Science.gov

Sample records for aftershock sequence model

  1. A random effects epidemic-type aftershock sequence model.

    PubMed

    Lin, Feng-Chang

    2011-04-01

    We consider an extension of the temporal epidemic-type aftershock sequence (ETAS) model with random effects as a special case of a well-known doubly stochastic self-exciting point process. The new model arises from a deterministic function that is randomly scaled by a nonnegative random variable, which is unobservable but assumed to follow either positive stable or one-parameter gamma distribution with unit mean. Both random effects models are of interest although the one-parameter gamma random effects model is more popular when modeling associated survival times. Our estimation is based on the maximum likelihood approach with marginalized intensity. The methods are shown to perform well in simulation experiments. When applied to an earthquake sequence on the east coast of Taiwan, the extended model with positive stable random effects provides a better model fit, compared to the original ETAS model and the extended model with one-parameter gamma random effects. PMID:24039322

  2. Effects of Aftershock Declustering in Risk Modeling: Case Study of a Subduction Sequence in Mexico

    NASA Astrophysics Data System (ADS)

    Kane, D. L.; Nyst, M.

    2014-12-01

    Earthquake hazard and risk models often assume that earthquake rates can be represented by a stationary Poisson process, and that aftershocks observed in historical seismicity catalogs represent a deviation from stationarity that must be corrected before earthquake rates are estimated. Algorithms for classifying individual earthquakes as independent mainshocks or as aftershocks vary widely, and analysis of a single catalog can produce considerably different earthquake rates depending on the declustering method implemented. As these rates are propagated through hazard and risk models, the modeled results will vary due to the assumptions implied by these choices. In particular, the removal of large aftershocks following a mainshock may lead to an underestimation of the rate of damaging earthquakes and potential damage due to a large aftershock may be excluded from the model. We present a case study based on the 1907 - 1911 sequence of nine 6.9 <= Mw <= 7.9 earthquakes along the Cocos - North American plate subduction boundary in Mexico in order to illustrate the variability in risk under various declustering approaches. Previous studies have suggested that subduction zone earthquakes in Mexico tend to occur in clusters, and this particular sequence includes events that would be labeled as aftershocks in some declustering approaches yet are large enough to produce significant damage. We model the ground motion for each event, determine damage ratios using modern exposure data, and then compare the variability in the modeled damage from using the full catalog or one of several declustered catalogs containing only "independent" events. We also consider the effects of progressive damage caused by each subsequent event and how this might increase or decrease the total losses expected from this sequence.

  3. Statistical Variability and Tokunaga Branching of Aftershock Sequences Utilizing BASS Model Simulations

    NASA Astrophysics Data System (ADS)

    Yoder, Mark R.; Van Aalsburg, Jordan; Turcotte, Donald L.; Abaimov, Sergey G.; Rundle, John B.

    2013-01-01

    Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg-Richter (GR) frequency-magnitude statistics. They also satisfy Omori's law for power-law seismicity rate decay and Båth's law for maximum-magnitude scaling. The branching aftershock sequence (BASS) model, which is the scale-invariant limit of the epidemic-type aftershock sequence model (ETAS), uses these scaling laws to generate synthetic aftershock sequences. One objective of this paper is to show that the branching process in these models satisfies Tokunaga branching statistics. Tokunaga branching statistics were originally developed for drainage networks and have been subsequently shown to be valid in many other applications associated with complex phenomena. Specifically, these are characteristic of a universality class in statistical physics associated with diffusion-limited aggregation. We first present a deterministic version of the BASS model and show that it satisfies the Tokunaga side-branching statistics. We then show that a fully stochastic BASS simulation gives similar results. We also study foreshock statistics using our BASS simulations. We show that the frequency-magnitude statistics in BASS simulations scale as the exponential of the magnitude difference between the mainshock and the foreshock, inverse GR scaling. We also show that the rate of foreshock occurrence in BASS simulations decays inversely with the time difference between foreshock and mainshock, an inverse Omori scaling. Both inverse scaling laws have been previously introduced empirically to explain observed foreshock statistics. Observations have demonstrated both of these scaling relations to be valid, consistent with our simulations. ETAS simulations, in general, do not generate Båth's law and do not generate inverse GR scaling.

  4. Computational Software for Fitting Seismic Data to Epidemic-Type Aftershock Sequence Models

    NASA Astrophysics Data System (ADS)

    Chu, A.

    2014-12-01

    Modern earthquake catalogs are often analyzed using spatial-temporal point process models such as the epidemic-type aftershock sequence (ETAS) models of Ogata (1998). My work introduces software to implement two of ETAS models described in Ogata (1998). To find the Maximum-Likelihood Estimates (MLEs), my software provides estimates of the homogeneous background rate parameter and the temporal and spatial parameters that govern triggering effects by applying the Expectation-Maximization (EM) algorithm introduced in Veen and Schoenberg (2008). Despite other computer programs exist for similar data modeling purpose, using EM-algorithm has the benefits of stability and robustness (Veen and Schoenberg, 2008). Spatial shapes that are very long and narrow cause difficulties in optimization convergence and problems with flat or multi-modal log-likelihood functions encounter similar issues. My program uses a robust method to preset a parameter to overcome the non-convergence computational issue. In addition to model fitting, the software is equipped with useful tools for examining modeling fitting results, for example, visualization of estimated conditional intensity, and estimation of expected number of triggered aftershocks. A simulation generator is also given with flexible spatial shapes that may be defined by the user. This open-source software has a very simple user interface. The user may execute it on a local computer, and the program also has potential to be hosted online. Java language is used for the software's core computing part and an optional interface to the statistical package R is provided.

  5. Applications of the predictability of the Coherent Noise Model to aftershock sequences

    NASA Astrophysics Data System (ADS)

    Christopoulos, Stavros-Richard; Sarlis, Nicholas

    2014-05-01

    A study [1] of the coherent noise model [2-4] in natural time [5-7] has shown that it exhibits predictability. Interestingly, one of the predictors suggested [1] for the coherent noise model can be generalized and applied to the case of (real) aftershock sequences. The results obtained [8] so far are beyond chance. Here, we apply this approach to several aftershock sequences of strong earthquakes with magnitudes Mw ≥6.9 in Indonesia, California and Greece, including the Mw9.2 earthquake that occurred on 26 December 2004 in Sumatra. References. [1] N. V. Sarlis and S.-R. G. Christopoulos, Predictability of the coherent-noise model and its applications, Physical Review E, 85, 051136, 2012. [2] M.E.J. Newman, Self-organized criticality, evolution and the fossil extinction record, Proc. R. Soc. London B, 263, 1605-1610, 1996. [3] M. E. J. Newman and K. Sneppen, Avalanches, scaling, and coherent noise, Phys. Rev. E, 54, 6226-6231, 1996. [4] K. Sneppen and M. Newman, Coherent noise, scale invariance and intermittency in large systems, Physica D, 110, 209 - 222. [5] P. Varotsos, N. Sarlis, and E. Skordas, Spatiotemporal complexity aspects on the interrelation between Seismic Electric Signals and seismicity, Practica of Athens Academy, 76, 294-321, 2001. [6] P.A. Varotsos, N.V. Sarlis, and E.S. Skordas, Long-range correlations in the electric signals that precede rupture, Phys. Rev. E, 66, 011902, 2002. [7] Varotsos P. A., Sarlis N. V. and Skordas E. S., Natural Time Analysis: The new view of time. Precursory Seismic Electric Signals, Earthquakes and other Complex Time-Series (Springer-Verlag, Berlin Heidelberg) 2011. [8] N. V. Sarlis and S.-R. G. Christopoulos, "Visualization of the significance of Receiver Operating Characteristics based on confidence ellipses", Computer Physics Communications, http://dx.doi.org/10.1016/j.cpc.2013.12.009

  6. Explanation of temporal clustering of tsunami sources using the epidemic-type aftershock sequence model

    USGS Publications Warehouse

    Geist, Eric L.

    2014-01-01

    Temporal clustering of tsunami sources is examined in terms of a branching process model. It previously was observed that there are more short interevent times between consecutive tsunami sources than expected from a stationary Poisson process. The epidemic‐type aftershock sequence (ETAS) branching process model is fitted to tsunami catalog events, using the earthquake magnitude of the causative event from the Centennial and Global Centroid Moment Tensor (CMT) catalogs and tsunami sizes above a completeness level as a mark to indicate that a tsunami was generated. The ETAS parameters are estimated using the maximum‐likelihood method. The interevent distribution associated with the ETAS model provides a better fit to the data than the Poisson model or other temporal clustering models. When tsunamigenic conditions (magnitude threshold, submarine location, dip‐slip mechanism) are applied to the Global CMT catalog, ETAS parameters are obtained that are consistent with those estimated from the tsunami catalog. In particular, the dip‐slip condition appears to result in a near zero magnitude effect for triggered tsunami sources. The overall consistency between results from the tsunami catalog and that from the earthquake catalog under tsunamigenic conditions indicates that ETAS models based on seismicity can provide the structure for understanding patterns of tsunami source occurrence. The fractional rate of triggered tsunami sources on a global basis is approximately 14%.

