Science.gov

Sample records for aftershock sequence etas

  1. Estimating the ETAS model from an early aftershock sequence

    NASA Astrophysics Data System (ADS)

    Omi, Takahiro; Ogata, Yosihiko; Hirata, Yoshito; Aihara, Kazuyuki

    2014-02-01

    Forecasting aftershock probabilities, as early as possible after a main shock, is required to mitigate seismic risks in the disaster area. In general, aftershock activity can be complex, including secondary aftershocks or even triggering larger earthquakes. However, this early forecasting implementation has been difficult because numerous aftershocks are unobserved immediately after the main shock due to dense overlapping of seismic waves. Here we propose a method for estimating parameters of the epidemic type aftershock sequence (ETAS) model from incompletely observed aftershocks shortly after the main shock by modeling an empirical feature of data deficiency. Such an ETAS model can effectively forecast the following aftershock occurrences. For example, the ETAS model estimated from the first 24 h data after the main shock can well forecast secondary aftershocks after strong aftershocks. This method can be useful in early and unbiased assessment of the aftershock hazard.

  2. Estimating Spatially Variable Parameters of the Epidemic Type Aftershock Sequence (ETAS) in California

    NASA Astrophysics Data System (ADS)

    Nandan, Shyam; Ouillon, Guy; Sornette, Didier; Wiemer, Stefan

    2016-04-01

    The ETAS model is widely employed to model the spatio-temporal distribution of earthquakes, generally using spatially invariant parameters, which is most likely a gross simplification considering the extremely heterogeneous structure of the Earth's crust. We propose an efficient method for the estimation of spatially varying parameters, using an expectation maximization (EM) algorithm and spatial Voronoi tessellations. We assume that each Voronoi cell is characterized by a set of eight constant ETAS parameters. For a given number of randomly distributed cells, Vi=1 to N, we jointly invert the ETAS parameters within each cell using an EM algorithm. This process is progressively repeated several times for a given N (which controls the complexity), which is itself increased incrementally. We use the Bayesian Information Criterion (BIC) to rank all the inverted models given their likelihood and complexity and select the top 1% models to compute the average model at any location. Using a synthetic catalog, we also check that the proposed method correctly inverts the known parameters. We apply the proposed method to earthquakes (M>=3) included in the ANSS catalog that occurred within the time period 1981-2016 in the spatial polygon defined by RELM/CSEP around California. The results indicate significant spatial variation of the ETAS parameters. Using these spatially variable estimates of ETAS parameters, we are better equipped to answer some important questions: (1) What is the seismic hazard (both long- and short-term) in a given region? (2) What kind of earthquakes dominate triggering? (3) are there regions where earthquakes are most likely preceded by foreshocks? Last but not the least, a possible correlation of the spatially varying ETAS parameters with spatially variable geophysical properties can lead to an improved understanding of the physics of earthquake triggering beside providing physical meaning to the parameters of the purely statistical ETAS model.

  3. An experimental approach to non - extensive statistical physics and Epidemic Type Aftershock Sequence (ETAS) modeling. The case of triaxially deformed sandstones using acoustic emissions.

    NASA Astrophysics Data System (ADS)

    Stavrianaki, K.; Vallianatos, F.; Sammonds, P. R.; Ross, G. J.

    2014-12-01

    Fracturing is the most prevalent deformation mechanism in rocks deformed in the laboratory under simulated upper crustal conditions. Fracturing produces acoustic emissions (AE) at the laboratory scale and earthquakes on a crustal scale. The AE technique provides a means to analyse microcracking activity inside the rock volume and since experiments can be performed under confining pressure to simulate depth of burial, AE can be used as a proxy for natural processes such as earthquakes. Experimental rock deformation provides us with several ways to investigate time-dependent brittle deformation. Two main types of experiments can be distinguished: (1) "constant strain rate" experiments in which stress varies as a result of deformation, and (2) "creep" experiments in which deformation and deformation rate vary over time as a result of an imposed constant stress. We conducted constant strain rate experiments on air-dried Darley Dale sandstone samples in a variety of confining pressures (30MPa, 50MPa, 80MPa) and in water saturated samples with 20 MPa initial pore fluid pressure. The results from these experiments used to determine the initial loading in the creep experiments. Non-extensive statistical physics approach was applied to the AE data in order to investigate the spatio-temporal pattern of cracks close to failure. A more detailed study was performed for the data from the creep experiments. When axial stress is plotted against time we obtain the trimodal creep curve. Calculation of Tsallis entropic index q is performed to each stage of the curve and the results are compared with the ones from the constant strain rate experiments. The Epidemic Type Aftershock Sequence model (ETAS) is also applied to each stage of the creep curve and the ETAS parameters are calculated. We investigate whether these parameters are constant across all stages of the curve, or whether there are interesting patterns of variation. This research has been co-funded by the European Union

  4. Correlation between crustal physical properties and aftershock sequences characteristics

    NASA Astrophysics Data System (ADS)

    Zakharova, O.; Hainzl, S.

    2013-12-01

    The presence of well constrained seismic and GPS data allows to analyze different data sets together. In our work we focus on the complex analyses of the seismic catalogs and a GSP inversions, which will help to connect the aftershock activities to the crustal physical properties. In particular, we are searching for the dependencies between aftershock parameters and seismic coupling, coseismic and postseismic slip on a regional scale. We use the ETAS model for the description of primary and secondary aftershocks. Our analysis is based on the data related to the Chilean Maule (Mw=8.8) and Californian Parkfield (Mw=6.0) aftershock sequences. We have found correlation between the first order of aftershocks and seismic coupling, slip and b-value. Our results give an opportunity for better understanding of the aftershocks appearance.

  5. Intermediate-term forecasting of aftershocks from an early aftershock sequence: Bayesian and ensemble forecasting approaches

    NASA Astrophysics Data System (ADS)

    Omi, Takahiro; Ogata, Yosihiko; Hirata, Yoshito; Aihara, Kazuyuki

    2015-04-01

    Because aftershock occurrences can cause significant seismic risks for a considerable time after the main shock, prospective forecasting of the intermediate-term aftershock activity as soon as possible is important. The epidemic-type aftershock sequence (ETAS) model with the maximum likelihood estimate effectively reproduces general aftershock activity including secondary or higher-order aftershocks and can be employed for the forecasting. However, because we cannot always expect the accurate parameter estimation from incomplete early aftershock data where many events are missing, such forecasting using only a single estimated parameter set (plug-in forecasting) can frequently perform poorly. Therefore, we here propose Bayesian forecasting that combines the forecasts by the ETAS model with various probable parameter sets given the data. By conducting forecasting tests of 1 month period aftershocks based on the first 1 day data after the main shock as an example of the early intermediate-term forecasting, we show that the Bayesian forecasting performs better than the plug-in forecasting on average in terms of the log-likelihood score. Furthermore, to improve forecasting of large aftershocks, we apply a nonparametric (NP) model using magnitude data during the learning period and compare its forecasting performance with that of the Gutenberg-Richter (G-R) formula. We show that the NP forecast performs better than the G-R formula in some cases but worse in other cases. Therefore, robust forecasting can be obtained by employing an ensemble forecast that combines the two complementary forecasts. Our proposed method is useful for a stable unbiased intermediate-term assessment of aftershock probabilities.

  6. Triggered Swarms and Induced Aftershock Sequences in Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Shcherbakov, R.; Turcotte, D. L.; Yikilmaz, M. B.; Kellogg, L. H.; Rundle, J. B.

    2015-12-01

    Natural geothermal systems, which are used for energy generation, are usually associated with high seismic activity. This can be related to the large-scale injection and extraction of fluids to enhance geothermal recovery. This results in the changes of the pore pressure and pore-elastic stress field and can stimulate the occurrence of earthquakes. These systems are also prone to triggering of seismicity by the passage of seismic waves generated by large distant main shocks. In this study, we analyze clustering and triggering of seismicity at several geothermal fields in California. Particularly, we consider the seismicity at the Geysers, Coso, and Salton Sea geothermal fields. We analyze aftershock sequences generated by local large events with magnitudes greater than 4.0 and earthquake swarms generated by several significant long distant main shocks. We show that the rate of the aftershock sequences generated by the local large events in the two days before and two days after the reference event can be modelled reasonably well by the time dependent Epidemic Type Aftershock Sequence (ETAS) model. On the other hand, the swarms of activity triggered by large distant earthquakes cannot be described by the ETAS model. To model the increase in the rate of seismicity associated with triggering by large distant main shocks we introduce an additional time-dependent triggering mechanism into the ETAS model. In almost all cases the frequency-magnitude statistics of triggered sequences follow Gutenberg-Richter scaling to a good approximation. The analysis indicates that the seismicity triggered by relatively large local events can initiate sequences similar to regular aftershock sequences. In contrast, the distant main shocks trigger swarm like activity with faster decaying rates.

  7. Queen Charlotte 2001 Earthquake Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    Mulder, T.; Rogers, G. C.

    2012-12-01

    On Oct 12, 2001, an Mw=6.3 earthquake occurred off the Queen Charlotte Islands, BC. It was felt throughout Haida Gwaii (Queen Charlotte Islands) and the adjoining mainland. It generated a small tsunami recorded on Vancouver Island tide gauges. Moment tensor solutions show almost pure thrust faulting. There was a significant aftershock sequence associated with this event. Relocation of the catalogue aftershock sequence with respect to a key calibration event with various subsets of common stations show significant movement in the event locations. The aftershocks define an ~30 degree dipping fault plane.

  8. The (Un)Productivity of the 2014 M6.0 South Napa Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.

    2014-12-01

    The M6.0 South Napa mainshock produced fewer aftershocks than expected for a California earthquake of its magnitude, which became apparent a few days into the sequence. In the first 4.5 days, only 59 M≥1.8 aftershocks had occurred, the largest of which was a M3.9 that happened a little over two days after the mainshock. In contrast, during the same time period the 2004 M6.0 Parkfield earthquake had over 220 M≥1.8 aftershocks, 6 of which were M≥4. Here I investigate the aftershock productivity and other sequence statistics of the South Napa sequence and compare it with other M~6 California mainshock-aftershock sequences. By focusing on similar size events, they have similar finite extents within the seismotectonic environment. While the productivities of these sequences vary quite a bit, the b-values of the magnitude-frequency distributions all fall in the 0.6-0.8 range for the northern California sequences, slightly lower than the b-value of ~1 typical of southern California seismicity. Despite the relatively low productivity of the South Napa sequence, I show that the Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, JASA, 1988) describes the sequence well and investigate whether the ETAS model parameters suggest that low-productivity sequences are typical for the region. I also explore how quickly after a mainshock these types of models can capture the low productivity of the sequence. The productivity of a sequence is a critical parameter in determining the aftershock probabilities reported in the days following the mainshock. Therefore, the sooner an accurate representation of the aftershock productivity can be obtained, the sooner more accurate aftershock probability reports can be produced.

  9. A random effects epidemic-type aftershock sequence model.

    PubMed

    Lin, Feng-Chang

    2011-04-01

    We consider an extension of the temporal epidemic-type aftershock sequence (ETAS) model with random effects as a special case of a well-known doubly stochastic self-exciting point process. The new model arises from a deterministic function that is randomly scaled by a nonnegative random variable, which is unobservable but assumed to follow either positive stable or one-parameter gamma distribution with unit mean. Both random effects models are of interest although the one-parameter gamma random effects model is more popular when modeling associated survival times. Our estimation is based on the maximum likelihood approach with marginalized intensity. The methods are shown to perform well in simulation experiments. When applied to an earthquake sequence on the east coast of Taiwan, the extended model with positive stable random effects provides a better model fit, compared to the original ETAS model and the extended model with one-parameter gamma random effects.

  10. Statistical estimation of the duration of aftershock sequences

    NASA Astrophysics Data System (ADS)

    Hainzl, S.; Christophersen, A.; Rhoades, D.; Harte, D.

    2016-05-01

    It is well known that large earthquakes generally trigger aftershock sequences. However, the duration of those sequences is unclear due to the gradual power-law decay with time. The triggering time is assumed to be infinite in the epidemic type aftershock sequence (ETAS) model, a widely used statistical model to describe clustering phenomena in observed earthquake catalogues. This assumption leads to the constraint that the power-law exponent p of the Omori-Utsu decay has to be larger than one to avoid supercritical conditions with accelerating seismic activity on long timescales. In contrast, seismicity models based on rate- and state-dependent friction observed in laboratory experiments predict p ≤ 1 and a finite triggering time scaling inversely to the tectonic stressing rate. To investigate this conflict, we analyse an ETAS model with finite triggering times, which allow smaller values of p. We use synthetic earthquake sequences to show that the assumption of infinite triggering times can lead to a significant bias in the maximum likelihood estimates of the ETAS parameters. Furthermore, it is shown that the triggering time can be reasonably estimated using real earthquake catalogue data, although the uncertainties are large. The analysis of real earthquake catalogues indicates mainly finite triggering times in the order of 100 days to 10 years with a weak negative correlation to the background rate, in agreement with expectations of the rate- and state-friction model. The triggering time is not the same as the apparent duration, which is the time period in which aftershocks dominate the seismicity. The apparent duration is shown to be strongly dependent on the mainshock magnitude and the level of background activity. It can be much shorter than the triggering time. Finally, we perform forward simulations to estimate the effective forecasting period, which is the time period following a mainshock, in which ETAS simulations can improve rate estimates after the

  11. The Aftershock Risk Index - quantification of aftershock impacts during ongoing strong-seismic sequences

    NASA Astrophysics Data System (ADS)

    Schaefer, Andreas; Daniell, James; Khazai, Bijan; Wenzel, Friedemann

    2016-04-01

    The occurrence and impact of strong earthquakes often triggers the long-lasting impact of a seismic sequence. Strong earthquakes are generally followed by many aftershocks or even strong subsequently triggered ruptures. The Nepal 2015 earthquake sequence is one of the most recent examples where aftershocks significantly contributed to human and economic losses. In addition, rumours about upcoming mega-earthquakes, false predictions and on-going cycles of aftershocks induced a psychological burden on the society, which caused panic, additional casualties and prevented people from returning to normal life. This study shows the current phase of development of an operationalised aftershock intensity index, which will contribute to the mitigation of aftershock hazard. Hereby, various methods of earthquake forecasting and seismic risk assessments are utilised and an integration of the inherent aftershock intensity is performed. A spatio-temporal analysis of past earthquake clustering provides first-hand data about the nature of aftershock occurrence. Epidemic methods can additionally provide time-dependent variation indices of the cascading effects of aftershock generation. The aftershock hazard is often combined with the potential for significant losses through the vulnerability of structural systems and population. A historical database of aftershock socioeconomic effects from CATDAT has been used in order to calibrate the index based on observed impacts of historical events and their aftershocks. In addition, analytical analysis of cyclic behaviour and fragility functions of various building typologies are explored. The integration of many different probabilistic computation methods will provide a combined index parameter which can then be transformed into an easy-to-read spatio-temporal intensity index. The index provides daily updated information about the probability of the inherent seismic risk of aftershocks by providing a scalable scheme fordifferent aftershock

  12. Properties of aftershock sequences in southern California

    NASA Astrophysics Data System (ADS)

    Kisslinger, Carl; Jones, Lucile M.

    1991-07-01

    The temporal behavior of 39 aftershock sequences in southern California, 1933-1988, was modeled by the modified Omori relation. Minimum magnitudes for completeness of each sequence catalog were determined, and the maximum likelihood estimates of the parameters K, p, and c, with the standard errors on each, were determined by the Ogata algorithm. The b value of each sequence was also calculated. Many of the active faults in the region, both strike slip and thrust, were sampled. The p values were graded in terms of the size of the standard error relative to the p value itself. Most of the sequences were modeled well by the Omori relation. Many of the sequences had p values close to the mean of the whole data set, 1.11±0.25, but values significantly different from the mean, as low as 0.7 and as high as 1.8, exist. No correlation of p with either the b value of the sequence or the mainshock magnitude was found. The results suggest a direct correlation of p values is with surface heat flow, with high values in the Salton Trough (high heat flow) and one low value in the San Bernardino Mountains and on the edge of the Ventura Basin (both low heat flow). The large fraction of the sequences with p values near the mean are at locations where the heat flow is near the regional mean, 74 mW/m2. If the hypothesis that aftershock decay rate is controlled by temperature at depth is valid, the effects of other factors such as heterogeneity of the fault zone properties are superimposed on the background rate determined by temperature. Surface heat flow is taken as an indicator of crustal temperature at hypocentral depths, but the effects on heat flow of convective heat transport and variations in near-surface thermal conductivity invalidate any simple association of local variations in heat flow with details of the subsurface temperature distribution. The interpretation is that higher temperatures in the aftershock source volume caused shortened stress relaxation times in the fault

  13. Modelling the 2013 North Aegean (Greece) seismic sequence: geometrical and frictional constraints, and aftershock probabilities

    NASA Astrophysics Data System (ADS)

    Karakostas, Vassilis; Papadimitriou, Eleftheria; Gospodinov, Dragomir

    2014-04-01

    The 2013 January 8 Mw 5.8 North Aegean earthquake sequence took place on one of the ENE-WSW trending parallel dextral strike slip fault branches in this area, in the continuation of 1968 large (M = 7.5) rupture. The source mechanism of the main event indicates predominantly strike slip faulting in agreement with what is expected from regional seismotectonics. It was the largest event to have occurred in the area since the establishment of the Hellenic Unified Seismological Network (HUSN), with an adequate number of stations in close distances and full azimuthal coverage, thus providing the chance of an exhaustive analysis of its aftershock sequence. The main shock was followed by a handful of aftershocks with M ≥ 4.0 and tens with M ≥ 3.0. Relocation was performed by using the recordings from HUSN and a proper crustal model for the area, along with time corrections in each station relative to the model used. Investigation of the spatial and temporal behaviour of seismicity revealed possible triggering of adjacent fault segments. Theoretical static stress changes from the main shock give a preliminary explanation for the aftershock distribution aside from the main rupture. The off-fault seismicity is perfectly explained if μ > 0.5 and B = 0.0, evidencing high fault friction. In an attempt to forecast occurrence probabilities of the strong events (Mw ≥ 5.0), estimations were performed following the Restricted Epidemic Type Aftershock Sequence (RETAS) model. The identified best-fitting MOF model was used to execute 1-d forecasts for such aftershocks and follow the probability evolution in time during the sequence. Forecasting was also implemented on the base of a temporal model of aftershock occurrence, different from the modified Omori formula (the ETAS model), which resulted in probability gain (though small) in strong aftershock forecasting for the beginning of the sequence.

  14. Evidence for fluid-triggering underlying the year 2014 aftershock sequences in NW Bohemia

    NASA Astrophysics Data System (ADS)

    Hainzl, S.; Fischer, T.; Cermakova, H.; Bachura, M.; Vlcek, J.

    2015-12-01

    The West Bohemia/Vogtland region, central Europe, is a place of localized repeating swarm activity continuously monitored during the last two decades, allowing a detailed study of the driving mechanisms. Previous earthquake episodes where characterized by swarm-type activity with gradual onsets and decays which were not related to mainshocks. However, the latest activity in the year 2014 occurred exactly in the same location as previous swarm activity but consisted of three classical aftershock sequences triggered by a M4.4 event and two ~M3.5 events. The apparent system change from swarm-type to mainshock-aftershock characteristics can have important implications for the understanding of swarm and aftershock generation as well as for seismic hazard assessment in this region. Thus we have analyzed in detail the spatiotemporal aftershock sequence based on a relocated earthquake catalog. Our analysis shows that the largest mainshock occurred in a step-over region of the fault plane with increased Coulomb stress due to previous activity. Its rupture plane connecting both segments is significantly rotated compared to most aftershocks, which occurred in-plane. The aftershock characteristics are classical in the way that (i) the aftershocks are clearly triggered by the mainshock, (ii) the maximum magnitude of the aftershocks is approximately 1.2 units less than the mainshock magnitude (Bath law), and (iii) the decay can be well fitted by the Omori-Utsu law. However, the absolute number of aftershocks and the fitted c and p values of the Omori-Utsu decay are significantly larger than for typical sequences. The fit of the epidemic type aftershock sequence (ETAS) model reveals a time-dependent background activity which exponentially decays with time after the mainshock. Pore pressure simulations with an exponentially decreasing flow rate of the fluid source show a good agreement with the observed spatial migration front of the aftershocks extending approximately with log

  15. On the relationship between lower magnitude thresholds and bias in epidemic-type aftershock sequence parameter estimates

    NASA Astrophysics Data System (ADS)

    Schoenberg, Frederic Paik; Chu, Annie; Veen, Alejandro

    2010-04-01

    Modern earthquake catalogs are often described using spatial-temporal point process models such as the epidemic-type aftershock sequence (ETAS) models of Ogata (1998). Earthquake catalogs often have issues of incompleteness and other inaccuracies for earthquakes of magnitude below a certain threshold, and such earthquakes are typically removed prior to fitting a point process model. This paper investigates the bias in the parameters in ETAS models introduced by the removal of the smallest events. It is shown that in the case of most of the ETAS parameters, the bias increases approximately exponentially as a function of the lower magnitude cutoff.

  16. Analysis of the 2012 Oct 27 Haida Gwaii Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    Mulder, T.; Brillon, C.; Bentkowski, W.; White, M.; Rosenberger, A.; Rogers, G. C.; Vernon, F.; Kao, H.

    2013-12-01

    The magnitude 7.7 thrust earthquake that occurred on 2012 Oct 28 offshore of Haida Gwaii (formerly the Queen Charlotte Islands), in British Columbia, Canada, produced a rich and on-going aftershock sequence. Ten months of aftershock events are determined from analyst reviewed solutions and automatic detectors and locators. For automated solutions, rotating the waveforms and running P and S wave filters (Rosenberger, 2010) over them produced phase arrivals for an improved catalogue of aftershocks compared to using a traditional signal to noise ratio detector on standard vertical and horizontal component seismograms. The automated aftershock locations from the rotated waveforms are compared to the automated locations from the standard vertical and horizontal waveforms and to analyst locations (which are generally M>2.5). The best of the automated solutions are comparable in quality to analyst solutions and much more numerous making this a viable method of processing extensive aftershock sequences. They outline a region approximately 50 km wide and 100 km long, with the aftershocks in two parallel bands. Most of the aftershocks are not on the rupture surface but are in the overlying or underlying plates. It is thought that this earthquake represents the Pacific plate thrusting underneath the North America plate with the rupture surface lying beneath the sedimentary Queen Charlotte terrace and terminating to the east in the vicinity of the Queen Charlotte fault. Due to the one-sided station distribution on land, depth trades off with distance offshore, resulting in poor depth determinations. However, using ocean bottom seismometers deployed early in the aftershock sequence, depth resolution was significantly improved. First motion focal North America plate with the rupture surface lying beneath the sedimentary Queen Charlotte terrace and terminating to the east in the vicinity of the Queen Charlotte fault.mechanisms for a portion of the aftershock sequence are compared

  17. Explanation of temporal clustering of tsunami sources using the epidemic-type aftershock sequence model

    USGS Publications Warehouse

    Geist, Eric L.

    2014-01-01

    Temporal clustering of tsunami sources is examined in terms of a branching process model. It previously was observed that there are more short interevent times between consecutive tsunami sources than expected from a stationary Poisson process. The epidemic‐type aftershock sequence (ETAS) branching process model is fitted to tsunami catalog events, using the earthquake magnitude of the causative event from the Centennial and Global Centroid Moment Tensor (CMT) catalogs and tsunami sizes above a completeness level as a mark to indicate that a tsunami was generated. The ETAS parameters are estimated using the maximum‐likelihood method. The interevent distribution associated with the ETAS model provides a better fit to the data than the Poisson model or other temporal clustering models. When tsunamigenic conditions (magnitude threshold, submarine location, dip‐slip mechanism) are applied to the Global CMT catalog, ETAS parameters are obtained that are consistent with those estimated from the tsunami catalog. In particular, the dip‐slip condition appears to result in a near zero magnitude effect for triggered tsunami sources. The overall consistency between results from the tsunami catalog and that from the earthquake catalog under tsunamigenic conditions indicates that ETAS models based on seismicity can provide the structure for understanding patterns of tsunami source occurrence. The fractional rate of triggered tsunami sources on a global basis is approximately 14%.

  18. Characterization of Fault Networks and Diffusion of Aftershock Epicenters From Earthquake Catalogs: Fuzzy C-means Clustering and a Modified ETAS Model

    NASA Astrophysics Data System (ADS)

    Moulik, P.; Tiampo, K. F.

    2009-05-01

    The information on three-dimensional geometry as well as the identification of active fault segments is critical to our assessment of seismic risks. Numerical modeling of the aftershock locations, times and magnitudes are also crucial to characterize a fault zone. In this study, a pattern recognition technique based on the Fuzzy C- means clustering algorithm (Bezdek, 1981) is proposed to allow each earthquake to be associated with different fault segments. The spatial covariance tensor for each cluster and the associated earthquakes are used to find optimal anisotropic clusters and designate them as faults, similar to the OADC method (Ouillon et al., 2008). The location, size and orientation of the reconstructed faults segments are characterized using a fuzzy covariance matrix (Gustafson and Kessel, 1978). The output consists of a set of distinct fault segments along with the associated earthquakes at different fuzzy membership grades (Zadeh, 1965). A resultant matrix consists of the fuzzy membership grade for different earthquakes and corresponding faults segments specifying their degree of association with values from zero to one. The spatial distribution of earthquakes of different magnitudes and membership grades for a fault segment is incorporated in an anisotropic spatial kernel which characterizes the aftershock density at a distance vector in the ETAS model (Kagan and Knopoff, 1987; Ogata, 1988). An optimal spatio-temporal distribution of aftershocks is obtained for each fault segment without considering a priori distributions such as Gaussian or power law (Helmstetter et al., 2006; Helmstetter and Sornette, 2002). The model is tested on the aftershock sequence from the Denali, 2002 earthquake in Alaska and the fault reconstruction results compared with the known faults in the area. Therefore, a new method to incorporate the anisotropic nature of aftershock diffusion along with the reconstruction of fault networks from seismicity catalogs is formulated in

  19. Postseismic Pore Pressure Diffusion and its Relationship to Aftershock Sequences

    NASA Astrophysics Data System (ADS)

    Lindman, M.; Lund, B.; Roberts, R.

    2006-12-01

    InSAR measurements of postseismic deformation, water level changes in geothermal wells and time dependent tomography after the two June 2000 M6.5 earthquakes in the south Iceland seismic zone (SISZ) have revealed poroelastic rebound and fluid flow to take place in the postseismic period. This and other examples of pore pressure induced seismicity indicate a strong coupling between fluid flow and the occurrence of earthquakes. It has been suggested that the diffusion of pore pressures induced by a main shock is directly related to the temporal behaviour of aftershocks, described by the well established Omori law. The Omori law describes the rate of aftershocks to decay with time t after a main shock as {dn/dt}={K/(c+t)^p}. The parameter c, reflecting a roughly constant rate during the initial c seconds, is controversial as it is debated whether this behaviour reflects incomplete detection of earthquakes, or, a true description of the physics of the aftershock process. Physical models of aftershock occurrence, including pore pressure diffusion, do suggest that this initial behaviour can indeed be related to the physics of the process. Aftershock sequences within the SISZ indicate that c increases with the magnitude of the main shock. To investigate whether this can be reconciled with postseismic pore pressure diffusion we have modelled the diffusion process following earthquakes of two different magnitudes, M_w=4.6 and M_w=2.2, respectively. We show that the sequences of induced seismicity by these diffusion processes do obey the Omori law, with a magnitude dependency of c that is consistent with the data. We also note that our model captures general features of the spatial variation with time in the aftershock sequences from SISZ that we have studied. An interesting observation in real aftershock sequences is the occurrence of secondary aftershock clusters that results in a temporary rate increase. Our modelling indicates that this feature may be explained by

  20. Computational Software for Fitting Seismic Data to Epidemic-Type Aftershock Sequence Models

    NASA Astrophysics Data System (ADS)

    Chu, A.

    2014-12-01

    Modern earthquake catalogs are often analyzed using spatial-temporal point process models such as the epidemic-type aftershock sequence (ETAS) models of Ogata (1998). My work introduces software to implement two of ETAS models described in Ogata (1998). To find the Maximum-Likelihood Estimates (MLEs), my software provides estimates of the homogeneous background rate parameter and the temporal and spatial parameters that govern triggering effects by applying the Expectation-Maximization (EM) algorithm introduced in Veen and Schoenberg (2008). Despite other computer programs exist for similar data modeling purpose, using EM-algorithm has the benefits of stability and robustness (Veen and Schoenberg, 2008). Spatial shapes that are very long and narrow cause difficulties in optimization convergence and problems with flat or multi-modal log-likelihood functions encounter similar issues. My program uses a robust method to preset a parameter to overcome the non-convergence computational issue. In addition to model fitting, the software is equipped with useful tools for examining modeling fitting results, for example, visualization of estimated conditional intensity, and estimation of expected number of triggered aftershocks. A simulation generator is also given with flexible spatial shapes that may be defined by the user. This open-source software has a very simple user interface. The user may execute it on a local computer, and the program also has potential to be hosted online. Java language is used for the software's core computing part and an optional interface to the statistical package R is provided.

  1. Hypocentral Relocations of the 2008 Mt. Carmel, Illinois Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    Shoemaker, K.; Hamburger, M. W.; Pavlis, G. L.; Horton, S. P.; Withers, M. M.

    2009-12-01

    On April 18, 2008, a moderate sized earthquake (Mw 5.2, hypocentral depth of 16 km) occurred near the Indiana-Illinois state border within 3 km of the Mt. Carmel-New Harmony fault at the northern termination of the Wabash Valley Fault System. A total of 257 aftershocks were recorded over the next month by a fourteen-station temporary network deployed by Indiana University and University of Memphis/Center of Earthquake Research and Information (CERI). The number of recorded aftershocks is greater than aftershocks recorded from previous earthquakes in the WVFS of similar magnitude within the last 50 years. The number and density of local stations allowed the generation of precise hypocentral relocations with the combination of waveform cross-correlation and joint hypocentral techniques. The relocated hypocenters indicate a well-defined near-vertical fault plane striking east-west. The fault orientation is consistent with the focal mechanism of the main shock and nearly orthogonal with respect to the trace of the neighboring Mt. Carmel-New Harmony fault. The interpreted ruptured fault orientation suggests the aftershock sequence occurred on a transfer structure at the fault termination. The structure may be related to the change in deformation styles suggested by the transition from the northeast-trending WVFS to the northwest-trending La Salle anticlinorium.

  2. Sequence-based Parameter Estimation for an Epidemiological Temporal Aftershock Forecasting Model using Markov Chain Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Jalayer, Fatemeh; Ebrahimian, Hossein

    2014-05-01

    Introduction The first few days elapsed after the occurrence of a strong earthquake and in the presence of an ongoing aftershock sequence are quite critical for emergency decision-making purposes. Epidemic Type Aftershock Sequence (ETAS) models are used frequently for forecasting the spatio-temporal evolution of seismicity in the short-term (Ogata, 1988). The ETAS models are epidemic stochastic point process models in which every earthquake is a potential triggering event for subsequent earthquakes. The ETAS model parameters are usually calibrated a priori and based on a set of events that do not belong to the on-going seismic sequence (Marzocchi and Lombardi 2009). However, adaptive model parameter estimation, based on the events in the on-going sequence, may have several advantages such as, tuning the model to the specific sequence characteristics, and capturing possible variations in time of the model parameters. Simulation-based methods can be employed in order to provide a robust estimate for the spatio-temporal seismicity forecasts in a prescribed forecasting time interval (i.e., a day) within a post-main shock environment. This robust estimate takes into account the uncertainty in the model parameters expressed as the posterior joint probability distribution for the model parameters conditioned on the events that have already occurred (i.e., before the beginning of the forecasting interval) in the on-going seismic sequence. The Markov Chain Monte Carlo simulation scheme is used herein in order to sample directly from the posterior probability distribution for ETAS model parameters. Moreover, the sequence of events that is going to occur during the forecasting interval (and hence affecting the seismicity in an epidemic type model like ETAS) is also generated through a stochastic procedure. The procedure leads to two spatio-temporal outcomes: (1) the probability distribution for the forecasted number of events, and (2) the uncertainty in estimating the

  3. Predictability in the Epidemic-Type Aftershock Sequence model of interacting triggered seismicity

    NASA Astrophysics Data System (ADS)

    Helmstetter, AgnèS.; Sornette, Didier

    2003-10-01

    As part of an effort to develop a systematic methodology for earthquake forecasting, we use a simple model of seismicity on the basis of interacting events which may trigger a cascade of earthquakes, known as the Epidemic-Type Aftershock Sequence model (ETAS). The ETAS model is constructed on a bare (unrenormalized) Omori law, the Gutenberg-Richter law, and the idea that large events trigger more numerous aftershocks. For simplicity, we do not use the information on the spatial location of earthquakes and work only in the time domain. We demonstrate the essential role played by the cascade of triggered seismicity in controlling the rate of aftershock decay as well as the overall level of seismicity in the presence of a constant external seismicity source. We offer an analytical approach to account for the yet unobserved triggered seismicity adapted to the problem of forecasting future seismic rates at varying horizons from the present. Tests presented on synthetic catalogs validate strongly the importance of taking into account all the cascades of still unobserved triggered events in order to predict correctly the future level of seismicity beyond a few minutes. We find a strong predictability if one accepts to predict only a small fraction of the large-magnitude targets. Specifically, we find a prediction gain (defined as the ratio of the fraction of predicted events over the fraction of time in alarms) equal to 21 for a fraction of alarm of 1%, a target magnitude M ≥ 6, an update time of 0.5 days between two predictions, and for realistic parameters of the ETAS model. However, the probability gains degrade fast when one attempts to predict a larger fraction of the targets. This is because a significant fraction of events remain uncorrelated from past seismicity. This delineates the fundamental limits underlying forecasting skills, stemming from an intrinsic stochastic component in these interacting triggered seismicity models. Quantitatively, the fundamental

  4. Short-term forecasting of aftershock sequences, microseismicity and swarms inside the Corinth Gulf continental rift

    NASA Astrophysics Data System (ADS)

    Segou, Margarita

    2014-05-01

    Corinth Gulf (Central Greece) is the fastest continental rift in the world with extension rates 11-15 mm/yr with diverse seismic deformation including earthquakes with M greater than 6.0, several periods of increased microseismic activity, usually lasting few months and possibly related with fluid diffusion, and swarm episodes lasting few days. In this study I perform a retrospective forecast experiment between 1995-2012, focusing on the comparison between physics-based and statistical models for short term time classes. Even though Corinth gulf has been studied extensively in the past there is still today a debate whether earthquake activity is related with the existence of either a shallow dipping structure or steeply dipping normal faults. In the light of the above statement, two CRS realization are based on resolving Coulomb stress changes on specified receiver faults, expressing the aforementioned structural models, whereas the third CRS model uses optimally-oriented for failure planes. The CRS implementation accounts for stress changes following all major ruptures with M greater than 4.5 within the testing phase. I also estimate fault constitutive parameters from modeling the response to major earthquakes at the vicinity of the gulf (Aσ=0.2, stressing rate app. 0.02 bar/yr). The generic ETAS parameters are taken as the maximum likelihood estimates derived from the stochastic declustering of the modern seismicity catalog (1995-2012) with minimum triggering magnitude M2.5. I test whether the generic ETAS can efficiently describe the aftershock spatio-temporal clustering but also the evolution of swarm episodes and microseismicity. For the reason above, I implement likelihood tests to evaluate the forecasts for their spatial consistency and for the total amount of predicted versus observed events with M greater than 3.0 in 10-day time windows during three distinct evaluation phases; the first evaluation phase focuses on the Aigio 1995 aftershock sequence (15

  5. Magnitude-dependent epidemic-type aftershock sequences model for earthquakes.

    PubMed

    Spassiani, Ilaria; Sebastiani, Giovanni

    2016-04-01

    We propose a version of the pure temporal epidemic type aftershock sequences (ETAS) model: the ETAS model with correlated magnitudes. As for the standard case, we assume the Gutenberg-Richter law to be the probability density for the magnitudes of the background events. Instead, the magnitude of the triggered shocks is assumed to be probabilistically dependent on that of the relative mother events. This probabilistic dependence is motivated by some recent works in the literature and by the results of a statistical analysis made on some seismic catalogs [Spassiani and Sebastiani, J. Geophys. Res. 121, 903 (2016)10.1002/2015JB012398]. On the basis of the experimental evidences obtained in the latter paper for the real catalogs, we theoretically derive the probability density function for the magnitudes of the triggered shocks proposed in Spassiani and Sebastiani and there used for the analysis of two simulated catalogs. To this aim, we impose a fundamental condition: averaging over all the magnitudes of the mother events, we must obtain again the Gutenberg-Richter law. This ensures the validity of this law at any event's generation when ignoring past seismicity. The ETAS model with correlated magnitudes is then theoretically analyzed here. In particular, we use the tool of the probability generating function and the Palm theory, in order to derive an approximation of the probability of zero events in a small time interval and to interpret the results in terms of the interevent time between consecutive shocks, the latter being a very useful random variable in the assessment of seismic hazard.

  6. Magnitude-dependent epidemic-type aftershock sequences model for earthquakes

    NASA Astrophysics Data System (ADS)

    Spassiani, Ilaria; Sebastiani, Giovanni

    2016-04-01

    We propose a version of the pure temporal epidemic type aftershock sequences (ETAS) model: the ETAS model with correlated magnitudes. As for the standard case, we assume the Gutenberg-Richter law to be the probability density for the magnitudes of the background events. Instead, the magnitude of the triggered shocks is assumed to be probabilistically dependent on that of the relative mother events. This probabilistic dependence is motivated by some recent works in the literature and by the results of a statistical analysis made on some seismic catalogs [Spassiani and Sebastiani, J. Geophys. Res. 121, 903 (2016), 10.1002/2015JB012398]. On the basis of the experimental evidences obtained in the latter paper for the real catalogs, we theoretically derive the probability density function for the magnitudes of the triggered shocks proposed in Spassiani and Sebastiani and there used for the analysis of two simulated catalogs. To this aim, we impose a fundamental condition: averaging over all the magnitudes of the mother events, we must obtain again the Gutenberg-Richter law. This ensures the validity of this law at any event's generation when ignoring past seismicity. The ETAS model with correlated magnitudes is then theoretically analyzed here. In particular, we use the tool of the probability generating function and the Palm theory, in order to derive an approximation of the probability of zero events in a small time interval and to interpret the results in terms of the interevent time between consecutive shocks, the latter being a very useful random variable in the assessment of seismic hazard.

  7. Adaptive forecasting of aftershock activity after the main shock

    NASA Astrophysics Data System (ADS)

    Omi, Takahiro; Ogata, Yosihiko; Hirata, Yoshito; Aihara, Kazuyuki

    2014-05-01

    Forecasting aftershock activity is useful to reduce seismic risks in the affected area after the main shock. The difficulties to forecast aftershocks are (i) a forecasting model should be tailored to each aftershock sequence because the statistical property varies greatly according to an individual aftershock sequence and (ii) the forecasting model has to be estimated from highly deficient data where a significant fraction of early small aftershocks are missing from seismic records. To overcome this difficulty, we have been developing a statistical model to deal with incompletely detected aftershocks, in which the detection rate of aftershocks is sequentially estimated in a state-space modeling approach. Our method enables us to robustly estimate the forecasting model of underlying aftershocks including not only observed aftershocks but also missing ones from the incomplete catalog. We show that the Omori-Utsu formula can be well estimated only from a few hours of the data, and then it can be revised by the epidemic type aftershock sequence (ETAS) model to adaptively forecast an aftershock sequence with the individual cascading feature as the data size increases in real-time. We demonstrate that how these estimated models can effectively forecast the aftershock activity. We also discuss how these models can be implemented in an operational system for earthquake forecasting. References: T. Omi, Y. Ogata, Y. Hirata, and K. Aihiara, "Forecasting large aftershocks within one day after the main shock", Scientific Reports, 3, 2218 (2013). T. Omi, Y. Ogata, Y. Hirata, and K. Aihiara, "Estimating the ETAS model from an early aftershock sequence", (In submission).

  8. Three Ingredients for Improved Global Aftershock Forecasts: Tectonic Region, Time-Dependent Catalog Incompleteness, and Inter-Sequence Variability

    NASA Astrophysics Data System (ADS)

    Page, M. T.; Hardebeck, J.; Felzer, K. R.; Michael, A. J.; van der Elst, N.

    2015-12-01

    Following a large earthquake, seismic hazard can be orders of magnitude higher than the long-term average as a result of aftershock triggering. Due to this heightened hazard, there is a demand from emergency managers and the public for rapid, authoritative, and reliable aftershock forecasts. In the past, USGS aftershock forecasts following large, global earthquakes have been released on an ad-hoc basis with inconsistent methods, and in some cases, aftershock parameters adapted from California. To remedy this, we are currently developing an automated aftershock product that will generate more accurate forecasts based on the Reasenberg and Jones (Science, 1989) method. To better capture spatial variations in aftershock productivity and decay, we estimate regional aftershock parameters for sequences within the Garcia et al. (BSSA, 2012) tectonic regions. We find that regional variations for mean aftershock productivity exceed a factor of 10. The Reasenberg and Jones method combines modified-Omori aftershock decay, Utsu productivity scaling, and the Gutenberg-Richter magnitude distribution. We additionally account for a time-dependent magnitude of completeness following large events in the catalog. We generalize the Helmstetter et al. (2005) equation for short-term aftershock incompleteness and solve for incompleteness levels in the global NEIC catalog following large mainshocks. In addition to estimating average sequence parameters within regions, we quantify the inter-sequence parameter variability. This allows for a more complete quantification of the forecast uncertainties and Bayesian updating of the forecast as sequence-specific information becomes available.

  9. Discrete characteristics of the aftershock sequence of the 2011 Van earthquake

    NASA Astrophysics Data System (ADS)

    Toker, Mustafa

    2014-10-01

    An intraplate earthquake of magnitude Mw 7.2 occurred on a NE-SW trending blind oblique thrust fault in accretionary orogen, the Van region of Eastern Anatolia on October 23, 2011. The aftershock seismicity in the Van earthquake was not continuous but, rather, highly discrete. This shed light on the chaotic nonuniformity of the event distribution and played key roles in determining the seismic coupling between the rupturing process and seismogeneity. I analyzed the discrete statistical mechanics of the 2011 Van mainshock-aftershock sequence with an estimation of the non-dimensional tuning parameters consisting of; temporal clusters (C) and the random (RN) distribution of aftershocks, range of size scales (ROSS), strength change (εD), temperature (T), P-value of temporal decay, material parameter R-value, seismic coupling χ, and Q-value of aftershock distribution. I also investigated the frequency-size (FS), temporal (T) statistics and the sequential characteristics of aftershock dynamics using discrete approach and examined the discrete evolutionary periods of the Van earthquake Gutenberg-Richter (GR) distribution. My study revealed that the FS and T statistical properties of aftershock sequence represent the Gutenberg-Richter (GR) distribution, clustered (C) in time and random (RN) Poisson distribution, respectively. The overall statistical behavior of the aftershock sequence shows that the Van earthquake originated in a discrete structural framework with high seismic coupling under highly variable faulting conditions. My analyses relate this larger dip-slip event to a discrete seismogenesis with two main components of complex fracturing and branching framework of the ruptured fault and dynamic strengthening and hardening behavior of the earthquake. The results indicate two dynamic cases. The first is associated with aperiodic nature of aftershock distribution, indicating a time-independent Poissonian event. The second is associated with variable slip model

  10. Scaling Analysis of Time Distribution between Successive Earthquakes in Aftershock Sequences

    NASA Astrophysics Data System (ADS)

    Marekova, Elisaveta

    2016-08-01

    The earthquake inter-event time distribution is studied, using catalogs for different recent aftershock sequences. For aftershock sequences following the Modified Omori's Formula (MOF) it seems clear that the inter-event distribution is a power law. The parameters of this law are defined and they prove to be higher than the calculated value (2-1/ p). Based on the analysis of the catalogs, it is determined that the probability densities of the inter-event time distribution collapse into a single master curve when the data is rescaled with instantaneous intensity, R( t; M th ), defined by MOF. The curve is approximated by a gamma distribution. The collapse of the data provides a clear view of aftershock-occurrence self-similarity.

  11. Statistical monitoring of aftershock sequences: a case study of the 2015 Mw7.8 Gorkha, Nepal, earthquake

    NASA Astrophysics Data System (ADS)

    Ogata, Yosihiko; Tsuruoka, Hiroshi

    2016-03-01

    Early forecasting of aftershocks has become realistic and practical because of real-time detection of hypocenters. This study illustrates a statistical procedure for monitoring aftershock sequences to detect anomalies to increase the probability gain of a significantly large aftershock or even an earthquake larger than the main shock. In particular, a significant lowering (relative quiescence) in aftershock activity below the level predicted by the Omori-Utsu formula or the epidemic-type aftershock sequence model is sometimes followed by a large earthquake in a neighboring region. As an example, we detected significant lowering relative to the modeled rate after approximately 1.7 days after the main shock in the aftershock sequence of the Mw7.8 Gorkha, Nepal, earthquake of April 25, 2015. The relative quiescence lasted until the May 12, 2015, M7.3 Kodari earthquake that occurred at the eastern end of the primary aftershock zone. Space-time plots including the transformed time can indicate the local places where aftershock activity lowers (the seismicity shadow). Thus, the relative quiescence can be hypothesized to be related to stress shadowing caused by probable slow slips. In addition, the aftershock productivity of the M7.3 Kodari earthquake is approximately twice as large as that of the M7.8 main shock.

  12. Generalized Omori-Utsu law for aftershock sequences in southern California

    NASA Astrophysics Data System (ADS)

    Davidsen, J.; Gu, C.; Baiesi, M.

    2015-05-01

    We investigate the validity of a proposed generalized Omori-Utsu law for the aftershock sequences for the Landers, Hector Mine, Northridge and Superstition Hills earthquakes, the four largest events in the southern California catalogue we analyse. This law unifies three of the most prominent empirical laws of statistical seismology-the Gutenberg-Richter law, the Omori-Utsu law, and a generalized version of Båth's law-in a formula casting the parameters in the Omori-Utsu law as a function of the lower magnitude cutoff mc for the aftershocks considered. By applying a recently established general procedure for identifying aftershocks, we confirm that the generalized Omori-Utsu law provides a good approximation for the observed rates overall. In particular, we provide convincing evidence that the characteristic time c is not constant but a genuine function of mc, which cannot be attributed to short-term aftershock incompleteness. However, the estimation of the specific parameters is somewhat sensitive to the aftershock selection method used. This includes c(mc), which has important implications for inferring the underlying stress field.

  13. The May 29 2008 earthquake aftershock sequence within the South Iceland Seismic Zone: Fault locations and source parameters of aftershocks

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Parsons, M.; White, R. S.; Gudmundsson, O.; Drew, J.

    2010-12-01

    The mid-Atlantic plate boundary breaks up into a series of segments across Iceland. The South Iceland Seismic Zone (SISZ) is a complex transform zone where left-lateral E-W shear between the Reykjanes Peninsula Rift Zone and the Eastern Volcanic Zone is accommodated by bookshelf faulting along N-S lateral strike-slip faults. The SISZ is also a transient feature, migrating sideways in response to the southward propagation of the Eastern Volcanic Zone. Sequences of large earthquakes (M > 6) lasting from days to years and affecting most of the seismic zone have occurred repeatedly in historical time (last 1100 years), separated by intervals of relative quiescence lasting decades to more than a century. On May 29 2008, a Mw 6.1 earthquake struck the western part of the South Iceland Seismic Zone, followed within seconds by a slightly smaller event on a second fault ~5 km further west. Aftershocks, detected by a temporal array of 11 seismometers and three permanent Icelandic Meteorological Office stations were located using an automated Coalescence Microseismic Mapping technique. The epicenters delineate two major and several smaller N-S faults as well as an E-W zone of activity stretching further west into the Reykjanes Peninsula Rift Zone. Fault plane solutions show both right lateral and oblique strike slip mechanisms along the two major N-S faults. The aftershocks deepen from 3-5 km in the north to 8-9 km in the south, suggesting that the main faults dip southwards. The faulting is interpreted to be driven by the local stress due to transform motion between two parallel segments of the divergent plate boundary crossing Iceland.

  14. An ETAS model with varying productivity rates

    NASA Astrophysics Data System (ADS)

    Harte, D. S.

    2014-07-01

    We present an epidemic type aftershock sequenc (ETAS) model where the offspring rates vary both spatially and temporally. This is achieved by distinguishing between those space-time volumes where the interpoint space and time distances are small, and those where they are considerably larger. We also question the nature of the background component in the ETAS model. Is it simply a temporal boundary correction (t = 0) or does it represent an additional tectonic process not described by the aftershock component? The form of these stochastic models should not be considered to be fixed. As we accumulate larger and better earthquake catalogues, GPS data, strain rates, etc., we have the ability to ask more complex questions about the nature of the process. By fitting modified models consistent with such questions, we should gain a better insight into the earthquake process. Hence, we consider a sequence of incrementally modified ETAS type models rather than `the' ETAS model.

  15. No Evidence of Magnitude Clustering in an Aftershock Sequence of Nano- and Picoseismicity

    NASA Astrophysics Data System (ADS)

    Davidsen, Jörn; Kwiatek, Grzegorz; Dresen, Georg

    2012-01-01

    One of the hallmarks of our current understanding of seismicity as highlighted by the epidemic-type-aftershock sequence model is that the magnitudes of earthquakes are independent of one another and can be considered as randomly drawn from the Gutenberg-Richter distribution. This assumption forms the basis of many approaches for forecasting seismicity rates and hazard assessment. Recently, it has been suggested that the assumption of independent magnitudes is not valid. It was subsequently argued that this conclusion was not supported by the original earthquake data from California. One of the main challenges is the lack of completeness of earthquake catalogs. Here, we study an aftershock sequence of nano- and picoseismicity as observed at the Mponeng mine, for which the issue of incompleteness is much less pronounced. We show that this sequence does not exhibit any significant evidence of magnitude correlations.

  16. Three ingredients for Improved global aftershock forecasts: Tectonic region, time-dependent catalog incompleteness, and inter-sequence variability

    USGS Publications Warehouse

    Page, Morgan T.; Van Der Elst, Nicholas; Hardebeck, Jeanne L.; Felzer, Karen; Michael, Andrew J.

    2016-01-01

    Following a large earthquake, seismic hazard can be orders of magnitude higher than the long‐term average as a result of aftershock triggering. Because of this heightened hazard, emergency managers and the public demand rapid, authoritative, and reliable aftershock forecasts. In the past, U.S. Geological Survey (USGS) aftershock forecasts following large global earthquakes have been released on an ad hoc basis with inconsistent methods, and in some cases aftershock parameters adapted from California. To remedy this, the USGS is currently developing an automated aftershock product based on the Reasenberg and Jones (1989) method that will generate more accurate forecasts. To better capture spatial variations in aftershock productivity and decay, we estimate regional aftershock parameters for sequences within the García et al. (2012) tectonic regions. We find that regional variations for mean aftershock productivity reach almost a factor of 10. We also develop a method to account for the time‐dependent magnitude of completeness following large events in the catalog. In addition to estimating average sequence parameters within regions, we develop an inverse method to estimate the intersequence parameter variability. This allows for a more complete quantification of the forecast uncertainties and Bayesian updating of the forecast as sequence‐specific information becomes available.

  17. Spatial Variations of Aftershock Parameters and their Relation to Geodetic Slip Models for the 2010 Mw8.8 Maule and the 2011 Mw9.0 Tohoku-oki Earthquakes

    NASA Astrophysics Data System (ADS)

    Zakharova, O.; Hainzl, S.; Lange, D.; Enescu, B.

    2017-01-01

    Recent development in analysis tools and deployments of the geodetic and seismic instruments give an opportunity to investigate aftershock sequences at local scales, which is important for the seismic hazard assessment. In particular, we study the dependencies between aftershock sequences properties and deformational/geological data on a scale of the rupture extension of megathrust earthquakes. For this goal we use, on one hand, published models of inter-, co- and postseismic slip and geological information and, on the other hand, aftershock parameters, obtained by fitting a modified Epidemic Type Aftershock Sequence (ETAS) model. The altered ETAS model takes into account the mainshock rupture extension and it distinguishes between primary and the secondary aftershock triggering involved in the total seismicity rate. We estimate the Spearman correlation coefficients between the spatially distributed aftershock parameters estimated by the modified ETAS model and crustal physical properties for the Maule 2010 Mw8.8 and the Tohoku-oki 2011 Mw9.0 aftershock sequences. We find that: (1) modified ETAS model outperforms the classical one, when the mainshock rupture extension cannot be neglected and represented as a point source; (2) anomalous aftershock parameters occur in the areas of the reactivated fault systems; (3) aftershocks, regardless of their generation, tend to occur in the areas of high coseismic slip gradient, afterslip and interseismic coupling; (4) aftershock seismic moment releases preferentially in regions of large coseismic slip, coseismic slip gradient and interseismically locked areas; (5) b value tends to be smaller in interseismically locked regions.

  18. The aftershock sequence of the 2015 April 25 Gorkha-Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Adhikari, L. B.; Gautam, U. P.; Koirala, B. P.; Bhattarai, M.; Kandel, T.; Gupta, R. M.; Timsina, C.; Maharjan, N.; Maharjan, K.; Dahal, T.; Hoste-Colomer, R.; Cano, Y.; Dandine, M.; Guilhem, A.; Merrer, S.; Roudil, P.; Bollinger, L.

    2015-12-01

    The M 7.8 2015 April 25 Gorkha earthquake devastated the mountainous southern rim of the High Himalayan range in central Nepal. The main shock was followed by 553 earthquakes of local magnitude greater than 4.0 within the first 45 days. In this study, we present and qualify the bulletin of the permanent National Seismological Centre network to determine the spatio-temporal distribution of the aftershocks. The Gorkha sequence defines a ˜140-km-long ESE trending structure, parallel to the mountain range, abutting on the presumed extension of the rupture plane of the 1934 M 8.4 earthquake. In addition, we observe a second seismicity belt located southward, under the Kathmandu basin and in the northern part of the Mahabarat range. Many aftershocks of the Gorkha earthquake sequence have been felt by the 3 millions inhabitants of the Kathmandu valley.

  19. Distribution of the largest event in the critical epidemic-type aftershock-sequence model

    NASA Astrophysics Data System (ADS)

    Vere-Jones, David; Zhuang, Jiancang

    2008-10-01

    This Brief Report corrects and extends the results of Zhuang and Ogata [Phys. Rev. E 73, 046134 (2006)] on the asymptotic behavior of the largest event in the epidemic-type aftershock-sequence model for earthquake occurrence. We show that, in the special case that the underlying branching process is critical, there exists a previously unnoticed mode of behavior, which occurs when the expected family size grows relatively slowly.

  20. Automatic analysis of the Gorkha earthquake aftershock sequence: evidences of structurally-segmented seismicity

    NASA Astrophysics Data System (ADS)

    Baillard, Christian; Lyon-Caen, Hélène; Bollinger, Laurent; Rietbrock, Andreas; Letort, Jean; Adhikari, Lok Bijaya

    2017-03-01

    We present the first 3 months of aftershock activity following the 25th April 2015 Gorkha earthquake MW 7.8 recorded on the Nepalese Seismic network. We deployed an automatic procedure composed of three main stages: 1) coarse determination of the P and S onsets; 2) phase association to declare events and 3) iterative addition and refinement of onsets using the Kurtosis characteristic function. In total 9188 events could be located in the Kathmandu region with the majority having small location errors (< 4.5, 9, 10 km in the X, Y, Z directions, respectively). Additionally, we propose a new attenuation law to estimate local magnitudes in the region. This new seismic catalog reveals a detailed insight into the Gorkha aftershock sequence and its relation to the main shock rupture models and tectonic structures in the region. Most aftershocks fall within the Main Himalayan Thrust (MHT) shear zone or in its hanging-wall. Significant temporal and lateral variations of aftershocks location are observed among them: 1) three distinct stages, highlighting subsequent jump-offs at the easternmost termination, 2) the existence of a seismic gap north of Kathmandu which matches with a low slip zone in the rupture area of the mainshock, 3) the confinement of seismic activity in the trace of the 12th May MW 7.3 earthquake within the MHT and its hanging-wall through a 30 by 30 km2 region, 4) a shallow westward-dipping structure east of the Kathmandu klippe. These new observations with the inferred tectonic structures at depth suggests a tectonic control of part of the aftershock activity by the lateral breaks along the MHT and by the geometry of the duplex above the thrust.

  1. When and where the aftershock activity was depressed: Contrasting decay patterns of the proximate large earthquakes in southern California

    USGS Publications Warehouse

    Ogata, Y.; Jones, L.M.; Toda, S.

    2003-01-01

    Seismic quiescence has attracted attention as a possible precursor to a large earthquake. However, sensitive detection of quiescence requires accurate modeling of normal aftershock activity. We apply the epidemic-type aftershock sequence (ETAS) model that is a natural extension of the modified Omori formula for aftershock decay, allowing further clusters (secondary aftershocks) within an aftershock sequence. The Hector Mine aftershock activity has been normal, relative to the decay predicted by the ETAS model during the 14 months of available data. In contrast, although the aftershock sequence of the 1992 Landers earthquake (M = 7.3), including the 1992 Big Bear earthquake (M = 6.4) and its aftershocks, fits very well to the ETAS up until about 6 months after the main shock, the activity showed clear lowering relative to the modeled rate (relative quiescence) and lasted nearly 7 years, leading up to the Hector Mine earthquake (M = 7.1) in 1999. Specifically, the relative quiescence occurred only in the shallow aftershock activity, down to depths of 5-6 km. The sequence of deeper events showed clear, normal aftershock activity well fitted to the ETAS throughout the whole period. We argue several physical explanations for these results. Among them, we strongly suspect aseismic slips within the Hector Mine rupture source that could inhibit the crustal relaxation process within "shadow zones" of the Coulomb's failure stress change. Furthermore, the aftershock activity of the 1992 Joshua Tree earthquake (M = 6.1) sharply lowered in the same day of the main shock, which can be explained by a similar scenario.

  2. Long aftershock sequences within continents and implications for earthquake hazard assessment.

    PubMed

    Stein, Seth; Liu, Mian

    2009-11-05

    One of the most powerful features of plate tectonics is that the known plate motions give insight into both the locations and average recurrence interval of future large earthquakes on plate boundaries. Plate tectonics gives no insight, however, into where and when earthquakes will occur within plates, because the interiors of ideal plates should not deform. As a result, within plate interiors, assessments of earthquake hazards rely heavily on the assumption that the locations of small earthquakes shown by the short historical record reflect continuing deformation that will cause future large earthquakes. Here, however, we show that many of these recent earthquakes are probably aftershocks of large earthquakes that occurred hundreds of years ago. We present a simple model predicting that the length of aftershock sequences varies inversely with the rate at which faults are loaded. Aftershock sequences within the slowly deforming continents are predicted to be significantly longer than the decade typically observed at rapidly loaded plate boundaries. These predictions are in accord with observations. So the common practice of treating continental earthquakes as steady-state seismicity overestimates the hazard in presently active areas and underestimates it elsewhere.

  3. Near-Field ETAS Constraints and Applications to Seismic Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Yoder, Mark R.; Rundle, John B.; Glasscoe, Margaret T.

    2015-08-01

    The epidemic type aftershock sequence (ETAS) statistical model of aftershock seismicity combines various earthquake scaling relations to produce synthetic earthquake catalogs, or estimates of aftershock seismicity rates, based on recent earthquake activity. One challenge to ETAS-based hazard assessment is the large number of free parameters involved. In this paper, we introduce an approach to constrain this parameter space from canonical scaling relations, empirical observations, and fundamental physics. We show that ETAS parameters can be estimated as a function of an earthquake's magnitude m based on the finite temporal and spatial extents of the rupture area. This approach facilitates fast ETAS-based estimates of seismicity from large "seed" catalogs, and it is particularly well suited to web-based deployment and otherwise automated implementations. It constitutes a significant improvement over contemporary ETAS by mitigating variability related to instrumentation and subjective catalog selection.

  4. Can We Forecast 1-Month Span Aftershock Activity from the First Day Data after the Main Shock?

    NASA Astrophysics Data System (ADS)

    Omi, T.; Ogata, Y.; Hirata, Y.; Aihara, K.

    2014-12-01

    A large earthquake triggers persistent aftershock activity in and near the focal region. Thus, intermediate term forecasting of aftershocks at its earlier stage is important for mitigating seismic risks. A main difficulty for the early forecasting is the substantial incompleteness of early aftershock data. To deal with such incomplete data, we have developed a statistical model of the incomplete data, enabling us to obtain the immediate estimate of the forecasting models from incomplete data [1, 2]. Another difficulty for the intermediate term forecasting is that we have to determine the parameter values of the forecasting models with high accuracy, because even a small bias in the parameter values can lead to a significant bias of the forecasting in intermediate term. However such accurate estimation is quite difficult at the early stage, especially using the early and incomplete data. Here we present a Bayesian forecasting method by using the epidemic-type aftershock sequence (ETAS) model. The Bayesian forecasting considers not only the best parameter values such as the maximum likelihood estimates or maximum a posteriori estimates but also the estimation uncertainty of the parameter values. By analyzing aftershock sequences in Japan, we show the forecasting performances of the intermediate-term aftershocks can be significantly improved by considering the estimation uncertainty of the ETAS model [3]. Furthermore, we discuss the impact of the modeling of the magnitude frequency distribution of detected aftershocks within a day span on the forecasting of large aftershocks. [1] T. Omi, Y. Ogata, Y. Hirata and K. Aihara, "Forecasting large aftershocks within one day after the main shock", Scientific Reports 3, 2218 (2013). [2] T. Omi, Y. Ogata, Y. Hirata and K. Aihara, "Estimating the ETAS model from an early aftershock sequence", Geophysical Research Letters 41, 850 (2014). [3] T. Omi, Y. Ogata, Y. Hirata and K. Aihara, "Intermediate-term forecasting of aftershocks

  5. Hurricane Irene's Impacts on the Aftershock Sequence of the 2011 Mw5.8 Virginia Earthquake

    NASA Astrophysics Data System (ADS)

    Meng, X.; Peng, Z.; Yang, H.; Allman, S.

    2013-12-01

    Recent studies have shown that typhoon could trigger shallow slow-slip events in Taiwan. However, it is unclear whether such extreme weather events could affect the occurrence of regular earthquakes as well. A good opportunity to test this hypothesis occurred in 2011 when an Mw 5.8 earthquake struck Louisa County, Virginia. This event ruptured a shallow, reverse fault. Roughly 5 days later, hurricane Irene struck the coast of Norfolk, Virginia, which is near the epicentral region of the Virginia mainshock. Because aftershocks listed in the ANSS catalog were incomplete immediately after the main shock, it is very difficult to find the genuine correlation between the seismicity rate changes and hurricane Irene. Hence, we use a recently developed waveform matched filter technique to scan through the continuous seismic data to detect small aftershocks that are previously unidentified. A mixture of 7 temporary stations from the IRIS Ramp deployment and 8 temporary stations deployed by Virginia Tech is used. The temporary stations were set up between 24 to 72 hours following the main shock around its immediate vicinity, which provides us a unique dataset recording the majority aftershock sequence of an intraplate earthquake. We us 80 aftershocks identified by Chapman [2013] as template events and scan through the continuous data from 23 August 2011 through 10 September 2011. So far, we have detected 704 events using a threshold of 12 times the median absolute deviation (MAD), which is ~25 times more than listed in the ANSS catalog. The aftershock rate generally decayed with time as predicted by the Omori's law. A statistically significant increase of seismicity rate is found when hurricane Irene passed by the epicentral region. A possible explanation is that the atmosphere pressure drop unloaded the surface, which brought the reverse faults closer to failure. However, we also identified similar fluctuations of seismicity rate changes at other times. Hence, it is still

  6. The Mw=8.8 Maule earthquake aftershock sequence, event catalog and locations

    NASA Astrophysics Data System (ADS)

    Meltzer, A.; Benz, H.; Brown, L.; Russo, R. M.; Beck, S. L.; Roecker, S. W.

    2011-12-01

    The aftershock sequence of the Mw=8.8 Maule earthquake off the coast of Chile in February 2010 is one of the most well-recorded aftershock sequences from a great megathrust earthquake. Immediately following the Maule earthquake, teams of geophysicists from Chile, France, Germany, Great Britain and the United States coordinated resources to capture aftershocks and other seismic signals associated with this significant earthquake. In total, 91 broadband, 48 short period, and 25 accelerometers stations were deployed above the rupture zone of the main shock from 33-38.5°S and from the coast to the Andean range front. In order to integrate these data into a unified catalog, the USGS National Earthquake Information Center develop procedures to use their real-time seismic monitoring system (Bulletin Hydra) to detect, associate, location and compute earthquake source parameters from these stations. As a first step in the process, the USGS has built a seismic catalog of all M3.5 or larger earthquakes for the time period of the main aftershock deployment from March 2010-October 2010. The catalog includes earthquake locations, magnitudes (Ml, Mb, Mb_BB, Ms, Ms_BB, Ms_VX, Mc), associated phase readings and regional moment tensor solutions for most of the M4 or larger events. Also included in the catalog are teleseismic phases and amplitude measures and body-wave MT and CMT solutions for the larger events, typically M5.5 and larger. Tuning of automated detection and association parameters should allow a complete catalog of events to approximately M2.5 or larger for that dataset of more than 164 stations. We characterize the aftershock sequence in terms of magnitude, frequency, and location over time. Using the catalog locations and travel times as a starting point we use double difference techniques to investigate relative locations and earthquake clustering. In addition, phase data from candidate ground truth events and modeling of surface waves can be used to calibrate the

  7. The Al Hoceima Mw 6.4 earthquake of 24 February 2004 and its aftershocks sequence

    NASA Astrophysics Data System (ADS)

    van der Woerd, Jérôme; Dorbath, Catherine; Ousadou, Farida; Dorbath, Louis; Delouis, Bertrand; Jacques, Eric; Tapponnier, Paul; Hahou, Youssef; Menzhi, Mohammed; Frogneux, Michel; Haessler, Henri

    2014-07-01

    The Al Hoceima Mw 6.4 earthquake of 24 February 2004 that occurred in the eastern Rif region of Morocco already hit by a large event in May 1994 (Mw 5.9) has been followed by numerous aftershocks in the months following the event. The aftershock sequence has been monitored by a temporary network of 17 autonomous seismic stations during 15 days (28 March-10 April) in addition to 5 permanent stations of the Moroccan seismic network (CNRST, SPG, Rabat). This network allowed locating accurately about 650 aftershocks that are aligned in two directions, about N10-20E and N110-120E, in rough agreement with the two nodal planes of the focal mechanism (Harvard). The aftershock alignments are long enough, about 20 km or more, to correspond both to the main rupture plane. To further constrain the source of the earthquake main shock and aftershocks (mb > 3.5) have been relocated thanks to regional seismic data from Morocco and Spain. While the main shock is located at the intersection of the aftershock clouds, most of the aftershocks are aligned along the N10-20E direction. This direction together with normal sinistral slip implied by the focal mechanism is similar with the direction and mechanisms of active faults in the region, particularly the N10E Trougout oblique normal fault. Indeed, the Al Hoceima region is dominated by an approximate ENE-SSW direction of extension, with oblique normal faults. Three major 10-30 km-long faults, oriented NNE-SSW to NW-SE are particularly clear in the morphology, the Ajdir and Trougout faults, west and east of the Al Hoceima basin, respectively, and the NS Rouadi fault 20 km to the west. These faults show clear evidence of recent vertical displacements during the late Quaternary such as uplifted alluvial terraces along Oued Rihs, offset fan surfaces by the Rouadi fault and also uplifted and tilted abandoned marine terraces on both sides of the Al Hoceima bay. However, the N20E direction is in contrast with seismic sources identified from

  8. Seismological aspects of the 27 June 2015 Gulf of Aqaba earthquake and its sequence of aftershocks

    NASA Astrophysics Data System (ADS)

    Abd el-aal, Abd el-aziz Khairy; Badreldin, Hazem

    2016-07-01

    On 27 June 2015, a moderate earthquake with magnitude Mb 5.2 struck the Gulf of Aqaba near Nuweiba City. This event was instrumentally recorded by the Egyptian National Seismic Network (ENSN) and many other international seismological centres. The event was felt in all the cities on the Gulf of Aqaba, as well as Suez City, Hurghada City, the greater Cairo Metropolitan Area, Israel, Jordan and the north-western part of Saudi Arabia. No casualties were reported, however. Approximately 95 aftershocks with magnitudes ranging from 0.7 to 4.2 were recorded by the ENSN following the mainshock. In the present study, the source characteristics of both the mainshock and the aftershocks were estimated using the near-source waveform data recorded by the very broadband stations of the ENSN, and these were validated by the P-wave polarity data from short period stations. Our analysis reveals that an estimated seismic moment of 0.762 × 1017 Nm was released, corresponding to a magnitude of Mw 5.2, a focal depth of 14 km, a fault radius of 0.72 km and a rupture area of approximately 1.65 km2. Monitoring the sequence of aftershocks reveals that they form a cluster around the mainshock and migrated downwards in focal depth towards the west. We compared the results we obtained with the published results from the international seismological centres. Our results are more realistic and accurate, in particular with respect to the epicenteral location, magnitude and fault plane solution which are in accordance with the hypocentre distribution of the aftershocks.

  9. Data completeness of the Kumamoto earthquake sequence in the JMA catalog and its influence on the estimation of the ETAS parameters

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiancang; Ogata, Yosihiko; Wang, Ting

    2017-02-01

    This study investigates the missing data problem in the Japan Meteorological Agency catalog of the Kumamoto aftershock sequence, which occurred since April 15, 2016, in Japan. Based on the assumption that earthquake magnitudes are independent of their occurrence times, we replenish the short-term missing data of small earthquakes by using a bi-scale transformation and study their influence on the maximum likelihood estimate (MLE) of the epidemic-type aftershock sequences (ETAS) parameters by comparing the analysis results from the original and the replenished datasets. The results show that the MLEs of the ETAS parameters vary when this model is fitted to the recorded catalog with different cutoff magnitudes, while those MLEs remain stable for the replenished dataset. Further analysis shows that the seismicity becomes quiescent after the occurrence of the second major shock, which can be regarded as a precursory phenomenon of the occurrence of the subsequent M_J7.3 mainshock. This relative quiescence is demonstrated more clearly by the analysis of the replenished dataset.

