have high dust temperatures ({T}{dust}˜ 72 K) and high IR luminosity of cold dust. The {T}{dust}{--}{L}{IR} relation of Hot DOGs suggests that the increase in IR luminosity for Hot DOGs is mostly due to the increase of the dust temperature, rather than dust mass. Hot DOGs have lower dust masses than submillimeter galaxies (SMGs) and QSOs within a similar redshift range. Both high IR luminosity of cold dust and relatively low dust mass in Hot DOGs can be expected by their relatively high dust temperatures. (4) Hot DOGs have high dust-covering factors (CFs), which deviate from the previously proposed trend of the dust CF decreasing with increasing bolometric luminosity. Finally, we can reproduce the observed

  18. Enhancing Inhibition-Induced Plasticity in Tinnitus – Spectral Energy Contrasts in Tailor-Made Notched Music Matter

    PubMed Central

    Stein, Alwina; Engell, Alva; Lau, Pia; Wunderlich, Robert; Junghoefer, Markus; Wollbrink, Andreas; Bruchmann, Maximilian; Rudack, Claudia; Pantev, Christo

    2015-01-01

    Chronic tinnitus seems to be caused by reduced inhibition among frequency selective neurons in the auditory cortex. One possibility to reduce tinnitus perception is to induce inhibition onto over-activated neurons representing the tinnitus frequency via tailor-made notched music (TMNM). Since lateral inhibition is modifiable by spectral energy contrasts, the question arises if the effects of inhibition-induced plasticity can be enhanced by introducing increased spectral energy contrasts (ISEC) in TMNM. Eighteen participants suffering from chronic tonal tinnitus, pseudo randomly assigned to either a classical TMNM or an ISEC-TMNM group, listened to notched music for three hours on three consecutive days. The music was filtered for both groups by introducing a notch filter centered at the individual tinnitus frequency. For the ISEC-TMNM group a frequency bandwidth of 3/8 octaves on each side of the notch was amplified, additionally, by about 20 dB. Before and after each music exposure, participants rated their subjectively perceived tinnitus loudness on a visual analog scale. During the magnetoencephalographic recordings, participants were stimulated with either a reference tone of 500 Hz or a test tone with a carrier frequency representing the individual tinnitus pitch. Perceived tinnitus loudness was significantly reduced after TMNM exposure, though TMNM type did not influence the loudness ratings. Tinnitus related neural activity in the N1m time window and in the so called tinnitus network comprising temporal, parietal and frontal regions was reduced after TMNM exposure. The ISEC-TMNM group revealed even enhanced inhibition-induced plasticity in a temporal and a frontal cortical area. Overall, inhibition of tinnitus related neural activity could be strengthened in people affected with tinnitus by increasing spectral energy contrast in TMNM, confirming the concepts of inhibition-induced plasticity via TMNM and spectral energy contrasts. PMID:25951605

  19. Enhancing inhibition-induced plasticity in tinnitus--spectral energy contrasts in tailor-made notched music matter.

    PubMed

    Stein, Alwina; Engell, Alva; Lau, Pia; Wunderlich, Robert; Junghoefer, Markus; Wollbrink, Andreas; Bruchmann, Maximilian; Rudack, Claudia; Pantev, Christo

    2015-01-01

    Chronic tinnitus seems to be caused by reduced inhibition among frequency selective neurons in the auditory cortex. One possibility to reduce tinnitus perception is to induce inhibition onto over-activated neurons representing the tinnitus frequency via tailor-made notched music (TMNM). Since lateral inhibition is modifiable by spectral energy contrasts, the question arises if the effects of inhibition-induced plasticity can be enhanced by introducing increased spectral energy contrasts (ISEC) in TMNM. Eighteen participants suffering from chronic tonal tinnitus, pseudo randomly assigned to either a classical TMNM or an ISEC-TMNM group, listened to notched music for three hours on three consecutive days. The music was filtered for both groups by introducing a notch filter centered at the individual tinnitus frequency. For the ISEC-TMNM group a frequency bandwidth of 3/8 octaves on each side of the notch was amplified, additionally, by about 20 dB. Before and after each music exposure, participants rated their subjectively perceived tinnitus loudness on a visual analog scale. During the magnetoencephalographic recordings, participants were stimulated with either a reference tone of 500 Hz or a test tone with a carrier frequency representing the individual tinnitus pitch. Perceived tinnitus loudness was significantly reduced after TMNM exposure, though TMNM type did not influence the loudness ratings. Tinnitus related neural activity in the N1m time window and in the so called tinnitus network comprising temporal, parietal and frontal regions was reduced after TMNM exposure. The ISEC-TMNM group revealed even enhanced inhibition-induced plasticity in a temporal and a frontal cortical area. Overall, inhibition of tinnitus related neural activity could be strengthened in people affected with tinnitus by increasing spectral energy contrast in TMNM, confirming the concepts of inhibition-induced plasticity via TMNM and spectral energy contrasts.

  20. Discovery of an Afterglow Extension of the Prompt Phase of Two Gamma Ray Bursts Observed by Swift

    NASA Technical Reports Server (NTRS)

    Barthelmy, S. D.; Cannizzo, J. K.; Gehrels, N.; Cusumano, G.; O'Brien, P.; Vaughan, S.; Zhang, B.; Burrows, D. N.; Campana, S.; Chincarini, G.

    2005-01-01

    Contemporaneous BAT and XRT observations of two recent well-covered GRBs observed by Swift, GRB 050315 and GRB 050319, show clearly a prompt component of the afterglow emission. The rapid slewing capability of the spacecraft enables X-ray observations immediately after the burst, typically approximately 100 s following the initiation of the prompt gamma-ray phase. By fitting a power law form to the gamma-ray spectrum, we extrapolate the time dependent fluxes measured by the BAT, in the energy band 15 - 350 keV, into the spectral regime observed by the XRT, 0.2 - 10 keV, and examine the functional form of the rate of decay of the two light curves. We find that the BAT and XRT light curves merge to form a unified curve. There is a period of steep decay up to approximately 300 s, followed by a flatter decay. The duration of the steep decay, approximately 100 s in the source frame after correcting for cosmological time dilation, agrees with a theoretical estimate for the deceleration time of the relativistic ejecta as it interacts with circumstellar material. For GRB 050315, the steep decay can be characterized by an exponential form, where T(sub e),(BAT)approximately equal to 24 plus or minus 2 s, and T(sub e)(XRT) approximately equal to 35 plus or minus 2 s. For GRB 050319 a power law decay -d lnf/d lnt = n, where n approximately equal to 3, provides a reasonable fit. The early time X-ray fluxes are consistent with representing the lower energy tail of the prompt emission, and provide our first quantitative measure of the decay of the prompt gamma-ray emission over a large dynamic range. The initial steep decay is expected from the high latitude emission from a curved shell of relativistic plasma illuminated only for a short interval. The overall conclusion is that the prompt phase of GRBs lasts for hundreds of seconds longer than previously thought.

  1. Discovery of an Afterglow Extension of the Prompt Phase of Two Gamma Ray Bursts Observed by Swift

    NASA Technical Reports Server (NTRS)

    Bathelmy, S. D.; Cannizzo, J. K.; Gehrels, N.; Cusumano, G.; OBrien, P. T.; Vaughan, S.; Zhang, B.; Burrows, D. N.; Campana, S.; Chincarini, G.

    2005-01-01

    Contemporaneous BAT and XRT observations of two recent well-covered GRBs observed by Swift, GRB 050315 and GRB 050319, show clearly a prompt component joining the onset of the afterglow emission. The rapid slewing capability of the spacecraft enables X-ray observations immediately after the burst, typically 100 s following the initiation of the prompt y-ray phase. By fitting a power law form to the y-ray spectrum, we extrapolate the time dependent fluxes measured by the BAT, in the energy band 15 - 350 keV, into the spectral regime observed by the XRT 0.2 - 10 keV, and examine the functional form of the rate of decay of the two light curves. We find that the BAT and XRT light curves merge to form a unified curve. There is a period of steep decay up to 300 s, followed by a flatter decay. The duration of the steep decay, 100 s in the source frame after correcting for cosmological time dilation, agrees roughly with a theoretical estimate for the deceleration time of the relativistic ejecta as it interacts with circumstellar material. For GRB 050315, the steep decay can be characterized by an exponential form, where one e-folding decay time Te (BAT) = 24 f 2 s, and Te,(XRT) = 35 f 2 s. For GRB 050319, a power law decay - d l n f / d l n t = n, where n approx. = 3, provides a reasonable fit. The early time X-ray fluxes are consistent with representing the lower energy tail of the prompt emission, and provide our first quantitative measure of the decay of the prompt y-ray emission over a large dynamic range in flux. The initial steep decay is expected due to the delayed high latitude photons from a curved shell of relativistic plasma illuminated only for a short interval. The overall conclusion is that the prompt phase of GRBs remains observable for hundreds of seconds longer than previously thought.

  2. GRB off-axis afterglows and the emission from the accompanying supernovae

    NASA Astrophysics Data System (ADS)

    Kathirgamaraju, Adithan; Barniol Duran, Rodolfo; Giannios, Dimitrios

    2016-09-01

    Gamma-ray burst (GRB) afterglows are likely produced in the shock that is driven as the GRB jet interacts with the external medium. Long-duration GRBs are also associated with powerful supernovae (SNe). We consider the optical and radio afterglows of long GRBs for both blasts viewed along the jet axis (`on-axis' afterglows) and misaligned observes (`off-axis' afterglows). Comparing the optical emission from the afterglow with that of the accompanying SN, using SN 1998bw as an archetype, we find that only a few per cent of afterglows viewed off-axis are brighter than the SN. For observable optical off-axis afterglows, the viewing angle is at most twice the half-opening angle of the GRB jet. Radio off-axis afterglows should be detected with upcoming radio surveys within a few hundred Mpc. We propose that these surveys will act as `radio triggers', and that dedicated radio facilities should follow-up these sources. Follow-ups can unveil the presence of the radio SN remnant, if present. In addition, they can probe the presence of a mildly relativistic component, either associated with the GRB jet or the SN ejecta, expected in these sources.

  3. Recovering galaxy stellar population properties from broad-band spectral energy distribution fitting

    NASA Astrophysics Data System (ADS)

    Pforr, Janine; Maraston, Claudia; Tonini, Chiara

    2012-06-01

    We explore the dependence of galaxy stellar population properties that are derived from broad-band spectral energy distribution fitting - such as age, stellar mass, dust reddening, etc. - on a variety of parameters, such as star formation histories, age grid, metallicity, initial mass function (IMF), dust reddening and reddening law, filter setup and wavelength coverage. Mock galaxies are used as test particles. We confirm our earlier results based on real z= 2 galaxies, that usually adopted τ-models lead to overestimate the star formation rate and to underestimate the stellar mass. Here, we show that - for star-forming galaxies - galaxy ages, masses and reddening can be well determined simultaneously only when the correct star formation history is identified. This is the case for inverted-τ models at high-z, for which we find that the mass recovery (at fixed IMF) is as good as ˜0.04 dex. However, since the right star formation history is usually unknown, we quantify the offsets generated by adopting standard fitting setups. Stellar masses are generally underestimated, which results from underestimating the age. For mixed fitting setups with a variety of star formation histories the median mass recovery at z˜ 2-3 is as decent as ˜0.1 dex (at fixed IMF), albeit with large scatter. The situation worsens towards lower redshifts, because of the variety of possible star formation histories and ages. At z˜ 0.5 the stellar mass can be underestimated by as much as ˜0.6 dex (at fixed IMF). A practical trick to improve upon this figure is to exclude reddening from the fitting parameters, as this helps to avoid unrealistically young and dusty solutions. Stellar masses are underestimated by a smaller amount (˜0.3 dex at z˜ 0.5). Reddening and the star formation rate should then be determined via a separate fitting. As expected, the recovery of properties is better for passive galaxies, for which e.g. the mass can be fully recovered (within ˜0.01 dex at fixed IMF

  4. The Evolving Physical Processes In Interacting Galaxies Traced By Their Spectral Energy Distributions

    NASA Astrophysics Data System (ADS)

    Smith, Howard

    Mergers and interactions have profound effects on the evolution of galaxies and on the various physical processes associated with star formation and the fueling of active nuclei (AGN). There remains, however, an incomplete understanding of how interactions affect such processes or how important they are in controlling the appearance of today's universe. We propose to study 180 interacting galaxies in 101 systems spanning early to late stage mergers for which newly archived NASA data enable detailed analyses of their ultraviolet-to-far infrared (UV-FIR) spectral energy distributions (SEDs). Our goal is an improved understanding of how a wide range of key galaxy parameters vary across the interaction sequence. Our derived physical parameters will include the total optical- infrared luminosity, star formation rate, specific star formation rate, stellar mass, dust temperatures and dust masses, compactness, photo-dissociation region (PDR) fractions, and AGN contributions to the FIR SED. Our sample is taken from the Keel-Kennicutt catalog of merging galaxies (based only on apparent galaxy separations and hence free of morphological bias) and the Surace IRAS sample of bright mergers. Our sample contains virtually all bright mergers with UV-FIR data in the archives, including (but not limited to) data from missions GALEX, Swift, Spitzer, WISE, and Herschel. We will re-reduce, recalibrate, and extract the photometry in up to 23 wavelength bands from the UV to the FIR. Our analysis plan emphasizes three new SED modeling tools, one of which we have recently developed. Nearly all of the sources also have Spitzer IRS spectral data (primarily of the circumnuclear regions), and we will use the IRS data to supplement the SED conclusions via our own algorithm which also infers metallicity, interstellar medium (ISM) ambient pressure, and embedded young star fractions. Finally, we will compare each merger to the simulated photometry/ morphology of a suite of simulations based on

  5. Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation

    NASA Astrophysics Data System (ADS)

    Poulet, L.; Massa, G. D.; Morrow, R. C.; Bourget, C. M.; Wheeler, R. M.; Mitchell, C. A.

    2014-07-01

    Bioregenerative life-support systems involving photoautotrophic organisms will be necessary to sustain long-duration crewed missions at distant space destinations. Since sufficient sunlight will not always be available for plant growth at many space destinations, efficient electric-lighting solutions are greatly needed. The present study demonstrated that targeted plant lighting with light-emitting diodes (LEDs) and optimizing spectral parameters for close-canopy overhead LED lighting allowed the model crop leaf lettuce (Lactuca sativa L. cv. 'Waldmann's Green') to be grown using significantly less electrical energy than using traditional electric-lighting sources. Lettuce stands were grown hydroponically in a growth chamber controlling temperature, relative humidity, and CO2 level. Several red:blue ratios were tested for growth rate during the lag phase of lettuce growth. In addition, start of the exponential growth phase was evaluated. Following establishment of a 95% red + 5% blue spectral balance giving the best growth response, the energy efficiency of a targeted lighting system was compared with that of two total coverage (untargeted) LED lighting systems throughout a crop-production cycle, one using the same proportion of red and blue LEDs and the other using white LEDs. At the end of each cropping cycle, whole-plant fresh and dry mass and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed for crop lighting. Lettuce crops grown with targeted red + blue LED lighting used 50% less energy per unit dry biomass accumulated, and the total coverage white LEDs used 32% less energy per unit dry biomass accumulated than did the total coverage red + blue LEDs. An energy-conversion efficiency of less than 1 kWh/g dry biomass is possible using targeted close-canopy LED lighting with spectral optimization. This project was supported by NASA grant NNX09AL99G.

  6. On the optical and X-ray afterglows of gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Dado, S.; Dar, A.; De Rújula, A.

    2002-06-01

    We severely criticize the consuetudinary analysis of the afterglows of gamma-ray bursts (GRBs) in the conical-ejection fireball scenarios. We argue that, instead, recent observations imply that the long-duration GRBs and their afterglows are produced by highly relativistic jets of cannonballs (CBs) emitted in supernova explosions. The CBs are heated by their collision with the supernova shell. The GRB is the boosted surface radiation the CBs emit as they reach the transparent outskirts of the shell. The exiting CBs further decelerate by sweeping up interstellar matter (ISM). The early X-ray afterglow is dominated by thermal bremsstrahlung from the cooling CBs, the optical afterglow by synchrotron radiation from the ISM electrons swept up by the CBs. We show that this model fits simply and remarkably well all the measured optical afterglows of the 15 GRBs with known redshift, including that of GRB 990123, for which unusually prompt data are available. We demonstrate that GRB 980425 was a normal GRB produced by SN1998bw, with standard X-ray and optical afterglows. We find that the very peculiar afterglow of GRB 970508 can be explained if its CBs encountered a significant jump in density as they moved through the ISM. The afterglows of the nearest 8 of the known-redshift GRBs show various degrees of evidence for an association with a supernova akin to SN1998bw. In all other cases such an association, even if present, would have been undetectable with the best current photometric sensitivities. This gives strong support to the proposition that most, maybe all, of the long-duration GRBs are associated with supernovae. Although our emphasis is on optical afterglows, we also provide an excellent description of X-ray afterglows. Figures \\ref{fig228} to \\ref{X1216} are only available in electronic form at http:/www.edpsciences.org

  7. Evolution of the stellar-merger red nova V1309 Scorpii: Spectral energy distribution analysis

    NASA Astrophysics Data System (ADS)

    Tylenda, R.; Kamiński, T.

    2016-08-01

    Context. One very important object for understanding the nature of red novae is V1309 Sco. Its pre-outburst observations showed that, before its red-nova eruption in 2008, it was a contact binary quickly evolving to the merger of the components. It thus provided us with a direct evidence that the red novae result from stellar mergers. Aims: We will study the evolution of the post-merger remnant of V1309 Sco over time. Methods: We analyse the spectral energy distribution (SED) of the object and its evolution with time. From various optical and infrared surveys and observing programmes carried out with OGLE, HST, VVV, Gemini South, WISE, Spitzer, and Herschel we constructed observed SED in 2010 and 2012. Some limited data are also available for the red-nova progenitor in 2007. We analyse the data with our model of a dusty envelope surrounding a central star. Results: Dust was present in the pre-outburst state of V1309 Sco. Its high temperature (900-1000 K) suggests that this was a freshly formed dust in a presumable mass-loss from the spiralling-in binary. Shortly after its 2008 eruption, V1309 Sco became almost completely embedded in dust. The parameters (temperature, dimensions) of the dusty envelope in 2010 and 2012 evidence that we then observed matter lost by the object during the 2008 outburst. Its mass is at least 10-3M⊙. The object remains quite luminous, although since its maximum brightness in September 2008, it has faded in luminosity by a factor of ~50 (in 2012). Far infrared data from Herschel reveal presence of a cold (~30 K) dust at a distance of a few thousand AU from the object. Conclusions: Similarly to other red novae, V1309 Sco formed a slowly-expanding, dense, and optically-thick dusty envelope during its 2008 outburst. The main remnant is thus hidden for us. Far infrared data suggests that the object passed an episode of intense mass loss in its recent history. This conclusion could be verified by submillimeter interferometric observations.

  8. Numerical study of spectral shaping in high energy Ho:YLF amplifiers.

    PubMed

    Kroetz, Peter; Ruehl, Axel; Murari, Krishna; Cankaya, Huseyin; Kärtner, Franz X; Hartl, Ingmar; Miller, R J Dwayne

    2016-05-01

    We present a new chromatic numerical approach to simulate the amplification of laser pulses in multipass laser amplifiers. This enables studies on spectral effects such as gain narrowing and spectral shaping with optical elements expressed by a transmission transfer function. We observe good agreement between our simulations and measurements with a Ho:YLF regenerative amplifier (RA). To demonstrate the capabilities of our simulation model, we numerically integrate an intra-cavity etalon in this laser and find optimum etalon parameters that enhance the peak power of the output pulses up to 65%. PMID:27137602

  9. Monte Carlo Modeling of Spectral Diffusion Employing Multiwell Protein Energy Landscapes: Application to Pigment-Protein Complexes Involved in Photosynthesis.