  7. Seismotectonic model of the MITIDJA basin using gravity data and aftershock sequence of the BOUMERDES (may 21, 2003; ALGERIA) earthquake

    NASA Astrophysics Data System (ADS)

    Ouyed, Merzouk; Idres, Mouloud; Salah Boughacha, Mohame; Bourmatte, Amar; Samai, Saddek

    2010-05-01

    The present study relates to the interpretation of gravity and seismological data in the Boumerdes area (Eastern part of the Mitidja Basin, Algeria), in relation to the earthquake of May 21, 2003 (Mw=6.8). The residual anomaly and the horizontal gradient maps made it possible to obtain the basement shape and gravity discontinuities. The seismological data processing of the aftershock sequence recorded by 16 tri-component seismological stations allowed the location of 1987 events during the period of May 23 to June 30, 2003. A seismotectonic model obtained from the aftershocks distribution and gravity data is proposed. This model consists of three active faults; one lying offshore and two other onshore faults highlighted in this study. The offshore fault striking NE-SW is consistent with the USGS focal mechanism of the main event; the onshore faults strike NW-SE. This configuration emphasizes the failure mode complexity during the main shock. The geometry and location of the onshore faults are obtained from the spatial distribution of seismicity and focal solutions, supported by the results of gravity, but also by the coastal uplift and the Algiers canyon close to one of these faults. The topography of the basement obtained by 3D gravity inversion shows that all the aftershocks located onshore occurred in the basement. The 3D model of the basement also shows that the area between the two onshore faults was raised by their movement. Keywords: Aftershock sequence, Algeria, Basement, Boumerdes earthquake, Gravity

  8. Modeling aftershocks as a stretched exponential relaxation

    NASA Astrophysics Data System (ADS)

    Mignan, A.

    2015-11-01

    The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest-neighbor, second-order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature.

  9. Magnitude-dependent epidemic-type aftershock sequences model for earthquakes.

    PubMed

    Spassiani, Ilaria; Sebastiani, Giovanni

    2016-04-01

    We propose a version of the pure temporal epidemic type aftershock sequences (ETAS) model: the ETAS model with correlated magnitudes. As for the standard case, we assume the Gutenberg-Richter law to be the probability density for the magnitudes of the background events. Instead, the magnitude of the triggered shocks is assumed to be probabilistically dependent on that of the relative mother events. This probabilistic dependence is motivated by some recent works in the literature and by the results of a statistical analysis made on some seismic catalogs [Spassiani and Sebastiani, J. Geophys. Res. 121, 903 (2016)10.1002/2015JB012398]. On the basis of the experimental evidences obtained in the latter paper for the real catalogs, we theoretically derive the probability density function for the magnitudes of the triggered shocks proposed in Spassiani and Sebastiani and there used for the analysis of two simulated catalogs. To this aim, we impose a fundamental condition: averaging over all the magnitudes of the mother events, we must obtain again the Gutenberg-Richter law. This ensures the validity of this law at any event's generation when ignoring past seismicity. The ETAS model with correlated magnitudes is then theoretically analyzed here. In particular, we use the tool of the probability generating function and the Palm theory, in order to derive an approximation of the probability of zero events in a small time interval and to interpret the results in terms of the interevent time between consecutive shocks, the latter being a very useful random variable in the assessment of seismic hazard. PMID:27176281

  10. Magnitude-dependent epidemic-type aftershock sequences model for earthquakes

    NASA Astrophysics Data System (ADS)

    Spassiani, Ilaria; Sebastiani, Giovanni

    2016-04-01

    We propose a version of the pure temporal epidemic type aftershock sequences (ETAS) model: the ETAS model with correlated magnitudes. As for the standard case, we assume the Gutenberg-Richter law to be the probability density for the magnitudes of the background events. Instead, the magnitude of the triggered shocks is assumed to be probabilistically dependent on that of the relative mother events. This probabilistic dependence is motivated by some recent works in the literature and by the results of a statistical analysis made on some seismic catalogs [Spassiani and Sebastiani, J. Geophys. Res. 121, 903 (2016), 10.1002/2015JB012398]. On the basis of the experimental evidences obtained in the latter paper for the real catalogs, we theoretically derive the probability density function for the magnitudes of the triggered shocks proposed in Spassiani and Sebastiani and there used for the analysis of two simulated catalogs. To this aim, we impose a fundamental condition: averaging over all the magnitudes of the mother events, we must obtain again the Gutenberg-Richter law. This ensures the validity of this law at any event's generation when ignoring past seismicity. The ETAS model with correlated magnitudes is then theoretically analyzed here. In particular, we use the tool of the probability generating function and the Palm theory, in order to derive an approximation of the probability of zero events in a small time interval and to interpret the results in terms of the interevent time between consecutive shocks, the latter being a very useful random variable in the assessment of seismic hazard.

  11. Sequence-based Parameter Estimation for an Epidemiological Temporal Aftershock Forecasting Model using Markov Chain Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Jalayer, Fatemeh; Ebrahimian, Hossein

    2014-05-01

    Introduction The first few days elapsed after the occurrence of a strong earthquake and in the presence of an ongoing aftershock sequence are quite critical for emergency decision-making purposes. Epidemic Type Aftershock Sequence (ETAS) models are used frequently for forecasting the spatio-temporal evolution of seismicity in the short-term (Ogata, 1988). The ETAS models are epidemic stochastic point process models in which every earthquake is a potential triggering event for subsequent earthquakes. The ETAS model parameters are usually calibrated a priori and based on a set of events that do not belong to the on-going seismic sequence (Marzocchi and Lombardi 2009). However, adaptive model parameter estimation, based on the events in the on-going sequence, may have several advantages such as, tuning the model to the specific sequence characteristics, and capturing possible variations in time of the model parameters. Simulation-based methods can be employed in order to provide a robust estimate for the spatio-temporal seismicity forecasts in a prescribed forecasting time interval (i.e., a day) within a post-main shock environment. This robust estimate takes into account the uncertainty in the model parameters expressed as the posterior joint probability distribution for the model parameters conditioned on the events that have already occurred (i.e., before the beginning of the forecasting interval) in the on-going seismic sequence. The Markov Chain Monte Carlo simulation scheme is used herein in order to sample directly from the posterior probability distribution for ETAS model parameters. Moreover, the sequence of events that is going to occur during the forecasting interval (and hence affecting the seismicity in an epidemic type model like ETAS) is also generated through a stochastic procedure. The procedure leads to two spatio-temporal outcomes: (1) the probability distribution for the forecasted number of events, and (2) the uncertainty in estimating the

  12. How Long is an Aftershock Sequence?

    NASA Astrophysics Data System (ADS)

    Godano, Cataldo; Tramelli, Anna

    2016-06-01

    The occurrence of a mainschok is always followed by aftershocks spatially distributed within the fault area. The aftershocks rate decay with time is described by the empirical Omori law which was inferred by catalogues analysis. The sequences discrimination within catalogues is not a straightforward operation, especially for low-magnitude mainshocks. Here, we describe the rate decay of the Omori law obtained using different sequence discrimination tools and we discover that, when the background seismicity is excluded, the sequences tend to last for the temporal extension of the catalogue.

  13. How Long is an Aftershock Sequence?

    NASA Astrophysics Data System (ADS)

    Godano, Cataldo; Tramelli, Anna

    2016-07-01

    The occurrence of a mainschok is always followed by aftershocks spatially distributed within the fault area. The aftershocks rate decay with time is described by the empirical Omori law which was inferred by catalogues analysis. The sequences discrimination within catalogues is not a straightforward operation, especially for low-magnitude mainshocks. Here, we describe the rate decay of the Omori law obtained using different sequence discrimination tools and we discover that, when the background seismicity is excluded, the sequences tend to last for the temporal extension of the catalogue.

  14. Processing Aftershock Sequences Using Waveform Correlation

    NASA Astrophysics Data System (ADS)

    Resor, M. E.; Procopio, M. J.; Young, C. J.; Carr, D. B.