  10. An Improved Source-Scanning Algorithm for Locating Earthquake Clusters or Aftershock Sequences

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Kao, H.; Hsu, S.

    2010-12-01

    The Source-scanning Algorithm (SSA) was originally introduced in 2004 to locate non-volcanic tremors. Its application was later expanded to the identification of earthquake rupture planes and the near-real-time detection and monitoring of landslides and mud/debris flows. In this study, we further improve SSA for the purpose of locating earthquake clusters or aftershock sequences when only a limited number of waveform observations are available. The main improvements include the application of a ground motion analyzer to separate P and S waves, the automatic determination of resolution based on the grid size and time step of the scanning process, and a modified brightness function to utilize constraints from multiple phases. Specifically, the improved SSA (named as ISSA) addresses two major issues related to locating earthquake clusters/aftershocks. The first one is the massive amount of both time and labour to locate a large number of seismic events manually. And the second one is to efficiently and correctly identify the same phase across the entire recording array when multiple events occur closely in time and space. To test the robustness of ISSA, we generate synthetic waveforms consisting of 3 separated events such that individual P and S phases arrive at different stations in different order, thus making correct phase picking nearly impossible. Using these very complicated waveforms as the input, the ISSA scans all model space for possible combination of time and location for the existence of seismic sources. The scanning results successfully associate various phases from each event at all stations, and correctly recover the input. To further demonstrate the advantage of ISSA, we apply it to the waveform data collected by a temporary OBS array for the aftershock sequence of an offshore earthquake southwest of Taiwan. The overall signal-to-noise ratio is inadequate for locating small events; and the precise arrival times of P and S phases are difficult to

  11. An Autonomous System for Grouping Events in a Developing Aftershock Sequence

    SciTech Connect

    Harris, D. B.; Dodge, D. A.

    2011-03-22

    We describe a prototype detection framework that automatically clusters events in real time from a rapidly unfolding aftershock sequence. We use the fact that many aftershocks are repetitive, producing similar waveforms. By clustering events based on correlation measures of waveform similarity, the number of independent event instances that must be examined in detail by analysts may be reduced. Our system processes array data and acquires waveform templates with a short-term average (STA)/long-term average (LTA) detector operating on a beam directed at the P phases of the aftershock sequence. The templates are used to create correlation-type (subspace) detectors that sweep the subsequent data stream for occurrences of the same waveform pattern. Events are clustered by association with a particular detector. Hundreds of subspace detectors can run in this framework a hundred times faster than in real time. Nonetheless, to check the growth in the number of detectors, the framework pauses periodically and reclusters detections to reduce the number of event groups. These groups define new subspace detectors that replace the older generation of detectors. Because low-magnitude occurrences of a particular signal template may be missed by the STA/LTA detector, we advocate restarting the framework from the beginning of the sequence periodically to reprocess the entire data stream with the existing detectors. We tested the framework on 10 days of data from the Nevada Seismic Array (NVAR) covering the 2003 San Simeon earthquake. One hundred eighty-four automatically generated detectors produced 676 detections resulting in a potential reduction in analyst workload of up to 73%.

  12. Implications of spatial and temporal development of the aftershock sequence for the Mw 8.3 June 9, 1994 Deep Bolivian Earthquake

    NASA Astrophysics Data System (ADS)

    Myers, Stephen C.; Wallace, Terry C.; Beck, Susan L.; Silver, Paul G.; Zandt, George; Vandecar, John; Minaya, Estela

    On June 9, 1994 the Mw 8.3 Bolivia earthquake (636 km depth) occurred in a region which had not experienced significant, deep seismicity for at least 30 years. The mainshock and aftershocks were recorded in Bolivia on the BANJO and SEDA broadband seismic arrays and on the San Calixto Network. We used the joint hypocenter determination method to determine the relative location of the aftershocks. We have identified no foreshocks and 89 aftershocks (m > 2.2) for the 20-day period following the mainshock. The frequency of aftershock occurrence decreased rapidly, with only one or two aftershocks per day occuring after day two. The temporal decay of aftershock activity is similar to shallow aftershock sequences, but the number of aftershocks is two orders of magnitude less. Additionally, a mb ∼6, apparently triggered earthquake occurred just 10 minutes after the mainshock about 330 km east-southeast of the mainshock at a depth of 671 km. The aftershock sequence occurred north and east of the mainshock and extends to a depth of 665 km. The aftershocks define a slab striking N68°W and dipping 45°NE. The strike, dip, and location of the aftershock zone are consistent with this seismicity being confined within the downward extension of the subducted Nazca plate. The location and orientation of the aftershock sequence indicate that the subducted Nazca plate bends between the NNW striking zone of deep seismicity in western Brazil and the N-S striking zone of seismicity in central Bolivia. A tear in the deep slab is not necessitated by the data. A subset of the aftershock hypocenters cluster along a subhorizontal plane near the depth of the mainshock, favoring a horizontal fault plane. The horizontal dimensions of the mainshock [Beck et al., this issue; Silver et al., 1995] and slab defined by the aftershocks are approximately equal, indicating that the mainshock ruptured through the slab.

  13. Time-dependent Induced Seismicity Rates Described with an Epidemic Type Aftershock Sequence Model at The Geysers Geothermal Field, California

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Totten, E. J.; Burgmann, R.

    2015-12-01

    To improve understanding of the link between injection/production activity and seismicity, we apply an Epidemic Type Aftershock Sequence (ETAS) model to an earthquake catalog from The Geysers geothermal field (GGF) between 2005-2015 using >140,000 events and Mc 0.8 . We partition the catalog along a northeast-southwest trending divide, which corresponds to regions of high and low levels of enhanced geothermal stimulation (EGS) across the field. The ETAS model is fit to the seismicity data using a 6-month sliding window with a 1-month time step to determine the background seismicity rate. We generate monthly time series of the time-dependent background seismicity rate in 1-km depth intervals from 0-5km. The average wellhead depth is 2-3 km and the background seismicity rates above this depth do not correlate well with field-wide injected masses over the time period of interest. The auto correlation results show a 12-month period for monthly time series proximal to the average wellhead depths (2-3km and 3-4km) for northwest GGF strongly correlates with field-wide fluid injection masses, with a four-month phase shift between the two depth intervals as fluid migrates deeper. This periodicity is not observed for the deeper depth interval of 4-5 km, where monthly background seismicity rates reduce to near zero. Cross-correlation analysis using the monthly time series for background seismicity rate and the field-wide injection, production and net injection (injection minus production) suggest that injection most directly modulates seismicity. Periodicity in the background seismicity is not observed as strongly in the time series for the southeast field. We suggest that the variation in background seismicity rate is a proxy for pore-pressure diffusion of injected fluids at depth. We deduce that the contrast between the background seismicity rates in the northwest and southeast GGF is a result of reduced EGS activity in the southeast region.

  14. The Hellenic Seismological Network Of Crete (HSNC): Validation and results of the 2013 aftershock sequences

    NASA Astrophysics Data System (ADS)

    Chatzopoulos, Georgios; Papadopoulos, Ilias; Vallianatos, Filippos

    2015-04-01

    The number and quality of seismological networks in Europe has increased in the past decades. Nevertheless, the need for localized networks monitoring areas of great seismic and scientific interest is constant. Hellenic Seismological Network of Crete (HSNC) covers this need for the vicinity of the South Aegean Sea and Crete Island. In the present work with the use of Z-map software (www.seismo.ethz.ch) the spatial variability of Magnitude of Completeness (Mc) is calculated from HSNC's manual analysis catalogue of events for the period 2011 until today, proving the good coverage of HSNC in the areas. Furthermore the 2013, South Aegean seismicity where two large shallow earthquakes occurred in the vicinity of Crete Island, is discussed. The first event takes place on 15th June 2013 in the front of the Hellenic Arc, south from central Crete, while the second one on 12th October, 2013 on the western part of Crete. The two main shocks and their aftershock sequences have been relocated with the use of hypoinverse earthquake location software and an appropriate crust model. The HSNC identified more than 500 and 300 aftershocks respectively followed after the main events. The detailed construction of aftershocks catalogue permits the applicability of modern theories based on complexity sciences as described recently in the frame of non extensive statistical physics. In addition site effects in the stations locations are presented using event and noise recordings. This work was implemented through the project IMPACT-ARC in the framework of action "ARCHIMEDES III-Support of Research Teams at TEI of Crete" (MIS380353) of the Operational Program "Education and Lifelong Learning" and is co-financed by the European Union (European Social Fund) and Greek national funds References A. Tzanis and F. Vallianatos, "Distributed power-law seismicity changes and crustal deformation in the EW Hellenic Arc", Natural Hazards and Earth Systems Sciences, 3, 179-195, 2003 F. Vallianatos, G

  15. Precursory seismicity change of the 2013 Nantou, Taiwan earthquake sequence revealed by ETAS, PI, and Z-value methods

    NASA Astrophysics Data System (ADS)

    Kawamura, M.; Chen, C. C.; Wu, Y. M.

    2014-12-01

    ML6.2 and ML6.3 earthquakes occurred in the Nantou area of central Taiwan on Mar. 27, 2013 and June 2, 2013, respectively. Because their epicenters are close to one another, we regard the March ML6.2 and June ML6.3 earthquakes as an event sequence. To investigate precursory seismicity change of the Nantou earthquake sequence, we applied the Epidemic-Type Aftershock-Sequences model (ETAS model) to the earthquake catalog data of the Central Weather Bureau (CWB) covering broader Taiwan region. Application of more than one model to an earthquake catalog would be informative in elucidating the relationships between seismicity precursors and the preparatory processes of large earthquakes. Based on this motivation, we further applied two different approaches: the pattern informatics (PI) method and the ZMAP method, which is a gridding technique based on the standard deviate (Z-value) test to the same earthquake catalog data of CWB. As a result, we found that the epicenter of the 2013 ML6.2 Nantou earthquake was surrounded by three main seismic quiescence regions prior to its occurrence. The assumption that this is due to precursory slip (stress drop) on fault plane or its deeper extent of the ML6.2 Nantou earthquake is supported by previous researches based on seismicity data, geodedic data, and numerical simulations using rate- and state-dependent friction laws.

  16. Exploring the Limits of Waveform Correlation Event Detection as Applied to Three Earthquake Aftershock Sequences

    NASA Astrophysics Data System (ADS)

    Young, C. J.; Carr, D.; Resor, M.; Duffey, S.

    2009-12-01

    Swarms of earthquakes and/or aftershock sequences can dramatically increase the level of seismicity in a region for a period of time lasting from days to months, depending on the swarm or sequence. Such occurrences can provide a large amount of useful information to seismologists. For those who monitor seismic events for possible nuclear explosions, however, these swarms/sequences are a nuisance. In an explosion monitoring system, each event must be treated as a possible nuclear test until it can be proven, to a high degree of confidence, not to be. Seismic events recorded by the same station with highly correlated waveforms almost certainly have a similar location and source type, so clusters of events within a swarm can quickly be identified as earthquakes. We have developed a number of tools that can be used to exploit the high degree of waveform similarity expected to be associated with swarms/sequences. Dendro Tool measures correlations between known events. The Waveform Correlation Detector is intended to act as a detector, finding events in raw data which correlate with known events. The Self Scanner is used to find all correlated segments within a raw data steam and does not require an event library. All three techniques together provide an opportunity to study the similarities of events in an aftershock sequence in different ways. To comprehensively characterize the benefits and limits of waveform correlation techniques, we studied 3 aftershock sequences, using our 3 tools, at multiple stations. We explored the effects of station distance and event magnitudes on correlation results. Lastly, we show the reduction in detection threshold and analyst workload offered by waveform correlation techniques compared to STA/LTA based detection. We analyzed 4 days of data from each aftershock sequence using all three methods. Most known events clustered in a similar manner across the toolsets. Up to 25% of catalogued events were found to be a member of a cluster. In

  17. The variability of PSV response spectra across a dense array deployed during the Northridge aftershock sequence

    USGS Publications Warehouse

    Field, E.H.; Hough, S.E.

    1997-01-01

    This study addresses the variability of pseudo-velocity response spectra across an array deployed on stiff soil in the San Fernando Valley during the Northridge (Mw 6.7) aftershock sequence. The separation between stations ranged from 0.5 to 5 km, and the aftershock magnitudes ranged from 2.3 to 4.0. We find that 95-percent of observed response spectra are within a factor of 1.9 to 2.6 of the network average. Statistically significant relative amplification factors were found for some of the sites, but the variability of observed response spectra is not significantly reduced by correcting for these effects. This implies that microzonation efforts on less than 5-km distance scales are not warranted at these types of sites. We also found a distance dependence for the response-spectral variability between neighboring sites. 95-percent are within a factor of ???2.3 at 0.5 km, increasing to 95-percent within a factor of ???4.2 at 5 km. No frequency dependence in these values could be resolved. Additional work is needed to examine the influence of other factors such as earthquake magnitude.

  18. Long aftershock sequences in North China and Central US: implications for hazard assessment in mid-continents

    NASA Astrophysics Data System (ADS)

    Liu, Mian; Luo, Gang; Wang, Hui; Stein, Seth

    2014-02-01

    Because seismic activity within mid-continents is usually much lower than that along plate boundary zones, even small earthquakes can cause widespread concerns, especially when these events occur in the source regions of previous large earthquakes. However, these small earthquakes may be just aftershocks that continue for decades or even longer. The recent seismicity in the Tangshan region in North China is likely aftershocks of the 1976 Great Tangshan earthquake. The current earthquake sequence in the New Madrid seismic zone in central United States, which includes a cluster of M ~ 7.0 events in 1811-1812 and a number of similar events in the past millennium, is believed to result from recent fault reactivation that releases pre-stored strain energy in the crust. If so, this earthquake sequence is similar to aftershocks in that the rates of energy release should decay with time and the sequence of earthquakes will eventually end. We use simple physical analysis and numerical simulations to show that the current sequence of large earthquakes in the New Madrid fault zone is likely ending or has ended. Recognizing that mid-continental earthquakes have long aftershock sequences and complex spatiotemporal occurrences are critical to improve hazard assessments.

  19. Mixture of a seismicity model based on the rate-and-state friction and ETAS model

    NASA Astrophysics Data System (ADS)

    Iwata, T.

    2015-12-01

    Currently the ETAS model [Ogata, 1988, JASA] is considered to be a standard model of seismicity. However, because the ETAS model is a purely statistical one, the physics-based seismicity model derived from the rate-and-state friction (hereafter referred to as Dieterich model) [Dieterich, 1994, JGR] is frequently examined. However, the original version of the Dieterich model has several problems in the application to real earthquake sequences and therefore modifications have been conducted in previous studies. Iwata [2015, Pageoph] is one of such studies and shows that the Dieterich model is significantly improved as a result of the inclusion of the effect of secondary aftershocks (i.e., aftershocks caused by previous aftershocks). However, still the performance of the ETAS model is superior to that of the improved Dieterich model. For further improvement, the mixture of the Dieterich and ETAS models is examined in this study. To achieve the mixture, the seismicity rate is represented as a sum of the ETAS and Dieterich models of which weights are given as k and 1-k, respectively. This mixture model is applied to the aftershock sequences of the 1995 Kobe and 2004 Mid-Niigata sequences which have been analyzed in Iwata [2015]. Additionally, the sequence of the Matsushiro earthquake swarm in central Japan 1965-1970 is also analyzed. The value of k and parameters of the ETAS and Dieterich models are estimated by means of the maximum likelihood method, and the model performances are assessed on the basis of AIC. For the two aftershock sequences, the AIC values of the ETAS model are around 3-9 smaller (i.e., better) than those of the mixture model. On the contrary, for the Matsushiro swarm, the AIC value of the mixture model is 5.8 smaller than that of the ETAS model, indicating that the mixture of the two models results in significant improvement of the seismicity model.

  20. Zemmouri earthquake rupture zone (Mw 6.8, Algeria): Aftershocks sequence relocation and 3D velocity model

    NASA Astrophysics Data System (ADS)

    Ayadi, A.; Dorbath, C.; Ousadou, F.; Maouche, S.; Chikh, M.; Bounif, M. A.; Meghraoui, M.

    2008-09-01

    We analyze the aftershocks sequence of the Zemmouri thrust faulting earthquake (21 May 2003, Mw 6.8) located east of Algiers in the Tell Atlas. The seismic sequence located during ˜2 months following the mainshock is made of more than 1500 earthquakes and extends NE-SW along a ˜60-km fault rupture zone crossing the coastline. The earthquake relocation was performed using handpicked P and S phases located with the tomoDD in a detailed 3D velocity structure of the epicentral area. Contrasts between velocity patches seem to correlate with contacts between granitic-volcanic basement rocks and the sedimentary formation of the eastern Mitidja basin. The aftershock sequence exhibits at least three seismic clouds and a well-defined SE-dipping main fault geometry that reflects the complex rupture. The distribution of seismic events presents a clear contrast between a dense SW zone and a NE zone with scattered aftershocks. We observe that the mainshock locates between the SW and NE seismic zones; it also lies at the NNS-SSE contact that separates a basement block to the east and sedimentary formations to the west. The aftershock distribution also suggests fault bifurcation at the SW end of the fault rupture, with a 20-km-long ˜N 100° trending seismic cluster, with a vertical fault geometry parallel to the coastline juxtaposed. Another aftershock cloud may correspond to 75° SE dipping fault. The fault geometry and related SW branches may illustrate the interference between pre-existing fault structures and the SW rupture propagation. The rupture zone, related kinematics, and velocity contrasts obtained from the aftershocks distribution are in agreement with the coastal uplift and reflect the characteristics of an active zone controlled by convergent movements at a plate boundary.

  1. Applications of the predictability of the Coherent Noise Model to aftershock sequences

    NASA Astrophysics Data System (ADS)

    Christopoulos, Stavros-Richard; Sarlis, Nicholas

    2014-05-01

    A study [1] of the coherent noise model [2-4] in natural time [5-7] has shown that it exhibits predictability. Interestingly, one of the predictors suggested [1] for the coherent noise model can be generalized and applied to the case of (real) aftershock sequences. The results obtained [8] so far are beyond chance. Here, we apply this approach to several aftershock sequences of strong earthquakes with magnitudes Mw ≥6.9 in Indonesia, California and Greece, including the Mw9.2 earthquake that occurred on 26 December 2004 in Sumatra. References. [1] N. V. Sarlis and S.-R. G. Christopoulos, Predictability of the coherent-noise model and its applications, Physical Review E, 85, 051136, 2012. [2] M.E.J. Newman, Self-organized criticality, evolution and the fossil extinction record, Proc. R. Soc. London B, 263, 1605-1610, 1996. [3] M. E. J. Newman and K. Sneppen, Avalanches, scaling, and coherent noise, Phys. Rev. E, 54, 6226-6231, 1996. [4] K. Sneppen and M. Newman, Coherent noise, scale invariance and intermittency in large systems, Physica D, 110, 209 - 222. [5] P. Varotsos, N. Sarlis, and E. Skordas, Spatiotemporal complexity aspects on the interrelation between Seismic Electric Signals and seismicity, Practica of Athens Academy, 76, 294-321, 2001. [6] P.A. Varotsos, N.V. Sarlis, and E.S. Skordas, Long-range correlations in the electric signals that precede rupture, Phys. Rev. E, 66, 011902, 2002. [7] Varotsos P. A., Sarlis N. V. and Skordas E. S., Natural Time Analysis: The new view of time. Precursory Seismic Electric Signals, Earthquakes and other Complex Time-Series (Springer-Verlag, Berlin Heidelberg) 2011. [8] N. V. Sarlis and S.-R. G. Christopoulos, "Visualization of the significance of Receiver Operating Characteristics based on confidence ellipses", Computer Physics Communications, http://dx.doi.org/10.1016/j.cpc.2013.12.009

  2. Triggering of tsunamigenic aftershocks from large strike-slip earthquakes: Analysis of the November 2000 New Ireland earthquake sequence

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.; Parsons, Tom

    2005-10-01

    The November 2000 New Ireland earthquake sequence started with a Mw = 8.0 left-lateral main shock on 16 November and was followed by a series of aftershocks with primarily thrust mechanisms. The earthquake sequence was associated with a locally damaging tsunami on the islands of New Ireland and nearby New Britain, Bougainville, and Buka. Results from numerical tsunami-propagation models of the main shock and two of the largest thrust aftershocks (Mw > 7.0) indicate that the largest tsunami was caused by an aftershock located near the southeastern termination of the main shock, off the southern tip of New Ireland (Aftershock 1). Numerical modeling and tide gauge records at regional and far-field distances indicate that the main shock also generated tsunami waves. Large horizontal displacements associated with the main shock in regions of steep bathymetry accentuated tsunami generation for this event. Most of the damage on Bougainville and Buka Islands was caused by focusing and amplification of tsunami energy from a ridge wave between the source region and these islands. Modeling of changes in the Coulomb failure stress field caused by the main shock indicate that Aftershock 1 was likely triggered by static stress changes, provided the fault was on or synthetic to the New Britain interplate thrust as specified by the Harvard CMT mechanism. For other possible focal mechanisms of Aftershock 1 and the regional occurrence of thrust aftershocks in general, evidence for static stress change triggering is not as clear. Other triggering mechanisms such as changes in dynamic stress may also have been important. The 2000 New Ireland earthquake sequence provides evidence that tsunamis caused by thrust aftershocks can be triggered by large strike-slip earthquakes. Similar tectonic regimes that include offshore accommodation structures near large strike-slip faults are found in southern California, the Sea of Marmara, Turkey, along the Queen Charlotte fault in British Columbia

  3. Estimation of the parameters of ETAS models by Simulated Annealing.

    PubMed

    Lombardi, Anna Maria

    2015-02-12

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context.

  4. Estimation of the parameters of ETAS models by Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Lombardi, Anna Maria

    2015-02-01

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context.

  5. Estimation of the parameters of ETAS models by Simulated Annealing

    PubMed Central

    Lombardi, Anna Maria

    2015-01-01

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context. PMID:25673036

  6. How informative are slip models for aftershock forecasting?

    NASA Astrophysics Data System (ADS)

    Bach, Christoph; Hainzl, Sebastian

    2013-04-01

    Coulomb stress changes (ΔCFS) have been recognized as a major trigger mechanism for earthquakes, in particular aftershock distributions and the spatial patterns of ΔCFS are often found to be correlated. However, the Coulomb stress calculations are based on slip inversions and the receiver fault mechanisms which both contain large uncertainties. In particular, slip inversions are usually non-unique and often differ strongly for the same earthquakes. Here we want to address the information content of those inversions with respect to aftershock forecasting. Therefore we compare the slip models to randomized fractal slip models which are only constrained by fault information and moment magnitude. The uncertainty of the aftershock mechanisms is considered by using many receiver fault orientations, and by calculating ΔCFS at several depth layers. The stress change is then converted into an aftershock probability map utilizing a clock advance model. To estimate the information content of the slip models, we use an Epidemic Type Aftershock Sequence (ETAS) model approach introduced by Bach and Hainzl (2012), where the spatial probability density of direct aftershocks is related to the ΔCFS calculations. Besides the directly triggered aftershocks, this approach also takes secondary aftershock triggering into account. We quantify our results by calculating the information gain of the randomized slip models relative to the corresponding published slip model. As case studies, we investigate the aftershock sequences of several well-known main shocks such as 1992 Landers, 1999 Hector Mine, 2004 Parkfield, 2002 Denali. First results show a huge difference in the information content of slip models. For some of the cases up to 90% of the random slip models are found to perform better than the originally published model, for some other cases only few random models are found performing better than the published slip model.

  7. Reduced Aftershock Productivity in Regions with Known Slow Slip Events

    NASA Astrophysics Data System (ADS)

    Collins, G.; Mina, A.; Richardson, E.; McGuire, J. J.

    2013-12-01

    Reduced aftershock activity has been observed in areas with high rates of aseismic slip, such as transform fault zones and some subduction zones. Fault conditions that could explain both of these observations include a low effective normal stress regime and/or a high temperature, semi-brittle/plastic rheology. To further investigate the possible connection between areas of aseismic slip and reduced aftershock productivity, we compared the mainshock-aftershock sequences in subduction zones where aseismic slip transients have been observed to those of adjacent (along-strike) regions where no slow slip events have been detected. Using the Advanced National Seismic System (ANSS) catalog, we counted aftershocks that occurred within 100 km and 14 days of 112 M>=5.0 slab earthquake mainshocks from January 1980 - July 2013, including 90 since January 2000, inside observed regions of detected slow slip: south central Alaska, Cascadia, the Nicoya Peninsula (Costa Rica), Guerrero (Mexico), and the North Island of New Zealand. We also compiled aftershock counts from 97 mainshocks from areas adjacent to each of these regions using the same criteria and over the same time interval. Preliminary analysis of these two datasets shows an aftershock triggering exponent (alpha in the ETAS model) of approximately 0.8, consistent with previous studies of aftershocks in a variety of tectonic settings. Aftershock productivity for both datasets is less than that of continental earthquakes. Contrasting the two datasets, aftershock productivity inside slow slip regions is lower than in adjacent areas along the same subduction zone and is comparable to that of mid-ocean ridge transform faults.

  8. The 2016 Kumamoto-Oita earthquake sequence: aftershock seismicity gap and dynamic triggering in volcanic areas

    NASA Astrophysics Data System (ADS)

    Uchide, Takahiko; Horikawa, Haruo; Nakai, Misato; Matsushita, Reiken; Shigematsu, Norio; Ando, Ryosuke; Imanishi, Kazutoshi

    2016-11-01

    The 2016 Kumamoto-Oita earthquake sequence involving three large events ( M w ≥ 6) in the central Kyushu Island, southwest Japan, activated seismicities in two volcanic areas with unusual and puzzling spatial gaps after the largest earthquake ( M w 7.0) of April 16, 2016. We attempt to reveal the seismic process during the sequence by following seismological data analyses. Our hypocenter relocation result implies that the large events ruptured different faults of a complex fault system. A slip inversion analysis of the largest event indicates a large slip in the seismicity gap (Aso gap) in the caldera of Mt. Aso, which probably released accumulated stress and resulted in little aftershock production. We identified that the largest event dynamically triggered a mid-M6 event at Yufuin (80 km northeast of the epicenter), which is consistent with existence of the 20-km long zone where seismicity was activated and surface offset was observed. These findings will help us study the contribution of the identified complexity in fault geometries and the geotherm in the volcanic areas to the revealed seismic process and consequently improve our understanding of the seismo-volcano tectonics.[Figure not available: see fulltext.

  9. The 25 March 1993 Scotts Mills, Oregon, earthquake and aftershock sequence: Spatial distribution, focal mechanisms, and the mount angel fault

    USGS Publications Warehouse

    Thomas, G.C.; Crosson, R.S.; Carver, D.L.; Yelin, T.S.

    1996-01-01

    The 25 March 1993 ML = 5.7 crustal earthquake near Scotts Mills, Oregon, was the largest earthquake to occur in the Pacific Northwest in over a decade. The mainshock was located at 45.033?? N, 122.586?? W and at a depth of about 15.1 km, based on arrival time data from the short-period Pacific Northwest Seismograph Network. Beginning about 12 h after the mainshock, investigators from the U.S. Geological Survey deployed 22 digital seismographs to record aftershocks. Using data from the temporary and permanent stations, we analyzed a subset of 50 after-shocks with quality locations. Hypocenters of these aftershocks lie on a northwesttrending steeply dipping plane (strike 290 ?? 10??, dipping 60 ?? 5?? to the north-northeast), in agreement with the preferred slip plane of the mainshock focal mechanism solution (strike 294??, dipping 58?? to the north-northeast). The planar structure defined by the aftershock locations may be a southeast continuation of the Mount Angel Fault, a reverse fault identified from both surface and subsurface evidence. The mapped southeast extent of the Mount Angel Fault is located less than 10 km west of the Scotts Mills epicentral region. In addition, the mainshock focal mechanism solution, with a combination of reverse motion and right-lateral strike slip, has a geometry and sense of motion consistent with the Mount Angel Fault. While aftershock focal mechanisms are varied, P axes are consistently oriented in a subhorizontal north-south direction. This earthquake sequence, together with the geological and geophysical evidence for the Mount Angel Fault, suggests a significant crustal earthquake hazard for this region of northwest Oregon.

  10. On the adaptive daily forecasting of seismic aftershock hazard

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Hossein; Jalayer, Fatemeh; Asprone, Domenico; Lombardi, Anna Maria; Marzocchi, Warner; Prota, Andrea; Manfredi, Gaetano

    2013-04-01

    Post-earthquake ground motion hazard assessment is a fundamental initial step towards time-dependent seismic risk assessment for buildings in a post main-shock environment. Therefore, operative forecasting of seismic aftershock hazard forms a viable support basis for decision-making regarding search and rescue, inspection, repair, and re-occupation in a post main-shock environment. Arguably, an adaptive procedure for integrating the aftershock occurrence rate together with suitable ground motion prediction relations is key to Probabilistic Seismic Aftershock Hazard Assessment (PSAHA). In the short-term, the seismic hazard may vary significantly (Jordan et al., 2011), particularly after the occurrence of a high magnitude earthquake. Hence, PSAHA requires a reliable model that is able to track the time evolution of the earthquake occurrence rates together with suitable ground motion prediction relations. This work focuses on providing adaptive daily forecasts of the mean daily rate of exceeding various spectral acceleration values (the aftershock hazard). Two well-established earthquake occurrence models suitable for daily seismicity forecasts associated with the evolution of an aftershock sequence, namely, the modified Omori's aftershock model and the Epidemic Type Aftershock Sequence (ETAS) are adopted. The parameters of the modified Omori model are updated on a daily basis using Bayesian updating and based on the data provided by the ongoing aftershock sequence based on the methodology originally proposed by Jalayer et al. (2011). The Bayesian updating is used also to provide sequence-based parameter estimates for a given ground motion prediction model, i.e. the aftershock events in an ongoing sequence are exploited in order to update in an adaptive manner the parameters of an existing ground motion prediction model. As a numerical example, the mean daily rates of exceeding specific spectral acceleration values are estimated adaptively for the L'Aquila 2009

  11. The Hellenic Seismological Network of Crete (HSNC): validation and results of the 2013 aftershock sequences

    NASA Astrophysics Data System (ADS)

    Chatzopoulos, G.; Papadopoulos, I.; Vallianatos, F.

    2016-02-01

    The last century, the global urbanization has leaded the majority of population to move into big, metropolitan areas. Small areas on the Earth's surface are being built with tall buildings in areas close to seismogenic zones. Such an area of great importance is the Hellenic arc in Greece. Among the regions with high seismicity is Crete, located on the subduction zone of the Eastern Mediterranean plate underneath the Aegean plate. The Hellenic Seismological Network of Crete (HSNC) has been built to cover the need on continuous monitoring of the regional seismicity in the vicinity of the South Aegean Sea and Crete Island. In the present work, with the use of Z-map software the spatial variability of Magnitude of Completeness (Mc) is calculated from HSNC's manual analysis catalogue of events from the beginning of 2008 till the end of September 2015, supporting the good coverage of HSNC in the area surrounding Crete Island. Furthermore, we discuss the 2013 seismicity when two large earthquakes occurred in the vicinity of Crete Island. The two main shocks and their aftershock sequences have been relocated with the use of HYPOINVERSE earthquake location software. Finally, the quality of seismological stations is addressed using the standard PQLX software.

  12. Nucleotide sequences of immunoglobulin eta genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution

    SciTech Connect

    Sakoyama, Y.; Hong, K.J.; Byun, S.M.; Hisajima, H.; Ueda, S.; Yaoita, Y.; Hayashida, H.; Miyata, T.; Honjo, T.

    1987-02-01

    To determine the phylogenetic relationships among hominoids and the dates of their divergence, the complete nucleotide sequences of the constant region of the immunoglobulin eta-chain (C/sub eta1/) genes from chimpanzee and orangutan have been determined. These sequences were compared with the human eta-chain constant-region sequence. A molecular clock (silent molecular clock), measured by the degree of sequence divergence at the synonymous (silent) positions of protein-encoding regions, was introduced for the present study. From the comparison of nucleotide sequences of ..cap alpha../sub 1/-antitrypsin and ..beta..- and delta-globulin genes between humans and Old World monkeys, the silent molecular clock was calibrated: the mean evolutionary rate of silent substitution was determined to be 1.56 x 10/sup -9/ substitutions per site per year. Using the silent molecular clock, the mean divergence dates of chimpanzee and orangutan from the human lineage were estimated as 6.4 +/- 2.6 million years and 17.3 +/- 4.5 million years, respectively. It was also shown that the evolutionary rate of primate genes is considerably slower than those of other mammalian genes.

  13. Application of Subspace Detection to the 6 November 2011 M5.6 Prague, Oklahoma Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    McMahon, N. D.; Benz, H.; Johnson, C. E.; Aster, R. C.; McNamara, D. E.

    2015-12-01

    Subspace detection is a powerful tool for the identification of small seismic events. Subspace detectors improve upon single-event matched filtering techniques by using multiple orthogonal waveform templates whose linear combinations characterize a range of observed signals from previously identified earthquakes. Subspace detectors running on multiple stations can significantly increasing the number of locatable events, lowering the catalog's magnitude of completeness and thus providing extraordinary detail on the kinematics of the aftershock process. The 6 November 2011 M5.6 earthquake near Prague, Oklahoma is the largest earthquake instrumentally recorded in Oklahoma history and the largest earthquake resultant from deep wastewater injection. A M4.8 foreshock on 5 November 2011 and the M5.6 mainshock triggered tens of thousands of detectable aftershocks along a 20 km splay of the Wilzetta Fault Zone known as the Meeker-Prague fault. In response to this unprecedented earthquake, 21 temporary seismic stations were deployed surrounding the seismic activity. We utilized a catalog of 767 previously located aftershocks to construct subspace detectors for the 21 temporary and 10 closest permanent seismic stations. Subspace detection identified more than 500,000 new arrival-time observations, which associated into more than 20,000 locatable earthquakes. The associated earthquakes were relocated using the Bayesloc multiple-event locator, resulting in ~7,000 earthquakes with hypocentral uncertainties of less than 500 m. The relocated seismicity provides unique insight into the spatio-temporal evolution of the aftershock sequence along the Wilzetta Fault Zone and its associated structures. We find that the crystalline basement and overlying sedimentary Arbuckle formation accommodate the majority of aftershocks. While we observe aftershocks along the entire 20 km length of the Meeker-Prague fault, the vast majority of earthquakes were confined to a 9 km wide by 9 km deep

  14. Nontrivial decay of aftershock density with distance in Southern California

    NASA Astrophysics Data System (ADS)

    Moradpour, Javad; Hainzl, Sebastian; Davidsen, Jörn

    2014-07-01

    The decay of the aftershock density with distance plays an important role in the discussion of the dominant underlying cause of earthquake triggering. Here, we provide evidence that its form is more complicated than typically assumed and that in particular a transition in the power law decay occurs at length scales comparable to the thickness of the crust. This is supported by an analysis of a very recent high-resolution catalog for Southern California (SC) and surrogate catalogs generated by the Epidemic-Type Aftershock Sequence (ETAS) model, which take into account inhomogeneous background activity, short-term aftershock incompleteness, anisotropic triggering, and variations in the observational magnitude threshold. Our findings indicate specifically that the asymptotic decay in the aftershock density with distance is characterized by an exponent larger than 2, which is much bigger than the observed exponent of approximately 1.35 observed for shorter distances ranging from the main shock rupture length up to a length scale comparable to the thickness of the crust. This has also important consequences for time-dependent seismic hazard assessment based on the ETAS model.

  15. The 2009 L'Aquila sequence (Central Italy): fault system anatomy by aftershock distribution.

    NASA Astrophysics Data System (ADS)

    Chiaraluce, Lauro

    2010-05-01

    On April 6 (01:32 UTC) 2009 a destructive MW 6.13 earthquake struck the Abruzzi region in Central Italy, causing nearly 300 deaths, 40.000 homeless people and strong damage to the cultural heritage of the L'Aquila city and its province. Two strong earthquakes hit the same area in historical times (e.g. the 1461 and 1703 events), but the main fault that drives the extension in this portion of the Apennines was unknown. Seismic data was recorded at both permanent stations of the Centralised Italian National Seismic Network managed by the INGV and 45 temporary stations installed in the epicentral area together with the LGIT of Grenoble (Fr). The resulting geometry of the dense monitoring network allows us to gain very high resolution earthquake locations that we use to investigate the geometry of the activated fault system and to report on seismicity pattern and kinematics of the whole sequence. The mainshock was preceded by a foreshock sequence that activated the main fault plane during the three months before, while the largest foreshock (MW 4.08) occurred one week before (30th of March) nucleated on a antithetic (e.g. off-fault) segment. The distribution of the aftershocks defines a complex, 50 km long, NW-trending normal fault system, with seismicity nucleating within the upper 10-12 km of the crust. There is an exception of an event (MW 5.42) nucleating a couple of kilometers deeper that the 7th of April that activates a high angle normal fault antithetic to the main system. Its role is still unclear. We reconstruct the geometry of the two major SW-dipping normal faults forming a right lateral en-echelon system. The main fault (L'Aquila fault) is activated by the 6th of April mainshock unluckily located right below the city of L'Aquila. A 50°SW-dipping plane with planar geometry about 16 km long. The related seismicity interests the entire first 12 km of the upper crust from the surface. The ground surveys carried out soon after the occurrence of the earthquake

  16. Apply ETAS in Earthquake Early Warning - A case study of M6.0 South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Yin, L.; Heaton, T. H.

    2014-12-01

    Earthquake Early Warning (EEW) is a trade-off between time and accuracy. We aim to increase the alerting time without loosing its reliability. This can be achieved by using prior information to classify a pick to be a true or false event, then issue alerts immediately after the first trigger. Since earthquakes cluster in time and location, potential aftershock occurrences can be predicted using the Epidemic-Type Aftershock Sequence Model (ETAS). We show that by applying the prior information provided by ETAS in the Bayesian updating process of EEW, we can significantly improve the alerting time. As an example, the epicenter estimation for the aftershock events from the M6.0 South Napa Earthquake is performed using ETAS to illustrate the accuracy of aftershock prediction. For instance, in an aftershock sequence, the most triggers at the closest stations will turn out to be real earthquake. As a result, during the aftershock sequence of the South Napa earthquake, warnings can be issued after observations of only one or two stations.

  17. Spatial stress variations in the aftershock sequence following the 2008 M6 earthquake doublet in the South Iceland Seismic Zone

    NASA Astrophysics Data System (ADS)

    Hensch, M.; Árnadóttir, Th.; Lund, B.; Brandsdóttir, B.

    2012-04-01

    The South Iceland Seismic Zone (SISZ) is an approximately 80 km wide E-W transform zone, bridging the offset between the Eastern Volcanic Zone and the Hengill triple junction to the west. The plate motion is accommodated in the brittle crust by faulting on many N-S trending right-lateral strike-slip faults of 2-5 km separation. Major sequences of large earthquakes (M>6) has occurred repeatedly in the SISZ since the settlement in Iceland more than thousand years ago. On 29th May 2008, two M6 earthquakes hit the western part of the SISZ on two adjacent N-S faults within a few seconds. The intense aftershock sequence was recorded by the permanent Icelandic SIL network and a promptly installed temporary network of 11 portable seismometers in the source region. The network located thousands of aftershocks during the following days, illuminating a 12-17 km long region along both major fault ruptures as well as several smaller parallel faults along a diffuse E-W trending region west of the mainshock area without any preceding main rupture. This episode is suggested to be the continuation of an earthquake sequence which started with two M6.5 and several M5-6 events in June 2000. The time delay between the 2000 and 2008 events could be due to an inflation episode in Hengill during 1993-1998, that potentially locked N-S strike slip faults in the western part of the SISZ. Around 300 focal solutions for aftershocks have been derived by analyzing P-wave polarities, showing predominantly strike-slip movements with occasional normal faulting components (unstable P-axis direction), which suggests an extensional stress regime as their driving force. A subsequent stress inversion of four different aftershock clusters reveals slight variations of the directions of the average σ3 axes. While for both southern clusters, including the E-W cluster, the σ3 axes are rather elongated perpendicular to the overall plate spreading axis, they are more northerly trending for shallower clusters

  18. Detailed velocity ratio mapping during the aftershock sequence as a tool to monitor the fluid activity within the fault plane

    NASA Astrophysics Data System (ADS)

    Bachura, Martin; Fischer, Tomáš

    2016-11-01

    The rheological properties of Earth materials are expressed by their seismic velocities and VP /VS ratio, which is easily obtained by the Wadati method. Its double-difference version based on cross-correlated waveforms enables focusing on very local structures and allows tracking, monitoring and analysing the fluid activity along faults. We applied the method to three 2014 mainshock-aftershock sequences in the West Bohemia/Vogtland (Czech Republic) earthquake swarm area and found pronounced VP /VS variations in time and space for different clusters of events located on a steeply dipping fault zone at depths ranging from 7 to 11 km. Each cluster reflects the spatial distribution of earthquakes along the fault plane but also the temporal evolution of the activity. Low values of VP /VS ratio down to 1.59 ± 0.02 were identified in the deeper part of the fault zone whereas higher values up to 1.73 ± 0.01 were estimated for clusters located on a shallower segment of the fault. Temporally the low VP /VS values are associated with the early aftershocks, while the higher VP /VS ratios are related only to later aftershocks. We interpret this behaviour as a result of saturation of the focal zone by compressible fluids: in the beginning the mainshock and early aftershocks driven by over-pressured fluids increased the porosity due to opening the fluid pathways. This process was associated with a decrease of the velocity ratio. In later stages the pressure and porosity decreased and the velocity ratio recovered to levels of 1.73, typical for a Poissonian medium and Earth's crust.

  19. Quantifying the information content of slip models with regard to aftershock forecasting

    NASA Astrophysics Data System (ADS)

    Bach, C.; Hainzl, S.

    2012-12-01

    Coulomb stress changes (ΔCFS) have been recognized as a major trigger mechanism for earthquakes, in particular aftershock distributions and the spatial patterns of ΔCFS are often found to be correlated. However, the Coulomb stress calculations are based on slip inversions and the receiver fault mechanisms which both contain large uncertainties. In particular, slip inversions are usually non-unique and often differ strongly for the same earthquakes. Here we want to address the information content of those inversions with respect to aftershock forecasting. Therefore we compare the slip models to randomized fractal slip models which are only constrained by fault information and moment magnitude. The uncertainty of the aftershock mechanisms is considered by using many receiver fault orientations, and by calculating ΔCFS at several depth layers. The stress change is then converted into an aftershock probability map utilizing a clock advance model. To estimate the information content of the slip models, we use an Epidemic Type Aftershock Sequence (ETAS) model approach introduced by Bach and Hainzl (2012), where the spatial probability density of direct aftershocks is related to the ΔCFS calculations. Besides the directly triggered aftershocks, this approach also takes secondary aftershock triggering into account. We quantify our results by calculating the information gain of the randomized slip models relative to the corresponding published slip model. As case studies, we investigate the aftershock sequences of several well-known main shocks such as 1992 Landers, 1999 Hector Mine, 2002 Denali, 2003 Tokachi-Oki. First results show, that for most of the tested earthquake sequences up to 50% of the random slip models are found to perform better than the originally published model, for some of the tested sequences the information gain is lower than for the published slip model.

  20. Anomalous stress diffusion, Omori's law and Continuous Time Random Walk in the 2010 Efpalion aftershock sequence (Corinth rift, Greece)

    NASA Astrophysics Data System (ADS)

    Michas, Georgios; Vallianatos, Filippos; Karakostas, Vassilios; Papadimitriou, Eleftheria; Sammonds, Peter

    2014-05-01

    Efpalion aftershock sequence occurred in January 2010, when an M=5.5 earthquake was followed four days later by another strong event (M=5.4) and numerous aftershocks (Karakostas et al., 2012). This activity interrupted a 15 years period of low to moderate earthquake occurrence in Corinth rift, where the last major event was the 1995 Aigion earthquake (M=6.2). Coulomb stress analysis performed in previous studies (Karakostas et al., 2012; Sokos et al., 2012; Ganas et al., 2013) indicated that the second major event and most of the aftershocks were triggered due to stress transfer. The aftershocks production rate decays as a power-law with time according to the modified Omori law (Utsu et al., 1995) with an exponent larger than one for the first four days, while after the occurrence of the second strong event the exponent turns to unity. We consider the earthquake sequence as a point process in time and space and study its spatiotemporal evolution considering a Continuous Time Random Walk (CTRW) model with a joint probability density function of inter-event times and jumps between the successive earthquakes (Metzler and Klafter, 2000). Jump length distribution exhibits finite variance, whereas inter-event times scale as a q-generalized gamma distribution (Michas et al., 2013) with a long power-law tail. These properties are indicative of a subdiffusive process in terms of CTRW. Additionally, the mean square displacement of aftershocks is constant with time after the occurrence of the first event, while it changes to a power-law with exponent close to 0.15 after the second major event, illustrating a slow diffusive process. During the first four days aftershocks cluster around the epicentral area of the second major event, while after that and taking as a reference the second event, the aftershock zone is migrating slowly with time to the west near the epicentral area of the first event. This process is much slower from what would be expected from normal diffusion, a

  1. The 2012 August 11 MW 6.5, 6.4 Ahar-Varzghan earthquakes, NW Iran: aftershock sequence analysis and evidence for activity migration

    NASA Astrophysics Data System (ADS)

    Rezapour, Mehdi

    2016-02-01

    The Ahar-Varzghan doublet earthquakes with magnitudes MW 6.5 and 6.4 occurred on 2012 August 11 in northwest Iran and were followed by many aftershocks. In this paper, we analyse ˜5 months of aftershocks of these events. The Ahar-Varzghan earthquakes occurred along complex faults and provide a new constraint on the earthquake hazard in northwest Iran. The general pattern of relocated aftershocks defines a complex seismic zone covering an area of approximately 25 × 10 km2. The Ahar-Varzghan aftershock sequence shows a secondary activity which started on November 7, approximately 3 months after the main shocks, with a significant increase in activity, regarding both number of events and their magnitude. This stage was characterized by a seismic zone that propagated to the west of the main shocks. The catalogue of aftershocks for the doublet earthquake has a magnitude completeness of Mc 2.0. A below-average b-value for the Ahar-Varzghan sequence indicates a structural heterogeneity in the fault plane and the compressive stress state of the region. Relocated aftershocks occupy a broad zone clustering east-west with near-vertical dip which we interpret as the fault plane of the first of the doublet main shocks (MW 6.5). The dominant depth range of the aftershocks is from 3 to about 20 km, and the focal depths decrease toward the western part of the fault. The aftershock activity has its highest concentration in the eastern and middle parts of the active fault, and tapers off toward the western part of the active fault segment, indicating mainly a unilateral rupture toward west.

  2. Non extensive statistical physics properties of the 2003 (Mw6.2), Lefkada, Ionian island Greece, aftershock sequence

    NASA Astrophysics Data System (ADS)

    Vallianatos, F.; Karakostas, V.; Papadimitriou, E.

    2012-04-01

    On 14 August 2003, Lefkada Island (Central Ionian) was affected by an Mw=6.2 earthquake. Due to a dense temporary seismic network that operating immediately after the main shock occurrence, hundreds of aftershocks were recorded and located with high precision whereas relocation of the main shock and early strong aftershocks became also feasible. Thus, the spatio-temporal distribution of aftershocks onto the main and the neighboring fault segments was investigated in detail enabling the recognition of four distinctive seismicity clusters separated by less active patches. The aftershock spatiotemporal properties studied here using the concept of Non-Extensive Statistical Physics (NESP). The cumulative distribution functions of the inter-event times and the inter-event distances are estimated for the data set in each seismicity cluster and the analysis results to a value of the statistical thermodynamic qT and qD parameters for each cluster, where qT varies from 1.15 to 1.47 and qD from 0.5 to 0.77 for the interevent times and distances distributions respectively. These values confirm the complexity and non-additivity of the spatiotemporal evolution of seismicity and the usefulness of NESP in investigating such phenomena. The temporal structure is also discussed using the complementary to NESP approach of superstatistics, which is based on a superposition of ordinary local equilibrium statistical mechanics. The result indicates that the temporal evolution of the Lefkada aftershock sequence in clusters A, B and C governed by very low number of degrees of freedom while D is less organized seismicity structure with a much higher number of degrees of freedom. Acknowledgments. This work was supported in part by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled "Integrated understanding of Seismicity, using innovative Methodologies of Fracture mechanics along with Earthquake and non extensive

  3. A hypocentral version of the space-time ETAS model

    NASA Astrophysics Data System (ADS)

    Guo, Yicun; Zhuang, Jiancang; Zhou, Shiyong

    2015-10-01

    The space-time Epidemic-Type Aftershock Sequence (ETAS) model is extended by incorporating the depth component of earthquake hypocentres. The depths of the direct offspring produced by an earthquake are assumed to be independent of the epicentre locations and to follow a beta distribution, whose shape parameter is determined by the depth of the parent event. This new model is verified by applying it to the Southern California earthquake catalogue. The results show that the new model fits data better than the original epicentre ETAS model and that it provides the potential for modelling and forecasting seismicity with higher resolutions.

  4. Detection of the Wenchuan aftershock sequence using waveform correlation with a composite regional network

    SciTech Connect

    Slinkard, Megan; Heck, Stephen; Schaff, David; Bonal, Nedra; Daily, David; Young, Christopher; Richards, Paul

    2016-06-28

    Using template waveforms from aftershocks of the Wenchuan earthquake (12 May 2008, Ms 8.0) listed in a global bulletin and continuous data from eight regional stations, we detected more than 6000 additional events in the mainshock source region from 1 May to 12 August 2008. These new detections obey Omori’s law, extend the magnitude of completeness downward by 1.1 magnitude units, and lead to a more than fivefold increase in number of known aftershocks compared with the global bulletins published by the International Data Centre and the Inter national Seismological Centre. Moreover, we detected more M > 2 events than were listed by the Sichuan Seismograph Network. Several clusters of these detections were then relocated using the double-difference method, yielding locations that reduced travel-time residuals by a factor of 32 compared with the initial bulletin locations. Finally, our results suggest that using waveform correlation on a few regional stations can find aftershock events very effectively and locate them with precision.

  5. Detection of the Wenchuan aftershock sequence using waveform correlation with a composite regional network

    DOE PAGES

    Slinkard, Megan; Heck, Stephen; Schaff, David; ...

    2016-06-28

    Using template waveforms from aftershocks of the Wenchuan earthquake (12 May 2008, Ms 8.0) listed in a global bulletin and continuous data from eight regional stations, we detected more than 6000 additional events in the mainshock source region from 1 May to 12 August 2008. These new detections obey Omori’s law, extend the magnitude of completeness downward by 1.1 magnitude units, and lead to a more than fivefold increase in number of known aftershocks compared with the global bulletins published by the International Data Centre and the Inter national Seismological Centre. Moreover, we detected more M > 2 events thanmore » were listed by the Sichuan Seismograph Network. Several clusters of these detections were then relocated using the double-difference method, yielding locations that reduced travel-time residuals by a factor of 32 compared with the initial bulletin locations. Finally, our results suggest that using waveform correlation on a few regional stations can find aftershock events very effectively and locate them with precision.« less

  6. Properties of foreshocks and aftershocks of the nonconservative self-organized critical Olami-Feder-Christensen model.

    PubMed

    Helmstetter, Agnès; Hergarten, Stefan; Sornette, Didier

    2004-10-01

    Following Phys. Rev. Lett. 88, 238501 (2002)] who discovered aftershocks and foreshocks in the Olami-Feder-Christensen (OFC) discrete block-spring earthquake model, we investigate to what degree the simple toppling mechanism of this model is sufficient to account for the clustering of real seismicity in time and space. We find that synthetic catalogs generated by the OFC model share many properties of real seismicity at a qualitative level: Omori's law (aftershocks) and inverse Omori's law (foreshocks), increase of the number of aftershocks and of the aftershock zone size with the mainshock magnitude. There are, however, significant quantitative differences. The number of aftershocks per mainshock in the OFC model is smaller than in real seismicity, especially for large mainshocks. We find that foreshocks in the OFC catalogs can be in large part described by a simple model of triggered seismicity, such as the epidemic-type aftershock sequence (ETAS) model. But the properties of foreshocks in the OFC model depend on the mainshock magnitude, in qualitative agreement with the critical earthquake model and in disagreement with real seismicity and with the ETAS model.

  7. Properties of foreshocks and aftershocks of the nonconservative self-organized critical Olami-Feder-Christensen model

    SciTech Connect

    Helmstetter, Agnes; Hergarten, Stefan; Sornette, Didier

    2004-10-01

    Following Hergarten and Neugebauer [Phys. Rev. Lett. 88, 238501, 2002] who discovered aftershocks and foreshocks in the Olami-Feder-Christensen (OFC) discrete block-spring earthquake model, we investigate to what degree the simple toppling mechanism of this model is sufficient to account for the clustering of real seismicity in time and space. We find that synthetic catalogs generated by the OFC model share many properties of real seismicity at a qualitative level: Omori's law (aftershocks) and inverse Omori's law (foreshocks), increase of the number of aftershocks and of the aftershock zone size with the mainshock magnitude. There are, however, significant quantitative differences. The number of aftershocks per mainshock in the OFC model is smaller than in real seismicity, especially for large mainshocks. We find that foreshocks in the OFC catalogs can be in large part described by a simple model of triggered seismicity, such as the epidemic-type aftershock sequence (ETAS) model. But the properties of foreshocks in the OFC model depend on the mainshock magnitude, in qualitative agreement with the critical earthquake model and in disagreement with real seismicity and with the ETAS model.

  8. The Mw 5.8 Mineral, Virginia, earthquake of August 2011 and aftershock sequence: constraints on earthquake source parameters and fault geometry

    USGS Publications Warehouse

    McNamara, Daniel E.; Benz, H.M.; Herrmann, Robert B.; Bergman, Eric A.; Earle, Paul; Meltzer, Anne; Withers, Mitch; Chapman, Martin

    2014-01-01

    The Mw 5.8 earthquake of 23 August 2011 (17:51:04 UTC) (moment, M0 5.7×1017  N·m) occurred near Mineral, Virginia, within the central Virginia seismic zone and was felt by more people than any other earthquake in United States history. The U.S. Geological Survey (USGS) received 148,638 felt reports from 31 states and 4 Canadian provinces. The USGS PAGER system estimates as many as 120,000 people were exposed to shaking intensity levels of IV and greater, with approximately 10,000 exposed to shaking as high as intensity VIII. Both regional and teleseismic moment tensor solutions characterize the earthquake as a northeast‐striking reverse fault that nucleated at a depth of approximately 7±2  km. The distribution of reported macroseismic intensities is roughly ten times the area of a similarly sized earthquake in the western United States (Horton and Williams, 2012). Near‐source and far‐field damage reports, which extend as far away as Washington, D.C., (135 km away) and Baltimore, Maryland, (200 km away) are consistent with an earthquake of this size and depth in the eastern United States (EUS). Within the first few days following the earthquake, several government and academic institutions installed 36 portable seismograph stations in the epicentral region, making this among the best‐recorded aftershock sequences in the EUS. Based on modeling of these data, we provide a detailed description of the source parameters of the mainshock and analysis of the subsequent aftershock sequence for defining the fault geometry, area of rupture, and observations of the aftershock sequence magnitude–frequency and temporal distribution. The observed slope of the magnitude–frequency curve or b‐value for the aftershock sequence is consistent with previous EUS studies (b=0.75), suggesting that most of the accumulated strain was released by the mainshock. The aftershocks define a rupture that extends between approximately 2–8 km in depth and 8–10 km along

  9. An improved space-time ETAS model for inverting the rupture geometry from seismicity triggering

    NASA Astrophysics Data System (ADS)

    Guo, Yicun; Zhuang, Jiancang; Zhou, Shiyong

    2015-05-01

    This study incorporates the rupture geometry of big earthquakes in the formulation of the Epidemic-Type Aftershock Sequence (ETAS) model, which is a point process model widely applied in the study of spatiotemporal seismicity, rather than regarding every earthquake occurring at a point in space and time. We apply the new model to the catalog from Sichuan province, China, between 1990 and 2013, during which the Wenchuan Mw7.9 earthquake occurred in May 2008. Our results show that the modified model has better performance in both data fitting and aftershock simulation, confirming that the elliptic aftershock zone is caused by the superposition of the isotropic triggering effect from each patch of the rupture zone. Moreover, using the technique of stochastic reconstruction, we inverted the fault geometry and verified that direct aftershocks of the main shock more likely occur in the transitive parts from high-slip parts to low/median slip parts of the main shock fault area.

  10. The relationship between afterslip and aftershocks: a study based on Coulomb-Rate-and-State models

    NASA Astrophysics Data System (ADS)

    Cattania, Camilla; Hainzl, Sebastian; Roth, Frank; Wang, Lifeng

    2014-05-01

    The original Coulomb stress hypothesis, as well as most physics based models of aftershock sequences, assume that aftershocks are triggered by the instantaneous coseismic stress: in other words, the stress field is treated as stationary following the mainshock. However, several lines of evidence indicate that postseismic processes may affect aftershock triggering. The cumulative seismic moment of afterslip can be a significant fraction of the coseismic moment, generating comparable stress changes; moreover, afterslip has a similar time dependence as aftershocks, suggesting that the two processes may be linked. Aftershocks themselves contribute to the redistribution of stresses, and they can trigger their own aftershocks: spatial clustering, and the success of statistical models which include secondary triggering (ETAS) suggest that, even though aftershocks typically generate stresses orders of magnitude smaller than the mainshock, they are significant on a local scale. Our goal is to study the effect of postseismically induced stresses in the spatial and temporal distribution of aftershocks. We focus on the two processes described above (afterslip and secondary triggering), and do not consider other phenomena such as poroelastic response and viscoelastic relaxation. We study a period of 250 days following the mainshock, for two case studies: the Parkfield, Mw=6.0 and the Tohoku, Mw=9.0 earthquakes. We model the seismic response to stress changes using the Dieterich constitutive law, derived from a population of faults governed by Rate-and-State dependent friction; we also consider uncertainties in the input stress field using a Monte Carlo technique. We find that modeling secondary triggering systematically improves model performance; afterslip has a less significant overall impact on the model, but in both cases studies we observe clusters of seismicity which, due to their location relative to the coseismic and postseismic slip, are better explained when afterslip

  11. etas_solve: A robust program to estimate the ETAS parameters

    NASA Astrophysics Data System (ADS)

    Yagi, Y.; Kasahara, A.

    2015-12-01

    The epidemic-type aftershock sequence (ETAS) model introduced by Ogata (1988) has been widely used to quantitatively describe seismicity (e.g. Ogata, 1992; Llenos et al., 2009). However, only a few programs for estimation of the ETAS parameters are publicly available, and it is difficult to automatically apply some of them to observed data due to initial value dependence (e.g. Ogata, 2006). A robust ETAS estimation program is required to meet the recent enhancement of earthquake catalogs. In this study, we developed a new program, etas_solve, that is based on Newton's method and calculates exact gradient and Hessian by using the automatic differentiation technique (Griewank, 1989). The program also supports auxiliary window in time and magnitude (Wang et al., 2010).To demonstrate robustness of the developed program, we tested the dependence of estimated parameters on the choice of initial value by running the program from 1,024 randomly chosen initial values, and then compared the results with that of SAPP (Ogata 2006). We used aftershock data of 26th July 2003 earthquake of M6.2 at the northern Miyagi japan, which is shipped with SAPP, as a testing data. We found that estimation values with etas_solve were independent of the initial value for the testing data, while that with SAPP were varied with the initial value. Although there was initial value dependence in the SAPP's results, the estimated values by SAPP with small (≤10-5) gradient coincided with the solution by etas_solve. etas_solve took longer computation time per iteration than SAPP due to the exact Hessian calculation, but total execution time was comparable to that of SAPP since less number of iterations for convergence was required. In addition, etas_solve was faster than SAPP on multicore machines (around 8-fold speed up with a 16 core machine) since etas_solve is parallelized by OpenMP.etas_solve is written in Fortran and distributed under GNU General Public License at https

  12. Evidence for static stress changes triggering the 1999 eruption of Cerro Negro Volcano, Nicaragua and regional aftershock sequences

    NASA Astrophysics Data System (ADS)

    Díez, M.; La Femina, P. C.; Connor, C. B.; Strauch, W.; Tenorio, V.

    2005-02-01

    Remarkable evidence of coupling between tectonic and magmatic events emerges from investigation of three tectonic earthquakes, aftershock sequences and eruption of Cerro Negro volcano, Nicaragua in 1999. Here, we explain this coupling through static stress changes following three Mw 5.2 earthquakes. We use focal mechanism solutions to estimate fault system geometry and magnitude of slip from these events, which are then used to calculate the change in minimum horizontal principal stress (σ3) for the region and the change in Coulomb failure stress on optimally oriented fault planes. Results of these simulations indicate that σ3 was reduced by ~0.08 MPa and that Coulomb failure stress was raised by 0.001 to 0.2 MPa in the region. A Kolmogorov-Smirnov test demonstrates spatial correlation of Coulomb failure stress changes and triggered seismicity and volcanism, and suggests that these small changes in static stress can trigger subsequent geophysical events under appropriate circumstances.

  13. Diffusion of epicenters of earthquake aftershocks, Omori's law, and generalized continuous-time random walk models.

    PubMed

    Helmstetter, A; Sornette, D

    2002-12-01

    The epidemic-type aftershock sequence (ETAS) model is a simple stochastic process modeling seismicity, based on the two best-established empirical laws, the Omori law (power-law decay approximately 1/t(1+theta) of seismicity after an earthquake) and Gutenberg-Richter law (power-law distribution of earthquake energies). In order to describe also the space distribution of seismicity, we use in addition a power-law distribution approximately 1/r(1+mu) of distances between triggered and triggering earthquakes. The ETAS model has been studied for the last two decades to model real seismicity catalogs and to obtain short-term probabilistic forecasts. Here, we present a mapping between the ETAS model and a class of CTRW (continuous time random walk) models, based on the identification of their corresponding master equations. This mapping allows us to use the wealth of results previously obtained on anomalous diffusion of CTRW. After translating into the relevant variable for the ETAS model, we provide a classification of the different regimes of diffusion of seismic activity triggered by a mainshock. Specifically, we derive the relation between the average distance between aftershocks and the mainshock as a function of the time from the mainshock and of the joint probability distribution of the times and locations of the aftershocks. The different regimes are fully characterized by the two exponents theta and mu. Our predictions are checked by careful numerical simulations. We stress the distinction between the "bare" Omori law describing the seismic rate activated directly by a mainshock and the "renormalized" Omori law taking into account all possible cascades from mainshocks to aftershocks of aftershock of aftershock, and so on. In particular, we predict that seismic diffusion or subdiffusion occurs and should be observable only when the observed Omori exponent is less than 1, because this signals the operation of the renormalization of the bare Omori law, also at the

  14. Evidence Against the New Madrid Long-Lived Aftershock Hypothesis

    NASA Astrophysics Data System (ADS)

    Page, M. T.; Hough, S. E.

    2014-12-01

    It has been suggested that continuing seismicity in the New Madrid, central U.S. region is primarily composed of the continuing long-lived aftershock sequence of the 1811-1812 sequence, and thus cannot be taken as an indication of present-day strain accrual in the region. We examine historical and instrumental seismicity in the New Madrid region to determine if such a model is feasible given 1) the observed protracted nature of past New Madrid sequences, with multiple mainshocks with apparently similar magnitudes; 2) historical rates of M≥6 earthquakes after the initial activity in 1811-1812; and 3) the modern seismicity rate in the region. We use ETAS modeling to search for sub-critical sets of direct Omori parameters that are consistent with all of these datasets, given a realistic consideration of their uncertainties. High aftershock productivity is required both to match the observation of multiple mainshocks and to explain the modern level of activity as aftershocks; synthetic sequences consistent with these observations substantially overpredict the number of events of M≥6 that were observed in the past 200 years. Our results imply that ongoing background seismicity in the New Madrid region is driven by ongoing strain accrual processes and that, despite low deformation rates, seismic activity in the zone is not decaying with time.

  15. Evidence that Stress Amplitude Does Not Affect the Temporal Distribution of Aftershocks

    NASA Astrophysics Data System (ADS)

    Felzer, K. R.

    2005-12-01

    Most physical aftershock triggering models, including the rate and state friction model of Dieterich (1994), the stress corrosion model (see discussion in Gomberg, 2001) and other accelerating failure models predict that larger stress changes on a fault will lead to an aftershocks that happens more quickly (larger clock advance), all else equal. Thus as stress change amplitude decreases with distance from the mainshock, there is an expected shift in the aftershock distribution toward longer time delays. This effect was formalized by Dieterich (1994) as an increase of the modified Omori Law c value (N(t) = A/(t+c)p where t = time, N(t) = aftershock rate, and A, p, and c are constants). Jones and Hauksson (1998), however, found no change in c value with distance after the 1992 MW 7.3 Landers earthquake. The assumption that the aftershock temporal distribution is independent of distance is also made in ETAS (Epidemic Triggering Aftershock Sequence) aftershock simulations (Ogata, 1998; Helmstetter, 2002) without adverse affect on fitting real data. Here we verify the independence of stress change and aftershock temporal distribution using a data set of 33 M 5-6 mainshocks from throughout California. These mainshocks are large enough to produce a significant number of aftershocks in the near and far field, but small enough to be frequent and thus provide good statistical sampling. Our data verifies that the temporal distribution of aftershocks is independent of stress change amplitude. We suggest that the most likely explanation for this observation is that the timing of each fault that participates in an aftershock sequence is independent of the amplitude of the stress that triggers it. In this case aftershock decay with distance from the mainshock cannot be caused by smaller clock advances on lesser-stressed faults, as in the Dieterich (1994) model, but rather by a stress amplitude dependent probability that a fault will be clock advanced at all. In future work we

  16. Integrated Seismicity Model to Detect Pairs of Possible Interdependent Earthquakes and Its Application to Aftershocks of the 2011 Tohoku-Oki Earthquake and Sequence of the 2014 Kermadec and Rat Islands Earthquakes

    NASA Astrophysics Data System (ADS)

    Miyazawa, M.; Tamura, R.

    2015-12-01

    We introduce an integrated seismicity model to stochastically evaluate the time intervals of consecutive earthquakes at global scales, making it possible to detect a pair of earthquakes that are remotely located and possibly related to each other. The model includes seismicity in non-overlapping areas and comprehensively explains the seismicity on the basis of point process models, which include the stationary Poisson model, the aftershock decay model following Omori-Utsu's law, and/or the epidemic-type aftershock sequence (ETAS) model. By use of this model, we examine the possibility of remote triggering of the 2011 M6.4 eastern Shizuoka earthquake in the vicinity of Mt. Fuji that occurred 4 days after the Mw9.0 Tohoku-Oki earthquake and 4 minutes after the M6.2 off-Fukushima earthquake that located about 400 km away, and that of the 2014 Mw7.9 Rat Islands earthquake that occurred within one hour after the Mw6.7 Kermadec earthquake that located about 9,000 km away and followed two large (Mw6.9, 6.5) earthquakes in the region. Both target earthquakes occurred during the passage of surface waves propagating from the previous large events. We estimated probability that the time interval is shorter than that between consecutive events and obtained dynamic stress changes on the faults. The results indicate that the M6.4 eastern Shizuoka event may be rather triggered by the static stress changes from the Tohoku-Oki earthquake and that the Mw7.9 Rat Islands event may have been remotely triggered by the Kermadec events possibly via cyclic fatigue.

  17. A Nonparametric Bayesian Approach to Seismic Hazard Modeling Using the ETAS Framework

    NASA Astrophysics Data System (ADS)

    Ross, G.

    2015-12-01

    The epidemic-type aftershock sequence (ETAS) model is one of the most popular tools for modeling seismicity and quantifying risk in earthquake-prone regions. Under the ETAS model, the occurrence times of earthquakes are treated as a self-exciting Poisson process where each earthquake briefly increases the probability of subsequent earthquakes occurring soon afterwards, which captures the fact that large mainshocks tend to produce long sequences of aftershocks. A triggering kernel controls the amount by which the probability increases based on the magnitude of each earthquake, and the rate at which it then decays over time. This triggering kernel is usually chosen heuristically, to match the parametric form of the modified Omori law for aftershock decay. However recent work has questioned whether this is an appropriate choice. Since the choice of kernel has a large impact on the predictions made by the ETAS model, avoiding misspecification is crucially important. We present a novel nonparametric version of ETAS which avoids making parametric assumptions, and instead learns the correct specification from the data itself. Our approach is based on the Dirichlet process, which is a modern class of Bayesian prior distribution which allows for efficient inference over an infinite dimensional space of functions. We show how our nonparametric ETAS model can be fit to data, and present results demonstrating that the fit is greatly improved compared to the standard parametric specification. Additionally, we explain how our model can be used to perform probabilistic declustering of earthquake catalogs, to classify earthquakes as being either aftershocks or mainshocks. and to learn the causal relations between pairs of earthquakes.