    PubMed

    Najafi, Mehdi; Zazubovich, Valter

    2015-06-25

    We are reporting development and initial applications of the light-induced and thermally induced spectral diffusion modeling software, covering nonphotochemical spectral hole burning (NPHB), hole recovery, and single-molecule spectroscopy and involving random generation of the multiwell protein energy landscapes. The model includes tunneling and activated barrier-hopping in both ground and excited states of a protein-chromophore system. Evolution of such a system is predicted by solving the system of rate equations. Using the barrier parameters from the range typical for the energy landscapes of the pigment-protein complexes involved in photosynthesis, we (a) show that realistic cooling of the sample must result in proteins quite far from thermodynamic equilibrium, (b) demonstrate hole evolution in the cases of burning, fixed-temperature recovery and thermocycling that mostly agrees with the experiment and modeling based on the NPHB master equation, and (c) explore the effects of different protein energy landscapes on the antihole shape. Introducing the multiwell energy landscapes and starting the hole burning experiments in realistic nonequilibrium conditions are not sufficient to explain all experimental observations even qualitatively. Therefore, for instance, one is required to invoke the modified NPHB mechanism where a complex interplay of several small conformational changes is poising the energy landscape of the pigment-protein system for downhill tunneling.

  10. ON THE ORIGIN OF > 10 GeV PHOTONS IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Wang Xiangyu; Liu Ruoyu; Lemoine, Martin

    2013-07-10

    Fermi/LAT has detected long-lasting high-energy photons (>100 MeV) from gamma-ray bursts (GRBs), with the highest energy photons reaching about 100 GeV. One proposed scenario is that they are produced by high-energy electrons accelerated in GRB forward shocks via synchrotron radiation. We study the maximum synchrotron photon energy in this scenario, considering the properties of the microturbulence magnetic fields behind the shock, as revealed by recent particle-in-cell simulations and theoretical analyses of relativistic collisionless shocks. Due to the small-scale nature of the microturbulent magnetic field, the Bohm acceleration approximation, in which the scattering mean free path is equal to the particle Larmor radius, breaks down at such high energies. This effect leads to a typical maximum synchrotron photon of a few GeV at 100 s after the burst and this maximum synchrotron photon energy decreases quickly with time. We show that the fast decrease of the maximum synchrotron photon energy leads to a fast decay of the synchrotron flux. The 10-100 GeV photons detected after the prompt phase cannot be produced by the synchrotron mechanism. They could originate from the synchrotron self-Compton emission of the early afterglow if the circumburst density is sufficiently large, or from the external inverse Compton process in the presence of central X-ray emission, such as X-ray flares and prompt high-latitude X-ray emission.

  11. High Energy Emission of V404 Cygni during 2015 outburst with INTEGRAL/SPI: Spectral analysis results, issues and solutions

    NASA Astrophysics Data System (ADS)

    Jourdain, Elisabeth; Roques, Jean-Pierre

    2016-04-01

    A strong outburst of the X-ray transient V404 Cygni (= GS2023-338) was observed in 2015 June/July up to a level of 50 Crab in the hard X-ray domain.We have used the INTEGRAL/SPI data to investigate the spectral behavior of the source between 20 and 1000 keV during its maximum of activity. We have found striking variability patterns at all timescales. For the 20-200 keV energy band, the huge signal to noise ratio allows us to scrutinize the source evolution on a never reached timescale (30 s). At higher energy, the spectral shape can be determined on a timescale < 1 h.However, we note that at this level of photon flux, instrument's behavior may be severely tested and that some instrumental artifacts could affect the data analysis. We have performed thorough checks to ensure a correct handling of the SPI data and present how to obtain reliable spectral results on the emission of V404 Cyg. We demonstrate that, with the correct configuration, the hard X-ray emission, up to the MeV region, is well described by a two component model (Comptonisation law + cutoff power law) as observed in Cyg X-1 and for V404 Cygni itself at lower flux levels.

  12. FUNDAMENTAL PARAMETERS AND SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG AND FIELD AGE OBJECTS WITH MASSES SPANNING THE STELLAR TO PLANETARY REGIME

    SciTech Connect

    Filippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline; Cruz, Kelle L.; Van Gordon, Mollie M.; Looper, Dagny L.

    2015-09-10

    We combine optical, near-infrared, and mid-infrared spectra and photometry to construct expanded spectral energy distributions for 145 field age (>500 Myr) and 53 young (lower age estimate <500 Myr) ultracool dwarfs (M6-T9). This range of spectral types includes very low mass stars, brown dwarfs, and planetary mass objects, providing fundamental parameters across both the hydrogen and deuterium burning minimum masses for the largest sample assembled to date. A subsample of 29 objects have well constrained ages as probable members of a nearby young moving group. We use 182 parallaxes and 16 kinematic distances to determine precise bolometric luminosities (L{sub bol}) and radius estimates from evolutionary models give semi-empirical effective temperatures (T{sub eff}) for the full range of young and field age late-M, L, and T dwarfs. We construct age-sensitive relationships of luminosity, temperature, and absolute magnitude as functions of spectral type and absolute magnitude to disentangle the effects of degenerate physical parameters such as T{sub eff}, surface gravity, and clouds on spectral morphology. We report bolometric corrections in J for both field age and young objects and find differences of up to a magnitude for late-L dwarfs. Our correction in Ks shows a larger dispersion but not necessarily a different relationship for young and field age sequences. We also characterize the NIR–MIR reddening of low gravity L dwarfs and identify a systematically cooler T{sub eff} of up to 300 K from field age objects of the same spectral type and 400 K cooler from field age objects of the same M{sub H} magnitude.

  13. Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime

    NASA Astrophysics Data System (ADS)

    Filippazzo, Joe; Rice, Emily L.; Faherty, Jacqueline K.; Cruz, Kelle L.; Godfrey, Paige A.; BDNYC

    2016-01-01

    The physical and atmospheric properties of ultracool dwarfs are deeply entangled due to the degenerate effects of mass, age, metallicity, clouds and dust, activity, rotation, and possibly even formation mechanism on observed spectra. Accurate determination of fundamental parameters for a wide diversity of objects at the low end of the IMF is thus crucial to testing stellar and planetary formation theories. To determine these quantities, we constructed and flux calibrated nearly-complete spectral energy distributions (SEDs) for 221 M, L, T, and Y dwarfs using published parallaxes and 0.3-40 μm spectra and photometry. From these homogeneous SEDs, we calculated bolometric luminosity (Lbol), effective temperature (Teff), mass, surface gravity, radius, spectral indexes, synthetic photometry, and bolometric corrections (BCs) for each object. We used these results to derive Lbol, Teff, and BC polynomial relations across the entire very-low-mass star/brown dwarf/planetary mass regime. We use a subsample of objects with age constraints based on nearby young moving group membership, companionship with a young star, or spectral signatures of low surface gravity to define new age-sensitive diagnostics and characterize the reddening of young substellar atmospheres as a redistribution of flux from the near-infrared into the mid-infrared. Consequently we find the SED flux pivots at Ks band, making BCKs as a function of spectral type a tight and age independent relationship. We find that young L dwarfs are systematically 300 K cooler than field age objects of the same spectral type and up to 600 K cooler than field age objects of the same absolute H magnitude. Finally, we present preliminary comparisons of these empirical results to best fit parameters from four different model atmosphere grids via Markov-Chain Monte Carlo analysis in order to create prescriptions for the reliable and efficient characterization of new ultracool dwarfs.

  14. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    SciTech Connect

    De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; Lopez-Camara, Diego

    2012-02-20

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the

  15. Gamma-Ray Burst Dynamics and Afterglow Radiation from Adaptive Mesh Refinement, Special Relativistic Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico

    2012-02-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  16. Probing The Stellar, Gaseous, And Dust Properties Of Galaxies Through Analysis Of Their Spectral Energy Distributions

    NASA Astrophysics Data System (ADS)

    Eufrasio, Rafael T.

    The spectral energy distributions (SEDs) of galaxies are shaped by their physical properties and they are our primary source of information on galaxies stellar, gaseous, and dust content. Nearby galaxies (less than 100 Mpc away) are spatially resolved by current telescopes from the ultraviolet (UV) to radio wavelengths, allowing the study of the SEDs of subgalactic regions. Such studies are necessary for deriving maps and spatial trends of the physical properties across a galaxy. In principle, the complex history of the formation, growth, and evolution of a galaxy or a region of a galaxy can be inferred from its radiative output. In practice, this task is complicated by the fact that a significant fraction of the star formation activity takes place in dust obscured regions, in which a significant fraction of the stellar radiative output is absorbed, scattered, and reradiated by the gas and dust in the interstellar medium (ISM). This reprocessing of the stellar radiation takes place in ionized interstellar gas regions (H II regions) surrounding massive hot stars, in diffuse atomic gas (H I regions), and in dense molecular clouds. For this work, we have analyzed two galaxies in detail, NGC 6872 and NGC 6946, also known as Condor and Fireworks Galaxy, respectively. The Condor galaxy is the largest-known spiral galaxy. It is part a group of galaxies, the Pavo group, with 12 other galaxies. It has, however, interacted in the past ~150 Myr with a smaller companion, previously believed to have shaped the physical extent of the giant spiral. We have performed detailed SED fitting from the UV to mid-infrared (mid-IR) to obtain star formation histories of seventeen sub-galactic regions across the Condor. These regions are large enough to be galaxies themselves, with 32.3 million light-years in diameter. We find that the Condor was already very massive before this interaction and that it was much less affected by the passage of the companion than previously thought. We also

  17. Spectroscopic classification of optical transients with the SEDM (Spectral Energy Distribution Machine) on Palomar 60-inch (P60) telescope

    NASA Astrophysics Data System (ADS)

    Blagorodnova, N.; Neill, D.; Walters, R.

    2016-07-01

    The Caltech Time Domain Astronomy group reports the classification of the optical transients SN 2016czr, SN 2016ejc and AT 2016eki. The candidates were discovered by the PMO-Tsinghua Supernova Survey (PTSS: http://119.78.210.3/ptss2/ ), the Gaia ESA survey (Rixon et al,2014, ATel #6593) and the All Sky Automated Survey for SuperNovae ASAS-SN (see Shappee et al. 2014, ApJ, 788, 48 and http://www.astronomy.ohio-state.edu/~assassin/index.shtml ). The observations were performed on 2016-07-28 and 2016-07-29 with the Palomar 60-inch (P60) telescope and the Spectral Energy Distribution Machine (SEDM) (http://www.astro.caltech.edu/sedm/, range 350-950nm, spectral resolution R~100) on Palomar 60-inch (P60) telescope.

  18. Transition from interpulse to afterglow plasmas driven by repetitive short-pulse microwaves in a multicusp magnetic field

    SciTech Connect

    Pandey, Shail; Sahu, Debaprasad; Bhattacharjee, Sudeep

    2012-08-15

    In the power-off phase, plasmas generated by repetitive short-pulse microwaves in a multicusp magnetic field show a transitive nature from interpulse to afterglow as a function of pulse duration t{sub w} = 20-200 {mu}s. The ionized medium can be driven from a highly non equilibrium to an equilibrium state inside the pulses, thereby dictating the behavior of the plasma in the power-off phase. Compared to afterglows, interpulse plasmas observed for t{sub w} < 50 {mu}s are characterized by a quasi-steady-state in electron density that persists for {approx} 20-40 {mu}s even after the end of the pulse and has a relatively slower decay rate ({approx} 4.3 Multiplication-Sign 10{sup 4} s{sup -1}) of the electron temperature, as corroborated by optical measurements. The associated electron energy probability function indicates depletion in low energy electrons which appear at higher energies just after the end of the pulse. The transition occurs at t{sub w} {approx} 50 {mu}s as confirmed by time evolution of integrated electron numbers densities obtained from the distribution function.

  19. The radio afterglow of Swift J1644+57 reveals a powerful jet with fast core and slow sheath

    NASA Astrophysics Data System (ADS)

    Mimica, P.; Giannios, D.; Metzger, B. D.; Aloy, M. A.

    2015-07-01

    We model the non-thermal transient Swift J1644+57 as resulting from a relativistic jet powered by the accretion of a tidally disrupted star on to a supermassive black hole. Accompanying synchrotron radio emission is produced by the shock interaction between the jet and the dense circumnuclear medium, similar to a gamma-ray burst afterglow. An open mystery, however, is the origin of the late-time radio re-brightening, which occurred well after the peak of the jetted X-ray emission. Here, we systematically explore several proposed explanations for this behaviour by means of multidimensional hydrodynamic simulations coupled to a self-consistent radiative transfer calculation of the synchrotron emission. Our main conclusion is that the radio afterglow of Swift J1644+57 is not naturally explained by a jet with a one-dimensional top-hat angular structure. However, a more complex angular structure comprised of an ultrarelativistic core (Lorentz factor Γ ˜ 10) surrounded by a slower (Γ ˜ 2) sheath provides a reasonable fit to the data. Such a geometry could result from the radial structure of the super-Eddington accretion flow or as the result of jet precession. The total kinetic energy of the ejecta that we infer of ˜ few 1053 erg requires a highly efficient jet launching mechanism. Our jet model providing the best fit to the light curve of the on-axis event Swift J1644+57 is used to predict the radio light curves for off-axis viewing angles. Implications for the presence of relativistic jets from tidal disruption events (TDEs) detected via their thermal disc emission, as well as the prospects for detecting orphan TDE afterglows with upcoming wide-field radio surveys and resolving the jet structure with long baseline interferometry, are discussed.

  20. DYNAMICS AND AFTERGLOW LIGHT CURVES OF GAMMA-RAY BURST BLAST WAVES WITH A LONG-LIVED REVERSE SHOCK

    SciTech Connect

    Uhm, Z. Lucas; Zhang Bing; Hascoeet, Romain; Daigne, Frederic; Mochkovitch, Robert; Park, Il H.

    2012-12-20

    We perform a detailed study on the dynamics of a relativistic blast wave with the presence of a long-lived reverse shock (RS). Although a short-lived RS has been widely considered, the RS is believed to be long-lived as a consequence of a stratification expected on the ejecta Lorentz factors. The existence of a long-lived RS causes the forward shock (FS) dynamics to deviate from a self-similar Blandford-McKee solution. Employing the ''mechanical model'' that correctly incorporates the energy conservation, we present an accurate solution for both the FS and RS dynamics. We conduct a sophisticated calculation of the afterglow emission. Adopting a Lagrangian description of the blast wave, we keep track of an adiabatic evolution of numerous shells between the FS and RS. An evolution of the electron spectrum is also followed individually for every shell. We then find the FS and RS light curves by integrating over the entire FS and RS shocked regions, respectively. Exploring a total of 20 different ejecta stratifications, we explain in detail how a stratified ejecta affects its blast wave dynamics and afterglow light curves. We show that, while the FS light curves are not sensitive to the ejecta stratifications, the RS light curves exhibit much richer features, including steep declines, plateaus, bumps, re-brightenings, and a variety of temporal decay indices. These distinctive RS features may be observable if the RS has higher values of the microphysics parameters than the FS. We discuss possible applications of our results in understanding the gamma-ray burst afterglow data.

  1. Dust spectral energy distributions of nearby galaxies: an insight from the Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Ciesla, L.; Boquien, M.; Boselli, A.; Buat, V.; Cortese, L.; Bendo, G. J.; Heinis, S.; Galametz, M.; Eales, S.; Smith, M. W. L.; Baes, M.; Bianchi, S.; De Looze, I.; di Serego Alighieri, S.; Galliano, F.; Hughes, T. M.; Madden, S. C.; Pierini, D.; Rémy-Ruyer, A.; Spinoglio, L.; Vaccari, M.; Viaene, S.; Vlahakis, C.

    2014-05-01

    Although it accounts only for a small fraction of the baryonic mass, dust has a profound impact on the physical processes at play in galaxies. Thus, to understand the evolution of galaxies, it is essential not only to characterize dust properties per se, but also in relation to global galaxy properties. To do so, we derive the dust properties of galaxies in a volume limited, K-band selected sample, the Herschel Reference Survey (HRS). We gather infrared photometric data from 8 μm to 500 μm from Spitzer, WISE, IRAS, and Herschel for all of the HRS galaxies. Draine & Li (2007, ApJ, 663, 866) models are fit to the data from which the stellar contribution has been carefully removed. We find that our photometric coverage is sufficient to constrain all of the parameters of the Draine & Li models and that a strong constraint on the 20-60 μm range is mandatory to estimate the relative contribution of the photo-dissociation regions to the infrared spectral energy distribution (SED). The SED models tend to systematically underestimate the observed 500 μm flux densities, especially for low-mass systems. We provide the output parameters for all of the galaxies, i.e., the minimum intensity of the interstellar radiation field, the fraction of polycyclic aromatic hydrocarbon (PAH), the relative contribution of PDR and evolved stellar population to the dust heating, the dust mass, and the infrared luminosity. For a subsample of gas-rich galaxies, we analyze the relations between these parameters and the main integrated properties of galaxies, such as stellar mass, star formation rate, infraredluminosity, metallicity, Hα and H-band surface brightness, and the far-ultraviolet attenuation. A good correlation between the fraction of PAH and the metallicity is found, implying a weakening of the PAH emission in galaxies with low metallicities and, thus, low stellar masses. The intensity of the diffuse interstellar radiation field and the H-band and Hα surface brightnesses are

  2. Lineshape, linewidth and spectral density of parametric x-radiation at low electron energy in diamond

    SciTech Connect

    Freudenberger, J.; Genz, H.; Morokhovskii, V.V.; Richter, A.; Morokhovskii, V.L.; Nething, U.; Zahn, R.; Sellschop, J.P.

    1997-01-01

    Applying an absorber technique, the experimental shape and width of a parametric x-radiation line has been determined. The 9 keV radiation was produced by bombarding a diamond crystal of 55 {mu}m thickness with electrons of 6.8 MeV. The variance of the spectral line distribution was found to depend on the tilt angle of the crystal and to have a magnitude of {sigma}=51 eV. Simulations based on a Monte Carlo method exhibit that the observed variance is mainly influenced by multiple scattering of electrons passing through the crystal ({approx}43 eV) and the finite detector opening ({approx}18 eV), leaving for the intrinsic linewidth a value of the order of 1 eV. The spectral density of the line was found to be J{approx}10{sup {minus}7} photons/(electron{times}sr{times}eV). {copyright} {ital 1997 American Institute of Physics.}

  3. Front Surface Spectral Control Development for TPV Energy Conversion (a Presentation)

    SciTech Connect

    TD Rahmlow, Jr; JE Lazo-Wasem; EJ Gratrix; PM Fourspring; DM DePoy

    2004-12-09

    This paper discusses the introduction to the potential of alternative materials that provide higher temperature stability than current materials. The outline of this report is: (1) Review briefly the importance of spectral control; (2) Provide current results; (3) Introduce the temperature stability issue; (4) Describe the requirements for alternate materials and (5) Present alternative materials. The conclusions of this report are: (1) Antimony selenide has achieved the highest spectral efficiency to date; (2) Several materials expected to have higher temperature stability have been shown to be viable; (3) So far, with limited development, the performance of the these materials is lower than Antimony selenide; and (4) Additional development will be required to achieve similar or higher performance.