    2008-12-01

    For most event monitoring systems, the objective is to keep up with the flow of incoming data, producing a bulletin with some modest, relatively constant, time delay after present time, often a period of a few hours or less. Because the association problem scales exponentially and not linearly with the number of detections, a dramatic increase in seismicity due to an aftershock sequence can easily cause the bulletin delay time to increase dramatically. In some cases, the production of a bulletin may cease altogether, until the automatic system can catch up. For a nuclear monitoring system, the implications of such a delay could be dire. Given the expected similarity between a mainshock and aftershocks, it has been proposed that waveform correlation may provide a powerful means to simultaneously increase the efficiency of processing aftershock sequences, while also lowering the detection threshold and improving the quality of the event solutions. However, many questions remain unanswered. What are the key parameters for achieving the best correlations between waveforms (window length, filtering, etc.), and are they sequence-dependent? What is the overall percentage of similar events in an aftershock sequence, i.e. what is the maximum level of efficiency that a waveform correlation could be expected to achieve? Finally, how does this percentage of events vary among sequences? Using data from the aftershock sequence for the December 26, 2004 Mw 9.1 Sumatra event, we investigate these issues by building and testing a prototype waveform correlation event detection system that automatically expands its library of known events as new signatures are indentified in the aftershock sequence (by traditional signal detection and event processing). Our system tests all incoming data against this dynamic library, thereby identify any similar events before traditional processing takes place. In the region surrounding the Sumatra event, the NEIC EDR contains 4997 events in the 9

  15. Model for the Distribution of Aftershock Interoccurrence Times

    SciTech Connect

    Shcherbakov, Robert; Yakovlev, Gleb; Rundle, John B.; Turcotte, Donald L.

    2005-11-18

    In this work the distribution of interoccurrence times between earthquakes in aftershock sequences is analyzed and a model based on a nonhomogeneous Poisson (NHP) process is proposed to quantify the observed scaling. In this model the generalized Omori's law for the decay of aftershocks is used as a time-dependent rate in the NHP process. The analytically derived distribution of interoccurrence times is applied to several major aftershock sequences in California to confirm the validity of the proposed hypothesis.

  16. Zemmouri earthquake rupture zone (Mw 6.8, Algeria): Aftershocks sequence relocation and 3D velocity model

    NASA Astrophysics Data System (ADS)

    Ayadi, A.; Dorbath, C.; Ousadou, F.; Maouche, S.; Chikh, M.; Bounif, M. A.; Meghraoui, M.

    2008-09-01

    We analyze the aftershocks sequence of the Zemmouri thrust faulting earthquake (21 May 2003, Mw 6.8) located east of Algiers in the Tell Atlas. The seismic sequence located during ˜2 months following the mainshock is made of more than 1500 earthquakes and extends NE-SW along a ˜60-km fault rupture zone crossing the coastline. The earthquake relocation was performed using handpicked P and S phases located with the tomoDD in a detailed 3D velocity structure of the epicentral area. Contrasts between velocity patches seem to correlate with contacts between granitic-volcanic basement rocks and the sedimentary formation of the eastern Mitidja basin. The aftershock sequence exhibits at least three seismic clouds and a well-defined SE-dipping main fault geometry that reflects the complex rupture. The distribution of seismic events presents a clear contrast between a dense SW zone and a NE zone with scattered aftershocks. We observe that the mainshock locates between the SW and NE seismic zones; it also lies at the NNS-SSE contact that separates a basement block to the east and sedimentary formations to the west. The aftershock distribution also suggests fault bifurcation at the SW end of the fault rupture, with a 20-km-long ˜N 100° trending seismic cluster, with a vertical fault geometry parallel to the coastline juxtaposed. Another aftershock cloud may correspond to 75° SE dipping fault. The fault geometry and related SW branches may illustrate the interference between pre-existing fault structures and the SW rupture propagation. The rupture zone, related kinematics, and velocity contrasts obtained from the aftershocks distribution are in agreement with the coastal uplift and reflect the characteristics of an active zone controlled by convergent movements at a plate boundary.

  17. A damage mechanics model for power-law creep and earthquake aftershock and foreshock sequences

    NASA Astrophysics Data System (ADS)

    Main, Ian G.

    2000-07-01

    It is common practice to refer to three independent stages of creep under static loading conditions in the laboratory: namely transient, steady-state, and accelerating. Here we suggest a simple damage mechanics model for the apparently trimodal behaviour of the strain and event rate dependence, by invoking two local mechanisms of positive and negative feedback applied to constitutive rules for time-dependent subcritical crack growth. In both phases, the individual constitutive rule for measured strain ɛ takes the form ɛ(t)=ɛ0[1+t/mτ]m, where τ is the ratio of initial crack length to rupture velocity. For a local hardening mechanism (negative feedback), we find that transient creep dominates, with 0∞ can be defined at a finite failure time, resulting in the localization of damage and the formation of a throughgoing fracture. In the hybrid model, transient creep dominates in the early stages of damage and accelerating creep in the latter stages. At intermediate times the linear superposition of the two mechanisms spontaneously produces an apparent steady-state phase of relatively constant strain rate, with a power-law rheology, as observed in laboratory creep test data. The predicted acoustic emission event rates in the transient and accelerating phases are identical to the modified Omori laws for aftershocks and foreshocks, respectively, and provide a physical meaning for the empirical constants measured. At intermediate times, the event rate tends to a relatively constant background rate. The requirement for a finite event rate at the time of the main shock can be satisfied by modifying the instability criterion to having a finite crack velocity at the dynamic failure time, dx/dt->VR, where VR is the dynamic rupture velocity. The same hybrid

  18. Aftershocks triggered by fluid intrusion: Evidence for the aftershock sequence occurred 2014 in West Bohemia/Vogtland

    NASA Astrophysics Data System (ADS)

    Hainzl, S.; Fischer, T.; Čermáková, H.; Bachura, M.; Vlček, J.

    2016-04-01

    The West Bohemia/Vogtland region, central Europe, is well known for its repeating swarm activity. However, the latest activity in 2014, although spatially overlapping with previous swarm activity, consisted of three classical aftershock sequences triggered by ML3.5, 4.4, and 3.5 events. To decode the apparent system change from swarm-type to mainshock-aftershock characteristics, we have analyzed the details of the major ML4.4 sequence based on focal mechanisms and relocated earthquake data. Our analysis shows that the mainshock occurred with rotated mechanism in a step over region of the fault plane, unfavorably oriented to the regional stress field. Most of its intense aftershock activity occurred in-plane with classical characteristics such as (i) the maximum magnitude of the aftershocks is significantly less than the mainshock magnitude and (ii) the decay can be well fitted by the Omori-Utsu law. However, the absolute number of aftershocks and the fitted Omori-Utsu c and p parameters are much larger than for typical sequences. By means of the epidemic-type aftershock sequence model, we show that an additional aseismic source with an exponentially decaying strength triggered a large fraction of the aftershocks. Corresponding pore pressure simulations with an exponentially decreasing flow rate of the fluid source show a good agreement with the observed spatial migration front of the aftershocks extending approximately with log(t). Thus, we conclude that the mainshock opened fluid pathways from a finite fluid source into the fault plane explaining the unusual high rate of aftershocks, the migration patterns, and the exponential decrease of the aseismic signal.

  19. Triggered Swarms and Induced Aftershock Sequences in Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Shcherbakov, R.; Turcotte, D. L.; Yikilmaz, M. B.; Kellogg, L. H.; Rundle, J. B.

    2015-12-01

    Natural geothermal systems, which are used for energy generation, are usually associated with high seismic activity. This can be related to the large-scale injection and extraction of fluids to enhance geothermal recovery. This results in the changes of the pore pressure and pore-elastic stress field and can stimulate the occurrence of earthquakes. These systems are also prone to triggering of seismicity by the passage of seismic waves generated by large distant main shocks. In this study, we analyze clustering and triggering of seismicity at several geothermal fields in California. Particularly, we consider the seismicity at the Geysers, Coso, and Salton Sea geothermal fields. We analyze aftershock sequences generated by local large events with magnitudes greater than 4.0 and earthquake swarms generated by several significant long distant main shocks. We show that the rate of the aftershock sequences generated by the local large events in the two days before and two days after the reference event can be modelled reasonably well by the time dependent Epidemic Type Aftershock Sequence (ETAS) model. On the other hand, the swarms of activity triggered by large distant earthquakes cannot be described by the ETAS model. To model the increase in the rate of seismicity associated with triggering by large distant main shocks we introduce an additional time-dependent triggering mechanism into the ETAS model. In almost all cases the frequency-magnitude statistics of triggered sequences follow Gutenberg-Richter scaling to a good approximation. The analysis indicates that the seismicity triggered by relatively large local events can initiate sequences similar to regular aftershock sequences. In contrast, the distant main shocks trigger swarm like activity with faster decaying rates.