  18. Typical Scenario of Preparation, Implementation, and Aftershock Sequence of a Large Earthquake

    NASA Astrophysics Data System (ADS)

    Rodkin, Mikhail

    2016-04-01

    We have tried here to construct and examine the typical scenario of a large earthquake occurrence. The Harvard seismic moment GCMT catalog was used to construct the large earthquake generalized space-time vicinity (LEGV) and to investigate the seismicity behavior in LEGV. LEGV was composed of earthquakes falling into the zone of influence of any of the considerable number (100, 300, or 1,000) of largest earthquakes. The LEGV construction is aimed to enlarge the available statistics, diminish a strong random component, and to reveal in result the typical features of pre- and post-shock seismic activity in more detail. In result of the LEGV construction the character of fore- and aftershock cascades was examined in more detail than it was possible without of the use of the LEGV approach. It was shown also that the mean earthquake magnitude tends to increase, and the b-values, mean mb/mw ratios, apparent stress values, and mean depth tend to decrease. Amplitudes of all these anomalies increase with an approach to a moment of the generalized large earthquake (GLE) as a logarithm of time interval from GLE occurrence. Most of the discussed anomalies agree well with a common scenario of development of instability. Besides of such precursors of common character, one earthquake-specific precursor was found. The revealed decrease of mean earthquake depth during large earthquake preparation testifies probably for the deep fluid involvement in the process. The revealed in LEGV typical features of development of shear instability agree well with results obtained in laboratory acoustic emission (AE) study. Majority of the revealed anomalies appear to have a secondary character and are connected mainly with an increase in a mean earthquake magnitude in LEGV. The mean magnitude increase was shown to be connected mainly with a decrease of a portion of moderate size events (Mw 5.0 - 5.5) in a closer GLE vicinity. We believe that this deficit of moderate size events hardly can be

  19. April 25, 2015, Gorkha Earthquake, Nepal and Sequence of Aftershocks: Key Lessons

    NASA Astrophysics Data System (ADS)

    Guragain, R.; Dixit, A. M.; Shrestha, S. N.

    2015-12-01

    The Gorkha Earthquake of M7.8 hit Nepal on April 25, 2015 at 11:56 am local time. The epicenter of this earthquake was Barpak, Gorkha, 80 km northwest of Kathmandu Valley. The main shock was followed by hundreds of aftershocks including M6.6 and M6.7 within 48 hours and M7.3 on May 12, 2015. According to the Government of Nepal, a total of 8,686 people lost their lives, 16,808 people injured, over 500,000 buildings completely collapsed and more than 250,000 building partially damaged. The National Society for Earthquake Technology - Nepal (NSET), a not-for-profit civil society organization that has been focused on earthquake risk reduction in Nepal for past 21 years, conducted various activities to support people and the government in responding to the earthquake disaster. The activities included: i) assisting people and critical facility institutions to conduct rapid visual building damage assessment including the training; ii) information campaign to provide proper information regarding earthquake safety; iii) support rescue organizations on search and rescue operations; and iv) provide technical support to common people on repair, retrofit of damaged houses. NSET is also involved in carrying out studies related to earthquake damage, geotechnical problems, and causes of building damages. Additionally, NSET has done post-earthquake detail damage assessment of buildings throughout the affected areas. Prior to the earthquake, NSET has been working with several institutions to improve seismic performance of school buildings, private residential houses, and other critical structures. Such activities implemented during the past decade have shown the effectiveness of risk reduction. Retrofitted school buildings performed very well during the earthquake. Preparedness activities implemented at community levels have helped communities to respond immediately and save lives. Higher level of earthquake awareness achieved including safe behavior, better understanding of

  20. Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence

    USGS Publications Warehouse

    Hardebeck, J.L.; Michael, A.J.

    2006-01-01

    We present a new focal mechanism stress inversion technique to produce regional-scale models of stress orientation containing the minimum complexity necessary to fit the data. Current practice is to divide a region into small subareas and to independently fit a stress tensor to the focal mechanisms of each subarea. This procedure may lead to apparent spatial variability that is actually an artifact of overfitting noisy data or nonuniquely fitting data that does not completely constrain the stress tensor. To remove these artifacts while retaining any stress variations that are strongly required by the data, we devise a damped inversion method to simultaneously invert for stress in all subareas while minimizing the difference in stress between adjacent subareas. This method is conceptually similar to other geophysical inverse techniques that incorporate damping, such as seismic tomography. In checkerboard tests, the damped inversion removes the stress rotation artifacts exhibited by an undamped inversion, while resolving sharper true stress rotations than a simple smoothed model or a moving-window inversion. We show an example of a spatially damped stress field for southern California. The methodology can also be used to study temporal stress changes, and an example for the Coalinga, California, aftershock sequence is shown. We recommend use of the damped inversion technique for any study examining spatial or temporal variations in the stress field.

  1. A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece)

    NASA Astrophysics Data System (ADS)

    Vallianatos, Filippos; Michas, Giorgos; Papadakis, Giorgos; Sammonds, Peter

    2012-06-01

    In the present study, the spatiotemporal properties of the Aigion earthquake (15 June 1995) aftershock sequence are being studied using the concept of non-extensive statistical physics (NESP). The cumulative distribution functions of the inter-event times and the inter-event distances are being estimated for the data set which is assumed to be complete and the analysis yielded the thermodynamic q parameter to be qT = 1.58 and q r = 0.53 for the two distributions, respectively. The results fit rather well to the inter-event distances and times distributions, implying the complexity of the spatiotemporal properties of seismicity and the usefulness of NESP in investigating such phenomena. The temporal structure is also being discussed using the complementary to NESP approach of superstatistics, which is based on a superposition of ordinary local equilibrium statistical mechanics. The result indicates that very low degrees of freedom describe the temporal evolution of the Aigion earthquake aftershock seismicity.

  2. Preliminary report on aftershock sequence for earthquake of January 31, 1986, near Painesville, Ohio (time period: 2/1/86-2/10/86)

    USGS Publications Warehouse

    Borcherdt, R. D.

    1986-01-01

    A ten-station array of broad-band digital instrumentation (GEOS) was deployed by the U. S. Geological Survey with partial support provided by Electric Power Research Institute to record the aftershock sequence of the moderate (mb ~ 4.9) earthquake that occurred on January 31, 1986 (16:46:43 UTC) near Painesville, Ohio. The occurrence of the event has raised questions concerning possible contributory factors to the occurrence of the event and questions concerning the character of earthquake-induced high-frequency ground motions in the area. To aid in the timely resolution of the implications of some of these questions, this preliminary report provides copies of the ground motion time-histories and corresponding spectra for the six identified aftershocks and two events, thought to be quarry blasts, recorded as of February 10, 1986. Recording station locations and epicenter locations based on two preliminary estimates of local seismic velocity structure are provided.

  3. Estimating ETAS: The effects of truncation, missing data, and model assumptions

    NASA Astrophysics Data System (ADS)

    Seif, Stefanie; Mignan, Arnaud; Zechar, Jeremy Douglas; Werner, Maximilian Jonas; Wiemer, Stefan

    2017-01-01

    The Epidemic-Type Aftershock Sequence (ETAS) model is widely used to describe the occurrence of earthquakes in space and time, but there has been little discussion dedicated to the limits of, and influences on, its estimation. Among the possible influences we emphasize in this article the effect of the cutoff magnitude, Mcut, above which parameters are estimated; the finite length of earthquake catalogs; and missing data (e.g., during lively aftershock sequences). We analyze catalogs from Southern California and Italy and find that some parameters vary as a function of Mcut due to changing sample size (which affects, e.g., Omori's c constant) or an intrinsic dependence on Mcut (as Mcut increases, absolute productivity and background rate decrease). We also explore the influence of another form of truncation—the finite catalog length—that can bias estimators of the branching ratio. Being also a function of Omori's p value, the true branching ratio is underestimated by 45% to 5% for 1.05 < p < 1.2. Finite sample size affects the variation of the branching ratio estimates. Moreover, we investigate the effect of missing aftershocks and find that the ETAS productivity parameters (α and K0) and the Omori's c and p values are significantly changed for Mcut < 3.5. We further find that conventional estimation errors for these parameters, inferred from simulations that do not account for aftershock incompleteness, are underestimated by, on average, a factor of 8.

  4. Estimating ETAS: the effects of truncation, missing data, and model assumptions

    NASA Astrophysics Data System (ADS)

    Seif, Stefanie; Mignan, Arnaud; Zechar, Jeremy; Werner, Maximilian; Wiemer, Stefan

    2016-04-01

    The Epidemic-Type Aftershock Sequence (ETAS) model is widely used to describe the occurrence of earthquakes in space and time, but there has been little discussion of the limits of, and influences on, its estimation. What has been established is that ETAS parameter estimates are influenced by missing data (e.g., earthquakes are not reliably detected during lively aftershock sequences) and by simplifying assumptions (e.g., that aftershocks are isotropically distributed). In this article, we investigate the effect of truncation: how do parameter estimates depend on the cut-off magnitude, Mcut, above which parameters are estimated? We analyze catalogs from southern California and Italy and find that parameter variations as a function of Mcut are caused by (i) changing sample size (which affects e.g. Omori's cconstant) or (ii) an intrinsic dependence on Mcut (as Mcut increases, absolute productivity and background rate decrease). We also explore the influence of another form of truncation - the finite catalog length - that can bias estimators of the branching ratio. Being also a function of Omori's p-value, the true branching ratio is underestimated by 45% to 5% for 1.05< p <1.2. Finite sample size affects the variation of the branching ratio estimates. Moreover, we investigate the effect of missing aftershocks and find that the ETAS productivity parameters (α and K0) and the Omoris c-value are significantly changed only for low Mcut=2.5. We further find that conventional estimation errors for these parameters, inferred from simulations that do not account for aftershock incompleteness, are underestimated by, on average, a factor of six.

  5. An improved space-time ETAS model for inverting the rupture geometry from seismicity triggering

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Zhuang, J.; Zhou, S.; Gao, Y.

    2015-12-01

    This study incorporates the rupture geometry of big earthquakes in the formulation of theEpidemic-Type Aftershock Sequence (ETAS) model, which is a point process model widely applied in thestudy of spatiotemporal seismicity, rather than regarding every earthquake occurring at a point in space andtime. We apply the new model to the catalog from Sichuan province, China, between 1990 and 2013, duringwhich the Wenchuan Mw7.9 earthquake occurred in May 2008. Our results show that the modified modelhas better performance in both data fitting and aftershock simulation, confirming that the elliptic aftershockzone is caused by the superposition of the isotropic triggering effect from each patch of the rupture zone.Moreover, using the technique of stochastic reconstruction, we inverted the fault geometry and verifiedthat direct aftershocks of the main shock more likely occur in the transitive parts from high-slip parts tolow/median slip parts of the main shock fault area.

  6. Some statistical features of the aftershock temporal behavior after the M7.4 Izmit earthquake of august 17, 1999 in Turkey

    NASA Astrophysics Data System (ADS)

    Gospodinov, D.; Fajtin, H.; Rangelov, B.; Marekova, E.

    2009-04-01

    An earthquake of magnitude Mw=7.4 struck 8 km. southeast of Izmit, Turkey at 3:02 AM local time on August 17, 1999. The earthquake occurred on one of the world's longest and best studied strike-slip (horizontal motion) faults - the east-west trending North Anatolian fault. Seismologists are not able to predict the timing and sizes of individual aftershocks but stochastic modeling allows determinationof probabilities for aftershocks and larger mainshocks duringintervals following the mainshock. The most widely applied stochastic model to depict aftershocks temporal distribution is the non- homogenous Poisson process with a decaying intensity, which follows the Modified Omori Formula (MOF) (Utsu, 1961). A more complex model, considering the triggering potential of each aftershock was developed by Ogata (1988) and it was named Epidemic Type Aftershock Sequence (ETAS) model. Gospodinov and Rotondi (2006) elaborated a Restricted Epidemic Type Aftershock Sequence (RETAS) model. The latter follows the general idea that only aftershocks stronger than some cut-off magnitude possess the capability to induce secondary aftershock activity. In this work we shall consider the Restricted Epidemic Type Aftershock Sequence (RETAS) model, for which the conditional intensity function turns out to be ‘ K0eα(Mi-M0)- λ (t|Ht) = + (t- ti + c)p ti < t Mi ≥ Mth (1) Here the summation occurs for all aftershocks with magnitude bigger than or equal to Mth, which took place before time. Leaving Mth to take all possible values, one can examine all RETAS model versions between the MOF and the ETAS model on the basis of the Akaike Information Criterion AIC (Akaike, 1974) AIC = - 2max log L+ 2k (2) where k is the number of parameters used in the model and logL is the logarithm of the likelihood function. Then for the model providing the best fit, we choose the one with the smallest AIC value. The purpose of this paper is to verify versions of the RETAS model (including the MOF and the

  7. Space time ETAS models and an improved extension

    NASA Astrophysics Data System (ADS)

    Ogata, Yosihiko; Zhuang, Jiancang

    2006-02-01

    For sensitive detection of anomalous seismicity such as quiescence and activation in a given region, we need a suitable statistical reference model that represents a normal seismic activity in the region. The regional occurrence rate of the earthquakes is modeled as a function of previous activity, the specific form of which is based on empirical laws in time and space such as the modified Omori formula and the Utsu-Seki scaling law of aftershock area against magnitude, respectively. This manuscript summarizes the development of the epidemic type aftershock sequence (ETAS) model and proposes an extended version of the best fitted space-time model that was suggested in Ogata [Ogata, Y., 1998. Space-time point-process models for earthquake occurrences, Ann. Inst. Statist. Math., 50: 379-402.]. This model indicates significantly better fit to seismicity in various regions in and around Japan.

  8. Phylogenetic relations of humans and African apes from DNA sequences in the Psi eta-globin region

    SciTech Connect

    Miyamoto, M.M.; Slightom, J.L.; Goodman, M.

    1987-10-16

    Sequences from the upstream and downstream flanking DNA regions of the Psi eta-globin locus in Pan troglodytes (common chimpanzee), Gorilla gorilla (gorilla), and Pongo pygmaeus (orangutan, the closest living relative to Homo, Pan, and Gorilla) provided further data for evaluating the phylogenetic relations of humans and African apes. These newly sequenced orthologs (an additional 4.9 kilobase pairs (kbp) for each species) were combined with published Psi eta-gene sequences and then compared to the same orthologous stretch (a continuous 7.1-kbp region) available for humans. Phylogenetic analysis of these nucleotide sequences by the parsimony method indicated (i) that human and chimpanzee are more closely related to each other than either is to gorilla and (ii) that the slowdown in the rate of sequence evolution evident in higher primates is especially pronounced in humans. These results indicate that features unique to African apes (but not to humans) are primitive and that even local molecular clocks should be applied with caution.

  9. Source Process of the Mw 5.0 Au Sable Forks, New York, Earthquake Sequence from Local Aftershock Monitoring Network Data

    NASA Astrophysics Data System (ADS)

    Kim, W.; Seeber, L.; Armbruster, J. G.

    2002-12-01

    On April 20, 2002, a Mw 5 earthquake occurred near the town of Au Sable Forks, northeastern Adirondacks, New York. The quake caused moderate damage (MMI VII) around the epicentral area and it is well recorded by over 50 broadband stations in the distance ranges of 70 to 2000 km in the Eastern North America. Regional broadband waveform data are used to determine source mechanism and focal depth using moment tensor inversion technique. Source mechanism indicates predominantly thrust faulting along 45° dipping fault plane striking due South. The mainshock is followed by at least three strong aftershocks with local magnitude (ML) greater than 3 and about 70 aftershocks are detected and located in the first three months by a 12-station portable seismographic network. The aftershock distribution clearly delineate the mainshock rupture to the westerly dipping fault plane at a depth of 11 to 12 km. Preliminary analysis of the aftershock waveform data indicates that orientation of the P-axis rotated 90° from that of the mainshock, suggesting a complex source process of the earthquake sequence. We achieved an important milestone in monitoring earthquakes and evaluating their hazards through rapid cross-border (Canada-US) and cross-regional (Central US-Northeastern US) collaborative efforts. Hence, staff at Instrument Software Technology, Inc. near the epicentral area joined Lamont-Doherty staff and deployed the first portable station in the epicentral area; CERI dispatched two of their technical staff to the epicentral area with four accelerometers and a broadband seismograph; the IRIS/PASSCAL facility shipped three digital seismographs and ancillary equipment within one day of the request; the POLARIS Consortium, Canada sent a field crew of three with a near real-time, satellite telemetry based earthquake monitoring system. The Polaris station, KSVO, powered by a solar panel and batteries, was already transmitting data to the central Hub in London, Ontario, Canada within

  10. Operational Earthquake Forecasting of Aftershocks for New England

    NASA Astrophysics Data System (ADS)

    Ebel, J.; Fadugba, O. I.

    2015-12-01

    Although the forecasting of mainshocks is not possible, recent research demonstrates that probabilistic forecasts of expected aftershock activity following moderate and strong earthquakes is possible. Previous work has shown that aftershock sequences in intraplate regions behave similarly to those in California, and thus the operational aftershocks forecasting methods that are currently employed in California can be adopted for use in areas of the eastern U.S. such as New England. In our application, immediately after a felt earthquake in New England, a forecast of expected aftershock activity for the next 7 days will be generated based on a generic aftershock activity model. Approximately 24 hours after the mainshock, the parameters of the aftershock model will be updated using the observed aftershock activity observed to that point in time, and a new forecast of expected aftershock activity for the next 7 days will be issued. The forecast will estimate the average number of weak, felt aftershocks and the average expected number of aftershocks based on the aftershock statistics of past New England earthquakes. The forecast also will estimate the probability that an earthquake that is stronger than the mainshock will take place during the next 7 days. The aftershock forecast will specify the expected aftershocks locations as well as the areas over which aftershocks of different magnitudes could be felt. The system will use web pages, email and text messages to distribute the aftershock forecasts. For protracted aftershock sequences, new forecasts will be issued on a regular basis, such as weekly. Initially, the distribution system of the aftershock forecasts will be limited, but later it will be expanded as experience with and confidence in the system grows.

  11. Quantitative description of induced seismic activity before and after the 2011 Tohoku-Oki earthquake by nonstationary ETAS models

    NASA Astrophysics Data System (ADS)

    Kumazawa, Takao; Ogata, Yosihiko

    2013-12-01

    The epidemic-type aftershock sequence (ETAS) model is extended for application to nonstationary seismic activity, including transient swarm activity or seismicity anomalies, in a seismogenic region. The time-dependent rates of both background seismicity and aftershock productivity in the ETAS model are optimally estimated from hypocenter data. These rates can provide quantitative evidence for abrupt or gradual changes in shear stress and/or fault strength due to aseismic transient causes such as triggering by remote earthquakes, slow slips, or fluid intrusions within the region. This extended model is applied to data sets from several seismic events including swarms that were induced by the M9.0 Tohoku-Oki earthquake of 2011.

  12. The Seismic source parameters of the 1991 Costa Rica aftershock sequence: Evidence for a transcurrent plate boundary

    NASA Astrophysics Data System (ADS)

    Gan, Guangwei; Beck, Susan L.; Wallace, Terry C.

    1993-09-01

    The April 22, 1991, Valle de la Estrella, Costa Rica earthquake (Ms=7.6) was a back-arc thrusting event associated with the underthrusting of the Caribbean plate beneath Central America. A network of three PASSCAL-type, portable instruments was deployed to monitor the aftershock activity in southern Costa Rica 2 to 6 weeks after the main shock. The waveforms recorded on three-component midperiod seismometers were used to recover source information for 15 small aftershocks (magnitudes between 3.2 and 4.4) with a linear moment tensor inversion method. We conducted several tests to investigate the effects of unknown structure and event mislocation on source parameter recovery. The longer-period waveforms, in general, are less sensitive to the effects of the structural details so that the essential source information can be successfully extracted from the waveform data. The earlier part of the seismic waveforms has proven to be the most important carrier of the source information. A gross crustal model can be used to describe the structure for the source study. The small changes in the waveform character resulting from the mislocation of the events, or inexact Green's functions generated from the oversimplified crustal model, do not prohibit us from the recovery of the source orientation at local distances. In contrast, the determination of the focal depth is subject to uncertainty because of the lack of detailed structural information. Our focal mechanisms are generally in good agreement with P wave first-motion fault plane solutions determined from a local short-period network. The aftershocks show a clear spatial segmentation based on focal mechanism type. Most aftershocks near or southeast of the main shock were thrusting events with focal mechanisms similar to the main shock. In contrast, a cluster of aftershocks northwest of the main shock showed dominantly left-lateral, strike-slip motion on a northeasterly striking nodal plane. This suggests that a diffuse

  13. Stress shadows of the 2011 Mw=9.0 Tohoku-oki, Japan, earthquake: Suppressed aftershocks of the 2008 Mw=6.6 Iwate-Miyagi inland earthquake

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Toda, S.

    2013-12-01

    Numerous papers of stress triggering have been published since 1990s. Among them, only a few studies have evidently shown that seismicity shut down or suppression associated with static Coulomb stress decrease (hereinafter 'stress shadow'). The reason only fewer reports exist is its restrictive conditions to detect stress shadow. To prove statistical significance, the following conditions are satisfied: (i) high seismicity rate before a disturbance, (ii) long elapsed time required since the disturbance, (iii) negative Coulomb stress on most of the pre-existing faults in the area. A preceding aftershocks before the disturbance is often used to satisfy the condition (i) (e.g. Toda and Stein, 2003). But one must strictly consider a temporal decay of aftershocks to fairly compare the post-disturbance rate with the pre-disturbance rate. To calibrate such potential bias, we employ the Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, 1988) which can simulate the temporal decay and effect of secondary aftershocks. Here, we use the Japan Meteorological Agency (JMA) earthquake catalog from 2000 to June 2013 (depth≤25km) and examine any deviation of observed rate from theoretical seismicity predicted by the ETAS model after the 2011 Tohoku-oki earthquake. We here focus on aftershock areas of the 2008 Iwate-Miyagi inland earthquake (Mw 6.6), the 2003 North-Miyagi earthquake (Mw 6.0) and the 2010 Fukushima earthquake (Mw 5.5), all of which are mostly supposed to satisfy all the conditions. To detect seismicity rate change between before and after a stress perturbation, one must estimate the minimum magnitude of completeness (Mc) throughout the testing period. Based on a report of JMA (2012) and our own magnitude-frequency plots, we set Mc=3.0 in the Iwate-Miyagi inland earthquake and the North-Miyagi earthquake, and Mc=2.0 in the Fukushima earthquake regions. To rigorously define their aftershock zones, we calculate seismicity rate before (Rb) and after (Ra) their own

  14. The LVD signals during the early-mid stages of the L'Aquila seismic sequence and the radon signature of some aftershocks of moderate magnitude.

    PubMed

    Cigolini, C; Laiolo, M; Coppola, D

    2015-01-01

    The L'Aquila seismic swarm culminated with the mainshock of April 6, 2009 (ML = 5.9). Here, we report and analyze the Large Volume Detector (LVD, used in neutrinos research) low energy traces (∼0.8 MeV), collected during the early-mid stages of the seismic sequence, together with the data of a radon monitoring experiment. The peaks of LVD traces do not correlate with the evolution and magnitude of earthquakes, including major aftershocks. Conversely, our radon measurements obtained by utilizing three automatic stations deployed along the regional NW-SE faulting system, seem to be, in one case, more efficient. In fact, the timeseries collected on the NW-SE Paganica fracture recorded marked variations and peaks that occurred during and prior moderate aftershocks (with ML > 3). The Paganica monitoring station (PGN) seems to better responds to active seismicity due to the fact that the radon detector was placed directly within the bedrock of an active fault. It is suggested that future networks for radon monitoring of active seismicity should preferentially implement this setting.

  15. Modeling aftershocks as a stretched exponential relaxation

    NASA Astrophysics Data System (ADS)

    Mignan, A.

    2015-11-01

    The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest-neighbor, second-order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature.

  16. Role of base stacking and sequence context in the inhibition of yeast DNA polymerase eta by pyrene nucleotide.

    PubMed

    Hwang, Hanshin; Taylor, John-Stephen

    2004-11-23

    The Y family DNA polymerase yeast pol eta inserts pyrene deoxyribose monophosphate (dPMP) in preference to A opposite an abasic site, the 3'-T of a thymine dimer, and a normal T with almost equal efficiency. In contrast, pol A family polymerases such as Klenow fragment and T7 DNA polymerase only insert dPMP efficiently opposite an abasic site and the 3'-T of a thymine dimer but not opposite undamaged DNA. Pyrene nucleotide is also an efficient chain-terminating inhibitor of DNA synthesis by pol eta but not by Klenow fragment or T7 DNA polymerase. To better understand the origin of the efficiency and sequence specificity of dPMP insertion by pol eta, the kinetics of dPMP insertion opposite various templates have been determined. In one sequence context, the efficiency of dPMP insertion increases 4.6-fold opposite G < A < T < C, suggesting that the templating nucleotide modulates dPMP insertion efficiency by having to destack prior to dPTP binding. The efficiency of insertion of dPMP opposite T in the same sequence context increases 7-fold for primers terminating in G < A < C < T and is similar to that observed for nontemplated blunt-end extension, suggesting that stacking interactions between the pyrene and the primer terminus are also important. On heterogeneous templates, the average selectivity for dPMP insertion relative to the complementary dNMP decreases in the order of dAMP > dGMP > dTMP > dCMP, from a high of 5.8 when dAMP is to be inserted following a T to a low of 0.5 when dCMP is to be inserted following a C. The relative preference for dPMP insertion at a given site can be largely explained by the energetic cost of destacking the templating base and stacking of pyrene nucleotide relative to that of stacking and base pairing the complementary nucleotide. Thus, pyrene nucleotide represents a novel class of nucleotide-based chain-terminating DNA synthesis inhibitors whose base portion consists of a hydrophobic, non-hydrogen bonding, base-pair mimic.

  17. The Aftershock Sequence of the 2008 Achaia, Greece, Earthquake: Joint Analysis of Seismicity Relocation and Persistent Scatterers Interferometry

    NASA Astrophysics Data System (ADS)

    Karakostas, Vassilis; Mirek, Katarzyna; Mesimeri, Maria; Papadimitriou, Eleftheria; Mirek, Janusz

    2017-01-01

    On 8 June 2008 an earthquake of Mw6.4 took place in the northwestern part of Peloponnese, Greece. The main shock was felt in a wide area and caused appreciable damage along the main rupture area and particularly at the antipodal of the main shock epicenter fault edge, implying strongly unilateral rupture and stopping phase effects. Abundant aftershocks were recorded within an area of 50 km in length in the period 8 June 2008-end of 2014, by a sufficient number of stations that secure location accuracy because the regional network is adequately dense in the area. All the available phases from seismological stations in epicentral distances up to 140 km until the end of 2014 were used for relocation with the double difference technique and waveform cross-correlation. A quite clear 3-D representation is obtained for the aftershock zone geometry and dimensions, revealing the main rupture and the activated adjacent fault segments. SAR data are processed using Stanford Method for Persistent Scatterers (StaMPS) and a surface deformation map constructed based on PS point displacement for the coseismic period. A variable slip model, with maximum slip of 1.0 m located at the lower part of the rupture plane, is suggested and used for calculating the deformation field which was found in adequate agreement with geodetic measurements. With the same slip model the static stress changes were calculated evidencing possible triggering of the neighboring faults that were brought closer to failure. The data availability allowed monitoring the temporal variation of b values that after a continuous increase in the first 5 days, returned and stabilized to 1.0-1.1 in the following years. The fluctuation duration is considered as the equivalent time for fault healing, which appeared very short but in full accordance with the cessation of onto-fault seismicity.

  18. Rupture Processes of the Mw8.3 Sea of Okhotsk Earthquake and Aftershock Sequences from 3-D Back Projection Imaging

    NASA Astrophysics Data System (ADS)

    Jian, P. R.; Hung, S. H.; Meng, L.

    2014-12-01

    On May 24, 2013, the largest deep earthquake ever recorded in history occurred on the southern tip of the Kamchatka Island, where the Pacific Plate subducts underneath the Okhotsk Plate. Previous 2D beamforming back projection (BP) of P- coda waves suggests the mainshock ruptured bilaterally along a horizontal fault plane determined by the global centroid moment tensor solution. On the other hand, the multiple point source inversion of P and SH waveforms argued that the earthquake comprises a sequence of 6 subevents not located on a single plane but actually distributed in a zone that extends 64 km horizontally and 35 km in depth. We then apply a three-dimensional MUSIC BP approach to resolve the rupture processes of the manishock and two large aftershocks (M6.7) with no a priori setup of preferential orientations of the planar rupture. The maximum pseudo-spectrum of high-frequency P wave in a sequence of time windows recorded by the densely-distributed stations from US and EU Array are used to image 3-D temporal and spatial rupture distribution. The resulting image confirms that the nearly N-S striking but two antiparallel rupture stages. The first subhorizontal rupture initially propagates toward the NNE direction, while at 18 s later it directs reversely to the SSW and concurrently shifts downward to 35 km deeper lasting for about 20 s. The rupture lengths in the first NNE-ward and second SSW-ward stage are about 30 km and 85 km; the estimated rupture velocities are 3 km/s and 4.25 km/s, respectively. Synthetic experiments are undertaken to assess the capability of the 3D MUSIC BP for the recovery of spatio-temporal rupture processes. Besides, high frequency BP images based on the EU-Array data show two M6.7 aftershocks are more likely to rupture on the vertical fault planes.

  19. Distribution of the largest aftershocks in branching models of triggered seismicity: theory of the universal Båth law.

    PubMed

    Saichev, A; Sornette, D

    2005-05-01

    Using the epidemic-type aftershock sequence (ETAS) branching model of triggered seismicity, we apply the formalism of generating probability functions to calculate exactly the average difference between the magnitude of a mainshock and the magnitude of its largest aftershock over all generations. This average magnitude difference is found empirically to be independent of the mainshock magnitude and equal to 1.2, a universal behavior known as Båth's law. Our theory shows that Båth's law holds only sufficiently close to the critical regime of the ETAS branching process. Allowing for error bars +/- 0.1 for Båth's constant value around 1.2, our exact analytical treatment of Båth's law provides new constraints on the productivity exponent alpha and the branching ratio n: 0.9 approximately < alpha < or =1. We propose a method for measuring alpha based on the predicted renormalization of the Gutenberg-Richter distribution of the magnitudes of the largest aftershock. We also introduce the "second Båth law for foreshocks:" the probability that a main earthquake turns out to be the foreshock does not depend on its magnitude rho.

  20. Quantitative Mapping of Precursory Seismic Quiescence Before Large Aftershocks

    NASA Astrophysics Data System (ADS)

    Neukomm, S.; Wiemer, S.; Giardini, D.

    2002-12-01

    A relative decrease of aftershock activity before the occurrence of large aftershocks to M6+ mainshocks is one of only few earthquake precursors accepted for the IASPEI preliminary list of significant earthquake precursors. If one considers earthquake rate to be dependent on stressing rate, aftershocks sequences offer in fact an ideal environment to detect precursory quiescence before large earthquakes: The numerous aftershocks allow a much higher spatial and temporal resolution of transients in seismicity than possible with the average background rate of micro-earthquakes. Past studies of precursory quiescence before larger aftershocks, however, have largely been based on bulk value. The aim of this study is to map the temporal and spatial variability of activity rate within several rich aftershock sequences, and, possibly, exploit the results for improving real time probabilistic aftershock hazard assessment. We introduce a new algorithm based on fitting the modified Omori law to the aftershock sequences. At arbitrarily chosen grid points, the Omori parameters of the sub-samples containing all aftershock within 5 or 10 km of the node are estimated at time t. We calculate the number of aftershocks N +/- dN in the time interval t + dt using the relevant four Omori parameters (p, c and k) parameters and their corresponding standard deviations estimated using a bootstrap analysis. The difference between the forecasted and the observed number of aftershocks, normalized by the standard deviation of the forecast, is our estimator of rate change. The algorithm is tested on synthetic aftershock sequences containing artificial quiescences in order to calibrate the free parameters for optimal detection of precursory quiescence. We then perform our spatial and temporal mapping for several prominent Californian and Japanese aftershock sequences (Landers, Hector Mine, Northridge, Loma Prieta, Kobe, Western Tottori and Hokkaido). Preliminary results suggest that we cannot

  1. Static stress transfer modeling and aftershock statistics for the 2002 Nenana Mountain-Denali Park, Alaska, sequence

    NASA Astrophysics Data System (ADS)

    Anderson, G.; Jones, L. M.; Ji, C.

    2002-12-01

    On October 23, 2002, the Mw 6.7 Nenana Mountain earthquake occurred in central Alaska. While this was a significant event, it became even more interesting as a foreshock to the Mw 7.9 Denali Park mainshock of November 3, 2002, which was the largest earthquake to occur on land in the United States since the 1857 Fort Tejon earthquake in southern California. Using a finite-fault rupture model and the theory of deformation from dislocations in an elastic half-space, we have modeled static Coulomb stress transfer from the Nenana Mountain event to the hypocentral region of the Denali Park event and find that the Nenana Mountain event transferred about 0.05--0.1 MPa (0.5--1 bar) of Coulomb stress to that area, encouraging failure of the later event. We have also computed the combined stress transferred to several large regional faults from the Nenana Mountain and Denali Park events using our Nenana Mountain and Denali Park rupture models. We find that the two main events combined transferred more than 0.05 MPa (0.5 bar) of Coulomb stress to the northern 50 km of the Cross Creek fault, a 150-km-long right-lateral strike slip fault in east-central Alaska, and up to 0.05 MPa of Coulomb stress to the Muldrow segment of the Denali fault, west of the Nenana Mountain rupture. It is worth noting, however, that these faults are nearest to the mainshock rupture and thus most prone to errors in the stress transfer modeling. Other major faults in the region, including the Tonzona, Farewell, and Boss Creek segments of the Denali fault, the Castle Mountain fault near Anchorage, and the Yakataga subduction interface, experienced insignificant static Coulomb stress changes, though dynamic stresses were probably much larger. Although the stress changes from these events are significant, the rates of aftershocks triggered by the Nenana Mountain foreshock and by the Denali Park mainshock are extremely low. We describe the rate of aftershocks with the Reasenberg and Jones formulation for

  2. 2010 Chile Earthquake Aftershock Response

    NASA Astrophysics Data System (ADS)

    Barientos, Sergio

    2010-05-01

    The Mw=8.8 earthquake off the coast of Chile on 27 February 2010 is the 5th largest megathrust earthquake ever to be recorded and provides an unprecedented opportunity to advance our understanding of megathrust earthquakes and associated phenomena. The 2010 Chile earthquake ruptured the Concepcion-Constitucion segment of the Nazca/South America plate boundary, south of the Central Chile region and triggered a tsunami along the coast. Following the 2010 earthquake, a very energetic aftershock sequence is being observed in an area that is 600 km along strike from Valparaiso to 150 km south of Concepcion. Within the first three weeks there were over 260 aftershocks with magnitude 5.0 or greater and 18 with magnitude 6.0 or greater (NEIC, USGS). The Concepcion-Constitucion segment lies immediately north of the rupture zone associated with the great magnitude 9.5 Chile earthquake, and south of the 1906 and the 1985 Valparaiso earthquakes. The last great subduction earthquake in the region dates back to the February 1835 event described by Darwin (1871). Since 1835, part of the region was affected in the north by the Talca earthquake in December 1928, interpreted as a shallow dipping thrust event, and by the Chillan earthquake (Mw 7.9, January 1939), a slab-pull intermediate depth earthquake. For the last 30 years, geodetic studies in this area were consistent with a fully coupled elastic loading of the subduction interface at depth; this led to identify the area as a mature seismic gap with potential for an earthquake of magnitude of the order 8.5 or several earthquakes of lesser magnitude. What was less expected was the partial rupturing of the 1985 segment toward north. Today, the 2010 earthquake raises some disturbing questions: Why and how the rupture terminated where it did at the northern end? How did the 2010 earthquake load the adjacent segment to the north and did the 1985 earthquake only partially ruptured the plate interface leaving loaded asperities since

  3. Recent Experiences in Aftershock Hazard Modelling in New Zealand

    NASA Astrophysics Data System (ADS)

    Gerstenberger, M.; Rhoades, D. A.; McVerry, G.; Christophersen, A.; Bannister, S. C.; Fry, B.; Potter, S.

    2014-12-01

    The occurrence of several sequences of earthquakes in New Zealand in the last few years has meant that GNS Science has gained significant recent experience in aftershock hazard and forecasting. First was the Canterbury sequence of events which began in 2010 and included the destructive Christchurch earthquake of February, 2011. This sequence is occurring in what was a moderate-to-low hazard region of the National Seismic Hazard Model (NSHM): the model on which the building design standards are based. With the expectation that the sequence would produce a 50-year hazard estimate in exceedance of the existing building standard, we developed a time-dependent model that combined short-term (STEP & ETAS) and longer-term (EEPAS) clustering with time-independent models. This forecast was combined with the NSHM to produce a forecast of the hazard for the next 50 years. This has been used to revise building design standards for the region and has contributed to planning of the rebuilding of Christchurch in multiple aspects. An important contribution to this model comes from the inclusion of EEPAS, which allows for clustering on the scale of decades. EEPAS is based on three empirical regressions that relate the magnitudes, times of occurrence, and locations of major earthquakes to regional precursory scale increases in the magnitude and rate of occurrence of minor earthquakes. A second important contribution comes from the long-term rate to which seismicity is expected to return in 50-years. With little seismicity in the region in historical times, a controlling factor in the rate is whether-or-not it is based on a declustered catalog. This epistemic uncertainty in the model was allowed for by using forecasts from both declustered and non-declustered catalogs. With two additional moderate sequences in the capital region of New Zealand in the last year, we have continued to refine our forecasting techniques, including the use of potential scenarios based on the aftershock

  4. The aftershock processes of strong earthquakes in the Western Caucasus

    NASA Astrophysics Data System (ADS)

    Baranov, S. V.; Gabsatarova, I. P.

    2015-05-01

    The aftershock processes of the four strong earthquakes that occurred in the Western Caucasus from 1991 to June 2013 are considered. The main shocks of these earthquakes include the first Racha earthquake (April 29, 1991, Ms = 6.9); second Racha earthquake (June 15, 1991, Ms = 6.2); Oni earthquake (September 7, 2009, Ms = 5.8); and East Black Sea earthquake (December 23, 2012, Ms = 5.6). Based on the simulations with the LPL relaxation model and the ETAS model of triggered seismicity, the differences in the properties of the aftershock processes and the characteristics of the fault zones accommodating the main shocks are revealed. The nonrelaxation character of the aftershocks from the East Black Sea earthquake is established. It is hypothesized and validated that this is a result of the violation of the fluid-dynamic equilibrium in the fault zone due to the destruction of the gas hydrate layer by the main shock and strong aftershocks.

  5. Aftershock Energy Distribution by Statistical Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Daminelli, R.; Marcellini, A.

    2015-12-01

    The aim of our work is to research the most probable distribution of the energy of aftershocks. We started by applying one of the fundamental principles of statistical mechanics that, in case of aftershock sequences, it could be expressed as: the greater the number of different ways in which the energy of aftershocks can be arranged among the energy cells in phase space the more probable the distribution. We assume that each cell in phase space has the same possibility to be occupied, and that more than one cell in the phase space can have the same energy. Seeing that seismic energy is proportional to products of different parameters, a number of different combinations of parameters can produce different energies (e.g., different combination of stress drop and fault area can release the same seismic energy). Let us assume that there are gi cells in the aftershock phase space characterised by the same energy released ɛi. Therefore we can assume that the Maxwell-Boltzmann statistics can be applied to aftershock sequences with the proviso that the judgment on the validity of this hypothesis is the agreement with the data. The aftershock energy distribution can therefore be written as follow: n(ɛ)=Ag(ɛ)exp(-βɛ)where n(ɛ) is the number of aftershocks with energy, ɛ, A and β are constants. Considering the above hypothesis, we can assume g(ɛ) is proportional to ɛ. We selected and analysed different aftershock sequences (data extracted from Earthquake Catalogs of SCEC, of INGV-CNT and other institutions) with a minimum magnitude retained ML=2 (in some cases ML=2.6) and a time window of 35 days. The results of our model are in agreement with the data, except in the very low energy band, where our model resulted in a moderate overestimation.

  6. Asymmetric Earthquake Aftershock Distributions Resulting from Timing Within the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    McGuire, J. J.; Collins, J. A.; Boettcher, M. S.; Roland, E. C.

    2010-12-01

    Aftershock sequences are a well documented result of changes in the crustal stress-field resulting from nearby large earthquakes, yet there is typically little (or no) constraint on the initial stress level of the “receiver fault” where the triggered aftershock occurs. Thus, many popular physical and stochastic models of aftershock triggering do not account for the absolute stress-level on a receiver fault, and the importance of this stress level (relative to a fault’s failure threshold) is not easily studied. In 2008 we recorded a series of westward propagating ruptures that marked the end of the most recent seismic cycle on the Gofar transform fault using an array of Ocean Bottom Seismometers (OBSs). The end of the 2002-2008 seismic cycle on the Gofar fault included a series of 4 major rupture events (either M6 earthquakes or large seismic swarms) that propagated ~90 km along the strike of the fault from east to west over the course of 1.5 years. Our OBS dataset covered the last 3 of these events and recorded over 200,000 microearthquakes. Each of the 3 rupture events produced a spatially asymmetric aftershock distribution. On the eastern side of each slipping zone, where the stress is lower because the fault has already ruptured in its cycle-ending event, the large rupture events do not change the seismicity-rate. In contrast, on the western side, where stress is high because the area is nearing the end of it’s seismic cycle, there is a clear increase in seismicity rate (i.e. aftershocks). This asymmetry demonstrates the importance of absolute stress-levels in earthquake triggering. This observation contrasts with the Rate-State seismicity model (Dieterich, 1994), which predicts that seismicity-rate increases will depend only on stressing-rate and the magnitude of a static stress change. Since static stress changes from large ruptures are fairly symmetric along a geometrically simple strike slip fault, like Gofar, the observed aftershock asymmetry

  7. Aftershock Characteristics as a Means of Discriminating Explosions from Earthquakes

    SciTech Connect

    Ford, S R; Walter, W R

    2009-05-20

    The behavior of aftershock sequences around the Nevada Test Site in the southern Great Basin is characterized as a potential discriminant between explosions and earthquakes. The aftershock model designed by Reasenberg and Jones (1989, 1994) allows for a probabilistic statement of earthquake-like aftershock behavior at any time after the mainshock. We use this model to define two types of aftershock discriminants. The first defines M{sub X}, or the minimum magnitude of an aftershock expected within a given duration after the mainshock with probability X. Of the 67 earthquakes with M > 4 in the study region, 63 of them produce an aftershock greater than M{sub 99} within the first seven days after a mainshock. This is contrasted with only six of 93 explosions with M > 4 that produce an aftershock greater than M{sub 99} for the same period. If the aftershock magnitude threshold is lowered and the M{sub 90} criteria is used, then no explosions produce an aftershock greater than M{sub 90} for durations that end more than 17 days after the mainshock. The other discriminant defines N{sub X}, or the minimum cumulative number of aftershocks expected for given time after the mainshock with probability X. Similar to the aftershock magnitude discriminant, five earthquakes do not produce more aftershocks than N{sub 99} within 7 days after the mainshock. However, within the same period all but one explosion produce less aftershocks then N{sub 99}. One explosion is added if the duration is shortened to two days after than mainshock. The cumulative number aftershock discriminant is more reliable, especially at short durations, but requires a low magnitude of completeness for the given earthquake catalog. These results at NTS are quite promising and should be evaluated at other nuclear test sites to understand the effects of differences in the geologic setting and nuclear testing practices on its performance.

  8. Are aftershocks caused by the mainshock?

    NASA Astrophysics Data System (ADS)

    Daminelli, Rosastella; Marcellini, Alberto

    2016-04-01

    Understanding the physics of aftershocks bears the question: are aftershocks caused by the stress modification induced by the mainshock or by other shocks of the seismic sequence? This causality principle (henceforth called Hypothesis 1) constitutes the base of several aftershock models. An alternative point of view is that both mainshock and aftershocks belong to the fracture process, both of which are related to the stress of the zone however there is no particular relationship between them (henceforth called Hypothesis 2). The May-June 2012 Emilia-Lombardia earthquake was characterised by two major events with magnitude of 5.9 and 5.8 respectively, and other 5 shocks with magnitude greater than 5. This sequence does not allow for a precise identification of the mainshock and strongly undermines Hypothesis 1. We can verify that the Maxwell-Boltzmann model for statistical energy distribution of independent particles agrees with the energy distribution of the shocks of the 2012 Emilia-Lombardia earthquake, as well as with other seismic sequences, randomly selected from international seismic databases. Thus suggesting that the shocks of a sequence can be considered independent events. Our conclusions are that the distinction made between foreshock, mainshock and aftershocks for several sequences is fictitious and that Hypothesis 2 is more realistic.

  9. Bayesian Predictive Distribution for the Magnitude of the Largest Aftershock

    NASA Astrophysics Data System (ADS)

    Shcherbakov, R.

    2014-12-01

    Aftershock sequences, which follow large earthquakes, last hundreds of days and are characterized by well defined frequency-magnitude and spatio-temporal distributions. The largest aftershocks in a sequence constitute significant hazard and can inflict additional damage to infrastructure. Therefore, the estimation of the magnitude of possible largest aftershocks in a sequence is of high importance. In this work, we propose a statistical model based on Bayesian analysis and extreme value statistics to describe the distribution of magnitudes of the largest aftershocks in a sequence. We derive an analytical expression for a Bayesian predictive distribution function for the magnitude of the largest expected aftershock and compute the corresponding confidence intervals. We assume that the occurrence of aftershocks can be modeled, to a good approximation, by a non-homogeneous Poisson process with a temporal event rate given by the modified Omori law. We also assume that the frequency-magnitude statistics of aftershocks can be approximated by Gutenberg-Richter scaling. We apply our analysis to 19 prominent aftershock sequences, which occurred in the last 30 years, in order to compute the Bayesian predictive distributions and the corresponding confidence intervals. In the analysis, we use the information of the early aftershocks in the sequences (in the first 1, 10, and 30 days after the main shock) to estimate retrospectively the confidence intervals for the magnitude of the expected largest aftershocks. We demonstrate by analysing 19 past sequences that in many cases we are able to constrain the magnitudes of the largest aftershocks. For example, this includes the analysis of the Darfield (Christchurch) aftershock sequence. The proposed analysis can be used for the earthquake hazard assessment and forecasting associated with the occurrence of large aftershocks. The improvement in instrumental data associated with early aftershocks can greatly enhance the analysis and

  10. Mechanical origin of aftershocks

    PubMed Central

    Lippiello, E.; Giacco, F.; Marzocchi, W.; Godano, C.; de Arcangelis, L.

    2015-01-01

    Aftershocks are the most striking evidence of earthquake interactions and the physical mechanisms at the origin of their occurrence are still intensively debated. Novel insights stem from recent results on the influence of the faulting style on the aftershock organisation in magnitude and time. Our study shows that the size of the aftershock zone depends on the fault geometry. We find that positive correlations among parameters controlling aftershock occurrence in time, energy and space are a stable feature of seismicity independently of magnitude range and geographic areas. We explain the ensemble of experimental findings by means of a description of the Earth Crust as an heterogeneous elastic medium coupled with a Maxwell viscoelastic asthenosphere. Our results show that heterogeneous stress distribution in an elastic layer combined with a coupling to a viscous flow are sufficient ingredients to describe the physics of aftershock triggering. PMID:26497720

  11. Mechanical origin of aftershocks.

    PubMed

    Lippiello, E; Giacco, F; Marzocchi, W; Godano, C; de Arcangelis, L

    2015-10-26

    Aftershocks are the most striking evidence of earthquake interactions and the physical mechanisms at the origin of their occurrence are still intensively debated. Novel insights stem from recent results on the influence of the faulting style on the aftershock organisation in magnitude and time. Our study shows that the size of the aftershock zone depends on the fault geometry. We find that positive correlations among parameters controlling aftershock occurrence in time, energy and space are a stable feature of seismicity independently of magnitude range and geographic areas. We explain the ensemble of experimental findings by means of a description of the Earth Crust as an heterogeneous elastic medium coupled with a Maxwell viscoelastic asthenosphere. Our results show that heterogeneous stress distribution in an elastic layer combined with a coupling to a viscous flow are sufficient ingredients to describe the physics of aftershock triggering.

  12. Power-law rheology controls aftershock triggering and decay

    PubMed Central

    Zhang, Xiaoming; Shcherbakov, Robert

    2016-01-01

    The occurrence of aftershocks is a signature of physical systems exhibiting relaxation phenomena. They are observed in various natural or experimental systems and usually obey several non-trivial empirical laws. Here we consider a cellular automaton realization of a nonlinear viscoelastic slider-block model in order to infer the physical mechanisms of triggering responsible for the occurrence of aftershocks. We show that nonlinear viscoelasticity plays a critical role in the occurrence of aftershocks. The model reproduces several empirical laws describing the statistics of aftershocks. In case of earthquakes, the proposed model suggests that the power-law rheology of the fault gauge, underlying lower crust, and upper mantle controls the decay rate of aftershocks. This is verified by analysing several prominent aftershock sequences for which the rheological properties of the underlying crust and upper mantle were established. PMID:27819355

  13. Power-law rheology controls aftershock triggering and decay

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Shcherbakov, Robert

    2016-11-01

    The occurrence of aftershocks is a signature of physical systems exhibiting relaxation phenomena. They are observed in various natural or experimental systems and usually obey several non-trivial empirical laws. Here we consider a cellular automaton realization of a nonlinear viscoelastic slider-block model in order to infer the physical mechanisms of triggering responsible for the occurrence of aftershocks. We show that nonlinear viscoelasticity plays a critical role in the occurrence of aftershocks. The model reproduces several empirical laws describing the statistics of aftershocks. In case of earthquakes, the proposed model suggests that the power-law rheology of the fault gauge, underlying lower crust, and upper mantle controls the decay rate of aftershocks. This is verified by analysing several prominent aftershock sequences for which the rheological properties of the underlying crust and upper mantle were established.

  14. A Fluid-driven Earthquake Cycle, Omori's Law, and Fluid-driven Aftershocks

    NASA Astrophysics Data System (ADS)

    Miller, S. A.

    2015-12-01

    Few models exist that predict the Omori's Law of aftershock rate decay, with rate-state friction the only physically-based model. ETAS is a probabilistic model of cascading failures, and is sometimes used to infer rate-state frictional properties. However, the (perhaps dominant) role of fluids in the earthquake process is being increasingly realised, so a fluid-based physical model for Omori's Law should be available. In this talk, I present an hypothesis for a fluid-driven earthquake cycle where dehydration and decarbonization at depth provides continuous sources of buoyant high pressure fluids that must eventually make their way back to the surface. The natural pathway for fluid escape is along plate boundaries, where in the ductile regime high pressure fluids likely play an integral role in episodic tremor and slow slip earthquakes. At shallower levels, high pressure fluids pool at the base of seismogenic zones, with the reservoir expanding in scale through the earthquake cycle. Late in the cycle, these fluids can invade and degrade the strength of the brittle crust and contribute to earthquake nucleation. The mainshock opens permeable networks that provide escape pathways for high pressure fluids and generate aftershocks along these flow paths, while creating new pathways by the aftershocks themselves. Thermally activated precipitation then seals up these pathways, returning the system to a low-permeability environment and effective seal during the subsequent tectonic stress buildup. I find that the multiplicative effect of an exponential dependence of permeability on the effective normal stress coupled with an Arrhenius-type, thermally activated exponential reduction in permeability results in Omori's Law. I simulate this scenario using a very simple model that combines non-linear diffusion and a step-wise increase in permeability when a Mohr Coulomb failure condition is met, and allow permeability to decrease as an exponential function in time. I show very

  15. A Jurassic Shock-Aftershock Earthquake Sequence Recorded by Small Clastic Pipes and Dikes within Dune Cross-Strata, Zion National Park, Utah

    NASA Astrophysics Data System (ADS)

    Loope, D. B.; Zlotnik, V. A.; Kettler, R. M.; Pederson, D. T.

    2012-12-01

    dune lee slope through a pipe, the erupted sand dried and was buried by climbing wind-ripple strata as the large dune continued to advance downwind. The mapped cluster recording eight distinct seismic events lies within thin-laminated sediment that was deposited by wind ripples during 1 m (~ 1 year) of southeastward dune migration. We conclude that the small pipes and dikes of our study sites are products of numerous >MM 5 earthquakes, some of which recurred at intervals of less than 2 months. We interpret one small cluster of pipes and dikes with well-defined upward terminations as a distinct shock-aftershock sequence. Because the largest modern earthquakes can produce surface liquefaction only up to about 175 km from their epicenters, the Jurassic epicenters must have been well within that distance. The tendency of modern plate boundaries to produce high-frequency aftershocks suggests that the epicenter for this Jurassic sequence lay to the southwest, within the plate boundary zone (not within continental rocks to the east). As eolian dunes steadily migrate over interdune surfaces underlain by water-saturated dune cross-strata, the thin, distinct laminae produced by the wind ripples that occupy dune toes can faithfully record high-frequency seismic events.

  16. The Constantine (Algeria) seismic sequence of 27 October 1985: a new rupture model from aftershock relocation, focal mechanisms, and stress tensors

    NASA Astrophysics Data System (ADS)

    Ousadou, F.; Dorbath, L.; Dorbath, C.; Bounif, M. A.; Benhallou, H.

    2013-04-01

    The October 27, 1985 Constantine earthquake of magnitude MS 5.9 (NEIC) although moderate is the strongest earthquake recorded in the eastern Tellian Atlas (northeast Algeria) since the beginning of instrumental seismology. The main shock locations given by different institutions are scattered and up to 10 km away northwest from the NE-SW 30 km long elongated aftershocks cloud localized by a dedicated temporary portable network. The focal mechanism indicates left-lateral strike-slip on an almost vertical fault with a small reverse component on the northwest dipping plane. This paper presents relocations of the main shock and aftershocks using TomoDD. One hundred thirty-eight individual focal mechanisms have been built allowing the determination of the stress tensor at different scales. A rupture model has been suggested, which explains the different observations of aftershock distribution and stress tensor rotation.

  17. The M w6.7 12 October 2013 western Hellenic Arc main shock and its aftershock sequence: implications for the slab properties

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Eleftheria; Karakostas, Vassilis; Mesimeri, Maria; Vallianatos, Filippos

    2016-10-01

    The 12 October 2013 M w6.7 earthquake offshore Crete Island is one of the few strong earthquakes to have occurred in the last few decades in the southwestern part of the Hellenic subduction zone (HSZ), providing the opportunity to evaluate characteristics of the descending slab. The HSZ has experienced several strong ( M ≥ 7.0) earthquakes in historical times with the largest one being the 365 AD, M w = 8.4 earthquake, the largest known ever occurred in the Mediterranean region. The 2013 main shock occurred in close proximity with the 365 event, on an interplate thrust fault at a depth of 26 km, onto the coupled part of the overriding and descending plates. GCMT solution shows a slightly oblique (rake = 130°) thrust faulting with downdip compression on a nearly horizontal (dip = 3°) northeast-dipping fault plane with strike (340°) parallel to the subduction front, with the compression axis being oriented in the direction of plate convergence. The subduction interface can be more clearly resolved with the integration of aftershock locations and CMT solution. For this scope, the aftershocks were relocated after obtaining a v p/ v s ratio equal to 1.76, a one-dimensional velocity model and time delays that approximate the velocity structure of the study area, and the employment of double-difference technique for both phase pick data and cross-correlation differential times. The first-day relocated seismicity, alike aftershocks in the first 2 months, shows activation of an area at the upper part of the descending slab, with most activity being concentrated between 13 and 27 km, where the main shock is also encompassed. Aftershocks are rare near to the main shock, implying homogeneous slip on a large patch of the rupture plane. Based on the aftershock distribution, the size of the activated area estimated is about 24 km long and 17 km wide. Coulomb stress changes resolved for transpressive motion reveal negligible off-fault aftershock triggering, evidencing a

  18. Source parameters of the Mw = 6.3 Aroma crustal earthquake of July 24, 2001 (northern Chile), and its aftershock sequence

    NASA Astrophysics Data System (ADS)

    Legrand, D.; Delouis, B.; Dorbath, L.; David, C.; Campos, J.; Marquéz, L.; Thompson, J.; Comte, D.

    2007-06-01

    The July 24, 2001, Mw = 6.3 earthquake in Aroma, Chile, is one of the few moderately shallow earthquakes to occur recently in northern Chile. This study uses different seismological data (short-period, broadband, strong-motion) to locate the event and its corresponding aftershocks. In addition, it carefully constrains the focal depth using SP phase and the focal mechanism of the main-shock. Finally, a model of the strong-motion waveforms discriminates the activated fault plane among the two nodal planes. The main-shock fault plane solution obtained from the strong-motion analysis is (strike, dip, rake) = (14° ± 10°, 53° ± 15°, -163° ± 15°), which indicates a right-lateral motion on an inclined fault, in agreement with the aftershock distribution, which also indicates a fault striking N14°E and dipping about 50°E.

  19. Some facts about aftershocks to large earthquakes in California

    USGS Publications Warehouse

    Jones, Lucile M.; Reasenberg, Paul A.

    1996-01-01

    Earthquakes occur in clusters. After one earthquake happens, we usually see others at nearby (or identical) locations. To talk about this phenomenon, seismologists coined three terms foreshock , mainshock , and aftershock. In any cluster of earthquakes, the one with the largest magnitude is called the mainshock; earthquakes that occur before the mainshock are called foreshocks while those that occur after the mainshock are called aftershocks. A mainshock will be redefined as a foreshock if a subsequent event in the cluster has a larger magnitude. Aftershock sequences follow predictable patterns. That is, a sequence of aftershocks follows certain global patterns as a group, but the individual earthquakes comprising the group are random and unpredictable. This relationship between the pattern of a group and the randomness (stochastic nature) of the individuals has a close parallel in actuarial statistics. We can describe the pattern that aftershock sequences tend to follow with well-constrained equations. However, we must keep in mind that the actual aftershocks are only probabilistically described by these equations. Once the parameters in these equations have been estimated, we can determine the probability of aftershocks occurring in various space, time and magnitude ranges as described below. Clustering of earthquakes usually occurs near the location of the mainshock. The stress on the mainshock's fault changes drastically during the mainshock and that fault produces most of the aftershocks. This causes a change in the regional stress, the size of which decreases rapidly with distance from the mainshock. Sometimes the change in stress caused by the mainshock is great enough to trigger aftershocks on other, nearby faults. While there is no hard "cutoff" distance beyond which an earthquake is totally incapable of triggering an aftershock, the vast majority of aftershocks are located close to the mainshock. As a rule of thumb, we consider earthquakes to be

  20. The Prediction of Spatial Aftershock Probabilities (PRESAP)

    NASA Astrophysics Data System (ADS)

    McCloskey, J.

    2003-12-01

    extent to which this is scientifically feasible in terms of our understanding of the physical phenomena which control the variation of seismicity following a large event due to stress redistribution and practically possible given present limitations on data availability, data quality and computational or data transfer speeds. The project is divided into a number of elements designed to reflect the temporal sequence of tasks that must be undertaken for the prediction of aftershock hazard. These tasks include determining a time-indexed sequence of slip distributions for both real and synthetic events, calculating a suite of time-indexed stress perturbations and quantitatively comprising predicted and observed aftershock distributions, and developing techniques for predicting likely strong ground motion from the predicted spatial distribution of aftershocks.

  1. Retrospective forecast of ETAS model with daily parameters estimate

    NASA Astrophysics Data System (ADS)

    Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang

    2016-04-01

    We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.

  2. Aftershock Decay Rates in the Iranian Plateau

    NASA Astrophysics Data System (ADS)

    Ommi, S.; Zafarani, H.; Zare, M.

    2016-07-01

    Motivated by the desire to have more information following the occurrence of damaging events, the main purpose of this article is to study aftershock sequence parameters in the Iranian plateau. To this end, the catalogue of the Iranian earthquakes between 2002 to the end of 2013 has been collected and homogenized among which 15 earthquakes have been selected to study their aftershock decay rates. For different tectonic provinces, the completeness magnitudes ( M c) of the earthquake catalogue have been calculated in different time intervals. Also, the M c variability in spatial and temporal windows has been determined for each selected event. For major Iranian earthquakes, catalogue of aftershocks has been collected thanks to three declustering methods: first, the classical windowing method of Gardner and Knopoff (Bull Seismol Soc Am 64:1363-1367, 1974); second, a modified version of this using spatial windowing based on the Wells and Coppersmith (Bull Seismol Soc Am 84:974-1002, 1994) relations; and third, the Burkhard and Grünthal (Swiss J Geosci 102:149-188, 2009) scheme. Effects of the temporal windows also have been investigated using the time periods of 1 month, 100 days, and 1 year in the declustering method of Gardner and Knopoff (Bull Seismol Soc Am 64:1363-1367, 1974). In the next step, the modified Omori law coefficients have been calculated for the 15 selected earthquakes. The calibrated regional generic model describing the temporal and magnitude distribution of aftershocks is of interest for time-dependent seismic hazard forecasts. The regional characteristics of the aftershock decay rates have been studied for the selected Iranian earthquakes in the Alborz, Zagros and Central Iran regions considering their different seismotectonics regimes. However, due to the lack of sufficient data, no results have been reported for the Kopeh-Dagh and Makran seismotectonic regions.

  3. The 2010 Haiti earthquake sequence: new insight of the tectonic pattern from aftershocks and marine geophysical data : Haiti-OBS cruise

    NASA Astrophysics Data System (ADS)

    Mercier de Lepinay, B. F.; Mazabraud, Y.; Klingelhoefer, F.; Clouard, V.; Hello, Y.; Graindorge, D.; Marcaillou, B.; Crozon, J.; Saurel, J.; Charvis, P.; Mildor, B. S.; Deschamps, A.; Bouin, M.; Perrot, J.

    2010-12-01

    The devastating 2010 Haiti earthquake ruptured only a relatively short segment (~50km) of the Enriquillo-Plantain Garden fault (EPGF) a 600km long strike-slip fault running onland and offshore from Jamaica to Dominican Republic, with apparently no major surface rupture in the epicentral area. Considering the general behavior of such strike-slip fault (i.e. North Anatolian fault, San Andreas fault), we can expect that, following the 2010 earthquake, other large earthquakes will occur in the near future on adjacent segments. To contribute to the multinational scientific effort for a better understanding of the rupture process and the stress relaxation of this earthquake, we organized the Haiti-OBS cruise of the R/V L'Atalante few weeks after the catastrophe (Feb.5 to Feb.15, 2010, from and to Pointe-a-Pitre, Guadeloupe). Our goal was 1) to deploy a temporary network of seismologic stations -21 OBS, Ocean Bottom Seismometer, and 4 onland stations- and 2) to survey the detailed sea-floor features in relation with the deformation pattern of the area (multibeam bathymetry and mud-penetrator). We show that the distribution pattern of the aftershocks as well as the compressive surface structures observed in the geology and onshore/offshore morphology of the area are consistent with a deformation model implying a major left-lateral component along the EPGF, and a strong reverse component. The January 12, 2010 mainshock has been shown as very complex. However, in the first order, the mainshock and the distribution of the aftershocks, better localized by our temporary network, can be explained by the interaction between the strike-slip EPGF system and a blind folds-and-thrusts system. Thus, the general geological setting shows a southern extension until the southern part of the Canal du Sud area of the well-known fold and thrust system of the Hispaniola main block.

  4. Foreshocks and aftershocks of the Great 1857 California earthquake

    USGS Publications Warehouse

    Meltzner, A.J.; Wald, D.J.

    1999-01-01

    The San Andreas fault is the longest fault in California and one of the longest strike-slip faults anywhere in the world, yet we know little about many aspects of its behavior before, during, and after large earthquakes. We conducted a study to locate and to estimate magnitudes for the largest foreshocks and aftershocks of the 1857 M 7.9 Fort Tejon earthquake on the central and southern segments of the fault. We began by searching archived first-hand accounts from 1857 through 1862, by grouping felt reports temporally, and by assigning modified Mercalli intensities to each site. We then used a modified form of the grid-search algorithm of Bakum and Wentworth, derived from empirical analysis of modern earthquakes, to find the location and magnitude most consistent with the assigned intensities for each of the largest events. The result confirms a conclusion of Sieh that at least two foreshocks ('dawn' and 'sunrise') located on or near the Parkfield segment of the San Andreas fault preceded the mainshock. We estimate their magnitudes to be M ~ 6.1 and M ~ 5.6, respectively. The aftershock rate was below average but within one standard deviation of the number of aftershocks expected based on statistics of modern southern California mainshock-aftershock sequences. The aftershocks included two significant events during the first eight days of the sequence, with magnitudes M ~ 6.25 and M ~ 6.7, near the southern half of the rupture; later aftershocks included a M ~ 6 event near San Bernardino in December 1858 and a M ~ 6.3 event near the Parkfield segment in April 1860. From earthquake logs at Fort Tejon, we conclude that the aftershock sequence lasted a minimum of 3.75 years.

  5. Active Tectonics in the Central Chilean Andes: 3D Tomography Based on the Aftershock Sequence of the 28 August 2004 Shallow Crustal Earthquake

    NASA Astrophysics Data System (ADS)

    Comte, D.; Farias, M.; Charrier, R.; Gonzalez, A.

    2008-12-01

    Most of the seismological research in the Andes has been mainly oriented to the detection and understanding of the seismicity associated with megathrust earthquakes that characterize the subduction environment that governs the Andean tectonics. However, deployments of temporary networks have allowed the detection of intense crustal seismicity beneath the Chilean forearc-arc region. The temporary seismic network deployed along the Las Leñas and Pangal river valleys (34°25'S), between January and May 2004 permitted to better constrain the abundant shallow intra-continental seismicity previously detected in that region. Although most of the seismicity is randomly distributed in the region, several microearthquakes occur along the trace of the major El Fierro fault-system. This system is well recognized between 33°30' and 35°15'S and is located at or close to the eastern contact between Mesozoic and Cenozoic deposits in the Principal Cordillera and, locally, below active volcanoes, being considered to have participated in the extension and tectonic inversion of a widely extended (>600 km long) Cenozoic basin along the Principal Cordillera. Further south, at 35°S, a Mw=6.5 strike-slip shallow earthquake occurred on August 28, 2004, near of the headwater of the Teno river, close to the Planchon volcano. A 3D detailed Vp and Vs velocities determination was obtained along the 2004 earthquake aftershock area. The aftershocks are distributed along one branch of the El Fierro fault system, with a NNE-SSW direction and depths lower than 15 km. The rupture zone coincides with a sharp contrast in Vp and Vs, also in coincidence with the presence of hydrothermal fluids, gypsum diapers and the volcanic arc, suggesting rheological contrast controlling deformation. At the surface, this zone present an intense contractive deformation produced during the Neogene, which differs from what can be observed in other regions. Present day deformation related to seismicity has no

  6. Single-link cluster analysis of earthquake aftershocks: Decay laws and regional variations

    SciTech Connect

    Davis, S.D.; Frohlich, C. )

    1991-04-10

    Using single-link cluster analysis, the authors investigate how various properties of aftershock sequences depend on their tectonic regime and focal depth. For International Seismological Centre earthquakes of m{sub b}{ge}4.8, they find that earthquakes deeper than 70 km have the fewest and smallest aftershock sequences. Even after accounting for differences in detectability and maximum magnitude, they find that ridge-transform earthquakes have smaller aftershock sequences that shallow subduction zone earthquakes. Among different subduction zones, they find that zones with high moment release rates possess larger aftershock sequences. Comparing ridge-transform zones, they find those with slower spreading rates possess larger aftershock sequences. By transposing origin times of several different aftershock sequences as if all had main shocks occurring at time zero, they are able to study the properties of aftershock sequences which individually have too few aftershocks to study by other means. Secondary events determined by single-link cluster analysis follow a modified Omori's (power law) decay for time separations of 0.1 day to 20 days from the parent event, with p values ranging from 0.539 {plus minus} 0.022 (intermediate- and deep-focus earthquakes) to 0.928 {plus minus} 0.024 (ridge-transform earthquakes). They find that earthquake foreshocks and multiplets also follow a modified Omori's law. At greater times from the main shock the decay is steeper than a power law decay, more like an exponential decay. Aftershocks in the Adak catalog (m{sub b}{ge}2.0) show a marked decrease in activity between 40 and 50 km depth. They speculate that the observed differences in number of aftershocks and p values may be caused by variations in fault heterogeneity or in fluid pressures.

  7. The global aftershock zone

    USGS Publications Warehouse

    Parsons, Thomas E.; Margaret Segou,; Warner Marzocchi,

    2014-01-01

    The aftershock zone of each large (M ≥ 7) earthquake extends throughout the shallows of planet Earth. Most aftershocks cluster near the mainshock rupture, but earthquakes send out shivers in the form of seismic waves, and these temporary distortions are large enough to trigger other earthquakes at global range. The aftershocks that happen at great distance from their mainshock are often superposed onto already seismically active regions, making them difficult to detect and understand. From a hazard perspective we are concerned that this dynamic process might encourage other high magnitude earthquakes, and wonder if a global alarm state is warranted after every large mainshock. From an earthquake process perspective we are curious about the physics of earthquake triggering across the magnitude spectrum. In this review we build upon past studies that examined the combined global response to mainshocks. Such compilations demonstrate significant rate increases during, and immediately after (~ 45 min) M > 7.0 mainshocks in all tectonic settings and ranges. However, it is difficult to find strong evidence for M > 5 rate increases during the passage of surface waves in combined global catalogs. On the other hand, recently published studies of individual large mainshocks associate M > 5 triggering at global range that is delayed by hours to days after surface wave arrivals. The longer the delay between mainshock and global aftershock, the more difficult it is to establish causation. To address these questions, we review the response to 260 M ≥ 7.0 shallow (Z ≤ 50 km) mainshocks in 21 global regions with local seismograph networks. In this way we can examine the detailed temporal and spatial response, or lack thereof, during passing seismic waves, and over the 24 h period after their passing. We see an array of responses that can involve immediate and widespread seismicity outbreaks, delayed and localized earthquake clusters, to no response at all. About 50% of the

  8. Postseismic relaxation and aftershocks

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.; Yu, S.-B.