  4. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhou, Qianhong; Dong, Zhiwei

    2016-08-01

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N2, O2, and air, as well as femtosecond laser filament discharge in dry and humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.

  5. Probe measurements of penning electron spectra in the afterglow of nonlocal helium microplasma

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Belskiy, Denis; Gutsev, Sergey; Kosykh, Nikolay; Kryukov, Anton

    2012-10-01

    Method PLES [Blagoev A.B., Kolokolov, N.B., Kudryavtsev. Physica Scripta, 1994, v.50, p.371] is based on identification of atoms and molecules of impurities M by selective registration of groups of fast electrons e(f) created in Penning ionization: He(m) + M -> He +M+ + e(f). The electron energy spectrum e(f) contains discrete peaks corresponding to the difference between the energy 19.8 eV of metastable helium atoms He(m) and the ionization energies Ei of impurities M. Since the ionization potential Ei of each type of atom or molecule is a well-known, it is possible to identify the atoms or molecules M of the unknown impurity by their ionization potential Ei. Probe registration of the energy spectra of penning electrons is carried out in the nonlocal afterglow plasma of pulsed microdischarge in helium and its mixtures with argon, krypton and air. In helium, the non-local plasma condition corresponds to p xL < 5 Torr x cm, where p is the gas pressure and L is the plasma volume size. It is demonstrated that the obtained maxima appear at the characteristic energies corresponding exactly to the expected maxima for penning electrons of the known gas impurities used.

  6. The Influence of the Extreme Ultraviolet Spectral Energy Distribution on the Structure and Composition of the Upper Atmosphere of Exoplanets

    NASA Astrophysics Data System (ADS)

    Guo, J. H.; Ben-Jaffel, Lotfi

    2016-02-01

    By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets with a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400–900 Å), which pushes the transition of H/H+ to low altitudes. In contrast, the transition of H/H+ moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50–400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.

  7. The Flare Irradiance Spectral Model (FISM) and its Contributions to Space Weather Research, the Flare Energy Budget, and Instrument Design

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip

    2008-01-01

    The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution and on a 1-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric models. The seminar will begin with a brief overview of the FISM model, and also how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM. Some current studies will then be presented that use FISM estimations of the solar VUV irradiance to quantify the contributions of the increased irradiance from flares to Earth's increased thermospheric and ionospheric densites. Initial results will also be presented from a study looking at the electron density increases in the Martian atmosphere during a solar flare. Results will also be shown quantifying the VUV contributions to the total flare energy budget for both the impulsive and gradual phases of solar flares. Lastly, an example of how FISM can be used to simplify the design of future solar VUV irradiance instruments will be discussed, using the future NOAA GOES-R Extreme Ultraviolet and X-Ray Sensors (EXIS) space weather instrument.

  8. The featureless and non-variable optical spectral energy distribution of AXP 4U 0142+61

    NASA Astrophysics Data System (ADS)

    Muñoz-Darias, T.; de Ugarte Postigo, A.; Casares, J.

    2016-05-01

    We present GTC-10.4 m spectroscopy and multiband photometry of the faint (r ˜ 26) optical counterpart of the anomalous X-ray pulsar 4U 0142+61. The 5000-9000 Å spectrum - the first obtained for a magnetar - is featureless, allowing us to set an equivalent width upper limit EW < 25 Å to the presence of emission lines in the H α region. Multiband photometry in the g, r, i, z Sloan Digital Sky Survey (SDSS) bands obtained at different epochs over 12 yr shows no significant variability from minutes-to-years time-scales. The photometry has been calibrated, for the first time, against the SDSS itself, resulting in solid upper limits to variability ranging from ˜0.2 mag in i (over 12 yr) to 0.05 mag in z (over 1.5 yr). The shape of the optical + near-infrared (literature values) spectral energy distribution is not well constrained due to the high extinction along the line of sight. Using a Markov Chain Monte Carlo analysis, we find that it can be described by a power law with a spectral index β = -0.7 ± 0.5 and E(B - V) = 1.5 ± 0.4. We also discuss on the implications of adding hard X-ray flux values from literature to the spectral fitting.

  9. DISENTANGLING PROTOSTELLAR EVOLUTIONARY STAGES IN CLUSTERED ENVIRONMENTS USING SPITZER-IRS SPECTRA AND COMPREHENSIVE SPECTRAL ENERGY DISTRIBUTION MODELING

    SciTech Connect

    Forbrich, Jan; Tappe, Achim; Robitaille, Thomas; Muench, August A.; Lada, Charles J.; Teixeira, Paula S.; Lada, Elizabeth A.; Stolte, Andrea

    2010-06-20

    When studying the evolutionary stages of protostars that form in clusters, the role of any intracluster medium cannot be neglected. High foreground extinction can lead to situations where young stellar objects (YSOs) appear to be in earlier evolutionary stages than they actually are, particularly when using simple criteria like spectral indices. To address this issue, we have assembled detailed spectral energy distribution characterizations of a sample of 56 Spitzer-identified candidate YSOs in the clusters NGC 2264 and IC 348. For these, we use spectra obtained with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope and ancillary multi-wavelength photometry. The primary aim is twofold: (1) to discuss the role of spectral features, particularly those due to ices and silicates, in determining a YSO's evolutionary stage, and (2) to perform comprehensive modeling of SEDs enhanced by the IRS data. The SEDs consist of ancillary optical-to-submillimeter multi-wavelength data as well as an accurate description of the 9.7 {mu}m silicate feature and of the mid-infrared continuum derived from line-free parts of the IRS spectra. We find that using this approach, we can distinguish genuine protostars in the cluster from T Tauri stars masquerading as protostars due to external foreground extinction. Our results underline the importance of photometric data in the far-infrared/submillimeter wavelength range, at sufficiently high angular resolution to more accurately classify cluster members. Such observations are becoming possible now with the advent of the Herschel Space Observatory.

  10. iPTF14yb: The First GRB Discovered Outside the Gamma-Ray Bandpass and the Rate of Orphan Afterglows

    NASA Astrophysics Data System (ADS)

    Cenko, Stephen

    2015-04-01

    We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, the first unambiguous detection of an afterglow-like transient identified outside the γ-ray bandpass. Subsequent to our discovery announcement, the ``parent'' γ-ray burst GRB 140226A was identified by the InterPlanetary Network of high-energy detectors. We demonstrate an association between iPTF14yb and GRB 140226A based both on probabilistic arguments and by comparing iPTF14yb with the known population of long GRB afterglows and host galaxies. We furthermore estimate the rate of iPTF14yb-like transients based on iPTF observations, and demonstrate it is consistent with the rate of on-axis long GRBs. Finally, we briefly discuss the implications of the non-detection to date of bona fide ``orphan'' afterglows (i.e., those lacking entirely in high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.

  11. Analysis of nuclear materials by energy dispersive x-ray fluorescence and spectral effects of alpha decay

    SciTech Connect

    Worley, Christopher G

    2009-01-01

    Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, {sup 239}Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect spectra from plutonium, americium, and a Pu-contaminated steel sample. The plutonium sample was also analyzed by wavelength dispersive XRF to demonstrate spectral differences observed when using these very different instruments.

  12. The influence of the nuclear self energy function on the spectral lines of atoms with unstable nuclei

    NASA Astrophysics Data System (ADS)

    Gainutdinov, R. Kh; Mutygullina, A. A.; Petrova, A. S.

    2016-05-01

    Optical emission from atoms with radioactive nuclei is investigated. The self energy function of the unstable nucleus is constructed. A new arbitrary parameter characterizing the nuclear interaction is introduced. The instability of the atomic nucleus is shown to result in the essential broadening of optical emission lines. The spectral line shape is shown to be of the Lorentz form, with the width being a nonlinear combination of the nuclear and atomic decay widths multiplied by the parameter depending on the peculiarities of nuclear interaction.

  13. The Swift Discovery of X-ray Afterglows Accompanying Short Bursts from SGR 1900+14

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y. E.; Sakamoto, T.; Sato, G.; Gehrels, N.; Hurley, K.; Palmer, D. M.

    2008-01-01

    The discovery of X-ray afterglows accompanying two short bursts from SGR1900+14 is presented. The afterglow luminosities at the end of each observation are lower by 30-50% than their initial luminosities, and decay with power law indices p approx. 0.2-0.4. Their initial bolometric luminosities are L approx. 10(exp 34)- 10(exp 35) erg/s. We discuss analogies and differences between the X-ray afterglows of SGR short bursts and short gamma-ray bursts.

  14. Analytically useful spectra excited in an atmospheric pressure active nitrogen afterglow

    SciTech Connect

    Rice, G.W.; D'Silva, A.P.; Fassel, V.A.

    1984-03-01

    An atmospheric pressure active nitrogen (APAN) discharge has been utilized for producing characteristic molecular emissions from nonmetallic species introduced into the afterglow region of the discharge. The addition of inorganic S-, P-, B-, Cl-, and Br-containing compounds into the afterglow has resulted in the formation of excited S/sub 2/, PN, BO, NCl, and NBr species, respectively. Intense molecular Br/sub 2/ emission and I/sub 2/ emission, as well as atomic I emission, have also been observed. Preliminary analytical utilization of the molecular or atomic emissions observed revealed that the APAN afterglow may serve as a potentially useful detector for the aforementioned elements.

  15. SHOCK CORRUGATION BY RAYLEIGH-TAYLOR INSTABILITY IN GAMMA-RAY BURST AFTERGLOW JETS

    SciTech Connect

    Duffell, Paul C.; MacFadyen, Andrew I. E-mail: macfadyen@nyu.edu

    2014-08-10

    Afterglow jets are Rayleigh-Taylor unstable and therefore turbulent during the early part of their deceleration. There are also several processes which actively cool the jet. In this Letter, we demonstrate that if cooling significantly increases the compressibility of the flow, the turbulence collides with the forward shock, destabilizing and corrugating it. In this case, the forward shock is turbulent enough to produce the magnetic fields responsible for synchrotron emission via small-scale turbulent dynamo. We calculate light curves assuming the magnetic field is in energy equipartition with the turbulent kinetic energy and discover that dynamic magnetic fields are well approximated by a constant magnetic-to-thermal energy ratio of 1%, though there is a sizeable delay in the time of peak flux as the magnetic field turns on only after the turbulence has activated. The reverse shock is found to be significantly more magnetized than the forward shock, with a magnetic-to-thermal energy ratio of the order of 10%. This work motivates future Rayleigh-Taylor calculations using more physical cooling models.

  16. The Search for High Energy Extended Emission by Fermi-LAT from Swift-Localized Gamma-Ray Bursts

    SciTech Connect

    Chiang, J.; Racusin, J.L.; /NASA, Goddard

    2012-05-01

    The brighter Fermi-LAT bursts have exhibited emission at energies >0.1 GeV that persists as late as {approx}2 ks after the prompt phase has nominally ended. This so-called 'extended emission' could arise from continued activity of the prompt burst mechanism or it could be the start of a high energy afterglow component. The high energy extended emission seen by the LAT has typically followed a t{sup -}{gamma} power-law temporal decay where {gamma} {approx} 1.2-1.7 and has shown no strong indication of spectral evolution. In contrast, the prompt burst emission generally displays strong spectral variability and more complex temporal changes in the LAT band. This differing behavior suggests that the extended emission likely corresponds to an early afterglow phase produced by an external shock. In this study, we look for evidence of high energy extended emission from 145 Swift-localized GRBs that have occurred since the launch of Fermi. A majority of these bursts were either outside of the LAT field-of-view or were otherwise not detected by the LAT during the prompt phase. However, because of the scanning operation of the Fermi satellite, the long-lived extended emission of these bursts may be detectable in the LAT data on the {approx}few ks time scale. We will look for emission from individual bursts and will perform a stacking analysis in order to set bounds on this emission for the sample as a whole. The detection of such emission would have implications for afterglow models and for the overall energy budget of GRBs.

  17. Characterization of the submesoscale energy cascade in the Alboran Sea thermocline from spectral analysis of high-resolution MCS data

    NASA Astrophysics Data System (ADS)

    Sallares, Valenti; Mojica, Jhon F.; Biescas, Berta; Klaeschen, Dirk; Gràcia, Eulàlia

    2016-06-01

    Part of the kinetic energy that maintains ocean circulation cascades down to small scales until it is dissipated through mixing. While most steps of this downward energy cascade are well understood, an observational gap exists at horizontal scales of 103-101 m that prevents characterizing a key step in the chain: the transition from anisotropic internal wave motions to isotropic turbulence. Here we show that this observational gap can be covered using high-resolution multichannel seismic (HR-MCS) data. Spectral analysis of acoustic reflectors imaged in the Alboran Sea thermocline shows that this transition is likely caused by shear instabilities. In particular, we show that the averaged horizontal wave number spectra of the reflectors vertical displacements display three subranges that reproduce theoretical spectral slopes of internal waves (λx > 100 m), Kelvin-Helmholtz-type shear instabilities (100 m > λx > 33 m), and turbulence (λx < 33 m), indicating that the whole chain of events is occurring continuously and simultaneously in the surveyed area.

  18. Determination of hexabromocyclododecane by flowing atmospheric pressure afterglow mass spectrometry.

    PubMed

    Smoluch, Marek; Silberring, Jerzy; Reszke, Edward; Kuc, Joanna; Grochowalski, Adam

    2014-10-01

    The first application of a flowing atmospheric-pressure afterglow ion source for mass spectrometry (FAPA-MS) for the chemical characterization and determination of hexabromocyclododecane (HBCD) is presented. The samples of technical HBCD and expanded polystyrene foam (EPS) containing HBCD as a flame retardant were prepared by dissolving the appropriate solids in dichloromethane. The ionization of HBCD was achieved with a prototype FAPA source. The ions were detected in the negative-ion mode. The ions corresponding to a deprotonated HBCD species (m/z 640.7) as well as chlorine (m/z 676.8), nitrite (m/z 687.8) and nitric (m/z 703.8) adducts were observed in the spectra. The observed isotope pattern is characteristic for a compound containing six bromine atoms. This technique is an effective approach to detect HBCD, which is efficiently ionized in a liquid phase, resulting in high detection efficiency and sensitivity. PMID:25059130

  19. Langmuir-Probe Measurements in Flowing-Afterglow Plasmas

    NASA Technical Reports Server (NTRS)

    Johnsen, R.; Shunko, E. V.; Gougousi, T.; Golde, M. F.

    1994-01-01

    The validity of the orbital-motion theory for cylindrical Langmuir probes immersed in flowing- afterglow plasmas is investigated experimentally. It is found that the probe currents scale linearly with probe area only for electron-collecting but not for ion-collecting probes. In general, no agreement is found between the ion and electron densities derived from the probe currents. Measurements in recombining plasmas support the conclusion that only the electron densities derived from probe measurements can be trusted to be of acceptable accuracy. This paper also includes a brief derivation of the orbital-motion theory, a discussion of perturbations of the plasma by the probe current, and the interpretation of plasma velocities obtained from probe measurements.

  20. Long-lived plasma and fast quenching of N2(C3Π u ) by electrons in the afterglow of a nanosecond capillary discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Lepikhin, N. D.; Klochko, A. V.; Popov, N. A.; Starikovskaia, S. M.

    2016-08-01

    Quenching of electronically excited nitrogen state, {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u},{{v}\\prime}=0\\right) , in the afterglow of nanosecond capillary discharge in pure nitrogen is studied. It is found experimentally that an additional collisional mechanism appears and dominates at high specific deposited energies leading to the anomalously fast quenching of the {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u}\\right) in the afterglow. On the basis of obtained experimental data and of the analysis of possible quenching agents, it is concluded that the anomalously fast deactivation of the {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u}\\right) can be explained by quenching by electrons. Long-lived plasma at time scale of hundreds nanoseconds after the end of the pulse is observed. High electron densities, about 1014 cm‑3 at 27 mbar, are sustained by reactions of associative ionization. Kinetic 1D numerical modeling and comparison of calculated results with experimentally measured electric fields in the second high-voltage pulse 250 ns after the initial pulse, and electron density measurements in the afterglow confirm the validity of the suggested mechanism.

  1. THERMAL EMISSION IN THE EARLY X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS: FOLLOWING THE PROMPT PHASE TO LATE TIMES

    SciTech Connect

    Friis, Mette; Watson, Darach E-mail: darach@dark-cosmology.dk

    2013-07-01

    Thermal radiation, peaking in soft X-rays, has now been detected in a handful of gamma-ray burst (GRB) afterglows and has to date been interpreted as shock break-out of the GRB's progenitor star. We present a search for thermal emission in the early X-ray afterglows of a sample of Swift bursts selected by their brightness in X-rays at early times. We identify a clear thermal component in eight GRBs and track the evolution. We show that at least some of the emission must come from highly relativistic material since two show an apparent super-luminal expansion of the thermal component. Furthermore, we determine very large luminosities and high temperatures for many of the components-too high to originate in a supernova shock break-out. Instead, we suggest that the component may be modeled as late photospheric emission from the jet, linking it to the apparently thermal component observed in the prompt emission of some GRBs at gamma-ray and hard X-ray energies. By comparing the parameters from the prompt emission and the early afterglow emission, we find that the results are compatible with the interpretation that we are observing the prompt quasi-thermal emission component in soft X-rays at a later point in its evolution.

  2. Long-lived plasma and fast quenching of N2(C3Π u ) by electrons in the afterglow of a nanosecond capillary discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Lepikhin, N. D.; Klochko, A. V.; Popov, N. A.; Starikovskaia, S. M.

    2016-08-01

    Quenching of electronically excited nitrogen state, {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u},{{v}\\prime}=0\\right) , in the afterglow of nanosecond capillary discharge in pure nitrogen is studied. It is found experimentally that an additional collisional mechanism appears and dominates at high specific deposited energies leading to the anomalously fast quenching of the {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u}\\right) in the afterglow. On the basis of obtained experimental data and of the analysis of possible quenching agents, it is concluded that the anomalously fast deactivation of the {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u}\\right) can be explained by quenching by electrons. Long-lived plasma at time scale of hundreds nanoseconds after the end of the pulse is observed. High electron densities, about 1014 cm-3 at 27 mbar, are sustained by reactions of associative ionization. Kinetic 1D numerical modeling and comparison of calculated results with experimentally measured electric fields in the second high-voltage pulse 250 ns after the initial pulse, and electron density measurements in the afterglow confirm the validity of the suggested mechanism.

  3. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: Spectral optimization and preliminary phantom measurement

    SciTech Connect

    Saito, Masatoshi

    2007-11-15

    Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity--in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:Tl scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm{sup 2} iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components - acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues.

  4. An Achromatic Break in the Afterglow of the Short GRB 140903A: Evidence for a Narrow Jet

    NASA Astrophysics Data System (ADS)

    Troja, E.; Sakamoto, T.; Cenko, S. B.; Lien, A.; Gehrels, N.; Castro-Tirado, A. J.; Ricci, R.; Capone, J.; Toy, V.; Kutyrev, A.; Kawai, N.; Cucchiara, A.; Fruchter, A.; Gorosabel, J.; Jeong, S.; Levan, A.; Perley, D.; Sanchez-Ramirez, R.; Tanvir, N.; Veilleux, S.