  20. The Aftershock Risk Index - quantification of aftershock impacts during ongoing strong-seismic sequences

    NASA Astrophysics Data System (ADS)

    Schaefer, Andreas; Daniell, James; Khazai, Bijan; Wenzel, Friedemann

    2016-04-01

    The occurrence and impact of strong earthquakes often triggers the long-lasting impact of a seismic sequence. Strong earthquakes are generally followed by many aftershocks or even strong subsequently triggered ruptures. The Nepal 2015 earthquake sequence is one of the most recent examples where aftershocks significantly contributed to human and economic losses. In addition, rumours about upcoming mega-earthquakes, false predictions and on-going cycles of aftershocks induced a psychological burden on the society, which caused panic, additional casualties and prevented people from returning to normal life. This study shows the current phase of development of an operationalised aftershock intensity index, which will contribute to the mitigation of aftershock hazard. Hereby, various methods of earthquake forecasting and seismic risk assessments are utilised and an integration of the inherent aftershock intensity is performed. A spatio-temporal analysis of past earthquake clustering provides first-hand data about the nature of aftershock occurrence. Epidemic methods can additionally provide time-dependent variation indices of the cascading effects of aftershock generation. The aftershock hazard is often combined with the potential for significant losses through the vulnerability of structural systems and population. A historical database of aftershock socioeconomic effects from CATDAT has been used in order to calibrate the index based on observed impacts of historical events and their aftershocks. In addition, analytical analysis of cyclic behaviour and fragility functions of various building typologies are explored. The integration of many different probabilistic computation methods will provide a combined index parameter which can then be transformed into an easy-to-read spatio-temporal intensity index. The index provides daily updated information about the probability of the inherent seismic risk of aftershocks by providing a scalable scheme fordifferent aftershock

  1. Time-dependent Induced Seismicity Rates Described with an Epidemic Type Aftershock Sequence Model at The Geysers Geothermal Field, California

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Totten, E. J.; Burgmann, R.

    2015-12-01

    To improve understanding of the link between injection/production activity and seismicity, we apply an Epidemic Type Aftershock Sequence (ETAS) model to an earthquake catalog from The Geysers geothermal field (GGF) between 2005-2015 using >140,000 events and Mc 0.8 . We partition the catalog along a northeast-southwest trending divide, which corresponds to regions of high and low levels of enhanced geothermal stimulation (EGS) across the field. The ETAS model is fit to the seismicity data using a 6-month sliding window with a 1-month time step to determine the background seismicity rate. We generate monthly time series of the time-dependent background seismicity rate in 1-km depth intervals from 0-5km. The average wellhead depth is 2-3 km and the background seismicity rates above this depth do not correlate well with field-wide injected masses over the time period of interest. The auto correlation results show a 12-month period for monthly time series proximal to the average wellhead depths (2-3km and 3-4km) for northwest GGF strongly correlates with field-wide fluid injection masses, with a four-month phase shift between the two depth intervals as fluid migrates deeper. This periodicity is not observed for the deeper depth interval of 4-5 km, where monthly background seismicity rates reduce to near zero. Cross-correlation analysis using the monthly time series for background seismicity rate and the field-wide injection, production and net injection (injection minus production) suggest that injection most directly modulates seismicity. Periodicity in the background seismicity is not observed as strongly in the time series for the southeast field. We suggest that the variation in background seismicity rate is a proxy for pore-pressure diffusion of injected fluids at depth. We deduce that the contrast between the background seismicity rates in the northwest and southeast GGF is a result of reduced EGS activity in the southeast region.

  2. Analysis of the 2012 Oct 27 Haida Gwaii Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    Mulder, T.; Brillon, C.; Bentkowski, W.; White, M.; Rosenberger, A.; Rogers, G. C.; Vernon, F.; Kao, H.

    2013-12-01

    The magnitude 7.7 thrust earthquake that occurred on 2012 Oct 28 offshore of Haida Gwaii (formerly the Queen Charlotte Islands), in British Columbia, Canada, produced a rich and on-going aftershock sequence. Ten months of aftershock events are determined from analyst reviewed solutions and automatic detectors and locators. For automated solutions, rotating the waveforms and running P and S wave filters (Rosenberger, 2010) over them produced phase arrivals for an improved catalogue of aftershocks compared to using a traditional signal to noise ratio detector on standard vertical and horizontal component seismograms. The automated aftershock locations from the rotated waveforms are compared to the automated locations from the standard vertical and horizontal waveforms and to analyst locations (which are generally M>2.5). The best of the automated solutions are comparable in quality to analyst solutions and much more numerous making this a viable method of processing extensive aftershock sequences. They outline a region approximately 50 km wide and 100 km long, with the aftershocks in two parallel bands. Most of the aftershocks are not on the rupture surface but are in the overlying or underlying plates. It is thought that this earthquake represents the Pacific plate thrusting underneath the North America plate with the rupture surface lying beneath the sedimentary Queen Charlotte terrace and terminating to the east in the vicinity of the Queen Charlotte fault. Due to the one-sided station distribution on land, depth trades off with distance offshore, resulting in poor depth determinations. However, using ocean bottom seismometers deployed early in the aftershock sequence, depth resolution was significantly improved. First motion focal North America plate with the rupture surface lying beneath the sedimentary Queen Charlotte terrace and terminating to the east in the vicinity of the Queen Charlotte fault.mechanisms for a portion of the aftershock sequence are compared

  3. Statistical estimation of the duration of aftershock sequences

    NASA Astrophysics Data System (ADS)

    Hainzl, S.; Christophersen, A.; Rhoades, D.; Harte, D.

    2016-05-01

    It is well known that large earthquakes generally trigger aftershock sequences. However, the duration of those sequences is unclear due to the gradual power-law decay with time. The triggering time is assumed to be infinite in the epidemic type aftershock sequence (ETAS) model, a widely used statistical model to describe clustering phenomena in observed earthquake catalogues. This assumption leads to the constraint that the power-law exponent p of the Omori-Utsu decay has to be larger than one to avoid supercritical conditions with accelerating seismic activity on long timescales. In contrast, seismicity models based on rate- and state-dependent friction observed in laboratory experiments predict p ≤ 1 and a finite triggering time scaling inversely to the tectonic stressing rate. To investigate this conflict, we analyse an ETAS model with finite triggering times, which allow smaller values of p. We use synthetic earthquake sequences to show that the assumption of infinite triggering times can lead to a significant bias in the maximum likelihood estimates of the ETAS parameters. Furthermore, it is shown that the triggering time can be reasonably estimated using real earthquake catalogue data, although the uncertainties are large. The analysis of real earthquake catalogues indicates mainly finite triggering times in the order of 100 days to 10 years with a weak negative correlation to the background rate, in agreement with expectations of the rate- and state-friction model. The triggering time is not the same as the apparent duration, which is the time period in which aftershocks dominate the seismicity. The apparent duration is shown to be strongly dependent on the mainshock magnitude and the level of background activity. It can be much shorter than the triggering time. Finally, we perform forward simulations to estimate the effective forecasting period, which is the time period following a mainshock, in which ETAS simulations can improve rate estimates after the

  4. Statistical monitoring of aftershock sequences: a case study of the 2015 Mw7.8 Gorkha, Nepal, earthquake

    NASA Astrophysics Data System (ADS)

    Ogata, Yosihiko; Tsuruoka, Hiroshi

    2016-03-01

    Early forecasting of aftershocks has become realistic and practical because of real-time detection of hypocenters. This study illustrates a statistical procedure for monitoring aftershock sequences to detect anomalies to increase the probability gain of a significantly large aftershock or even an earthquake larger than the main shock. In particular, a significant lowering (relative quiescence) in aftershock activity below the level predicted by the Omori-Utsu formula or the epidemic-type aftershock sequence model is sometimes followed by a large earthquake in a neighboring region. As an example, we detected significant lowering relative to the modeled rate after approximately 1.7 days after the main shock in the aftershock sequence of the Mw7.8 Gorkha, Nepal, earthquake of April 25, 2015. The relative quiescence lasted until the May 12, 2015, M7.3 Kodari earthquake that occurred at the eastern end of the primary aftershock zone. Space-time plots including the transformed time can indicate the local places where aftershock activity lowers (the seismicity shadow). Thus, the relative quiescence can be hypothesized to be related to stress shadowing caused by probable slow slips. In addition, the aftershock productivity of the M7.3 Kodari earthquake is approximately twice as large as that of the M7.8 main shock.

  5. Statistical signatures of aftershock sequences generated by supershear mainshocks

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Shcherbakov, R.; Tiampo, K. F.; Mansinha, L.

    2010-12-01

    The rupture process during supershear earthquakes generates a seismic shock wave redistributing stress away from the fault resembling a sonic boom produced by a supersonic aircraft. This leads to a relative quiescence in aftershock activity along the supershear segment of the rupture. The occurrence of supershear ruptures is also generally associated with a region of local high pre-stress and an unusually smooth friction profile over the supershear segment, leading to a conspicuous absence of high frequency ground motions. We have considered the aftershock sequences of five well-known supershear earthquakes from around the world (1979 Imperial Valley, 1992 Landers, 1999 Izmit and Duzce and 2002 Denali earthquakes) to test whether the aftershock statistics around the supershear rupture are different from the statistics in the rest of the region due to the aforementioned stress conditions and redistributions. Specifically, we have looked at the frequency-magnitude distribution in order to study the variation of the b value for each of the sequences and observe statistically significant variations. In particular, we have determined that the b value is always higher in the zone surrounding a supershear segment than in the rest of the aftershock region. The Omori Law, however, does not show such clear trends. We also looked at the average difference in magnitude between the mainshock and the largest aftershock and found it is larger than that predicted by Bath's law. The results certainly point towards a relationship between aftershock statistics and the mainshock rupture process and might facilitate a physical process based understanding of the empirical laws of earthquake statistics.