    2007-01-01

    Perfettini et al. (2005) suggested that the temporal dependence of surface displacements u(t) measured in the epicentral area following an earthquake is related to N(t), the cumulative number of aftershocks, by the equation u(t) = a + bt + cN(t) + d(1 - e-??t), where a, b, c, d, and ?? are constants chosen to fit the data and t is the postearthquake time. N(t) appears in the expression for u(t) because both the aftershocks and a portion of u(t) are thought to be driven by the same source, postseismic fault creep at subseismogenic depths on the downdip extension of the coseismic rupture. We show that this equation with the actually observed N(t) fits the postseismic displacements recorded on several baselines following each of five earthquakes: 1999 M7.6 Chi-Chi (Taiwan), 1999 M7.1 Hector Mine (southern California), 2002 M7.9 Denali (central Alaska), 2003 M6.5 San Simeon (central California), and 2004 M6.0 Parkfield (central California) earthquakes. Although there are plausible physical interpretations for each of the terms in the expression for u(t), the large number of adjustable constants (a, b, c, d, and ??) involved in fitting the rather simple postseismic displacements diminishes the significance of the fit. Because the observed N(t) is well fit by the modified Omori's law, fault creep at depth presumably exhibits the same temporal dependence. That dependence could be explained if the rheology of the fault downdip from the coseismic rupture is consistent with ordinary transient creep. Montesi (2004) demonstrated that power law creep across a shear zone at depth would also produce that temporal signal.

  9. Aftershocks of the 2014 South Napa, California, Earthquake: Complex faulting on secondary faults

    USGS Publications Warehouse

    Hardebeck, Jeanne L.; Shelly, David R.

    2016-01-01

    We investigate the aftershock sequence of the 2014 MW6.0 South Napa, California, earthquake. Low-magnitude aftershocks missing from the network catalog are detected by applying a matched-filter approach to continuous seismic data, with the catalog earthquakes serving as the waveform templates. We measure precise differential arrival times between events, which we use for double-difference event relocation in a 3D seismic velocity model. Most aftershocks are deeper than the mainshock slip, and most occur west of the mapped surface rupture. While the mainshock coseismic and postseismic slip appears to have occurred on the near-vertical, strike-slip West Napa fault, many of the aftershocks occur in a complex zone of secondary faulting. Earthquake locations in the main aftershock zone, near the mainshock hypocenter, delineate multiple dipping secondary faults. Composite focal mechanisms indicate strike-slip and oblique-reverse faulting on the secondary features. The secondary faults were moved towards failure by Coulomb stress changes from the mainshock slip. Clusters of aftershocks north and south of the main aftershock zone exhibit vertical strike-slip faulting more consistent with the West Napa Fault. The northern aftershocks correspond to the area of largest mainshock coseismic slip, while the main aftershock zone is adjacent to the fault area that has primarily slipped postseismically. Unlike most creeping faults, the zone of postseismic slip does not appear to contain embedded stick-slip patches that would have produced on-fault aftershocks. The lack of stick-slip patches along this portion of the fault may contribute to the low productivity of the South Napa aftershock sequence.

  10. Aftershocks and triggered events of the Great 1906 California earthquake

    USGS Publications Warehouse

    Meltzner, A.J.; Wald, D.J.

    2003-01-01

    The San Andreas fault is the longest fault in California and one of the longest strike-slip faults in the world, yet little is known about the aftershocks following the most recent great event on the San Andreas, the Mw 7.8 San Francisco earthquake on 18 April 1906. We conducted a study to locate and to estimate magnitudes for the largest aftershocks and triggered events of this earthquake. We examined existing catalogs and historical documents for the period April 1906 to December 1907, compiling data on the first 20 months of the aftershock sequence. We grouped felt reports temporally and assigned modified Mercalli intensities for the larger events based on the descriptions judged to be the most reliable. For onshore and near-shore events, a grid-search algorithm (derived from empirical analysis of modern earthquakes) was used to find the epicentral location and magnitude most consistent with the assigned intensities. For one event identified as far offshore, the event's intensity distribution was compared with those of modern events, in order to contrain the event's location and magnitude. The largest aftershock within the study period, an M ???6.7 event, occurred ???100 km west of Eureka on 23 April 1906. Although not within our study period, another M ???6.7 aftershock occurred near Cape Mendocino on 28 October 1909. Other significant aftershocks included an M ???5.6 event near San Juan Bautista on 17 May 1906 and an M ???6.3 event near Shelter Cove on 11 August 1907. An M ???4.9 aftershock occurred on the creeping segment of the San Andreas fault (southeast of the mainshock rupture) on 6 July 1906. The 1906 San Francisco earthquake also triggered events in southern California (including separate events in or near the Imperial Valley, the Pomona Valley, and Santa Monica Bay), in western Nevada, in southern central Oregon, and in western Arizona, all within 2 days of the mainshock. Of these trigerred events, the largest were an M ???6.1 earthquake near Brawley

  11. Aftershock process of Chu earthquake

    NASA Astrophysics Data System (ADS)

    Emanov, Alexey; Leskova, Ekaterina; Emanov, Aleksandr; Kolesnikov, Yury; Fateyev, Aleksandr

    2010-05-01

    Chu earthquake of 27.09.2003, Ms =7.3 occurred in joint zone of Chagan-Uzun raised block with North-Chu ridge. Epicentral zone cover a series of contrast geological structures of Mountain Altai (two hollows: Chu and Kurai, devided by Chagan-Uzun block, and mountain range, franking them,: Nort-Chu, Kurai, South-Chu, Aigulak). The seismic process occurred in zone of expressive block structure, and this is embodied in its space-time structure. The high accuracy of hypocental construction in epicenral zone of Chu earthquake is provided by local network of seismological stations (fifteen stations) and experiments with temporary station network in this zone (20-50 stations). The first stage of aftershock process formation is connected with Chagan-Uzun block. The second large aftershock of 01.10.2003 changes cardinally spatial pattern of aftershock process. Instead of round area an elongate aftershock area is formed along boundary of Kurai hollow with North-Chu ridge. In the following process spread out in north-west angle of Chu hollow. Linear elongate aftershock area is subdivided into four elements. The north-west element has form of horse tail, starting as a line in area of outlet of Aktru River in Kurai hollow, and ramifies short of settlement Chibit. Slope of plane of aftershocks for this element is determined from hollow under North-Chu ridge. The seismic process is going not along boundary hollow-mountain ridge, but displaced in hollow side. The central part of element - this are mainly horizontal shift faults, and outlying districts have pronounced vertical components of displacements. The second element stretches from Aktru River to Chagan-Uzun block. Earthquake epicenters in plane make two curved parallel lines. In the angle of Chagan-Uzun block are ceiling amount of uplifts. The third element is the boundary of Chagan-Uzun block with North-Chu ridge. The forth element is formed by aftershocks, leaving in range of Chu hollow. Areal dispersal of earthquakes is

  12. The Importance of Small Aftershocks for Earthquake Triggering

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Meier, M.; Werner, M. J.; Wiemer, S.

    2011-12-01

    The thousands of aftershocks after large earthquakes illustrate how the stress state of the lithosphere is regionally altered during large events. To date, however, the exact physical mechanism for this triggering remains unclear. A popular and intuitive model is Coulomb stress change theory, which quantifies how the static stress changes induced by nearby earthquakes alter the likelihood of brittle failure on potential aftershock fault planes. Several assumptions are made to facilitate the calculation of stress changes; here, we challenge the typical neglect of the stress changes induced by the small but numerous and strongly clustered aftershocks during the evolution of the sequence. Both empirical observations and a simple scaling law suggest that this neglect may not be justified. In this study, we estimate the evolution of Coulomb stress changes during the 1992 Mw 7.3 Landers earthquake sequence by including the effect of the detected aftershocks with available focal mechanisms. Our calculations suggest that the small events strongly dominate static stress redistribution in isolated secondary aftershock clusters. However, their relative importance strongly varies over space and is, on average, smaller than the mainshock's. Nonetheless, neglecting the cumulative effect of small earthquakes can locally substantially alter the estimated stress change. We also find that the overall percentage of aftershocks in agreement with Coulomb triggering decreases upon the inclusion of the small events. However, the uncertainties in stress change calculations are even larger for small earthquakes than for a mainshock: focal mechanisms are incomplete and poorly constrained; a fault plane must be inferred; slips needs to be estimated from local magnitude; etc. To examine the role of the uncertainties in the available focal mechanisms, we generate perturbed catalogs based on estimated focal mechanism uncertainties and attempt to quantify their significance for the Coulomb

  13. What Controls the Duration of Aftershocks, and Why It Matters for Probabilistic Seismic Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Stein, R. S.; Toda, S.

    2014-12-01

    A fundamental problem confronting hazard modelers in slowly deforming regions such as the central and eastern United States, Australia, and inner Honshu, is whether the current seismicity represents the steady state earthquake potential, or is instead a decaying potential associated with past mainshocks. If the current seismicity were composed of long-lived aftershock sequences, it might then be anti-correlated with the next large earthquakes. While aftershock productivity is known to be a property of the mainshock magnitude, aftershock duration (the time until the aftershock rate decays to the pre-mainshock rate) should, according to rate/state friction theory of Dieterich[1994], be inversely proportional to the fault stressing rate. If so, slowly deforming regions would be expected to sustain long aftershock sequences. Most tests have supported the Dieterich hypothesis, but use ambiguous proxies for the fault stressing rate, such as the mainshock recurrence interval. Here we test the hypothesis by examining off-fault aftershocks of the 2011 M=9 Tohoku-oki rupture up to 250 km from the source, as well as near-fault aftershocks of six large Japanese mainshocks, sampling a range of receiver faults, from thrusts slipping 80 mm/yr, to normal faults slipping 0.1 mm/yr. We find that aftershock sequences lasted a month on the fastest-slipping faults, have durations of 10-100 years on faults slipping 1-10 mm/yr, and are projected to persist for at least 200 years on the slowest faults. Although the Omori decay exponent for short and long sequences is similar, the very different background rates account for the duration differences. If the stressing rate is generally proportional to fault slip rate, then aftershock durations indeed support the Dieterich hypothesis. The test means that the hazard associated with aftershocks depends on local tectonic conditions rather than on the mainshock magnitude alone. Because declustering approaches do not remove such long

  14. Magnitude estimates of two large aftershocks of the 16 December 1811 New Madrid earthquake

    USGS Publications Warehouse

    Hough, S.E.; Martin, S.

    2002-01-01

    The three principal New Madrid mainshocks of 1811-1812 were followed by extensive aftershock sequences that included numerous felt events. Although no instrumental data are available for either the mainshocks or the aftershocks, available historical accounts do provide information that can be used to estimate magnitudes and locations for the large events. In this article we investigate two of the largest aftershocks: one near dawn following the first mainshock on 16 December 1811, and one near midday on 17 December 1811. We reinterpret original felt reports to obtain a set of 48 and 20 modified Mercalli intensity values of the two aftershocks, respectively. For the dawn aftershock, we infer a Mw of approximately 7.0 based on a comparison of its intensities with those of the smallest New Madrid mainshock. Based on a detailed account that appears to describe near-field ground motions, we further propose a new fault rupture scenario for the dawn aftershock. We suggest that the aftershock had a thrust mechanism and occurred on a southeastern limb of the Reelfoot fault. For the 17 December 1811 aftershock, we infer a Mw of approximately 6.1 ?? 0.2. This value is determined using the method of Bakun et al. (2002), which is based on a new calibration of intensity versus distance for earthquakes in central and eastern North America. The location of this event is not well constrained, but the available accounts suggest an epicenter beyond the southern end of the New Madrid Seismic Zone.

  15. Short-term earthquake probabilities during the L'Aquila earthquake sequence in central Italy, 2009

    NASA Astrophysics Data System (ADS)

    Falcone, G.; Murru, M.; Zhuang, J.; Console, R.

    2014-12-01

    We compare the forecasting performance of several statistical models, which are used to describe the occurrence process of earthquakes, in forecasting the short-term earthquake probabilities during the occurrence of the L'Aquila earthquake sequence in central Italy, 2009. These models include the Proximity to Past Earthquakes (PPE) model and different versions of the Epidemic Type Aftershock Sequence (ETAS) model. We used the information gains corresponding to the Poisson and binomial scores to evaluate the performance of these models. It is shown that all ETAS models work better than the PPE model. However, when comparing the different types of the ETAS models, the one with the same fixed exponent coefficient α = 2.3 for both the productivity function and the scaling factor in the spatial response function, performs better in forecasting the active aftershock sequence than the other models with different exponent coefficients when the Poisson score is adopted. These latter models perform only better when a lower magnitude threshold of 2.0 and the binomial score are used. The reason is likely due to the fact that the catalog does not contain an event of magnitude similar to the L'Aquila main shock (Mw 6.3) in the training period (April 16, 2005 to March 15, 2009). In this case the a-value is under-estimated and thus also the forecasted seismicity is underestimated when the productivity function is extrapolated to high magnitudes. These results suggest that the training catalog used for estimating the model parameters should include earthquakes of similar magnitudes as the main shock when forecasting seismicity is during an aftershock sequences.

  16. International Aftershock Forecasting: Lessons from the Gorkha Earthquake

    NASA Astrophysics Data System (ADS)

    Michael, A. J.; Blanpied, M. L.; Brady, S. R.; van der Elst, N.; Hardebeck, J.; Mayberry, G. C.; Page, M. T.; Smoczyk, G. M.; Wein, A. M.

    2015-12-01

    Following the M7.8 Gorhka, Nepal, earthquake of April 25, 2015 the USGS issued a series of aftershock forecasts. The initial impetus for these forecasts was a request from the USAID Office of US Foreign Disaster Assistance to support their Disaster Assistance Response Team (DART) which coordinated US Government disaster response, including search and rescue, with the Government of Nepal. Because of the possible utility of the forecasts to people in the region and other response teams, the USGS released these forecasts publicly through the USGS Earthquake Program web site. The initial forecast used the Reasenberg and Jones (Science, 1989) model with generic parameters developed for active deep continental regions based on the Garcia et al. (BSSA, 2012) tectonic regionalization. These were then updated to reflect a lower productivity and higher decay rate based on the observed aftershocks, although relying on teleseismic observations, with a high magnitude-of-completeness, limited the amount of data. After the 12 May M7.3 aftershock, the forecasts used an Epidemic Type Aftershock Sequence model to better characterize the multiple sources of earthquake clustering. This model provided better estimates of aftershock uncertainty. These forecast messages were crafted based on lessons learned from the Christchurch earthquake along with input from the U.S. Embassy staff in Kathmandu. Challenges included how to balance simple messaging with forecasts over a variety of time periods (week, month, and year), whether to characterize probabilities with words such as those suggested by the IPCC (IPCC, 2010), how to word the messages in a way that would translate accurately into Nepali and not alarm the public, and how to present the probabilities of unlikely but possible large and potentially damaging aftershocks, such as the M7.3 event, which had an estimated probability of only 1-in-200 for the week in which it occurred.

  17. Aftershock communication during the Canterbury Earthquakes, New Zealand: implications for response and recovery in the built environment

    USGS Publications Warehouse

    Julia Becker,; Wein, Anne; Sally Potter,; Emma Doyle,; Ratliff, Jamie L.

    2015-01-01

    On 4 September 2010, a Mw7.1 earthquake occurred in Canterbury, New Zealand. Following the initial earthquake, an aftershock sequence was initiated, with the most significant aftershock being a Mw6.3 earthquake occurring on 22 February 2011. This aftershock caused severe damage to the city of Christchurch and building failures that killed 185 people. During the aftershock sequence it became evident that effective communication of aftershock information (e.g., history and forecasts) was imperative to assist with decision making during the response and recovery phases of the disaster, as well as preparedness for future aftershock events. As a consequence, a joint JCDR-USGS research project was initiated to investigate: • How aftershock information was communicated to organisations and to the public; • How people interpreted that information; • What people did in response to receiving that information; • What information people did and did not need; and • What decision-making challenges were encountered relating to aftershocks. Research was conducted by undertaking focus group meetings and interviews with a range of information providers and users, including scientists and science advisors, emergency managers and responders, engineers, communication officers, businesses, critical infrastructure operators, elected officials, and the public. The interviews and focus group meetings were recorded and transcribed, and key themes were identified. This paper focuses on the aftershock information needs for decision-making about the built environment post-earthquake, including those involved in response (e.g., for building assessment and management), recovery/reduction (e.g., the development of new building standards), and readiness (e.g. between aftershocks). The research has found that the communication of aftershock information varies with time, is contextual, and is affected by interactions among roles, by other information, and by decision objectives. A number

  18. Larger aftershocks happen farther away: nonseparability of magnitude and spatial distributions of aftershocks

    USGS Publications Warehouse

    Van Der Elst, Nicholas; Shaw, Bruce E.

    2015-01-01

    Aftershocks may be driven by stress concentrations left by the main shock rupture or by elastic stress transfer to adjacent fault sections or strands. Aftershocks that occur within the initial rupture may be limited in size, because the scale of the stress concentrations should be smaller than the primary rupture itself. On the other hand, aftershocks that occur on adjacent fault segments outside the primary rupture may have no such size limitation. Here we use high-precision double-difference relocated earthquake catalogs to demonstrate that larger aftershocks occur farther away than smaller aftershocks, when measured from the centroid of early aftershock activity—a proxy for the initial rupture. Aftershocks as large as or larger than the initiating event nucleate almost exclusively in the outer regions of the aftershock zone. This observation is interpreted as a signature of elastic rebound in the earthquake catalog and can be used to improve forecasting of large aftershocks.

  19. Nonlinear Viscoelastic Stress Transfer As a Possible Aftershock Triggering Mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Shcherbakov, R.

    2014-12-01

    The earthquake dynamics can be modelled by employing the spring-block system [Burridge and Knopoff, 1967]. In this approach the earthquake fault is modelled by an array of blocks coupling the loading plate and the lower plate. The dynamics of the system is governed by the system of equations of motion for each block. It is possible to map this system into a cellular automata model, where the stress acting on each block is increased in each time step, and the failing process (frictional slip) is described by stress transfer rules [Olami et al, 1992]. The OFC model produces a power-law distribution for avalanche statistics but it is not capable of producing robust aftershock sequences which follow Omori's law.We propose a nonlinear viscoelastic stress transfer mechanism in the aftershock triggering. In a basic spring-block model setting, we introduce the nonlinear viscoelastic stress transfer between neighbouring blocks, as well as between blocks and the top loading plate. The shear stress of the viscous component is a power-law function of the velocity gradient with an exponent smaller or greater than 1 for the nonlinear viscoelasticity, or 1 for the linear case. The stress transfer function of this nonlinear viscoelastic model has a power-law time-dependent form. It features an instantaneous stress transmission triggering an instantaneous avalanche, which is the same as the original spring-block model; and a power-law relaxation term, which could trigger further aftershocks. We incorporate this nonlinear viscoelasticity mechanism in a lattice cellular automata model. The model could exhibit both the Gutenberg-Richter scaling for the frequency-magnitude distribution and a power-law time decay of aftershocks, which is in accordance with Omori's law. Our study suggests that the stress transfer function may play an important role in the aftershock triggering. We have found that the time decay curve of aftershocks is affected by the shape of the stress transfer function

  20. Felt reports and intensity assignments for aftershocks and triggered events of the great 1906 California earthquake

    USGS Publications Warehouse

    Meltzner, Aron J.; Wald, David J.

    2002-01-01

    The San Andreas fault is the longest fault in California and one of the longest strikeslip faults in the world, yet little is known about the aftershocks following the most recent great event on the San Andreas, the M 7.8 San Francisco earthquake, on 18 April 1906. This open-file report is a compilation of first-hand accounts (felt reports) describing aftershocks and triggered events of the 1906 earthquake, for the first twenty months of the aftershock sequence (through December 1907). The report includes a chronological catalog. For the larger events, Modified Mercalli intensities (MMIs) have been assigned based on the descriptions judged to be the most reliable.

  1. Spatial patterns of aftershocks of shallow focus earthquakes in California and implications for deep focus earthquakes

    USGS Publications Warehouse

    Michael, A.J.

    1989-01-01

    Previous workers have pioneered statistical techniques to study the spatial distribution of aftershocks with respect to the focal mechanism of the main shock. Application of these techniques to deep focus earthquakes failed to show clustering of aftershocks near the nodal planes of the main shocks. To better understand the behaviour of these statistics, this study applies them to the aftershocks of six large shallow focus earthquakes in California (August 6, 1979, Coyote Lake; May 2, 1983, Coalinga; April 24, 1984, Morgan Hill; August 4, 1985, Kettleman Hills; July 8, 1986, North Palm Springs; and October 1, 1987, Whittier Narrows). The large number of aftershocks accurately located by dense local networks allows us to treat these aftershock sequences individually instead of combining them, as was done for the deep earthquakes. The results for individual sequences show significant clustering about the closest nodal plane and the strike direction for five of the sequences and about the presumed fault plane for all six sequences. This implies that the previously developed method does work properly. The reasons for the lack of clustering about main shock nodal planes for deep focus aftershocks are discussed. -from Author

  2. Self-similar aftershock rates

    NASA Astrophysics Data System (ADS)

    Davidsen, Jörn; Baiesi, Marco

    2016-08-01

    In many important systems exhibiting crackling noise—an intermittent avalanchelike relaxation response with power-law and, thus, self-similar distributed event sizes—the "laws" for the rate of activity after large events are not consistent with the overall self-similar behavior expected on theoretical grounds. This is particularly true for the case of seismicity, and a satisfying solution to this paradox has remained outstanding. Here, we propose a generalized description of the aftershock rates which is both self-similar and consistent with all other known self-similar features. Comparing our theoretical predictions with high-resolution earthquake data from Southern California we find excellent agreement, providing particularly clear evidence for a unified description of aftershocks and foreshocks. This may offer an improved framework for time-dependent seismic hazard assessment and earthquake forecasting.

  3. Self-similar aftershock rates.

    PubMed

    Davidsen, Jörn; Baiesi, Marco

    2016-08-01

    In many important systems exhibiting crackling noise-an intermittent avalanchelike relaxation response with power-law and, thus, self-similar distributed event sizes-the "laws" for the rate of activity after large events are not consistent with the overall self-similar behavior expected on theoretical grounds. This is particularly true for the case of seismicity, and a satisfying solution to this paradox has remained outstanding. Here, we propose a generalized description of the aftershock rates which is both self-similar and consistent with all other known self-similar features. Comparing our theoretical predictions with high-resolution earthquake data from Southern California we find excellent agreement, providing particularly clear evidence for a unified description of aftershocks and foreshocks. This may offer an improved framework for time-dependent seismic hazard assessment and earthquake forecasting.

  4. Search for B Meson Decays to eta' eta' K

    SciTech Connect

    Aubert, B.

    2006-05-05

    The authors describe searches for decays of B mesons to the charmless final states {eta}'{eta}'K. The data consist of 228 million B{bar B} pairs produced in e{sup +}e{sup -} annihilation, collected with the BABAR detector at the Stanford Linear Accelerator Center. The 90% confidence level upper limits for the branching fractions are {Beta}(B{sup 0} {yields} {eta}'{eta}'K{sup 0}) < 31 x 10{sup -6} and {Beta}(B{sup +} {yields} {eta}'{eta}'K{sup +}) < 25 x 10{sup -6}.

  5. Aftershocks illuminate the 2011 Mineral, Virginia, earthquake causative fault zone and nearby active faults

    USGS Publications Warehouse

    Horton, Jr., J. Wright; Shah, Anjana K.; McNamara, Daniel E.; Snyder, Stephen L.; Carter, Aina M

    2015-01-01

    Deployment of temporary seismic stations after the 2011 Mineral, Virginia (USA), earthquake produced a well-recorded aftershock sequence. The majority of aftershocks are in a tabular cluster that delineates the previously unknown Quail fault zone. Quail fault zone aftershocks range from ~3 to 8 km in depth and are in a 1-km-thick zone striking ~036° and dipping ~50°SE, consistent with a 028°, 50°SE main-shock nodal plane having mostly reverse slip. This cluster extends ~10 km along strike. The Quail fault zone projects to the surface in gneiss of the Ordovician Chopawamsic Formation just southeast of the Ordovician–Silurian Ellisville Granodiorite pluton tail. The following three clusters of shallow (<3 km) aftershocks illuminate other faults. (1) An elongate cluster of early aftershocks, ~10 km east of the Quail fault zone, extends 8 km from Fredericks Hall, strikes ~035°–039°, and appears to be roughly vertical. The Fredericks Hall fault may be a strand or splay of the older Lakeside fault zone, which to the south spans a width of several kilometers. (2) A cluster of later aftershocks ~3 km northeast of Cuckoo delineates a fault near the eastern contact of the Ordovician Quantico Formation. (3) An elongate cluster of late aftershocks ~1 km northwest of the Quail fault zone aftershock cluster delineates the northwest fault (described herein), which is temporally distinct, dips more steeply, and has a more northeastward strike. Some aftershock-illuminated faults coincide with preexisting units or structures evident from radiometric anomalies, suggesting tectonic inheritance or reactivation.

  6. Foreshock Sequences and Short-Term Earthquake Predictability on East Pacific Rise Transform Faults

    NASA Astrophysics Data System (ADS)

    McGuire, J. J.; Boettcher, M. S.; Jordan, T. H.

    2004-12-01

    A predominant view of continental seismicity postulates that all earthquakes initiate in a similar manner regardless of their eventual size and that earthquake triggering can be described by an Endemic Type Aftershock Sequence (ETAS) model [e.g. Ogata, 1988, Helmstetter and Sorenette 2002]. These null hypotheses cannot be rejected as an explanation for the relative abundances of foreshocks and aftershocks to large earthquakes in California [Helmstetter et al., 2003]. An alternative location for testing this hypothesis is mid-ocean ridge transform faults (RTFs), which have many properties that are distinct from continental transform faults: most plate motion is accommodated aseismically, many large earthquakes are slow events enriched in low-frequency radiation, and the seismicity shows depleted aftershock sequences and high foreshock activity. Here we use the 1996-2001 NOAA-PMEL hydroacoustic seismicity catalog for equatorial East Pacific Rise transform faults to show that the foreshock/aftershock ratio is two orders of magnitude greater than the ETAS prediction based on global RTF aftershock abundances. We can thus reject the null hypothesis that there is no fundamental distinction between foreshocks, mainshocks, and aftershocks on RTFs. We further demonstrate (retrospectively) that foreshock sequences on East Pacific Rise transform faults can be used to achieve statistically significant short-term prediction of large earthquakes (magnitude ≥ 5.4) with good spatial (15-km) and temporal (1-hr) resolution using the NOAA-PMEL catalogs. Our very simplistic approach produces a large number of false alarms, but it successfully predicts the majority (70%) of M≥5.4 earthquakes while covering only a tiny fraction (0.15%) of the total potential space-time volume with alarms. Therefore, it achieves a large probability gain (about a factor of 500) over random guessing, despite not using any near field data. The predictability of large EPR transform earthquakes suggests

  7. {eta}-{eta}{sup '}--glue Mixing from the Chiral Lagrangian

    SciTech Connect

    Mathieu, Vincent; Vento, Vicente

    2011-05-23

    The {eta}-{eta}{sup '} mixing from the chiral Lagrangian is reviewed. It is shown how the Feldman-Kroll-Stech ansatz can be derived from the chiral Lagrangian. The inclusion of the glueball is also discussed.

  8. Spatiotemporal Aftershock Complexity in the November 8th 2011, Prague, OK Earthquake: Insights into the Role of Damage Zones in the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Savage, H. M.; Keranen, K. M.; Schaff, D. P.; Dieck, C. C. M.

    2014-12-01

    Although most faults are surrounded by a halo of fractured rock known as a damage zone, it is not clear what role damage zones play during the seismic cycle on mature faults. Here, we present a superbly-located foreshock-mainshock-aftershock sequence surrounding the November 8, M5 Prague Oklahoma earthquake, which demonstrates most aftershocks are located within the damage zone surrounding the fault. The 2011 Prague, Oklahoma sequence included three M5+ earthquakes along three different faults over a three-day period. The November 8th event was third in the sequence and captured with an array of nine seismometers with ~2 km spacing, allowing for precise event location. We located more than 1000 foreshocks and aftershocks within a 14 hour time window, and relocated these aftershocks using waveform cross correlation and HypoDD. Because of the location precision, we can use these events to investigate spatial and temporal complexity of the foreshock and aftershock sequences. First, we compare the aftershock distribution to fracture distributions within damage zones surrounding faults. The aftershock sequence localizes to a reasonable damage zone thickness given the rupture length of the event, according to previously documented scaling between fault length and damage zone thickness. Furthermore, the aftershock density is constant within the fault zone, but falls off precipitously outside of the damage zone. Most aftershocks in this sequence occur within the first hour after the mainshock, and there is some indication of temporal migration of aftershocks away from the fault. Finally, foreshock activity along this fault was limited to the intersection with the fault that had hosted a M5.7 earthquake two days prior. Because this earthquake is potentially linked to fluid waste disposal, we interpret our results in terms of hydraulic pressure changes during the foreshock-mainshock-aftershock sequence.

  9. Delayed Triggering of Early Aftershocks by Multiple Waves Circling the Earth

    NASA Astrophysics Data System (ADS)

    Sullivan, B.; Peng, Z.

    2011-12-01

    It is well known that direct surface waves of large earthquakes are capable of triggering shallow earthquakes and deep tremor at long-range distances. Recent studies have shown that multiple surface waves circling the earth could also remotely trigger microearthquakes [Peng et al., 2011]. However, it is still not clear whether multiple surface waves returning back to the mainshock epicenters could also trigger/modulate aftershock activities. Here we conduct a study to search for evidence of such triggering by systematically examining aftershock activities of 20 magnitude-8-or-higher earthquakes since 1990 that are capable of producing surface waves circling the globe repeatedly. We compute the magnitude of completeness for each sequence, and stack all the sequences together to compute the seismicity and moment rates by sliding data windows. The sequences are also shuffled randomly and these rates are compared to the actual data as well as synthetic aftershock sequences to estimate the statistical significance of the results. We also compare them with varying stacks of magnitude 7-8 earthquakes to better understand the possible biases that could be introduced by our rate calculation method. Our preliminary results suggest that there is some moderate increase of early aftershock activity after a few hours when the surface waves return to the epicentral region. However, we could not completely rule out the possibility that such an increase is purely due to random fluctuations of aftershocks or caused by missing aftershocks in the first few hours after the mainshock. We plan to examine continuous waveform data of selected sequences to obtain a better understanding of the multiple surface waves and aftershock activity.

  10. Aftershock decay, productivity, and stress rates in Hawaii: Indicators of temperature and stress from magma sources

    USGS Publications Warehouse

    Klein, Fred W.; Wright, Tom; Nakata, Jennifer

    2006-01-01

    We examined dozens of aftershock sequences in Hawaii in terms of Gutenberg-Richter and modified Omori law parameters. We studied p, the rate of aftershock decay; Ap, the aftershock productivity, defined as the observed divided by the expected number of aftershocks; and c, the time delay when aftershock rates begin to fall. We found that for earthquakes shallower than 20 km, p values >1.2 are near active magma centers. We associate this high decay rate with higher temperatures and faster stress relaxation near magma reservoirs. Deep earthquakes near Kilauea's inferred magma transport path show a range of p values, suggesting the absence of a large, deep magma reservoir. Aftershock productivity is >4.0 for flank earthquakes known to be triggered by intrusions but is normal (0.25 to 4.0) for isolated main shocks. We infer that continuing, post-main shock stress from the intrusion adds to the main shock's stress step and causes higher Ap. High Ap in other zones suggests less obvious intrusions and pulsing magma pressure near Kilauea's feeding conduit. We calculate stress rates and stress rate changes from pre-main shock and aftershock rates. Stress rate increased after many intrusions but decreased after large M7–8 earthquakes. Stress rates are highest in the seismically active volcano flanks and lowest in areas far from volcanic centers. We found sequences triggered by intrusions tend to have high Ap, high (>0.10 day) c values, a stress rate increase, and sometimes a peak in aftershock rate hours after the main shock. We interpret these values as indicating continuing intrusive stress after the main shock.

  11. MOLECULES IN {eta} CARINAE

    SciTech Connect

    Loinard, Laurent; Menten, Karl M.; Guesten, Rolf; Zapata, Luis A.; Rodriguez, Luis F.

    2012-04-10

    We report the detection toward {eta} Carinae of six new molecules, CO, CN, HCO{sup +}, HCN, HNC, and N{sub 2}H{sup +}, and of two of their less abundant isotopic counterparts, {sup 13}CO and H{sup 13}CN. The line profiles are moderately broad ({approx}100 km s{sup -1}), indicating that the emission originates in the dense, possibly clumpy, central arcsecond of the Homunculus Nebula. Contrary to previous claims, CO and HCO{sup +} do not appear to be underabundant in {eta} Carinae. On the other hand, molecules containing nitrogen or the {sup 13}C isotope of carbon are overabundant by about one order of magnitude. This demonstrates that, together with the dust responsible for the dimming of {eta} Carinae following the Great Eruption, the molecules detected here must have formed in situ out of CNO-processed stellar material.

  12. Observation of D+ --> etae + nue.

    PubMed

    Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Ernst, J; Ecklund, K M; Severini, H; Love, W; Savinov, V; Aquines, O; Lopez, A; Mehrabyan, S; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Butt, J; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Potlia, V; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Selen, M; White, E J; Wiss, J

    2009-02-27

    Using a 281 pb-1 data sample collected at the psi(3770) resonance with the CLEO-c detector at the Cornell Electron Storage Ring, we report the first observation of D+ --> etae + nue. We also set upper limits for D+ --> eta'e + nue and D + --> varphie + nue that are about 2 orders of magnitude more restrictive than those obtained by previous experiments.

  13. Analysing the 1811-1812 New Madrid earthquakes with recent instrumentally recorded aftershocks

    USGS Publications Warehouse

    Mueller, K.; Hough, S.E.; Bilham, R.

    2004-01-01

    Although dynamic stress changes associated with the passage of seismic waves are thought to trigger earthquakes at great distances, more than 60 per cent of all aftershocks appear to be triggered by static stress changes within two rupture lengths of a mainshock. The observed distribution of aftershocks may thus be used to infer details of mainshock rupture geometry. Aftershocks following large mid-continental earthquakes, where background stressing rates are low, are known to persist for centuries, and models based on rate-and-state friction laws provide theoretical support for this inference. Most past studies of the New Madrid earthquake sequence have indeed assumed ongoing microseismicity to be a continuing aftershock sequence. Here we use instrumentally recorded aftershock locations and models of elastic stress change to develop a kinematically consistent rupture scenario for three of the four largest earthquakes of the 1811-1812 New Madrid sequence. Our results suggest that these three events occurred on two contiguous faults, producing lobes of increased stress near fault intersections and end points, in areas where present-day microearthquakes have been hitherto interpreted as evidence of primary mainshock rupture. We infer that the remaining New Madrid mainshock may have occurred more than 200 km north of this region in the Wabash Valley of southern Indiana and Illinois-an area that contains abundant modern microseismicity, and where substantial liquefaction was documented by historic accounts. Our results suggest that future large midplate earthquake sequences may extend over a much broader region than previously suspected.

  14. eta. sub 6 Production

    SciTech Connect

    Kang, Kyungsik . Dept. of Physics); White, A.R. )

    1991-10-01

    We suggest that a short-lived axion-like particle {eta}{sub 6} with mass around 30 GeV should be produced diffractively at hadron colliders. This is the lightest particle belonging to a new color- sextet quark sector of QCD which could be responsible for dynamical symmetry breaking of the electroweak interaction.

  15. Forecasting aftershock activity: 1. Adaptive estimates based on the Omori and Gutenberg-Richter laws

    NASA Astrophysics Data System (ADS)

    Baranov, S. V.; Shebalin, P. N.

    2016-05-01

    The method for forecasting the intensity of the aftershock processes after strong earthquakes in different magnitude intervals is considered. The method is based on the joint use of the time model of the aftershock process and the Gutenberg-Richter law. The time model serves for estimating the intensity of the aftershock flow with a magnitude larger than or equal to the magnitude of completeness. The Gutenberg-Richter law is used for magnitude scaling. The suggested approach implements successive refinement of the parameters of both components of the method, which is the main novelty distinguishing it from the previous ones. This approach, to a significant extent, takes into account the variations in the parameters of the frequency-magnitude distribution, which often show themselves by the decreasing fraction of stronger aftershocks with time. Testing the method on eight aftershock sequences in the regions with different patterns of seismicity demonstrates the high probability of successful forecasts. The suggested technique can be employed in seismological monitoring centers for forecasting the aftershock activity of a strong earthquake based on the results of operational processing.

  16. Aftershock seismicity of the 2010 Maule Mw=8.8 Chile, earthquake: Correlation between co-seismic slip models and aftershock distribution?

    USGS Publications Warehouse

    Rietbrock, A.; Ryder, I.; Hayes, G.; Haberland, C.; Comte, D.; Roecker, S.

    2012-01-01

    The 27 February 2010 Maule, Chile (Mw=8.8) earthquake is one of the best instrumentally observed subduction zone megathrust events. Here we present locations, magnitudes and cumulative equivalent moment of the first -2 months of aftershocks, recorded on a temporary network deployed within 2 weeks of the occurrence of the mainshock. Using automatically-determined onset times and a back projection approach for event association, we are able to detect over 30,000 events in the time period analyzed. To further increase the location accuracy, we systematically searched for potential S-wave arrivals and events were located in a regional 2D velocity model. Additionally, we calculated regional moment tensors to gain insight into the deformation history of the aftershock sequence. We find that the aftershock seismicity is concentrated between 40 and 140 km distance from the trench over a depth range of 10 to 35 km. Focal mechanisms indicate a predominance of thrust faulting, with occasional normal faulting events. Increased activity is seen in the outer-rise region of the Nazca plate, predominantly in the northern part of the rupture area. Further down-dip, a second band of clustered seismicity, showing mainly thrust motion, is located at depths of 40–45 km. By comparing recent published mainshock source inversions with our aftershock distribution, we discriminate slip models based on the assumption that aftershocks occur in areas of rapid transition between high and low slip, surrounding high-slip regions of the mainshock.

  17. Stress history controls the spatial pattern of aftershocks: case studies from strike-slip earthquakes

    NASA Astrophysics Data System (ADS)

    Utkucu, Murat; Durmuş, Hatice; Nalbant, Süleyman

    2016-09-01

    Earthquake ruptures perturb stress within the surrounding crustal volume and as it is widely accepted now these stress perturbations strongly correlates with the following seismicity. Here we have documented five cases of the mainshock-aftershock sequences generated by the strike-slip faults from different tectonic environments of world in order to demonstrate that the stress changes resulting from large preceding earthquakes decades before effect spatial distribution of the aftershocks of the current mainshocks. The studied mainshock-aftershock sequences are the 15 October 1979 Imperial Valley earthquake (Mw = 6.4) in southern California, the 27 November 1979 Khuli-Boniabad (Mw = 7.1), the 10 May 1997 Qa'enat (Mw = 7.2) and the 31 March 2006 Silakhor (Mw = 6.1) earthquakes in Iran and the 13 March 1992 Erzincan earthquake (Mw = 6.7) in Turkey. In the literature, we have been able to find only these mainshocks that are mainly characterized by dense and strong aftershock activities along and beyond the one end of their ruptures while rare aftershock occurrences with relatively lower magnitude reported for the other end of their ruptures. It is shown that the stress changes resulted from earlier mainshock(s) that are close in both time and space might be the reason behind the observed aftershock patterns. The largest aftershocks of the mainshocks studied tend to occur inside the stress-increased lobes that were also stressed by the background earthquakes and not to occur inside the stress-increased lobes that fall into the stress shadow of the background earthquakes. We suggest that the stress shadows of the previous mainshocks may persist in the crust for decades to suppress aftershock distribution of the current mainshocks. Considering active researches about use of the Coulomb stress change maps as a practical tool to forecast spatial distribution of the upcoming aftershocks for earthquake risk mitigation purposes in near-real time, it is further suggested that

  18. Foreshock and Aftershocks in Simple Earthquake Models

    NASA Astrophysics Data System (ADS)

    Kazemian, J.; Tiampo, K. F.; Klein, W.; Dominguez, R.

    2015-02-01

    Many models of earthquake faults have been introduced that connect Gutenberg-Richter (GR) scaling to triggering processes. However, natural earthquake fault systems are composed of a variety of different geometries and materials and the associated heterogeneity in physical properties can cause a variety of spatial and temporal behaviors. This raises the question of how the triggering process and the structure interact to produce the observed phenomena. Here we present a simple earthquake fault model based on the Olami-Feder-Christensen and Rundle-Jackson-Brown cellular automata models with long-range interactions that incorporates a fixed percentage of stronger sites, or asperity cells, into the lattice. These asperity cells are significantly stronger than the surrounding lattice sites but eventually rupture when the applied stress reaches their higher threshold stress. The introduction of these spatial heterogeneities results in temporal clustering in the model that mimics that seen in natural fault systems along with GR scaling. In addition, we observe sequences of activity that start with a gradually accelerating number of larger events (foreshocks) prior to a main shock that is followed by a tail of decreasing activity (aftershocks). This work provides further evidence that the spatial and temporal patterns observed in natural seismicity are strongly influenced by the underlying physical properties and are not solely the result of a simple cascade mechanism.

  19. Simultaneous estimation of b-values and detection rates of earthquakes for the application to aftershock probability forecasting

    NASA Astrophysics Data System (ADS)

    Katsura, K.; Ogata, Y.

    2004-12-01

    Reasenberg and Jones [Science, 1989, 1994] proposed the aftershock probability forecasting based on the joint distribution [Utsu, J. Fac. Sci. Hokkaido Univ., 1970] of the modified Omori formula of aftershock decay and Gutenberg-Richter law of magnitude frequency, where the respective parameters are estimated by the maximum likelihood method [Ogata, J. Phys. Earth, 1983; Utsu, Geophys Bull. Hokkaido Univ., 1965, Aki, Bull. Earthq. Res. Inst., 1965]. The public forecast has been implemented by the responsible agencies in California and Japan. However, a considerable difficulty in the above procedure is that, due to the contamination of arriving seismic waves, detection rate of aftershocks is extremely low during a period immediately after the main shock, say, during the first day, when the forecasting is most critical for public in the affected area. Therefore, for the forecasting of a probability during such a period, they adopt a generic model with a set of the standard parameter values in California or Japan. For an effective and realistic estimation, I propose to utilize the statistical model introduced by Ogata and Katsura [Geophys. J. Int., 1993] for the simultaneous estimation of the b-values of Gutenberg-Richter law together with detection-rate (probability) of earthquakes of each magnitude-band from the provided data of all detected events, where the both parameters are allowed for changing in time. Thus, by using all detected aftershocks from the beginning of the period, we can estimate the underlying modified Omori rate of both detected and undetected events and their b-value changes, taking the time-varying missing rates of events into account. The similar computation is applied to the ETAS model for complex aftershock activity or regional seismicity where substantial missing events are expected immediately after a large aftershock or another strong earthquake in the vicinity. Demonstrations of the present procedure will be shown for the recent examples

  20. Searches for Charmless Decays B0 --> eta omega, B0 --> eta K0, B+ --> eta rho+, and B+ --> eta' pi+

    SciTech Connect

    Aubert, B

    2004-08-13

    The authors report results for measurements of the decay branching fractions of B{sup 0} to the charmless final states {eta}{omega} and {eta}K{sup 0}, and of B{sup +} to {eta}{rho}{sup +} and {eta}'{pi}{sup +}. None of these decays have been observed definitively. Measurements of the related decays B{sup +} --> {eta}K{sup +}, B{sup +} --> {eta}{pi}{sup +}, and B --> {eta}'K were published recently. Charmless decays with kaons are usually expected to be dominated by b --> s loop (''penguin'') transitions, while b --> u tree transitions are typically larger for the decays with pions and {rho} mesons. However the B --> {eta}K decays are especially interesting since they are suppressed relative to the abundant B --> {eta}'K decays due to destructive interference between two penguin amplitudes. The CKM-suppressed b --> u amplitudes may interfere significantly with penguin amplitudes, possibly leading to large direct CP violation in B{sup +} --> {eta}{rho}{sup +} and B{sup +} --> {eta}'{pi}{sup +}; numerical estimates are available in a few cases. The authors search for such direct CP violation by measuring the charge asymmetry A{sub ch} {equivalent_to} ({Gamma}{sup -} - {Gamma}{sup +})/({Gamma}{sup -} + {Gamma}{sup +}) in the rates {Gamma}{sup {+-}} = {Gamma}(B{sup {+-}} --> f{sup {+-}}), for each observed charged final state f{sup {+-}}. Charmless B decays are becoming useful to test the accuracy of theoretical predictions. Phenomenological fits to the branching fractions and charge asymmetries can be used to understand the importance of tree and penguin contributions and may provide sensitivity to the CKM angle {gamma}.

  1. Modelling aftershock migration and afterslip of the San Juan Bautista, California, earthquake of October 3, 1972

    USGS Publications Warehouse

    Wesson, R.L.

    1987-01-01

    The San Juan Bautista earthquake of October 3, 1972 (ML = 4.8), located along the San Andreas fault in central California, initiated an aftershock sequence characterized by a subtle, but perceptible, tendency for aftershocks to spread to the northwest and southeast along the fault zone. The apparent dimension of the aftershock zone along strike increased from about 7-10 km within a few days of the earthquake, to about 20 km eight months later. In addition, the mainshock initiated a period of accelerated fault creep, which was observed at 2 creep meters situated astride the trace of the San Andreas fault within about 15 km of the epicenter of the mainshock. The creep rate gradually returned to the preearthquake rate after about 3 yrs. Both the spreading of the aftershocks and the rapid surface creep are interpreted as reflecting a period of rapid creep in the fault zone representing the readjustment of stress and displacement following the failure of a "stuck" patch or asperity during the San Juan Bautista earthquake. Numerical calculations suggest that the behavior of the fault zone is consistent with that of a material characterized by a viscosity of about 3.6??1014 P, although the real rheology is likely to be more complicated. In this model, the mainshock represents the failure of an asperity that slips only during earthquakes. Aftershocks represent the failure of second-order asperities which are dragged along by the creeping fault zone. ?? 1987.

  2. Relation between aftershock parameters and geodetic slip models: Case study of the 2010 Mw8.8 Maule (Chile) and the 2011 Mw9.0 Tohoku-oki (Japan) earthquakes

    NASA Astrophysics Data System (ADS)

    Zakharova, Olga; Hainzl, Sebastian; Lange, Dietrich; Enescu, Bogdan

    2016-04-01

    The distribution of local stresses, which represents as well crustal heterogeneity, is the main factor for aftershock triggering. Though neither local stresses nor crustal heterogeneity are known in detail, some information of their distribution is implicitly represented by slip and coupling values on the mainshock fault interface. Taking these two concepts as the main assumptions, we perform a comprehensive analysis of the relation between aftershock characteristics and geodetic measurements on the mainshock fault interface. As a case study we select two megathrust events, the 2010 Mw8.8 Maule (Chile) and the 2011 Mw9.0 Tohoku-oki (Japan), due to the availability of rich aftershock data as well as of geodetic inversion models. To investigate the dependency between these data sets we firstly estimated the aftershock parameter distribution, using a modified ETAS model, which allows to take into account the mainshock rupture extension. Secondly we calculate the correlation between aftershock parameters and coseismic/postseismic slip and interseismic coupling. We find: (1) aftershocks tend to occur in the areas of high coseismic slip gradient, afterslip and interseismic coupling; (2) aftershock seismic moment is released preferentially in regions of large coseismic slip, coseismic slip gradient and interseismically locked areas; (3) anomalous aftershock parameters occur in the areas of reactivated fault systems. Moreover, we show that modified ETAS model outperforms the classical one in the cases when the mainshock rupture extension cannot be neglected and represented as a point source. One of the main restriction in the presented analysis is related to the large uncertainties of the inversion models, which limit the significance of our results.

  3. Tests of remote aftershock triggering by small mainshocks using Taiwan's earthquake catalog

    NASA Astrophysics Data System (ADS)

    Peng, W.; Toda, S.

    2014-12-01

    To understand earthquake interaction and forecast time-dependent seismic hazard, it is essential to evaluate which stress transfer, static or dynamic, plays a major role to trigger aftershocks and subsequent mainshocks. Felzer and Brodsky focused on small mainshocks (2≤M<3) and their aftershocks, and then argued that only dynamic stress change brings earthquake-to-earthquake triggering, whereas Richards-Dingers et al. (2010) claimed that those selected small mainshock-aftershock pairs were not earthquake-to-earthquake triggering but simultaneous occurrence of independent aftershocks following a larger earthquake or during a significant swarm sequence. We test those hypotheses using Taiwan's earthquake catalog by taking the advantage of lacking any larger event and the absence of significant seismic swarm typically seen with active volcano. Using Felzer and Brodsky's method and their standard parameters, we only found 14 mainshock-aftershock pairs occurred within 20 km distance in Taiwan's catalog from 1994 to 2010. Although Taiwan's catalog has similar number of earthquakes as California's, the number of pairs is about 10% of the California catalog. It may indicate the effect of no large earthquakes and no significant seismic swarm in the catalog. To fully understand the properties in the Taiwan's catalog, we loosened the screening parameters to earn more pairs and then found a linear aftershock density with a power law decay of -1.12±0.38 that is very similar to the one in Felzer and Brodsky. However, none of those mainshock-aftershock pairs were associated with a M7 rupture event or M6 events. To find what mechanism controlled the aftershock density triggered by small mainshocks in Taiwan, we randomized earthquake magnitude and location. We then found that those density decay in a short time period is more like a randomized behavior than mainshock-aftershock triggering. Moreover, 5 out of 6 pairs were found in a swarm-like temporal seismicity rate increase

  4. Scaling Relations Between Mainshock Source Parameters and Aftershock Distributions for Use in Aftershock Forecasting

    NASA Astrophysics Data System (ADS)

    Donovan, J.; Jordan, T. H.

    2010-12-01

    Aftershocks are often used to delineate the mainshock rupture zone retrospectively. In aftershock forecasting on the other hand, the problem is to use mainshock rupture area to determine the aftershock zone prospectively. The procedures for this type of prediction are not as well developed and have been restricted to simple parameterizations such as the Utsu-Seki (1955) scaling relation between mainshock energy and aftershock area (Ogata and Zhueng, 2006). With a focus on improving current forecasting methods, we investigate the relationship between spatial source parameters that can be rapidly computed (spatial centroid and characteristic dimensions) and corresponding spatial measures of the aftershock distribution. For a set of about 30 large events, we either extracted source parameters from the McGuire et al (2002) finite moment tensor (FMT) catalog, or computed them from the online SRCMOD database (Mai, 2004). We identified aftershocks with windowing and scale-free methods, and computed both L1 and L2 measures of their distributions. Our comparisons produce scaling relations among the characteristic dimensions that can be used to initiate aftershock forecasts. By using rapidly-determined source parameters, we can decrease the forecasting latency and thus improve the probability gain of the forecasting methods.

  5. B-meson decays to eta' rho, eta' f0, and eta' K*

    SciTech Connect

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2010-08-25

    We present measurements of B-meson decays to the final states {eta}{prime} {rho}, {eta}{prime} f{sub 0}, and {eta}{prime} K*, where K* stands for a vector, scalar, or tensor strange meson. We observe a significant signal or evidence for {eta}{prime} {rho}{sup +} and all the {eta}{prime}K* channels. We also measure, where applicable, the charge asymmetries, finding results consistent with no direct CP violation in all cases. The measurements are performed on a data sample consisting of 467 x 10{sup 6} B{bar B} pairs, collected with the BABAR detector at the PEP-II e{sup +}e{sup -} collider at the SLAC National Accelerator Laboratory. Our results favor the theoretical predictions from perturbative QCD and QCD Factorization and we observe an enhancement of the tensor K*{sub 2} (1430) with respect to the vector K*(892) component.

  6. The seismology of eta Bootes

    NASA Technical Reports Server (NTRS)

    Demarque, Pierre; Guenther, D. B.

    1995-01-01

    Some p-mode frequencies and other observations were used to determine the mass, the age and the helium abundance of eta Bootes. It is shown how, by direct application, the p-mode frequencies and stellar seismological tools help in constraining the physical parameters of eta Boo. The existence of mode bumping is confirmed and it is discussed how it may be used to refine the estimate of the eta Boo's age. The effect of the OPAL equation of state on the p-mode frequencies is described.

  7. The stress shadow problem in physics-based aftershock forecasting: Does incorporation of secondary stress changes help?

    NASA Astrophysics Data System (ADS)

    Segou, M.; Parsons, T.

    2014-06-01

    Main shocks are calculated to cast stress shadows across broad areas where aftershocks occur. Thus, a key problem with stress-based operational forecasts is that they can badly underestimate aftershock occurrence in the shadows. We examine the performance of two physics-based earthquake forecast models (Coulomb rate/state (CRS)) based on Coulomb stress changes and a rate-and-state friction law for their predictive power on the 1989 Mw = 6.9 Loma Prieta aftershock sequence. The CRS-1 model considers the stress perturbations associated with the main shock rupture only, whereas CRS-2 uses an updated stress field with stresses imparted by M ≥ 3.5 aftershocks. Including secondary triggering effects slightly improves predictability, but physics-based models still underestimate aftershock rates in locations of initial negative stress changes. Furthermore, CRS-2 does not explain aftershock occurrence where secondary stress changes enhance the initial stress shadow. Predicting earthquake occurrence in calculated stress shadow zones remains a challenge for stress-based forecasts, and additional triggering mechanisms must be invoked.

  8. Aftershocks and on-site inspections under a test ban: A progress report

    SciTech Connect

    Smith, A.T.; Schultz, C.; Zucca, J.J.

    1995-09-01

    An ambiguous seismic event detected remotely under a comprehensive test ban (CTB) may require an on-site inspection to determine the nature of the event. Provided they are present, aftershocks and microseismic events could play a key role in narrowing the inspection area and focusing the efforts of the inspectors. Of particular interest are the low-frequency, emergent aftershocks that have been observed after underground nuclear explosions at the Nevada Test Site. If these events can be shown to have unique characteristics, their detection could greatly increase the chances for a successful inspection. The authors have been characterizing aftershock swarms from underground explosive events and from other events that may be encountered during an inspection. This report summarizes an analysis of aftershocks following an underground explosion and microseismic events associated with routine operations at the block-caving Henderson Mine in Colorado. They used as their example of a smaller, single-point explosion the Non-Proliferation Experiment (NPE), a one-kiloton, chemical, overburied, single-point explosion whose aftershock sequence is similar to an underground nuclear explosion. They were interested in studying the Henderson mine because the caving operation is an apparent analog to the chimney formation following an nuclear event and could give rise to similar microseismic events. Mine operations at Henderson result in both low-frequency emergent events and high-frequency impulsive events. The emergent events (hundreds per day) are apparently associated with rockfalls into the crater produced by the caving operations and have many similar characteristics to the low-frequency events from the NPE; however, the low-frequency NPE aftershocks are relatively much more impulsive than those of the Henderson Mine. Unlike the NPE or nuclear events, location of Henderson low-frequency events is extremely difficult using arrival-time methods because of their very gradual onset.

  9. The earthquake and its aftershocks from May 2 through September 30, 1983

    SciTech Connect

    Eaton, J.P.

    1990-01-01

    Analysis of the Coalinga earthquake sequence, based on the Allen/Ellis real-time-processor (RTP) automatic P-phase-onset times and duration measurements, provides hypocentral and magnitude determinations for more than 6,000 events from May 2 through September 30, 1983. Focal mechanisms and local magnitudes of more than 140 of the larger aftershocks were calculated from more detailed observations obtained from magnetic-tape playbacks from both the temporary Coalinga seismic network and the permanent telemetered central California seismic network (Calnet). The combined catalog appears to be substantially complete for events of M {ge} 3 within about 3 hours, and for events of M {ge} 1.7 within about 1 day, after the main shock. The first-motion plot of the main shock offers two choices for the main-shock fault; a thrust fault striking N. 53{degree}W. and dipping 23{degree}SW. (the preferred fault plane), or a high-angle reverse fault striking N. 53{degree}W. and dipping 67{degree}NE. Focal mechanisms of the larger aftershocks also indicate predominantly thrust or reverse faulting. The long axis of the aftershock zone, which is 35 km long and 15 to 20 km wide, coincides with the axis of the Anticline Ridge-Guijarral Hills structure at the Coast Ranges-Great Valley boundary northeast of Coalinga. A transverse (southwest to northeast) quiet band with very few events crosses the aftershock zone where northwest-trending Anticline Ridge joins broader, east-west-trending Joaquin Ridge just northwest of the main shock. The smaller aftershocks occur mostly in the hanging-wall blocks above the faults outlined by the larger aftershocks.

  10. Apparent triggering function of aftershocks resulting from rate-dependent incompleteness of earthquake catalogs

    NASA Astrophysics Data System (ADS)

    Hainzl, Sebastian

    2016-09-01

    The onset of the aftershock decay after main shocks is controversial. Physical models predict that the onset time is stress dependent, and catalog analysis shows a clear increase of the c value of the Omori-Utsu law with increasing main shock magnitude. However, earthquake catalogs are known to have variable quality and completeness levels; in particular, they miss events directly after main shocks. Thus, it has been also argued that the delayed onset of recorded aftershock activity triggered by large earthquakes is simply an artifact of the time-varying completeness. Here I utilize a recent approach describing the detection probability of earthquakes as function of the actual earthquake rate. I derive an analytical relation between apparent and true earthquake rate which only depends on the blind time of detection algorithms after the occurrence of an earthquake. This relation is tested and verified for synthetic simulations of Omori-type aftershock sequences. For a comparison, I analyze earthquake sequences occurred in Southern California and Taiwan, finding that the derived analytical decay function consistently explains the empirical aftershock activity in the catalogs. This indicates that the observed scaling of the Omori c value is mainly related to catalog incompleteness and not to any underlying physical process.

  11. Seismological evidence of an active footwall shortcut thrust in the Northern Itoigawa-Shizuoka Tectonic Line derived by the aftershock sequence of the 2014 M 6.7 Northern Nagano earthquake

    NASA Astrophysics Data System (ADS)

    Panayotopoulos, Yannis; Hirata, Naoshi; Hashima, Akinori; Iwasaki, Takaya; Sakai, Shin'ichi; Sato, Hiroshi

    2016-06-01

    A destructive M 6.7 earthquake struck Northern Nagano prefecture on November 22, 2014. The main shock occurred on the Kamishiro fault segment of the northern Itoigawa-Shizuoka Tectonic Line (ISTL). We used data recorded at 41 stations of the local seismographic network in order to locate 2118 earthquakes that occurred between November 18 and November 30, 2014. To estimate hypocenters, we assigned low Vp models to stations within the Northern Fossa Magna (NFM) basin thus accounting for large lateral crustal heterogeneities across the Kamishiro fault. In order to further improve accuracy, the final hypocenter locations were recalculated inside a 3D velocity model using the double-difference method. We used the aftershock activity distribution and focal mechanism solutions of major events in order to estimate the source fault area of the main shock. Our analysis suggests that the shallow part of the source fault corresponds to the surface trace of the Kamishiro fault and dips 30°-45° SE, while the deeper part of the source fault corresponds to the downdip portion of the Otari-Nakayama fault, a high angle fault dipping 50°-65° SE that formed during the opening of the NFM basin in the Miocene. Along its surface trace the Otari-Nakayama fault has been inactive during the late Quaternary. We verified the validity of our model by calculating surface deformation using a simple homogeneous elastic half-space model and comparing it to observed surface deformation from satellite interferometry, assuming large coseismic slip in the areas of low seismicity and small coseismic slip in the areas of high seismicity. Shallowing of the source fault from 50°-65° to 30°-45° in the upper 4 km, in the areas where both surface fault traces are visible, is a result of footwall shortcut thrusting by the Kamishiro fault off the Otari-Nakayama fault.

  12. Plate coupling strength inferred from aftershock area expansion patterns and associated plate age

    NASA Astrophysics Data System (ADS)

    Tajima, F. C.

    2010-12-01

    Fault zone heterogeneity or plate boundary coupling in subduction zones has been debated repeatedly in numerous studies to understand the mechanisms that control characteristics of earthquake occurrence, i.e., typical moment release and degree of complexity of a mainshock rupture, and subsequent aftershock activity. Here we revisit a global survey of aftershock area expansion patterns of shallow large earthquakes (M≥˜7.5) focusing on the plate subduction boundaries (Tajima and Kanamori, 1985a,b), and attempt to relate the plate coupling strength to the sea floor age data compiled recently (Müller et al., 2008). The aftershock area S(t) (km2) was determined applying an objective method to draw contour maps for the seismic energy released from an aftershock sequence (i.e., 1015.6erg/100km2/day for the one-day aftershock area). Then, the expansion patterns are investigated as a function of time t (day) after the first day of aftershock activity, by the ratio of the aftershock area η(t) = S(t)/S(1) as well as the ratio of its length L(t) (km), ηl(t) = L(t)/L(1). The survey determined distinct regional variation that was interpreted in terms of plate coupling strength. In the subduction zones of Mexico, Alaska and parts of the South America the aftershock areas of large to great earthquakes show little expansion, and the coupling of the subducting and overlying plates is considered to be strong. In these regions relatively young (≤Miocene) plates are subducting beneath continents. In the Kuriles the aftershock area expansion of large events is widthwise indicating distinct boundaries lengthwise. The subduction zones are interpreted to be characterized by moderate to strong interplate coupling of two oceanic plates of a similar age (˜Cretaceus). Repeated large earthquakes in the Kuriles may have created “mature faults” of relatively loose mechanical coupling within distinct boundaries of strong coupling (asperities and barriers). In contrast, the aftershock

  13. Determination of dip direction for the 2007 Chuetsu-oki earthquake from relocation of aftershocks using arrival times determined by cross-correlation

    NASA Astrophysics Data System (ADS)

    Mori, Jim

    2008-11-01

    Waveform correlations were used to redetermine P arrival times at 31 stations for a selected set of 321 aftershocks of the 2007 Chuetsu-oki earthquake. These data were used with several different relocation techniques, 1-D velocity structure, 3-D velocity structure using SIMULPS12, 1-D velocity structure using hypoDD, and 3-D velocity structure using tomoDD. The results from all of these methods show a consistent southeast dipping trend for the entire aftershock sequence. The same pattern is also seen for the time period before the largest aftershock. These results indicate that the mainshock fault dips to the southeast.

  14. Seismotectonics and seismogenesis of Mw7.8 Gorkha earthquake and its aftershocks

    NASA Astrophysics Data System (ADS)

    Arora, B. R.; Bansal, B. K.; Prajapati, Sanjay K.; Sutar, Anup K.; Nayak, Shailesh

    2017-01-01

    The April 25, 2015, Mw7.8 Gorkha earthquake in central Nepal was followed by intense aftershock activity, including Mw6.7 shock on April 26, 2015 and Mw7.3 shock on May 12, 2015. Synthesis of the focal mechanisms, space-time distribution of seismic activity in relation to previously imaged crustal velocity and resistivity structures reveals focusing of the Mw7.8 Gorkha earthquake near the upper surface of the thin fluid-filled low velocity and high conducting layer immediately above the plane of the detachment. On the geophysical sections, the detachment is identified as a sharp positive velocity interface. Modulation of frictional coupling and mechanical weakening by high-pore pressure fluids counteract the arc-normal stresses creating conditions for failure and nucleation of the Gorkha earthquakes on a plane sub-parallel with the detachment. Spatio-temporal patterns in aftershock activity indicate rapid alteration of main shock-induced stress fields, triggering a strong aftershock of Mw6.7. Large stress drop and increased energy released by the Mw6.7 event facilitates upward injection of high pore-pressure fluid fluxes into the hidden out-of-sequence thrust. It is suggested that decrease in shear strength along the hidden thrust plane due to the diffusion of high pore pressure fluids created conditions favourable to trigger Mw7.3 aftershock.

  15. The Mw 5.8 Virginia Earthquake of August 23, 2011 and its Aftershocks: A Shallow High Stress Drop Event

    NASA Astrophysics Data System (ADS)

    Ellsworth, W. L.; Imanishi, K.; Luetgert, J. H.; Kruger, J.; Hamilton, J.

    2011-12-01

    We analyze the hypocentral distribution and source parameters of the aftershocks of the Virginia Earthquake of August 23, 2011 using a temporary array of telemetered instruments deployed within 20 km of the main shock. Our data come from four USGS NetQuakes accelerometers and seven IRIS/PASSCAL seismometers that were established within a few days of the earthquake. Aftershock seismograms at these near-source stations are characterized by impulsive, high-frequency P and S phases at most sites. In addition, we use the five closest permanent stations (60 - 310 km distance) to analyze the main shock. Hypocenters, crustal velocity model and station corrections were determined using the program VELEST (Kissling, et al, 1994). The aftershocks define a 10-km-long, N 30 degree E striking, 45 degree ESE dipping fault. This fault plane agrees well with the USGS moment tensor solutions for the main shock. Aftershock depths range from 2.5 to 8 km, placing the sequence in the Cambrian metamorphic rocks of the Eastern Piedmont thrust sheet. We relocated the main shock relative to a well-located Mw 3.5 aftershock using the P-wave arrival times at the five permanent stations. The main shock epicenter lies in the middle of the aftershock zone. Its focal depth, although not well constrained, is similar to the aftershocks. A crustal-scale seismic reflection profile was acquired by the USGS in 1981 along I-64 just 4 km southwest of the nearest aftershocks. This profile runs nearly parallel to the dip direction of the aftershock zone and has been interpreted to contain many ESE-dipping reverse faults in the allochthonous upper crust (Harris et al., 1986; Pratt, et al., 1988). When projected onto the reflection profile the aftershocks locate within a relatively non-reflective zone bounded above and below by prominent bands of more shallowly dipping reflectors reported by Pratt et al. (1988) raising the question whether or not the earthquake reactivated a pre-existing fault. Seismic

  16. Towards Practical, Real-Time Estimation of Spatial Aftershock Probabilities: A Feasibility Study in Earthquake Hazard

    NASA Astrophysics Data System (ADS)

    Morrow, P.; McCloskey, J.; Steacy, S.

    2001-12-01

    extent to which this is scientifically feasible in terms of our understanding of the physical phenomena which control the variation of seismicity following a large event due to stress redistribution and practically possible given present limitations on data availability, data quality and computational or data transfer speeds. The project is divided into a number of elements designed to reflect the temporal sequence of tasks that must be undertaken for the prediction of aftershock hazard. These tasks include determining a time-indexed sequence of slip distributions for both real and synthetic events, calculating a suite of time-indexed stress perturbations and quantitatively comparing predicted and observed aftershock distributions, and developing techniques for predicting likely strong ground motion from the predicted spatial distribution of aftershocks.

  17. Aftershocks in a frictional earthquake model.

    PubMed

    Braun, O M; Tosatti, Erio

    2014-09-01

    Inspired by spring-block models, we elaborate a "minimal" physical model of earthquakes which reproduces two main empirical seismological laws, the Gutenberg-Richter law and the Omori aftershock law. Our point is to demonstrate that the simultaneous incorporation of aging of contacts in the sliding interface and of elasticity of the sliding plates constitutes the minimal ingredients to account for both laws within the same frictional model.

  18. Triggering of earthquake aftershocks by dynamic stresses

    USGS Publications Warehouse

    Kilb, Debi; Gomberg, J.; Bodin, P.

    2000-01-01

    It is thought that small 'static' stress changes due to permanent fault displacement can alter the likelihood of, or trigger, earthquakes on nearby faults. Many studies of triggering in the nearfield, particularly of aftershocks, rely on these static changes as the triggering agent and consider them only in terms of equivalent changes in the applied load on the fault. Here we report a comparison of the aftershock pattern of the moment magnitude MW = 7.3 Landers earthquake, not only with static stress changes but also with transient, oscillatory stress changes transmitted as seismic waves (that is, 'dynamic' stresses). Dynamic stresses do not permanently change the applied load and thus can trigger earthquakes only by altering the mechanical state or properties of the fault zone. These dynamically weakened faults may fail after the seismic waves have passed by, and might even cause earthquakes that would not otherwise have occurred. We find similar asymmetries in the aftershock and dynamic stress patterns, the latter being due to rupture propagation, whereas the static stress changes lack this asymmetry. Previous studies have shown that dynamic stresses can promote failure at remote distances, but here we show that they can also do so nearby.

  19. Do aftershock probabilities decay with time?

    USGS Publications Warehouse

    Michael, Andrew J.

    2012-01-01

    So, do aftershock probabilities decay with time? Consider a thought experiment in which we are at the time of the mainshock and ask how many aftershocks will occur a day, week, month, year, or even a century from now. First we must decide how large a window to use around each point in time. Let's assume that, as we go further into the future, we are asking a less precise question. Perhaps a day from now means 1 day 10% of a day, a week from now means 1 week 10% of a week, and so on. If we ignore c because it is a small fraction of a day (e.g., Reasenberg and Jones, 1989, hereafter RJ89), and set p = 1 because it is usually close to 1 (its value in the original Omori law), then the rate of earthquakes (K=t) decays at 1=t. If the length of the windows being considered increases proportionally to t, then the number of earthquakes at any time from now is the same because the rate decrease is canceled by the increase in the window duration. Under these conditions we should never think "It's a bit late for this to be an aftershock."