    2016-08-01

    We report the results of our observing campaign on GRB 140903A, a nearby (z = 0.351) short-duration (T 90 ˜ 0.3 s) gamma-ray burst discovered by Swift. We monitored the X-ray afterglow with Chandra up to 15 days after the burst and detected a steeper decay of the X-ray flux after t j ≈ 1 day. Continued monitoring at optical and radio wavelengths showed a similar decay in flux at nearly the same time, and we interpret it as evidence of a narrowly collimated jet. By using the standard fireball model to describe the afterglow evolution, we derive a jet opening angle θ j ≈ 5° and a collimation-corrected total energy release E ≈ 2 × {10}50 erg. We further discuss the nature of the GRB progenitor system. Three main lines disfavor a massive star progenitor: the properties of the prompt gamma-ray emission, the age and low star formation rate of the host galaxy, and the lack of a bright supernova. We conclude that this event likely originated from a compact binary merger.

  5. Luminescence properties of a new green afterglow phosphor NaBaScSi2O7:Eu(2+).

    PubMed

    Li, Gen; Wang, Yuhua; Zeng, Wei; Chen, Wenbo; Han, Shaochun; Guo, Haijie; Wang, Xicheng

    2015-10-28

    A novel green afterglow phosphor NaBaScSi2O7:Eu(2+) was prepared by a solid state reaction under a reductive atmosphere. The NaBaScSi2O7:Eu(2+) phosphor shows two emission bands centered at about 424 (weak) and 502 nm (strong) due to the substitution of Eu(2+) in both Ba(+) and Na(2+) sites, and energy transfer from EuBa (424 nm) to EuNa (502 nm) was found. Both EuBa and EuNa contribute to the afterglow process while EuNa dominates. Na0.99BaScSi2O7:0.01Eu(2+) exhibits green long lasting phosphorescence, whose duration is more than 1 h. The thermoluminescence properties of NaBaScSi2O7:Eu(2+) and the relationship between thermoluminescence and thermal quenching properties were discussed in detail. This work provides a new and efficient candidate for long lasting phosphorescence materials. PMID:26391314

  6. Phase-resolved X-ray spectroscopy and spectral energy distribution of the X-ray soft polar RS Caeli

    NASA Astrophysics Data System (ADS)

    Traulsen, I.; Reinsch, K.; Schwope, A. D.; Schwarz, R.; Walter, F. M.; Burwitz, V.

    2014-02-01

    Context. RS Cae is the third target in our series of XMM-Newton observations of soft X-ray-dominated polars. Aims: Our observational campaign aims to better understand and describe the multiwavelength data, the physical properties of the system components, and the short- and long-term behavior of the component fluxes in RS Cae. Methods: We employ stellar atmosphere, stratified accretion-column, and widely used X-ray spectral models. We fit the XMM-Newton spectra, model the multiband light curves, and opt for a mostly consistent description of the spectral energy distribution. Results: Our XMM-Newton data of RS Cae are clearly dominated by soft X-ray emission. The X-ray light curves are shaped by emission from the main accretion region, which is visible over the whole orbital cycle, interrupted only by a stream eclipse. The optical light curves are formed by cyclotron and stream emission. The XMM-Newton X-ray spectra comprise a black-body-like and a plasma component at mean temperatures of 36 eV and 7 keV. The spectral fits give evidence of a partially absorbing and a reflection component. Multitemperature models, covering a broader temperature range in the X-ray emitting accretion regions, reproduce the spectra appropriately well. Including archival data, we describe the spectral energy distribution with a combination of models based on a consistent set of parameters and derive a lower limit estimate of the distance d ≳ 750 pc. Conclusions: The high bolometric soft-to-hard flux ratios and short-term variability of the (X-ray) light curves are characteristic of inhomogeneous accretion. RS Cae clearly belongs in the group of polars that show a very strong soft X-ray flux compared to their hard X-ray flux. The different black-body fluxes and similar hard X-ray and optical fluxes during the XMM-Newton and ROSAT observations show that soft and hard X-ray emission are not directly correlated. Based on observations obtained with XMM-Newton, an ESA science mission with

  7. Influence of plasma diffusion losses on dust charge relaxation in discharge afterglow

    SciTech Connect

    Coueedel, L.; Mikikian, M.; Boufendi, L.

    2008-09-07

    The influence of diffusive losses on residual dust charge in a complex plasma afterglow has been investigated. The dust residual charges were simulated based on a model developed to describe complex plasma decay. The experimental and simulated data show that the transition from ambipolar to free diffusion in the decaying plasma plays a significant role in determining the residual dust particle charges. The presence of positively charged dust particles is explained by a broadening of the charge distribution function in the afterglow plasma.

  8. Escherichia coli morphological changes and lipid A removal induced by reduced pressure nitrogen afterglow exposure.

    PubMed

    Zerrouki, Hayat; Rizzati, Virginie; Bernis, Corinne; Nègre-Salvayre, Anne; Sarrette, Jean Philippe; Cousty, Sarah

    2015-01-01

    Lipid A is a major hydrophobic component of lipopolysaccharides (endotoxin) present in the membrane of most Gram-negative bacteria, and the major responsible for the bioactivity and toxicity of the endotoxin. Previous studies have demonstrated that the late afterglow region of flowing post-discharges at reduced pressure (1-20 Torr) can be used for the sterilization of surfaces and of the reusable medical instrumentation. In the present paper, we show that the antibacterial activity of a pure nitrogen afterglow can essentially be attributed to the large concentrations of nitrogen atoms present in the treatment area and not to the UV radiation of the afterglow. In parallel, the time variation of the inactivation efficiency quantified by the log reduction of the initial Escherichia coli (E. coli) population is correlated with morphologic changes observed on the bacteria by scanning electron microscopy (SEM) for increasing afterglow exposure times. The effect of the afterglow exposure is also studied on pure lipid A and on lipid A extracted from exposed E. coli bacteria. We report that more than 60% of lipid A (pure or bacteria-extracted) are lost with the used operating conditions (nitrogen flow QN2 = 1 standard liter per minute (slpm), pressure p = 5 Torr, microwave injected power PMW = 200 W, exposure time: 40 minutes). The afterglow exposure also results in a reduction of the lipid A proinflammatory activity, assessed by the net decrease of the redox-sensitive NFκB transcription factor nuclear translocation in murine aortic endothelial cells stimulated with control vs afterglow-treated (pure and extracted) lipid A. Altogether these results point out the ability of reduced pressure nitrogen afterglows to neutralize the cytotoxic components in Gram-negative bacteria.

  9. Escherichia coli Morphological Changes and Lipid A Removal Induced by Reduced Pressure Nitrogen Afterglow Exposure

    PubMed Central

    Zerrouki, Hayat; Rizzati, Virginie; Bernis, Corinne; Nègre-Salvayre, Anne; Sarrette, Jean Philippe; Cousty, Sarah

    2015-01-01

    Lipid A is a major hydrophobic component of lipopolysaccharides (endotoxin) present in the membrane of most Gram-negative bacteria, and the major responsible for the bioactivity and toxicity of the endotoxin. Previous studies have demonstrated that the late afterglow region of flowing post-discharges at reduced pressure (1-20 Torr) can be used for the sterilization of surfaces and of the reusable medical instrumentation. In the present paper, we show that the antibacterial activity of a pure nitrogen afterglow can essentially be attributed to the large concentrations of nitrogen atoms present in the treatment area and not to the UV radiation of the afterglow. In parallel, the time variation of the inactivation efficiency quantified by the log reduction of the initial Escherichia coli (E. coli) population is correlated with morphologic changes observed on the bacteria by scanning electron microscopy (SEM) for increasing afterglow exposure times. The effect of the afterglow exposure is also studied on pure lipid A and on lipid A extracted from exposed E. coli bacteria. We report that more than 60% of lipid A (pure or bacteria-extracted) are lost with the used operating conditions (nitrogen flow QN2 = 1 standard liter per minute (slpm), pressure p = 5 Torr, microwave injected power PMW = 200 W, exposure time: 40 minutes). The afterglow exposure also results in a reduction of the lipid A proinflammatory activity, assessed by the net decrease of the redox-sensitive NFκB transcription factor nuclear translocation in murine aortic endothelial cells stimulated with control vs afterglow-treated (pure and extracted) lipid A. Altogether these results point out the ability of reduced pressure nitrogen afterglows to neutralize the cytotoxic components in Gram-negative bacteria. PMID:25837580

  10. First Measurement of the {rho} Spectral Function in High-Energy Nuclear Collisions

    SciTech Connect

    Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Scomparin, E.; Averbeck, R.; Drees, A.; Banicz, K.; Specht, H.J.; Castor, J.; Devaux, A.; Fargeix, J.; Force, P.; Manso, F.; Chaurand, B.; Cicalo, C.; De Falco, A.; Floris, M.; Masoni, A.

    2006-04-28

    We report on a precision measurement of low-mass muon pairs in 158 AGeV indium-indium collisions at the CERN SPS. A significant excess of pairs is observed above the yield expected from neutral meson decays. The unprecedented sample size of 360 000 dimuons and the good mass resolution of about 2% allow us to isolate the excess by subtraction of the decay sources. The shape of the resulting mass spectrum is consistent with a dominant contribution from {pi}{sup +}{pi}{sup -}{yields}{rho}{yields}{mu}{sup +}{mu}{sup -} annihilation. The associated space-time averaged {rho} spectral function shows a strong broadening, but essentially no shift in mass. This may rule out theoretical models linking hadron masses directly to the chiral condensate.

  11. DISCOVERY OF A TIGHT CORRELATION FOR GAMMA-RAY BURST AFTERGLOWS WITH 'CANONICAL' LIGHT CURVES

    SciTech Connect

    Dainotti, Maria Giovanna; Ostrowski, Michal; Willingale, Richard; Capozziello, Salvatore; Cardone, Vincenzo Fabrizio E-mail: mio@oa.uj.edu.p E-mail: capozziello@na.infn.i

    2010-10-20

    Gamma-ray bursts (GRBs) observed up to redshifts z>8 are fascinating objects to study due to their still unexplained relativistic outburst mechanisms and their possible use to test cosmological models. Our analysis of 77 GRB afterglows with known redshifts revealed a physical subsample of long GRBs with the canonical plateau breaking to power-law light curves with a significant luminosity L*{sub X}-break time T*{sub a} correlation in the GRB rest frame. This subsample forms approximately the upper envelope of the studied distribution. We have also found a similar relation for a small sample of GRB afterglows that belong to the intermediate class between the short and the long ones. It proves that within the full sample of afterglows there exist physical subclasses revealed here by tight correlations of their afterglow properties. The afterglows with regular ('canonical') light curves obey not only the mentioned tight physical scaling, but-for a given T*{sub a}-the more regular progenitor explosions lead to preferentially brighter afterglows.

  12. CALORIMETRY OF GRB 030329: SIMULTANEOUS MODEL FITTING TO THE BROADBAND RADIO AFTERGLOW AND THE OBSERVED IMAGE EXPANSION RATE

    SciTech Connect

    Mesler, Robert A.; Pihlstroem, Ylva M.

    2013-09-01

    We perform calorimetry on the bright gamma-ray burst GRB 030329 by fitting simultaneously the broadband radio afterglow and the observed afterglow image size to a semi-analytic MHD and afterglow emission model. Our semi-analytic method is valid in both the relativistic and non-relativistic regimes, and incorporates a model of the interstellar scintillation that substantially effects the broadband afterglow below 10 GHz. The model is fitted to archival measurements of the afterglow flux from 1 day to 8.3 yr after the burst. Values for the initial burst parameters are determined and the nature of the circumburst medium is explored. Additionally, direct measurements of the lateral expansion rate of the radio afterglow image size allow us to estimate the initial Lorentz factor of the jet.

  13. The energy and spectral characteristics of a room-temperature pulsed laser on a ZnS:Fe2+ polycrystal

    NASA Astrophysics Data System (ADS)

    Firsov, K. N.; Gavrishchuk, E. M.; Ikonnikov, V. B.; Kazantsev, S. Yu; Kononov, I. G.; Kotereva, T. V.; Savin, D. V.; Timofeeva, N. A.

    2016-04-01

    The energy and spectral characteristics of a laser on a ZnS:Fe2+ polycrystal operating at room temperature have been studied. The laser was pumped by a non-chain electro-discharge HF laser with a full-width at half-maximum pulse duration of ~140 ns. The diameter of the pumping radiation spot on the crystal surface was 3.8 mm. The two-sided diffuse doping of a polycrystalline CVD-ZnS sample with the surfaces preliminarily coated by high-purity iron films was performed in the process of hot isostatic pressing (HIP) in an argon atmosphere at a pressure of 100 MPa and temperature of 1290 °С. Increasing the duration of the HIP treatment from 54 h to 72 h made it possible to obtain twice the doping depth, and correspondingly, twice the length of active medium. As a result, the slope laser efficiency with respect to the absorbed energy was raised by a factor of 1.75 as compared to the value obtained in our earlier work with a polycrystalline sample. The generation energy was 25 mJ at a slope efficiency of η slope  =  35%. It was established that the generation spectra of the laser with a non-selective resonator have a linear structure with intervals between the neighboring lines of δ λ   ≈  6 ÷ 8 nm, which is spurious for solid-state lasers. The spectral structure observed is not related to the elements inside the resonator, which might form Fabry-Perot interferometers.

  14. Characterization of the sub-mesoscale energy cascade in the Alboran Sea thermocline from spectral analysis of multichannel seismic data

    NASA Astrophysics Data System (ADS)

    Sallares, Valenti; Moncada, Jhon F.; Biescas, Berta; Klaeschen, Dirk

    2016-04-01

    Large-scale ocean dynamics is linked to small-scale mixing by means of turbulence, which enables the exchange of kinetic energy across the scales. At equilibrium, the energy flux that is injected at the production range must be balanced by mixing at the dissipation range. While the physics of the different ranges is now well established, an observational gap exists at the 103-101 m scale that prevents to characterize the transition from the anisotropic internal wave motions to isotropic turbulence. This lack of empirical evidence limits our understanding of the mechanisms governing the downward energy cascade, hampering the predictive capability of ocean circulation models. Here we show that this observational gap can be covered using high-resolution multichannel seismic (HR-MCS) data. Spectral analysis of acoustic reflectors imaged in the Alboran Sea (Western Mediterranean) thermocline evidences that this transition is caused by shear instabilities. In particular, we show that the averaged horizontal wavenumber (kx) spectra of the reflector's vertical displacements display three subranges that reproduce theoretical spectral slopes of internal waves [λx>100 m, with λx=kx-1], Kelvin-Helmholtz (KH)-type shear instabilities[100 m> λx>33 m], and turbulence[λx<33 m]. The presence of the transitional subrange in the averaged spectrum indicates that the whole chain of events is occurring continuously and simultaneously in the surveyed area. The availability of a system providing observational data at the appropriate scales opens new perspectives to incorporate small-scale mixing in predictive ocean modelling research.

  15. The energy and spectral characteristics of a room-temperature pulsed laser on a ZnS:Fe2+ polycrystal

    NASA Astrophysics Data System (ADS)

    Firsov, K. N.; Gavrishchuk, E. M.; Ikonnikov, V. B.; Kazantsev, S. Yu; Kononov, I. G.; Kotereva, T. V.; Savin, D. V.; Timofeeva, N. A.

    2016-04-01

    The energy and spectral characteristics of a laser on a ZnS:Fe2+ polycrystal operating at room temperature have been studied. The laser was pumped by a non-chain electro-discharge HF laser with a full-width at half-maximum pulse duration of ~140 ns. The diameter of the pumping radiation spot on the crystal surface was 3.8& mm. The two-sided diffuse doping of a polycrystalline CVD-ZnS sample with the surfaces preliminarily coated by high-purity iron films was performed in the process of hot isostatic pressing (HIP) in an argon atmosphere at a pressure of 100 MPa and temperature of 1290 °C. Increasing the duration of the HIP treatment from 54 h to 72 h made it possible to obtain twice the doping depth, and correspondingly, twice the length of active medium. As a result, the slope laser efficiency with respect to the absorbed energy was raised by a factor of 1.75 as compared to the value obtained in our earlier work with a polycrystalline sample. The generation energy was 25 mJ at a slope efficiency of ηslope = 35%. It was established that the generation spectra of the laser with a non-selective resonator have a linear structure with intervals between the neighboring lines of δλ 6 ÷ 8 nm, which is spurious for solid-state lasers. The spectral structure observed is not related to the elements inside the resonator, which might form Fabry-Perot interferometers.

  16. Spectral study of wintertime kinetic energy of the Northern Hemisphere in the troposphere

    NASA Technical Reports Server (NTRS)

    Lee, H. N.; Zhao, Z.; Kao, S. K.

    1983-01-01

    Characteristics of the kinetic energy of wind fields at various pressure levels were analyzed, and significant wavenumbers in the wavenumber-frequency domain were identified. The nonlinear interaction terms of the kinetic energy equation were examined, and the distribution of the kinetic energy at the 850 mb, 500 mb, and 200 mb levels was calculated. A 5 deg latitude-longitude square grid was used, with NMC data for the 1975-1976 winter in the 20-60 deg N at 500 mb and 20-85 deg N for the 200 mb and 850 mb levels. The kinetic energy distribution was determined to be geography-dependent, with wavenumbers 6-9 westerly waves in the midfrequency range contributing significantly to kinetic energy maxima over the North Pacific and the east coast of North America. The contribution of the nonlinear interactions of these waves, which correspond to the longitudinal convergence of the kinetic energy flux, was found to be larger than the meridional convergence of the kinetic energy flux, and to occur mainly between 30-50 deg N. The nonlinear interactions were a negative contribution over the North Pacific at the 200 mb level.

  17. A late-time flattening of light curves in gamma-ray burst afterglows

    SciTech Connect

    Sironi, Lorenzo; Giannios, Dimitrios E-mail: dgiannio@purdue.edu

    2013-12-01

    The afterglow emission from gamma-ray bursts (GRBs) is usually interpreted as synchrotron radiation from relativistic electrons accelerated at the GRB external shock. We investigate the temporal decay of the afterglow emission at late times, when the bulk of the shock-accelerated electrons are non-relativistic (the 'deep Newtonian phase', as denoted by Huang and Cheng). We assume that the electron spectrum in the deep Newtonian phase is a power-law distribution in momentum with slope p, as dictated by the theory of Fermi acceleration in non-relativistic shocks. For a uniform circumburst medium, the deep Newtonian phase begins at t{sub DN}∼3 ϵ{sub e,−1}{sup 5/6}t{sub ST}, where t {sub ST} marks the transition of the blast wave to the non-relativistic, spherically symmetric Sedov-Taylor (ST) solution, and ε {sub e} = 0.1 ε {sub e,–1} quantifies the amount of shock energy transferred to the electrons. For typical parameters, the deep Newtonian stage starts ∼0.5 to several years after the GRB. The radio flux in this phase decays as F {sub ν}∝t {sup –3(p+1)/10}∝t {sup –(0.9÷1.2)}, for a power-law slope 2 < p < 3. This is shallower than the scaling F {sub ν}∝t {sup –3(5p–7)/10}∝t {sup –(0.9÷2.4)} derived by Frail et al., which only applies if the GRB shock is non-relativistic, but the electron distribution still peaks at ultra-relativistic energies (a regime that is relevant for a narrow time interval, and only if t {sub DN} ≳ t {sub ST}, namely, ε {sub e} ≳ 0.03). We discuss how the deep Newtonian phase can be reliably used for GRB calorimetry, and we comment on the good detection prospects of trans-relativistic blast waves at 0.1÷10 GHz with the Karl G. Jansky Very Large Array and LOw-Frequency ARray.