  6. Short-term foreshocks in Southern California and Italy revisited: Observed deviations from the Epidemic-Type Aftershock Sequence (ETAS) Model

    NASA Astrophysics Data System (ADS)

    Seif, Stefanie; Mignan, Arnaud; Wiemer, Stefan

    2013-04-01

    Numerous studies have suggested that short-term foreshocks observed prior to large earthquakes are undistinguishable from the normal behaviour of seismicity, which is well described for example by the Epidemic-Type Aftershock Sequence (ETAS) model. Here we show that these studies fail to extract abnormal foreshock behaviour due to the much more frequent occurrence of aftershocks in comparison to potential foreshocks, which results in undervaluing the role of foreshocks. We first define mainshocks as earthquakes of magnitude M6+ and use a space-time-magnitude window method with a maximum distance of 10 km to the mainshock, a maximum time range of 3 days before the mainshock and a minimum magnitude M4+ to define foreshocks in Southern California and in Italy. We then compare the observed rate of foreshock-mainshock pairs to the rate expected by ETAS simulations. Similar to previous studies, these results indicate that the foreshock activity observed in real catalogues is compatible with the ETAS model. Definition of foreshocks with a window method is, however, simplistic, since any individual event may be considered a foreshock although it is impossible to distinguish a foreshock from background or aftershock activity at a one-to-one event basis. We extend our foreshock analysis based on the predictions of the Non-Critical Precursory Accelerating Seismicity Theory (NC PAST), which are: (1) foreshocks are due to overloading on the main fault and occur in clusters, the activity of which is significantly higher than background activity, (2) microseismicity (M<3) must be included for the emergence of a reliable signal and (3) foreshocks are not systematic before large earthquakes due to aleatoric uncertainty on the rupture process. Following these guidelines, we systematically investigate foreshock sequences before large earthquakes (M6+) in Southern California and Italy. Using different approaches, we finally show that significant anomalies are observed before some

  7. Foreshock and aftershocks in simple earthquake models.

    PubMed

    Kazemian, J; Tiampo, K F; Klein, W; Dominguez, R

    2015-02-27

    Many models of earthquake faults have been introduced that connect Gutenberg-Richter (GR) scaling to triggering processes. However, natural earthquake fault systems are composed of a variety of different geometries and materials and the associated heterogeneity in physical properties can cause a variety of spatial and temporal behaviors. This raises the question of how the triggering process and the structure interact to produce the observed phenomena. Here we present a simple earthquake fault model based on the Olami-Feder-Christensen and Rundle-Jackson-Brown cellular automata models with long-range interactions that incorporates a fixed percentage of stronger sites, or asperity cells, into the lattice. These asperity cells are significantly stronger than the surrounding lattice sites but eventually rupture when the applied stress reaches their higher threshold stress. The introduction of these spatial heterogeneities results in temporal clustering in the model that mimics that seen in natural fault systems along with GR scaling. In addition, we observe sequences of activity that start with a gradually accelerating number of larger events (foreshocks) prior to a main shock that is followed by a tail of decreasing activity (aftershocks). This work provides further evidence that the spatial and temporal patterns observed in natural seismicity are strongly influenced by the underlying physical properties and are not solely the result of a simple cascade mechanism. PMID:25768785

  8. Foreshock and Aftershocks in Simple Earthquake Models

    NASA Astrophysics Data System (ADS)

    Kazemian, J.; Tiampo, K. F.; Klein, W.; Dominguez, R.

    2015-02-01

    Many models of earthquake faults have been introduced that connect Gutenberg-Richter (GR) scaling to triggering processes. However, natural earthquake fault systems are composed of a variety of different geometries and materials and the associated heterogeneity in physical properties can cause a variety of spatial and temporal behaviors. This raises the question of how the triggering process and the structure interact to produce the observed phenomena. Here we present a simple earthquake fault model based on the Olami-Feder-Christensen and Rundle-Jackson-Brown cellular automata models with long-range interactions that incorporates a fixed percentage of stronger sites, or asperity cells, into the lattice. These asperity cells are significantly stronger than the surrounding lattice sites but eventually rupture when the applied stress reaches their higher threshold stress. The introduction of these spatial heterogeneities results in temporal clustering in the model that mimics that seen in natural fault systems along with GR scaling. In addition, we observe sequences of activity that start with a gradually accelerating number of larger events (foreshocks) prior to a main shock that is followed by a tail of decreasing activity (aftershocks). This work provides further evidence that the spatial and temporal patterns observed in natural seismicity are strongly influenced by the underlying physical properties and are not solely the result of a simple cascade mechanism.

  9. Aftershocks in a frictional earthquake model.

    PubMed

    Braun, O M; Tosatti, Erio

    2014-09-01

    Inspired by spring-block models, we elaborate a "minimal" physical model of earthquakes which reproduces two main empirical seismological laws, the Gutenberg-Richter law and the Omori aftershock law. Our point is to demonstrate that the simultaneous incorporation of aging of contacts in the sliding interface and of elasticity of the sliding plates constitutes the minimal ingredients to account for both laws within the same frictional model. PMID:25314453

  10. Hypocentral Relocations of the 2008 Mt. Carmel, Illinois Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    Shoemaker, K.; Hamburger, M. W.; Pavlis, G. L.; Horton, S. P.; Withers, M. M.

    2009-12-01

    On April 18, 2008, a moderate sized earthquake (Mw 5.2, hypocentral depth of 16 km) occurred near the Indiana-Illinois state border within 3 km of the Mt. Carmel-New Harmony fault at the northern termination of the Wabash Valley Fault System. A total of 257 aftershocks were recorded over the next month by a fourteen-station temporary network deployed by Indiana University and University of Memphis/Center of Earthquake Research and Information (CERI). The number of recorded aftershocks is greater than aftershocks recorded from previous earthquakes in the WVFS of similar magnitude within the last 50 years. The number and density of local stations allowed the generation of precise hypocentral relocations with the combination of waveform cross-correlation and joint hypocentral techniques. The relocated hypocenters indicate a well-defined near-vertical fault plane striking east-west. The fault orientation is consistent with the focal mechanism of the main shock and nearly orthogonal with respect to the trace of the neighboring Mt. Carmel-New Harmony fault. The interpreted ruptured fault orientation suggests the aftershock sequence occurred on a transfer structure at the fault termination. The structure may be related to the change in deformation styles suggested by the transition from the northeast-trending WVFS to the northwest-trending La Salle anticlinorium.

  11. Discrete characteristics of the aftershock sequence of the 2011 Van earthquake

    NASA Astrophysics Data System (ADS)

    Toker, Mustafa

    2014-10-01

    An intraplate earthquake of magnitude Mw 7.2 occurred on a NE-SW trending blind oblique thrust fault in accretionary orogen, the Van region of Eastern Anatolia on October 23, 2011. The aftershock seismicity in the Van earthquake was not continuous but, rather, highly discrete. This shed light on the chaotic nonuniformity of the event distribution and played key roles in determining the seismic coupling between the rupturing process and seismogeneity. I analyzed the discrete statistical mechanics of the 2011 Van mainshock-aftershock sequence with an estimation of the non-dimensional tuning parameters consisting of; temporal clusters (C) and the random (RN) distribution of aftershocks, range of size scales (ROSS), strength change (εD), temperature (T), P-value of temporal decay, material parameter R-value, seismic coupling χ, and Q-value of aftershock distribution. I also investigated the frequency-size (FS), temporal (T) statistics and the sequential characteristics of aftershock dynamics using discrete approach and examined the discrete evolutionary periods of the Van earthquake Gutenberg-Richter (GR) distribution. My study revealed that the FS and T statistical properties of aftershock sequence represent the Gutenberg-Richter (GR) distribution, clustered (C) in time and random (RN) Poisson distribution, respectively. The overall statistical behavior of the aftershock sequence shows that the Van earthquake originated in a discrete structural framework with high seismic coupling under highly variable faulting conditions. My analyses relate this larger dip-slip event to a discrete seismogenesis with two main components of complex fracturing and branching framework of the ruptured fault and dynamic strengthening and hardening behavior of the earthquake. The results indicate two dynamic cases. The first is associated with aperiodic nature of aftershock distribution, indicating a time-independent Poissonian event. The second is associated with variable slip model

  12. How ubiquitous are aftershock sequences driven by high pressure fluids at depth?

    NASA Astrophysics Data System (ADS)

    Miller, S. A.