  20. Forecasting large aftershocks within one day after the main shock

    PubMed Central

    Omi, Takahiro; Ogata, Yosihiko; Hirata, Yoshito; Aihara, Kazuyuki

    2013-01-01

    Forecasting the aftershock probability has been performed by the authorities to mitigate hazards in the disaster area after a main shock. However, despite the fact that most of large aftershocks occur within a day from the main shock, the operational forecasting has been very difficult during this time-period due to incomplete recording of early aftershocks. Here we propose a real-time method for efficiently forecasting the occurrence rates of potential aftershocks using systematically incomplete observations that are available in a few hours after the main shocks. We demonstrate the method's utility by retrospective early forecasting of the aftershock activity of the 2011 Tohoku-Oki Earthquake of M9.0 in Japan. Furthermore, we compare the results by the real-time data with the compiled preliminary data to examine robustness of the present method for the aftershocks of a recent inland earthquake in Japan. PMID:23860594

  1. Early aftershocks and afterslip surrounding the 2015 Mw 8.4 Illapel rupture

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Xu, Wenbin; Meng, Lingsen; Bürgmann, Roland; Baez, Juan Carlos

    2017-01-01

    On 16 September 2015, the Mw 8.4 Illapel earthquake ruptured a section of the subduction thrust on the west coast of central Chile. The mainshock was followed by numerous aftershocks including some normal-faulting events near the trench. We apply a template matching approach to improve the completeness of early aftershocks within one month of the mainshock. To constrain the distribution of afterslip, we utilize repeating earthquakes among the aftershocks and perform a joint slip inversion of postseismic GPS and InSAR data. The results show that the aftershock zone abruptly expands to the south ∼14 h after the mainshock while growing relatively continuously to the north within the first day. The repeating earthquakes accompanying the early expansion suggest that aseismic afterslip on the subduction thrust surrounding the coseismic rupture is an important triggering mechanism of aftershocks in addition to stress transfer or poroelastic effects. An energetic earthquake sequence near the trench initiated with a M 4.6 event ∼3.5 h after the mainshock, suggesting delayed triggering by the static or dynamic stress changes induced by the mainshock. The spatial distribution of repeating earthquakes and the geodetic-inverted afterslip are consistent and appear to wrap around the large coseismic slip patch. Both data sets suggest that the largest cumulative afterslip is located at ∼30.5°S to the north of the mainshock rupture zone. The estimated postseismic moment released in the first ∼24 days of afterslip is equivalent to an earthquake of Mw 7.5. The afterslip illuminates the velocity strengthening sections of the plate interface that surround the mainshock rupture, consistent with plate coupling models inferred from interseismic GPS velocities.

  2. ETA: Helping to Improve American Worklife.

    ERIC Educational Resources Information Center

    Employment and Training Administration (DOL), Washington, DC.

    This booklet serves as an introduction to the Employment and Training Administration (ETA) and describes the ETA's development and the services it provides to employers and jobseekers. It details programs, field services, history, prime objectives, and the 1978 legislation concerning ETA and CETA. Special areas discussed in detail are the…

  3. Seismicity change revealed by ETAS, PI, and Z-value methods: A case study of the 2013 Nantou, Taiwan earthquake

    NASA Astrophysics Data System (ADS)

    Kawamura, Masashi; Chen, Chien-chih; Wu, Yih-Min

    2014-11-01

    On Mar. 27, 2013, a ML6.2 earthquake occurred in the Nantou area of central Taiwan, which caused one death and nearly 90 injured. Two months later, another ML6.3 earthquake struck the same region on June 2, 2013, the epicenter of which is close to the March ML6.2 earthquake. Seismicity is a sensitive indicator of stress rate and inelastic deformation process in crust. Therefore, examination of temporal changes in seismicity is important to understand the preparatory processes of damaging inland earthquakes. In this study, we applied the Epidemic-Type Aftershock-Sequences model (ETAS model) to the earthquake data covering broader Taiwan region, which is maintained by the Central Weather Bureau (CWB) of Taiwan, to investigate precursory temporal changes in seismicity for the ML6.2 Nantou earthquake. We regard the March ML6.2 and June ML6.3 earthquakes as an event sequence and especially focus on temporal changes in seismicity prior to the ML6.2 event. Application of more than one model to an earthquake catalog would be informative in elucidating the relationships between seismicity precursors and the preparatory processes of large earthquakes. Based on this motivation, we further applied two different approaches: the pattern informatics (PI) method and the ZMAP method, which is a gridding technique based on the standard deviate (Z-value) test to the same earthquake data of CWB. As a result, we found that the epicenter of the 2013 ML6.2 Nantou earthquake was surrounded by three main seismic quiescence regions prior to its occurrence. The assumption that this is due to precursory slip (stress drop) on fault plane or its deeper extent of the ML6.2 Nantou earthquake is supported by previous researches based on seismicity data, geodedic data, and numerical simulations using rate- and state-dependent friction laws.

  4. {eta}{sub 6} Production

    SciTech Connect

    Kang, Kyungsik; White, A.R.

    1991-10-01

    We suggest that a short-lived axion-like particle {eta}{sub 6} with mass around 30 GeV should be produced diffractively at hadron colliders. This is the lightest particle belonging to a new color- sextet quark sector of QCD which could be responsible for dynamical symmetry breaking of the electroweak interaction.

  5. All Pillars Point to Eta

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Eta Carinae Starforming RegionSimulated Infrared View of Comet Tempel 1 (artist's concept)

    These false-color image taken by NASA's Spitzer Space Telescope shows the 'South Pillar' region of the star-forming region called the Carina Nebula. Like cracking open a watermelon and finding its seeds, the infrared telescope 'busted open' this murky cloud to reveal star embryos (yellow or white) tucked inside finger-like pillars of thick dust (pink). Hot gases are green and foreground stars are blue. Not all of the newfound star embryos can be easily spotted.

    Though the nebula's most famous and massive star, Eta Carinae, is too bright to be observed by infrared telescopes, the downward-streaming rays hint at its presence above the picture frame. Ultraviolet radiation and stellar winds from Eta Carinae and its siblings have shredded the cloud to pieces, leaving a mess of tendrils and pillars. This shredding process triggered the birth of the new stars uncovered by Spitzer.

    The inset visible-light picture (figure 2) of the Carina Nebula shows quite a different view. Dust pillars are fewer and appear dark because the dust is soaking up visible light. Spitzer's infrared detectors cut through this dust, allowing it to see the heat from warm, embedded star embryos, as well as deeper, more buried pillars. The visible-light picture is from the National Optical Astronomy Observatory.

    Eta Carina is a behemoth of a star, with more than 100 times the mass of our Sun. It is so massive that it can barely hold itself together. Over the years, it has brightened and faded as material has shot away from its surface. Some astronomers think Eta Carinae might die in a supernova blast within our lifetime.

    Eta Carina's home, the Carina Nebula, is located in the southern portion of our Milky Way galaxy, 10,000 light-years from Earth. This colossal cloud of gas and dust

  6. Increasing lengths of aftershock zones with depths of moderate-size earthquakes on the San Jacinto Fault suggests triggering of deep creep in the middle crust

    NASA Astrophysics Data System (ADS)

    Meng, Xiaofeng; Peng, Zhigang

    2016-01-01

    Recent geodetic studies along the San Jacinto Fault (SJF) in southern California revealed a shallower locking depth than the seismogenic depth outlined by microseismicity. This disagreement leads to speculations that creeping episodes drive seismicity in the lower part of the seismogenic zone. Whether deep creep occurs along the SJF holds key information on how fault slips during earthquake cycle and potential seismic hazard imposed to southern California. Here we apply a matched filter technique to 10 M > 4 earthquake sequences along the SJF since 2000 and obtain more complete earthquake catalogues. We then systematic investigate spatio-temporal evolutions of these aftershock sequences. We find anomalously large aftershock zones for earthquakes occurred below the geodetically inferred locking depth (i.e. 11-12 km), while aftershock zones of shallower main shocks are close to expectations from standard scaling relationships. Although we do not observe clear migration of aftershocks, most aftershock zones do expand systematically with logarithmic time since the main shock. All the evidences suggest that aftershocks near or below the locking depth are likely driven by deep creep following the main shock. The presence of a creeping zone below 11-12 km may have significant implications on the maximum sizes of events in this region.

  7. A New Hybrid STEP/Coulomb model for Aftershock Forecasting

    NASA Astrophysics Data System (ADS)

    Steacy, S.; Jimenez, A.; Gerstenberger, M.

    2014-12-01

    Aftershock forecasting models tend to fall into two classes - purely statistical approaches based on clustering, b-value, and the Omori-Utsu law; and Coulomb rate-state models which relate the forecast increase in rate to the magnitude of the Coulomb stress change. Recently, hybrid models combining physical and statistical forecasts have begun to be developed, for example by Bach and Hainzl (2012) and Steacy et al. (2013). The latter approach combined Coulomb stress patterns with the STEP (short-term earthquake probability) model by redistributing expected rate from areas with decreased stress to regions where the stress had increased. The chosen 'Coulomb Redistribution Parameter' (CRP) was 0.93, based on California earthquakes, which meant that 93% of the total rate was expected to occur where the stress had increased. The model was tested against the Canterbury sequence and the main result was that the new model performed at least as well as, and often better than, STEP when tested against retrospective data but that STEP was generally better in pseudo-prospective tests that involved data actually available within the first 10 days of each event of interest. The authors suggested that the major reason for this discrepancy was uncertainty in the slip models and, particularly, in the geometries of the faults involved in each complex major event. Here we develop a variant of the STEP/Coulomb model in which the CRP varies based on the percentage of aftershocks that occur in the positively stressed areas during the forecast learning period. We find that this variant significantly outperforms both STEP and the previous hybrid model in almost all cases, even when the input Coulomb model is quite poor. Our results suggest that this approach might be more useful than Coulomb rate-state when the underlying slip model is not well constrained due to the dependence of that method on the magnitude of the Coulomb stress change.

  8. Search for radiative decays of {upsilon}(1S) into {eta} and {eta}'

    SciTech Connect

    Athar, S. B.; Patel, R.; Potlia, V.; Stoeck, H.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Naik, P.; Sedlack, C.; Selen, M.; White, E. J.; Wiss, J.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.

    2007-10-01

    We report on a search for the radiative decay of {upsilon}(1S) to the pseudoscalar mesons {eta} and {eta}{sup '} in (21.2{+-}0.2)x10{sup 6} {upsilon}(1S) decays collected with the CLEO III detector at the Cornell Electron Storage Ring. The {eta} meson was reconstructed in the three modes {eta}{yields}{gamma}{gamma}, {eta}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0}, or {eta}{yields}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0}. The {eta}{sup '} meson was reconstructed in the mode {eta}{sup '}{yields}{pi}{sup +}{pi}{sup -}{eta} with {eta} decaying through any of the above three modes, and also {eta}{sup '}{yields}{gamma}{rho}{sup 0}, where {rho}{sup 0}{yields}{pi}{sup +}{pi}{sup -}. Five out of the seven submodes are found to have very low backgrounds. In four of them we find no signal candidates and in one [{upsilon}(1S){yields}{gamma}{eta}{sup '}, {eta}{sup '}{yields}{pi}{sup +}{pi}{sup -}{eta}, {eta}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0}] there are two good signal candidates, which is insufficient evidence to claim a signal. The other two submodes ({eta}{yields}{gamma}{gamma} and {eta}{sup '}{yields}{gamma}{rho}) are background limited, and show no excess of events in their signal regions. We combine the results from different channels and obtain upper limits at the 90% C.L. which are B({upsilon}(1S){yields}{gamma}{eta})<1.0x10{sup -6} and B({upsilon}(1S){yields}{gamma}{eta}{sup '})<1.9x10{sup -6}. Our limits are an order of magnitude tighter than the previous ones and below the predictions made by some theoretical models.

  9. Local near instantaneously dynamically triggered aftershocks of large earthquakes.

    PubMed

    Fan, Wenyuan; Shearer, Peter M

    2016-09-09

    Aftershocks are often triggered by static- and/or dynamic-stress changes caused by mainshocks. The relative importance of the two triggering mechanisms is controversial at near-to-intermediate distances. We detected and located 48 previously unidentified large early aftershocks triggered by earthquakes with magnitudes between ≥7 and 8 within a few fault lengths (approximately 300 kilometers), during times that high-amplitude surface waves arrive from the mainshock (less than 200 seconds). The observations indicate that near-to-intermediate-field dynamic triggering commonly exists and fundamentally promotes aftershock occurrence. The mainshocks and their nearby early aftershocks are located at major subduction zones and continental boundaries, and mainshocks with all types of faulting-mechanisms (normal, reverse, and strike-slip) can trigger early aftershocks.

  10. Aftershock relocation and frequency-size distribution, stress inversion and seismotectonic setting of the 7 August 2013 M = 5.4 earthquake in Kallidromon Mountain, central Greece

    NASA Astrophysics Data System (ADS)

    Ganas, Athanassios; Karastathis, Vassilios; Moshou, Alexandra; Valkaniotis, Sotirios; Mouzakiotis, Evangelos; Papathanassiou, George

    2014-03-01

    On August 7, 2013 a moderate earthquake (NOA ML = 5.1, NOA Mw = 5.4) occurred in central Kallidromon Mountain, in the Pthiotis region of central Greece. 2270 aftershocks were relocated using a modified 1-D velocity model for this area. The b-value of the aftershock sequence was b = 0.85 for a completeness magnitude of Mc = 1.7. The rate of aftershock decay was determined at p = 0.63. The spatial distribution of the aftershock sequence points towards the reactivation of a N70° ± 10°E striking normal fault at crustal depths between 8 and 13 km. A NNW-SSE cross-section imaged the activation of a steep, south dipping normal fault. A stress inversion analysis of 12 focal mechanisms showed that the minimum horizontal stress is extensional at N173°E. No primary surface ruptures were observed in the field; however, the earthquake caused severe damage in the villages of the Kallidromon area. The imaged fault strike and the orientation of the long-axis of the aftershock sequence distribution are both at a high-angle to the strike of known active faults in this area of central Greece. We interpret the Kallidromon seismic sequence as release of extensional seismic strain on secondary, steep faults inside the Fokida-Viotia crustal block.

  11. Statistical Features of Foreshocks in Instrumental and ETAS Catalogs

    NASA Astrophysics Data System (ADS)

    Lippiello, E.; Giacco, F.; Marzocchi, W.; Godano, G.; Arcangelis, L. de

    2017-03-01

    We study the spatial distribution of earthquakes in temporal intervals before and after the occurrence of large shocks (mainshocks) in the magnitude range m \\in [2,5] for four different regional catalogs. We find that the spatial organization of pre-shock seismicity depends on the mainshock magnitude and is independent of the lower magnitude threshold. These properties are found to be a stable feature of regional catalogs and cannot be reproduced by Epidemic Type Aftershock Sequence models. Our findings suggest that the area fractured during the mainshock is encoded in the foreshock spatial organization and, therefore, enhance the prognostic value of foreshocks.

  12. Aftershocks of the India Republic Day Earthquake: the MAEC/ISTAR Temporary Seismograph Network

    NASA Astrophysics Data System (ADS)

    Bodin, P.; Horton, S.; Johnston, A.; Patterson, G.; Bollwerk, J.; Rydelek, P.; Steiner, G.; McGoldrick, C.; Budhbhatti, K. P.; Shah, R.; Macwan, N.

    2001-05-01

    The MW=7.7 Republic Day (26 January, 2001) earthquake on the Kachchh in western India initiated a strong sequence of small aftershocks. Seventeen days following the mainshock, we deployed a network of portable digital event recorders as a cooperative project of the Mid America Earthquake Center in the US and the Institute for Scientific and Technological Advanced Research. Our network consisted of 8 event-triggered Kinemetrics K2 seismographs with 6 data channels (3 accelerometer, 3 Mark L-28/3d seismometer) sampled at 200 Hz, and one continuously-recording Guralp CMG40TD broad-band seismometer sampled at 220 Hz. This network was in place for 18 days. Underlying our network deployment was the notion that because of its tectonic and geologic setting the Republic Day earthquake and its aftershocks might have source and/or propagation characteristics common to earthquakes in stable continental plate-interiors rather than those on plate boundaries or within continental mobile belts. Thus, our goals were to provide data that could be used to compare the Republic Day earthquake with other earthquakes. In particular, the objectives of our network deployment were: (1) to characterize the spatial distribution and occurrence rates of aftershocks, (2) to examine source characteristics of the aftershocks (stress-drops, focal mechanisms), (3) to study the effect of deep unconsolidated sediment on wave propagation, and (4) to determine if other faults (notably the Allah Bundh) were simultaneously active. Most of our sites were on Jurassic bedrock, and all were either free-field, or on the floor of light structures built on rock or with a thin soil cover. However, one of our stations was on a section of unconsolidated sediments hundreds of meters thick adjacent to a site that was subjected to shaking-induced sediment liquefaction during the mainshock. The largest aftershock reported by global networks was an MW=5.9 event on January 28, prior to our deployment. The largest

  13. Statistical Discrimination of Induced and Tectonic Earthquake Sequences in Central and Eastern US Based on Waveform Detected Catalogs

    NASA Astrophysics Data System (ADS)

    Meng, X.; Peng, Z.

    2014-12-01

    It is now well established that extraction of fossil fuels and/or waste water disposal do cause earthquakes in Central and Eastern United States (CEUS). However, the physics underneath of the nucleation of induced earthquakes still remain elusive. In particular, do induced and tectonic earthquake sequences in CEUS share the same statistics, for example the Omori's law [Utsu et al., 1995] and the Gutenberg-Richter's law? Some studies have show that most naturally occurring earthquake sequences are driven by cascading-type triggering. Hence, they would follow the typical Gutenberg-Richter relation and Omori's aftershock decay and could be well described by multi-dimensional point-process models such as Epidemic Type Aftershock Sequence (ETAS) [Ogata, 1988; Zhuang et al., 2012]. However, induced earthquakes are likely driven by external forcing such as injected fluid pressure, and hence would not be well described by the ETAS model [Llenos and Michael, 2013]. Existing catalogs in CEUS (e.g. the ANSS catalog) have relatively high magnitude of completeness [e.g., Van Der Elst et al., 2013] and hence may not be ideal for a detailed ETAS modeling analysis. A waveform matched filter technique has been successfully applied to detect many missing earthquakes in CEUS with a sparse network in Illinois [Yang et al., 2009] and on single station in Texas, Oklahoma and Colorado [e.g., Van Der Elst et al., 2013]. In addition, the deployment of the USArray station in CEUS also helped to expand the station coverage. In this study, we systematically detect missing events during 14 moderate-size (M>=4) earthquake sequences since 2000 in CEUS and quantify their statistical parameters (e.g. b, a, K, and p values) and spatio-temporal evolutions. Then we compare the statistical parameters and the spatio-temporal evolution pattern between induced and naturally occurring earthquake sequences to see if one or more diagnostic parameters exist. Our comprehensive analysis of earthquake sequences

  14. 3D imaging of crustal structure under the Piedmont province in central Virginia, from reflection RVSP processing of aftershock recordings from the August 23, 2011 Virginia earthquake

    NASA Astrophysics Data System (ADS)

    Quiros, D. A.; Brown, L. D.; Cabolova, A.; Davenport, K. K.; Hole, J. A.; Mooney, W. D.

    2013-12-01

    Aftershocks from the magnitude Mw 5.8 August 23, 2011, central Virginia earthquake were recorded using an unusually dense array of seismometers in what has been termed an AIDA (Aftershock Imaging with Dense Arrays) deployment. Over 200 stations were deployed in the epicentral region of this event to a) more precisely determine hypocentral locations, b) more accurately define velocity structure in the aftershock zone, c) characterize propagation characteristics of the crust in the area, and d) image geologic structures in the hypocentral volume with reflection techniques using aftershocks as sources. The AIDA-Virginia experiment successfully recorded a large number of aftershocks from which local tomographic velocity estimates and accurate hypocentral locations were obtained. These results facilitated the use of aftershocks as sources for reflection imaging. In this study we demonstrate how earthquake sources recorded by surface arrays can be treated using the imaging techniques associated with Vertical Seismic Profiling (VSP), in particular a variant known as Reverse VSP (RVSP). The central VSP processing algorithms used for this study are VSP normal moveout (VSPnmo) and VSP-to-Common Reflection Point (CRP). Applying these techniques to individual aftershocks from the Virginia experiment results in 3D reflection images of structural complexity in the immediate vicinity of the aftershocks. The most prominent feature observed on these 3D images is a strong moderately east-dipping reflector at a depth of approximately 6 to 8 km that directly underlies, and is continuous beneath, the more steeply dipping aftershock zone. We interpret this reflector as part of a complex imbricate thrust sequence associated with Paleozoic convergence during the Appalachian orogeny. Its apparent continuity beneath the fault zone implied by the aftershock's hypocenters suggests that this inferred fault zone has little or no cumulative offset, supporting the speculation that this event

  15. Delineating complex spatiotemporal distribution of earthquake aftershocks: an improved Source-Scanning Algorithm

    NASA Astrophysics Data System (ADS)

    Liao, Yen-Che; Kao, Honn; Rosenberger, Andreas; Hsu, Shu-Kun; Huang, Bor-Shouh

    2012-06-01

    Conventional earthquake location methods depend critically on the correct identification of seismic phases and their arrival times from seismograms. Accurate phase picking is particularly difficult for aftershocks that occur closely in time and space, mostly because of the ambiguity of correlating the same phase at different stations. In this study, we introduce an improved Source-Scanning Algorithm (ISSA) for the purpose of delineating the complex distribution of aftershocks without time-consuming and labour-intensive phase-picking procedures. The improvements include the application of a ground motion analyser to separate P and S waves, the automatic adjustment of time windows for 'brightness' calculation based on the scanning resolution and a modified brightness function to combine constraints from multiple phases. Synthetic experiments simulating a challenging scenario are conducted to demonstrate the robustness of the ISSA. The method is applied to a field data set selected from the ocean-bottom-seismograph records of an offshore aftershock sequence southwest of Taiwan. Although visual inspection of the seismograms is ambiguous, our ISSA analysis clearly delineates two events that can best explain the observed waveform pattern.

  16. Measurement of branching fractions and charge asymmetries in B+ decays to eta pi+, eta K+, eta rho+, and eta' pi+, and search for B0 decays to eta K0 and eta omega.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges-Pous, E; Palano, A; Pappagallo, M; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morg An, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Chevalier, N; Cottingham, W N; Kelly, M P; Cuhadar-Donszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bondioli, M; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Del Re, D; Hadavand, H K; Hill, E J; Macfarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Derrington, I M; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Zhang, J; Chen, A; Eckhart, E A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Spaan, B; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Nogowski, R; Otto, S; Petzold, A; Schott, G; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Marks, J; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Pierini, M; Plaszczynski, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Parry, R J; Payne, D J; Touramanis, C; Cormack, C M; Di Lodovico, F; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hodgkinson, M C; Lafferty, G D; Naisbit, M T; Williams, J C; Chen, C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Simi, G; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Tehrani, F Safai; Voena, C; Christ, S; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Graziani, G; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M T; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Mohapatra, A K; Muller, D R; O'grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Soha, A; Stelzer, J; Strube, J; Su, D; Sullivan, M K; Thompson, J M; Va'vra, J; Wagner, S R; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Martinez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Jackson, P D; Kowalewski, R; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Pan, Y; Prepost, R; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H

    2005-09-23

    We present measurements of branching fractions and charge asymmetries for six B-meson decay modes with an eta or eta(') meson in the final state. The data sample corresponds to 232 x 10(6) BB pairs collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) B Factory at SLAC. We measure the branching fractions (in units of 10(-6)): B(B+ -->eta pi(+))=5.1+/-0.6+/-0.3, B(B+ etaK+)=3.3+/-0.6+/-0.3, B(B0-->etaK0)=1.5+/-0.7+/-0.1 (<2.5 at 90% C.L.), B(B+-->eta rho(+))=8.4+/-1.9+/-1.1, B(B0-->eta omiga)=1.0+/-0.5+/-0.2 (<1.9 at 90% C.L.), and B(B+-->eta(')pi(+))=4.0+/-0.8+/-0.4, where the first uncertainty is statistical and second systematic. For the charged modes we also determine the charge asymmetries, all found to be compatible with zero.

  17. Aftershocks in coherent-noise models

    NASA Astrophysics Data System (ADS)

    Wilke, C.; Altmeyer, S.; Martinetz, T.

    1998-09-01

    The decay pattern of aftershocks in the so-called ‘coherent-noise’ models [M.E.J. Newman, K. Sneppen, Phys. Rev. E 54 (1996) 6226] is studied in detail. Analytical and numerical results show that the probability to find a large event at time t after an initial major event decreases as t- τ for small t, with the exponent τ ranging from 0 to values well above 1. This is in contrast to Sneppen and Newman, who stated that the exponent is about 1, independent of the microscopic details of the simulation. Numerical simulations of an extended model [C. Wilke, T. Martinetz, Phys. Rev. E 56 (1997) 7128] show that the power-law is only a generic feature of the original dynamics and does not necessarily appear in a more general context. Finally, the implications of the results to the modelling of earthquakes are discussed.

  18. Recent results on eta and eta-prime photoproduction on the proton

    SciTech Connect

    Barry Ritchie

    2004-06-01

    The experimental situation on eta and eta' photoproduction on the proton is reviewed, emphasizing progress made since 2001. New preliminary results for eta' photoproduction on the proton from Jefferson Lab are presented. Experimental results are compared with several theoretical approaches, with an emphasis on consequences for understanding baryon spectroscopy.

  19. Eta Squared, Partial Eta Squared, and Misreporting of Effect Size in Communication Research.

    ERIC Educational Resources Information Center

    Levine, Timothy R.; Hullett, Craig R.

    2002-01-01

    Alerts communication researchers to potential errors stemming from the use of SPSS (Statistical Package for the Social Sciences) to obtain estimates of eta squared in analysis of variance (ANOVA). Strives to clarify issues concerning the development and appropriate use of eta squared and partial eta squared in ANOVA. Discusses the reporting of…

  20. Aftershock triggering by complete Coulomb stress changes

    USGS Publications Warehouse

    Kilb, Debi; Gomberg, J.; Bodin, P.

    2002-01-01

    We examine the correlation between seismicity rate change following the 1992, M7.3, Landers, California, earthquake and characteristics of the complete Coulomb failure stress (CFS) changes (??CFS(t)) that this earthquake generated. At close distances the time-varying "dynamic" portion of the stress change depends on how the rupture develops temporally and spatially and arises from radiated seismic waves and from permanent coseismic fault displacement. The permanent "static" portion (??CFS) depends only on the final coseismic displacement. ??CFS diminishes much more rapidly with distance than the transient, dynamic stress changes. A common interpretation of the strong correlation between ??CFS and aftershocks is that load changes can advance or delay failure. Stress changes may also promote failure by physically altering properties of the fault or its environs. Because it is transient, ??CFS(t) can alter the failure rate only by the latter means. We calculate both ??CFS and the maximum positive value of ??CFS(t) (peak ??CFS(t)) using a reflectivity program. Input parameters are constrained by modeling Landers displacement seismograms. We quantify the correlation between maps of seismicity rate changes and maps of modeled ??CFS and peak ??CFS(t) and find agreement for both models. However, rupture directivity, which does not affect ??CFS, creates larger peak ??CFS(t) values northwest of the main shock. This asymmetry is also observed in seismicity rate changes but not in ??CFS. This result implies that dynamic stress changes are as effective as static stress changes in triggering aftershocks and may trigger earthquakes long after the waves have passed.

  1. Distribution of similar earthquakes in aftershocks of inland earthquakes

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Hiramatsu, Y.; Aftershock Observations Of 2007 Noto Hanto, G.

    2010-12-01

    Frictional properties control the slip behavior on a fault surface such as seismic slip and aseismic slip. Asperity, as a seismic slip area, is characterized by a strong coupling in the interseismic period and large coseismic slip. On the other hand, steady slip or afterslip occurs in an aseismic slip area around the asperity. If an afterslip area includes small asperities, a repeating rupture of single asperity can generate similar earthquakes due to the stress accumulation caused by the afterslip. We here investigate a detail distribution of similar earthquakes in the aftershocks of the 2007 Noto Hanto earthquake (Mjma 6.9) and the 2000 Western Tottori earthquake (Mjma 7.3), inland large earthquakes in Japan. We use the data obtained by the group for the aftershock observations of the 2007 Noto Hanto Earthquake and by the group for the aftershock observations of the 2000 Western Tottori earthquake. First, we select pairs of aftershocks whose cross correlation coefficients in 10 s time window of band-pass filtered waveforms of 1~4 Hz are greater than 0.95 at more than 5 stations and divide those into groups by a link of the cross correlation coefficients. Second, we reexamine the arrival times of P and S waves and the maximum amplitude for earthquakes of each group and apply the double-difference method (Waldhouser and Ellsworth, 2000) to relocate them. As a result of the analysis, we find 24 groups of similar earthquakes in the aftershocks on the source fault of the 2007 Noto Hanto Earthquake and 86 groups of similar earthquakes in the aftershocks on the source fault of the 2000 Western Tottori Earthquake. Most of them are distributed around or outside the asperity of the main shock. Geodetic studies reported that postseismic deformation was detected for the both earthquakes (Sagiya et al., 2002; Hashimoto et al., 2008). The source area of similar earthquakes seems to correspond to the afterslip area. These features suggest that the similar earthquakes observed

  2. Interstellar Material towards eta UMa

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.; Jenkins, E. B.; Welty, D. E.; Johns-Krull, C.

    1999-05-01

    The star eta UMa (B3 V, vsini=205 km s(-1) , d=31 pc, l=101(o) , b=+65(o) ) samples nearby interstellar gas in a high latitude direction relatively devoid of material. IMAPS, Hubble GHRS Echelle, and ground based optical data are combined to present a comprehensive picture of the interstellar material (ISM) in this direction. Two main components dominate: the blue-shifted component which appears to be ionized, and the dominant, red-shifted, component which exhibits a low electron density ( ~ 0.2 cm(-3) ). However, the Mg(o/Mg^+) ratio and C(+) fine-structure lines yield different ionizations, depending on the adopted temperature, similar to differences found in the diffuse material towards 23 Ori (Welty et al. 1999). The IMAPS and GHRS data give C, N, O, and Fe column densities, which form the basis for calculating the gas-to-dust mass ratio for the main component using a ``missing mass'' calculation combined with an assumed reference abundance (Frisch et al. 1999). Comparing the eta UMa value with other diffuse cloud values then further constrains uncertainties in N(H(o) ) values for this sightline.

  3. Pseudoscalar glueball and {eta}-{eta}{sup '} mixing

    SciTech Connect

    Mathieu, Vincent; Vento, Vicente

    2010-02-01

    We have performed a dynamical analysis of the mixing in the pseudoscalar channel with the goal of understanding the existence and behavior of the pseudoscalar glueball. Our philosophy has not been to predict precise values of the glueball mass but to exploit an adequate effective theory to the point of breaking and to analyze which kind of mechanisms restore compatibility with data. Our study has led to analytical solutions which allow a clear understanding of the phenomena. The outcome of our calculation leads to a large mass glueball M{sub {Theta}>}2000 MeV, to a large glue content of the {eta}{sup '}, and to mixing angles in agreement with previous numerical studies.

  4. Observation of B-->eta'K* and evidence for B+-->eta'rho+.

    PubMed

    Aubert, B; Barate, R; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; del Amo Sanchez, P; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Raven, G; Snoek, H L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; Briand, H; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihalyi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H

    2007-02-02

    We present an observation of B-->eta'K*. The data sample corresponds to 232x10(6) BB[over ] pairs collected with the BABAR detector at the PEP-II asymmetric-energy B factory at the Stanford Linear Accelerator Center. We measure the branching fractions (in units of 10(-6)) B(B(0)-->eta'K*0)=3.8+/-1.1+/-0.5 and B(B+-->eta'K*+)=4.9(1.7)(+1.9)+/-0.8, where the first error is statistical and the second systematic. A simultaneous fit results in the observation of B-->eta'K* with B(B-->eta'K*)=4.1(-0.9)(+1.0)+/-0.5. We also search for B-->eta'rho and eta'f(0)(980)(f(0)-->pi+pi-) with results and 90% confidence level upper limits B(B+-->eta'rho+)=8.7(-2.8-1.3)(+3.1+2.3) (<14), B(B(0)-->eta'rho0)<3.7, and B(B(0)-->eta'f(0)(980)(f(0)-->pi+pi-))<1.5. Charge asymmetries in the channels with significant yields are consistent with zero.

  5. Statistical discrimination of induced and tectonic earthquake sequences in Central and Eastern US based on waveform detected catalogs

    NASA Astrophysics Data System (ADS)

    Meng, X.; Daniels, C.; Smith, E.; Peng, Z.; Chen, X.; Wagner, L. S.; Fischer, K. M.; Hawman, R. B.

    2015-12-01

    Since 2001, the number of M>3 earthquakes increased significantly in Central and Eastern United States (CEUS), likely due to waste-water injection, also known as "induced earthquakes" [Ellsworth, 2013]. Because induced earthquakes are driven by short-term external forcing and hence may behave like earthquake swarms, which are not well characterized by branching point-process models, such as the Epidemic Type Aftershock Sequence (ETAS) model [Ogata, 1988]. In this study we focus on the 02/15/2014 M4.1 South Carolina and the 06/16/2014 M4.3 Oklahoma earthquakes, which likely represent intraplate tectonic and induced events, respectively. For the South Carolina event, only one M3.0 aftershock is identified by the ANSS catalog, which may be caused by a lack of low-magnitude events in this catalog. We apply a recently developed matched filter technique to detect earthquakes from 02/08/2014 to 02/22/2014 around the epicentral region. 15 seismic stations (both permanent and temporary USArray networks) within 100 km of the mainshock are used for detection. The mainshock and aftershock are used as templates for the initial detection. Newly detected events are employed as new templates, and the same detection procedure repeats until no new event can be added. Overall we have identified more than 10 events, including one foreshock occurred ~11 min before the M4.1 mainshock. However, the numbers of aftershocks are still much less than predicted with the modified Bath's law. For the Oklahoma event, we use 1270 events from the ANSS catalog and 182 events from a relocated catalog as templates to scan through continuous recordings 3 days before to 7 days after the mainshock. 12 seismic stations within the vicinity of the mainshock are included in the study. After obtaining more complete catalogs for both sequences, we plan to compare the statistical parameters (e.g., b, a, K, and p values) between the two sequences, as well as their spatial-temporal migration pattern, which may

  6. Diversity of the 2014 Iquique's foreshocks and aftershocks: clues about the complex rupture process of a Mw 8.1 earthquake

    NASA Astrophysics Data System (ADS)

    León-Ríos, Sergio; Ruiz, Sergio; Maksymowicz, Andrei; Leyton, Felipe; Fuenzalida, Amaya; Madariaga, Raúl

    2016-10-01

    We study the foreshocks and aftershocks of the 1 April 2014 Iquique earthquake of Mw 8.1. Most of these events were recorded by a large digital seismic network that included the Northern Chile permanent network and up to 26 temporary broadband digital stations. We relocated and computed moment tensors for 151 events of magnitude Mw ≥ 4.5. Most of the foreshocks and aftershocks of the Iquique earthquake are distributed to the southwest of the rupture zone. These events are located in a band of about 50 km from the trench, an area where few earthquakes occur elsewhere in Chile. Another important group of aftershocks is located above the plate interface, similar to those observed during the foreshock sequence. The depths of these events were constrained by regional moment tensor (RMT) solutions obtained using the records of the dense broad band network. The majority of the foreshocks and aftershocks were associated to the interplate contact, with dip and strike angles in good agreement with the characteristics of horst and graben structures (>2000 m offset) typical of the oceanic Nazca Plate at the trench and in the outer rise region. We propose that the spatial distribution of foreshocks and aftershocks, and its seismological characteristics were strongly controlled by the rheological and tectonics conditions of the extreme erosive margin of Northern Chile.

  7. Eta Carinae and Its Ejecta, the Homunculus

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.

    2014-01-01

    Eta Carinae (Eta Car), its interacting winds and historical ejecta provide an unique astrophysical laboratory that permits addressing a multitude of questions ranging from stellar evolution, colliding winds, chemical enrichment, nebular excitation to the formation of molecules and dust. Every 5.54 years, Eta Car changes from high excitation to several-months-long low excitation caused by modulation of the massive interacting winds due to a very eccentric binary orbit. The surrounding Homunculus (Figure 1) and Little Homunculus, thrown out in the 1840s Great Eruption and the 1890s Lesser Eruption, respond to the changing flux, providing clues to many physical phenomena of great interest to astrophysicists.

  8. Aftershock activity of the 2015 Gorkha, Nepal, earthquake determined using the Kathmandu strong motion seismographic array

    NASA Astrophysics Data System (ADS)

    Ichiyanagi, Masayoshi; Takai, Nobuo; Shigefuji, Michiko; Bijukchhen, Subeg; Sasatani, Tsutomu; Rajaure, Sudhir; Dhital, Megh Raj; Takahashi, Hiroaki

    2016-02-01

    The characteristics of aftershock activity of the 2015 Gorkha, Nepal, earthquake (Mw 7.8) were evaluated. The mainshock and aftershocks were recorded continuously by the international Kathmandu strong motion seismographic array operated by Hokkaido University and Tribhuvan University. Full waveform data without saturation for all events enabled us to clarify aftershock locations and decay characteristics. The aftershock distribution was determined using the estimated local velocity structure. The hypocenter distribution in the Kathmandu metropolitan region was well determined and indicated earthquakes located shallower than 12 km depth, suggesting that aftershocks occurred at depths shallower than the Himalayan main thrust fault. Although numerical investigation suggested less resolution for the depth component, the regional aftershock epicentral distribution of the entire focal region clearly indicated earthquakes concentrated in the eastern margin of the major slip region of the mainshock. The calculated modified Omori law's p value of 1.35 suggests rapid aftershock decay and a possible high temperature structure in the aftershock region.

  9. Implication from the aftershocks of the 1989 Loma Prieta earthquake

    SciTech Connect

    Tajima, Fumiko; Sen, M.K. )

    1990-08-01

    The authors examined the P wave displacement spectra of nine aftershocks (M = 2.5{approximately}3.6) of the 1989 Loma Prieta earthquake recorded on PASSCAL/IRIS instruments to search for changes in the spectra that are indicative of heterogeneity in the source region. Temporal variations of spectral characteristics have been observed from the records of two events (No. 7 with M = 2.7 and No. 8 with M = 2.5) that occurred at an almost identical location with a time interval of 16 min and recorded at common stations. The different spectral characteristics can be attributed to the differences in the source time functions of these events. Also, the spectrum of event No. 2 (M = 2.5) that occurred near San Francisco, is substantially richer in high frequency than those from events of a comparable size in the immediate aftershock area. This could be an indication of progressive stress concentration beyond the present aftershock area.

  10. Aftershock Prediction for High-Frequency Financial Markets' Dynamics

    NASA Astrophysics Data System (ADS)

    Baldovin, Fulvio; Camana, Francesco; Caraglio, Michele; Stella, Attilio L.; Zamparo, Marco

    The occurrence of aftershocks following a major financial crash manifests the critical dynamical response of financial markets. Aftershocks put additional stress on markets, with conceivable dramatic consequences. Such a phenomenon has been shown to be common to most financial assets, both at high and low frequency. Its present-day description relies on an empirical characterization proposed by Omori at the end of 1800 for seismic earthquakes. We point out the limited predictive power in this phenomenological approach and present a stochastic model, based on the scaling symmetry of financial assets, which is potentially capable to predict aftershocks occurrence, given the main shock magnitude. Comparisons with S&P high-frequency data confirm this predictive potential.

  11. Simulating Aftershocks for an On Site Inspection (OSI) Exercise

    SciTech Connect

    Sweeney, J. J.; Ford, S. R.

    2015-10-05

    The experience of IFE14 emphasizes the need for a better way to simulate aftershocks during an OSI exercise. The obvious approach is to develop a digital model of aftershocks that can be used either for a real field exercise or for a computer simulation that can be done in an office, for training for example. However, this approach involves consideration of several aspects, such as how and when to introduce waveforms in a way that maximizes the realism of the data and that will be convincing to a savvy, experienced seismic analyst. The purpose of this report is to outline a plan for how this approach can be implemented.

  12. Eta Carinae - A Demanding Mistress

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.

    2011-01-01

    Over the past 15 years, a number of observers and modelers have increasingly focused on this massive system that is approaching its end stage, a supernova? a hypernova? When? The discovery by Augusto Damineli that Eta Carinae had a 5.5-year period proved timely as the newly-installed STIS was primed to observe its properties in the visible and ultraviolet. Initial observations occurred on January 1998, and through multiple programs, including the multi-cycle Hubble Treasury program, have sampled changes across two cycles. Now a multi-cycle program, focused on mapping variations in the extended wind-wind collision zones through early 2015, will test 3-D models of the interacting winds. In parallel, studies have been accomplished in X-rays with RXTE and CHANDRA, now in the far infrared with Herschel and from the ground with VLT. Each new observation is helping to peel back the veil of mystery on this massive binary system, but also opening up more questions to be answered. Timely inclusion of laboratory studies and models have greatly enhanced the observational results. We will summarize the latest results including submitted papers and very recent results with Herschel.

  13. Eta Squared and Partial Eta Squared as Measures of Effect Size in Educational Research

    ERIC Educational Resources Information Center

    Richardson, John T. E.

    2011-01-01

    Eta squared measures the proportion of the total variance in a dependent variable that is associated with the membership of different groups defined by an independent variable. Partial eta squared is a similar measure in which the effects of other independent variables and interactions are partialled out. The development of these measures is…

  14. Effect of {eta}-{eta}{sup '} mixing on D{yields}PV decays

    SciTech Connect

    Bhattacharya, Bhubanjyoti; Rosner, Jonathan L.

    2010-08-01

    Charmed meson decays to a light pseudoscalar (P) and light vector (V) meson are analyzed taking account of {eta}-{eta}{sup '} mixing. A frequently-used octet-singlet mixing angle of 19.5 degree sign is compared with a value of 11.7 degree sign favored by a recent analysis of D{yields}PP decays.

  15. Prediction of seismic moment release of aftershocks by a kinetic law

    NASA Astrophysics Data System (ADS)

    Daminelli, Rosastella; Marcellini, Alberto

    2013-04-01

    We modelled the temporal behaviour of the cumulative seismic moment releases of aftershock sequences by a kinetic approach of the fracture mechanism. This approach considers that the relation between applied stress and time-to-break is conditioned by two competing phenomena occurring in the fracture zone: the breakage of unbroken elements and the reformation of broken elements. With respect to the familiar log-linear relation between stress and fracture time of static fatigue, the present approach also considers the damage evolution of the material during the fracture process. From a math point of view it means a modification of the log-linear relation by the introduction in the equation of a new factor that represents the fraction of integrity of the materials: the result is a better fit of experimental data. The aftershock model we derived has been applied to seven aftershock sequences of Californian earthquakes selected from the SCEC database: the mainshocks range from M=5.45 to M=7.3. We considered a total time interval of 120 days following the mainshock, but for Whittier Narrows (110 days), with the same magnitude threshold (M=1.8) for all the sequences. The total number of events considered ranges from the 470 of Whittier Narrows (October 1, 1987) to the 12573 of Landers (June 28, 1992). To check the predictive validity of the model we analysed the forecast of the cumulative seismic moment release as a function of time: we defined ? as the elapsed time, since the mainshock, required to evaluate the costants of the equation sufficient to obtain predictions of the cumulative seismic moment with maximum error of 3 days for the whole remaining sequence. We obtained ? = 2.8 days for Whittier Narrows, ? = 3 days for Landers, ? = 15 hours for Northridge (January 17, 1994), ? = 9 days for North Palm Springs (July 8, 1986) and ? = 6 days for Hector Mine (October 16, 1999). Unfortunately two sequences, Ridgecrest (September 20, 1995) and Oceanside (July 13, 1986

  16. Foreshocks and aftershocks of Pisagua 2014 earthquake: time and space evolution of megathrust event.

    NASA Astrophysics Data System (ADS)

    Fuenzalida Velasco, Amaya; Rietbrock, Andreas; Wollam, Jack; Thomas, Reece; de Lima Neto, Oscar; Tavera, Hernando; Garth, Thomas; Ruiz, Sergio

    2016-04-01

    The 2014 Pisagua earthquake of magnitude 8.2 is the first case in Chile where a foreshock sequence was clearly recorded by a local network, as well all the complete sequence including the mainshock and its aftershocks. The seismicity of the last year before the mainshock include numerous clusters close to the epicentral zone (Ruiz et al; 2014) but it was on 16th March that this activity became stronger with the Mw 6.7 precursory event taking place in front of Iquique coast at 12 km depth. The Pisagua earthquake arrived on 1st April 2015 breaking almost 120 km N-S and two days after a 7.6 aftershock occurred in the south of the rupture, enlarging the zone affected by this sequence. In this work, we analyse the foreshocks and aftershock sequence of Pisagua earthquake, from the spatial and time evolution for a total of 15.764 events that were recorded from the 1st March to 31th May 2015. This event catalogue was obtained from the automatic analyse of seismic raw data of more than 50 stations installed in the north of Chile and the south of Peru. We used the STA/LTA algorithm for the detection of P and S arrival times on the vertical components and then a method of back propagation in a 1D velocity model for the event association and preliminary location of its hypocenters following the algorithm outlined by Rietbrock et al. (2012). These results were then improved by locating with NonLinLoc software using a regional velocity model. We selected the larger events to analyse its moment tensor solution by a full waveform inversion using ISOLA software. In order to understand the process of nucleation and propagation of the Pisagua earthquake, we also analysed the evolution in time of the seismicity of the three months of data. The zone where the precursory events took place was strongly activated two weeks before the mainshock and remained very active until the end of the analysed period with an important quantity of the seismicity located in the upper plate and having

  17. Tsunamigenic Aftershocks From Large Strike-Slip Earthquakes: An Example From the November 16, 2000 Mw=8.0 New Ireland, Papua New Guinea, Earthquake

    NASA Astrophysics Data System (ADS)

    Geist, E.; Parsons, T.; Hirata, K.; Hirata, K.

    2001-12-01

    Two reverse mechanism earthquakes (M > 7) were triggered by the November 16, 2000 Mw=8.0 New Ireland (Papua New Guinea) left-lateral, strike-slip earthquake. The mainshock rupture initiated in the Bismarck Sea and propagated unilaterally to the southeast through the island of New Ireland and into the Solomon Sea. Although the mainshock caused a local seiche in the bay near Rabaul (New Britain) with a maximum runup of 0.9 m, the main tsunami observed on the south coast of New Britain, New Ireland, and Bougainville (maximum runup approximately 2.5-3 m), appears to have been caused by the Mw=7.4 aftershock 2.8 hours following the mainshock. It is unclear whether the second Mw=7.6 aftershock on November 17, 2000 (40 hours after the mainshock) also generated a tsunami. Analysis and modeling of the available tsunami information can constrain the source parameters of the tsunamigenic aftershock(s) and further elucidated the triggering mechanism. Preliminary stress modeling indicates that because the location of the first Mw=7.4 aftershock is located near the rupture termination of the mainshock, stress calculations are especially sensitive to the location of both ruptures and the assumed coefficient of friction. A similar example of a triggered tsunamigenic earthquake occurred following the 1812 Wrightwood (M ~7.5) earthquake in southern California as discussed by Deng and Sykes (1996, GRL, p. 1155-1158). In this case, they show that strike-slip rupture on the San Andreas fault produced coseismic stress changes that triggered the Santa Barbara Channel earthquake (M ~7.1), 13 days later. The mechanism for the Santa Barbara Channel event appears to have been an oblique thrust event. The November 2000 New Ireland earthquake sequence provides an important analog for studying the potential for tsunamigenic aftershocks following large San Andreas earthquakes in southern California.

  18. Afterslip and Aftershocks Triggered by Moderate Events on the San-Jacinto Fault

    NASA Astrophysics Data System (ADS)

    Inbal, A.; Ampuero, J. P.; Avouac, J.

    2013-12-01

    The San-Jacinto Fault (SJF) is one of the most active faults in southern California, which together with the southern San-Andreas Fault accommodates a large fraction of the total accumulated strain within the plate boundary. Seismicity along the SJF is distributed over several fault segments with distinct spatio-temporal characteristics. One of these segments, also known as the Anza seismic gap, is a 20 km long strand of the fault almost devoid of seismicity. Several M>6 events occurred along the SJF over the past 100 years, none of which is thought to have ruptured the gap (Sanders and Kanamori, 1984). In recent years, four M4-5 events occurred south of the gap. Despite their moderate magnitudes, these earthquakes triggered rich aftershock sequences and pronounced post-seismic slip. This complex pattern of seismic and aseismic deformation along the SJF has important implications for seismic hazard estimation, and may also entail clues about the physical processes that govern fault slip at depth. Here we perform a joint inversion of the aftershocks and geodetic data sets in order to recover the evolution of post-seismic slip on the SJF. We analyze continuous strain records from PBO borehole instruments installed within a few kilometres from the trace of the SJF. These sites recorded an abrupt, weeks long increase in strain rate following three M4-5 events that occurred in 2005, 2010, and 2013. A similar, yet shorter response was observed following the 2010 M7.2 El Mayor-Cucapah earthquake. These episodes were accompanied by increased seismicity rates which decayed to the background level according to the modified Omori law. The aftershocks data set is used to improve the limited sensitivity of geodetic data sets to deep fault slip. Our approach is based on the Dieterich's (1994) aftershock model for the response of a fault governed by rate-and-state friction to a stress perturbation. Based on this formulation, we are able to infer the stress time-histories of

  19. Eta Carinae: Orientation of The Orbital Plane

    NASA Technical Reports Server (NTRS)

    Gull, T. R.; Nielsen, K. E.; Ivarsson, S.; Corcoran, M. F.; Verner, E.; Hillier, J. D.

    2006-01-01

    Evidence continues to build that Eta Carinae is a massive binary system with a hidden hot companion in a highly elliptical orbit. We present imaging and spectroscopic evidence that provide clues to the orientation of the orbital plane. The circumstellar ejecta, known as the Homunculus and Little Homunculus, are hourglass-shaped structures, one encapsulated within the other, tilted at about 45 degrees from the sky plane. A disk region lies between the bipolar lobes. Based upon their velocities and proper motions, Weigelt blobs B, C and D, very bright emission clumps 0.1 to 0.3" Northwest from Eta Carinae, lie in the disk. UV flux from the hot companion, Eta Car B, photoexcites the Weigelt blobs. Other clumps form a complete chain around the star, but are not significantly photoexcited. The strontium filament, a 'neutral' emission structure, lies in the same general direction as the Weigelt blobs and exhibits peculiar properties indicative that much mid-UV, but no hydrogen-ionizing radiation impinges on this structure. It is shielded by singly-ionized iron. P Cygni absorptions in Fe I I lines, seen directly in line of sight from Eta Carinae, are absent in the stellar light scattered by the Weigelt blobs. Rather than a strong absorption extending to -600 km/s, a low velocity absorption feature extends from -40 to -150 km/s. No absorbing Fe II exists between Eta Carinae and Weigelt D, but the outer reaches of the wind are intercepted in line of sight from Weigelt D to the observer. This indicates that the UV radiation is constrained by the dominating wind of Eta Car A to a small cavity carved out by the weaker wind of Eta Car B. Since the high excitation nebular lines are seen in the Weigelt blobs at most phases, the cavity, and hence the major axis of the highly elliptical orbit, must lie in the general direction of the Weigelt blobs. The evidence is compelling that the orbital major axis of Eta Carinae is projected at -45 degrees position angle on the sky. Moreover

  20. Analysis of the Petatlan aftershocks: Numbers, energy release, and asperities

    NASA Astrophysics Data System (ADS)

    ValdéS, Carlos; Meyer, Robert P.; ZuñIga, Ramón; Havskov, Jens; Singh, Shri K.

    1982-10-01

    The Petatlan earthquake of March 14, 1979 (Ms = 7.6), occurred between the Middle America trench and the Mexican coast, 15 km southwest of Petatlan, Guerrero, Mexico. From seismograms recorded on smoked paper, FM, and digital tapes, we have identified 255 aftershocks with coda lengths greater than 60 s that occurred 11 hours to 36 days after the main shock. Based on these events, the aftershock epicentral area defined during the period between 11 and 60 hours was about 2000 km2; between 11 hours and 6 days it was about 2400 km2. Although the area grew to 6060 km2 in 36 days, most of the activity was still confined within the area defined after 6 days. This suggests that the smaller aftershock area might represent an asperity. The distribution of events and energy release per unit area confirm the existence of heterogeneity in the aftershock area. Thus our data support the concept of an inhomogeneous rupture area that includes an asperity, as suggested by Chael and Stewart (1982) to account for the differences they computed for the body and surface wave moments from WWSSN data. However, the combination of the moments Reichle et al. (1982) report for body and surface waves from IDA data and the rupture areas reported in this paper results in a solution that is most physically realizable in terms of stress drop and slip. We calculate stress drops of 5 and 15 bars, the former for the average over the entire area, the latter for the asperity, and an average slip of 60 cm for the entire area and 120 cm for the asperity. These values for slip are 30% and 60%, respectively, of the convergence of the Cocos plate relative to the North America plate during the 36-year period between the last two major earthquakes in the Petatlan area. Hypocenters of the aftershocks define a zone about 25 km thick, dipping 15° with an azimuth of N20°E, which is perpendicular to the Middle America trench. Most aftershocks are below the main shock. The b value estimated for aftershocks in the

  1. Eta or eta-like vs sigma coordinate: A review of available evidence

    NASA Astrophysics Data System (ADS)

    Mesinger, Fedor; Antico, Pablo Luis; Veljovic, Katarina; Mourão, Caroline; Chou, Sin Chan

    2013-04-01

    During the time of the operational use of the Eta model at NCEP numerous tests were made of the impact of the eta coordinate by comparing results against those obtained with the model's sigma switch turned on. These tests invariably showed an advantage of the eta, with the advantage persisting as the resolution kept being increased over the years. Yet, a NOAA-wide announcement in the summer of 2002 of the operational implementation of the NMM at NCEP, using terrain-following coordinate, stated that "This choice [of the vertical coordinate] will avoid the problems . . . with strong downslope winds and will improve placement of precipitation in mountainous terrain." In spite of the NCEP's operational Eta being "frozen" since the summer of 2003, an about a 5-month parallel in 2006 showed the latter not to have been confirmed, since the Eta kept its advantage in precipitation placement scores. Similar results, albeit at a lower resolution, came from tests with a NASA GISS eta-like model (Russell, Mon. Wea. Rev., 2007). The Eta developments within its user community continued with the major novelty being the introduction of "sloping steps", somewhat of a simplified version of the shaved cells of Adcroft et al. (Mon. Wea. Rev., 1997). Simulation of a major downslope windstorm over the Andes using thus and in other ways upgraded Eta code is shown in (Mesinger et al., Meteor. Atmos. Phys., 2012). For tests of the impact of the discretization change in more general situations a ten year experiment was ran, driving the Eta with the ERA-Interim Reanalysis of 1990-1999, over a large South American domain, at 50-km resolution. Compared to CRU data, monthly precipitation values were improved in the majority of months, while not decreasing in accuracy in the remaining ones. The 2-m temperatures improved quite considerably in three months in which the errors of the standard Eta were the largest, to the extent that the errors were reduced by more than a half; again with little

  2. 77 FR 2088 - Information Collection Request for the ETA 9128, Reemployment and Eligibility Assessments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... Information Collection Request for the ETA 9128, Reemployment and Eligibility Assessments Workloads Report, and the ETA 9129, Reemployment and Eligibility Assessments Outcomes Report: Extension Without Change... the ETA 9128, Reemployment and Eligibility Assessments Workloads Report and the ETA 9129,...

  3. Endothelin ETA receptor antagonism in cardiovascular disease.

    PubMed

    Nasser, Suzanne A; El-Mas, Mahmoud M

    2014-08-15

    Since the discovery of the endothelin system in 1988, it has been implicated in numerous physiological and pathological phenomena. In the cardiovascular system, endothelin-1 (ET-1) acts through intracellular pathways of two endothelin receptors (ETA and ETB) located mainly on smooth muscle and endothelial cells to regulate vascular tone and provoke mitogenic and proinflammatory reactions. The endothelin ETA receptor is believed to play a pivotal role in the pathogenesis of several cardiovascular disease including systemic hypertension, pulmonary arterial hypertension (PAH), dilated cardiomyopathy, and diabetic microvascular dysfunction. Growing evidence from recent experimental and clinical studies indicates that the blockade of endothelin receptors, particularly the ETA subtype, grasps promise in the treatment of major cardiovascular pathologies. The simultaneous blockade of endothelin ETB receptors might not be advantageous, leading possibly to vasoconstriction and salt and water retentions. This review summarizes the role of ET-1 in cardiovascular modulation and the therapeutic potential of endothelin receptor antagonism.

  4. Exponential decline of aftershocks of the M7.9 1868 great Kau earthquake, Hawaii, through the 20th century

    USGS Publications Warehouse

    Klein, F.W.; Wright, Tim

    2008-01-01

    The remarkable catalog of Hawaiian earthquakes going back to the 1820s is based on missionary diaries, newspaper accounts, and instrumental records and spans the great M7.9 Kau earthquake of April 1868 and its aftershock sequence. The earthquake record since 1868 defines a smooth curve complete to M5.2 of the declining rate into the 21st century, after five short volcanic swarms are removed. A single aftershock curve fits the earthquake record, even with numerous M6 and 7 main shocks and eruptions. The timing of some moderate earthquakes may be controlled by magmatic stresses, but their overall long-term rate reflects one of aftershocks of the Kau earthquake. The 1868 earthquake is, therefore, the largest and most controlling stress event in the 19th and 20th centuries. We fit both the modified Omori (power law) and stretched exponential (SE) functions to the earthquakes. We found that the modified Omori law is a good fit to the M ??? 5.2 earthquake rate for the first 10 years or so and the more rapidly declining SE function fits better thereafter, as supported by three statistical tests. The switch to exponential decay suggests that a possible change in aftershock physics may occur from rate and state fault friction, with no change in the stress rate, to viscoelastic stress relaxation. The 61-year exponential decay constant is at the upper end of the range of geodetic relaxation times seen after other global earthquakes. Modeling deformation in Hawaii is beyond the scope of this paper, but a simple interpretation of the decay suggests an effective viscosity of 1019 to 1020 Pa s pertains in the volcanic spreading of Hawaii's flanks. The rapid decline in earthquake rate poses questions for seismic hazard estimates in an area that is cited as one of the most hazardous in the United States.

  5. The ultraviolet spectrum of Eta Carinae

    SciTech Connect

    Viotti, R.; Rossi, L.; Cassatella, A.; Altamore, A.; Baratta, G.B. International Ultraviolet Explorer Observatory, Madrid Roma I Universita, Rome Osservatorio Astronomico, Rome )

    1989-12-01

    An atlas of the high-resolution UV spectrum of Eta Car from 1200 to 1974 A and from 2200 to 3230 A is presented, based on IUE observations made between 1978 and 1980. The fluxes and equivalent widths of the emission and absorption features, and the stellar continuum in line-free regions are presented. The profiles displayed by the most intense emission suggest line formation in an asymmetric envelope. Many of the observed features may be explained if Eta Car is an intermediate, possible binary, F-type hypergiant in a short living stage, which holds a massive wind heated by dissipation of mechanical energy. 61 refs.

  6. Study of high momentum eta' production in B --> eta'Xs.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Watson, N K; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Teodorescu, L; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Layter, J; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Erwin, R J; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Khan, A; Lavin, D; Muheim, F; Playfer, S; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Cristinziani, M; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-08-06

    We measure the branching fraction for the charmless semi-inclusive process B --> eta'Xs, where the eta' meson has a momentum in the range 2.0 to 2.7 GeV/c in the upsilon4S center-of-mass frame and Xs represents a system comprising a kaon and zero to four pions. We find B(B --> eta'Xs) = [3.9 +/- 0.8(stat) +/- 0.5(syst) +/- 0.8(model)] x 10(-4). We also obtain the Xs mass spectrum and find that it fits models predicting high masses.

  7. Constraints on recent earthquake source parameters, fault geometry and aftershock characteristics in Oklahoma

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Benz, H.; Herrmann, R. B.; Bergman, E. A.; McMahon, N. D.; Aster, R. C.

    2014-12-01

    In late 2009, the seismicity of Oklahoma increased dramatically. The largest of these earthquakes was a series of three damaging events (Mw 4.8, 5.6, 4.8) that occurred over a span of four days in November 2011 near the town of Prague in central Oklahoma. Studies suggest that these earthquakes were induced by reactivation of the Wilzetta fault due to the disposal of waste water from hydraulic fracturing ("fracking") and other oil and gas activities. The Wilzetta fault is a northeast trending vertical strike-slip fault that is a well known structural trap for oil and gas. Since the November 2011 Prague sequence, thousands of small to moderate (M2-M4) earthquakes have occurred throughout central Oklahoma. The most active regions are located near the towns of Stillwater and Medford in north-central Oklahoma, and Guthrie, Langston and Jones near Oklahoma City. The USGS, in collaboration with the Oklahoma Geological Survey and the University of Oklahoma, has responded by deploying numerous temporary seismic stations in the region in order to record the vigorous aftershock sequences. In this study we use data from the temporary seismic stations to re-locate all Oklahoma earthquakes in the USGS National Earthquake Information Center catalog using a multiple-event approach known as hypo-centroidal decomposition that locates earthquakes with decreased uncertainty relative to one another. Modeling from this study allows us to constrain the detailed geometry of the reactivated faults, as well as source parameters (focal mechanisms, stress drop, rupture length) for the larger earthquakes. Preliminary results from the November 2011 Prague sequence suggest that subsurface rupture lengths of the largest earthquakes are anomalously long with very low stress drop. We also observe very high Q (~1000 at 1 Hz) that explains the large felt areas and we find relatively low b-value and a rapid decay of aftershocks.

  8. Spatial correlation of aftershock locations and on-fault main shock properties

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Schorlemmer, D.; Wiemer, S.; Mai, P. M.

    2006-08-01

    We quantify the correlation between spatial patterns of aftershock hypocenter locations and the distribution of coseismic slip and stress drop on a main shock fault plane using two nonstandard statistical tests. Test T1 evaluates if aftershock hypocenters are located in low-slip regions (hypothesis H1), test T2 evaluates if aftershock hypocenters occur in regions of increased shear stress (hypothesis H2). In the tests, we seek to reject the null hypotheses H0: Aftershock hypocenters are not correlated with (1) low-slip regions or (2) regions of increased shear stress, respectively. We tested the hypotheses on four strike-slip events for which multiple earthquake catalogs and multiple finite fault source models of varying accuracy exist. Because we want to retain earthquake clustering as the fundamental feature of aftershock seismicity, we generate slip distributions using a random spatial field model and derive the stress drop distributions instead of generating seismicity catalogs. We account for uncertainties in the aftershock locations by simulating them within their location error bounds. Our findings imply that aftershocks are preferentially located in regions of low-slip (u ≤ ?umax) and of increased shear stress (Δσ < 0). In particular, the correlation is more significant for relocated than for general network aftershock catalogs. However, the results show that stress drop patterns provide less information content on aftershock locations. This implies that static shear stress change of the main shock may not be the governing process for aftershock genesis.

  9. Decay of aftershock density with distance indicates triggering by dynamic stress

    USGS Publications Warehouse

    Felzer, K.R.; Brodsky, E.E.

    2006-01-01

    The majority of earthquakes are aftershocks, yet aftershock physics is not well understood. Many studies suggest that static stress changes trigger aftershocks, but recent work suggests that shaking (dynamic stresses) may also play a role. Here we measure the decay of aftershocks as a function of distance from magnitude 2-6 mainshocks in order to clarify the aftershock triggering process. We find that for short times after the mainshock, when low background seismicity rates allow for good aftershock detection, the decay is well fitted by a single inverse power law over distances of 0.2-50 km. The consistency of the trend indicates that the same triggering mechanism is working over the entire range. As static stress changes at the more distant aftershocks are negligible, this suggests that dynamic stresses may be triggering all of these aftershocks. We infer that the observed aftershock density is consistent with the probability of triggering aftershocks being nearly proportional to seismic wave amplitude. The data are not fitted well by models that combine static stress change with the evolution of frictionally locked faults. ?? 2006 Nature Publishing Group.

  10. 20 CFR 658.602 - ETA national office responsibility.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) ADMINISTRATIVE PROVISIONS GOVERNING THE JOB SERVICE SYSTEM Review and Assessment of State Agency Compliance With Job Service Regulations § 658.602 ETA national office responsibility. The ETA national office shall: (a) Monitor ETA regional offices' carrying out of JS regulations; (b) From time to time, conduct...

  11. 20 CFR 658.602 - ETA national office responsibility.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ADMINISTRATIVE PROVISIONS GOVERNING THE JOB SERVICE SYSTEM Review and Assessment of State Agency Compliance With Job Service Regulations § 658.602 ETA national office responsibility. The ETA national office shall: (a) Monitor ETA regional offices' carrying out of JS regulations; (b) From time to time, conduct...

  12. 20 CFR 658.602 - ETA national office responsibility.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATIVE PROVISIONS GOVERNING THE JOB SERVICE SYSTEM Review and Assessment of State Agency Compliance With Job Service Regulations § 658.602 ETA national office responsibility. The ETA national office shall: (a) Monitor ETA regional offices' carrying out of JS regulations; (b) From time to time, conduct...

  13. 20 CFR 658.602 - ETA national office responsibility.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) ADMINISTRATIVE PROVISIONS GOVERNING THE JOB SERVICE SYSTEM Review and Assessment of State Agency Compliance With Job Service Regulations § 658.602 ETA national office responsibility. The ETA national office shall: (a) Monitor ETA regional offices' carrying out of JS regulations; (b) From time to time, conduct...

  14. 20 CFR 655.1292 - Authority of ETA-OFLC.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Department of Labor's (the Department or DOL) Employment & Training Administration (ETA), who, in turn, may... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Authority of ETA-OFLC. 655.1292 Section 655... Employment in the United States (H-2A Workers) § 655.1292 Authority of ETA-OFLC. Temporary agricultural...

  15. 31 CFR 208.5 - Availability of the ETA SM.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ETAs SM as Treasury's Financial Agent. A Federally-insured financial institution that elects to offer... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Availability of the ETA SM. 208.5... DISBURSEMENTS § 208.5 Availability of the ETA SM. An individual who receives a Federal benefit, wage, salary,...

  16. Study of B Meson Decays with Excited eta and eta-prime Mesons

    SciTech Connect

    Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Button-Shafer, J.; /Energy Sci. Network /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /Frascati /Genoa U. /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /Paris U., VI-VII /Pennsylvania U. /Perugia U. /Pisa U. /Prairie View A-M /Princeton U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.

    2008-04-18

    Using 383 million B{bar B} pairs from the BABAR data sample, they report results for branching fractions of six charged B-meson decay modes, where a charged kaon recoils against a charmless resonance decaying to K{bar K}* or {eta}{pi}{pi} final states with mass in the range (1.2-1.8) GeV/c{sup 2}. They observe a significant enhancement at the low K{bar K}* invariant mass which is interpreted as B{sup +} {yields} {eta}(1475)K{sup +}, find evidence for the decay B{sup +} {yields} {eta}(1295)K{sup +}, and place upper limits on the decays B{sup +} {yields} {eta}(1405)K{sup +}, B{sup +} {yields} f{sub 1}(1285)K{sup +}, B{sup +} {yields} f{sub 1}(1420)K{sup +}, and B{sup +} {yields} {phi}(1680)K{sup +}.

  17. A SEA CHANGE IN ETA CARINAE

    SciTech Connect

    Mehner, Andrea; Davidson, Kris; Humphreys, Roberta M.; Martin, John C.; Ishibashi, Kazunori; Ferland, Gary J.; Walborn, Nolan R.

    2010-07-01

    Major stellar-wind emission features in the spectrum of {eta} Car have recently decreased by factors of order 2 relative to the continuum. This is unprecedented in the modern observational record. The simplest, but unproven, explanation is a rapid decrease in the wind density.

  18. Superluminous supernovae: no threat from eta Carinae.

    PubMed

    Thomas, Brian C; Melott, Adrian L; Fields, Brian D; Anthony-Twarog, Barbara J

    2008-02-01

    Recently, Supernova 2006gy was noted as the most luminous ever recorded, with a total radiated energy of approximately 10(44) Joules. It was proposed that the progenitor may have been a massive evolved star similar to eta Carinae, which resides in our own Galaxy at a distance of about 2.3 kpc. eta Carinae appears ready to detonate. Although it is too distant to pose a serious threat as a normal supernova, and given that its rotation axis is unlikely to produce a gamma-ray burst oriented toward Earth, eta Carinae is about 30,000 times nearer than 2006gy, and we re-evaluate it as a potential superluminous supernova. We have found that, given the large ratio of emission in the optical to the X-ray, atmospheric effects are negligible. Ionization of the atmosphere and concomitant ozone depletion are unlikely to be important. Any cosmic ray effects should be spread out over approximately 10(4) y and similarly unlikely to produce any serious perturbation to the biosphere. We also discuss a new possible effect of supernovae-e-ndocrine disruption induced by blue light near the peak of the optical spectrum. This is a possibility for nearby supernovae at distances too large to be considered "dangerous" for other reasons. However, due to reddening and extinction by the interstellar medium, eta Carinae is unlikely to trigger such effects to any significant degree.

  19. D sub s sup + decays to. eta. pi. sup + and. eta. prime. pi. sup +

    SciTech Connect

    Alexander, J.; Bebek, C.; Berkelman, K.; Besson, D.; Browder, T.E.; Cassel, D.G.; Cheu, E.; Coffman, D.M.; Drell, P.S.; Ehrlich, R.; Galik, R.S.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Honscheid, K.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Lewis, J.D.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Nandi, S.; Ng, C.R.; Nordberg, E.; O'Grady, C.; Patterson, J.R.; Peterson, D.; Pisharody, M.; Riley, D.; Sapper, M.; Selen, M.; Worden, H.; Worris, M.; Avery, P.; Freyberger, A.; Rodriguez, J.; Yelton, J.; Henderson, S.; Kinoshita, K.; Pipkin, F.; Saulnier, M.; Wilson, R.; Wolinski, J.; Xiao, D.; Yamamoto, H.; Sadoff, A.J.; Ammar, R.; Baringer, P.; Coppage, D.; Davis, R.; Kelly, M.; Kwak, N.; Lam, H.; Ro, S.; Kubota, Y.; Nelson, J.K.; Perticone, D.; Poling, R.; Schrenk, S.; Alam, M.S.; Kim, I.J.; Nemati, B.; Romero, V.; Sun, C.R.; Wang, P.; Zoeller, M.M.; Crawford, G.; Fulton, R.; Gan, K.K.; Jensen, T.; Kagan, H.; Kas

    1992-03-02

    Using the CLEO II detector, we have accurately measured {ital D}{sub {ital s}} decay branching ratios relative to the {phi}{pi}{sup +} mode for the {eta}{pi}{sup +} and {eta}{prime}{pi}{sup +} states, for which there are conflicting claims; our results are 0.54{plus minus}0.09{plus minus}0.06 and 1.20{plus minus}0.15{plus minus}0.11, respectively.