  18. A Late-time Flattening of Light Curves in Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo; Giannios, Dimitrios

    2013-12-01

    The afterglow emission from gamma-ray bursts (GRBs) is usually interpreted as synchrotron radiation from relativistic electrons accelerated at the GRB external shock. We investigate the temporal decay of the afterglow emission at late times, when the bulk of the shock-accelerated electrons are non-relativistic (the "deep Newtonian phase," as denoted by Huang and Cheng). We assume that the electron spectrum in the deep Newtonian phase is a power-law distribution in momentum with slope p, as dictated by the theory of Fermi acceleration in non-relativistic shocks. For a uniform circumburst medium, the deep Newtonian phase begins at t{_{\\scriptsize {DN}}}\\sim 3\\,\\epsilon _{e,-1}^{5/6}t{_{\\scriptsize {ST}}}, where t ST marks the transition of the blast wave to the non-relativistic, spherically symmetric Sedov-Taylor (ST) solution, and epsilon e = 0.1 epsilon e, -1 quantifies the amount of shock energy transferred to the electrons. For typical parameters, the deep Newtonian stage starts ~0.5 to several years after the GRB. The radio flux in this phase decays as F νvpropt -3(p + 1)/10vpropt -(0.9÷1.2), for a power-law slope 2 < p < 3. This is shallower than the scaling F νvpropt -3(5p - 7)/10vpropt -(0.9÷2.4) derived by Frail et al., which only applies if the GRB shock is non-relativistic, but the electron distribution still peaks at ultra-relativistic energies (a regime that is relevant for a narrow time interval, and only if t DN >~ t ST, namely, epsilon e >~ 0.03). We discuss how the deep Newtonian phase can be reliably used for GRB calorimetry, and we comment on the good detection prospects of trans-relativistic blast waves at 0.1÷10 GHz with the Karl G. Jansky Very Large Array and LOw-Frequency ARray.

  19. Radiation Dose Assessments of Solar Particle Events with Spectral Representation at High Energies for the Improvement of Radiation Protection

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Atwell, William; Tylka, Allan J.; Dietrich, William; Cucinotta, Francis A.

    For radiation dose assessments of major solar particle events (SPEs), spectral functional forms of SPEs have been made by fitting available satellite measurements up to 100 MeV. However, very high-energy protons (above 500 MeV) have been observed with neutron monitors (NMs) in ground level enhancements (GLEs), which generally present the most severe radiation hazards to astronauts. Due to technical difficulties in converting NM data into absolutely normalized fluence measurements, those functional forms were made with little or no use of NM data. A new analysis of NM data has found that a double power law in rigidity (the so-called Band function) generally provides a satisfactory representation of the combined satellite and NM data from 10 MeV to 10 GeV in major SPEs (Tylka and Dietrich, the 31st International Cosmic Ray Conference, Lodz, Poland, July 7-15, 2009). We use the Band function fits to re-assess human exposures from large SPEs. Using different spectral representations of large SPEs, variations of exposure levels were compared. The results can be applied to the development of approaches of improved radiation protection for astronauts, as well as the optimization of mission planning and shielding for future space missions.

  20. Radiation Dose Assessments of Solar Particle Events with Spectral Representation at High Energies for the Improvement of Radiation Protection

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Atwell, William; Tylka, Allan J.; Dietrich, William F.; Cucinotta, Francis A.

    2010-01-01

    For radiation dose assessments of major solar particle events (SPEs), spectral functional forms of SPEs have been made by fitting available satellite measurements up to approx.100 MeV. However, very high-energy protons (above 500 MeV) have been observed with neutron monitors (NMs) in ground level enhancements (GLEs), which generally present the most severe radiation hazards to astronauts. Due to technical difficulties in converting NM data into absolutely normalized fluence measurements, those functional forms were made with little or no use of NM data. A new analysis of NM data has found that a double power law in rigidity (the so-called Band function) generally provides a satisfactory representation of the combined satellite and NM data from approx.10 MeV to approx.10 GeV in major SPEs (Tylka & Dietrich 2009). We use the Band function fits to re-assess human exposures from large SPEs. Using different spectral representations of large SPEs, variations of exposure levels were compared. The results can be applied to the development of approaches of improved radiation protection for astronauts, as well as the optimization of mission planning and shielding for future space missions.

  1. Spectral response calibrations of x-ray diode photocathodes in the 50-5900 eV photon energy region

    NASA Astrophysics Data System (ADS)

    Bentley, C. D.; Simmons, A. C.

    2001-01-01

    X-ray diode photocathodes are employed in diagnostic instruments on the Helen laser at the Atomic Weapons Establishment (AWE) Aldermaston, UK. The photocathodes are mainly used in the Dante fast diode array and flat response diodes. These diagnostics enable the soft x-ray spectral emissions of laser irradiated targets to be determined. To derive quantitative spectral information, the quantum efficiency of the photocathodes must be known over the range of x-ray energies of interest. The photocathodes were manufactured in 1982, and were initially calibrated at that time. Since then further measurements have been performed in 1988 and 1999. The photocathodes have been exposed to a wide range of conditions during their lives, ranging from use in experiments to storage in a dry nitrogen environment. Reported here are the results of calibrations performed in 1999 at the soft x-ray calibration facility EXCALIBUR at AWE, Aldermaston, and at the National Synchrotron Light Source in Brookhaven NY. An assessment of their current condition and an evaluation of the change in their response over time, and the possible reasons for these changes, are made.

  2. A Comprehensive Statistical Description of Radio-through-Gamma-Ray Spectral Energy Distributions of All Known Blazars

    NASA Astrophysics Data System (ADS)

    Mao, Peiyuan; Urry, C. Megan; Massaro, Francesco; Paggi, Alessandro; Cauteruccio, Joe; Künzel, Soren R.

    2016-06-01

    We combined multi-wavelength data for blazars from the Roma-BZCAT catalog and analyzed hundreds of X-ray spectra. We present the fluxes and spectral energy distributions (SEDs), in 12 frequency bands from radio to γ-rays, for a final sample of 2214 blazars. Using a model-independent statistical approach, we looked for systematic trends in the SEDs; the most significant trends involved the radio luminosities and X-ray spectral indices of the blazars. We used a principal component analysis (PCA) to determine the basis vectors of the blazar SEDs and, in order to maximize the size of the sample, imputed missing fluxes using the K-nearest neighbors method. Using more than an order of magnitude more data than was available when Fossati et al. first reported trends of SED shape with blazar luminosity, we confirmed the anti-correlation between radio luminosity and synchrotron peak frequency, although with greater scatter than was seen in the smaller sample. The same trend can be seen between bolometric luminosity and synchrotron peak frequency. Finally, we used all of the available blazar data to determine an empirical SED description that depends only on the radio luminosity at 1.4 GHz and the redshift. We verified that this statistically significant relation was not a result of the luminosity-luminosity correlations that are natural in flux-limited samples (i.e., where the correlation is actually caused by the redshift rather than the luminosity).

  3. The 'Supercritical Pile' GRB Model: Afterglows and GRB, XRR, XRF Unification

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    2007-01-01

    We present the general notions and observational consequences of the "Supercritical Pile" GRB model; the fundamental feature of this model is a detailed process for the conversion of the energy stored in relativistic protons in the GRB Relativistic Blast Waves (RBW) into relativistic electrons and then into radiation. The conversion is effected through the $p \\, \\gamma \\rightarrow p \\, e circumflex + e circumflex -$ reaction, whose kinematic threshold is imprinted on the GRB spectra to provide a peak of their emitted luminosity at energy \\Ep $\\sim 1$ MeV in the lab frame. We extend this model to include, in addition to the (quasi--)thermal relativistic post-shock protons an accelerated component of power law form. This component guarantees the production of $e circumflex +e circumflex- - $pairs even after the RBW has slowed down to the point that its (quasi-) thermal protons cannot fulfill the threshold of the above reaction. We suggest that this last condition marks the transition from the prompt to the afterglow GRB phase. We also discuss conditions under which this transition is accompanied by a significant drop in the flux and could thus account for several puzzling, recent observations. Finally, we indicate that the same mechanism applied to the late stages of the GRB evolution leads to a decrease in \\Ep $\\propto \\Gamma circumflex 2(t)\\propto t circumflex {-3/4}$, a feature amenable to future observational tests.

  4. The relationship between professional operatic soprano voice and high range spectral energy

    NASA Astrophysics Data System (ADS)

    Barnes, Jennifer J.; Davis, Pamela; Oates, Jennifer; Chapman, Janice

    2004-07-01

    Operatic sopranos need to be audible over an orchestra yet they are not considered to possess a singer's formant. As in other voice types, some singers are more successful than others at being heard and so this work investigated the frequency range of the singer's formant between 2000 and 4000 Hz to consider the question of extra energy in this range. Such energy would give an advantage over an orchestra, so the aims were to ascertain what levels of excess energy there might be and look at any relationship between extra energy levels and performance level. The voices of six operatic sopranos (national and international standard) were recorded performing vowel and song tasks and subsequently analyzed acoustically. Measures taken from vowel data were compared with song task data to assess the consistency of the approaches. Comparisons were also made with regard to two conditions of intended projection (maximal and comfortable), two song tasks (anthem and aria), two recording environments (studio and anechoic room), and between subjects. Ranking the singers from highest energy result to lowest showed the consistency of the results from both vowel and song methods and correlated reasonably well with the performance level of the subjects. The use of formant tuning is considered and examined.

  5. The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.; Calvet, Nuria; Hartmann, Lee

    1993-01-01

    We describe radiative transfer calculations of infalling, dusty envelopes surrounding pre-main-sequence stars and use these models to derive physical properties for a sample of 21 heavily reddened young stars in the Taurus-Auriga molecular cloud. The density distributions needed to match the FIR peaks in the spectral energy distributions of these embedded sources suggest mass infall rates similar to those predicted for simple thermally supported clouds with temperatures about 10 K. Unless the dust opacities are badly in error, our models require substantial departures from spherical symmetry in the envelopes of all sources. These flattened envelopes may be produced by a combination of rotation and cavities excavated by bipolar flows. The rotating infall models of Terebey et al. (1984) models indicate a centrifugal radius of about 70 AU for many objects if rotation is the only important physical effect, and this radius is reasonably consistent with typical estimates for the sizes of circumstellar disks around T Tauri stars.

  6. Spectral fingerprinting of polycyclic aromatic hydrocarbons in high-volume ambient air samples by constant energy synchronous luminescence spectroscopy

    USGS Publications Warehouse

    Kerkhoff, M.J.; Lee, T.M.; Allen, E.R.; Lundgren, D.A.; Winefordner, J.D.

    1985-01-01

    A high-volume sampler fitted with a glass-fiber filter and backed by polyurethane foam (PUF) was employed to collect airborne particulate and gas-phase polycylic aromatic hydrocarbons (PAHs) in ambient air. Samples were collected from four sources representing a range of environmental conditions: gasoline engine exhaust, diesel engine exhaust, air near a heavily traveled interstate site, and air from a moderately polluted urban site. Spectral fingerprints of the unseparated particulate and gas-phase samples were obtained by constant energy synchronous luminescence spectroscopy (CESLS). Five major PAHs in the gas-phase extracts were characterized and estimated. The compatibility of a high-volume sampling method using polyurethane foam coupled with CESLS detection is explored for use as a screening technique for PAHs in ambient air. ?? 1985 American Chemical Society.

  7. A two-parameter model for the infrared/submillimeter/radio spectral energy distributions of galaxies and active galactic nuclei

    SciTech Connect

    Dale, Daniel A.; Helou, George; Magdis, Georgios E.; Armus, Lee; Díaz-Santos, Tanio; Shi, Yong

    2014-03-20

    A two-parameter semi-empirical model is presented for the spectral energy distributions of galaxies with contributions to their infrared-submillimeter-radio emission from both star formation and accretion disk-powered activity. This model builds upon a previous one-parameter family of models for star-forming galaxies, and includes an update to the mid-infrared emission using an average template obtained from Spitzer Space Telescope observations of normal galaxies. Star-forming/active galactic nucleus (AGN) diagnostics based on polycyclic aromatic hydrocarbon equivalent widths and broadband infrared colors are presented, and example mid-infrared AGN fractional contributions are estimated from model fits to the Great Observatories All-Sky LIRG Survey sample of nearby U/LIRGS and the Five mJy Unbiased Spitzer Extragalactic Survey sample of 24 μm selected sources at redshifts 0 ≲ z ≲ 4.

  8. Measuring the beaming angle of GRB 030329 by fitting the rebrightenings in its multiband afterglow

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Huang, Yong-Feng; Kong, Si-Wei

    2010-11-01

    Multiple rebrightenings have been observed in the multiband afterglow of GRB 030329. In particular, a marked and quick rebrightening occurred at about t ~ 1.2 × 105 s. Energy injection from late and slow shells seems to be the best interpretation for these rebrightenings. Usually it is assumed that the energy is injected into the whole external shock. However, in the case of GRB 030329, the rebrightenings are so quick that the usual consideration fails to give a satisfactory fit to the observed light curves. Actually, since these late/slow shells freely coast in the wake of the external shock, they should be cold and may not expand laterally. The energy injection then should only occur at the central region of the external shock. Considering this effect, we numerically re-fit the quick rebrightenings observed in GRB 030329. By doing this, we were able to derive the beaming angle of the energy injection process. Our result, with a relative residual of only 5% - 10% during the major rebrightening, is better than any previous modeling. The derived energy injection angle is about 0.035. We assume that these late shells are ejected by the central engine via the same mechanism as those early shells that produce the prompt gamma-ray burst. The main difference is that their velocities are much slower, so that they catch up with the external shock relatively late and are manifested as the observed quick rebrightenings. If this were true, then the derived energy injection angle can give a good measure of the beaming angle of the prompt γ-ray emission. Our study may hopefully provide a novel method to measure the beaming angle of gamma-ray bursts.

  9. Study on the high spectral intensity at the Dirac energy of single-layer graphene on an SiC substrate

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoong; Hwang, Choongyu

    2016-04-01

    We have investigated electron band structure of epitaxially grown graphene on an SiC(0001) substrate using angle-resolved photoemission spectroscopy. In single-layer graphene, abnormal high spectral intensity is observed at the Dirac energy whose origin has been questioned between in-gap states induced by the buffer layer and plasmaron bands induced by electron–plasmon interactions. With the formation of double-layer graphene, the Dirac energy does not show the high spectral intensity any longer different from the single-layer case. The inconsistency between the two systems suggests that the main ingredient of the high spectral intensity at the Dirac energy of single-layer graphene is the electronic states originating from the coupling of the graphene π bands to the localized π states of the buffer layer, consistent with the theoretical prediction on the presence of in-gap states.

  10. Aqueous Cation-Amide Binding: Free Energies and IR Spectral Signatures by Ab Initio Molecular Dynamics

    SciTech Connect

    Pluharova, Eva; Baer, Marcel D.; Mundy, Christopher J.; Schmidt, Burkhard; Jungwirth, Pavel

    2014-07-03

    Understanding specific ion effects on proteins remains a considerable challenge. N-methylacetamide serves as a useful proxy for the protein backbone that can be well characterized both experimentally and theoretically. The spectroscopic signatures in the amide I band reflecting the strength of the interaction of alkali cations and alkali earth dications with the carbonyl group remain difficult to assign and controversial to interpret. Herein, we directly compute the IR shifts corresponding to the binding of either sodium or calcium to aqueous N-methylacetamide using ab initio molecular dynamics simulations. We show that the two cations interact with aqueous N-methylacetamide with different affinities and in different geometries. Since sodium exhibits a weak interaction with the carbonyl group, the resulting amide I band is similar to an unperturbed carbonyl group undergoing aqueous solvation. In contrast, the stronger calcium binding results in a clear IR shift with respect to N-methylacetamide in pure water. Support from the Czech Ministry of Education (grant LH12001) is gratefully acknowledged. EP thanks the International Max-Planck Research School for support and the Alternative Sponsored Fellowship program at Pacific Northwest National Laboratory (PNNL). PJ acknowledges the Praemium Academie award from the Academy of Sciences. Calculations of the free energy profiles were made possible through generous allocation of computer time from the North-German Supercomputing Alliance (HLRN). Calculations of vibrational spectra were performed in part using the computational resources in the National Energy Research Supercomputing Center (NERSC) at Lawrence Berkeley National Laboratory. This work was supported by National Science Foundation grant CHE-0431312. CJM is supported by the U.S. Department of Energy`s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. PNNL is operated for the Department of Energy by Battelle. MDB is

  11. Delivery of high-energy radiation in midinfrared spectral region by hollow waveguides

    NASA Astrophysics Data System (ADS)

    Nemec, Michal; Jelinkova, Helena; Sulc, Jan; Cerny, Pavel; Miyagi, Mitsunobu; Iwai, Katsumasa; Abe, Yukio; Shi, Yi-Wei; Matsuura, Yuji

    2003-07-01

    Due to increasing number of requirements dealing with the application of a high energy mid-infrared radiation in various branches of medicine (cardiology, dentistry, dermatology, urology, gastroenterology), an enough flexible and lossless delivery system is required. For a transport of this high energy pulses in a mid-infrared region special cyclic olefin polymer-coated silver (COP/Ag) hollow glass waveguides were prepared and tested. A length of the waveguides was 0.5 m and inner diameter 1 mm. As a radiation source, an Er:YAG laser was used. The system generated the energy up to 2.16 J or 2.35 J (in dependence on a repetition rate used - 3 Hz or 4 Hz, respectively). The length of transmitted pulses was measured to be from 110 up to 550 usec in dependence on output energy used. The output radiation was coupled into the COP/Ag waveguide and a throughput and losses values were measured in dependence to input radiation parameters. The transmission obtained was 91%. The maximum delivered energy was dependent on a damage threshold of the waveguide. It was found that the damage threshold is dependent on the repetition rate which shows the dependences on the heat dissipated in the waveguide wall. The value of the damage was 1.7 J and 1.5 J for 3 Hz and 4 Hz repetition rate, respectively. The safe delivered power reached the value of 5 W. The characteristics obtained make this specially constructed COP/Ag hollow glass waveguide promising for the delivery of high-energy laser pulses in medicine and also in other applications.