    2008-12-01

    Strong evidence suggests that two earthquake-aftershock episodes, the 2004 Niigata (Japan) sequence and the 1997 Umbria-Marche (Italy) sequence, were driven by high pressure fluids at depth. Since Niigata was in a compressional environment and Umbria-Marche in extension, a question arises about whether such a mechanism is more general than just these two cases. Although it is not clear by what mechanism fluids of sufficient volume can be trapped in the lower crust, if such pockets of high pressure fluids exist, then they must necessarily be expelled when a large earthquake provides the hydraulic connection to the hydrostatically pressured free surface. In this talk, aftershock data is analyzed for a number of different earthquakes in a variety of tectonic settings, including 1992 Landers, 1994 Northridge, and the 2001 Bhuj earthquakes. Comparisons are made between model results of the evolved fluid pressure state from a high pressure source at depth, and the spatio-temporal distributions of aftershocks. The data is further analyzed and compared with model results for differences in the rate of aftershocks (p-value in Omori's Law) and their dependence on the orientation of the mainshock relative to the prevailing regional stress field.

  13. Internal tectonic structure of the Central American Wadati-Benioff zone based on analysis of aftershock sequences

    NASA Astrophysics Data System (ADS)

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří; Běhounková, Marie

    2007-09-01

    Relocated Engdahl et al. (1998) global seismological data for 10 aftershock sequences were used to analyze the internal tectonic structure of the Central American subduction zone; the main shocks of several of these were the most destructive and often referenced earthquakes in the region (e.g., the 1970 Chiapas, 1983 Osa, 1992 Nicaragua, 1999 Quepos, 2001 El Salvador earthquakes). The spatial analysis of aftershock foci distribution was performed in a rotated Cartesian coordinate system (x, y, z) related to the Wadati-Benioff zone, and not in a standard coordinate system ($\\varphi$, λ, h are latitude, longitude, focal depth, respectively). Available fault plane solutions were also transformed into the plane approximating the Wadati-Benioff zone. The spatial distribution of earthquakes in each aftershock sequence was modeled as either a plane fit using a least squares approximation or a volume fit with a minimum thickness rectangular box. The analysis points to a quasi-planar distribution of earthquake foci in all aftershock sequences, manifesting the appurtenance of aftershocks to fracture zones. Geometrical parameters of fracture zones (strike, dip, and dimensions) hosting individual sequences were calculated and compared with the seafloor morphology of the Cocos Plate. The smooth character of the seafloor correlates with the aftershock fracture zones oriented parallel to the trench and commonly subparallel to the subducting slab, whereas subduction of the Cocos Ridge and seamounts around the Quepos Plateau coincides with steeply dipping fracture zones. Transformed focal mechanisms are almost exclusively (>90%) of normal character.

  14. Internal tectonic structure of the Central American Wadati-Benioff zone based on analysis of aftershock sequences

    NASA Astrophysics Data System (ADS)

    Å PičáK, Aleš; Hanuš, VáClav; VaněK, JiřÃ.­; BěHounková, Marie

    2007-09-01

    Relocated Engdahl et al. (1998) global seismological data for 10 aftershock sequences were used to analyze the internal tectonic structure of the Central American subduction zone; the main shocks of several of these were the most destructive and often referenced earthquakes in the region (e.g., the 1970 Chiapas, 1983 Osa, 1992 Nicaragua, 1999 Quepos, 2001 El Salvador earthquakes). The spatial analysis of aftershock foci distribution was performed in a rotated Cartesian coordinate system (x, y, z) related to the Wadati-Benioff zone, and not in a standard coordinate system (ϕ, λ, h are latitude, longitude, focal depth, respectively). Available fault plane solutions were also transformed into the plane approximating the Wadati-Benioff zone. The spatial distribution of earthquakes in each aftershock sequence was modeled as either a plane fit using a least squares approximation or a volume fit with a minimum thickness rectangular box. The analysis points to a quasi-planar distribution of earthquake foci in all aftershock sequences, manifesting the appurtenance of aftershocks to fracture zones. Geometrical parameters of fracture zones (strike, dip, and dimensions) hosting individual sequences were calculated and compared with the seafloor morphology of the Cocos Plate. The smooth character of the seafloor correlates with the aftershock fracture zones oriented parallel to the trench and commonly subparallel to the subducting slab, whereas subduction of the Cocos Ridge and seamounts around the Quepos Plateau coincides with steeply dipping fracture zones. Transformed focal mechanisms are almost exclusively (>90%) of normal character.

  15. Can current New Madrid seismicity be explained as a decaying aftershock sequence?

    NASA Astrophysics Data System (ADS)

    Page, M. T.; Hough, S. E.; Felzer, K. R.

    2012-12-01

    It has been suggested that continuing seismicity in the New Madrid, central U.S. region is primarily composed of the continuing long-lived aftershock sequence of the 1811-1812 sequence, and thus cannot be taken as an indication of present-day strain accrual in the region. We examine historical and instrumental seismicity in the New Madrid region to determine if such a model is feasible given 1) the observed protracted nature of past New Madrid sequences, with multiple mainshocks with apparently similar magnitudes; 2) the rate of historically documented early aftershocks from the 1811-1812 sequence; and 3) plausible mainshock magnitudes and aftershock-productivity parameters. We use ETAS modeling to search for sub-critical sets of direct Omori parameters that are consistent with all of these datasets, given a realistic consideration of their uncertainties, and current seismicity in the region. The results of this work will help to determine whether or not future sequences are likely to be clusters of events like those in the past, a key issue for earthquake response planning.

  16. Aftershocks in coherent-noise models

    NASA Astrophysics Data System (ADS)

    Wilke, C.; Altmeyer, S.; Martinetz, T.

    1998-09-01

    The decay pattern of aftershocks in the so-called ‘coherent-noise’ models [M.E.J. Newman, K. Sneppen, Phys. Rev. E 54 (1996) 6226] is studied in detail. Analytical and numerical results show that the probability to find a large event at time t after an initial major event decreases as t- τ for small t, with the exponent τ ranging from 0 to values well above 1. This is in contrast to Sneppen and Newman, who stated that the exponent is about 1, independent of the microscopic details of the simulation. Numerical simulations of an extended model [C. Wilke, T. Martinetz, Phys. Rev. E 56 (1997) 7128] show that the power-law is only a generic feature of the original dynamics and does not necessarily appear in a more general context. Finally, the implications of the results to the modelling of earthquakes are discussed.

  17. An experimental approach to non - extensive statistical physics and Epidemic Type Aftershock Sequence (ETAS) modeling. The case of triaxially deformed sandstones using acoustic emissions.

    NASA Astrophysics Data System (ADS)

    Stavrianaki, K.; Vallianatos, F.; Sammonds, P. R.; Ross, G. J.

    2014-12-01

    Fracturing is the most prevalent deformation mechanism in rocks deformed in the laboratory under simulated upper crustal conditions. Fracturing produces acoustic emissions (AE) at the laboratory scale and earthquakes on a crustal scale. The AE technique provides a means to analyse microcracking activity inside the rock volume and since experiments can be performed under confining pressure to simulate depth of burial, AE can be used as a proxy for natural processes such as earthquakes. Experimental rock deformation provides us with several ways to investigate time-dependent brittle deformation. Two main types of experiments can be distinguished: (1) "constant strain rate" experiments in which stress varies as a result of deformation, and (2) "creep" experiments in which deformation and deformation rate vary over time as a result of an imposed constant stress. We conducted constant strain rate experiments on air-dried Darley Dale sandstone samples in a variety of confining pressures (30MPa, 50MPa, 80MPa) and in water saturated samples with 20 MPa initial pore fluid pressure. The results from these experiments used to determine the initial loading in the creep experiments. Non-extensive statistical physics approach was applied to the AE data in order to investigate the spatio-temporal pattern of cracks close to failure. A more detailed study was performed for the data from the creep experiments. When axial stress is plotted against time we obtain the trimodal creep curve. Calculation of Tsallis entropic index q is performed to each stage of the curve and the results are compared with the ones from the constant strain rate experiments. The Epidemic Type Aftershock Sequence model (ETAS) is also applied to each stage of the creep curve and the ETAS parameters are calculated. We investigate whether these parameters are constant across all stages of the curve, or whether there are interesting patterns of variation. This research has been co-funded by the European Union

  18. Recent Experiences in Aftershock Hazard Modelling in New Zealand

    NASA Astrophysics Data System (ADS)

    Gerstenberger, M.; Rhoades, D. A.; McVerry, G.; Christophersen, A.; Bannister, S. C.; Fry, B.; Potter, S.