  20. SOME NEW PROCESSING TECHNIQUES FOR THE IMPERIAL VALLEY 1979 AFTERSHOCKS.

    USGS Publications Warehouse

    Brady, A. Gerald; ,

    1983-01-01

    This paper describes some of the features of the latest processing improvements that the U. S. Geological Survey (USGS) is currently applying to strong-motion accelerograms from the national network of permanent stations. At the same time it introduces the application of this processing to the set of Imperial Valley aftershocks recorded following the main shock of October 15, 1979. Earlier processing of the 22 main shock recordings provided corrected accelerations, velocity and displacement, response spectra, and Fourier spectra.

  1. Quasifree photoproduction of eta mesons off the neutron.

    PubMed

    Jaegle, I; Mertens, T; Anisovich, A V; Bacelar, J C S; Bantes, B; Bartholomy, O; Bayadilov, D; Beck, R; Beloglazov, Y A; Castelijns, R; Crede, V; Dutz, H; Ehmanns, A; Elsner, D; Essig, K; Ewald, R; Fabry, I; Fuchs, M; Funke, Ch; Gothe, R; Gregor, R; Gridnev, A B; Gutz, E; Höffgen, S; Hoffmeister, P; Horn, I; Junkersfeld, J; Kalinowsky, H; Kammer, S; Kleber, V; Klein, Frank; Klein, Friedrich; Klempt, E; Konrad, M; Kotulla, M; Krusche, B; Lang, M; Langheinrich, J; Löhner, H; Lopatin, I V; Lotz, J; Lugert, S; Menze, D; Messchendorp, J G; Metag, V; Morales, C; Nanova, M; Nikonov, V A; Novinski, D; Novotny, R; Ostrick, M; Pant, L M; van Pee, H; Pfeiffer, M; Radkov, A; Roy, A; Sarantsev, A V; Schadmand, S; Schmidt, C; Schmieden, H; Schoch, B; Shende, S V; Sokhoyan, V; Süle, A; Sumachev, V V; Szczepanek, T; Thoma, U; Trnka, D; Varma, R; Walther, D; Weinheimer, Ch; Wendel, Ch

    2008-06-27

    Quasifree photoproduction of eta mesons off nucleons bound in the deuteron has been measured with the CBELSA/TAPS detector for incident photon energies up to 2.5 GeV at the Bonn ELSA accelerator. The eta mesons have been detected in coincidence with recoil protons and recoil neutrons, which allows a detailed comparison of the quasifree n(gamma,eta)n and p(gamma,eta)p reactions. The excitation function for eta production off the neutron shows a pronounced bumplike structure at W=1.68 GeV (E{gamma} approximately 1 GeV), which is absent for the proton.

  2. High-Resolution Low Power, Intergrated Aftershock and Microzonation System

    NASA Astrophysics Data System (ADS)

    Zimakov, L.; Passmore, P.

    2012-04-01

    Refraction Technology, Inc. has developed a self-contained, fully integrated Aftershock System, model 160-03, providing the customer simple and quick deployment during aftershock emergency mobilization and microzonation studies. The 160-03 has no external cables or peripheral equipment for command/control and operation in the field. The 160-03 contains three major components integrated in one case: a) 24-bit resolution state-of-the art low power ADC with CPU and Lid interconnect boards; b) power source; and c) three component 2 Hz sensors (two horizontals and one vertical), and built-in ±4g accelerometer. Optionally, the 1 Hz sensors can be built-in the 160-03 system at the customer's request. The self-contained rechargeable battery pack provides power autonomy up to 7 days during data acquisition at 200 sps on continuous three weak motion and triggered three strong motion recording channels. For longer power autonomy, the 160-03 Aftershock System battery pack can be charged from an external source (solar power system). The data in the field is recorded to a built-in swappable USB flash drive. The 160-03 configuration is fixed based on a configuration file stored on the system. The detailed specifications and performance are presented and discussed

  3. Direct test of static stress versus dynamic stress triggering of aftershocks

    USGS Publications Warehouse

    Pollitz, F.F.; Johnston, M.J.S.

    2006-01-01

    Aftershocks observed over time scales of minutes to months following a main shock are plausibly triggered by the static stress change imparted by the main shock, dynamic shaking effects associated with passage of seismic waves from the main shock, or a combination of the two. We design a direct test of static versus dynamic triggering of aftershocks by comparing the near-field temporal aftershock patterns generated by aseismic and impulsive events occurring in the same source area. The San Juan Bautista, California, area is ideally suited for this purpose because several events of both types of M???5 have occurred since 1974. We find that aftershock rates observed after impulsive events are much higher than those observed after aseismic events, and this pattern persists for several weeks after the event. This suggests that, at least in the near field, dynamic triggering is the dominant cause of aftershocks, and that it generates both immediate and delayed aftershock activity.

  4. Some Comments on the Decays of eta (550)

    DOE R&D Accomplishments Database

    Veltman, M.; Yellin, J.

    1966-07-01

    Various decay modes of the {eta}(500) are discussed. The relations, through SU{sub 3} and the Gell-Mann, Sharp, Wagner model, between the {eta}-decay modes and the modes {eta} {yields} {pi}{pi}{gamma), {pi}{sup 0} {yields} {gamma}{gamma} are investigated taking into account {eta}-{eta}{sup *} mixing. The present experimental values for the neutral branching ratios plus the shape of the {eta} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} Dalitz plot are shown to require a 25% {vert_bar}{Delta}{rvec I}{vert_bar} = 3 contribution to the {eta} {yields} 3{pi} amplitude. The connection between a possible charge asymmetry in {eta} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} and the branching ratio {Gamma}{sub {eta} {yields} {pi}{sup 0}e{sup +}e{sup {minus}}}/{Gamma}{sub {eta}}{sup all} is investigated in the framework of a model proposed earlier by several authors. It is shown that there is no conflict between the existing data and this model. The Dalitz plot distribution of {eta} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} is discussed under various assumptions about the properties of the interaction responsible for the decay. (auth)

  5. Glue content and mixing angle of the {eta}-{eta}{sup '} system: The effect of the isoscalar 0{sup -} continuum

    SciTech Connect

    Nasrallah, N.F.

    2004-12-01

    Masses and topological charges of the {eta} and {eta}{sup '} mesons are expressed in terms of the singlet-octet mixing angle {theta}. Contributions of the pseudoscalar 0{sup -} continuum are evaluated in a model independent way. Applications to the decay {eta}{yields}3{pi} and to the radiative decay of vector mesons involving {eta} and {eta}{sup '} are considered. Agreement with experiment is, in general, good and the results quite stable for -30.5 deg. < or approx. {theta} < or approx. -18.5 deg.

  6. Eta-mesic nuclei: Past, present, future

    DOE PAGES

    Haider, Q.; Liu, Lon -Chang

    2015-09-23

    Eta-mesic nucleus or the quasibound nuclear state of an eta (η) meson in a nucleus is caused by strong interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. We review and analyze in great detail the models of the fundamental η–nucleon interaction leading to the formation of an η–mesic nucleus, the methods used in calculating the properties of a bound η, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the η–mesic nucleus 25Mgηmore » and other promising experimental results, future direction in searching for more η–mesic nuclei is suggested.« less

  7. Eta-mesic nuclei: Past, present, future

    SciTech Connect

    Haider, Q.; Liu, Lon -Chang

    2015-09-23

    Eta-mesic nucleus or the quasibound nuclear state of an eta (η) meson in a nucleus is caused by strong interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. We review and analyze in great detail the models of the fundamental η–nucleon interaction leading to the formation of an η–mesic nucleus, the methods used in calculating the properties of a bound η, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the η–mesic nucleus 25Mgη and other promising experimental results, future direction in searching for more η–mesic nuclei is suggested.

  8. HUBBLE SHOWS EXPANSION OF ETA CARINAE DEBRIS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The furious expansion of a huge, billowing pair of gas and dust clouds are captured in this NASA Hubble Space Telescope comparison image of the supermassive star Eta Carinae. To create the picture, astronomers aligned and subtracted two images of Eta Carinae taken 17 months apart (April 1994, September 1995). Black represents where the material was located in the older image, and white represents the more recent location. (The light and dark streaks that make an 'X' pattern are instrumental artifacts caused by the extreme brightness of the central star. The bright white region at the center of the image results from the star and its immediate surroundings being 'saturated' in one of the images.)Photo Credit: Jon Morse (University of Colorado), Kris Davidson (University of Minnesota), and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  9. Complex faulting associated with the 22 December 2003 Mw 6.5 San Simeon California, earthquake, aftershocks and postseismic surface deformation

    USGS Publications Warehouse

    McLaren, M.K.; Hardebeck, J.L.; van der Elst, N.; Unruh, J.R.; Bawden, G.W.; Blair, J.L.

    2008-01-01

    We use data from two seismic networks and satellite interferometric synthetic aperture radar (InSAR) imagery to characterize the 22 December 2003 Mw 6.5 San Simeon earthquake sequence. Absolute locations for the mainshock and nearly 10,000 aftershocks were determined using a new three-dimensional (3D) seismic velocity model; relative locations were obtained using double difference. The mainshock location found using the 3D velocity model is 35.704?? N, 121.096?? W at a depth of 9.7 ?? 0.7 km. The aftershocks concentrate at the northwest and southeast parts of the aftershock zone, between the mapped traces of the Oceanic and Nacimiento fault zones. The northwest end of the mainshock rupture, as defined by the aftershocks, projects from the mainshock hypocenter to the surface a few kilometers west of the mapped trace of the Oceanic fault, near the Santa Lucia Range front and the > 5 mm postseismic InSAR imagery contour. The Oceanic fault in this area, as mapped by Hall (1991), is therefore probably a second-order synthetic thrust or reverse fault that splays upward from the main seismogenic fault at depth. The southeast end of the rupture projects closer to the mapped Oceanic fault trace, suggesting much of the slip was along this fault, or at a minimum is accommodating much of the postseismic deformation. InSAR imagery shows ???72 mm of postseismic uplift in the vicinity of maximum coseismic slip in the central section of the rupture, and ???48 and ???45 mm at the northwest and southeast end of the aftershock zone, respectively. From these observations, we model a ???30-km-long northwest-trending northeast-dipping mainshock rupture surface - called the mainthrust - which is likely the Oceanic fault at depth, a ???10-km-long southwest-dipping backthrust parallel to the mainthrust near the hypocenter, several smaller southwest-dipping structures in the southeast, and perhaps additional northeast-dipping or subvertical structures southeast of the mainshock plane

  10. Eta Carinae and Other Luminous Blue Variables

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.

    2006-01-01

    Luminous Blue Variables (LBVs) are believed to be evolved, extremely massive stars close to the Eddington Limit and hence prone to bouts of large-scale, unstable mass loss. I discuss current understanding of the evolutionary state of these objects, the role duplicity may play and known physical characteristics of these stars using the X-ray luminous LBVs Eta Carinae and HD 5980 as test cases.

  11. Physics and Outlook for Rare, All-neutral Eta Decays

    SciTech Connect

    Mack, David J.

    2014-06-01

    The $\\eta$ meson provides a laboratory to study isospin violation and search for new flavor-conserving sources of C and CP violation with a sensitivity approaching $10^{-6}$ of the isospin-conserving strong amplitude. Some of the most interesting rare $\\eta$ decays are the neutral modes, yet the effective loss of photons from the relatively common decay $\\eta \\rightarrow 3\\pi^0 \\rightarrow 6\\gamma$ (33$\\%$) has largely limited the sensitivity for decays producing 3-5$\\gamma$'s. Particularly important relevant branches include the highly suppressed $\\eta \\rightarrow \\pi^0 2\\gamma \\rightarrow 4\\gamma$, which provides a rare window on testing models of $O(p^6)$ contributions in ChPTh, and $\\eta \\rightarrow 3\\gamma$ and $\\eta \\rightarrow 2\\pi^0 \\gamma \\rightarrow 5\\gamma$ which provide direct constraints on C violation in flavor-conserving processes. The substitution of lead tungstate in the forward calorimeter of the GluEx setup in Jefferson Lab's new Hall D would allow dramatically improved measurements. The main niche of this facility, which we call the JLab Eta Factory (JEF), would be $\\eta$ decay neutral modes. However, this could likely be expanded to rare $\\eta'(958)$ decays for low energy QCD studies as well as $\\eta$ decays involving muons for new physics searches.

  12. GHRS Observations of LISM towards eta UMa

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.

    1998-01-01

    The star eta UMa (l=101(deg) , b=+65(deg) , d=31 pc) samples local interstellar matter (LISM) in a high latitude region. The Sun is ``above'' most of the mass of the Local Fluff cloud complex, yielding low total interstellar column densities towards eta UMa. Thus cloud properties can be determined with minimal confusion caused by velocity component blending in this sightline. The physical properties of the cloud surrounding the solar system become the boundary conditions of the solar system. A key property of the surrounding cloud is the proton density, since the Alfven velocity regulates the formation of a bow shock around the heliosphere, and since charge exchange between interstellar p(+) and H(deg) yields a pile-up of H(deg) at the heliopause. As a result, the interstellar electron density in the surrounding cloud is an important parameter in understanding the configuration of the outer heliosphere regions. We present GHRS Echelle A and Echelle B data on C({deg) *}, C(deg) , Mg(deg) and Mg(+) . These data allow us to compare electron densities as estimated from the ratios N(C({deg) *})/N(C(deg) ) versus N(Mg(deg) )/N(Mg(+) ) for a relatively simple sightline. These electron densities are also compared to electron densities determined from optical Ca(+) observations towards eta UMa by Frisch and Welty (in preparation).

  13. A Step Toward Eta-sub-Earth

    NASA Astrophysics Data System (ADS)

    Traub, Wesley A.

    2014-04-01

    The Kepler mission observed exoplanet transits for 4 full years (greater than its expected lifetime of 3.5 years) until it became inoperable for its original purpose, as a result of a reaction wheel failure. Kepler was spectacularly successful in its goal of observing exoplanet transits of host star disks for the purpose of measuring the statistics of such transits in its target star sample. The Kepler data, when fully analyzed, will determine the statistics of planets in the underlying population, and in particular the expected number of terrestrial planets in habitable zone orbits per solar-type star, the quantity known as eta-sub-Earth. This report is an initial examination of Kepler's third catalog (Feb. 2012) of planets and candidate planets. I find that the apparent projected value of eta-sub-Earth is several times smaller than I had found from the second catalog, but that the data are now approaching the point where intrinsic biases can be uncovered. When all bias factors are eventually found, it is likely that the true value of eta-sub-Earth will be substantially greater than its current apparent value.

  14. Study of B meson decays with excited eta and eta' mesons.

    PubMed

    Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Tico, J Garra; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Wenzel, W A; del Amo Sanchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Pelizaeus, M; Schroeder, T; Steinke, M; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Watson, J E; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Zheng, Y; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; LoSecco, J M; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Prendki, J; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Roethel, W; Wilson, F F; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Hryn'ova, T; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Neal, H

    2008-08-29

    Using 383 x 10(6) BBover pairs from the BABAR data sample, we report results for branching fractions of six charged B-meson decay modes, where a charged kaon recoils against a charmless resonance decaying to KKover* or etapipi final states with mass in the range (1.2-1.8) GeV/c2. We observe a significant enhancement at the low KKover* invariant mass which is interpreted as B+-->eta(1475)K+, find evidence for the decay B+-->eta(1295)K+, and place upper limits on the decays B+-->eta(1405)K+, B+-->f1(1285)K+, B+-->f1(1420)K+, and B+-->phi(1680)K+.

  15. Interaction of eta mesons with nuclei.

    PubMed

    Kelkar, N G; Khemchandani, K P; Upadhyay, N J; Jain, B K

    2013-06-01

    Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π(+)n → ηp, pd → (3)Heη, p (6)Li → (7)Be η and γ (3)He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations.The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ≤ Re aηN ≤ 1.03 fm and 0.16 ≤ Rm aηN ≤ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as (3)(η)He and (25)(η)Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall status

  16. Measurement of the eta'-meson mass using J/psi-->gammaeta'.

    PubMed

    Libby, J; Martin, L; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Mendez, H; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A

    2008-10-31

    We measure the mass of the eta;{'} meson using psi(2S)-->pi;{+}pi;{-}J/psi, J/psi-->gammaeta;{'} events acquired with the CLEO-c detector operating at the CESR e;{+}e;{-} collider. Using three decay modes, eta;{'}-->rho;{0}gamma, eta;{'}-->pi;{+}pi;{-}eta with eta-->gammagamma, and eta;{'}-->pi;{+}pi;{-}eta with eta-->pi;{+}pi;{-}pi;{0}, we find M_{eta;{'}}=957.793+/-0.054+/-0.036 MeV, in which the uncertainties are statistical and systematic, respectively. This result is consistent with but substantially more precise than the current world average.

  17. Numerical testing of certain features of probabilistic aftershock hazard assessment

    NASA Astrophysics Data System (ADS)

    Gallovic, F.; Brokesova, J.

    2005-12-01

    Probabilistic aftershock hazard assessment (PAHA, Wiemer, 2000), provided for California in the frame of the STEP project, is based on a methodology having features, two of which are addressed in detail: 1) independence of parameter c in the Omori's law on a lower magnitude cut-off, and, 2) application attenuation relations in the expression for the probability of PGA exceedance. Concerning the first point, in STEP, c is assumed constant with respect to magnitude. However, in paper by Shcherbakov et al. (2004) the authors conclude that c scales with a lower magnitude cut-off. We show, using Japanese attenuation relations and four different earthquake models, that this modification change the hazard curves for very early time interval (<1 day) after the mainshock substantially. For later times (>1 day), the effect is minimal. As regards the second point, we try to substitute attenuation relations and their uncertainties by strong ground motion simulations for a set of scenarios. The main advantage of such an approach is that the simulations account for details of the aftershock source effects (faulting style, slip distribution, position of the nucleation point, etc.). Mean PGAs and their variances are retrieved from the simulations and they are used for the PAHA analysis at a station under study. The method is tested for the Izmit A25 aftershock (Mw=5.8) that occurred 26 days after the main shock. The resulting PAHA maps are compared with those obtained by the use of attenuation relations. We conclude that the two types of the PAHA maps do not differ significantly provided equal occurrence probability is assigned to each nucleation point location. However, possible constraint on this location (e.g., occurrence within the red Coulomb stress change areas) would change the maps considerably.

  18. Using aftershocks to Image the Subducting Pacific Plate in a Region of Deep Slow Slip, Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Jacobs, K. M.; Hirschberg, H.; Louie, J. N.; Savage, M. K.; Bannister, S. C.

    2014-12-01

    We present seismic migrations using aftershocks of two M>6 earthquakes as sources. The Southern Cook Strait earthquake sequence, beginning on 19 July 2013, included the 21 July M=6.5 and 16 August M=6.6 2013 earthquakes, which were the largest shallow earthquakes to strike the Wellington region since 1942. Following the two largest earthquakes we began the Seddon Earthquake Aftershock Structural Investigation (SEASI) and deployed a line of 21 seismometers stretching approximately 400 km along the strike of the Hikurangi subduction zone in order to use aftershocks to illuminate the structure of the subducted Pacific slab. The SEASI line ties into the SAHKE line, which was an array of up to 900 seismometers that recorded air gun and explosion shots in deployments from 2009-2011. The SAHKE project characterized the structures perpendicular to the strike of the subduction zone. Our results use the SAHKE line as a starting point and look for strike-parallel variations in the depth of the Moho and other structures. Previous studies have suggested potential changes along strike in this region, and deep slow slip events (> 35 km) are also observed north of Wellington, further indicating that variation in properties exists along slab strike. We have used 246 M > 3 earthquakes that occurred from September 2013 through January 2014 to create common receiver gathers. Multicomponent prestack depth migration of these receiver gathers, with operator antialiasing control and prestack coherency filtering, produces reflectivity sections using a 1-D velocity model derived from the SAHKE project. Relocation of aftershocks of the Seddon earthquakes using the deployment of a temporary array by New Zealand GeoNet facilitates the migration. An initial P-P migration shows a north-dipping reflector at 15-25 km depth under the earthquake sequence, and suggests the Moho at 20-25 km depth. From Wellington, a reflector dips very gently south from 25-35 km depth, which is probably the slab

  19. Seismic evidence of conjugate normal faulting: The 1994 Devil Canyon earthquake sequence near Challis, Idaho

    SciTech Connect

    Jackson, Suzette M.

    1994-08-01

    Aftershock hypocenters of the 1984 Devil Canyon, Idaho earthquake indicate the sequence was associated with conjugate normal faulting on two northwest-striking normal faults that bound the Warm Spring Creek graben.

  20. Measurement of the gamma gamma* --> eta and gamma gamma* --> eta' transition form factors

    SciTech Connect

    del Amo Sanchez et al, P.

    2011-02-07

    We study the reactions e{sup +}e{sup -} {yields} e{sup +}e{sup -} {eta}{sup (/)} in the single-tag mode and measure the {gamma}{gamma}* {yields} {eta}{sup (/)} transition form factors in the momentum transfer range from 4 to 40 GeV{sup 2}. The analysis is based on 469 fb{sup -1} of integrated luminosity collected at PEP-II with the BABAR detector at e{sup +}e{sup -} center-of-mass energies near 10.6 GeV.

  1. Search for the CP forbidden decay eta-->4pi(0)

    PubMed

    Prakhov; Tippens; Allgower; Bekrenev; Berger; Briscoe; Clajus; Comfort; Craig; Grosnick; Huber; Isenhower; Knecht; Koetke; Koulbardis; Kozlenko; Kruglov; Kycia; Lolos; Lopatin; Manley; Marusic; Manweiler; McDonald; Nefkens; Olmsted

    2000-05-22

    We report the first determination of the upper limit for the branching ratio of the CP forbidden decay eta-->4pi(0). No events were observed in a sample of 3.0x10(7) eta decays. The experiment was performed with the Crystal Ball multiphoton spectrometer installed in a separated pi(-) beam at the AGS (Alternating Gradient Synchrotron). At the 90% confidence limit, B(eta-->4pi(0))

  2. DNA polymerase eta undergoes alternative splicing, protects against UV sensitivity and apoptosis, and suppresses Mre11-dependent recombination.

    PubMed

    Thakur, M; Wernick, M; Collins, C; Limoli, C L; Crowley, E; Cleaver, J E

    2001-11-01

    Polymerase eta (pol eta) is a low-fidelity DNA polymerase that is the product of the gene, POLH, associated with the human XP variant disorder in which there is an extremely high level of solar-induced skin carcinogenesis. The complete human genomic sequence spans about 40 kb containing 10 coding exons and a cDNA of 2.14 kb; exon I is untranslated and is 6 kb upstream from the first coding exon. Using bacterial artificial chromosomes (BACs), the gene was mapped to human chromosome band 6p21 and mouse band 17D. The gene is expressed in most tissues, except for very low or undetectable levels in peripheral lymphocytes, fetal spleen, and adult muscle; exon II, however, is frequently spliced out in normal cells and in almost half the transcripts in the testis and fetal liver. Expression of POLH in a multicopy episomal vector proved nonviable, suggesting that overexpression is toxic. Expression from chromosomally integrated linear copies using either an EF1-alpha or CMV promoter was functional, resulting in cell lines with low or high levels of pol eta protein, respectively. Point mutations in the center of the gene and in a C-terminal cysteine and deletion of exon II resulted in inactivation, but addition of a terminal 3 amino acid C-terminal tag, or an N- or C-terminal green fluorescent protein, had no effect on function. A low level of expression of pol eta eliminated hMre11 recombination and partially restored UV survival, but did not prevent UV-induced apoptosis, which required higher levels of expression. Polymerase eta is therefore involved in S-phase checkpoint and signal transduction pathways that lead to arrest in S, apoptosis, and recombination. In normal cells, the predominant mechanism of replication of UV damage involves pol eta-dependent bypass, and Mre11-dependent recombination that acts is a secondary, backup mechanism when cells are severely depleted of pol eta.

  3. Forecast of enhanced activity of eta-Aquariids in 2013

    NASA Astrophysics Data System (ADS)

    Sato, M.; Watanabe, J.

    2014-07-01

    We tried to simulate distributions for Eta-Aquariids (ETA) of dust trails from 1P/Halley, we found out that some dust trails formed by meteoroids ejected in -1197 and -910 would approach the Earth in 2013. It means that the enhancement of eta-Aquariids would be expected. Actually, the enhanced activity of eta-Aquariids was observed in 2013. Its peak time corresponded with the time when the dust trails approached the Earth based on our simulation. Therefore, it was sure that the enhancement was caused by these dust trails.

  4. Statistical analysis of the induced Basel 2006 earthquake sequence: introducing a probability-based monitoring approach for Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, C. E.; Wiemer, S.; Woessner, J.; Hainzl, S.

    2011-08-01

    reduced and then stopped after another ML 2.5 event. A few hours later, an earthquake with ML 3.4, felt within the city, occurred, which led to bleed-off of the well. A risk study was later issued with the outcome that the experiment could not be resumed. We analyse the statistical features of the sequence and show that the sequence is well modelled with the Omori-Utsu law following the termination of water injection. Based on this model, the sequence will last 31+29/-14 years to reach the background level. We introduce statistical models based on Reasenberg and Jones and Epidemic Type Aftershock Sequence (ETAS) models, commonly used to model aftershock sequences. We compare and test different model setups to simulate the sequences, varying the number of fixed and free parameters. For one class of the ETAS models, we account for the flow rate at the injection borehole. We test the models against the observed data with standard likelihood tests and find the ETAS model accounting for the on flow rate to perform best. Such a model may in future serve as a valuable tool for designing probabilistic alarm systems for EGS experiments.

  5. Static stress triggering explains the empirical aftershock distance decay

    NASA Astrophysics Data System (ADS)

    Hainzl, Sebastian; Moradpour, Javad; Davidsen, Jörn

    2014-12-01

    The shape of the spatial aftershock decay is sensitive to the triggering mechanism and thus particularly useful for discriminating between static and dynamic stress triggering. For California seismicity, it has been recently recognized that its form is more complicated than typically assumed consisting of three different regimes with transitions at the scale of the rupture length and the thickness of the crust. The intermediate distance range is characterized by a relative small decay exponent of 1.35 previously declared to relate to dynamic stress triggering. We perform comprehensive simulations of a simple clock-advance model, in which the number of aftershocks is just proportional to the Coulomb-stress change, to test whether the empirical result can be explained by static stress triggering. Similarly to the observations, the results show three scaling regimes. For simulations adapted to the depths and focal mechanisms observed in California, we find a remarkable agreement with the observation over the whole distance range for a fault distribution with fractal dimension of 1.8, which is shown to be in good agreement with an independent analysis of California seismicity.

  6. Largest Aftershocks of Megathrust Earthquakes in the World

    NASA Astrophysics Data System (ADS)

    Koyama, J.; Tsuzuki, M.

    2012-12-01

    The 2011 Tohoku-oki megathrust earthquake of Mw9.0 induced the earthquake activity in high level all over Japan. It included not only earthquakes near active faults but also volcanic earthquakes. Although we have observed tens of thousands of aftershocks, yet we do not know which is the largest aftershock of the 2011 megathrust. There occurred several megathrust earthquakes worldwide in the last one hundred years, which are almost the same size or larger than the 2011 megathrust. We have studied their largest aftershocks based on our new hypothesis of along-dip double segmentation (ADDS) and along-strike single segmentation (ASSS). ADDS in the Tohoku-oki region along the Japan trench is characterized by the apparent absence of earthquakes in the trench-ward segments as opposed to the Japan Island-ward segments that have repeated small earthquakes of up to Mw8 class. In contrast, the 1960 Chile and the 2010 Maule megathrusts are characterized by ASSS with the weak seismic activity before the main event everywhere in the subduction zone. The difference between these two types of seismic segmentations would be that strongly coupled areas of trench-ward segments give rise to ADDS, whereas almost 100% coupled areas of shallow-parts of subduction zones give rise to ASSS. In other words, the phenomenon of a seismic gap can be identified for an ASSS megathrust, where as a doughnut pattern of seismic activity appears prior to a main ADDS event. In summary, most of the largest aftershocks of ADDS megathrusts are earthquakes of outer-rise(outer trench-slope) normal faultings, where there occur two types, dip-slip and strike-slip, depending on the structure of subducting oceanic plates. The 1933 Sanriku-oki Mw8.6 (the 1896 Meiji-Sanriku M~8.5) and the 2011 Tohoku-oki Mw7.7 (the 2011 Tohoku-oki Mw9.0) are the former and the 1987 Off Alaska Mw7.8 (the 1964 Alaska Mw9.2) and the 2012 Sumatra Mw8.6 (the 2004 Sumatra-Andaman Mw9.3) are the latter. Those of ASSS megathrusts occurred

  7. Measurement of the Phase Difference Between eta00 and eta+- to a Precision of 1^0

    SciTech Connect

    Wah, Y.W.; Winstein, B.; Winston, R.; Swallow, E.C.; Bock, G.J.; Coleman, R.N.; Hsiung, Y.B.; Stanfield, K.C.; Stefanski, R.; Yamanaka, T.; Gollin, G.D.; /Princeton U.

    1986-03-09

    We propose to add an additional regenerator to the E731 spectrometer in the MC beamline to enable us to measure the phase difference between the CP violation parameters {eta}{sub 00} and {eta}{sub +-} to an accuracy of 1{sup o}. Very general considerations indicate that CPT conservation requires the phase difference, {Delta}{phi} = Arg({eta}{sub 00}) - Arg({eta}{sub +-}), to be smaller than one degree. The current experimental value is {Delta}{phi} = (9.4 {+-} 5.1){sup o}.

  8. Employment and Training Administration (ETA) Glossary of Program Terms and Definitions. Second Edition and Change 1. ETA Glossary Issuances Nos. 2 and 3.

    ERIC Educational Resources Information Center

    Employment and Training Administration (DOL), Washington, DC.

    The official source of definitions for all the major Employment and Training Administration (ETA) programs, this glossary provides a ready reference and an up-to-date list of ETA program terms and definitions contained in laws, federal regulations, and ETA issuances used by sponsors and various ETA service offices on a daily basis; and identifies…

  9. 75 FR 53982 - Proposed Information Collection Request of the ETA 207, Nonmonetary Determination Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... Employment and Training Administration Proposed Information Collection Request of the ETA 207, Nonmonetary... . SUPPLEMENTARY INFORMATION: I. Background: The ETA 207 Report, Nonmonetary Determination Activities, contains... proposed extension collection of the ETA 207, Nonmonetary Determinations Activities Report. Comments...

  10. 77 FR 70833 - Comment Request for Information Collection on the ETA 9048, Worker Profiling and Reemployment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-27

    ... Employment and Training Administration Comment Request for Information Collection on the ETA 9048, Worker Profiling and Reemployment Services Activity, and the ETA 9049, Worker Profiling and Reemployment Services Outcomes, Extension Without Revisions AGENCY: Employment and Training Administration (ETA), Labor....

  11. Does Turbulence in the Iron Convection Zone Cause the Massive Outbursts of Eta Carinae?

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1999-01-01

    Taken at face value, the observed properties of the central object in Eta-Car suggest a very massive, hot main-sequence star, only slightly evolved. If this is so, the star's extraordinarily high steady rate of mass loss must dynamically perturb its outer envelope down to the iron convection zone, where the kinetic energy associated with turbulent convection can be directly fed into mass ejection. Runaway mass loss, triggered by either internal (pulsational, rotational) or external (tidal) forcing, would produce a secular oscillation of the outer envelope. In either case, the oscillation is potentially able to account for the observed approximately 5 yr cycles of visual outbursts in Eta-Car, including the giant eruption of 1843.

  12. A LIGHTHOUSE EFFECT IN ETA CARINAE

    SciTech Connect

    Madura, Thomas I.; Groh, Jose H.

    2012-02-20

    We present a new model for the behavior of scattered time-dependent, asymmetric near-UV emission from the nearby ejecta of {eta} Car. Using a three-dimensional (3D) hydrodynamical simulation of {eta} Car's binary colliding winds, we show that the 3D binary orientation derived by Madura et al. in 2012 is capable of explaining the asymmetric near-UV variability observed in the Hubble Space Telescope Advanced Camera for Surveys/High Resolution Camera F220W images of Smith et al.. Models assuming a binary orientation with i Almost-Equal-To 130 Degree-Sign -145 Degree-Sign , {omega} Almost-Equal-To 230 Degree-Sign -315 Degree-Sign , P.A.{sub z} Almost-Equal-To 302 Degree-Sign -327 Degree-Sign are consistent with the observed F220W near-UV images. We find that the hot binary companion does not significantly contribute to the near-UV excess observed in the F220W images. Rather, we suggest that a bore-hole effect and the reduction of Fe II optical depths inside the wind-wind collision cavity carved in the extended photosphere of the primary star lead to the time-dependent directional illumination of circumbinary material as the companion moves about in its highly elliptical orbit.

  13. Hadronic decays of the eta/sub c/

    SciTech Connect

    Koenigsmann, K.

    1980-08-01

    Results on hadronic decays of the eta/sub c/ candidate state are presented. A mass value of M = (2978 +- 9) MeV is obtained. The branching fraction for the decay into eta ..pi../sup +/..pi../sup -/ is presented and an upper limit for the decay into ..pi../sup 0/K/sup +/K/sup -/ is given. 6 figures.

  14. Software Users Manual (SUM): Extended Testability Analysis (ETA) Tool

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Fulton, Christopher E.

    2011-01-01

    This software user manual describes the implementation and use the Extended Testability Analysis (ETA) Tool. The ETA Tool is a software program that augments the analysis and reporting capabilities of a commercial-off-the-shelf (COTS) testability analysis software package called the Testability Engineering And Maintenance System (TEAMS) Designer. An initial diagnostic assessment is performed by the TEAMS Designer software using a qualitative, directed-graph model of the system being analyzed. The ETA Tool utilizes system design information captured within the diagnostic model and testability analysis output from the TEAMS Designer software to create a series of six reports for various system engineering needs. The ETA Tool allows the user to perform additional studies on the testability analysis results by determining the detection sensitivity to the loss of certain sensors or tests. The ETA Tool was developed to support design and development of the NASA Ares I Crew Launch Vehicle. The diagnostic analysis provided by the ETA Tool was proven to be valuable system engineering output that provided consistency in the verification of system engineering requirements. This software user manual provides a description of each output report generated by the ETA Tool. The manual also describes the example diagnostic model and supporting documentation - also provided with the ETA Tool software release package - that were used to generate the reports presented in the manual

  15. Conversations with Early Leaders of Eta Sigma Gamma

    ERIC Educational Resources Information Center

    Clark, Jeffrey K.; Seabert, Denise M.; Goldsmith, Mal

    2007-01-01

    Anniversaries are often a time to reflect on the past. With that in mind, interviews were conducted with early key leaders of Eta Sigma Gamma to explore their perspectives of the organization's growth and development as well as their hopes for the future of ESG. The individuals interviewed included the surviving founders of Eta Sigma Gamma, the…

  16. [eta][prime] meson mass in lattice QCD

    SciTech Connect

    Kuramashi, Y.; Fukugita, M.; Mino, H.; Okawa, M.; Ukawa, A. , Tsukuba, Ibaraki 305 Yukawa Institute, Kyoto University, Kyoto 606 Faculty of Engineering, Yamanashi University, Kofu 404 Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305 )

    1994-05-30

    It is shown that the mass difference between [eta][prime] and pseudoscalar octet mesons can be calculated in quenched lattice QCD with the aid of a variant wall source technique. The estimated mass difference increases as the quark mass decreases, and its value extrapolated to the zero-quark-mass limit, [ital m][sub [eta][prime

  17. The Use of Explosion Aftershock Probabilities for Planning and Deployment of Seismic Aftershock Monitoring System for an On-site Inspection

    NASA Astrophysics Data System (ADS)

    Labak, P.; Ford, S. R.; Sweeney, J. J.; Smith, A. T.; Spivak, A.

    2011-12-01

    One of four elements of CTBT verification regime is On-site inspection (OSI). Since the sole purpose of an OSI shall be to clarify whether a nuclear weapon test explosion or any other nuclear explosion has been carried out, inspection activities can be conducted and techniques used in order to collect facts to support findings provided in inspection reports. Passive seismological monitoring, realized by the seismic aftershock monitoring (SAMS) is one of the treaty allowed techniques during an OSI. Effective planning and deployment of SAMS during the early stages of an OSI is required due to the nature of possible events recorded and due to the treaty related constrains on size of inspection area, size of inspection team and length of an inspection. A method, which may help in planning the SAMS deployment is presented. An estimate of aftershock activity due to a theoretical underground nuclear explosion is produced using a simple aftershock rate model (Ford and Walter, 2010). The model is developed with data from the Nevada Test Site and Semipalatinsk Test Site, which we take to represent soft- and hard-rock testing environments, respectively. Estimates of expected magnitude and number of aftershocks are calculated using the models for different testing and inspection scenarios. These estimates can help to plan the SAMS deployment for an OSI by giving a probabilistic assessment of potential aftershocks in the Inspection Area (IA). The aftershock assessment combined with an estimate of the background seismicity in the IA and an empirically-derived map of threshold magnitude for the SAMS network could aid the OSI team in reporting. We tested the hard-rock model to a scenario similar to the 2008 Integrated Field Exercise 2008 deployment in Kazakhstan and produce an estimate of possible recorded aftershock activity.

  18. Sensitivity study of forecasted aftershock seismicity based on Coulomb stress calculation and rate- and state-dependent frictional response

    NASA Astrophysics Data System (ADS)

    Cocco, M.; Hainzl, S.; Catalli, F.; Enescu, B.; Lombardi, A. M.; Woessner, J.

    2010-05-01

    We use the Dieterich (1994) physics-based approach to simulate the spatiotemporal evolution of seismicity caused by stress changes applied to an infinite population of nucleating patches modeled through a rate- and state-dependent friction law. According to this model, seismicity rate changes depend on the amplitude of stress perturbation, the physical constitutive properties of faults (represented by the parameter Aσ), the stressing rate, and the background seismicity rate of the study area. In order to apply this model in a predictive manner, we need to understand the impact of physical model parameters and the correlations between them. First, we discuss different definitions of the reference seismicity rate and show their impact on the computed rate of earthquake production for the 1992 Landers earthquake sequence as a case study. Furthermore, we demonstrate that all model parameters are strongly correlated for physical and statistical reasons. We discuss this correlation, emphasizing that the estimations of the background seismicity rate, stressing rate, and Aσ are strongly correlated to reproduce the observed aftershock productivity. Our analytically derived relation demonstrates the impact of these model parameters on the Omori-like aftershock decay: the c value and the productivity of the Omori law, implying a p value smaller than or equal to 1. Finally, we discuss an optimal strategy to constrain model parameters for near-real-time forecasts.

  19. Assessment of Quantitative Aftershock Productivity Potential in Mining-Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Kozłowska, Maria; Orlecka-Sikora, Beata

    2017-03-01

    Strong mining-induced earthquakes exhibit various aftershock patterns. The aftershock productivity is governed by the geomechanical properties of rock in the seismogenic zone, mining-induced stress and coseismic stress changes related to the main shock's magnitude, source geometry and focal mechanism. In order to assess the quantitative aftershock productivity potential in the mining environment we apply a forecast model based on natural seismicity properties, namely constant tectonic loading and the Gutenberg-Richter frequency-magnitude distribution. Although previous studies proved that mining-induced seismicity does not obey the simple power law, here we apply it as an approximation of seismicity distribution to resolve the number of aftershocks, not considering their magnitudes. The model used forecasts the aftershock productivity based on the background seismicity level estimated from an average seismic moment released per earthquake and static stress changes caused by a main shock. Thus it accounts only for aftershocks directly triggered by coseismic process. In this study we use data from three different mines, Mponeng (South Africa), Rudna and Bobrek (Poland), representing different geology, exploitation methods and aftershock patterns. Each studied case is treated with individual parameterization adjusted to the data specifics. We propose the modification of the original model, i.e. including the non-uniformity of M 0, resulting from spatial correlation of mining-induced seismicity with exploitation. The results show that, even when simplified seismicity distribution parameters are applied, the modified model predicts the number of aftershocks for each analyzed case well and accounts for variations between these values. Such results are thus another example showing that coseismic processes of mining-induced seismicity reflect features of natural seismicity and that similar models can be applied to study the aftershock rate in both the natural and the

  20. Assessment of Quantitative Aftershock Productivity Potential in Mining-Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Kozłowska, Maria; Orlecka-Sikora, Beata

    2016-12-01

    Strong mining-induced earthquakes exhibit various aftershock patterns. The aftershock productivity is governed by the geomechanical properties of rock in the seismogenic zone, mining-induced stress and coseismic stress changes related to the main shock's magnitude, source geometry and focal mechanism. In order to assess the quantitative aftershock productivity potential in the mining environment we apply a forecast model based on natural seismicity properties, namely constant tectonic loading and the Gutenberg-Richter frequency-magnitude distribution. Although previous studies proved that mining-induced seismicity does not obey the simple power law, here we apply it as an approximation of seismicity distribution to resolve the number of aftershocks, not considering their magnitudes. The model used forecasts the aftershock productivity based on the background seismicity level estimated from an average seismic moment released per earthquake and static stress changes caused by a main shock. Thus it accounts only for aftershocks directly triggered by coseismic process. In this study we use data from three different mines, Mponeng (South Africa), Rudna and Bobrek (Poland), representing different geology, exploitation methods and aftershock patterns. Each studied case is treated with individual parameterization adjusted to the data specifics. We propose the modification of the original model, i.e. including the non-uniformity of M 0, resulting from spatial correlation of mining-induced seismicity with exploitation. The results show that, even when simplified seismicity distribution parameters are applied, the modified model predicts the number of aftershocks for each analyzed case well and accounts for variations between these values. Such results are thus another example showing that coseismic processes of mining-induced seismicity reflect features of natural seismicity and that similar models can be applied to study the aftershock rate in both the natural and the

  1. Branching Fraction and P-violation Charge Asymmetry Measurements for B-meson Decays to eta K+-, eta pi+-, eta'K, eta' pi+-, omega K, and omega pi+-

    SciTech Connect

    Aubert, B.

    2007-06-28

    The authors present measurements of the branching fractions for B{sup 0} meson decays to {eta}{prime}K{sup 0} and {omega}K{sup 0}, and of the branching fractions and CP-violation charge asymmetries for B{sup +} meson decays to {eta}{pi}{sup +}, {eta}K{sup +}, {eta}{prime}{pi}{sup +}, {eta}{prime}K{sup +}, {omega}{pi}{sup +}, and {omega}K{sup +}. The data, collected with the BABAR detector at the Stanford Linear Accelerator Center, represent 383 million B{bar B} pairs produced in e{sup +}e{sup -} annihilation. The measurements agree with previous results; they find no evidence for direct CP violation.

  2. Fidelity and processivity of Saccharomyces cerevisiae DNA polymerase eta.

    PubMed

    Washington, M T; Johnson, R E; Prakash, S; Prakash, L

    1999-12-24

    The yeast RAD30 gene functions in error-free replication of UV-damaged DNA, and RAD30 encodes a DNA polymerase, pol eta, that has the ability to efficiently and correctly replicate past a cis-syn-thymine-thymine dimer in template DNA. To better understand the role of pol eta in damage bypass, we examined its fidelity and processivity on nondamaged DNA templates. Steady-state kinetic analyses of deoxynucleotide incorporation indicate that pol eta has a low fidelity, misincorporating deoxynucleotides with a frequency of about 10(-2) to 10(-3). Also pol eta has a low processivity, incorporating only a few nucleotides before dissociating. We suggest that pol eta's low fidelity reflects a flexibility in its active site rendering it more tolerant of DNA damage, while its low processivity limits its activity to reduce errors.

  3. Detecting Hidden Aftershocks of the 2015 Mw 7.8 Gorkha Earthquake Using Multiple Global Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; LI, B.

    2015-12-01

    Spatio-temporal evolution of aftershocks is important for the study of rupture extent [McCann et al., 1979], stress transfer [King et al., 1994], postseismic deformation [Hsu et al., 2006; Sladen et al., 2010], hazard assessment and forecasting of future seismicity [e.g., Cocco et al., 2010]. However, many aftershocks remain undetected by the global network due to the limitation of the density and distribution of seismic instruments. In this study, we use the back-projection method with multiple global seismic arrays to detect the hidden earthquakes (not recorded by current standard global earthquake catalog) following the 2015 Mw 7.8 Gorkha earthquake. There are 140 aftershocks in the global catalog within 10 days since the mainshock. Using array methods, we are able to detect about twice as many events near the mainshock. According to the Advanced National Seismic System (ANSS) comprehensive earthquake catalog, the first aftershock happened 4 minutes after the mainshock. We detect aftershocks even before that event. This shows that back-projection can be used to detect early aftershocks in global scale, which usually remain undetected by the arrival of various seismic phases immediately following a large earthquake [Lengline et al., 2012]. Detection of these hidden aftershocks provides a more complete picture of the spatiotemporal distribution of aftershock activity and helps improve the completeness of the global standard aftershock catalog. Our improved aftershock catalog shows east-west aftershocks distribution (Figure 1), similar to the ANSS catalog. In addition, we detect significant number of aftershocks north, south, and within the coseismic rupture area. The improved aftershock catalog using existing global seismic arrays enables us to better study aftershocks dynamics, stress evolution and earthquake characteristics.

  4. A Quantitative Test for the Spatial Relationship Between Aftershock Distributions and Mainshock Rupture Properties

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Ripperger, J.; Mai, M. P.; Wiemer, S.

    2004-12-01

    Correlating the properties of the mainshock rupture with the location of corresponding aftershocks may provide insight into the relationship between mainshock-induced static stress changes and aftershock occurrence. In this study, we develop a rigorous statistical test to quantify the spatial pattern of aftershock locations with the corresponding distributions of coseismic slip and stress-drop. Well-located aftershock hypocenters are projected onto the mainshock fault plane and coseismic slip and stress drop values are interpolated to their respective location. The null hypothesis H0 for the applied test statistic is: Aftershock hypocenters are randomly distributed on the mainshock fault plane and are not correlated with mainshock properties. Because we want to maintain spatial earthquake clustering as one of the important observed features of seismicity, we synthesize slip distributions using a random spatial field model from which we then compute the respective stress-drop distributions. For each simulation of earthquake slip, we compute the test statistic for the slip and stress-drop distribution, testing whether or not an apparent correlation between mainshock properties and aftershock locations exists. Uncertainties in the aftershock locations are accounted for by simulating a thousand catalogues for which we randomize the location of the aftershocks within their given location error bounds. We then determine the number of aftershocks in low-slip or negative stress-drop regions for simulated slip distributions, and compare those to the measurements obtained for finite-source slip inversions. We apply the test to crustal earthquakes in California and Japan. If possible, we use different source models and earthquake catalogues with varying accuracy to investigate the dependence of the test results on, for example, the location uncertainties of aftershocks. Contrary to the visual impression, we find that for some strike-slip earthquakes or segments of the

  5. Measurement of Branching Fractions in Radiative BDecays to eta K gamma and Search for B Decays to eta' K gamma

    SciTech Connect

    Aubert, B.

    2006-03-31

    The authors present measurements of the B {yields} {eta}K{gamma} branching fractions and upper limits for the B {yields} {eta}'K{gamma} branching fractions. For B{sup +} {yields} {eta}K{sup +}{gamma} they also measure the time-integrated charge asymmetry. The data sample, collected with the BABAR detector at the Stanford Linear Accelerator Center, represents 232 x 10{sup 6} produced B{bar B} pairs. The results for branching fractions and upper limits at 90% C.L. in units of 10{sup -6} are: {Beta}(B{sup 0} {yields} {eta}K{sup 0}{gamma}) = 11.3{sub -2.6}{sup +2.8} {+-} 0.6, {Beta}(B{sup +} {yields} {eta}K{sup +}{gamma}) = 10.0 {+-} 1.3 {+-} 0.5, {Beta}(B{sup 0} {yields} {eta}'K{sup 0}{gamma}) < 6.6, {Beta}(B{sup +} {yields} {eta}'K{sup +}{gamma}) < 4.2. The charge asymmetry in the decay B{sup +} {yields} {eta}K{sup +}{gamma} is {Alpha}{sub ch} = -0.09 {+-} 0.12 {+-} 0.01. The first errors are statistical and the second systematic.

  6. Unprecedented coordination modes and demetalation pathways for unbridged polyenyl ligands. Ruthenium eta1,eta4-cycloheptadienyl complexes from allyl/alkyne cycloaddition.

    PubMed

    Older, Christina M; McDonald, Robert; Stryker, Jeffrey M

    2005-10-19

    Cationic (eta6-hexamethylbenzene)ruthenium(II) mediates the [3 + 2 + 2] cycloaddition of allyl and alkyne ligands, leading to the unexpected isolation of eta1,eta4-cycloheptadienyl complexes, an unprecedented coordination mode for transition metal complexes of simple organic rings. The nonconjugated, eta1,eta4-coordinated complex is obtained as the kinetic reaction product from treatment of the unsubstituted allyl complex with excess ethyne; this complex rearranges slowly at 80 degrees C to the thermodynamically more stable conjugated eta5-cycloheptadienyl isomer. The eta1,eta4-coordinated isomer is fluxional at room temperature, undergoing rapid and reversible equilibration with a cycloheptatriene hydride intermediate via facile beta-hydride elimination/reinsertion. The reinsertion process is remarkably regioselective, returning the nonconjugated eta1,eta4-cycloheptadienyl isomer exclusively at room temperature. For reactions incorporating dimethylacetylene dicarboxylate (DMAD) as one or both of the alkyne components, eta1,eta4-coordination appears to be both kinetically and thermodynamically favored, despite undergoing equilibration among all possible eta1,eta4-cycloheptadienyl and cycloheptatriene hydride isomers prior to arriving at one observed eta1,eta4-isomer. For this series, no isomerization to eta5-coordination is observed even upon prolonged heating. In contrast, the cyclization incorporating both DMAD and phenylacetylene proceeds directly to the eta5-cycloheptadienyl isomer at or below room temperature, indicating that eta5-coordination remains energetically accessible to this system. The DMAD-based cyclization reactions produce structurally diverse minor byproducts, including both eta1,eta4-methanocyclohexadiene and acyclic eta3,eta2-heptadienyl isomers, which have been isolated and rigorously characterized. The unusual eta1,eta4-coordination of the seven-membered ring leads to unique new organic products upon oxidative demetalation by iodinolysis

  7. Financial earthquakes, aftershocks and scaling in emerging stock markets

    NASA Astrophysics Data System (ADS)

    Selçuk, Faruk

    2004-02-01

    This paper provides evidence for scaling laws in emerging stock markets. Estimated parameters using different definitions of volatility show that the empirical scaling law in every stock market is a power law. This power law holds from 2 to 240 business days (almost 1 year). The scaling parameter in these economies changes after a change in the definition of volatility. This finding indicates that the stock returns may have a multifractal nature. Another scaling property of stock returns is examined by relating the time after a main shock to the number of aftershocks per unit time. The empirical findings show that after a major fall in the stock returns, the stock market volatility above a certain threshold shows a power law decay, described by Omori's law.

  8. Near real-time aftershock hazard maps for earthquakes

    NASA Astrophysics Data System (ADS)

    McCloskey, J.; Nalbant, S. S.

    2009-04-01

    Stress interaction modelling is routinely used to explain the spatial relationships between earthquakes and their aftershocks. On 28 October 2008 a M6.4 earthquake occurred near the Pakistan-Afghanistan border killing several hundred and causing widespread devastation. A second M6.4 event occurred 12 hours later 20km to the south east. By making some well supported assumptions concerning the source event and the geometry of any likely triggered event it was possible to map those areas most likely to experience further activity. Using Google earth, it would further have been possible to identify particular settlements in the source area which were particularly at risk and to publish their locations globally within about 3 hours of the first earthquake. Such actions could have significantly focused the initial emergency response management. We argue for routine prospective testing of such forecasts and dialogue between social and physical scientists and emergency response professionals around the practical application of these techniques.

  9. Teleseismic depth estimation of the 2015 Gorkha-Nepal aftershocks

    NASA Astrophysics Data System (ADS)

    Letort, Jean; Bollinger, Laurent; Lyon-Caen, Helene; Guilhem, Aurélie; Cano, Yoann; Baillard, Christian; Adhikari, Lok Bijaya

    2016-12-01

    The depth of 61 aftershocks of the 2015 April 25 Gorkha, Nepal earthquake, that occurred within the first 20 d following the main shock, is constrained using time delays between teleseismic P phases and depth phases (pP and sP). The detection and identification of these phases are automatically processed using the cepstral method developed by Letort et al., and are validated with computed radiation patterns from the most probable focal mechanisms. The events are found to be relatively shallow (13.1 ± 3.9 km). Because depth estimations could potentially be biased by the method, velocity model or selected data, we also evaluate the depth resolution of the events from local catalogues by extracting 138 events with assumed well-constrained depth estimations. Comparison between the teleseismic depths and the depths from local and regional catalogues helps decrease epistemic uncertainties, and shows that the seismicity is clustered in a narrow band between 10 and 15 km depth. Given the geometry and depth of the major tectonic structures, most aftershocks are probably located in the immediate vicinity of the Main Himalayan Thrust (MHT) shear zone. The mid-crustal ramp of the flat/ramp MHT system is not resolved indicating that its height is moderate (less than 5-10 km) in the trace of the sections that ruptured on April 25. However, the seismicity depth range widens and deepens through an adjacent section to the east, a region that failed on 2015 May 12 during an Mw 7.3 earthquake. This deeper seismicity could reflect a step-down of the basal detachment of the MHT, a lateral structural variation which probably acted as a barrier to the dynamic rupture propagation.

  10. Measurement of Branching Fractions and Charge Asymmetries in B{sup +} Decays to {eta}{pi}{sup +}, {eta}K{sup +}, {eta}{rho}{sup +}, and {eta}{sup '}{pi}{sup +}, and Search for B{sup 0} Decays to {eta}K{sup 0} and {eta}{omega}

    SciTech Connect

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges-Pous, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.

    2005-09-23

    We present measurements of branching fractions and charge asymmetries for six B-meson decay modes with an {eta} or {eta}{sup '} meson in the final state. The data sample corresponds to 232x10{sup 6} BB pairs collected with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} B Factory at SLAC. We measure the branching fractions (in units of 10{sup -6}): B(B{sup +}{yields}{eta}{pi}{sup +})=5.1{+-}0.6{+-}0.3, B(B{sup +}{yields}{eta}K{sup +})=3.3{+-}0.6{+-}0.3, B(B{sup 0}{yields}{eta}K{sup 0})=1.5{+-}0.7{+-}0.1 (<2.5 at 90% C.L.), B(B{sup +}{yields}{eta}{rho}{sup +})=8.4{+-}1.9{+-}1.1, B(B{sup 0}{yields}{eta}{omega})=1.0{+-}0.5{+-}0.2 (<1.9 at 90% C.L.), and B(B{sup +}{yields}{eta}{sup '}{pi}{sup +})=4.0{+-}0.8{+-}0.4, where the first uncertainty is statistical and second systematic. For the charged modes we also determine the charge asymmetries, all found to be compatible with zero.

  11. Investigation of the high-frequency attenuation parameter, κ (kappa), from aftershocks of the 2010 Mw 8.8 Maule, Chile earthquake

    USGS Publications Warehouse

    Neighbors, Corrie; Liao, E. J.; Cochran, Elizabeth S.; Funning, G. J.; Chung, A. I.; Lawrence, J. F.; Christensen, C. M.; Miller, M.; Belmonte, A.; Sepulveda, H. H. Andrés

    2014-01-01

    The Bío Bío region of Chile experienced a vigorous aftershock sequence following the 2010 February 27 Mw 8.8 Maule earthquake. The immediate aftershock sequence was captured by two temporary seismic deployments: the Quake Catcher Network Rapid Aftershock Mobilization Program (QCN RAMP) and the Incorporated Research Institutions for Seismology CHile Aftershock Mobilization Program (IRIS CHAMP). Here, we use moderate to large aftershocks (ML ≥ 4.0) occurring between 2010 March 1 and June 30 recorded by QCN RAMP and IRIS CHAMP stations to determine the spectral decay parameter, kappa (κ). First, we compare waveforms and κ estimates from the lower-resolution QCN stations to the IRIS CHAMP stations to ensure the QCN data are of sufficient quality. We find that QCN stations provide reasonable estimates of κ in comparison to traditional seismic sensors and provide valuable additional observations of local ground motion variation. Using data from both deployments, we investigate the variation in κ for the region to determine if κ is influenced primarily by local geological structure, path attenuation, or source properties (e.g. magnitude, mechanism and depth). Estimates of κ for the Bío Bío region range from 0.0022 to 0.0704 s with a mean of 0.0295 s and are in good agreement with κ values previously reported for similar tectonic environments. κ correlates with epicentral distance and, to a lesser degree, with source magnitude. We find little to no correlation between the site kappa, κ0, and mapped geology, although we were only able to compare the data to a low-resolution map of surficial geology. These results support an increasing number of studies that suggest κobservations can be attributed to a combination of source, path and site properties; additionally, measured κ are often highly scattered making it difficult to separate the contribution from each of these factors. Thus, our results suggest that contributions from the site

  12. Investigation of the high-frequency attenuation parameter, κ (kappa), from aftershocks of the 2010 Mw 8.8 Maule, Chile earthquake

    NASA Astrophysics Data System (ADS)

    Neighbors, C.; Liao, E. J.; Cochran, E. S.; Funning, G. J.; Chung, A. I.; Lawrence, J. F.; Christensen, C.; Miller, M.; Belmonte, A.; Andrés Sepulveda, H. H.

    2015-01-01

    The Bío Bío region of Chile experienced a vigorous aftershock sequence following the 2010 February 27 Mw 8.8 Maule earthquake. The immediate aftershock sequence was captured by two temporary seismic deployments: the Quake Catcher Network Rapid Aftershock Mobilization Program (QCN RAMP) and the Incorporated Research Institutions for Seismology CHile Aftershock Mobilization Program (IRIS CHAMP). Here, we use moderate to large aftershocks (ML ≥ 4.0) occurring between 2010 March 1 and June 30 recorded by QCN RAMP and IRIS CHAMP stations to determine the spectral decay parameter, kappa (κ). First, we compare waveforms and κ estimates from the lower-resolution QCN stations to the IRIS CHAMP stations to ensure the QCN data are of sufficient quality. We find that QCN stations provide reasonable estimates of κ in comparison to traditional seismic sensors and provide valuable additional observations of local ground motion variation. Using data from both deployments, we investigate the variation in κ for the region to determine if κ is influenced primarily by local geological structure, path attenuation, or source properties (e.g. magnitude, mechanism and depth). Estimates of κ for the Bío Bío region range from 0.0022 to 0.0704 s with a mean of 0.0295 s and are in good agreement with κ values previously reported for similar tectonic environments. κ correlates with epicentral distance and, to a lesser degree, with source magnitude. We find little to no correlation between the site kappa, κ0, and mapped geology, although we were only able to compare the data to a low-resolution map of surficial geology. These results support an increasing number of studies that suggest κ observations can be attributed to a combination of source, path and site properties; additionally, measured κ are often highly scattered making it difficult to separate the contribution from each of these factors. Thus, our results suggest that contributions from the site, path and source

  13. eta Carinae Continues to Evolve (Abstract)

    NASA Astrophysics Data System (ADS)

    Martin, J. C.

    2015-06-01

    (Abstract only) Eta Carinae affords us a unique opportunity to study the pre-supernova evolution of the most massive stars. For at least the last half century, it has maintained a 5.5-year spectroscopic cycle that culminates with abrupt decreases in the strong stellar wind emission features. Over the last 15 years, the star has brightened at an accelerated rate and altered its spectrum, in addition to the spectroscopic cycle, indicating an ongoing change in state. We present Hubble Space Telescope spectroscopy and synthetic photometry from the most recent spectroscopic event (2014.5) that shows notable differences with past events and provides clues to the on-going evolution of the star.

  14. The Rapid Brightening of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Martin, John C.; Davidson, Kris; Mehner, Andrea; Humphreys, Roberta M.

    2016-01-01

    Eta Carinae is one of the most dynamic and well-observed massive stars. Its bipolar Homunculus Nebula and other observations imply it has a strong latitude dependent stellar wind. The significant brightening of the star itself over the last two decades has been commonly explained as an evolution of the latitude structure of the wind , change in mass-loss rate, and/or clearing of circumstellar material in our direct line sight. Hubble Space Telescope images (with a much higher spatial resolution than ground-based images) document an increase in contrast between the brightness of the star and the Homunculus reflection nebula. We present measurements of the nebula's brightness, sampling the changing brightness of the star viewed from angles differing from our own direct line of sight. We also present ultraviolet photometry of the star synthesized from recent HST/STIS observations.

  15. Molecular cloning of the CD3 eta subunit identifies a CD3 zeta-related product in thymus-derived cells.

    PubMed Central

    Jin, Y J; Clayton, L K; Howard, F D; Koyasu, S; Sieh, M; Steinbrich, R; Tarr, G E; Reinherz, E L

    1990-01-01

    The CD3 eta subunit of the T-cell antigen receptor forms a heterodimeric structure with the CD3 zeta subunit in thymus-derived lymphoid cells and is apparently involved in signal transduction through the receptor. Here we report the primary structure of murine CD3 eta as deduced from protein microsequencing and cDNA cloning. The mature protein is divided into three domains: a 9-amino acid extracellular segment, a 21-amino acid transmembrane segment including a negatively charged residue characteristic of CD3 subunits, and a 155-amino acid cytoplasmic tail. The NH2-terminal sequences of CD3 eta and CD3 zeta are identical through amino acid 122 of each mature protein but then diverge in the remainder of their respective COOH-terminal regions, consistent with alternatively spliced products of a common gene. The cytoplasmic domain of CD3 eta is 42 amino acids larger than that of CD3 zeta but lacks one of six potential tyrosine phosphorylation sites as well as a putative nucleotide binding site previously identified in CD3 zeta. These structural features presumably account for the difference between CD3 eta and CD3 zeta function and are consistent with the notion that CD3 eta may be an important component of a T-cell receptor isoform(s) during thymic development. Images PMID:2139725

  16. The HST Treasury Project on Eta Carinae

    NASA Astrophysics Data System (ADS)

    Davidson, K.; Ishibashi, K.; Gull, T. R.; Martin, J. C.; Humphreys, R. M.; Damineli, A.; Weis, K.; Stahl, O.; Hillier, D. J.; Corcoran, M.; Hamann, F.; Walborn, N.; Johansson, S.; Hartman, H.; Bautista, M.

    2003-12-01

    This program is valuable for a broad range of stellar and nebular astrophysics, as well as data processing techniques and instrument characteristics. While observing this object's mysterious 5.5-year cycle, we obtained data on several distinct, complex, unfamiliar classes of spectra which cannot be observed well elsewhere. The stellar wind parameters lie outside normal experience, the Weigelt ejecta produce narrow-line spectra unlike any other known object, and the other spectra are also unusual. Altogether our results pertain to stellar instabilities close to the Eddington limit, extreme stellar winds, unexplored nebular/atomic excitation processes, nebular gas dynamics, and instrument performance. The project also represents an extreme application of HST spectroscopy. Since η Car and its ejecta are spatially, spectrally, and temporally complex, they require the best available performance of HST/STIS across its full wavelength range. Such observations will probably not be attainable again within the next 15 years. They also require improved data processing techniques which we have developed, useful for HST/STIS programs on other objects. The Eta Car Treasury data archive will be pertinent to a variety of significant problems mentioned above -- not just η Carinae. (See a related poster concerning the Archive.) Here we report that (1) the predicted event did indeed occur during May--July 2003; (2) we obtained the planned data; (3) they show numerous fascinating and difficult-to-explain phenomena; and (4) we sketch improved reduction routines to achieve maximum resolution with STIS/CCD data in general. We also show examples of the spectral structure and variations in Eta Carinae. This project is supported by STScI grant GO-9420.

  17. Structure and mechanism of human DNA polymerase [eta

    SciTech Connect

    Biertümpfel, Christian; Zhao, Ye; Kondo, Yuji; Ramón-Maiques, Santiago; Gregory, Mark; Lee, Jae Young; Masutani, Chikahide; Lehmann, Alan R.; Hanaoka, Fumio; Yang, Wei

    2010-11-03

    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase {eta} (Pol{eta}), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol{eta} at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol{eta} acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol{eta} orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol{eta} missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol{eta} in replicating through D loop and DNA fragile sites.

  18. Detection of a Hot Binary Companion of eta Carinae

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Iping, R. C.; Gull, T. R.; Massa, D.; Hillier, D. J.

    2006-01-01

    A hot companion of eta Carinae has been detected using high resolution spectra (905 - 1 180 Angsroms) obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. Observations were obtained at two epochs of the 2024-day orbit: 2003 June during ingress to the 2003.5 X-ray eclipse and 2004 April several months after egress. These data show that essentially all the far-UV flux from eta Car shortward of Lyman alpha disappeared at least two days before the start of the X-ray eclipse (2003 June 29), implying that the hot companion, eta Car By was also eclipsed by the dense wind or extended atmosphere of eta Car A. Analysis of the far-UV spectrum shows that eta Car B is a luminous hot star. N II 1084-1086 emission disappears at the same time as the far-UV continuum, indicating that this feature originates from eta Car B itself or in close proximity to it. The strong N II emission also raises the possibility that the companion star is nitrogen rich. The observed FUV flux levels and spectral features, combined with the timing of their disappearance, are consistent with eta Carinae being a massive binary system.

  19. Detection of a Hot Binary Companion of eta Carinae

    NASA Technical Reports Server (NTRS)

    Sonnebom, G.; Iping, R. C.; Gull, T. R.; Massa, D. L.; Hillier, D. J.

    2006-01-01

    A hot companion of eta Carinae has been detected using high resolution spectra (905 - 1180 A) obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. Observations were obtained at two epochs of the 2024-day orbit: 2003 June during ingress to the 2003.5 X-ray eclipse and 2004 April several months after egress. These data show that essentially all the far-UV flux from eta Car shortward of Lyman alpha disappeared at least two days before the start of the X-ray eclipse (2003 June 29), implying that the hot companion, eta Car B, was also eclipsed by the dense wind or extended atmosphere of eta Car A. Analysis of the far-UV spectrum shows that eta Car B is a luminous hot star. N II 1084-1086 emission disappears at the same time as the far-UV continuum, indicating that this feature originates from eta Car B itself or in close proximity to it. The strong N II emission also raises the possibility that the companion star is nitrogen rich. The observed FUV flux levels and spectral features, combined with the timing of their disappearance, is consistent with eta Carinae being a massive binary system

  20. Cataloging the 1811-1812 New Madrid, central U.S., earthquake sequence

    USGS Publications Warehouse

    Hough, S.E.

    2009-01-01

    The three principal New Madrid, central U.S., mainshocks of 1811-1812 were followed by extensive aftershock sequences that included numerous felt events. Although no instrumental data are available for the sequence, historical accounts provide information that can be used to estimate magnitudes and locations for the large aftershocks as well as the mainshocks. Several detailed eyewitness accounts of the sequence provide sufficient information to identify times and rough magnitude estimates for a number of aftershocks that have not been analyzed previously. I also use three extended compilations of felt events to explore the overall sequence productivity. Although one generally cannot estimate magnitudes or locations for individual events, the intensity distributions of recent, instrumentally recorded earthquakes in the region provide a basis for estimation of the magnitude distribution of 1811-1812 aftershocks. The distribution is consistent with a b-value distribution. I estimate Mw 6-6.3 for the three largest identifiable aftershocks, apart from the so-called dawn aftershock on 16 December 1811.

  1. Insights from the 2011 Prague, Oklahoma earthquake sequence on the role of damage zones in the seismic cycle

    NASA Astrophysics Data System (ADS)

    Savage, H. M.; Dieck, C. C.; Keranen, K. M.

    2013-12-01

    Although most faults are surrounded by a halo of fractured rock known as a damage zone, it is not clear what role damage zones play during the seismic cycle on mature faults. Here, we present a superbly-located foreshock-mainshock-aftershock sequence that demonstrates most aftershocks are located within the damage zone surrounding the fault. The 2011 Prague, Oklahoma sequence included three M5+ earthquakes along three different faults over a three-day period. The third event was captured with an array of nine seismometers with ~2 km spacing, allowing for precise event location. We located more than 1000 foreshocks and aftershocks of the November 8 M5 event within a 14 hour time window, and relocated these aftershocks using singular-value decomposition in HypoDD. Because of the accuracy in event horizontal location, we can use these events to compare aftershock distribution to fracture distributions within damage zones surrounding faults. The aftershock sequence localizes to a damage zone thickness that scales with the length of the rupture patch, similar to previously documented scaling between fault length and damage zone thickness. Furthermore, the falloff in aftershock density decays precipitously away from the fault, in a similar fashion to fracture density decay in damage zones. Most aftershocks in this sequence occur within the first hour after the mainshock, and there is no obvious migration of aftershocks away from the fault with time. Finally, foreshock activity along this fault was limited to the intersection with the fault that had hosted a M5.7 earthquake two days prior.

  2. Seismotectonic framework of the 2010 February 27 Mw 8.8 Maule, Chile earthquake sequence

    USGS Publications Warehouse

    Hayes, Gavin P.; Bergman, Eric; Johnson, Kendra J.; Benz, Harley M.; Brown, Lucy; Meltzer, Anne S.