  12. Virtual Non-Contrast CT Using Dual-Energy Spectral CT: Feasibility of Coronary Artery Calcium Scoring

    PubMed Central

    Song, Inyoung; Yi, Jeong Geun; Park, Jeong Hee; Kim, Sung Mok; Lee, Kyung Soo

    2016-01-01

    Objective To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. Materials and Methods This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated VNC images were reconstructed using two kinds of 2-material decomposition algorithms (material density iodine-water pair [MDW], material density iodine-calcium pair [MDC]) and a material suppressed algorithm (material suppressed iodine [MSI]). Two readers independently quantified calcium on VNC and TNC images. The Spearman correlation coefficient test and Bland-Altman method were used for statistical analyses. Results Coronary artery calcium scores from all three VNC images showed excellent correlation with those from the TNC images (Spearman's correlation coefficient [ρ] = 0.94, 0.88, and 0.89 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Measured coronary calcium volumes from VNC images also correlated well with those from TNC images (ρ = 0.92, 0.87, and 0.91 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Among the three VNC images, coronary calcium from MDW correlated best with that from TNC. The coronary artery calcium scores and volumes were significantly lower from the VNC images than from the TNC images (p < 0.001 for all pairs). Conclusion The use of VNC images from contrast-enhanced CT using dual-energy material decomposition/suppression is feasible for coronary calcium scoring. The absolute value from VNC tends to be smaller than that from TNC. PMID:27134521

  13. Spectral energy distribution simulations of a possible ring structure around the young, red brown dwarf G 196-3 B

    NASA Astrophysics Data System (ADS)

    Zakhozhay, Olga V.; Zapatero Osorio, María Rosa; Béjar, Víctor J. S.; Boehler, Yann

    2016-09-01

    The origin of the very red optical and infrared colours of intermediate-age (˜10-500 Myr) L-type dwarfs remains unknown. It has been suggested that low-gravity atmospheres containing large amounts of dust may account for the observed reddish nature. We explored an alternative scenario by simulating protoplanetary and debris discs around G 196-3 B, which is an L3 young brown dwarf with a mass of ˜15 MJup and an age in the interval 20-300 Myr. The best-fit solution to G 196-3 B's photometric spectral energy distribution from optical wavelengths through 24 μm corresponds to the combination of an unreddened L3 atmosphere (Teff ≈ 1870 K) and a warm (≈ 1280 K), narrow (≈ 0.07-0.11 R⊙) debris disc located at very close distances (≈ 0.12-0.20 R⊙) from the central brown dwarf. This putative, optically thick, dusty belt, whose presence is compatible with the relatively young system age, would have a mass ≥7 × 10-10 M⊕ comprised of sub-micron/micron characteristic dusty particles with temperatures close to the sublimation threshold of silicates. Considering the derived global properties of the belt and the disc-to-brown dwarf mass ratio, the dusty ring around G 196-3 B may resemble the rings of Neptune and Jupiter, except for its high temperature and thick vertical height (≈6 × 103 km). Our inferred debris disc model is able to reproduce G 196-3 B's spectral energy distribution to a satisfactory level of achievement.

  14. First measurement of the spectral function at high energy and momentum in medium-heavy nuclei

    SciTech Connect

    Daniela Rohe; E97-006 collaboration

    2005-09-26

    The experiment E97-006 was performed at Jefferson Lab to measure the momentum and energy distribution of protons in the nucleus far from the region of the (approximate) validity of the mean field description, i.e. at high momentum and energies. The occurrence of this strength is long known from occupation numbers less than one. In the experiment reported here this strength was directly measured for the first time. The results are compared to modern many-body theories. Further the transparency factor of C12 was determined in the Q{sup 2}-region of 0.6 to 1.8 (GeV/c){sup 2}.

  15. The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets.

    PubMed

    Shields, Aomawa L; Meadows, Victoria S; Bitz, Cecilia M; Pierrehumbert, Raymond T; Joshi, Manoj M; Robinson, Tyler D

    2013-08-01

    Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO(2) (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO(2) in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice

  16. The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets.

    PubMed

    Shields, Aomawa L; Meadows, Victoria S; Bitz, Cecilia M; Pierrehumbert, Raymond T; Joshi, Manoj M; Robinson, Tyler D

    2013-08-01

    Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO(2) (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO(2) in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice

  17. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain

    DOE PAGES

    Belu, Radian; Koracin, Darko

    2013-01-01

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  18. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance

    NASA Astrophysics Data System (ADS)

    van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z.

    2009-12-01

    This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), which is a vertical (1-D) integrated radiative transfer and energy balance model. The model links visible to thermal infrared radiance spectra (0.4 to 50 μm) as observed above the canopy to the fluxes of water, heat and carbon dioxide, as a function of vegetation structure, and the vertical profiles of temperature. Output of the model is the spectrum of outgoing radiation in the viewing direction and the turbulent heat fluxes, photosynthesis and chlorophyll fluorescence. A special routine is dedicated to the calculation of photosynthesis rate and chlorophyll fluorescence at the leaf level as a function of net radiation and leaf temperature. The fluorescence contributions from individual leaves are integrated over the canopy layer to calculate top-of-canopy fluorescence. The calculation of radiative transfer and the energy balance is fully integrated, allowing for feedback between leaf temperatures, leaf chlorophyll fluorescence and radiative fluxes. Leaf temperatures are calculated on the basis of energy balance closure. Model simulations were evaluated against observations reported in the literature and against data collected during field campaigns. These evaluations showed that SCOPE is able to reproduce realistic radiance spectra, directional radiance and energy balance fluxes. The model may be applied for the design of algorithms for the retrieval of evapotranspiration from optical and thermal earth observation data, for validation of existing methods to monitor vegetation functioning, to help interpret canopy fluorescence measurements, and to study the relationships between synoptic observations with diurnally integrated quantities. The model has been implemented in Matlab and has a modular design, thus allowing for great flexibility and scalability.

  19. DIVERSITY OF SHORT GAMMA-RAY BURST AFTERGLOWS FROM COMPACT BINARY MERGERS HOSTING PULSARS

    SciTech Connect

    Holcomb, Cole; Ramirez-Ruiz, Enrico; De Colle, Fabio; Montes, Gabriela

    2014-07-20

    Short-duration gamma-ray bursts (sGRBs) are widely believed to result from the mergers of compact binaries. This model predicts an afterglow that bears the characteristic signatures of a constant, low-density medium, including a smooth prompt-afterglow transition, and a simple temporal evolution. However, these expectations are in conflict with observations for a non-negligible fraction of sGRB afterglows. In particular, the onset of the afterglow phase for some of these events appears to be delayed and, in addition, a few of them exhibit late-time rapid fading in their light curves. We show that these peculiar observations can be explained independently of ongoing central engine activity if some sGRB progenitors are compact binaries hosting at least one pulsar. The Poynting flux emanating from the pulsar companion can excavate a bow-shock cavity surrounding the binary. If this cavity is larger than the shock deceleration length scale in the undisturbed interstellar medium, then the onset of the afterglow will be delayed. Should the deceleration occur entirely within the swept-up thin shell, a rapid fade in the light curve will ensue. We identify two types of pulsar that can achieve the conditions necessary for altering the afterglow: low-field, long-lived pulsars, and high-field pulsars. We find that a sizable fraction (≈20%-50%) of low-field pulsars are likely to reside in neutron star binaries based on observations, while their high-field counterparts are not. Hydrodynamical calculations motivated by this model are shown to be in good agreement with observations of sGRB afterglow light curves.

  20. Electron and ion acceleration in relativistic shocks with applications to GRB afterglows

    NASA Astrophysics Data System (ADS)

    Warren, Donald C.; Ellison, Donald C.; Bykov, Andrei M.; Lee, Shiu-Hang

    2015-09-01

    We have modelled the simultaneous first-order Fermi shock acceleration of protons, electrons, and helium nuclei by relativistic shocks. By parametrizing the particle diffusion, our steady-state Monte Carlo simulation allows us to follow particles from particle injection at non-relativistic thermal energies to above PeV energies, including the non-linear smoothing of the shock structure due to cosmic ray (CR) backpressure. We observe the mass-to-charge (A/Z) enhancement effect believed to occur in efficient Fermi acceleration in non-relativistic shocks and we parametrize the transfer of ion energy to electrons seen in particle-in-cell (PIC) simulations. For a given set of environmental and model parameters, the Monte Carlo simulation determines the absolute normalization of the particle distributions and the resulting synchrotron, inverse Compton, and pion-decay emission in a largely self-consistent manner. The simulation is flexible and can be readily used with a wide range of parameters typical of γ-ray burst (GRB) afterglows. We describe some preliminary results for photon emission from shocks of different Lorentz factors and outline how the Monte Carlo simulation can be generalized and coupled to hydrodynamic simulations of GRB blast waves. We assume Bohm diffusion for simplicity but emphasize that the non-linear effects we describe stem mainly from an extended shock precursor where higher energy particles diffuse further upstream. Quantitative differences will occur with different diffusion models, particularly for the maximum CR energy and photon emission, but these non-linear effects should be qualitatively similar as long as the scattering mean-free path is an increasing function of momentum.

  1. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  2. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments.

    PubMed

    Lee, K W; Sheu, R J

    2015-04-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere).

  3. ON THE CORRELATION OF LOW-ENERGY SPECTRAL INDICES AND REDSHIFTS OF GAMMA-RAY BURSTS

    SciTech Connect

    Geng, J. J.; Huang, Y. F.

    2013-02-10

    It was found by Amati et al. in 2002 that for a small sample of nine gamma-ray bursts (GRBs), more distant events appear to be systematically harder in the soft gamma-ray band. Here, we have collected a larger sample of 65 GRBs, whose time-integrated spectra are well established and can be well fitted with the so-called Band function. It is confirmed that a correlation between the redshifts (z) and the low-energy indices ({alpha}) of the Band function does exist, though it is a bit more scattered than the result of Amati et al. This correlation cannot be simply attributed to the effect of photon reddening. Furthermore, correlations between {alpha} and E {sub peak} (the peak energy in the {nu}F {sub {nu}} spectrum in the rest frame), {alpha} and E {sub iso} (the isotropic energy release), and {alpha} and L {sub iso} (the isotropic luminosity) are also found, which indicate that these parameters are somehow connected. The results may provide useful constraints on the physics of GRBs.

  4. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, P. I.; Fountos, G. P.; Martini, N. D.; Koukou, V. N.; Michail, C. M.; Valais, I. G.; Kandarakis, I. S.; Nikiforidis, G. C.

    2015-09-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant.

  5. A search for absorption features in the afterglow of the unusual GRB 130925A

    NASA Astrophysics Data System (ADS)

    Bellm, Eric

    2012-09-01

    GRB 130925A produced several emission episodes triggering Swift-BAT, Fermi-GBM, and MAXI. The extraordinary length of this emission--over 10^4 seconds--would give GRB 130925A one of the highest total durations ever observed for a gamma-ray burst. While the initial bursting phase was similar to that of the the relativistic tidal disruption event Swift J1644+57, starting at 10^4 seconds after the trigger this event has entered a steady decay phase without new bursts (www.swift.ac.uk/xrt_curves/00571830/). Its classification is thus uncertain, as neither the long GRB class nor Swift J1644 provide direct parallels. Our NuSTAR spectroscopy during the decay phase has revealed evidence for a broad absorption feature never previously observed for either GRB afterglows or for tidal disruption events. Chandra observations will enable searches for lower-energy lines which may constrain the ionization state of this unprecedented event.

  6. Probing the Environment of Gravitational-wave Transient Sources with TeV Afterglow Emission

    NASA Astrophysics Data System (ADS)

    Zhu, Qin-Yu; Wang, Xiang-Yu

    2016-09-01

    Recently, the Advanced Laser Interferometer Gravitational-wave Observatory detected gravitational-wave (GW) transients from mergers of binary black holes (BHs). The system may also produce a wide-angle, relativistic outflow if the claimed short gamma-ray burst detected by GBM is in real association with GW150914. It was suggested that mergers of double neutron stars (or neutron star-black hole binaries), another promising source of GW transients, also produce fast, wide-angle outflows. In this paper, we calculate the high-energy gamma-ray emission arising from the blast waves driven by these wide-angle outflows. We find that TeV emission arising from the inverse-Compton process in the relativistic outflow, originating from mergers of binary BHs that are similar to those in GW150914, could be detectable by ground-based Imaging Atmospheric Cherenkov Telescopes such as the Cherenkov Telescope Array (CTA) if the sources occur in a dense medium with a density of n≳ 0.3 {{cm}}-3. For neutron star–neutron star (NS–NS) and NS–BH mergers, TeV emission from the wide-angle, mildly relativistic outflow could be detected as well, if it occurs in a dense medium with n≳ 10{--}100 {{cm}}-3. Thus, TeV afterglow emission could be a useful probe of the environment of the GW transients, which could shed light on the evolution channels of the progenitors of GW transients.

  7. Gamma-Ray Burst Afterglow Broadband Fitting Based Directly on Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    van Eerten, Hendrik; van der Horst, Alexander; MacFadyen, Andrew

    2012-04-01

    We present a powerful new tool for fitting broadband gamma-ray burst afterglow data, which can be used to determine the burst explosion parameters and the synchrotron radiation parameters. By making use of scale invariance between relativistic jets of different energies and different circumburst medium densities, and by capturing the output of high-resolution two-dimensional relativistic hydrodynamical (RHD) jet simulations in a concise summary, the jet dynamics are generated quickly. Our method calculates the full light curves and spectra using linear radiative transfer sufficiently fast to allow for a direct iterative fit of RHD simulations to the data. The fit properly accounts for jet features that so far have not been successfully modeled analytically, such as jet decollimation, inhomogeneity along the shock front, and the transitory phase between the early-time relativistic and late-time non-relativistic outflow. As a first application of the model we simultaneously fit the radio, X-ray, and optical data of GRB 990510. We find not only noticeable differences between our findings for the explosion and radiation parameters and those of earlier authors, but also an improved model fit when we include the observer angle in the data fit. The fit method will be made freely available on request and online at http://cosmo.nyu.edu/afterglowlibrary. In addition to data fitting, the software tools can also be used to quickly generate a light curve or spectrum for arbitrary observer position, jet, and radiation parameters.

  8. Probing the Environment of Gravitational-wave Transient Sources with TeV Afterglow Emission

    NASA Astrophysics Data System (ADS)

    Zhu, Qin-Yu; Wang, Xiang-Yu

    2016-09-01

    Recently, the Advanced Laser Interferometer Gravitational-wave Observatory detected gravitational-wave (GW) transients from mergers of binary black holes (BHs). The system may also produce a wide-angle, relativistic outflow if the claimed short gamma-ray burst detected by GBM is in real association with GW150914. It was suggested that mergers of double neutron stars (or neutron star-black hole binaries), another promising source of GW transients, also produce fast, wide-angle outflows. In this paper, we calculate the high-energy gamma-ray emission arising from the blast waves driven by these wide-angle outflows. We find that TeV emission arising from the inverse-Compton process in the relativistic outflow, originating from mergers of binary BHs that are similar to those in GW150914, could be detectable by ground-based Imaging Atmospheric Cherenkov Telescopes such as the Cherenkov Telescope Array (CTA) if the sources occur in a dense medium with a density of n≳ 0.3 {{cm}}-3. For neutron star-neutron star (NS-NS) and NS-BH mergers, TeV emission from the wide-angle, mildly relativistic outflow could be detected as well, if it occurs in a dense medium with n≳ 10{--}100 {{cm}}-3. Thus, TeV afterglow emission could be a useful probe of the environment of the GW transients, which could shed light on the evolution channels of the progenitors of GW transients.

  9. Experimental and numerical studies on Xe2* VUV emission in fast electric discharge afterglow

    NASA Astrophysics Data System (ADS)

    Lo, Dennis; Shangguan, Cheng; Kochetov, Igor; Napartovich, Anatoly

    2002-10-01

    Optical and electrical properties of a fast ( 50 ns) high-pressure discharge in pure Xe and Xe-Ne mixtures were studied experimentally and simulated numerically. Afterglow VUV emission was revealed lasting for a few microseconds. Its duration depended on gas pressure and Xe content. Observations of VUV emission intensity across the discharge aperture demonstrated a good uniformity with sizes 4.5x 2 mm2. The length of the discharge was 42 cm. Operation of the discharge was limited in gas pressure by development of instability. The highest pressure for stable discharge run was 0.55 bar for pure Xe and 5 bar for xenon-lean mixture. A detailed kinetic model of discharge plasma was developed, which calculated self-consistently electron energy distribution function and excited states including excimer population dynamics. VUV emission dynamics observed experimentally can be explained theoretically only in a model with an essentially increased number of electronic states taken into account. Calculated discharge voltage history and VUV emission dynamics agree satisfactory with measurements.

  10. Optical and X-Ray Observations of GRB 060526: A Complex Afterglow Consistent with an Achromatic Jet Break

    NASA Technical Reports Server (NTRS)

    Dai, X.; Halpern, J. P.; Morgan, N. D.; Armstrong, E.; Mirabal, N.; Haislip. J. B.; Reichart, D. E.; Stanek, K. Z.

    2007-01-01

    We obtained 98 R-band and 18 B, r', i' images of the optical afterglow of GRB 060526 (z = 3.21) with the MDM 1.3 m, 2.4 m, and the PROMPT telescopes at CTIO over the five nights following the burst trigger. Combining these data with other optical observations reported in GCN and the Swift XRT observations, we compare the optical and X-ray afterglow light curves of GRB 060526. Both the optical and X-ray afterglow light curves show rich features, such as flares and breaks. The densely sampled optical observations provide very good coverage at T > 10(exp 4) s. We observed a break at 2.4 x 10(exp 5) sin the optical afterglow light curve. Compared with the X-ray afterglow light curve, the break is consistent with an achromatic break supporting the beaming models of GRBs. However, the prebreak and postbreak temporal decay slopes are difficult to explain in simple afterglow models. We estimated a jet angle of theta(sub j) approx. 7deg and a prompt emission size of R(sub prompt) approx. 2 x 10(exp 14) cm. In addition, we detected several optical flares with amplitudes of (Delta)m approx. 0.2,0.6, and 0.2 mag. The X-ray afterglows detected by Swift have shown complicated decay patterns. Recently, many well-sampled optical afterglows also show decays with flares and multiple breaks. GRB 060526 provides an additional case of such a complex, well-observed optical afterglow. The accumulated well-sampled afterglows indicate that most of the optical afterglows are complex.

  11. Analysis of the spectral energy distribution from a runaway star bow shock

    NASA Astrophysics Data System (ADS)

    Peri, C. S.; Araudo, A. T.; Benaglia, P.; Romero, G. E.; Martí, J.

    2011-10-01

    The bow shock produced by the high-mass runaway star BD +43° 3654 (Comerón & Pasquali 2007) has been detected as a non-thermal radio source (S_ν ∝ ν^{-α}, <α>=0.5) and it is the first one of that type ever observed (Benaglia et al. 2010). The non-thermal detection provides evidence of the presence of a magnetic field and relativistic electrons. This population of relativistic particles can produce high-energy (HE) emission.

  12. Spectrally selective glazings

    SciTech Connect

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  13. Modeling Extragalactic Extinction through Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Zonca, Alberto; Cecchi-Pestellini, Cesare; Mulas, Giacomo; Casu, Silvia; Aresu, Giambattista

    2016-09-01

    We analyze extragalactic extinction profiles derived through gamma-ray burst afterglows, using a dust model specifically constructed on the assumption that dust grains are not immutable but respond, time-dependently, to the local physics. Such a model includes core-mantle spherical particles of mixed chemical composition (silicate core, sp2, and sp3 carbonaceous layers), and an additional molecular component in the form of free-flying polycyclic aromatic hydrocarbons. We fit most of the observed extinction profiles. Failures occur for lines of sight, presenting remarkable rises blueward of the bump. We find a tendency for the carbon chemical structure to become more aliphatic with the galactic activity, and to some extent with increasing redshifts. Moreover, the contribution of the molecular component to the total extinction is more important in younger objects. The results of the fitting procedure (either successes and failures) may be naturally interpreted through an evolutionary prescription based on the carbon cycle in the interstellar medium of galaxies.

  14. 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes

    NASA Astrophysics Data System (ADS)

    Gastellu-Etchegorry, J. P.