    2014-12-01

    The occurrence of several sequences of earthquakes in New Zealand in the last few years has meant that GNS Science has gained significant recent experience in aftershock hazard and forecasting. First was the Canterbury sequence of events which began in 2010 and included the destructive Christchurch earthquake of February, 2011. This sequence is occurring in what was a moderate-to-low hazard region of the National Seismic Hazard Model (NSHM): the model on which the building design standards are based. With the expectation that the sequence would produce a 50-year hazard estimate in exceedance of the existing building standard, we developed a time-dependent model that combined short-term (STEP & ETAS) and longer-term (EEPAS) clustering with time-independent models. This forecast was combined with the NSHM to produce a forecast of the hazard for the next 50 years. This has been used to revise building design standards for the region and has contributed to planning of the rebuilding of Christchurch in multiple aspects. An important contribution to this model comes from the inclusion of EEPAS, which allows for clustering on the scale of decades. EEPAS is based on three empirical regressions that relate the magnitudes, times of occurrence, and locations of major earthquakes to regional precursory scale increases in the magnitude and rate of occurrence of minor earthquakes. A second important contribution comes from the long-term rate to which seismicity is expected to return in 50-years. With little seismicity in the region in historical times, a controlling factor in the rate is whether-or-not it is based on a declustered catalog. This epistemic uncertainty in the model was allowed for by using forecasts from both declustered and non-declustered catalogs. With two additional moderate sequences in the capital region of New Zealand in the last year, we have continued to refine our forecasting techniques, including the use of potential scenarios based on the aftershock

  19. Properties of the Aftershock Sequences of the 2003 Bingöl, M D = 6.4, (Turkey) Earthquake

    NASA Astrophysics Data System (ADS)

    Öztürk, S.; Çinar, H.; Bayrak, Y.; Karsli, H.; Daniel, G.

    2008-02-01

    Aftershock sequences of the magnitude M W =6.4 Bingöl earthquake of 1 May, 2003 (Turkey) are studied to analyze the spatial and temporal variability of seismicity parameters of the b value of the frequency-magnitude distribution and the p value describing the temporal decay rate of aftershocks. The catalog taken from the KOERI contains 516 events and one month’s time interval. The b value is found as 1.49 ± 0.07 with Mc =3.2. Considering the error limits, b value is very close to the maximum b value stated in the literature. This larger value may be caused by the paucity of the larger aftershocks with magnitude M D ≥ 5.0. Also, the aftershock area is divided into four parts in order to detect the differences in b value and the changes illustrate the heterogeneity of the aftershock region. The p value is calculated as 0.86 ± 0.11, relatively small. This small p value may be a result of the slow decay rate of the aftershock activity and the small number of aftershocks. For the fitting of a suitable model and estimation of correct values of decay parameters, the sequence is also modeled as a background seismicty rate model. Constant background activity does not appear to be important during the first month of the Bingöl aftershock sequences and this result is coherent with an average estimation of pre-existing seismicity. The results show that usage of simple modified Omori law is reasonable for the analysis. The spatial variability in b value is between 1.2 and 1.8 and p value varies from 0.6 to 1.2. Although the physical interpretation of the spatial variability of these seismicity parameters is not straightforward, the variation of b and p values can be related to the stress and slip distribution after the mainshock, respectively. The lower b values are observed in the high stress regions and to a certain extent, the largest b values are related to Holocene alluvium. The larger p values are found in some part of the aftershock area although no slip occurred

  20. Implications of mainshock-aftershocks interactions during the 2013 Ebreichsdorf sequence, Austria

    NASA Astrophysics Data System (ADS)

    Tary, Jean-Baptiste; Apoloner, Maria-Theresia; Bokelmann, Götz

    2015-04-01

    The Vienna basin is a pull-apart basin located at the contact between the Alpine arc and the Eurasian plate, with the Eastern Alps to the West, the Western Carpathian to the East, the Bohemian massif to the North, and the Pannonian basin to the South. The southern border of this basin, called the Vienna Basin Fault System (VBFS), is accommodating part of the extrusion of the Pannonian basin (~1-2 mm/yr) due to the convergence between the Adriatic microplate and the Eurasian plate. The VBFS is a sinistral strike-slip fault and one of the most active fault in Austria. Along the VBFS, the seismicity is mainly concentrated in separate clusters with a spacing of approximately 20 km. In 2000 and 2013, two sequences constituted by two main shocks and 20-30 aftershocks occurred in one of these clusters located close to Ebreichsdorf, approximately 30 km south of Vienna. We focus here on the sequence of 2013 whose earthquakes were relocated using the double-difference method. The two main shocks, with local magnitudes of 4.2 and very similar focal mechanisms (N63, sinistral strike-slip), seem to be almost collocated. The aftershocks are located mainly to the northwest and at shallower depths compared with the main shocks. In order to better understand the relationships between the two main shocks and their aftershocks, we use two simple models of Coulomb failure stress to investigate possible coseismic static stress transfer between the main shocks and the aftershocks: the constant apparent friction model and the isotropic poroelastic model. The Coulomb failure stress change at the location of most aftershocks is positive but under 0.01 MPa. Aftershock triggering due to coseismic static stress is then unlikely. On the other hand, two other mechanisms could drive this sequence i.e., rapid non-linear pore pressure diffusion along the fault plane or aseismic slip. Given inter-event distances and times of ~0.5-1 km and hours to days, respectively, a high hydraulic diffusivity of

  1. Long aftershock sequences within continents and implications for earthquake hazard assessment.

    PubMed

    Stein, Seth; Liu, Mian

    2009-11-01

    One of the most powerful features of plate tectonics is that the known plate motions give insight into both the locations and average recurrence interval of future large earthquakes on plate boundaries. Plate tectonics gives no insight, however, into where and when earthquakes will occur within plates, because the interiors of ideal plates should not deform. As a result, within plate interiors, assessments of earthquake hazards rely heavily on the assumption that the locations of small earthquakes shown by the short historical record reflect continuing deformation that will cause future large earthquakes. Here, however, we show that many of these recent earthquakes are probably aftershocks of large earthquakes that occurred hundreds of years ago. We present a simple model predicting that the length of aftershock sequences varies inversely with the rate at which faults are loaded. Aftershock sequences within the slowly deforming continents are predicted to be significantly longer than the decade typically observed at rapidly loaded plate boundaries. These predictions are in accord with observations. So the common practice of treating continental earthquakes as steady-state seismicity overestimates the hazard in presently active areas and underestimates it elsewhere. PMID:19890328

  2. The Mw 8.1 2014 Iquique, Chile, seismic sequence: a tale of foreshocks and aftershocks

    NASA Astrophysics Data System (ADS)

    Cesca, S.; Grigoli, F.; Heimann, S.; Dahm, T.; Kriegerowski, M.; Sobiesiak, M.; Tassara, C.; Olcay, M.

    2016-03-01

    The 2014 April 1, Mw 8.1 Iquique (Chile) earthquake struck in the Northern Chile seismic gap. With a rupture length of less than 200 km, it left unbroken large segments of the former gap. Early studies were able to model the main rupture features but results are ambiguous with respect to the role of aseismic slip and left open questions on the remaining hazard at the Northern Chile gap. A striking observation of the 2014 earthquake has been its extensive preparation phase, with more than 1300 events with magnitude above ML 3, occurring during the 15 months preceding the main shock. Increasing seismicity rates and observed peak magnitudes accompanied the last three weeks before the main shock. Thanks to the large data sets of regional recordings, we assess the precursor activity, compare foreshocks and aftershocks and model rupture preparation and rupture effects. To tackle inversion challenges for moderate events with an asymmetric network geometry, we use full waveforms techniques to locate events, map the seismicity rate and derive source parameters, obtaining moment tensors for more than 300 events (magnitudes Mw 4.0-8.1) in the period 2013 January 1-2014 April 30. This unique data set of fore- and aftershocks is investigated to distinguish rupture process models and models of strain and stress rotation during an earthquake. Results indicate that the spatial distributions of foreshocks delineated the shallower part of the rupture areas of the main shock and its largest aftershock, well matching the spatial extension of the aftershocks cloud. Most moment tensors correspond to almost pure double couple thrust mechanisms, consistent with the slab orientation. Whereas no significant differences are observed among thrust mechanisms in different areas, nor among thrust foreshocks and aftershocks, the early aftershock sequence is characterized by the presence of normal fault mechanisms, striking parallel to the trench but dipping westward. These events likely occurred

  3. A New Hybrid STEP/Coulomb model for Aftershock Forecasting

    NASA Astrophysics Data System (ADS)

    Steacy, S.; Jimenez, A.; Gerstenberger, M.

    2014-12-01

    Aftershock forecasting models tend to fall into two classes - purely statistical approaches based on clustering, b-value, and the Omori-Utsu law; and Coulomb rate-state models which relate the forecast increase in rate to the magnitude of the Coulomb stress change. Recently, hybrid models combining physical and statistical forecasts have begun to be developed, for example by Bach and Hainzl (2012) and Steacy et al. (2013). The latter approach combined Coulomb stress patterns with the STEP (short-term earthquake probability) model by redistributing expected rate from areas with decreased stress to regions where the stress had increased. The chosen 'Coulomb Redistribution Parameter' (CRP) was 0.93, based on California earthquakes, which meant that 93% of the total rate was expected to occur where the stress had increased. The model was tested against the Canterbury sequence and the main result was that the new model performed at least as well as, and often better than, STEP when tested against retrospective data but that STEP was generally better in pseudo-prospective tests that involved data actually available within the first 10 days of each event of interest. The authors suggested that the major reason for this discrepancy was uncertainty in the slip models and, particularly, in the geometries of the faults involved in each complex major event. Here we develop a variant of the STEP/Coulomb model in which the CRP varies based on the percentage of aftershocks that occur in the positively stressed areas during the forecast learning period. We find that this variant significantly outperforms both STEP and the previous hybrid model in almost all cases, even when the input Coulomb model is quite poor. Our results suggest that this approach might be more useful than Coulomb rate-state when the underlying slip model is not well constrained due to the dependence of that method on the magnitude of the Coulomb stress change.