    2013-01-01

    After the 2010 Mw 8.8 Maule earthquake, an international collaboration involving teams and instruments from Chile, the US, the UK, France and Germany established the International Maule Aftershock Deployment temporary network over the source region of the event to facilitate detailed, open-access studies of the aftershock sequence. Using data from the first 9-months of this deployment, we have analyzed the detailed spatial distribution of over 2500 well-recorded aftershocks. All earthquakes have been relocated using a hypocentral decomposition algorithm to study the details of and uncertainties in both their relative and absolute locations. We have computed regional moment tensor solutions for the largest of these events to produce a catalogue of 465 mechanisms, and have used all of these data to study the spatial distribution of the aftershock sequence with respect to the Chilean megathrust. We refine models of co-seismic slip distribution of the Maule earthquake, and show how small changes in fault geometries assumed in teleseismic finite fault modelling significantly improve fits to regional GPS data, implying that the accuracy of rapid teleseismic fault models can be substantially improved by consideration of existing fault geometry model databases. We interpret all of these data in an integrated seismotectonic framework for the Maule earthquake rupture and its aftershock sequence, and discuss the relationships between co-seismic rupture and aftershock distributions. While the majority of aftershocks are interplate thrust events located away from regions of maximum co-seismic slip, interesting clusters of aftershocks are identified in the lower plate at both ends of the main shock rupture, implying internal deformation of the slab in response to large slip on the plate boundary interface. We also perform Coulomb stress transfer calculations to compare aftershock locations and mechanisms to static stress changes following the Maule rupture. Without the

  3. 77 FR 35060 - Employment and Training Administration; Proposed Information Collection Request for the ETA 538...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... Employment and Training Administration; Proposed Information Collection Request for the ETA 538 and ETA 539... Training Administration (ETA), Labor. ACTION: Notice. SUMMARY: The Department of Labor (Department), as... impact of collection requirements on respondents can be properly assessed. Currently, ETA is...

  4. 76 FR 386 - Proposed Information Collection Request for the ETA 586, Interstate Arrangement for Combining...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... Information Collection Request for the ETA 586, Interstate Arrangement for Combining Employment and Wages... Employment and Wages, Form ETA 586. A copy of the proposed information collection request (ICR) can be... compensation including benefits paid under the CWC arrangement. The ETA 586 report provides the ETA/Office...

  5. An explosion aftershock model with application to on-site inspection

    SciTech Connect

    Ford, Sean R.; Labak, Peter

    2015-02-14

    An estimate of aftershock activity due to a theoretical underground nuclear explosion is produced using an aftershock rate model. The model is developed with data from the Nevada National Security Site, formerly known as the Nevada Test Site, and the Semipalatinsk Test Site, which we take to represent soft-rock and hard-rock testing environments, respectively. Estimates of expected magnitude and number of aftershocks are calculated using the models for different testing and inspection scenarios. These estimates can help inform the Seismic Aftershock Monitoring System (SAMS) deployment in a potential Comprehensive Test Ban Treaty On-Site Inspection (OSI), by giving the OSI team a probabilistic assessment of potential aftershocks in the Inspection Area (IA). The aftershock assessment, combined with an estimate of the background seismicity in the IA and an empirically derived map of threshold magnitude for the SAMS network, could aid the OSI team in reporting. Here, we apply the hard-rock model to a M5 event and combine it with the very sensitive detection threshold for OSI sensors to show that tens of events per day are expected up to a month after an explosion measured several kilometers away.

  6. An explosion aftershock model with application to on-site inspection

    DOE PAGES

    Ford, Sean R.; Labak, Peter

    2015-02-14

    An estimate of aftershock activity due to a theoretical underground nuclear explosion is produced using an aftershock rate model. The model is developed with data from the Nevada National Security Site, formerly known as the Nevada Test Site, and the Semipalatinsk Test Site, which we take to represent soft-rock and hard-rock testing environments, respectively. Estimates of expected magnitude and number of aftershocks are calculated using the models for different testing and inspection scenarios. These estimates can help inform the Seismic Aftershock Monitoring System (SAMS) deployment in a potential Comprehensive Test Ban Treaty On-Site Inspection (OSI), by giving the OSI teammore » a probabilistic assessment of potential aftershocks in the Inspection Area (IA). The aftershock assessment, combined with an estimate of the background seismicity in the IA and an empirically derived map of threshold magnitude for the SAMS network, could aid the OSI team in reporting. Here, we apply the hard-rock model to a M5 event and combine it with the very sensitive detection threshold for OSI sensors to show that tens of events per day are expected up to a month after an explosion measured several kilometers away.« less

  7. An Explosion Aftershock Model with Application to On-Site Inspection

    NASA Astrophysics Data System (ADS)

    Ford, Sean R.; Labak, Peter

    2016-01-01

    An estimate of aftershock activity due to a theoretical underground nuclear explosion is produced using an aftershock rate model. The model is developed with data from the Nevada National Security Site, formerly known as the Nevada Test Site, and the Semipalatinsk Test Site, which we take to represent soft-rock and hard-rock testing environments, respectively. Estimates of expected magnitude and number of aftershocks are calculated using the models for different testing and inspection scenarios. These estimates can help inform the Seismic Aftershock Monitoring System (SAMS) deployment in a potential Comprehensive Test Ban Treaty On-Site Inspection (OSI), by giving the OSI team a probabilistic assessment of potential aftershocks in the Inspection Area (IA). The aftershock assessment, combined with an estimate of the background seismicity in the IA and an empirically derived map of threshold magnitude for the SAMS network, could aid the OSI team in reporting. We apply the hard-rock model to a M5 event and combine it with the very sensitive detection threshold for OSI sensors to show that tens of events per day are expected up to a month after an explosion measured several kilometers away.

  8. Investigations of Periodic Disturbances on Seismic Aftershock Recordings

    NASA Astrophysics Data System (ADS)

    Liebsch, Mattes; Gorschlüter, Felix; Knoop, Jan-Frederik; Altmann, Jürgen

    2013-04-01

    The Comprehensive Nuclear Test-Ban Treaty Organisation (CTBTO) runs the International Monitoring System (IMS) to detect possible violations of the treaty. The seismic sensors of the IMS are set up to detect every underground explosion with a yield of 1 kT TNT equivalent or even better everywhere on the world. Under consideration of all IMS data the hypocentre of a large underground explosion is located within an area of about 1000 sq km. To verify if it was a violation of the Test-Ban Treaty the CTBTO (after CTBT entry into force) is allowed to carry out an on-site inspection (OSI) in the area of suspicion. During an OSI the hypocentre is to be located much more precisely; for this a local seismic aftershock monitoring system (SAMS) can be installed to detect small seismic events caused as a consequence of the explosion, such as relaxation of the rock around the cavity. However the magnitude of these aftershock signals is extremely weak. Other difficulties arise from other seismic signals in the inspection area, for example caused by vehicles of the inspectors, from coupling of airborne signals to the ground, or even by intended attempts to disturb the OSI. While the aftershock signals have a pulsed shape, man-made seismic signals (primarily created by engines) usually show periodic characteristics and thus are representable as a sum of sine functions and their harmonics. A mathematical expression for the Hann-windowed discrete Fourier transform of the underlying sine is used to characterise every such disturbance by the amplitude, frequency and phase. The contributions of these sines are computed and subtracted from the complex spectrum sequentially. Synthetic sines superposed to real signals, orders of magnitude stronger than the latter, can be removed successfully. Removal of periodic content from the signals of a helicopter overflight reduces the amplitude by a factor 3.3 when the frequencies are approximately constant. To reduce or prevent disturbing seismic

  9. Minute Temperature Fluctuations Detected in Eta Bootis

    NASA Astrophysics Data System (ADS)

    1994-11-01

    A group of astronomers from the Aarhus University (Denmark) and the European Southern Observatory (2) have for the first time succeeded in detecting solar-type oscillations in another star. They observed the temperature of the bright northern star Eta Bootis during six nights with the 2.5-metre Nordic Optical Telescope at the Roque de los Muchachos observatory on the island of La Palma (Canary Islands) and were able to show that it varies periodically by a few hundredths of a degree. These changes are caused by pressure waves in the star and are directly dependent on its inner structure. A detailed analysis by the astronomers has shown that the observed effects are in good agreement with current stellar models. This is a most important, independent test of stellar theory. The Sun is an Oscillating Star About twenty years ago, it was discovered that the nearest star, our Sun, oscillates like the ringing of a bell with a period of about 5 minutes. The same phenomenon is known in the Earth, which begins to vibrate after earthquakes; in this way seismologists have been able to discern a layered structure in the Earth's interior. The recent impacts of a comet on Jupiter most likely had a similar effect on that planet. The observed solar oscillations concern the entire gaseous body of the Sun, but we can of course only observe them on its surface. It has been found that each mode moves the surface up and down by less than 25 metres; the combined motion is very complicated, because there are many different, simultaneous modes, each of which has a slightly different period. The exact values of these periods are sensitive to the speed of sound in the Sun's interior, which in turn depends on the density of the material there. Thus, by measuring the periods of solar oscillations, we may probe the internal structure of the Sun, that is otherwise inaccessible to observations. Why does the Sun oscillate and what is the cause of these oscillations ? We do not know yet, but it is

  10. {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} and {eta} Prime {yields}{eta}{gamma}{gamma}: A primer analysis

    SciTech Connect

    Escribano, Rafel

    2012-10-23

    The electromagnetic rare decays {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} and {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} are analysed for the first time and their predicted branching ratios given. The vector meson exchange dominant contribution is treated using Vector Meson Dominance and the scalar component is estimated by means of the Linear Sigma Model. The agreement between our calculation and the measurement of the related process {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma} is a check of the procedure. Scalar meson effects are seen to be irrelevant for {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma}, while a significant scalar contribution due to the {sigma}(500) resonance seems to emerge in the case of {eta} Prime {yields}{pi}{sup 0}{gamma}{gamma}. Future measurements coming from KLOE-2, Crystal Ball, WASA, and BES-III will elucidate if any of these processes carry an important scalar contribution or they are simply driven by the exchange of vector mesons.

  11. Measurement of prominent eta-decay branching fractions.

    PubMed

    Lopez, A; Mehrabyan, S; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Ernst, J; Ecklund, K M; Severini, H; Love, W; Savinov, V

    2007-09-21

    The decay psi(2S) --> etaJ/psi is used to measure, for the first time, all prominent eta-meson branching fractions with the same experiment in the same dataset, thereby providing a consistent treatment of systematics across branching fractions. We present results for eta decays to gamma gamma, pi(+)pi(-)pi(0), 3pi(0), pi(+)pi(-)gamma and e(+)e(-)gamma, accounting for 99.9% of all eta decays. The precision of several of the branching fractions and their ratios is improved. Two channels, pi(+)pi(-)gamma and e(+)e(-)gamma, show results that differ at the level of three standard deviations from those previously determined.

  12. Rare Eta Decays with a TPC for Optical Photons

    NASA Astrophysics Data System (ADS)

    Ramberg, Erik; Redtop Collaboration

    2017-01-01

    The eta meson is almost unique in the particle universe since it is a Goldstone boson and the dynamics of its decay are strongly constrained. Because the eta has no charge, decays that violate conservation laws can occur without interfering with a corresponding current. The integrated eta meson samples collected in earlier experiments have been less than 108 events, limiting considerably the search for such rare decays. A new experiment, REDTOP, is being proposed at the proton booster of Fermilab with the intent of collecting more than 1012 triggers/year for studies of rare eta decays. Such statistics are sufficient for investigating several symmetry violations, and for searches for new particles beyond the Standard Model. The physics program, the accelerators system, and the detector for REDTOP will be discussed.

  13. Measurement of the /eta/ parameter in /mu//sup +/ decay

    SciTech Connect

    Bossingham, R.R.

    1989-04-01

    This paper discusses the following topics on the muon plus decay; muon decay spectrum; previous determinations of /eta/; experimental apparatus; distortions of the spectrum; and data analysis and results. 31 figs. (LSP)

  14. Eta bound states in nuclei: a probe of flavour-singlet dynamics

    SciTech Connect

    Steven D. Bass; Anthony W. Thomas

    2005-07-01

    We argue that eta bound states in nuclei are sensitive to the singlet component in the eta. The bigger the singlet component, the more attraction and the greater the binding. Thus, measurements of eta bound states will yield new information about axial U(1) dynamics and glue in mesons. Eta - etaprime mixing plays an important role in understanding the value of the eta-nucleon scattering length.

  15. Spectrophotometric Time Series of eta Carinae's Great Eruption

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Bianco, Federica; Chornock, Ryan; Matheson, Thomas; Prieto, Jose Luis; Sinnott, Brendan; Smith, Chris; Smith, Nathan; Walborn, Nolan; Welch, Doug

    2013-02-01

    eta Carinae (eta Car) is one of the most massive binaries in the Milky Way teDH97, and its expanding circumstellar nebula has been studied in detail teSmith06. It was seen as the second brightest star in the sky during its 1800s ``Great Eruption'' (GE), but only visual estimates of its brightness were recorded teSF11. In 2011 we discovered several light echoes (LEs) which appear to be from the 1838-1858 eta Car eruptions teRest12_eta. Subsequent spectroscopic follow-up revealed that its outburst spectral type was most similar to those of G-type supergiants, rather than reported LBV outburst spectral types of F-type (or earlier) teRest12_eta. These differences between the GE and the extragalactic transients presumed to be its analogues raise questions about traditional scenarios for the outburst and warrant continued monitoring of its echoes. We propose to obtain a spectrophotometric time series of the GE from it different directions, allowing the original eruption of eta Car to be studied as a function of time as well as latitude. A detailed spectroscopic study of the LEs of eta Car could help us understand (episodic) mass- loss in the most massive evolved stars and their connection to the most energetic core-collapse supernovae that are being discovered in synoptic surveys. Very recently (September 2012), a SN impostor discovered in 2009 (SN 2009ip) was observed to transition to a real SN explosion teSmith12. This discovery highlights the importance of studying eta Car's GE in great detail.

  16. Eta Meson Production in Proton-Proton and Nuclear Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank

    2008-01-01

    Total cross sections for eta meson production in proton - proton collisions are calculated. The eta meson is mainly produced via decay of the excited nucleon resonance at 1535 MeV. A scalar quantum field theory is used to calculate cross sections, which also include resonance decay. Comparison between theory and experiment is problematic near threshold when resonance decay is not included. When the decay is included, the comparison between theory and experiment is much better.

  17. The 1981 mass-loss phase of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Bidelman, William P.; Galen, Tamara A.; Wallerstein, George

    1993-07-01

    A visual-region coude spectrogram of Eta Carinae taken in 1981 May is described, and the portion of the spectrum containing H-alpha is reproduced. This was taken during one of Eta Car's 'abnormal' stages, which have been suggested by Zanella et al. (1984) to be times of large mass loss from this unique object. The 1981 spectrum is compared with the 'normal' spectrum as observed in 1985.

  18. Measurement of {eta} meson decays into lepton-antilepton pairs

    SciTech Connect

    Berlowski, M.; Stepaniak, J.; Zabierowski, J.; Bargholtz, Chr.; Geren, L.; Lindberg, K.; Tegner, P.-E.; Zartova, I.; Bashkanov, M.; Clement, H.; Meier, R.; Skorodko, T.; Wagner, G. J.; Bogoslawsky, D.; Ivanov, G.; Jiganov, E.; Kuznetsov, A.; Morosov, B.; Petukhov, Y.; Povtorejko, A.

    2008-02-01

    A search for rare lepton decays of the {eta} meson was performed using the WASA detector at CELSIUS. Two candidates for double Dalitz decay {eta}{yields}e{sup +}e{sup -}e{sup +}e{sup -} events are reported with a background of 1.3{+-}0.2 events. This allows to set an upper limit to the branching ratio of 9.7x10{sup -5} (90% CL). The branching ratio for the decay {eta}{yields}e{sup +}e{sup -}{gamma} is determined to (7.8{+-}0.5{sub stat}{+-}0.8{sub syst})x10{sup -3} in agreement with world average value. An upper limit (90% CL) for the branching ratio for the {eta}{yields}e{sup +}e{sup -} decay is 2.7x10{sup -5} and a limit for the sum of the {eta}{yields}{mu}{sup +}{mu}{sup -}{mu}{sup +}{mu}{sup -} and {eta}{yields}{pi}{sup +}{pi}{sup -}{mu}{sup +}{mu}{sup -} decays is 3.6x10{sup -4}.

  19. Dependence of the aftershock flow on the main shock magnitude

    NASA Astrophysics Data System (ADS)

    Guglielmi, A. V.; Zavyalov, A. D.; Zotov, O. D.; Lavrov, I. P.

    2017-01-01

    Previously, we predicted and then observed in practice the property of aftershocks which consists in the statistically regular clustering of events in time during the first hours after the main shock. The characteristic quasi-period of clustering is three hours. This property is associated with the cumulative action of the surface waves converging to the epicenter, whereas the quasi-period is mainly determined by the time delay of the round-the-world seismic echo. The quasi-period varies from case to case. In the attempt to find the cause of this variability, we have statistically explored the probable dependence of quasi-period on the magnitude of the main shock. In this paper, we present the corresponding result of analyzing global seismicity from the USGS/NEIC earthquake catalog. We succeeded in finding a significant reduction in the quasiperiod of the strong earthquakes clustering with growth in the magnitude of the main shock. We suggest the interpretation of this regularity from the standpoint of the phenomenological theory of explosive instability. It is noted that the phenomenon of explosive instability is fairly common in the geophysical media. The examples of explosive instability in the radiation belt and magnetospheric tail are presented. The search for the parallels in the evolution of explosive instability in the lithosphere and magnetosphere of the Earth will enrich both the physics of the earthquakes and physics of the magnetospheric pulsations.

  20. Evidence for the eta_b(1S) in the Decay Upsilon(2S)-> gamma eta_b(1S)

    SciTech Connect

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Karlsruhe U., EKP /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2009-12-14

    We have performed a search for the {eta}{sub b}(1S) meson in the radiative decay of the {Upsilon}(2S) resonance using a sample of 91.6 million {Upsilon}(2S) events recorded with the BABAR detector at the PEP-II B factory at the SLAC National Accelerator Laboratory. We observe a peak in the photon energy spectrum at E{sub {gamma}} = 610.5{sub -4.3}{sup +4.5}(stat) {+-} 1.8(syst) MeV, corresponding to an {eta}{sub b}(1S) mass of 9392.9{sub -4.8}{sup +4.6}(stat) {+-} 1.9(syst) MeV/c{sup 2}. The branching fraction for the decay {Upsilon}(2S) {yields} {gamma}{eta}{sub b}(1S) is determined to be (4.2{sub -1.0}{sup +1.1}(stat) {+-} 0.9(syst)) x 10{sup -4}. The ratio {Beta}({Upsilon}(2S) {yields} {gamma}{eta}{sub b}(1S))/{Beta}({Upsilon}(3S) {yields} {gamma}{eta}{sub b}(1S)) = 0.89{sub -0.23}{sup +0.25}(stat){sub -0.16}{sup +0.12}(syst) is consistent with the ratio expected for magnetic dipole transitions to the {eta}{sub b}(1S) meson.

  1. Retrospective Evaluation of Earthquake Forecasts during the 2010-12 Canterbury, New Zealand, Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Werner, M. J.; Marzocchi, W.; Taroni, M.; Zechar, J. D.; Gerstenberger, M.; Liukis, M.; Rhoades, D. A.; Cattania, C.; Christophersen, A.; Hainzl, S.; Helmstetter, A.; Jimenez, A.; Steacy, S.; Jordan, T. H.

    2014-12-01

    The M7.1 Darfield, New Zealand (NZ), earthquake triggered a complex earthquake cascade that provides a wealth of new scientific data to study earthquake triggering and the predictive skill of statistical and physics-based forecasting models. To this end, the Collaboratory for the Study of Earthquake Predictability (CSEP) is conducting a retrospective evaluation of over a dozen short-term forecasting models that were developed by groups in New Zealand, Europe and the US. The statistical model group includes variants of the Epidemic-Type Aftershock Sequence (ETAS) model, non-parametric kernel smoothing models, and the Short-Term Earthquake Probabilities (STEP) model. The physics-based model group includes variants of the Coulomb stress triggering hypothesis, which are embedded either in Dieterich's (1994) rate-state formulation or in statistical Omori-Utsu clustering formulations (hybrid models). The goals of the CSEP evaluation are to improve our understanding of the physical mechanisms governing earthquake triggering, to improve short-term earthquake forecasting models and time-dependent hazard assessment for the Canterbury area, and to understand the influence of poor-quality, real-time data on the skill of operational (real-time) forecasts. To assess the latter, we use the earthquake catalog data that the NZ CSEP Testing Center archived in near real-time during the earthquake sequence and compare the predictive skill of models using the archived data as input with the skill attained using the best available data today. We present results of the retrospective model comparison and discuss implications for operational earthquake forecasting.

  2. On the origin of diverse aftershock mechanisms following the 1989 Loma Prieta earthquake

    USGS Publications Warehouse

    Kilb, Debi; Ellis, M.; Gomberg, J.; Davis, S.

    1997-01-01

    We test the hypothesis that the origin of the diverse suite of aftershock mechanisms following the 1989 M 7.1 Loma Prieta, California, earthquake is related to the post-main-shock static stress field. We use a 3-D boundary-element algorithm to calculate static stresses, combined with a Coulomb failure criterion to calculate conjugate failure planes at aftershock locations. The post-main-shock static stress field is taken as the sum of a pre-existing stress field and changes in stress due to the heterogeneous slip across the Loma Prieta rupture plane. The background stress field is assumed to be either a simple shear parallel to the regional trend of the San Andreas fault or approximately fault-normal compression. A suite of synthetic aftershock mechanisms from the conjugate failure planes is generated and quantitatively compared (allowing for uncertainties in both mechanism parameters and earthquake locations) to well-constrained mechanisms reported in the US Geological Survey Northern California Seismic Network catalogue. We also compare calculated rakes with those observed by resolving the calculated stress tensor onto observed focal mechanism nodal planes, assuming either plane to be a likely rupture plane. Various permutations of the assumed background stress field, frictional coefficients of aftershock fault planes, methods of comparisons, etc. explain between 52 and 92 per cent of the aftershock mechanisms. We can explain a similar proportion of mechanisms however by comparing a randomly reordered catalogue with the various suites of synthetic aftershocks. The inability to duplicate aftershock mechanisms reliably on a one-to-one basis is probably a function of the combined uncertainties in models of main-shock slip distribution, the background stress field, and aftershock locations. In particular we show theoretically that any specific main-shock slip distribution and a reasonable background stress field are able to generate a highly variable suite of failure

  3. A non-Mendelian factor, [eta(+)], causes lethality of yeast omnipotent-suppressor strains.

    PubMed

    Liebman, S W; All-Robyn, J A

    1984-10-01

    Omnipotent suppressors cause translational ambiguity and have been associated with poor growth and inviability. We now report that a non-Mendelian element, [eta(+)], causes this inviability. In [eta(-)] strains the suppressors are not inviable. The [eta(+)] genetic element segregates to about 70% of the meiotic progeny, although almost all of the spores probably have the [eta(+)] phenotype for the first few divisions. Growth on 5 mM guanidine hydrochloride efficiently causes [eta(+)] strains to become [eta(-)]. The [eta(+)] factor has many similarities with the previously described [psi(+)] factor (Cox 1965, 1971). However, [eta(+)] and [psi(+)] differ in their patterns of inheritance, and by the fact that [psi(+)] affects ochre specific and not omnipotent suppressors, while the converse is true of [eta(+)].

  4. Regional and stress drop effects on aftershock productivity of large megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Wetzler, Nadav; Brodsky, Emily E.; Lay, Thorne

    2016-12-01

    The total number of aftershocks increases with main shock magnitude, resulting in an overall well-defined relationship. Observed variations from this trend prompt questions regarding influences of regional environment and individual main shock rupture characteristics. We investigate how aftershock productivity varies regionally and with main shock source parameters for large (Mw ≥ 7.0) circum-Pacific megathrust earthquakes within the past 25 years, drawing on extant finite-fault rupture models. Aftershock productivity is found to be higher for subduction zones of the western circum-Pacific than for subduction zones in the eastern circum-Pacific. This appears to be a manifestation of differences in faulting susceptibility between island arcs and continental arcs. Surprisingly, events with relatively large static stress drop tend to produce fewer aftershocks than comparable magnitude events with lower stress drop; however, for events with similar coseismic rupture area, aftershock productivity increases with stress drop and radiated energy, indicating a significant impact of source rupture process on productivity.

  5. Decay of aftershock density with distance does not indicate triggering by dynamic stress

    USGS Publications Warehouse

    Richards-Dinger, K.; Stein, R.S.; Toda, S.

    2010-01-01

    Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤ M  M  M ≥ 2 aftershocks showed a uniform power-law decay with slope −1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤  M< 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case.

  6. WaveHRL: a high resolution, modular seismic event system and its application to the L'Aquila 2009 earthquake sequence

    NASA Astrophysics Data System (ADS)

    Mulder, T.; Brillon, C.; Bentkowski, W.; White, M.; Rosenberger, A.; Rogers, G. C.; Vernon, F.; Kao, H.

    2011-12-01

    The magnitude 7.7 thrust earthquake that occurred on 2012 Oct 28 offshore of Haida Gwaii (formerly the Queen Charlotte Islands), in British Columbia, Canada, produced a rich and on-going aftershock sequence. Ten months of aftershock events are determined from analyst reviewed solutions and automatic detectors and locators. For automated solutions, rotating the waveforms and running P and S wave filters (Rosenberger, 2010) over them produced phase arrivals for an improved catalogue of aftershocks compared to using a traditional signal to noise ratio detector on standard vertical and horizontal component seismograms. The automated aftershock locations from the rotated waveforms are compared to the automated locations from the standard vertical and horizontal waveforms and to analyst locations (which are generally M>2.5). The best of the automated solutions are comparable in quality to analyst solutions and much more numerous making this a viable method of processing extensive aftershock sequences. They outline a region approximately 50 km wide and 100 km long, with the aftershocks in two parallel bands. Most of the aftershocks are not on the rupture surface but are in the overlying or underlying plates. It is thought that this earthquake represents the Pacific plate thrusting underneath the North America plate with the rupture surface lying beneath the sedimentary Queen Charlotte terrace and terminating to the east in the vicinity of the Queen Charlotte fault. Due to the one-sided station distribution on land, depth trades off with distance offshore, resulting in poor depth determinations. However, using ocean bottom seismometers deployed early in the aftershock sequence, depth resolution was significantly improved. First motion focal North America plate with the rupture surface lying beneath the sedimentary Queen Charlotte terrace and terminating to the east in the vicinity of the Queen Charlotte fault.mechanisms for a portion of the aftershock sequence are compared

  7. Tracing the wind interface of the massive binary Eta Carinae

    NASA Astrophysics Data System (ADS)

    Nielsen, Krister

    2007-07-01

    The binarity of Eta Carinae has been debated for a long time, but most recent evidence favors a binary star interpretation. However, very little is known about the nature of the companion star. Over Eta Carinae's spectroscopic period many observable wind lines in the NUV/Optical region, have been shown to exhibit peculiar line profiles with unusual velocity shifts relative to the system velocity. Some of the lines are exclusively blue-shifted over the entire 5.54 yr cycle and their ionization/excitation imply formation in the interface between the two massive stars. Especially, the He I emission lines are mainly formed in the wind interface region. Since the wind momentum is much larger for the primary star than its companion, the wind interface is located fairly close to the companion. Consequently, by tracing the He I emission we can construct a radial velocity curve that will describe the motion of the companion star and will derive the relation between the masses of the binary system stars. Furthermore, we will measure velocity and intensity variations in H I and Fe II to further investigate the ionization/excitation structure throughout Eta Carinae's wind. The analysis of the central source of Eta Carinae, due to the closeness of the two stars in the binary system {30 AU} and the intervening matter in line-of-sight towards Eta Carinae, is extremely dependent on data obtained with high angular resolving power. The HST archival data is crucial for the continuance of this project.

  8. Searching for Radial Velocity Variations in eta Carinae

    NASA Technical Reports Server (NTRS)

    Iping, R. C.; Sonneborn, G.; Gull, T. R.; Ivarsson, S.; Nielsen, K.

    2006-01-01

    A hot companion of eta Carinae has been detected using high resolution spectra (905 - 1180 A) obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite (see poster by Sonneborn et al.). Analysis of the far-UV spectrum shows that eta Car B is a luminous hot star. The N II 1084-86 emission feature indicates that the star may be nitrogen rich. The FUV continuum and the S IV 1073 P-Cygni wind line suggest that the effective temperature of eta Car B is at least 25,000 K. FUV spectra of eta Carinae were obtained with the FUSE satellite at 9 epochs between 2000 February and 2005 July. The data consists of 12 observations taken with the LWRS aperture (30x30 arcsec), three with the HIRS aperture (1.25x20 arcsec), and one MRDS aperture (4x20 arcsec). In this paper we discuss the analysis of these spectra to search for radial velocity variations associated with the 5.54-year binary orbit of Eta Car AB.

  9. High frequencies are a critical component of aftershock triggering at <100-150 km (Invited)

    NASA Astrophysics Data System (ADS)

    Felzer, K. R.

    2010-12-01

    Triggered earthquakes at large distances from the mainshock have been observed to closely follow the arrival of ~0.03-0.6 Hz surface waves (Hill, 2008). Triggering by body waves at these distances is generally not observed. At distances closer than 50-100 km, however, surface waves are not well developed and have minimal amplitude. Thus triggering at these distances is presumably accomplished by static stress change and/or by body waves via a mechanism that does not work at further distances. Pollitz (2006) demonstrated that slow slip events on the San Andreas fault do not trigger many aftershocks, suggesting that static stresses alone are not effective triggers, while Felzer and Brodsky (2006) demonstrated that dynamic stresses alone do appear to trigger aftershocks at least in the 10--50 km range. Yet Parsons and Velasco (2009) found that underground nuclear tests, which are essentially dynamic-only sources, do not produce aftershocks at regional distances. Here we demonstrate that Southern California quarry blasts also fail to produce aftershocks. Both nuclear tests and quarry blasts are depleted in high frequency energy in comparison to tectonic earthquakes (Su et al. 1991; Allman et al. 2008). Therefore the observation that both slow slip events and blasts fail to trigger many aftershocks suggests that the missing ingredient of high frequency body wave energy plays a critical role in the triggering process. Quarry blast spectra data and scaling considerations allow the critical triggering frequency to be constrained to > 20-60 Hz. Energy in this frequency band may be expected to persist at depth at least out to 100 km (Leary, 1995). Huc and Main (2003) found that aftershock triggering by global earthquakes follows a continuous decay curve out to ~150 km, suggesting that triggering by high frequency body waves might extend this far. At much further distances the high frequencies are likely attenuated, explaining why only low frequency surface wave triggering

  10. Joint inversion of teleseismic body-waves and geodetic data for the Mw6.8 aftershock of the Balochistan earthquake with refined epicenter location

    NASA Astrophysics Data System (ADS)

    Wei, S.; Wang, T.; Jonsson, S.; Avouac, J. P.; Helmberger, D. V.

    2014-12-01

    Aftershocks of the 2013 Balochistan earthquake are mainly concentrated along the northeastern end of the mainshock rupture despite of much larger coseismic slip to the southwest. The largest event among them is an Mw6.8 earthquake which occurred three days after the mainshock. A kinematic slip model of the mainshock was obtained by joint inversion of the teleseismic body-waves and horizontal static deformation field derived from remote sensing optical and SAR data, which is composed of seven fault segments with gradually changing strikes and dips [Avouac et al., 2014]. The remote sensing data provide well constraints on the fault geometry and spatial distribution of slip but no timing information. Meanwhile, the initiation of the teleseismic waveform is very sensitive to fault geometry of the epicenter segment (strike and dip) and spatial slip distribution but much less sensitive to the absolute location of the epicenter. The combination of the two data sets allows a much better determination of the absolute epicenter location, which is about 25km to the southwest of the NEIC epicenter location. The well located mainshock epicenter is used to establish path calibrations for teleseismic P-waves, which are essential for relocating the Mw6.8 aftershock. Our grid search shows that the refined epicenter is located right at the northeastern end of the mainshock rupture. This is confirmed by the SAR offsets calculated from images acquired after the mainshock. The azimuth and range offsets display a discontinuity across the rupture trace of the mainshock. Teleseismic only and static only, as well as joint inversions all indicate that the aftershock ruptured an asperity with 25km along strike and range from 8km to 20km in depth. The earthquake was originated in a positive Coulomb stress change regime due to the mainshock and has complementary slip distribution to the mainshock rupture at the northeastern end, suggesting that the entire seismic generic zone in the crust was

  11. Excited Ejecta in Light of Sight from Eta Car

    NASA Technical Reports Server (NTRS)

    Vieira, G.; Gull, T. R.; Danks, A.

    2003-01-01

    In the NUV spectrum of Eta Car, we have resolved many narrow absorption lines of neutral and singly-ionized elements with the Space Telescope Imaging Spectrograph. We report for the first time the detection of interstellar vanadium in absorption, and many highly-excited absorption lines of Fe, Cr, Ti, Ni, Co, Mn, and Mg. These elements, normally tied up in dust grains in the ISM, are located within wall of the Homunculus within 20,000 A.U. of Eta Car. Stellar radiation and stellar wind are interacting with the wall. Dust is likely being modified and/or destroyed. Previous Homunculus studies have demonstrated that nitrogen is overabundant and that carbon and oxygen emission lines are weak, or non-existent. Are the large column densities of these heavy elements due to abundance effects, excitation mechanisms, or modified grains? We may gain insight as Eta Car goes through its spectroscopic minimum in the summer of 2003.

  12. Is the Ejecta of ETA Carinae Overabundant or Overexcited

    NASA Technical Reports Server (NTRS)

    Gull, Theodore; Davidson, Kris; Johansson, Sveneric; Damineli, Augusto; Ishibashi, Kaxunori; Corcoran, Michael; Hartman, Henrick; Viera, Gladys; Nielsen, Krister

    2003-01-01

    The ejecta of Eta Carinae, revealed by HST/STIS, are in a large range of physical conditions. As Eta Carinae undergoes a 5.52 period, changes occur in nebular emission and nebular absorption. "Warm" neutral regions, partially ionized regions, and fully ionized regions undergo significant changes. Over 2000 emission lines, most of Fe-like elements, have been indentified in the Weigelt blobs B and D. Over 500 emission lines have been indentified in the Strontium Filament. An ionized Little Homunculus is nestled within the neutral-shelled Homunculus. In line of sight, over 500 nebular absorption lines have been identified with up to twenty velocity components. STIS is following changes in many nebular emission and absorption lines as Eta Carinae approaches the minimum, predicted to be in June/July 2003, during the General Assembly. Coordinated observations with HST, CHANDRA, RXTE, FUSE, UVES/VLT, Gemini and other observatories are following this minimum.

  13. Magnetic reconnection in toroidal eta(i) mode turbulence

    PubMed

    Zeiler; Drake; Rogers

    2000-01-03

    Based on three-dimensional simulations of the Braginskii equations we show that for typical plasma-edge parameters the saturation of electromagnetic toroidal eta(i) mode turbulence is controlled by the self-generation and subsequent annihilation of radial magnetic field perturbations. This should be contrasted with the electrostatic limit, where the growth of the linear eta(i) mode is terminated by the onset of sheared flow modes driven by the radial plasma streams. The impact of the saturation amplitude on the transport level is substantial and is not in accord with simple mixing length arguments, suggesting that electromagnetic effects should generally be included in simulations of eta(i) mode turbulence.

  14. Eta Carinae's first full orbit in the Fermi era

    NASA Astrophysics Data System (ADS)

    Reimer, Olaf; Reitberger, Klaus; Reimer, Anita; Takahashi, Hiromitsu

    2015-08-01

    Eta Carinae, the so-far only colliding wind binary system shining brightly at high-energy gamma-rays, has been observed over the first complete orbit since launch of the Fermi Gamma-ray Space Telescope. This allows us to compare the spatial, temporal and spectral characteristics of the gamma-ray emission to earlier studies and confront predictions about anticipated observational signatures when concluding the full orbit and entering into the next. By analyzing 2024 days of LAT data we were able to improve the spatial association between the nominal location of eta Carinae and the observed gamma-ray location, confirming the two-component spectrum, as well as the spectro-variability seen predominatly above 10 GeV. The observed source characteristics strengthens the case that eta Car remains unique for the otherwise elusive class of gamma-ray sources whose emission can be related to a colliding stellar wind scenario.

  15. Start of Eta Car's X-ray Minimum

    NASA Technical Reports Server (NTRS)

    Corcoran, Michael F.; Liburd, Jamar; Hamaguchi, Kenji; Gull, Theodore; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony; Richardson, Noel; Russell, Chris; Pollock, Andrew; Owocki, Stan

    2014-01-01

    Analysis of Eta Car's X-ray spectrum in the 2-10 keV band using quicklook data from the XRay Telescope on Swift shows that the flux on July 30, 2014 was 4.9 plus or minus 2.0×10(exp-12) ergs s(exp-1)cm(exp-2). This flux is nearly equal to the X-ray minimum flux seen by RXTE in 2009, 2003.5, and 1998, and indicates that Eta Car has reached its X-ray minimum, as expected based on the 2024-day period derived from previous 2-10 keV observations with RXTE.

  16. 76 FR 12760 - Comment Request for Information Collection for Report ETA 902, Disaster Unemployment Assistance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ..., Disaster Unemployment Assistance Activities (OMB Control No. 1205- 0051): Extension Without Change AGENCY... ETA 902, Disaster Unemployment Assistance Activities under the Robert T. Stafford Disaster Relief and.... Background The ETA 902 Report, Disaster Unemployment Assistance (DUA) Activities, is a monthly...

  17. Determination of the quadratic slope parameter in eta-->3pi(0) decay.

    PubMed

    Tippens, W B; Prakhov, S; Allgower, C E; Bekrenev, V; Berger, E; Briscoe, W J; Clajus, M; Comfort, J R; Craig, K; Efendiev, A; Grosnick, D; Holstein, B R; Huber, G M; Isenhower, D; Knecht, N; Koetke, D; Koulbardis, A; Kozlenko, N; Kruglov, S; Lolos, G J; Lopatin, I; Manley, D M; Marusić, A; Manweiler, R; McDonald, S; Nefkens, B M; Olmsted, J; Papandreou, Z; Phaisangittisakul, N; Price, J W; Pulver, M; Ramirez, A F; Sadler, M E; Shafi, A; Spinka, H; Stanislaus, S; Starostin, A; Staudenmaier, H M

    2001-11-05

    We have determined the quadratic slope parameter alpha for eta-->3pi(0) to be alpha = -0.031(4) from a 99% pure sample of 10(6)eta-->3pi(0) decays produced in the reaction pi(-)p-->n(eta) close to the eta threshold using the Crystal Ball detector at the AGS. The result is four times more precise than the present world data and disagrees with current chiral perturbation theory calculations by about four standard deviations.

  18. Synthesis, reactivity and molecular structure of phosphino tetramethyl cyclopentadienyl complex (eta5: eta1-C5Me4CH2PPh2)Re(CO)2.

    PubMed

    Godoy, Fernando; Klahn, A Hugo; Oelckers, Beatriz; Garland, María Teresa; Ibáñez, Andres; Perutz, Robin N

    2009-04-28

    The fulvene complex (eta(6)-C(5)Me(4)CH(2))Re(C(6)F(5))(CO)(2) reacts at the exocyclic methylene carbon with potassium diphenylphosphide to yield the anionic species [(eta(5)-C(5)Me(4)CH(2)PPh(2))Re(C(6)F(5))(CO)(2)](-) (). Protonation of with HCl at 0 degrees C produces the hydride complex trans-(eta(5)-C(5)Me(4)CH(2)PPh(2))Re(C(6)F(5))(H)(CO)(2) (). Thermolysis of a hexanes solution of , under nitrogen atmosphere, produces the chelated complex (eta(5):eta(1)-C(5)Me(4)CH(2)PPh(2))Re(CO)(2) () in good yield. The thermolysis under a CO atmosphere affords a mixture of the complexes (eta(5):eta(1)-C(5)Me(4)CH(2)PPh(2))Re(CO)(2) () and (eta(5)-C(5)Me(4)CH(2)PPh(2))Re(CO)(3) (). The reaction of with two electron donor ligands yields (eta(5)-C(5)Me(4)CH(2)PPh(2))Re(CO)(2)(L) (, L = CO; , L = PMe(3); , L = (t)BuNC). Complex also reacts with I(2), HBF(4) and MeOTf to yield the cationic compounds trans-[(eta(5):eta(1)-C(5)Me(4)CH(2)PPh(2))Re(R)(CO)(2)](+) (, R = I; , R = H; , R = Me). Upon treatment with chloroform, the hydride complex converts to the corresponding chloro derivative . The trans stereochemistry for complexes have been assigned on basis of nu(CO) IR intensities and (13)C-NMR chemical shifts. The reaction of the cationic complexes (, ) with KI and Me(3)NO.2H(2)O yields the neutral species cis-(eta(5):eta(1)-C(5)Me(4)CH(2)PPh(2))Re(I)(R)(CO) (, R = I, , R = Me). The molecular structure of and have been determined by X-ray crystallography.

  19. Systematic Detections of Early Aftershocks and Remotely Triggered Seismicity in China Following the 2015 Mw7.8 Gorkha, Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Wu, J.; Peng, Z.; Yao, D.; LI, L.; Meng, X.; Wang, B.; Wang, W.; Li, C.

    2015-12-01

    some time delays). The early aftershocks show systematic along-strike migrations, similar to other recently studied aftershock sequences. Our next step is to extend the same analysis to longer time period before and after the mainshock to detect potential foreshocks and investigate longer-time evolutions of seismicity in Nepal.

  20. 75 FR 53983 - Proposed Information Collection Request of the ETA-5130 Benefit Appeals Report; Comment Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... Employment and Training Administration Proposed Information Collection Request of the ETA-5130 Benefit... e-mail: Langley.brian@dol.gov . SUPPLEMENTARY INFORMATION: I. Background The ETA-5130, Benefit... proposed extension collection of the ETA-5130 Benefit Appeals Report, which expires November 30,...

  1. 78 FR 75948 - Comment Request for Information Collection for the ETA 586, Interstate Arrangement for Combining...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-13

    ... Employment and Training Administration Comment Request for Information Collection for the ETA 586, Interstate... Administration (ETA), Labor. ACTION: Notice. SUMMARY: The Department of Labor (Department), as part of its... requirements on respondents can be properly assessed. Currently, ETA is soliciting comments concerning...

  2. 75 FR 3927 - Proposed Information Collection Request for the ETA 218, Benefit Rights and Experience Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... Information Collection Request for the ETA 218, Benefit Rights and Experience Report; Comment Request on... unemployment compensation programs. The data in the ETA 218, Benefit Rights and Experience Report, includes... extension for the collection of the ETA 218, Benefit Rights and Experience report. Comments are...

  3. 77 FR 48174 - Comment Request for Information Collection for the ETA 203, Characteristics of the Insured...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... Employment and Training Administration Comment Request for Information Collection for the ETA 203... Administration (ETA), Labor. ACTION: Notice. SUMMARY: The Department of Labor (Department), as part of its... requirements on respondents can be properly assessed. Currently, ETA is soliciting comments concerning...

  4. 76 FR 58540 - Proposed Information Collection Request of the ETA 581, Contribution Operations Report; Extension...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... Information Collection Request of the ETA 581, Contribution Operations Report; Extension Without Change AGENCY... Insurance (OUI) of the Employment and Training Administration (ETA) has responsibility for the Tax... Contribution Operations report (Form ETA 581) is a comprehensive report of each state's UI tax operations...

  5. Search for eta '(958)-nucleus Bound States by (p,d) Reaction at GSI and FAIR

    NASA Astrophysics Data System (ADS)

    Fujioka, H.; Ayyad, Y.; Benlliure, J.; Brinkmann, K.-T.; Friedrich, S.; Geissel, H.; Gellanki, J.; Guo, C.; Gutz, E.; Haettner, E.; Harakeh, M. N.; Hayano, R. S.; Higashi, Y.; Hirenzaki, S.; Hornung, C.; Igarashi, Y.; Ikeno, N.; Itahashi, K.; Iwasaki, M.; Jido, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knoebel, R.; Kurz, N.; Metag, V.; Mukha, I.; Nagae, T.; Nagahiro, H.; Nanova, M.; Nishi, T.; Ong, H. J.; Pietri, S.; Prochazka, A.; Rappold, C.; Reiter, M. P.; Rodríguez-Sánchez, J. L.; Scheidenberger, C.; Simon, H.; Sitar, B.; Strmen, P.; Sun, B.; Suzuki, K.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Tanihata, I.; Terashima, S.; Watanabe, Y. N.; Weick, H.; Widmann, E.; Winfield, J. S.; Xu, X.; Yamakami, H.; Zhao, J.

    The mass of the {\\eta}' meson is theoretically expected to be reduced at finite density, which indicates the existence of {\\eta}'-nucleus bound states. To investigate these states, we perform missing-mass spectroscopy for the (p, d) reaction near the {\\eta}' production threshold. The overview of the experimental situation is given and the current status is discussed.

  6. 29 CFR 500.132 - Applicable Federal standards: ETA and OSHA housing standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Applicable Federal standards: ETA and OSHA housing... Migrant Workers Housing Safety and Health § 500.132 Applicable Federal standards: ETA and OSHA housing... § 500.131, all migrant housing is subject to either the ETA standards or the OSHA standards, as...

  7. [(8a,9,9a-eta)-9-(eta5-cyclopentadienyl)-9-nickelafluorenyl](eta5-pentamethylcyclopentadienyl)nickel(II).

    PubMed

    Buchalski, Piotr; Koziol, Andrzej; Suwinska, Kinga

    2008-08-01

    The title compound, [Ni(2)(C(5)H(5))(C(10)H(15))(C(12)H(8))] or [Ni(C(10)H(15)){Ni(C(5)H(5))(C(12)H(8))}], is a rare example (and the first obtained from nickelafluorenyllithium) of an analogue of nickelocene in which the central Ni atom is coordinated to one pentamethylcyclopentadienyl ring and one nickelafluorenyl ring. Both rings lie almost parallel to one another: the dihedral angle between the planes which include these rings is 4.4 (1) degrees . Slip parameter analysis indicates that the bonding mode of the central Ni atom to the nickelacyclic ring is between eta(3) and eta(5). Two-dimensional layers of molecules are formed by C-H...pi interactions.

  8. Aftershocks and Omori's law in a modified Carlson-Langer model with nonlinear viscoelasticity

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Okamura, Kazuki

    2015-05-01

    A modified Carlson-Langer model for earthquakes is proposed, which includes nonlinear viscoelasticity. Several aftershocks are generated after the main shock owing to the damping of the additional viscoelastic force. Both the Gutenberg-Richter law and Omori's law are reproduced in a numerical simulation of the modified Carlson-Langer model on a critical percolation cluster of a square lattice.

  9. Spatial variation of the aftershock activity across the Kachchh Rift Basin and its seismotectonic implications

    NASA Astrophysics Data System (ADS)

    Singh, A. P.; Mishra, O. P.; Kumar, Dinesh; Kumar, Santosh; Yadav, R. B. S.

    2012-04-01

    We analyzed 3365 relocated aftershocks with magnitude of completeness ( Mc) ≥1.7 that occurred in the Kachchh Rift Basin (KRB) between August 2006 and December 2010. The analysis of the new aftershock catalogue has led to improved understanding of the subsurface structure and of the aftershock behaviour. We characterized aftershock behaviour in terms of a-value, b-value, spatial fractal dimension ( D s ), and slip ratio (ratio of the slip that occurred on the primary fault and that of the total slip). The estimated b-value is 1.05, which indicates that the earthquake occurred due to active tectonics in the region. The three dimensional b-value mapping shows that a high b-value region is sandwiched around the 2001 Bhuj mainshock hypocenter at depths of 20-25 km between two low b-value zones above and below this depth range. The D s -value was estimated from the double-logarithmic plot of the correlation integral and distance between hypocenters, and is found to be 2.64 ± 0.01, which indicates random spatial distribution beneath the source zone in a two-dimensional plane associated with fluid-filled fractures. A slip ratio of about 0.23 reveals that more slip occurred on secondary fault systems in and around the 2001 Bhuj earhquake ( Mw 7.6) source zone in KRB.

  10. Aftershock seismicity and Tectonic Setting of the 16 September 2015 Mw 8.3 Illapel earthquake

    NASA Astrophysics Data System (ADS)

    Lange, Dietrich; Geersen, Jacob; Barrientos, Sergio; Moreno, Marcos; Grevemeyer, Ingo; Contreras-Reyes, Eduardo; Kopp, Heidrun

    2016-04-01

    Powerful subduction zone earthquakes rupture thousands of square kilometers along continental margins but at certain locations earthquake rupture terminates. On 16 September 2015 the Mw. 8.3 Illapel earthquake ruptured a 200 km long stretch of the Central Chilean subduction zone, triggering a tsunami and causing significant damage. Here we analyze the spatial pattern of coseismic rupture and the temporal and spatial pattern of local seismicity for aftershocks and foreshocks in relation to the tectonic setting in the earthquake area. Aftershock seismicity surrounds the rupture area in lateral and downdip direction. For the first 24 hours following the mainshock we observe aftershock migration to both lateral directions with velocities of approximately 2.5 and 5 km/h. At the southern earthquake boundary aftershocks cluster around individual subducted seamounts located on the prolongation of the downthrusting Juan Fernández Ridge indicating stress transfer from the main rupture area. In the northern part of the rupture area a deeper band of local seismicity is observed indicating an alternation of seismic to aseismic behavior of the plate interface in downdip direction. This aseismic region at ~30 km depth that is also observed before the Illapel 2015 earthquake is likely controlled by the intersection of the continental Moho with the subducting slab.

  11. Aftershock source mechanisms from the June 9, 1994, Deep Bolivian Earthquake

    NASA Astrophysics Data System (ADS)

    Tinker, Mark Andrew; Wallace, Terry C.; Beck, Susan L.; Silver, Paul G.; Zandt, George

    The Mw 8.3 Bolivia earthquake occurred on June 9, 1994, at a depth of 636 km. This is the largest deep event in recorded history and ruptured a portion of the down-going Nazca slab unknown to have ruptured previously. We recorded the main shock and aftershocks on the BANJO and SEDA portable, broadband seismic arrays deployed in Bolivia during this event. Myers et al. (this issue) identified and located 36 aftershocks (M>2) for the 10-day period following the main shock. We use a grid search technique to determine focal mechanisms for 12 of these aftershocks ranging in magnitude from 2.7 to 5.3. We compare the observed P to SV and SH ratios to a series of synthetics that represent different fault plane orientations. We find consistent focal mechanisms with the T-axis roughly horizontal and oriented approximately east-west, and the P-axis predominantly vertical. The aftershock focal mechanisms indicate a rotation of the P-axis within the slab from down-dip compression prior to the main shock to a near-vertical direction afterwards. This observation is consistent with the release of shear stress on the near-horizontal rupture plane and the subsequent rotation of the maximum compressive stress to a fault -normal orientation.

  12. Reflection imaging using RVSP processing of aftershock recordings from the August 23, 2011 central Virginia earthquake

    NASA Astrophysics Data System (ADS)

    Quiros, D. A.; Brown, L. D.; Davenport, K.; Han, L.; Hole, J. A.; Chapman, M. C.; Mooney, W. D.; Cabolova, A.

    2012-12-01

    On August 23, 2011, a magnitude Mw 5.6 earthquake occurred in central Virginia and was felt over much of the eastern United States. This event, which had a NE-striking reverse faulting focal mechanism at a hypocentral depth of 6 km, occurred in the previously recognized "Central Virginia Seismic Zone". The likelihood of numerous small and several moderate-sized aftershocks motivated the rapid post-seismic deployment of a high-density seismic array by a team of scientists from Cornell University, Virginia Tech and the U.S. Geological Survey (USGS). Traditional earthquake aftershock deployments consist of a few tens of instruments at nominal distances that are in the order of kilometers. The Aftershock Imaging with Dense Arrays (AIDA) experiment in Virginia represents a prototype effort to field a deployment with hundreds of seismographs at sub-kilometer spacing (Δx ~ 200 m) using technology currently available (Reftek RT125A) from the EarthScope Flexible Array. One of the major expectations associated with such dense arrays was the potential for high resolution imaging of the hypocentral region using direct (refracted) and reflected seismic waves from the aftershock sources. Here we report our efforts to image reflective structures using techniques associated with Vertical Seismic Profiling (VSP). VSP is usually associated with recording of surface sources by instruments deployed down a borehole seismic survey or surface recording of sources within the borehole (Reverse VSP). The geometry of VSP surveys (i.e. reverse or regular) often provides better resolution than conventional surface seismic surveys because of the shorter ray paths involved (thus less attenuation) as well more definitive ties to geology encountered in the borehole. The aftershocks of the VA event can be treated as sources in a reverse VSP geometry since they span a range of depths in a relatively small area. We have imaged structure in the hypocentral region by applying VSP processing algorithms

  13. 20 CFR 658.603 - ETA regional office responsibility.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATIVE PROVISIONS GOVERNING THE JOB SERVICE SYSTEM Review and Assessment of State Agency Compliance With Job Service Regulations § 658.603 ETA regional office responsibility. (a) The Regional Administrator... compliance with JS regulations. (b) The Regional Administrator shall review and approve annual program...

  14. 20 CFR 658.603 - ETA regional office responsibility.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ADMINISTRATIVE PROVISIONS GOVERNING THE JOB SERVICE SYSTEM Review and Assessment of State Agency Compliance With Job Service Regulations § 658.603 ETA regional office responsibility. (a) The Regional Administrator... compliance with JS regulations. (b) The Regional Administrator shall review and approve annual program...

  15. EMISSIONS PROCESSING FOR THE ETA/ CMAQ AIR QUALITY FORECAST SYSTEM

    EPA Science Inventory

    NOAA and EPA have created an Air Quality Forecast (AQF) system. This AQF system links an adaptation of the EPA's Community Multiscale Air Quality Model with the 12 kilometer ETA model running operationally at NOAA's National Center for Environmental Predication (NCEP). One of the...

  16. The Corrected Eta-Squared Coefficient: A Value Added Approach.

    ERIC Educational Resources Information Center

    Barnette, J. Jackson; McLean, James E.

    Eta-Squared (ES) is often used as a measure of strength of association of an effect, a measure often associated with effect size. It is also considered the proportion of total variance accounted for by an independent variable. It is simple to compute and interpret. However, it has one critical weakness cited by several authors (C. Huberty, 1994;…

  17. Detection of the Compressed Primary Stellar Wind in eta Carinae

    NASA Technical Reports Server (NTRS)

    Teodoro, Mairan Macedo; Madura, Thomas I.; Gull, Theodore R.; Corcoran, Michael F.; Hamaguchi, K.

    2014-01-01

    A series of three HST/STIS spectroscopic mappings, spaced approximately one year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving outward from eta Carinae. We identify these arcs with the shell-like structures, seen in the 3D hydrodynamical simulations, formed by compression of the primary wind by the secondary wind during periastron passages.

  18. Targeting Inaccurate Atomic Data in the Eta Car Ejecta Absorption

    NASA Technical Reports Server (NTRS)

    Nielsen, K. E.; Kober, G. Vieira; Gull, T. R.; Blackwell-Whitehead, R.; Nilsson, H.

    2006-01-01

    The input from the laboratory spectroscopist community has on many occasions helped the analysis of the eta Car spectrum. Our analysis has targeted spectra where improved wavelengths and oscillator strengths are needed. We will demonstrate how experimentally derived atomic data have improved our spectral analysis, and illuminate where more work still is needed.

  19. Detailed analysis of the spatio-temporal evolution of tremor, foreshock, and aftershock activities near the September 5, 2012 Nicoya Peninsula earthquake

    NASA Astrophysics Data System (ADS)

    Walter, J. I.; Peng, Z.; Schwartz, S. Y.; Meng, X.; Newman, A. V.; Protti, M.

    2013-05-01

    The subduction megathrust interface, at the Nicoya Peninsula, exhibits a wide range of complex fault behavior, from recently discovered slow slip and tremor, numerous microearthquakes, to infrequent megathrust (> Mw 7) earthquakes. In contrast to other subduction zones, the Nicoya tremor originates up-dip, down-dip, and within the seismogenic zone. The September 5, 2012 earthquake makes the Nicoya Peninsula uniquely poised to investigate the wide range of fault behavior and spatio-temporal evolution of seismic activity around the mainshock, as the seismogenic zone lies directly below the Peninsula. Preliminary matched-filter analysis using a template earthquake that precedes the mainshock by ~120 s indicates similar events occurring 20-40 min prior to the mainshock, as well as, immediately following the mainshock. We are expanding this analysis with a broader catalogue of template events and utilizing matched-filter codes optimized for graphics processing units (GPUs). While detailed analysis of the foreshock/aftershock sequence is ongoing, the early aftershocks cluster in a distinct region that is immediately adjacent to regions that have undergone slow slip in past events. We hope to gain better insight into the spatio-temporal transitions from stable sliding to stick-slip motion, and underlying physics of earthquake nucleation and interaction.

  20. Adapting Pipeline Architectures to Track Developing Aftershock Sequences and Recurrent Explosions (Postprint)

    DTIC Science & Technology

    2012-05-08

    Proceedings of the 2011 Monitoring Research Review – Ground-Based Nuclear Explosion Monitoring Technologies, 13 – 15 September 2011, Tucson , AZ, Volume I, pp...as the 2004 Sumatra-Andaman Islands earthquake, the 2008 Sichuan earthquake, and the 2011 Japan earthquake flood seismic networks with thousands of

  1. Adapting Pipeline Architectures to Track Developing Aftershock Sequences and Recurrent Explosions

    DTIC Science & Technology

    2014-02-14

    unlimited. x APPENDIX – List of Figures Fig. A.1 Events from the bulletins of the International Seismological Center (www.isc.ac.uk, left) and the...in seismology . Whereas a correlator compares the temporal pattern of a signal from one event with the temporal pattern of signal from a subsequent...ISBN-13: 978-0801854149 Harris, D. (1991) “A waveform correlation method for identifying quarry explosions” Bulletin of the Seismological Society

  2. The Eight-meter-wavelength Transient Array (ETA)

    NASA Astrophysics Data System (ADS)

    Simonetti, J. H.; Ellingson, S. W.; Patterson, C. D.; Taylor, W.; Venugopal, V.; Cutchin, S.; Boor, Z.

    2005-12-01

    The Eight-meter-wavelength Transient Array (ETA) is a radio telescope utilizing a low-cost backend, which implements flexible, reconfigurable computing techniques. It is designed to continuously monitor nearly the entire northern sky at 29-47MHz in a search for low-frequency radio transients (short pulses) from high-energy astrophysical phenomena. This antenna array, which is currently under construction, is located in a relatively radio-quiet area in the Blue Ridge Mountains southwest of Asheville, NC, at the Pisgah Astronomical Research Institute (PARI). The array consists of 12 dual-polarization dipole antennas. The core of the array is 10 antenna stations arranged in a 16-m diameter circle with one antenna station at the center. In addition, one antenna station is situated about 50m to the north of the core and another is about 50m to the east of the core. A 26-m dish on the PARI site (about 1km from the ETA core) will be used for follow-up, added aperture, longer baselines, and additional radio frequency interference (RFI) mitigation. Preliminary observations with one test antenna station have detected the expected Galactic emission in this frequency range; ETA will be Galactic-noise limited. The ETA backend will utilize off-the-shelf components and a cluster of Field Programmable Gate Arrays (FPGAs) for detecting pulses of various lengths, dispersion measures, and directions (synthesized delay beams), while incorporating various RFI countermeasures. Potential sources of radio transients that might be observed by ETA include gamma-ray bursts (prompt emission), supernovae (prompt emission), coalescing compact-object binaries (e.g., neutron star -- neutron star, neutron star -- black hole), and exploding primordial black holes. This array should detect giant pulses from the Crab Pulsar, and possibly other pulsars. ETA is a collaboration of the Electrical and Computer Engineering Department and Physics Department at Virginia Tech, and PARI. ETA work at Virginia

  3. The enigma of the Arthur's Pass, New Zealand, earthquake 1. Reconciling a variety of data for an unusual earthquake sequence

    USGS Publications Warehouse

    Abercrombie, R.E.; Webb, T.H.; Robinson, R.; McGinty, P.J.; Mori, J.J.; Beavan, R.J.

    2000-01-01

    The 1994 Arthur's Pass earthquake (Mw6.7) is the largest in a recent sequence of earthquakes in the central South Island, New Zealand. No surface rupture was observed the aftershock distribution was complex, and routine methods of obtaining the faulting orientation of this earthquake proved contradictory. We use a range of data and techniques to obtain our preferred solution, which has a centroid depth of 5 km, Mo=1.3??1019 N m, and a strike, dip, and rake of 221??, 47??, 112??, respectively. Discrepancies between this solution and the Harvard centroid moment tensor, together with the Global Positioning System (GPS) observations and unusual aftershock distribution, suggest that the rupture may not have occurred on a planar fault. A second, strike slip, subevent on a more northerly striking plane is suggested by these data but neither the body wave modeling nor regional broadband recordings show any complexity or late subevents. We relocate the aftershocks using both one-dimensional and three-dimensional velocity inversions. The depth range of the aftershocks (1-10 km) agrees well with the preferred mainshock centroid depth. The aftershocks near the hypocenter suggest a structure dipping toward the NW, which we interpret to be the mainshock fault plane. This structure and the Harper fault, ???15 km to the south appear to have acted as boundaries to the extensive aftershock zone trending NNW-SSE Most of the ML???5 aftershocks, including the two largest (ML6.1 and ML5.7), clustered near the Harper fault and have strike slip mechanisms consistent with motion on this fault and its conjugates. Forward modeling of the GPS data suggests that a reverse slip mainshock, combined with strike slip aftershock faulting in the south, is able to match the observed displacements. The occurrence of this earthquake sequence implies that the level of seismic hazard in the central South Island is greater than previous estimates. Copyright 2000 by the American Geophysical Union.

  4. In-medium mathaccent "7016relax K- and eta -meson Interactions and Bound States

    NASA Astrophysics Data System (ADS)

    Gal, A.; Friedman, E.; Barnea, N.; Cieplý, A.; Mareš, J.; Gazda, D.

    The role played by subthreshold meson-baryon dynamics is demonstrated in kaonic-atom, Kbar-nuclear and eta-nuclear bound-state calculations within in-medium models of Kbar-N and eta-N interactions. New analyses of kaonic atom data reveal appreciable multi-nucleon contributions. Calculations of eta-nuclear bound states show, in particular, that the eta-N scattering length is not a useful indicator of whether or not eta mesons bind in nuclei nor of the widths anticipated for such states.

  5. Detection of soft X-rays from Alpha Lyrae and Eta Bootis with an imaging X-ray telescope

    NASA Technical Reports Server (NTRS)

    Topka, K.; Fabricant, D.; Harnden, F. R., Jr.; Gorenstein, P.; Rosner, R.

    1979-01-01

    Results are presented for observations of Alpha Lyr (Vega) and Eta Boo with an imaging X-ray telescope during two rocket flights. It is found that Vega and Eta Boo are soft X-ray sources with respective luminosities of approximately 3 x 10 to the 28th erg/s (0.15-0.8 keV) and 1 x 10 to the 29th erg/s (0.15-1.5 keV). Surface X-ray luminosities of about 640,000 erg/sq cm per sec for Vega and 300,000 erg/sq cm per sec for Eta Boo are estimated and shown to fall within the range of solar coronal X-ray emission. It is concluded that in view of the substantially larger surface areas of these stars, the relatively large total soft X-ray luminosity (as compared with that of the sun) can in both cases be understood as resulting from a moderately active corona, although the Vega observation is in severe conflict with simple models for X-ray emission from single main-sequence stars.

  6. Eta model simulations using two radiation schemes in clear-sky conditions

    NASA Astrophysics Data System (ADS)

    de Andrade Campos, Diêgo; Chou, Sin Chan; Spyrou, Christos; Chagas, Júlio Cesar Santos; Bottino, Marcus Jorge

    2017-01-01

    This work evaluates the performance of two radiation parameterization schemes in 30-day clear-sky runs of the Eta model over a region in Southeast Brazil. Two versions of the Eta model are compared: a version using the radiation scheme developed by the Geophysical Fluid Dynamics Laboratory (GFDL) and a recently developed version using the Rapid Radiative Transfer Model for GCM (RRTMG). These simulations are compared against CMSAF satellite data and surface station data. The simulation using RRTMG produced downward surface shortwave radiation fluxes closer to observations and reduced the systematic positive bias of the Eta simulation using the GFDL scheme. The 2-m temperature negative bias found in the Eta-GFDL simulations is reduced in the Eta-RRTMG simulations, which results from a larger net total radiation in the Eta-RRTMG simulations. The new version has better accuracy than the Eta using the GFDL scheme for most of the evaluated variables, particularly for clear-sky conditions.

  7. Okubo-Zweig-Iizuka-rule violation and B{yields}{eta}{sup (')}K branching ratios

    SciTech Connect

    Hsu, J.-F.; Charng, Y.-Y.; Li, Hsiang-nan

    2008-07-01

    We show that the few-percent Okubo-Zweig-Iizuka-rule violating effects in the quark-flavor basis for the {eta}-{eta}{sup '} mixing can enhance the chiral scale associated with the {eta}{sub q} meson a few times. This enhancement is sufficient for accommodating the dramatically different data of the B{yields}{eta}{sup '}K and B{yields}{eta}K branching ratios. We comment on other proposals for resolving this problem, including flavor-singlet contributions, axial U(1) anomaly, and nonperturbative charming penguins. Discrimination of the above proposals by means of the B{yields}{eta}{sup (')}l{nu} and B{sub s}{yields}{eta}{sup (')}ll data is suggested.

  8. Does dinitrogen hydrogenation follow different mechanisms for [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) and {[PhP(CH2SiMe2NSiMe2CH2)PPh]Zr}2(mu2,eta2,eta2-N2) complexes? A computational study.

    PubMed

    Bobadova-Parvanova, Petia; Wang, Qingfang; Quinonero-Santiago, David; Morokuma, Keiji; Musaev, Djamaladdin G

    2006-09-06

    The mechanisms of dinitrogen hydrogenation by two different complexes--[(eta(5)-C(5)Me(4)H)(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)), synthesized by Chirik and co-workers [Nature 2004, 427, 527], and {[P(2)N(2)]Zr}(2)(mu(2),eta(2),eta(2)-N(2)), where P(2)N(2) = PhP(CH(2)SiMe(2)NSiMe(2)CH(2))(2)PPh, synthesized by Fryzuk and co-workers [Science 1997, 275, 1445]--are compared with density functional theory calculations. The former complex is experimentally known to be capable of adding more than one H(2) molecule to the side-on coordinated N(2) molecule, while the latter does not add more than one H(2). We have shown that the observed difference in the reactivity of these dizirconium complexes is caused by the fact that the former ligand environment is more rigid than the latter. As a result, the addition of the first H(2) molecule leads to two different products: a non-H-bridged intermediate for the Chirik-type complex and a H-bridged intermediate for the Fryzuk-type complex. The non-H-bridged intermediate requires a smaller energy barrier for the second H(2) addition than the H-bridged intermediate. We have also examined the effect of different numbers of methyl substituents in [(eta(5)-C(5)Me(n)H(5)(-)(n))(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)) for n = 0, 4, and 5 (n = 5 is hypothetical) and [(eta(5)-C(5)H(2)-1,2,4-Me(3))(eta(5)-C(5)Me(5))(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)) and have shown that all complexes of this type would follow a similar H(2) addition mechanism. We have also performed an extensive analysis on the factors (side-on coordination of N(2) to two Zr centers, availability of the frontier orbitals with appropriate symmetry, and inflexibility of the catalyst ligand environment) that are required for successful hydrogenation of the coordinated dinitrogen.

  9. A role for PCNA2 in translesion synthesis by Arabidopsis thaliana DNA polymerase eta.

    PubMed

    Kunz, Bernard A

    2008-10-01

    Eukaryotic DNA polymerase eta (Poleta) confers ultraviolet (UV) resistance by catalyzing translesion synthesis (TLS) past UV photoproducts. Poleta has been studied extensively in budding yeast and mammalian cells, where its interaction with monoubiquitylated proliferating cell nuclear antigen (PCNA) is necessary for its biological activity. Recently, in collaboration with other investigators, our laboratory demonstrated that Arabidopsis thaliana Poleta is required for UV resistance in plants. Furthermore, the purified enzyme can perform TLS opposite a cyclobutane pyrimidine dimer and interacts with PCNA. Intriguingly, the biological activity of Poleta in a heterologous yeast assay depends on co-expression with Arabidopsis PCNA2 and Poleta sequences implicated in binding PCNA or ubiquitin. We suggest that interaction of Arabidopsis Poleta with ubiquitylated PCNA2 is required for TLS past UV photoproducts by Poleta.

  10. A New 3-D Model for the Homunculus of eta Carinae

    NASA Astrophysics Data System (ADS)

    Dowling, D.; Currie, D.; Shaya, D.; Hester, J.; Scowen, P.; Wf/Pc Idt

    1996-05-01

    Using a sequence of Hubble Space Telescope images (1990-1995),we have measured the astrometric (plane-of-the-sky) expansion of the dust cloud (the homunculus) surrounding the super-luminous, eruptive star eta Carinae. The measured expansion rate is 0.66%/year, implying an average ejection date of 1842. This date is in excellent agreement with the 1843 peak in the star's ``Great Eruption of 1838-1860.'' Doppler velocities for the expanding gas cloud were obtained from the ground-based spectra of Hillier and Allen [1992, 1993] for each point in the gas cloud. We combine the Doppler velocities with the astrometric velocities to create a new model (the hourglass) for the shape of the expanding gas cloud. Three tests are employed to compare our new model to two recently published models (the double-sphere and bipolar-caps). Only the hourglass model is consistent with all the available data.

  11. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions

    USGS Publications Warehouse

    Spudich, P.; Hellweg, M.; Lee, W.H.K.