    2008-12-01

    DART EB is a model that is being developed for simulating the 3D (3 dimensional) energy budget of urban and natural scenes, possibly with topography and atmosphere. It simulates all non radiative energy mechanisms (heat conduction, turbulent momentum and heat fluxes, water reservoir evolution, etc.). It uses DART model (Discrete Anisotropic Radiative Transfer) for simulating radiative mechanisms: 3D radiative budget of 3D scenes and their remote sensing images expressed in terms of reflectance or brightness temperature values, for any atmosphere, wavelength, sun/view direction, altitude and spatial resolution. It uses an innovative multispectral approach (ray tracing, exact kernel, discrete ordinate techniques) over the whole optical domain. This paper presents two major and recent improvements of DART for adapting it to urban canopies. (1) Simulation of the geometry and optical characteristics of urban elements (houses, etc.). (2) Modeling of thermal infrared emission by vegetation and urban elements. The new DART version was used in the context of the CAPITOUL project. For that, districts of the Toulouse urban data base (Autocad format) were translated into DART scenes. This allowed us to simulate visible, near infrared and thermal infrared satellite images of Toulouse districts. Moreover, the 3D radiation budget was used by DARTEB for simulating the time evolution of a number of geophysical quantities of various surface elements (roads, walls, roofs). Results were successfully compared with ground measurements of the CAPITOUL project.

  15. UV TO FAR-IR CATALOG OF A GALAXY SAMPLE IN NEARBY CLUSTERS: SPECTRAL ENERGY DISTRIBUTIONS AND ENVIRONMENTAL TRENDS

    SciTech Connect

    Hernandez-Fernandez, Jonathan D.; Iglesias-Paramo, J.; Vilchez, J. M.

    2012-03-01

    In this paper, we present a sample of cluster galaxies devoted to study the environmental influence on the star formation activity. This sample of galaxies inhabits in clusters showing a rich variety in their characteristics and have been observed by the SDSS-DR6 down to M{sub B} {approx} -18, and by the Galaxy Evolution Explorer AIS throughout sky regions corresponding to several megaparsecs. We assign the broadband and emission-line fluxes from ultraviolet to far-infrared to each galaxy performing an accurate spectral energy distribution for spectral fitting analysis. The clusters follow the general X-ray luminosity versus velocity dispersion trend of L{sub X} {proportional_to} {sigma}{sup 4.4}{sub c}. The analysis of the distributions of galaxy density counting up to the 5th nearest neighbor {Sigma}{sub 5} shows: (1) the virial regions and the cluster outskirts share a common range in the high density part of the distribution. This can be attributed to the presence of massive galaxy structures in the surroundings of virial regions. (2) The virial regions of massive clusters ({sigma}{sub c} > 550 km s{sup -1}) present a {Sigma}{sub 5} distribution statistically distinguishable ({approx}96%) from the corresponding distribution of low-mass clusters ({sigma}{sub c} < 550 km s{sup -1}). Both massive and low-mass clusters follow a similar density-radius trend, but the low-mass clusters avoid the high density extreme. We illustrate, with ABELL 1185, the environmental trends of galaxy populations. Maps of sky projected galaxy density show how low-luminosity star-forming galaxies appear distributed along more spread structures than their giant counterparts, whereas low-luminosity passive galaxies avoid the low-density environment. Giant passive and star-forming galaxies share rather similar sky regions with passive galaxies exhibiting more concentrated distributions.

  16. Modeling of the spectral energy distribution of the cataclysmic variable TT Ari and evaluation of the system parameters

    NASA Astrophysics Data System (ADS)

    Belyakov, K. V.; Suleimanov, V. F.; Nikolaeva, E. A.; Borisov, N. V.

    2010-11-01

    The spectral energy distribution (SED) of the TT Ari system, which is well known from published IUE and optical photometric observations, was modeled by a steady-state accretion α-disc around a white dwarf. Parameters of the system were derived from time-resolved optical spectral observations in the bright state that we obtained in Sep. 1998. The radial velocity semiamplitude of the white dwarf (33.8+/-2.5 km s-1) and corresponding mass function (f(M) = 5.5+/-1.2×10-4 Msolar) were derived from the motion of the emission components of Balmer lines. The mass ratio q(~0.315) was evaluated from the fractional period excess of the superhump period over the orbital period ɛ(~0.085), and a secondary mass range (0.18-0.38 Msolar) was estimated from the orbital period. Therefore, the white dwarf mass range is 0.57-1.2 Msolar and the inclination angle of the system to the line of sight is 17-22.5 degrees. The adopted distance to the system is 335+/-50 pc. To fit the observed SED it is necessary to add a thermal spectrum with T~11600 K and luminosity ~0.4 Ld to the accretion disc spectrum. This combined spectrum successfully describes the observed Balmer lines absorption components. Formally the best fit of the HeI 4471 line gives minimum masses of the components (MRD = 0.18 Msolar and (MWD = 0.57 Msolar), with the corresponding inclination angle i = 22.°1 and mass-accretion rate M = 2.6×1017 g s-1.

  17. Active species in N2 and N2-O2 afterglows for surface treatments

    NASA Astrophysics Data System (ADS)

    Ricard, A.; Pointu, A. M.; Villeger, S.; Canal, C.

    2010-01-01

    Production of active species is studied in N2 and in N2-O2 afterglows of electrical discharges at low and atmospheric gas pressures. They are produced in microwave discharges in a large range of gas pressures from a few Torr to 100 Torr and in corona discharges at atmospheric gas pressure. The active species in N2 afterglows are the N-atoms which are in the range of a few percents in the afterglows. The effect of O2 molecules in low percentages in low pressure N2microwave plasmas and as impurity in corona N2 discharges is specially analysed. The interaction of N and O-atoms with surfaces is studied for bacteria decontamination and for transmission of N-atoms though porous membranes. The processes of bacteria decontamination in N2-O2 afterglows are described for low pressure microwave and atmospheric pressure corona discharges. Transmission of N-atoms through porous membranes is studied at medium pressure (10-100 Torr) microwave afterglows.

  18. Processes in afterglow responsible for initiation of electrical breakdown in xenon at low pressure

    NASA Astrophysics Data System (ADS)

    Pejović, Momčilo M.; Spasić, Ivana V.; Pejović, Milić M.; Nešić, Nikola T.; Brajović, Dragan V.; Brajović

    2013-10-01

    The processes responsible for initiation of electrical breakdown in xenon-filled tube with two spherical iron electrodes at 2.7-mbar pressure have been analyzed. The analysis is based on the experimental data of electrical breakdown time delay as a function of afterglow period. It is shown that positive ions remaining from previous discharge, as well as positive ions created in mutual collisions of metastable atoms in afterglow, have a dominant role in secondary emission of electrons from the cathode which lead to initiation of breakdown in early afterglow. In late afterglow, dominant role in initiation of breakdown is taken by N(4S) atoms formed during the discharge by dissociation of ground state nitrogen molecules that are present as impurities in xenon. When the concentration of N(4S) atoms decreases sufficiently, the initiation of breakdown is caused by cosmic radiation. Small doses of gamma-ray irradiation also contribute to the initiation of breakdown, but only for large values of the afterglow period.

  19. Constraining Gamma-ray Burst Initial Lorentz Factor with the Afterglow Onset Feature and Discovery of a Tight Γ0-E γ,iso Correlation

    NASA Astrophysics Data System (ADS)

    Liang, En-Wei; Yi, Shuang-Xi; Zhang, Jin; Lü, Hou-Jun; Zhang, Bin-Bin; Zhang, Bing

    2010-12-01

    The onset of gamma-ray burst (GRB) afterglow is characterized by a smooth bump in the early afterglow light curve as the GRB fireball is decelerated by the circumburst medium. We extensively search for GRBs with such an onset feature in their optical and X-ray light curves from the literature and from the catalog established with the Swift/XRT. Twenty optically selected GRBs and 12 X-ray-selected GRBs are obtained, among which 17 optically selected and 2 X-ray-selected GRBs have redshift measurements. We fit these light curves with a smooth broken power law and measure the width (w), rising timescale (t r), and decaying timescale (t d) at full width at half-maximum. Strong mutual correlations among these timescales and with the peak time (t p) are found. The ratio t r/t d is almost universal among bursts, but the ratio t r/t p varies from 0.3 to ~1. The optical peak luminosity in the R band (L R,p) is anti-correlated with t p and w in the burst frame, indicating a dimmer and broader bump peaking at a later time. The isotropic prompt gamma-ray energy (E γ,iso) is also tightly correlated with L R,p and t p in the burst frame. Assuming that the bumps signal the deceleration of the GRB fireballs in a constant density medium, we calculate the initial Lorentz factor (Γ0) and the deceleration radius (R d) of the GRBs with redshift measurements. The derived Γ0 is typically a few hundreds, and the deceleration radius is R dec ~ 2 × 1017 cm. More intriguingly, a tight correlation between Γ0 and E γ,iso is found, namely Γ0 ~= 182(E γ,iso/1052 erg)0.25. This correlation also applies to the small sample of GRBs which show the signature of the afterglow onset in their X-ray afterglow, and to two bursts (GRBs 990123 and 080319B) whose early optical emission is dominated by a reverse shock. The lower limits of Γ0 derived from a sample of optical afterglow light curves showing a decaying feature from the beginning of the observation are also generally consistent with such

  20. SU-D-204-01: Dual-Energy Calibration for Breast Density Measurement Using Spectral Mammography

    SciTech Connect

    Ding, H; Cho, H; Kumar, N; Sennung, D; Molloi, S

    2015-06-15

    Purpose: To investigate the feasibility of minimizing the systematic errors in dual-energy breast density quantification induced by the use of tissue-equivalent plastic phantoms as the calibration basis materials. Methods: Dual-energy calibration using tissue-equivalent plastic phantoms was performed on a spectral mammography system based on scanning multi-slit Si strip photon-counting detectors. The plastic phantom calibration used plastic water and adipose-equivalent phantoms as the basis materials, which have different x-ray attenuation properties compared to water and lipid in actual breast tissue. Two methods were used to convert the dual-energy decomposition measurements in plastic phantom thicknesses into true water and lipid basis. The first method was based entirely on the theoretical x-ray attenuation coefficients of the investigated materials in the mammographic energy range. The conversion matrix was determined from least-squares fitting of the target material using the reported attenuation coefficients of water and lipid. The second method was developed based on experimental calibrations, which measured the low-and high-energy signals of pure water and lipid of known thicknesses. A non-linear rational function was used to correlate the decomposed thicknesses to the known values, so that the conversion coefficients can be determined. Both methods were validated using independent measurements of water and lipid mixture phantoms. The correlation of the dual-energy decomposition measurements and the known values were studied with linear regression analysis. Results: There was an excellent linear correlation between the converted water thicknesses and the known values. The slopes of the linear fits were determined to be 0.63 and 1.03 for the simulation and experimental results, respectively. The non-linear fitting in the experimental approach reduced the root-mean-square (RMS) errors from approximately 3.4 mm to 1.5 mm. Conclusion: The results suggested

  1. Energy levels and spectral lines in the X-ray spectra of highly charged W XLIV

    NASA Astrophysics Data System (ADS)

    Hao, Liang-Huan; Kang, Xiao-Ping

    2014-07-01

    The multi-configuration Dirac-Hartree-Fock method is employed to calculate the fine-structure energy levels, wavelengths, transition probabilities, and oscillator strengths for electric dipole allowed (E1) and forbidden (M1, E2, M2) lines for the 4 s 24 p and 4 s4 p 2 configurations of W XLIV. The valence-valence and core-valence correlation effects are accounted for in a systematic way. Breit interactions and quantum electrodynamics (QED) effects are estimated in subsequent relativistic configuration interaction (CI) calculations. The present results are in good agreement with other available theoretical and experimental values, and we predict new data for several levels where no other theoretical and/or experimental results are available, precise measurements are clearly needed here.

  2. The 600K T9 dwarfs: analysis of the spectral energy distributions

    SciTech Connect

    Saumon, Didier; Leggett, Sandy K; Burningham, Ben; Cushing, Michael C; Marley, Mark S; Pinfield, David J; Smart, Richard L; Warren, Stephen J

    2008-01-01

    We present 8--15 {mu}m spectra of ULAS J003402.77-005206.7, and extremely late-type T dwarf. We fit synthetic spectra to the near- through mid-infrared energy distribution of this dwarf, as well as to the near-infrared spectra of two similar dwarfs, ULAS J133553.45+113005.2 and CFBDS J005910.82-011401.3. The fit to ULAS J133553.45+113005.2 is constrained using mid-infrared photometry. We derive effective temperatures of 550--600 K for all three of these T9 dwarfs; ULAS J003402.77-005206.7 appears to be the least massive (5--30 M{sub Jup}), and CFBDS J005910.82-011401.3 the most massive (30--50 M{sub Jup}).

  3. Spectral and Spread Spectral Teleportation

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state is teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of a teleported waveform can be controllably and coherently dilated using a spread spectral variant of teleportation. We present analytical fidelities for spectral and spread spectral teleportation when complex-valued Gaussian states are prepared using a proposed experimental approach, and we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  4. Normal mode analysis of the spectral density of the Fenna-Matthews-Olson light-harvesting protein: how the protein dissipates the excess energy of excitons.

    PubMed

    Renger, Thomas; Klinger, Alexander; Steinecker, Florian; Schmidt am Busch, Marcel; Numata, Jorge; Müh, Frank

    2012-12-20

    We report a method for the structure-based calculation of the spectral density of the pigment-protein coupling in light-harvesting complexes that combines normal-mode analysis with the charge density coupling (CDC) and transition charge from electrostatic potential (TrEsp) methods for the computation of site energies and excitonic couplings, respectively. The method is applied to the Fenna-Matthews-Olson (FMO) protein in order to investigate the influence of the different parts of the spectral density as well as correlations among these contributions on the energy transfer dynamics and on the temperature-dependent decay of coherences. The fluctuations and correlations in excitonic couplings as well as the correlations between coupling and site energy fluctuations are found to be 1 order of magnitude smaller in amplitude than the site energy fluctuations. Despite considerable amplitudes of that part of the spectral density which contains correlations in site energy fluctuations, the effect of these correlations on the exciton population dynamics and dephasing of coherences is negligible. The inhomogeneous charge distribution of the protein, which causes variations in local pigment-protein coupling constants of the normal modes, is responsible for this effect. It is seen thereby that the same building principle that is used by nature to create an excitation energy funnel in the FMO protein also allows for efficient dissipation of the excitons' excess energy.

  5. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    NASA Astrophysics Data System (ADS)

    Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  6. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    PubMed Central

    Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.

    2014-01-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  7. Thermophotovoltaic Spectral Control

    SciTech Connect

    DM DePoy; PM Fourspring; PF Baldasaro; JF Beausang; EJ Brown; MW Dashiel; KD Rahner; TD Rahmlow; JE Lazo-Wasem; EJ Gratrix; B Wemsman

    2004-06-09

    Spectral control is a key technology for thermophotovoltaic (TPV) direct energy conversion systems because only a fraction (typically less than 25%) of the incident thermal radiation has energy exceeding the diode bandgap energy, E{sub g}, and can thus be converted to electricity. The goal for TPV spectral control in most applications is twofold: (1) Maximize TPV efficiency by minimizing transfer of low energy, below bandgap photons from the radiator to the TPV diode. (2) Maximize TPV surface power density by maximizing transfer of high energy, above bandgap photons from the radiator to the TPV diode. TPV spectral control options include: front surface filters (e.g. interference filters, plasma filters, interference/plasma tandem filters, and frequency selective surfaces), back surface reflectors, and wavelength selective radiators. System analysis shows that spectral performance dominates diode performance in any practical TPV system, and that low bandgap diodes enable both higher efficiency and power density when spectral control limitations are considered. Lockheed Martin has focused its efforts on front surface tandem filters which have achieved spectral efficiencies of {approx}83% for E{sub g} = 0.52 eV and {approx}76% for E{sub g} = 0.60 eV for a 950 C radiator temperature.

  8. An imaging system detectivity metric using energy and power spectral densities

    NASA Astrophysics Data System (ADS)

    Preece, Bradley L.; Haefner, David; Nehmetallah, Georges

    2016-05-01

    The purpose of this paper is to construct a robust modeling framework for imaging systems in order to predict the performance of detecting small targets such as Unmanned Aerial Vehicles (UAVs). The underlying principle is to track the flow of scene information and statistics, such as the energy spectra of the target and power spectra of the background, through any number of imaging components. This information is then used to calculate a detectivity metric. Each imaging component is treated as a single linear shift invariant (LSI) component with specified input and output parameters. A component based approach enables the inclusion of existing component-level models and makes it directly compatible with image modeling software such as the Night Vision Integrated Performance Model (NV-IPM). The modeling framework also includes a parallel implementation of Monte Carlo simulations designed to verify the analytic approach. However, the Monte Carlo simulations may also be used independently to accurately model nonlinear processes where the analytic approach fails, allowing for even greater extensibility. A simple trade study is conducted comparing the modeling framework to the simulation.

  9. Climate and Physical Disturbance Effects on the Spectral Signatures of Biological Soil Crusts: Implications for Future Dryland Energy Balance

    NASA Astrophysics Data System (ADS)

    Rutherford, W. A.; Flagg, C.; Painter, T. H.; Okin, G. S.; Belnap, J.; Reed, S.

    2014-12-01

    Drylands comprise ≈40% of the terrestrial Earth surface and observations suggest they can respond markedly to climate change. A vital component of dryland ecosystems are biological soil crusts (biocrusts) - a network of surface soil lichens, mosses, and cyanobacteria - that perform critical ecosystem functions, such as stabilizing soil and fixing carbon and nitrogen. Yet, our understanding of the role biocrusts play in dryland energy balance remains poor. Changes in climate can rapidly affect biocrust communities and we have long known that biocrusts respond dramatically to physical disturbance, such as human trampling and grazing animals. Associated changes in biocrust cover often result in increased bare soil; creating higher surface reflectance. We used spectral solar reflectance measurements in two manipulative experiments to compare the effects of climate and physical disturbance on biocrusts of the Colorado Plateau We measured reflectance at two heights: at crust surface and 1 m above. The climate disturbance site has four treatments: control, warming (4°C), altered precipitation, and warming plus altered precipitation. The physical disturbance site was trampled by foot annually since 1998. At the climate experiment, the largest change in reflectance was in the altered precipitation treatment (35% increase) at the surface-level, and the smallest difference was in the warmed (17% increase) at the meter-level. Physical disturbance differences were 10% at meter-level and 25% at surface-level. Unexpectedly, these results suggest that, via effects on biocrust communities, climate change could have a larger effect on dryland energy balance relative to physical disturbance, and result in more radiation from drylands returned to the atmosphere. Biocrusts cover large portions of the Earth's surface and, to our knowledge, these are the first data showing climate-induced changes to biocrust reflectance, with negative feedback in the global energy balance.

  10. Probing the dust properties of galaxies up to submillimetre wavelengths. I. The spectral energy distribution of dwarf galaxies using LABOCA

    NASA Astrophysics Data System (ADS)

    Galametz, M.; Madden, S.; Galliano, F.; Hony, S.; Schuller, F.; Beelen, A.; Bendo, G.; Sauvage, M.; Lundgren, A.; Billot, N.

    2009-12-01

    Aims. We study the dust properties of four low metallicity galaxies by modelling their spectral energy distributions. This modelling enables us to constrain the dust properties such as the mass, the temperature or the composition to characterise the global ISM properties in dwarf galaxies. Methods: We present 870 μm images of four low metallicity galaxies (NGC 1705, Haro 11, Mrk 1089 and UM 311) observed with the Large APEX BOlometer CAmera (LABOCA) on the Atacama Pathfinder EXperiment (APEX) telescope. We modeled their spectral energy distributions combining the submm observations of LABOCA, 2MASS, IRAS, Spitzer photometric data, and the IRS data for Haro 11. Results: We found that the PAH mass abundance is very low in these galaxies, 5 to 50 times lower than the PAH mass fraction of our Galaxy. We also found that a significant mass of dust is revealed when using submm constraints compared to that measured with only mid-IR to far-IR observations extending only to 160 μm. For NGC 1705 and Haro 11, an excess in submillimeter wavelengths was detected when we used our standard dust SED model. We rerun our SED procedure adding a cold dust component (10 K) to better describe the high 870 μm flux derived from LABOCA observations, which significantly improves the fit. We found that at least 70% of the dust mass of these two galaxies can reside in a cold dust component. We also showed that the subsequent dust-to-gas mass ratios, considering HI and CO observations, can be strikingly high for Haro 11 in comparison with what is usually expected for these low-metallicity environments. Furthermore, we derived the star formation rate of our galaxies and compared them to the Schmidt law. Haro 11 falls anomalously far from the Schmidt relation. These results may suggest that a reservoir of hidden gas could be present in molecular form not traced by the current CO observations. While there can be a significant cold dust mass found in Haro 11, the SED peaks at exceptionally short

  11. Constraints on an Optical Afterglow and on Supernova Light Following the Short Burst GRB 050813

    NASA Technical Reports Server (NTRS)

    Ferrero, P.; Sanchez, S. F.; Kann, D. A.; Klose, S.; Greiner, J.; Gorosabel, J.; Hartmann, D. H.; Henden, A. A.; Moller, P.; Palazzi, E.; Rau, A.; Stecklum, B.; Castro-Tirado, A. J.; Fynbok J. P. U.; Hjorth, J.; Jakobsson, P.; Kouveliotou, C.; Masetti, N.; Pian, E.; Tanvir, N. R.; Wijers, R. A. M. J.

    2006-01-01

    We report early follow-up observations of the error box of the short burst 050813 using the telescopes at Calar Alto and at Observatorio Sierra Nevada (OSN), followed by deep VLT/FORS2 I-band observations obtained under very good seeing conditions 5.7 and 11.7 days after the event. No evidence for a GRB afterglow was found in our Calar Alto and OSN data, no rising supernova component was detected in our FORS2 images. A potential host galaxy can be identified in our FORS2 images, even though we cannot state with certainty its association with GRB 050813. IN any case, the optical afterglow of GRB 050813 was very faint, well in agreement with what is known so far about the optical properties of afterglows of short bursts. We conclude that all optical data are not in conflict with the interpretation that GRB 050813 was a short burst.

  12. Controlled growth of copper oxide nanostructures by atmospheric pressure micro-afterglow

    NASA Astrophysics Data System (ADS)

    Altaweel, A.; Filipič, G.; Gries, T.; Belmonte, T.

    2014-12-01

    A large variety of copper oxide nanostructures encompassing nanodots, nanowires and nanowalls, sometimes organized in “cabbage-like” architectures, are grown locally by direct oxidation of copper thin films using the micro-afterglow of an Ar-O2 microwave plasma operating at atmospheric pressure. Morphology, structure and composition of the oxidized copper thin films are characterized by X-ray diffraction, secondary ion mass spectrometry and scanning electron microscopy. The concentric areas where each kind of nanostructures is found are defined by both their radial position with respect to the afterglow centre and by experimental conditions. A growth mechanism is proposed, based on stress-induced outward migration of copper ions. The development of stress gradients is caused by the formation of a copper oxide scale layer. If copper oxide nanowires can be grown as in thermal oxidation processes, micro-afterglow conditions offer novel nanostructures and nano-architectures.

  13. Shallow Decay of Early X-Ray Afterglows from Inhomogeneous Gamma-Ray Burst Jets

    NASA Astrophysics Data System (ADS)

    Toma, Kenji; Ioka, Kunihito; Yamazaki, Ryo; Nakamura, Takashi

    2006-04-01

    Almost all the X-ray afterglows of γ-ray bursts (GRBs) observed by the Swift satellite have a shallow decay phase in their first few thousand seconds. We show that in an inhomogeneous-jet model (multiple-subjet or patchy-shell), the superposition of the afterglows of off-axis subjets (patchy shells) can produce the shallow decay phase. The necessary condition for obtaining the shallow decay phase is that γ-ray-bright subjets (patchy shells) have γ-ray efficiencies higher than previously estimated and that they be surrounded by γ-ray-dim subjets (patchy shells) with low γ-ray efficiency. Our model predicts that events with dim prompt emission will have a conventional afterglow light curve without a shallow decay phase, like GRB 050416A.

  14. Machine Learning Search for Gamma-Ray Burst Afterglows in Optical Images

    NASA Astrophysics Data System (ADS)

    Topinka, M.

    2016-06-01

    Thanks to the advances in robotic telescopes, time domain astronomy leads to a large number of transient events detected in images every night. Data mining and machine learning tools used for object classification are presented. The goal is to automatically classify transient events for both further follow-up by a larger telescope and for statistical studies of transient events. Special attention is given to the identification of gamma-ray burst afterglows. Machine learning techniques are used to identify GROND gamma-ray burst afterglow among the astrophysical objects present in the SDSS archival images based on the g'-r', r'-i' and i'-z' color indices. The performance of the support vector machine, random forest and neural network algorithms is compared. A joint meta-classifier, built on top of the individual classifiers, can identify GRB afterglows with the overall accuracy of ≳ 90%.

  15. Photosystem Trap Energies and Spectrally-Dependent Energy-Storage Efficiencies in the Chl d-Utilizing Cyanobacterium, Acaryochloris Marina

    NASA Technical Reports Server (NTRS)

    Mielke, Steven P.; Kiang, Nancy Y.; Blankenship, Robert E.; Mauzerall, David

    2012-01-01

    Acaryochloris marina is the only species known to utilize chlorophyll (Chl) d as a principal photopigment. The peak absorption wavelength of Chl d is redshifted approx. 40 nm in vivo relative to Chl a, enabling this cyanobacterium to perform oxygenic phototrophy in niche environments enhanced in far-red light. We present measurements of the in vivo energy-storage (E-S) efficiency of photosynthesis in A. marina, obtained using pulsed photoacoustics (PA) over a 90-nm range of excitation wavelengths in the red and far-red. Together with modeling results, these measurements provide the first direct observation of the trap energies of PSI and PSII, and also the photosystem-specific contributions to the total E-S efficiency. We find the maximum observed efficiency in A. marina (40+/-1% at 735 nm) is higher than in the Chl a cyanobacterium Synechococcus leopoliensis (35+/-1% at 690 nm). The efficiency at peak absorption wavelength is also higher in A. marina (36+/-1% at 710 nm vs. 31+/-1% at 670 nm). In both species, the trap efficiencies are approx. 40% (PSI) and approx. 30% (PSII). The PSI trap in A. marina is found to lie at 740+/-5 nm, in agreement with the value inferred from spectroscopic methods. The best fit of the model to the PA data identifies the PSII trap at 723+/-3 nm, supporting the view that the primary electron-donor is Chl d, probably at the accessory (ChlD1) site. A decrease in efficiency beyond the trap wavelength, consistent with uphill energy transfer, is clearly observed and fit by the model. These results demonstrate that the E-S efficiency in A. marina is not thermodynamically limited, suggesting that oxygenic photosynthesis is viable in even redder light environments.

  16. Atomic Spectral Methods for Ab Initio Molecular Electronic Energy Surfaces: Transitioning From Small-Molecule to Biomolecular-Suitable Approaches.

    PubMed

    Mills, Jeffrey D; Ben-Nun, Michal; Rollin, Kyle; Bromley, Michael W J; Li, Jiabo; Hinde, Robert J; Winstead, Carl L; Sheehy, Jeffrey A; Boatz, Jerry A; Langhoff, Peter W

    2016-08-25

    Continuing attention has addressed incorportation of the electronically dynamical attributes of biomolecules in the largely static first-generation molecular-mechanical force fields commonly employed in molecular-dynamics simulations. We describe here a universal quantum-mechanical approach to calculations of the electronic energy surfaces of both small molecules and large aggregates on a common basis which can include such electronic attributes, and which also seems well-suited to adaptation in ab initio molecular-dynamics applications. In contrast to the more familiar orbital-product-based methodologies employed in traditional small-molecule computational quantum chemistry, the present approach is based on an "ex-post-facto" method in which Hamiltonian matrices are evaluated prior to wave function antisymmetrization, implemented here in the support of a Hilbert space of orthonormal products of many-electron atomic spectral eigenstates familiar from the van der Waals theory of long-range interactions. The general theory in its various forms incorporates the early semiempirical atoms- and diatomics-in-molecules approaches of Moffitt, Ellison, Tully, Kuntz, and others in a comprehensive mathematical setting, and generalizes the developments of Eisenschitz, London, Claverie, and others addressing electron permutation symmetry adaptation issues, completing these early attempts to treat van der Waals and chemical forces on a common basis. Exact expressions are obtained for molecular Hamiltonian matrices and for associated energy eigenvalues as sums of separate atomic and interaction-energy terms, similar in this respect to the forms of classical force fields. The latter representation is seen to also provide a long-missing general definition of the energies of individual atoms and of their interactions within molecules and matter free from subjective additional constraints. A computer code suite is described for calculations of the many-electron atomic eigenspectra and

  17. Atomic Spectral Methods for Ab Initio Molecular Electronic Energy Surfaces: Transitioning From Small-Molecule to Biomolecular-Suitable Approaches.

    PubMed

    Mills, Jeffrey D; Ben-Nun, Michal; Rollin, Kyle; Bromley, Michael W J; Li, Jiabo; Hinde, Robert J; Winstead, Carl L; Sheehy, Jeffrey A; Boatz, Jerry A; Langhoff, Peter W

    2016-08-25

    Continuing attention has addressed incorportation of the electronically dynamical attributes of biomolecules in the largely static first-generation molecular-mechanical force fields commonly employed in molecular-dynamics simulations. We describe here a universal quantum-mechanical approach to calculations of the electronic energy surfaces of both small molecules and large aggregates on a common basis which can include such electronic attributes, and which also seems well-suited to adaptation in ab initio molecular-dynamics applications. In contrast to the more familiar orbital-product-based methodologies employed in traditional small-molecule computational quantum chemistry, the present approach is based on an "ex-post-facto" method in which Hamiltonian matrices are evaluated prior to wave function antisymmetrization, implemented here in the support of a Hilbert space of orthonormal products of many-electron atomic spectral eigenstates familiar from the van der Waals theory of long-range interactions. The general theory in its various forms incorporates the early semiempirical atoms- and diatomics-in-molecules approaches of Moffitt, Ellison, Tully, Kuntz, and others in a comprehensive mathematical setting, and generalizes the developments of Eisenschitz, London, Claverie, and others addressing electron permutation symmetry adaptation issues, completing these early attempts to treat van der Waals and chemical forces on a common basis. Exact expressions are obtained for molecular Hamiltonian matrices and for associated energy eigenvalues as sums of separate atomic and interaction-energy terms, similar in this respect to the forms of classical force fields. The latter representation is seen to also provide a long-missing general definition of the energies of individual atoms and of their interactions within molecules and matter free from subjective additional constraints. A computer code suite is described for calculations of the many-electron atomic eigenspectra and

  18. The Effect of Host Star Spectral Energy Distribution and Ice-Albedo Feedback on the Climate of Extrasolar Planets

    PubMed Central

    Meadows, Victoria S.; Bitz, Cecilia M.; Pierrehumbert, Raymond T.; Joshi, Manoj M.; Robinson, Tyler D.

    2013-01-01

    Abstract Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO2 (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO2 in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global

  19. Recombination of H3+ Ions with Electrons in Afterglow Plasmas

    NASA Astrophysics Data System (ADS)

    Johnsen, Rainer; Glosik, Juraj; Dohnal, Petr; Rubovic, Peter; Kalosi, Abel; Plasil, Radek

    2015-09-01

    Our past and ongoing flowing and stationary afterglow experiments at temperatures from 60-340 K have resulted in a more complete picture of the plasma recombination of H3+ ions: (1) Optical absorption studies indicate that at T = 300 K both para and ortho H3+ ions recombine with nearly the same binary coefficient αbin ~ 0.6 × 10-7 cm3/s. However, at T = 60 K para H3+ recombines faster by about a factor of ~10 than does ortho H3+.(2) Earlier discrepancies between data obtained in plasmas and those obtained in merged-beam or storage-rings have been traced to ternary recombination due to ambient helium atoms and/or hydrogen molecules. Ternary recombination of H3+ due to He or H2 is more efficient by factors ~ 102 or 105, respectively, than expected from the theoretical model of Bates and Khare for atomic ions. (3) The ternary processes enhance recombination at low third-body densities (1017 cm-3) but then level off (``saturate'') when their contribution approaches ~ 1.5 × 10-7 cm3/s. This saturation can lead to the false inference that the overall recombination is binary, resulting in a recombination coefficient that is about 3 times too large. (4) A tentative complex model has been developed that rationalizes the observed effects. This work was partly supported by Czech Science Foundation projects GACR 14-14649P and GACR 15-15077S and by Charles University in Prague projects GAUK 692214, GAUK 572214, UNCE 204020/2012 and SVV 260.

  20. ON THE EMERGENT SPECTRA OF HOT PROTOPLANET COLLISION AFTERGLOWS

    SciTech Connect

    Miller-Ricci, Eliza; Meyer, Michael R.; Seager, Sara; Elkins-Tanton, Linda

    2009-10-10

    We explore the appearance of terrestrial planets in formation by studying the emergent spectra of hot molten protoplanets during their collisional formation. While such collisions are rare, the surfaces of these bodies may remain hot at temperatures of 1000-3000 K for up to millions of years during the epoch of their formation (of duration 10-100 Myr). These objects are luminous enough in the thermal infrared to be observable with current and next-generation optical/IR telescopes, provided that the atmosphere of the forming planet permits astronomers to observe brightness temperatures approaching that of the molten surface. Detectability of a collisional afterglow depends on properties of the planet's atmosphere-primarily on the mass of the atmosphere. A planet with a thin atmosphere is more readily detected, because there is little atmosphere to obscure the hot surface. Paradoxically, a more massive atmosphere prevents one from easily seeing the hot surface, but also keeps the planet hot for a longer time. In terms of planetary mass, more massive planets are also easier to detect than smaller ones because of their larger emitting surface areas-up to a factor of 10 in brightness between 1 and 10 M {sub +} planets. We present preliminary calculations assuming a range of protoplanet masses (1-10 M {sub +}), surface pressures (1-1000 bar), and atmospheric compositions, for molten planets with surface temperatures ranging from 1000 to 1800 K, in order to explore the diversity of emergent spectra that are detectable. While current 8 to 10 m class ground-based telescopes may detect hot protoplanets at wide orbital separations beyond 30 AU (if they exist), we will likely have to wait for next-generation extremely large telescopes or improved diffraction suppression techniques to find terrestrial planets in formation within several AU of their host stars.

  1. The γ-ray afterglows of tidal disruption events

    NASA Astrophysics Data System (ADS)

    Chen, Xian; Gómez-Vargas, Germán Arturo; Guillochon, James

    2016-05-01

    A star wandering too close to a supermassive black hole (SMBH) will be tidally disrupted. Previous studies of such `tidal disruption event' (TDE) mostly focus on the stellar debris that are bound to the system, because they give rise to luminous flares. On the other hand, half of the stellar debris in principle are unbound and can stream to a great distance, but so far there is no clear evidence that this `unbound debris stream' (UDS) exists. Motivated by the fact that the circum-nuclear region around SMBHs is usually filled with dense molecular clouds (MCs), here we investigate the observational signatures resulting from the collision between an UDS and an MC, which is likely to happen hundreds of years after a TDE. We focus on γ-ray emission (0.1-105 GeV), which comes from the encounter of shock-accelerated cosmic rays with background protons and, more importantly, is not subject to extinction. We show that because of the high proton density inside an MC, the peak γ-ray luminosity, about 1039 erg s-1, is at least 100 times greater than that in the case without an MC (only with a smooth interstellar medium). The luminosity decays on a time-scale of decades, depending on the distance of the MC, and about a dozen of these `TDE afterglows' could be detected within a distance of about 16 Mpc by the future Cherenkov Telescope Array. Without careful discrimination, these sources potentially could contaminate the searches for starburst galaxies, galactic nuclei containing millisecond pulsars or dark matter annihilation signals.

  2. High-energy monitoring of NGC 4593 with XMM-Newton and NuSTAR. X-ray spectral analysis

    NASA Astrophysics Data System (ADS)

    Ursini, F.; Petrucci, P.-O.; Matt, G.; Bianchi, S.; Cappi, M.; De Marco, B.; De Rosa, A.; Malzac, J.; Marinucci, A.; Ponti, G.; Tortosa, A.

    2016-11-01

    We present results from a joint XMM-Newton/NuSTAR monitoring of the Seyfert 1 NGC 4593, consisting of 5 × 20 ks simultaneous observations spaced by 2 d, performed in 2015 January. The source is variable, both in flux and spectral shape, on time-scales down to a few ks and with a clear softer-when-brighter behaviour. In agreement with past observations, we find the presence of a warm absorber well described by a two-phase ionized outflow. The source exhibits a cold, narrow and constant Fe Kα line at 6.4 keV, and a broad component is also detected. The broad-band (0.3-79 keV) spectrum is well described by a primary power law with Γ ≃ 1.6-1.8 and an exponential cut-off varying from 90^{+ 40}_{- 20} to >700 keV, two distinct reflection components, and a variable soft excess correlated with the primary power law. This campaign shows that probing the variability of Seyfert 1 galaxies on different time-scales is of prime importance to investigate the high-energy emission of active galactic nuclei.

  3. Spectral energy distribution fitting of HETDEX pilot survey Lyα emitters in cosmos and GOODS-N

    SciTech Connect

    Hagen, Alex; Ciardullo, Robin; Gronwall, Caryl E-mail: rbc@astro.psu.edu; and others

    2014-05-01

    We use broadband photometry extending from the rest-frame UV to the near-IR to fit the individual spectral energy distributions of 63 bright (L(Lyα) > 10{sup 43} erg s{sup –1}) Lyα emitting galaxies (LAEs) in the redshift range 1.9 < z < 3.6. We find that these LAEs are quite heterogeneous, with stellar masses that span over three orders of magnitude, from 7.5 < log M/M {sub ☉} < 10.5. Moreover, although most LAEs have small amounts of extinction, some high-mass objects have stellar reddenings as large as E(B – V) ∼ 0.4. Interestingly, in dusty objects the optical depths for Lyα and the UV continuum are always similar, indicating that Lyα photons are not undergoing many scatters before escaping their galaxy. In contrast, the ratio of optical depths in low-reddening systems can vary widely, illustrating the diverse nature of the systems. Finally, we show that in the star-formation-rate-log-mass diagram, our LAEs fall above the 'main-sequence' defined by z ∼ 3 continuum selected star-forming galaxies. In this respect, they are similar to submillimeter-selected galaxies, although most LAEs have much lower mass.

  4. Spectral Energy Distribution Fitting of Hetdex Pilot Survey Ly-alpha Emitters in Cosmos and Goods-N

    NASA Technical Reports Server (NTRS)

    Hagen, Alex; Ciardullo, Robin; Cronwall, Caryl; Acquaviva, Viviana; Bridge, Joanna; Zeimann, Gregory R.; Blanc, Guillermo; Bond, Nicholas; Finkelstein, Steven L.; Song, Mimi; Gawiser, Eric; Fox, Derek B.; Gebhardt, Henry; Malz, A. I; Schneider, Donald P.; Drory, Niv; Gebhardt, Karl; Hill, Gary J.

    2014-01-01

    We use