    1996-01-01

    The Northridge earthquake caused 1.78 g acceleration in the east-west direction at a site in Tarzana, California, located about 6 km south of the mainshock epicenter. The accelerograph was located atop a hill about 15-m high, 500-m long, and 130-m wide, striking about N78??E. During the aftershock sequence, a temporary array of 21 three-component geophones was deployed in six radial lines centered on the accelerograph, with an average sensor spacing of 35 m. Station COO was located about 2 m from the accelerograph. We inverted aftershock spectra to obtain average relative site response at each station as a function of direction of ground motion. We identified a 3.2-Hz resonance that is a transverse oscillation of the hill (a directional topographic effect). The top/base amplification ratio at 3.2 Hz is about 4.5 for horizontal ground motions oriented approximately perpendicular to the long axis of the hill and about 2 for motions parallel to the hill. This resonance is seen most strongly within 50 m of COO. Other resonant frequencies were also observed. A strong lateral variation in attenuation, probably associated with a fault, caused substantially lower motion at frequencies above 6 Hz at the east end of the hill. There may be some additional scattered waves associated with the fault zone and seen at both the base and top of the hill, causing particle motions (not spectral ratios) at the top of the hill to be rotated about 20?? away from the direction transverse to the hill. The resonant frequency, but not the amplitude, of our observed topographic resonance agrees well with theory, even for such a low hill. Comparisons of our observations with theoretical results indicate that the 3D shape of the hill and its internal structure are important factors affecting its response. The strong transverse resonance of the hill does not account for the large east-west mainshock motions. Assuming linear soil response, mainshock east-west motions at the Tarzana accelerograph

  12. Isolation of omnipotent suppressors in an [eta+] yeast strain.

    PubMed

    All-Robyn, J A; Kelley-Geraghty, D; Griffin, E; Brown, N; Liebman, S W

    1990-03-01

    Omnipotent suppressors decrease translational fidelity and cause misreading of nonsense codons. In the presence of the non-Mendelian factor [eta+], some alleles of previously isolated omnipotent suppressors are lethal. Thus the current search was conducted in an [eta+] strain in an effort to identify new suppressor loci. A new omnipotent suppressor, SUP39, and alleles of sup35, sup45, SUP44 and SUP46 were identified. Efficiencies of the dominant suppressors were dramatically reduced in strains that were cured of non-Mendelian factors by growth on guanidine hydrochloride. Wild-type alleles of SUP44 and SUP46 were cloned and these clones were used to facilitate the genetic analyses. SUP44 was shown to be on chromosome VII linked to cyh2, and SUP46 was clearly identified as distinct from the linked sup45.

  13. Isolation of omnipotent suppressors in an (eta sup + ) yeast strain

    SciTech Connect

    All-Robyn, J.A.; Kelley-Geraghty, D.; Griffin, E.; Brown, N.; Liebman, S.W. )

    1990-03-01

    Omnipotent suppressors decrease translational fidelity and cause misreading of nonsense codons. In the presence of the non-Mendelian factor (eta{sup +}), some alleles of previously isolated omnipotent suppressors are lethal. Thus the current search was conducted in an (eta{sup +}) strain in an effort to identify new suppressor loci. Revertants were isolated using UV irradiation. A new omnipotent suppressor, SUP39, and alleles of sup35, sup45, SUP44 and SUP46 were identified. Efficiencies of the dominant suppressors were dramatically reduced in strains that were cured of non-Mendelian factors by growth on guanidine hydrochloride. Wild-type alleles of SUP44 and SUP46 were cloned and these clones were used to facilitate the genetic analyses. SUP44 was shown to be on chromosome VII linked to cyh2, and SUP46 was clearly identified as distinct from the linked sup45.

  14. ETA-Graphics—an interface to endoreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Wagner, K.; Hoffmann, K. H.

    2015-03-01

    Endoreversible thermodynamics is a theory for the description of irreversible thermodynamic processes. In this theory a non-equilibrium system is divided into a set of reversible subsystems which interact irreversibly with one another by exchanging energy and extensive quantities. These extensities act as carriers for the energy. ETA-Graphics is a graphics-based interface to endoreversible thermodynamics that can be used as an educational aid. It enables students to visually design endoreversible systems by drawing reversible subsystems and connecting them with irreversible (or reversible) interactions. Through special dialogs users specify the properties of the system, e.g., in form of transport laws for energy and extensive quantities. Based on the input ETA-Graphics allows students to analyse the endoreversible systems and their properties. Therefore, performance measures, i.e., efficiency and total power output, are calculated. Additionally, graphical representations of the results are shown.

  15. Crystal structure of eta-crystallin: adaptation of a class 1 aldehyde dehydrogenase for a new role in the eye lens.

    PubMed

    Bateman, O A; Purkiss, A G; van Montfort, R; Slingsby, C; Graham, C; Wistow, G

    2003-04-22

    Eta-crystallin is a retinal dehydrogenase that has acquired a role as a structural protein in the eye lens of elephant shrews, members of an ancient order of mammals. While it retains some activity toward retinal, which is oxidized to retinoic acid, the protein has acquired a number of specific sequence changes that have presumably been selected to enhance the lens role. The crystal structure of eta-crystallin, in common with class 1 and 2 ALDHs, is a dimer of dimers. It has a better-defined NAD binding site than those of related mammalian ALDH1 enzymes with the cofactor bound in the "hydride transfer" position in all four monomers with small differences about the dimer dyads. Although the active site is well conserved, the substrate-binding site is larger in eta-crystallin, and there are some mutations to the substrate access tunnel that might affect binding or release of substrate and product. It is possible that eta-crystallin has lost flexibility to improve its role in the lens. Enhanced binding of cofactor could enable it to act as a UV/blue light filter in the lens, improving visual acuity. The structure not only gives a view of a "natural mutant" of ALDH1 illustrating the adaptive conflict that can arise in multifunctional proteins, but also provides a well-ordered NAD binding site structure for this class of enzymes with important roles in development and health.

  16. Aftershock seismicity and tectonic setting of the 2015 September 16 Mw 8.3 Illapel earthquake, Central Chile

    NASA Astrophysics Data System (ADS)

    Lange, Dietrich; Geersen, Jacob; Barrientos, Sergio; Moreno, Marcos; Grevemeyer, Ingo; Contreras-Reyes, Eduardo; Kopp, Heidrun

    2016-08-01

    Powerful subduction zone earthquakes rupture thousands of square kilometres along continental margins but at certain locations earthquake rupture terminates. To date, detailed knowledge of the parameters that govern seismic rupture and aftershocks is still incomplete. On 2015 September 16, the Mw 8.3 Illapel earthquake ruptured a 200 km long stretch of the Central Chilean subduction zone, triggering a tsunami and causing significant damage. Here, we analyse the temporal and spatial pattern of the coseismic rupture and aftershocks in relation to the tectonic setting in the earthquake area. Aftershocks cluster around the area of maximum coseismic slip, in particular in lateral and downdip direction. During the first 24 hr after the main shock, aftershocks migrated in both lateral directions with velocities of approximately 2.5 and 5 km hr-1. At the southern rupture boundary, aftershocks cluster around individual subducted seamounts that are related to the downthrusting Juan Fernández Ridge. In the northern part of the rupture area, aftershocks separate into an upper cluster (above 25 km depth) and a lower cluster (below 35 km depth). This dual seismic-aseismic transition in downdip direction is also observed in the interseismic period suggesting that it may represent a persistent feature for the Central Chilean subduction zone.

  17. The Mechanisms and Spatiotemporal Behavior of the 2011 Mw7.1 Van, Eastern Turkey Earthquake Aftershocks

    NASA Astrophysics Data System (ADS)

    Ezgi Guvercin Isik, Sezim; Ozgun Konca, A.; Karabulut, Hayrullah

    2016-04-01

    We studied the mechanisms and spatiotemporal distribution of the aftershocks of the Mw7.1 Van Earthquake, in Eastern Turkey. The 2011 Van Earthquake occurred on a E-W trending blind thrust fault in Eastern Turkey which is under N-S compression due to convergence of the Arabian plate toward the Eurasia. In this study, we relocated and studied the mechanisms of the M3.5-5.5 aftershocks from regional Pnl and surface waves using the "Cut and Paste" algorithm of Zhu and Helmberger (1996). Our results reveal that the aftershocks in the first day following the mainshock are in the vicinity of the co-seismic slip and have mostly thrust mechanism consistent with the mainshock. In the following day, a second cluster of activity at the northeast termination of the fault ( North of Lake Erçek) has started. These aftershocks have approximately N-S lineation and left lateral source mechanisms. The aftershocks surrounding the mainshock rupture are deeper (>20 km) than the aftershocks triggered on the north (<15km). We also observe strike slip earthquakes on the south of the mainshock. Both of delayed activities (north of the mainshock and south of the mainshock) are consistent with the Coulomb stress increase due to slip on the mainshock. We propose that the Van Fault is truncated by two strike-slip faults at each end, which has determined the along-strike rupture extent of the 2011 mainshock.

  18. Aftershocks of the 2010 Mw 7.2 El Mayor-Cucapah earthquake revealcomplex faulting in the Yuha Desert, California

    USGS Publications Warehouse

    Kroll, K.; Cochran, Elizabeth S.; Richards-Dinger, K.; Sumy, Danielle

    2013-01-01

    We detect and precisely locate over 9500 aftershocks that occurred in the Yuha Desert region during a 2 month period following the 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake. Events are relocated using a series of absolute and relative relocation procedures that include Hypoinverse, Velest, and hypoDD. Location errors are reduced to ~40 m horizontally and ~120 m vertically.Aftershock locations reveal a complex pattern of faulting with en echelon fault segments trending toward the northwest, approximately parallel to the North American-Pacific plate boundary and en echelon, conjugate features trending to the northeast. The relocated seismicity is highly correlated with published surface mapping of faults that experienced triggered surface slip in response to the EMC main shock. Aftershocks occurred between 2 km and 11 km depths, consistent with previous studies of seismogenic thickness in the region. Three-dimensional analysis reveals individual and intersecting fault planes that are limited in their along-strike length. These fault planes remain distinct structures at depth, indicative of conjugate faulting, and do not appear to coalesce onto a throughgoing fault segment. We observe a complex spatiotemporal migration of aftershocks, with seismicity that jumps between individual fault segments that are active for only a few days to weeks. Aftershock rates are roughly consistent with the expected earthquake production rates of Dieterich (1994). The conjugate pattern of faulting and nonuniform aftershock migration patterns suggest that strain in the Yuha Desert is being accommodated in a complex manner.

  19. Observation of B0-->omega K0, B+-->eta pi+, and B+-->eta K+ and study of related decays.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Watson, N K; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Teodorescu, L; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Layter, J; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Erwin, R J; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Lee, C L; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Khan, A; Lavin, D; Muheim, F; Playfer, S; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Cristinziani, M; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-02-13

    We present measurements of branching fractions and charge asymmetries for seven B-meson decays with an eta, eta', or omega meson in the final state. The data sample corresponds to 89x10(6) BB pairs produced from e(+)e(-) annihilation at the Upsilon(4S) resonance. We measure the following branching fractions in units of 10(-6): B(B+-->eta pi(+))=5.3+/-1.0+/-0.3, B(B+-->eta K+)=3.4+/-0.8+/-0.2, B(B0-->eta K0)=2.9+/-1.0+/-0.2 (<5.2, 90% C.L.), B(B+-->eta(')pi(+))=2.7+/-1.2+/-0.3 (<4.5, 90% C.L.), B(B+-->omega pi(+))=5.5+/-0.9+/-0.5, B(B+-->omega K+)=4.8+/-0.8+/-0.4, and B(B0-->omega K0)=5.9(+1.6)(-1.3)+/-0.5. The charge asymmetries are A(ch)(B+-->eta pi(+))=-0.44+/-0.18+/-0.01, A(ch)(B+-->eta K+)=-0.52+/-0.24+/-0.01, A(ch)(B+-->omega pi(+))=0.03+/-0.16+/-0.01, and A(ch)(B+-->omega K+)=-0.09+/-0.17+/-0.01.

  20. The eta Carinae Treasury Project and the HST/STIS

    NASA Technical Reports Server (NTRS)

    Martin, John C.; Davidson, Kris

    2006-01-01

    The HST Eta Carinae Treasury Project made extensive use of the HST/STIS from 1998 to the time of its failure in 2004. As one of the most prolific users of that instrument, the Treasury Project used the cross-dispersed spatial resolution of the STIS as few projects did. We present several enhancements to the existing STIS data reduction methods that are applicable to non-Treasury Project data in the STIS archive.

  1. Photoproduction of η and η' mesons with EtaMAID

    NASA Astrophysics Data System (ADS)

    Tiator, Lothar; Kashevarov, Viktor; Ostrick, Michael

    2016-11-01

    The unitary isobar model EtaMAID has been updated with an extended list of nucleon resonances, fitted to recent and new data for differential cross sections and polarization observables. The nonresonant background is described by Regge trajectories of ω,ρ and a1, b1 mesons and in addition Regge cuts, where vector and axial vector mesons are exchanged together with Pomeron and f2 mesons.

  2. DETECTION OF THE COMPRESSED PRIMARY STELLAR WIND IN {eta} CARINAE

    SciTech Connect

    Teodoro, M.; Madura, T. I.; Gull, T. R.; Corcoran, M. F.; Hamaguchi, K.

    2013-08-10

    A series of three Hubble Space Telescope/Space Telescope Imaging Spectrograph spectroscopic mappings, spaced approximately one year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving outward from {eta} Carinae. We identify these arcs with the shell-like structures, seen in the three-dimensional hydrodynamical simulations, formed by compression of the primary wind by the secondary wind during periastron passages.

  3. Religion, evolution, and mental health: attachment theory and ETAS theory.

    PubMed

    Flannelly, Kevin J; Galek, Kathleen

    2010-09-01

    This article reviews the historical origins of Attachment Theory and Evolutionary Threat Assessment Systems Theory (ETAS Theory), their evolutionary basis and their application in research on religion and mental health. Attachment Theory has been most commonly applied to religion and mental health in research on God as an attachment figure, which has shown that secure attachment to God is positively associated with psychological well-being. Its broader application to religion and mental health is comprehensively discussed by Kirkpatrick (2005). ETAS Theory explains why certain religious beliefs--including beliefs about God and life-after-death--should have an adverse association, an advantageous association, or no association at all with mental health. Moreover, it makes specific predictions to this effect, which have been confirmed, in part. The authors advocate the application of ETAS Theory in research on religion and mental health because it explains how religious and other beliefs related to the dangerousness of the world can directly affect psychiatric symptoms through their affects on specific brain structures.

  4. High Velocity Absorption during Eta Car B's Periastron Passage

    NASA Technical Reports Server (NTRS)

    Nielsen, Krister E.; Groh, J. H.; Hillier, J.; Gull, Theodore R.; Owocki, S. P.; Okazaki, A. T.; Damineli, A.; Teodoro, M.; Weigelt, G.; Hartman, H.

    2010-01-01

    Eta Car is one of the most luminous massive stars in the Galaxy, with repeated eruptions with a 5.5 year periodicity. These events are caused by the periastron passage of a massive companion in an eccentric orbit. We report the VLT/CRIRES detection of a strong high-velocity, (<1900 km/s) , broad absorption wing in He I at 10833 A during the 2009.0 periastron passage. Previous observations during the 2003.5 event have shown evidence of such high-velocity absorption in the He I 10833 transition, allowing us to conclude that the high-velocity gas is crossing the line-of-sight toward Eta Car over a time period of approximately 2 months. Our analysis of HST/STlS archival data with observations of high velocity absorption in the ultraviolet Si IV and C IV resonance lines, confirm the presence of a high-velocity material during the spectroscopic low state. The observations provide direct detection of high-velocity material flowing from the wind-wind collision zone around the binary system, and we discuss the implications of the presence of high-velocity gas in Eta Car during periastron

  5. Iron Mining Eta Carinae's Archived Spectra and Benchmarking Atomic Data

    NASA Astrophysics Data System (ADS)

    Urech, Alexander; Bautista, M.; Gull, T. R.; Hartman, H.; Fivet, V.

    2013-01-01

    Fe II has proven to be one of the most conspicuous species in UV, visible, and IR spectra. The complexity of this atomic system still challenges current theoretical methods. Comparisons of available atomic data with different astronomical spectra is the focus of the current research. Spectra from the Orion and the Eta Carinae nebulae are being used in these studies. Orions spectrum contains over 70 emission line for [Fe II] which have been used in the systematical benchmarking of Einstein transition probabilities (A-values) for forbidden transitions of the interest species against calculations from literature and our own. The spectra from many other sources must be compared to end with accurate data, which is why examination of Eta Carinae is also taking place. The Weigelt blobs are close in ejectas thought to originate from the central star of Eta Carinae and are of particular interest in this study. IDL software is being used for measuring the forbidden [Fe II] transitions from these spectra collected with the Hubble Space Telescope/ Space Telescope Image Spectrograph.

  6. Seismogenesis and earthquake triggering during the 2010-2011 Rigan (Iran) earthquake sequence

    NASA Astrophysics Data System (ADS)

    Mohammadi, Hiwa; Bayliss, Thomas J.; Nekouei Ghachkanlu, Esmaeil

    2017-02-01

    This study assesses the aftershock activity of two earthquakes that occurred on December 20, 2010 with magnitude of MN 6.5 (Global CMT Mw 6.5) and January 27, 2011 with magnitude of MN 6.0 (Global CMT Mw 6.2) in the Rigan region of southeastern Iran. This study has been done by assessing the statistical properties of the aftershock sequences associated with each of these earthquakes, namely b-value of Gutenberg-Richter relation, partitioning of radiated seismic energy, p-value of modified Omori law and the DC -value associated with the fractal dimension. The b-values of b = 0.89 ± 0.08 and b = 0.88 ± 0.08 were calculated for first main shock and second main shock sequence respectively. This suggests that this region is characterized by large differential stress; the genesis of large aftershock activity in a short time interval gives power this. Further, 2.2% of the whole energy is related with the aftershocks activity for first main shock sequence while 97.8% is associated with main shock; for second sequence, 20% of the total energy is associated with the aftershocks activity while 80% is associated with main shock. The p-values of 1.1 ± 0.12 and 1.1 ± 0.1 were calculated for first and second main shocks sequence respectively, which imply fast decay rate of aftershocks and high surface heat flux. A value of the spatial fractal dimension (Dc) equal to 2.34 ± 0.03 and 2.54 ± 0.02 for first and second main shocks sequence respectively, which reveals random spatial distribution and source in a two-dimensional plane that is being filled-up by fractures. Moreover, we then use the models to calculate the Coulomb stress change to appraise coming seismic hazard by inspecting the static Coulomb stress field due to these two main shocks for the recognition of the conceivable regions of aftershocks activity. The first main shock increased stress by more than 0.866 bars at the hypocenter of the second main shock, thus promoting the failure. In addition, the cumulative

  7. Urban seismology - Northridge aftershocks recorded by multi-scale arrays of portable digital seismographs

    USGS Publications Warehouse

    Meremonte, M.; Frankel, A.; Cranswick, E.; Carver, D.; Worley, D.

    1996-01-01

    We deployed portable digital seismographs in the San Fernando Valley (SFV), the Los Angeles basin (LAB), and surrounding hills to record aftershocks of the 17 January 1994 Northridge California earthquake. The purpose of the deployment was to investigate factors relevant to seismic zonation in urban areas, such as site amplification, sedimentary basin effects, and the variability of ground motion over short baselines. We placed seismographs at 47 sites (not all concurrently) and recorded about 290 earthquakes with magnitudes up to 5.1 at five stations or more. We deployed widely spaced stations for profiles across the San Fernando Valley, as well as five dense arrays (apertures of 200 to 500 m) in areas of high damage, such as the collapsed Interstate 10 overpass, Sherman Oaks, and the collapsed parking garage at CalState Northridge. Aftershock data analysis indicates a correlation of site amplification with mainshock damage. We found several cases where the site amplification depended on the azimuth of the aftershock, possibly indicating focusing from basin structures. For the parking garage array, we found large ground-motion variabilities (a factor of 2) over 200-m distances for sites on the same mapped soil unit. Array analysis of the aftershock seismograms demonstrates that sizable arrivals after the direct 5 waves consist of surface waves traveling from the same azimuth as that of the epicenter. These surface waves increase the duration of motions and can have frequencies as high as about 4 Hz. For the events studied here, we do not observe large arrivals reflected from the southern edge of the San Fernando Valley.

  8. Aftershocks of the western Argentina (Caucete) earthquake of 23 November 1977: some tectonic implications

    USGS Publications Warehouse

    Langer, C.J.; Bollinger, G.A.

    1988-01-01

    An aftershock survey, using a network of eight portable and two permanent seismographs, was conducted for the western Argentina (Caucete) earthquake (MS 7.3) of November 23, 1977. Monitoring began December 6, almost 2 weeks after the main shock and continued for 11 days. The data set includes 185 aftershock hypocenters that range in the depth from near surface to more than 30 km. The spatial distribution of those events occupied a volume of about 100 km long ??50 km wide ??30 km thick. The volumnar nature of the aftershock distribution is interpreted to be a result of a bimodal distribution of foci that define east- and west-dipping planar zones. Efforts to select which of those zones was associated with the causal faulting include special attention to the determination of the mainshock focal depth and dislocation theory modeling of the coseismic surface deformation in the epicentral region. Our focal depth (25-35 km) and modeling studies lead us to prefer an east-dipping plane as causal. A previous interpretation by other investigators used a shallower focal depth (17 km) and similar modeling calculations in choosing a west-dipping plane. Our selection of the east-dipping plane is physically more appealing because it places fault initiation at the base of the crustal seismogenic layer (rather than in the middle of that layer) which requires fault propagation to be updip (rather than downdip). ?? 1988.

  9. The 2009 L'Aquila (central Italy) MW6.3 earthquake: Main shock and aftershocks

    NASA Astrophysics Data System (ADS)

    Chiarabba, C.; Amato, A.; Anselmi, M.; Baccheschi, P.; Bianchi, I.; Cattaneo, M.; Cecere, G.; Chiaraluce, L.; Ciaccio, M. G.; De Gori, P.; De Luca, G.; Di Bona, M.; Di Stefano, R.; Faenza, L.; Govoni, A.; Improta, L.; Lucente, F. P.; Marchetti, A.; Margheriti, L.; Mele, F.; Michelini, A.; Monachesi, G.; Moretti, M.; Pastori, M.; Piana Agostinetti, N.; Piccinini, D.; Roselli, P.; Seccia, D.; Valoroso, L.

    2009-09-01

    A MW 6.3 earthquake struck on April 6, 2009 the Abruzzi region (central Italy) producing vast damage in the L'Aquila town and surroundings. In this paper we present the location and geometry of the fault system as obtained by the analysis of main shock and aftershocks recorded by permanent and temporary networks. The distribution of aftershocks, 712 selected events with ML ≥ 2.3 and 20 with ML ≥ 4.0, defines a complex, 40 km long, NW trending extensional structure. The main shock fault segment extends for 15-18 km and dips at 45° to the SW, between 10 and 2 km depth. The extent of aftershocks coincides with the surface trace of the Paganica fault, a poorly known normal fault that, after the event, has been quoted to accommodate the extension of the area. We observe a migration of seismicity to the north on an echelon fault that can rupture in future large earthquakes.

  10. The 2008 Mw 6.0 Wells, Nevada Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Smith, K.; Depolo, D.; Torrisi, J.; Edwards, N.; Biasi, G.; Slater, D.

    2008-12-01

    The Mw 6.0 February 21, 2008 (06:16 AM PDT) Wells, Nevada normal faulting earthquake occurred in Town Creek Flat about 8 km northeast of the small community of Wells. A preliminary set of about 1000 aftershock relocations clearly defines a 55-60 degree southeast dipping fault plane. The structure projects to the surface along the southern end of the Snake Range, although no surface offsets have been identified. The earthquake occurred east of the Ruby Mountains and Snake Range west dipping range front faults, possibly on a northern extension of an east dipping normal fault system on the eastern side of the East Humbolt Range. The depth of the mainshock is estimated to be 10.5 km with the aftershock sequence extending to about 15 km. Typical of moderate sized Basin and Range earthquakes, the early aftershock period included several earthquakes of M > 4 and these were felt strongly by the residents of Wells. From the preliminary relocations, the source radius of the mainshock is estimated to be about 4 km, resulting in an estimated displacement of 55 to 83 cm and static stress drop of 72 to 86 bars, depending on the seismic moment estimate used. Aftershock relocations suggest a radial rupture mechanism. Fortunately, the EarthScope USArray network was operating in Nevada at the time of the event and provided unique controls on the mainshock and early aftershock locations. The earthquake occurred in an area of relatively low seismic hazard and the only permanent seismograph in the region was the U.S. National Network broadband station east of the Ruby Mountains south of Wells. The University of Utah and University of Nevada deployed locally recorded strong motion instruments in the Wells area. Also, an 8 station IP telemetered strong motion network, jointly deployed by the U.S. Geological Survey and University of Nevada Reno, provided real-time data for quick high-quality aftershock relocations and ground motion estimates. In addition, the University of Utah

  11. 2{eta} or not 2{eta}? Insights into the Cu CVD process using a Cu(I) precursor

    SciTech Connect

    Kumar, R.; Maverick, A.W.; Fronczek, F.R.; Kim, A.J.; Butler, L.G.

    1993-12-31

    One of the first successful Cu(I) CVD precursors is (hfac)Cu{sup I}(COD), and this species continues to served as a model system. In the CVD process, a significant step is dissociation of the COD ligand. The energetics of this process have been estimated previously. However, it now appears that, in the solid state, (hfac)Cu{sup I}(COD) undergoes an exchange process that allows additional insight into the potential energy surface governing the Cu-COD interaction. The solid-state structure of (hfac)Cu{sup I}(COD) has been difficult to establish, but a combination of variable temperature X-ray and solid-state {sup 13}C NMR studies leads to the following picture. Cu{sup I} is three-coordinate, bound to the hfac ligand and bound preferentially to one olefin of the COD ligand. There is a small energy barrier associated with motion of the Cu into position for {eta}{sup 2}-binding to the other olefin; the COD and hfac ligands remain approximately stationary. Thus, there are two sites for Cu, now labeled {eta}{sup 2} and {eta}{sup 2}. This new interpretation of the solid-state structure differs from that of our 300 K data set and a previous report. In addition, the exchange process is intimately connected with the Cu-COD dissociation step in the CVD process.

  12. Observation of eta' decays to pi+pi-pi0 and pi+pi-e+e-.

    PubMed

    Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Robichaud, A N; Tatishvili, G; Briere, R A; Vogel, H; Onyisi, P U E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Yelton, J; Rubin, P; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tan, B J Y; Tomaradze, A; Libby, J; Martin, L; Powell, A; Wilkinson, G; Mendez, H; Ge, J Y; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Ecklund, K M

    2009-02-13

    Using psi(2S)-->pi;{+}pi;{-}J/psi, J/psi-->gammaeta;{'} events acquired with the CLEO-c detector at the CESR e;{+}e;{-} collider, we make the first observations of the decays eta;{'}-->pi;{+}pi;{-}pi;{0} and eta;{'}-->pi;{+}pi;{-}e;{+}e;{-}, measuring absolute branching fractions (37_{-9};{+11}+/-4)x10;{-4} and (25_{-9};{+12}+/-5)x10;{-4}, respectively. For eta;{'}-->pi;{+}pi;{-}pi;{0}, this result probes the mechanism of isospin violation and the roles of pi;{0}/eta/eta;{'}-mixing and final state rescattering in strong decays. We also set upper limits on branching fractions for eta;{'} decays to pi;{+}pi;{-}micro;{+}micro;{-}, 2(pi;{+}pi;{-}), pi;{+}pi;{-}2pi;{0}, 2(pi;{+}pi;{-})pi;{0}, 3(pi;{+}pi;{-}), and invisible final states.

  13. Measurements of {psi}(2S) decays into {gamma}KK{pi} and {gamma}{eta}{pi}{sup +}{pi}{sup -}

    SciTech Connect

    Ablikim, M.; Bai, J. Z.; Bian, J. G.; Cai, X.; Chen, H. S.; Chen, H. X.; Chen, J. C.; Chen, Jin; Chen, Y. B.; Chu, Y. P.; Cui, X. Z.; Deng, Z. Y.; Du, S. X.; Fang, J.; Fu, C. D.; Gao, C. S.; Gu, S. D.; Guo, Y. N.; Guo, Y. Q.; He, K. L.

    2006-10-01

    Radiative decays of the {psi}(2S) into {gamma}KK{pi} and {gamma}{eta}{pi}{sup +}{pi}{sup -} final states are studied using 14x10{sup 6} {psi}(2S) events collected with the BESII detector. Branching fractions or upper limits on the branching fractions of {psi}(2S) and {chi}{sub cJ} decays are reported. No significant signal for {eta}(1405)/{eta}(1475) is observed in the KK{pi} or {eta}{pi}{sup +}{pi}{sup -} mass spectra, and upper limits on the branching fractions of {psi}(2S){yields}{gamma}{eta}(1405)/{eta}(1475), {eta}(1405)/{eta}(1475){yields}KK{pi}, and {eta}{pi}{sup +}{pi}{sup -} are determined.

  14. High-Resolution Uitra Low Power, Intergrated Aftershock and Microzonation System

    NASA Astrophysics Data System (ADS)

    Passmore, P.; Zimakov, L. G.

    2012-12-01

    Rapid Aftershock Mobilization plays an essential role in the understanding of both focal mechanism and rupture propagation caused by strong earthquakes. A quick assessment of the data provides a unique opportunity to study the dynamics of the entire earthquake process in-situ. Aftershock study also provides practical information for local authorities regarding the post earthquake activity, which is very important in order to conduct the necessary actions for public safety in the area affected by the strong earthquake. Refraction Technology, Inc. has developed a self-contained, fully integrated Aftershock System, model 160-03, providing the customer simple and quick deployment during aftershock emergency mobilization and microzonation studies. The 160-03 has no external cables or peripheral equipment for command/control and operation in the field. The 160-03 contains three major components integrated in one case: a) 24-bit resolution state-of-the art low power ADC with CPU and Lid interconnect boards; b) power source; and c) three component 2 Hz sensors (two horizontals and one vertical), and built-in ±4g accelerometer. Optionally, the 1 Hz sensors can be built-in the 160-03 system at the customer's request. The self-contained rechargeable battery pack provides power autonomy up to 7 days during data acquisition at 200 sps on continuous three weak motion and triggered three strong motion recording channels. For longer power autonomy, the 160-03 Aftershock System battery pack can be charged from an external source (solar power system). The data in the field is recorded to a built-in swappable USB flash drive. The 160-03 configuration is fixed based on a configuration file stored on the system, so no external command/control interface is required for parameter setup in the field. For visual control of the system performance in the field, the 160-03 has a built-in LED display which indicates the systems recording status as well as a hot swappable USB drive and battery

  15. Aftershock seismicity of the 27 February 2010 Mw 8.8 Maule earthquake rupture zone

    NASA Astrophysics Data System (ADS)

    Lange, Dietrich; Tilmann, Frederik; Barrientos, Sergio E.; Contreras-Reyes, Eduardo; Methe, Pascal; Moreno, Marcos; Heit, Ben; Agurto, Hans; Bernard, Pascal; Vilotte, Jean-Pierre; Beck, Susan

    2012-02-01

    On 27 February 2010 the Mw 8.8 Maule earthquake in Central Chile ruptured a seismic gap where significant strain had accumulated since 1835. Shortly after the mainshock a dense network of temporary seismic stations was installed along the whole rupture zone in order to capture the aftershock activity. Here, we present the aftershock distribution and first motion polarity focal mechanisms based on automatic detection algorithms and picking engines. By processing the seismic data between 15 March and 30 September 2010 from stations from IRIS, IPGP, GFZ and University of Liverpool we determined 20,205 hypocentres with magnitudes Mw between 1 and 5.5. Seismic activity occurs in six groups: 1.) Normal faulting outer rise events 2.) A shallow group of plate interface seismicity apparent at 25-35 km depth and 50-120 km distance to the trench with some variations between profiles. Along strike, the aftershocks occur largely within the zone of coseismic slip but extend ~ 50 km further north, and with predominantly shallowly dipping thrust mechanisms. Along dip, the events are either within the zone of coseismic slip, or downdip from it, depending on the coseismic slip model used. 3.) A third band of seismicity is observed further downdip at 40-50 km depth and further inland at 150-160 km trench perpendicular distance, with mostly shallow dipping (~ 28°) thrust focal mechanisms indicating rupture of the plate interface significantly downdip of the coseismic rupture, and presumably above the intersection of the continental Moho with the plate interface. 4.) A deep group of intermediate depth events between 80 and 120 km depth is present north of 36°S. Within the Maule segment, a large portion of events during the inter-seismic phase originated from this depth range. 5.) The magmatic arc exhibits a small amount of crustal seismicity but does not appear to show significantly enhanced activity after the Mw 8.8 Maule 2010 earthquake. 6.) Pronounced crustal aftershock activity

  16. Focal Depth of the WenChuan Earthquake Aftershocks from modeling of Seismic Depth Phases

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zeng, X.; Chong, J.; Ni, S.; Chen, Y.

    2008-12-01

    After the 05/12/2008 great WenChuan earthquake in Sichuan Province of China, tens of thousands earthquakes occurred with hundreds of them stronger than M4. Those aftershocks provide valuable information about seismotectonics and rupture processes for the mainshock, particularly accurate spatial distribution of aftershocks is very informational for determining rupture fault planes. However focal depth can not be well resolved just with first arrivals recorded by relatively sparse network in Sichuan Province, therefore 3D seismicity distribution is difficult to obtain though horizontal location can be located with accuracy of 5km. Instead local/regional depth phases such as sPmP, sPn, sPL and teleseismic pP,sP are very sensitive to depth, and be readily modeled to determine depth with accuracy of 2km. With reference 1D velocity structure resolved from receiver functions and seismic refraction studies, local/regional depth phases such as sPmP, sPn and sPL are identified by comparing observed waveform with synthetic seismograms by generalized ray theory and reflectivity methods. For teleseismic depth phases well observed for M5.5 and stronger events, we developed an algorithm in inverting both depth and focal mechanism from P and SH waveforms. Also we employed the Cut and Paste (CAP) method developed by Zhao and Helmberger in modeling mechanism and depth with local waveforms, which constrains depth by fitting Pnl waveforms and the relative weight between surface wave and Pnl. After modeling all the depth phases for hundreds of events , we find that most of the M4 earthquakes occur between 2-18km depth, with aftershocks depth ranging 4-12km in the southern half of Longmenshan fault while aftershocks in the northern half featuring large depth range up to 18km. Therefore seismogenic zone in the northern segment is deeper as compared to the southern segment. All the aftershocks occur in upper crust, given that the Moho is deeper than 40km, or even 60km west of the

  17. Aftershock Seismicity of the 27 February 2010 Mw 8.8 Maule Earthquake Rupture Zone

    NASA Astrophysics Data System (ADS)

    Lange, D.; Tilmann, F. J.; Barrientos, S. E.; Bataille, K.; Beck, S. L.; Bernard, P.; Campos, J. A.; Comte, D.; Haberland, C. A.; Heit, B.; Methe, P.; Peyrat, S.; Rietbrock, A.; Roecker, S.; Schurr, B.; Vilotte, J.

    2010-12-01

    On 27 February 2010 the Mw 8.8 Maule earthquake in Central Chile ruptured a well known seismic gap, which last broke in 1835. Shortly after the mainshock Chilean agencies (UC Santiago, UC Concepción) and the international seismological community (USA (IRIS), France (IPGP), UK (University of Liverpool), Germany (GFZ)) installed a total of 142 portable seismic stations along the whole rupture zone in order to capture the aftershock activity. Here, we present the aftershock distribution based on automatic detection algorithms and picking engines (MPX; STA/LTA) which will be calibrated with a subset of manually picked events. Initial processing of 70 days of continuous data (20 March until 29 May 2010) from IRIS and GFZ stations resulted in the detection of well over 30,000 events. Of these, we consider a higher quality subset of 12,824 hypocentres based on more than 12 automatically picked P arrivals. Because picking errors can be large for the smaller arrivals, the depths of located events are not always reliable, particularly far from the coast. Nevertheless, a few first order features can be identified: 1.) A pronounced cluster of seismicity is apparent at 25-35 km depth and 50-120 km perpendicular distance from the trench (with some NS variation). 2.) A secondary band of seismicity can be identified at 40-50 km depth and ~150-160 km perpendicular trench distance and between 34° and 37°S. Although the secondary band lies along the continuation of the primary one, it is clearly separated from it by a gap with sparse seismicity. It is not yet possible to state whether these events occurred on the plate interface or in the downgoing plate. 3.) Intense crustal seismicity is found in the region of Pichilemu. This region hosted the strongest aftershock (Mw=6.9), a normal faulting event with NW strike. The aftershocks extend from the plate interface to the surface and are aligned on a NNW-SSE oriented band in map view. 4.) An isolated shallow cluster of crustal

  18. Ground Motions from the 29 September 2009 Samoa M8.0 Earthquake and Aftershocks

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Petersen, M. D.; Meremonte, M. E.; Fox, J.; Leeds, A.

    2009-12-01

    The broad-scale tectonics of the Samoan region are dominated by the convergence of the Pacific and Australia plates, with the Pacific plate subducting westward beneath the Australia plate at the Tonga trench. At the latitude of the M8 earthquake of September 29, 2009, the Pacific plate moves westward with respect to the interior of the Australia plate at a velocity of about 86 mm/year. The earthquake occurred near the northern end of a 3,000 km long segment of the Pacific/Australia plate boundary that trends north-northeast. Farther north of the earthquake’s source region, the plate boundary trends northwest and then west, and transitions from a subduction regime to translational. The 29 September 2009 M8 Samoan earthquake (15.509°S, 172.034°W) was caused by normal (tensional) faulting of the Pacific Plate near the outer rise, east of the subduction zone between the Pacific and Australian plates. This is where the subducting Pacific plate begins to bend, as it descends beneath the Australian plate. The earthquake was strongly felt throughout the regions islands and resulting sea-floor displacement generated a tsunami that caused loss of life and great destruction in Samoa and American Samoa. Outer rise-type earthquakes are relatively rare and ground motions are not well understood relative to other subduction zones throughout the Earth. To address this issue, the USGS deployed five portable strong motion seismometers with the goal of recording aftershocks in and around Pago Pago, American Samoa in order to calculate local site amplifications and regional subduction zone attenuation relationships. The sensors will be deployed for three to four months. To date, only a few days of aftershock data are available for analysis. The aftershock stations compliment an existing permanent GSN station, IU.AFI, located in the independent nation of Samoa, 180km northeast of the earthquake epicenter. IU.AFI is taken as our reference rock site as the sensor sits in a sub

  19. Constraints on Dynamic Triggering from very Short term Microearthquake Aftershocks at Parkfield

    NASA Astrophysics Data System (ADS)

    Ampuero, J.; Rubin, A.

    2004-12-01

    The study of microearthquakes helps bridge the gap between laboratory experiments and data from large earthquakes, the two disparate scales that have contributed so far to our understanding of earthquake physics. Although they are frequent, microearthquakes are difficult to analyse. Applying high precision relocation techniques, Rubin and Gillard (2000) observed a pronounced asymmetry in the spatial distribution of the earliest and nearest aftershocks of microearthquakes along the San Andreas fault (they occur more often to the NW of the mainshock). It was suggested that this could be related to the velocity contrast across the fault. Preferred directivity of dynamic rupture pulses running along a bimaterial interface (to the SE in the case of the SAF) is expected on theoretical grounds. Our numerical simulations of crack-like rupture on such interfaces show a pronounced asymmetry of the stress histories beyond the rupture ends, and suggest two possible mechanisms for the observed asymmetry: First, that it results from an asymmmetry in the static stress field following arrest of the mainshock (closer to failure to the NW), or second, that it is due to a short-duration tensile pulse that propagates to the SE, which could reduce the number of aftershocks to the SE by dynamic triggering of any nucleation site close enough to failure to have otherwise produced an aftershock. To distinguish betwen these mechanisms we need observations of dynamic triggering in microseismicity. For small events triggered at a distance of some mainshock radii, triggering time scales are so short that seismograms of both events overlap. To detect the occurrence of compound events and very short term aftershocks in the HRSN Parkfield archived waveforms we have developed an automated search algorithm based on empirical Green's function (EGF) deconvolution. Optimal EGFs are first selected by the coherency of the cross-component convolution with respect to the target event. Then Landweber

  20. The adaptive CCCG({eta}) method for efficient solution of time dependent partial differential equations

    SciTech Connect

    Campos, F.F.; Birkett, N.R.C.

    1996-12-31

    The Controlled Cholesky factorisation has been shown to be a robust preconditioner for the Conjugate Gradient method. In this scheme the amount of fill-in is defined in terms of a parameter {eta}, the number of extra elements allowed per column. It is demonstrated how an optimum value of {eta} can be automatically determined when solving time dependent p.d.e.`s using an implicit time step method. A comparison between CCCG({eta}) and the standard ICCG solving parabolic problems on general grids shows CCCG({eta}) to be an efficient general purpose solver.

  1. [Ti II] and [Ni II] Emission from the Strontium Filament of eta Carinae

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Hartman, H.; Gull, T. R.; Smith, N.; Lodders, K.

    2005-01-01

    We study the nature of the [Ti II] and [Ni II] emission from the so-called strontium filament found in the ejecta of eta Carinae. To this purpose we employ multilevel models of the Ti II and Ni II systems which are used to investigate the physical condition of the filament and the excitation mechanisms of the observed lines. For the Ti II ion, for which no atomic data was previously available, we carry out ab initio calculations of radiative transition rates and electron impact excitation rate coefficients. It is found that the observed spectrum is consistent with the lines being excited in a mostly neutral region with electron density of the order of 10(exp 7) cm(exp -3) and a temperature around 6000 K. In analyzing three observations with different slit orientations recorded between March 2000 and November 2001 we find line ratios that change among various observations, in a way consistent with changes of up to an order of magnitude in the strength of the continuum radiation field. These changes result from different samplings of the extended filament, due to the different slit orientations used for each observation, and yield clues on the spatial extent and optical depth of the filament. The observed emission indicates a large Ti/Ni abundance ratio relative to solar abundances. It is suggested that the observed high Ti/Ni ratio in gas is caused dust-gas fractionation processes and does not reflect the absolute Ti/Ni ratio in the ejecta of eta Carinae. The condensation chemistry shows that if dust condensed in a sequence of layers according to decreasing temperature and increasing distance from the central star, the most refractory dust could be selectively affected by photoevaporation. Thus, Ti would be released back to the gas and the Ti/Ni ratio in the gas would increase to the observed super-solar ratio.

  2. Measurements of the mass and width of the eta(c) meson and of an eta(c)(2S) candidate.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kral, J F; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Barlow, N R; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Shen, B C; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Schwanke, U; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; Van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Tinslay, J; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Biasini, M; Calcaterra, A; De Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Pioppi, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gaillard, J R; Morton, G W; Nash, J A; Sanders, P; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Shorthouse, H W; Strother, P; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, R J; Forti, A C; Hart, P A; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Milek, M; Patel, P M; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Hast, C; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; LoSecco, J M; Gabriel, T A; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Wong, Q K; Brau, J; Frey, R; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Tanaka, H A; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Coupal, D P; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Grauges-Pous, E; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Robertson, S H; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-04-09

    The mass m(eta(c)) and total width Gamma(eta(c))(tot) of the eta(c) meson have been measured in two-photon interactions at the SLAC e(+)e(-) asymmetric B Factory with the BABAR detector. With a sample of approximately 2500 reconstructed eta(c)-->K(0)(S)K+/-pi(-/+) decays in 88 fb(-1) of data, the results are m(eta(c))=2982.5+/-1.1(stat)+/-0.9(syst) MeV/c(2) and Gamma(eta(c))(tot)=34.3+/-2.3(stat)+/-0.9(syst) MeV/c(2). Using the same decay mode, a second resonance with 112+/-24 events is observed with a mass of 3630.8+/-3.4(stat)+/-1.0(syst) MeV/c(2) and width of 17.0+/-8.3(stat)+/-2.5(syst) MeV/c(2). This observation is consistent with expectations for the eta(c)(2S) state.

  3. High resolution earthquake source mechanisms in a subduction zone: 3-D waveform simulations of aftershocks from the 2010 Mw 8.8 Chile rupture

    NASA Astrophysics Data System (ADS)

    Hicks, Stephen; Rietbrock, Andreas

    2015-04-01

    The earthquake rupture process is extremely heterogeneous. For subduction zone earthquakes in particular, it is vital to understand how structural variations in the overriding plate and downgoing slab may control slip style. The large-scale 3-D geometry of subduction plate boundaries is rapidly becoming well understood (e.g. Hayes et al., 2012); however, the nature of slip style along any finer-scale structures remains elusive. Regional earthquake moment tensor (RMT) inversion can shed light on faulting mechanisms. However, many traditional regional moment tensor inversions use simplified (1-D) Earth models (e.g. Agurto et al., 2012; Hayes et al., 2013) that only use the lowest frequency parts of the waveform, which may mask source complexity. As a result, we may have to take care when making small-scale interpretations about the causative fault and its slip style. This situation is compounded further by strong lateral variations in subsurface geology, as well as poor station coverage for recording offshore subduction earthquakes. A formal assessment of the resolving capability of RMT inversions in subduction zones is challenging and the application of 3-D waveform simulation techniques in highly heterogeneous media is needed. We generate 3-D waveform simulations of aftershocks from a large earthquake that struck Chile in 2010. The Mw 8.8 Maule earthquake is the sixth largest earthquake ever recorded. Following the earthquake, there was an international deployment of seismic stations in the rupture area, making this one of the best observed aftershock sequences to date. We therefore have a unique opportunity to compare recorded waveforms with simulated waveforms for many earthquakes, shedding light on the effect of 3-D heterogeneity on source imaging. We perform forward simulations using the spectral element wave propagation code, SPEFEM3D (e.g. Komatitsch et al., 2010) for a set of moderate-sized aftershocks (Mw 4.0-5.5). A detailed knowledge of velocity structure

  4. Phosphine-boranes as bidentate ligands: formation of [8,8-eta(2)-(eta(2)-(BH(3)).dppm)-nido-8,7-RhSB(9)H(10)] and [9,9-eta(2)-(eta(2)-(BH(3)).dppm)-nido-9,7,8-RhC(2)B(8)H(11)] from [8,8-(eta(2)-dppm)-8-(eta(1)-dppm)-nido-8,7-RhSB(9)H(10)] and [9,9-(eta(2)-dppm)-9-(eta(1)-dppm)-nido-9,7,8-RhC(2)B(8)H(11)], respectively.

    PubMed

    Volkov, Oleg; Macías, Ramón; Rath, Nigam P; Barton, Lawrence

    2002-11-04

    The two clusters [8,8-(eta(2)-dppm)-8-(eta(1)-dppm)-nido-8,7-RhSB(9)H(10)] (1) and [9,9-(eta(2)-dppm)-9-(eta(1)-dppm)-nido-9,7,8-RhC(2)B(8)H(11)] (2) (dppm = PPh(2)CH(2)PPh(2)), both of which contain pendant PPh(2) groups, react with BH(3).thf to afford the species [8,8-eta(2)-(eta(2)-(BH(3)).dppm)-nido-8,7-RhSB(9)H(10)] (3) and [9,9-eta(2)-(eta(2)-(BH(3)).dppm))-nido-9,7,8-RhC(2)B(8)H(11)] (4), respectively. These two species are very similar in that they both contain the bidentate ligand [(BH(3)).dppm], which coordinates to the Rh center via a PPh(2) group and also via a eta(2)-BH(3) group. Thus, the B atom in the BH(3) group is four-coordinate, bonded to Rh by two bridging hydrogen atoms, to a terminal H atom, and to a PPh(2) group. At room temperature, the BH(3) group is fluxional; the two bridging H atoms and the terminal H atom are equivalent on the NMR time scale. The motion is arrested at low temperature with DeltaG++ = ca. 37 and 42 kJ mol(-1), respectively, for 3 and 4. Both species are characterized completely by NMR and mass spectral measurements as well as by elemental analysis and single-crystal structure determinations.

  5. Scientific overview and historical context of the 1811-1812 new Madrid earthquake sequence

    USGS Publications Warehouse

    Hough, S.E.

    2004-01-01

    aftershock». These values are consistent with other lines of evidence, including scaling relationships. Finally, I show that accounts from the New Madrid sequence reveal evidence for remotely triggered earthquakes well outside the NMSZ. Remotely triggered earthquakes represent a potentially important new wrinkle in historic earthquake research, as their ground motions can sometimes be confused with mainshock ground motions.

  6. [Sr II] Detected in a Nebular Filament Near Eta Carinae

    NASA Astrophysics Data System (ADS)

    Gull, T.; Zethson, T.; Hartman, H.; Johansson, S.; Davidson, K.; Ishibashi, K.

    2000-05-01

    Observations with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope reveal a peculiar emission line region in the close vicinity to Eta Carinae. The lines of [SrII], [MnII], [CoII], [TiII], [NiII] and [FeI] are detected in the 6400-7000A spectral interval at a blue-shifted velocity of 95 km/sec and seem to be associated with a long, narrow filament with dimensions of <0.5" by 1.1". The filament is notable as it is separate both in velocity and structure from the bright emission of the Integral Nebula. This filament is buried within the Homunculus and is not visible in direct images which are dominated by reflection nebulosities. In our literature searches we have found no evidence of strontium emission lines in nebulae. We are aware of permitted transitions of strontium seen in AGB stars. S-processed elements like strontium are not expected in the ejecta of a massive star like Eta Carinae. Detection of [SrII] and the fact that the [NiII], [MnII] and [CoII] lines are unusually strong compared to [FeI] are quite a surprise. It has long been known that nitrogen is overabundant in the ejecta of Eta Carinae. Is this processed material from the present star(s)? Has there been processed material ejected from a more evolved companion? The situation is decidedly mysterious. This research has been supported by NASA through STScI grants and the STIS GTO funding.

  7. Nebular Hydrogen Absorption in the Ejecta of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Ishibashi, K.; Davidson, K.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    Space Telescope Imaging Spectrograph (STIS) observations of Eta Carinae and immediate ejecta reveal narrow Balmer absorption lines in addition to the nebular-scattered broad P-Cygni absorptions. The narrow absorption correlates with apparent disk structure that separates the two Homunculus lobes. We trace these features about half way up the Northern lobe until the scattered stellar Balmer line doppler-shifts redward beyond the nebular absorption feature. Three-dimensional data cubes, made by mapping the Homunculus at Balmer alpha and Balmer beta with the 52 x 0.1 arcsecond aperture and about 5000 spectral resolving power, demonstrate that the absorption feature changes slowly in velocity with nebular position. We have monitored the stellar Balmer alpha line profile of the central source over the past four years. The equivalent width of the nebular absorption feature changes considerably between observations. The changes do not correlate with measured brightness of Eta Carinae. Likely clumps of neutral hydrogen with a scale size comparable to the stellar disk diameter are passing through the intervening light path on the timescales less than several months. The excitation mechanism involves Lyman alpha radiation (possibly the Lyman series plus Lyman continuum) and collisions leading to populating the 2S metastable state. Before the electron can jump to the ground state by two photon emission (lifetime about 1/8 second), a stellar Balmer photon is absorbed and the electron shifts to an NP level. We see the absorption feature in higher Balmer lines, and but not in Paschen lines. Indeed we see narrow nebular Paschen emission lines. At present, we do not completely understand the details of the absorption. Better understanding should lead to improved insight of the unique conditions around Eta Carinae that leads to these absorptions.

  8. Eta Carinae in the Context of the Most Massive Stars

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Damineli, Augusto

    2009-01-01

    Eta Car, with its historical outbursts, visible ejecta and massive, variable winds, continues to challenge both observers and modelers. In just the past five years over 100 papers have been published on this fascinating object. We now know it to be a massive binary system with a 5.54-year period. In January 2009, Car underwent one of its periodic low-states, associated with periastron passage of the two massive stars. This event was monitored by an intensive multi-wavelength campaign ranging from -rays to radio. A large amount of data was collected to test a number of evolving models including 3-D models of the massive interacting winds. August 2009 was an excellent time for observers and theorists to come together and review the accumulated studies, as have occurred in four meetings since 1998 devoted to Eta Car. Indeed, Car behaved both predictably and unpredictably during this most recent periastron, spurring timely discussions. Coincidently, WR140 also passed through periastron in early 2009. It, too, is a intensively studied massive interacting binary. Comparison of its properties, as well as the properties of other massive stars, with those of Eta Car is very instructive. These well-known examples of evolved massive binary systems provide many clues as to the fate of the most massive stars. What are the effects of the interacting winds, of individual stellar rotation, and of the circumstellar material on what we see as hypernovae/supernovae? We hope to learn. Topics discussed in this 1.5 day Joint Discussion were: Car: the 2009.0 event: Monitoring campaigns in X-rays, optical, radio, interferometry WR140 and HD5980: similarities and differences to Car LBVs and Eta Carinae: What is the relationship? Massive binary systems, wind interactions and 3-D modeling Shapes of the Homunculus & Little Homunculus: what do we learn about mass ejection? Massive stars: the connection to supernovae, hypernovae and gamma ray bursters Where do we go from here? (future

  9. Stratified X-ray Plasmas around Eta Carinae

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Kenji; Corcoran, Michael

    At a distance of ˜2.3 kpc, eta Carinae is the best super massive star to study the LBV phenomenon. It is a binary composed of two massive stars on a highly elliptical orbit (e ˜0.9-0.95, P˜5.54 years). The current best estimate is that the primary star has M gtrsim90M_{⊙} and v_{wind} ˜420 km s(-1) , while the companion star has M˜30M_{⊙} and v_{wind} ˜3000 km s(-1) . Strong winds from both stars collide (the wind-wind collision: WWC), which produces hot thermal plasmas of kT˜4 keV and emits strong X-rays. The luminosity increases toward periastron, but it abruptly declines by two orders of magnitudes around periastron. We had an observing campaign of eta Car around periastron in 2009.0, which revealed that the X-ray decline is caused by a hybrid mechanism of a true eclipse and an activity decay of the WWC plasma. During the activity decay, the head-on wind collision seems to shut off, possibly due to the overwhelming momentum of the primary wind. The secondary winds flowing backward may still collide with the twisted primary winds and produce hot X-ray plasma. During the eclipse of the WWC plasma, faint X-ray emission from a different plasma component within ˜500 AU from eta Car emerged. The plasma is as hot as the WWC plasma (˜50 MK) and in strong non-equilibrium ionization state (nt ≤sssim4×10(10) cm(-3) s). The plasma may originate from collision of winds ejected a few orbits ago. Inside the bipolar lobe of eta Car, the Chandra observatory spatially resolved emission from extended hot cool (˜6 MK) plasmas, as well as the X-ray reflection component. The spectrum showed unusually strong lines around the Si and S K-shell energies, which may be originated in the collision of the secondary winds with cold circumstellar material. We discuss the circumstellar hot plasma structures of LBVs based on these results.

  10. Implementation of an Eta Belt Domain on Parallel Systems

    NASA Technical Reports Server (NTRS)

    Kouatchou, Jules; Rancic, Miodrag; Norris, Peter; Geiger, Jim

    2001-01-01

    We extend the Eta weather model from a regional domain into a belt domain that does not require meridional boundary conditions. We describe how the extension is achieved and the parallel implementation of the code on the Cray T3E and the SGI Origin 2000. We validate the forecast results on the two platforms and examine how the removal of the meridional boundary conditions affects these forecasts. In addition, using several domains of different sizes and resolutions, we present the scaling performance of the code on both systems.

  11. Student Measurements of the Double Star Eta Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Brewer, Mark; Cacace, Gabriel; Do, Vivian; Griffith, Nicholas; Malan, Alexandria; Paredes, Hanna; Peticolas, Brian; Stasiak, Kathryne

    2016-10-01

    The double star Eta Cassiopeiae was measured at Vanguard Preparatory School. Digital measurements were made with a 14-inch telescope equipped with a CCD camera. The plate scale was determined to be 0.50 arcseconds per pixel. The separations and position angles were determined to be 13.3 arcseconds and 340.4 degrees, by the use of astronomy software. Previous observations reported in the Washington Double Star Catalog were used as a comparison. The camera angle was found to be the ultimate issue in the skewed data gathered for the double star.

  12. Identification of a novel Baeyer‐Villiger monooxygenase from Acinetobacter radioresistens: close relationship to the Mycobacterium tuberculosis prodrug activator EtaA

    PubMed Central

    Minerdi, Daniela; Zgrablic, Ivan; Sadeghi, Sheila J.; Gilardi, Gianfranco

    2012-01-01

    Summary This work demonstrates that Acinetobacter radioresistens strain S13 during the growth on medium supplemented with long‐chain alkanes as the sole energy source expresses almA gene coding for a Baeyer‐Villiger monooxygenase (BVMO) involved in alkanes subterminal oxidation. Phylogenetic analysis placed the sequence of this novel BVMO in the same clade of the prodrug activator ethionamide monooxygenase (EtaA) and it bears only a distant relation to the other known class I BVMO proteins. In silico analysis of the 3D model of the S13 BVMO generated by homology modelling also supports the similarities with EtaA by binding ethionamide to the active site. In vitro experiments carried out with the purified enzyme confirm that this novel BVMO is indeed capable of typical Baeyer‐Villiger reactions as well as oxidation of the prodrug ethionamide. PMID:22862894

  13. Identification of a novel Baeyer-Villiger monooxygenase from Acinetobacter radioresistens: close relationship to the Mycobacterium tuberculosis prodrug activator EtaA.

    PubMed

    Minerdi, Daniela; Zgrablic, Ivan; Sadeghi, Sheila J; Gilardi, Gianfranco

    2012-11-01

    This work demonstrates that Acinetobacter radioresistens strain S13 during the growth on medium supplemented with long-chain alkanes as the sole energy source expresses almA gene coding for a Baeyer-Villiger monooxygenase (BVMO) involved in alkanes subterminal oxidation. Phylogenetic analysis placed the sequence of this novel BVMO in the same clade of the prodrug activator ethionamide monooxygenase (EtaA) and it bears only a distant relation to the other known class I BVMO proteins. In silico analysis of the 3D model of the S13 BVMO generated by homology modelling also supports the similarities with EtaA by binding ethionamide to the active site. In vitro experiments carried out with the purified enzyme confirm that this novel BVMO is indeed capable of typical Baeyer-Villiger reactions as well as oxidation of the prodrug ethionamide.

  14. Estimating seismic site response in Christchurch City (New Zealand) from dense low-cost aftershock arrays

    USGS Publications Warehouse

    Kaiser, Anna E.; Benites, Rafael A.; Chung, Angela I.; Haines, A. John; Cochran, Elizabeth S.; Fry, Bill

    2011-01-01

    The Mw 7.1 September 2010 Darfield earthquake, New Zealand, produced widespread damage and liquefaction ~40 km from the epicentre in Christchurch city. It was followed by the even more destructive Mw 6.2 February 2011 Christchurch aftershock directly beneath the city’s southern suburbs. Seismic data recorded during the two large events suggest that site effects contributed to the variations in ground motion observed throughout Christchurch city. We use densely-spaced aftershock recordings of the Darfield earthquake to investigate variations in local seismic site response within the Christchurch urban area. Following the Darfield main shock we deployed a temporary array of ~180 low-cost 14-bit MEMS accelerometers linked to the global Quake-Catcher Network (QCN). These instruments provided dense station coverage (spacing ~2 km) to complement existing New Zealand national network strong motion stations (GeoNet) within Christchurch city. Well-constrained standard spectral ratios were derived for GeoNet stations using a reference station on Miocene basalt rock in the south of the city. For noisier QCN stations, the method was adapted to find a maximum likelihood estimate of spectral ratio amplitude taking into account the variance of noise at the respective stations. Spectral ratios for QCN stations are similar to nearby GeoNet stations when the maximum likelihood method is used. Our study suggests dense low-cost accelerometer aftershock arrays can provide useful information on local-scale ground motion properties for use in microzonation. Preliminary results indicate higher amplifications north of the city centre and strong high-frequency amplification in the small, shallower basin of Heathcote Valley.

  15. Full waveform modelling using the VERCE platform - application to aftershock seismicity in the Chile subduction zone

    NASA Astrophysics Data System (ADS)

    Garth, Thomas; Rietbrock, Andreas; Hicks, Steve; Fuenzalida Velasco, Amaya; Casarotti, Emanuele; Spinuso, Alessandro

    2015-04-01

    The VERCE platform is an online portal that allows full waveform simulations to be run for any region where a suitable velocity model exists. We use this facility to simulate the waveforms from aftershock earthquakes from the 2014 Pisagua earthquake, and 2010 Maule earthquake that occurred at the subduction zone mega thrust in Northern and Central Chile respectively. Simulations are performed using focal mechanisms from both global earthquake catalogues, and regional earthquake catalogues. The VERCE platform supports specFEM Cartesian, and simulations are run using meshes produced by CUBIT. The full waveform modelling techniques supported on the VERCE platform are used to test the validity of a number of subduction zone velocity models from the Chilean subduction zone. For the Maule earthquake we use a 2D and 3D travel time tomography model of the rupture area (Hicks et al. 2011; 2014). For the Pisagua earthquake we test a 2D/3D composite velocity model based on tomographic studies of the region (e.g. Husen et al. 2000, Contreyes-Reyes et al. 2012) and slab1.0 (Hayes et al. 2012). Focal mechanisms from the cGMT catalogue and local focal mechanisms calculated using ISOLA (e.g. Agurto et al. 2012) are used in the simulations. The waveforms produced are directly compared to waveforms recorded on the temporary deployment for the Maule earthquake aftershocks, and waveforms recorded on the IPOC network for the Pisagua earthquake aftershocks. This work demonstrates how the VERCE platform allows waveforms from the full 3D simulations to be easily produced, allowing us to quantify the validity of both the velocity model and the source mechanisms. These simulations therefore provide an independent test of the velocity models produced synthetically and by travel time tomography studies. Initial results show that the waveform is reasonably well reproduced in the 0.05 - 0.25 frequency band using a refined 3D travel time tomography, and locally calculated focal mechanisms.

  16. California foreshock sequences suggest aseismic triggering process

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowei; Shearer, Peter M.

    2013-06-01

    Foreshocks are one of the few well-documented precursors to large earthquakes; therefore, understanding their nature is very important for earthquake prediction and hazard mitigation. However, the triggering role of foreshocks is not yet clear. It is possible that foreshocks are a self-triggering cascade of events that simply happen to trigger an unusually large aftershock; alternatively, foreshocks might originate from an external aseismic process that ultimately triggers the mainshock. In the former case, the foreshocks will have limited utility for forecasting. The latter case has been observed for several individual large earthquakes; however, it remains unclear how common it is and how to distinguish foreshock sequences from other seismicity clusters that do not lead to large earthquakes. Here we analyze foreshocks of three M>7 mainshocks in southern California. These foreshock sequences appear similar to earthquake swarms, in that they do not start with their largest events and they exhibit spatial migration of seismicity. Analysis of source spectra shows that all three foreshock sequences feature lower average stress drops and depletion of high-frequency energy compared with the aftershocks of their corresponding mainshocks. Using a longer-term stress-drop catalog, we find that the average stress drop of the Landers and Hector Mine foreshock sequences is comparable to nearby swarms. Our observations suggest that these foreshock sequences are manifestations of aseismic transients occurring close to the mainshock hypocenters, possibly related to localized fault zone complexity, which have promoted the occurrence of both the foreshocks and the eventual mainshock.

  17. SECULAR CHANGES IN ETA CARINAE'S WIND 1998-2011

    SciTech Connect

    Mehner, Andrea; Davidson, Kris; Humphreys, Roberta M.; Ishibashi, Kazunori; Martin, John C.; Ruiz, Maria Teresa; Walter, Frederick M.

    2012-05-20

    Stellar wind-emission features in the spectrum of eta Carinae have decreased by factors of 1.5-3 relative to the continuum within the last 10 years. We investigate a large data set from several instruments (STIS, GMOS, UVES) obtained between 1998 and 2011 and analyze the progression of spectral changes in direct view of the star, in the reflected polar-on spectra at FOS4, and at the Weigelt knots. We find that the spectral changes occurred gradually on a timescale of about 10 years and that they are dependent on the viewing angle. The line strengths declined most in our direct view of the star. About a decade ago, broad stellar wind-emission features were much stronger in our line-of-sight view of the star than at FOS4. After the 2009 event, the wind-emission line strengths are now very similar at both locations. High-excitation He I and N II absorption lines in direct view of the star strengthened gradually. The terminal velocity of Balmer P Cyg absorption lines now appears to be less latitude dependent, and the absorption strength may have weakened at FOS4. Latitude-dependent alterations in the mass-loss rate and the ionization structure of eta Carinae's wind are likely explanations for the observed spectral changes.

  18. Cautionary Note on Reporting Eta-Squared Values from Multifactor ANOVA Designs

    ERIC Educational Resources Information Center

    Pierce, Charles A.; Block, Richard A.; Aguinis, Herman

    2004-01-01

    The authors provide a cautionary note on reporting accurate eta-squared values from multifactor analysis of variance (ANOVA) designs. They reinforce the distinction between classical and partial eta-squared as measures of strength of association. They provide examples from articles published in premier psychology journals in which the authors…

  19. Leptonic decays of the {eta} meson with the WASA detector at CELSIUS

    SciTech Connect

    Berlowski, M.; Stepaniak, J.; Calen, H.; Fransson, K.; Jacewicz, M.; Kupsc, A.

    2007-11-07

    Decay channels of the {eta} meson with at least one lepton pair in the final state are discussed. Preliminary results on lepton pair production from the pd{yields}{sup 3}He{eta} reaction from the WASA experiment at CELSIUS are presented.

  20. Corrosion of the eta'(Cu-Sn) phase in dental amalgam.

    PubMed

    Marek, M; Okabe, T; Butts, M B; Fairhurst, C W

    1983-11-01

    Previous studies have shown preferential corrosion of the eta'(Cu-Sn) phase in high-copper dental amalgam both in vitro and in vivo, while samples of pure eta' have shown high corrosion resistance. To clarify this contradiction, samples of pure eta' crystals mixed with other phases were prepared and tested. Evaluation of the corrosion resistance was based on the results of coulometry at constant potential and potentiodynamic polarization. The corrosion susceptibility of eta' in the matrix of gamma 1(Ag-Hg) was considerably higher than the susceptibility of isolated eta'. The susceptibility of pure eta' also could be increased by plating it will small amounts of Hg. It was concluded that in dental amalgam, the presence of mercury in the phases surrounding eta' reduces its resistance to corrosion. Although eta' is more resistant to corrosion than gamma 2(Sn-Hg) which appears in low-copper amalgams, it is the least corrosion resistant major phase in high-copper amalgams and can suffer deterioration.

  1. USING MM5V3 WITH ETA ANALYSES FOR AIR-QUALITY MODELING AT THE EPA

    EPA Science Inventory

    Efforts have been underway since MM5v3 was released in July 1999 to set up air-quality simulations using Eta analyses as background fields. Our previous simulations used a one-way quadruple-nested set of domains with horizontal grid spacing of 108, 36, 12 and 4 km. With Eta a...

  2. 76 FR 27090 - Comment Request for Extension of Information Collection (Without Revisions): Form ETA 9033-A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... Revisions): Form ETA 9033-A, Attestation by Employers Using Alien Crewmembers for Longshore Activities in... collection by Form ETA 9033-A, OMB Control Number 1205-0352, Attestation by Employers Using Alien Crewmembers.... The INA generally prohibits the performance of longshore work by alien crewmembers, however the...

  3. Using the USGS Seismic Risk Web Application to estimate aftershock damage

    USGS Publications Warehouse

    McGowan, Sean M.; Luco, Nicolas

    2014-01-01

    The U.S. Geological Survey (USGS) Engineering Risk Assessment Project has developed the Seismic Risk Web Application to combine earthquake hazard and structural fragility information in order to calculate the risk of earthquake damage to structures. Enabling users to incorporate their own hazard and fragility information into the calculations will make it possible to quantify (in near real-time) the risk of additional damage to structures caused by aftershocks following significant earthquakes. Results can quickly be shared with stakeholders to illustrate the impact of elevated ground motion hazard and earthquake-compromised structural integrity on the risk of damage during a short-term, post-earthquake time horizon.

  4. Matched-filter Detection of the Missing Foreshocks and Aftershocks of the 2015 Gorkha earthquake

    NASA Astrophysics Data System (ADS)

    Meng, L.; Huang, H.; Wang, Y.; Plasencia Linares, M. P.

    2015-12-01

    The 25 April 2015 Mw 7.8 Gorkha earthquake occurred at the bottom edge of the locking portion of the Main Himalayan Thrust (MHT), where the Indian plate under-thrusts the Himalayan wedge. The earthquake is followed by a number of large aftershocks but is not preceded by any foreshocks within ~3 weeks according to the NEIC, ISC and NSC catalog. However, a large portion of aftershocks could be missed due to either the contamination of the mainshock coda or small signal to noise ratio. It is also unclear whether there are foreshocks preceding the mainshock, the underlying physical processes of which are crucial for imminent seismic hazard assessment. Here, we employ the matched filter technique to recover the missing events from 22 April to 30 April. We collect 3-component broadband seismic waveforms recorded by one station in Nepal operated by Ev-K2-CNR, OGS Italy and eleven stations in Tibet operated by the China Earthquake Networks Center. We bandpass the seismograms to 1-6 Hz to retain high frequency energies. The template waveforms with high signal-to-noise ratios (> 5) are obtained at several closest stations. To detect and locate the events that occur around the templates, correlograms are shifted at each station with differential travel time as a function of source location based on the CRUST1.0 model. We find ~14 times more events than those listed in the ISC catalog. Some of the detected events are confirmed by visual inspections of the waveforms at the closest stations. The preliminary results show a streak of seismicity occurred around 2.5 days before the mainshock to the southeast of