  4. An Improved Source-Scanning Algorithm for Locating Earthquake Clusters or Aftershock Sequences

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Kao, H.; Hsu, S.

    2010-12-01

    The Source-scanning Algorithm (SSA) was originally introduced in 2004 to locate non-volcanic tremors. Its application was later expanded to the identification of earthquake rupture planes and the near-real-time detection and monitoring of landslides and mud/debris flows. In this study, we further improve SSA for the purpose of locating earthquake clusters or aftershock sequences when only a limited number of waveform observations are available. The main improvements include the application of a ground motion analyzer to separate P and S waves, the automatic determination of resolution based on the grid size and time step of the scanning process, and a modified brightness function to utilize constraints from multiple phases. Specifically, the improved SSA (named as ISSA) addresses two major issues related to locating earthquake clusters/aftershocks. The first one is the massive amount of both time and labour to locate a large number of seismic events manually. And the second one is to efficiently and correctly identify the same phase across the entire recording array when multiple events occur closely in time and space. To test the robustness of ISSA, we generate synthetic waveforms consisting of 3 separated events such that individual P and S phases arrive at different stations in different order, thus making correct phase picking nearly impossible. Using these very complicated waveforms as the input, the ISSA scans all model space for possible combination of time and location for the existence of seismic sources. The scanning results successfully associate various phases from each event at all stations, and correctly recover the input. To further demonstrate the advantage of ISSA, we apply it to the waveform data collected by a temporary OBS array for the aftershock sequence of an offshore earthquake southwest of Taiwan. The overall signal-to-noise ratio is inadequate for locating small events; and the precise arrival times of P and S phases are difficult to

  5. Aftershock seismicity of the 2010 Maule Mw=8.8 Chile, earthquake: Correlation between co-seismic slip models and aftershock distribution?

    USGS Publications Warehouse

    Rietbrock, A.; Ryder, I.; Hayes, G.; Haberland, C.; Comte, D.; Roecker, S.

    2012-01-01

    The 27 February 2010 Maule, Chile (Mw=8.8) earthquake is one of the best instrumentally observed subduction zone megathrust events. Here we present locations, magnitudes and cumulative equivalent moment of the first -2 months of aftershocks, recorded on a temporary network deployed within 2 weeks of the occurrence of the mainshock. Using automatically-determined onset times and a back projection approach for event association, we are able to detect over 30,000 events in the time period analyzed. To further increase the location accuracy, we systematically searched for potential S-wave arrivals and events were located in a regional 2D velocity model. Additionally, we calculated regional moment tensors to gain insight into the deformation history of the aftershock sequence. We find that the aftershock seismicity is concentrated between 40 and 140 km distance from the trench over a depth range of 10 to 35 km. Focal mechanisms indicate a predominance of thrust faulting, with occasional normal faulting events. Increased activity is seen in the outer-rise region of the Nazca plate, predominantly in the northern part of the rupture area. Further down-dip, a second band of clustered seismicity, showing mainly thrust motion, is located at depths of 40–45 km. By comparing recent published mainshock source inversions with our aftershock distribution, we discriminate slip models based on the assumption that aftershocks occur in areas of rapid transition between high and low slip, surrounding high-slip regions of the mainshock.

  6. The October 17, 1989, Loma Prieta, California, earthquake and its aftershocks: Geometry of the sequence from high-resolution locations

    SciTech Connect

    Dietz, L.D.; Ellsworth, W.L. )

    1990-08-01

    Hypocenters of the Loma Prieta sequence form a dipping zone that rises from the mainshock hypocenter and is parallel to the mainshock nodal plane. Most aftershocks cluster around the perimeter of the zone, surrounding a relatively aseismic center which approximates the region of mainshock rupture. At its southeastern end, the dipping aftershock zone warps into a vertical surface that corresponds to the San Andreas fault. In the central and northwestern parts of the zone at depths above {approximately}10 km, the aftershocks define numerous disjoint fault structures. The large component of reverse-slip observed in this event agrees with a simple model for slip on a dipping plane within a compressional fault bend. The authors do not believe that the Loma Prieta earthquake occurred on the Sargent fault. However, they are unable to conclude whether it ruptured the principal plate boundary fault or a less frequently active fault.

  7. Implications of Secondary Aftershocks for Failure Processes

    NASA Astrophysics Data System (ADS)

    Gross, S. J.

    2001-12-01

    When a seismic sequence with more than one mainshock or an unusually large aftershock occurs, there is a compound aftershock sequence. The secondary aftershocks need not have exactly the same decay as the primary sequence, with the differences having implications for the failure process. When the stress step from the secondary mainshock is positive but not large enough to cause immediate failure of all the remaining primary aftershocks, failure processes which involve accelerating slip will produce secondary aftershocks that decay more rapidly than primary aftershocks. This is because the primary aftershocks are an accelerated version of the background seismicity, and secondary aftershocks are an accelerated version of the primary aftershocks. Real stress perturbations may be negative, and heterogeneities in mainshock stress fields mean that the real world situation is quite complicated. I will first describe and verify my picture of secondary aftershock decay with reference to a simple numerical model of slipping faults which obeys rate and state dependent friction and lacks stress heterogeneity. With such a model, it is possible to generate secondary aftershock sequences with perturbed decay patterns, quantify those patterns, and develop an analysis technique capable of correcting for the effect in real data. The secondary aftershocks are defined in terms of frequency linearized time s(T), which is equal to the number of primary aftershocks expected by a time T, $ s ≡ ∫ t=0T n(t) dt, where the start time t=0 is the time of the primary aftershock, and the primary aftershock decay function n(t) is extrapolated forward to the times of the secondary aftershocks. In the absence of secondary sequences the function s(T)$ re-scales the time so that approximately one event occurs per new time unit; the aftershock sequence is gone. If this rescaling is applied in the presence of a secondary sequence, the secondary sequence is shaped like a primary aftershock sequence

  8. Aftershock triggering by postseismic stresses: A study based on Coulomb rate-and-state models

    NASA Astrophysics Data System (ADS)

    Cattania, Camilla; Hainzl, Sebastian; Wang, Lifeng; Enescu, Bogdan; Roth, Frank

    2015-04-01

    The spatiotemporal clustering of earthquakes is a feature of medium- and short-term seismicity, indicating that earthquakes interact. However, controversy exists about the physical mechanism behind aftershock triggering: static stress transfer and reloading by postseismic processes have been proposed as explanations. In this work, we use a Coulomb rate-and-state model to study the role of coseismic and postseismic stress changes on aftershocks and focus on two processes: creep on the main shock fault plane (afterslip) and secondary aftershock triggering by previous aftershocks. We model the seismic response to Coulomb stress changes using the Dieterich constitutive law and focus on two events: the Parkfield, Mw = 6.0, and the Tohoku, Mw = 9.0, earthquakes. We find that modeling secondary triggering systematically improves the maximum log likelihood fit of the sequences. The effect of afterslip is more subtle and difficult to assess for near-fault events, where model errors are largest. More robust conclusions can be drawn for off-fault aftershocks: following the Tohoku earthquake, afterslip promotes shallow crustal seismicity in the Fukushima region. Simple geometrical considerations indicate that afterslip-induced stress changes may have been significant on trench parallel crustal fault systems following several of the largest recorded subduction earthquakes. Moreover, the time dependence of afterslip strongly enhances its triggering potential: seismicity triggered by an instantaneous stress change decays more quickly than seismicity triggered by gradual loading, and as a result we find afterslip to be particularly important between few weeks and few months after the main shock.

  9. The Hellenic Seismological Network Of Crete (HSNC): Validation and results of the 2013 aftershock sequences

    NASA Astrophysics Data System (ADS)

    Chatzopoulos, Georgios; Papadopoulos, Ilias; Vallianatos, Filippos

    2015-04-01

    The number and quality of seismological networks in Europe has increased in the past decades. Nevertheless, the need for localized networks monitoring areas of great seismic and scientific interest is constant. Hellenic Seismological Network of Crete (HSNC) covers this need for the vicinity of the South Aegean Sea and Crete Island. In the present work with the use of Z-map software (www.seismo.ethz.ch) the spatial variability of Magnitude of Completeness (Mc) is calculated from HSNC's manual analysis catalogue of events for the period 2011 until today, proving the good coverage of HSNC in the areas. Furthermore the 2013, South Aegean seismicity where two large shallow earthquakes occurred in the vicinity of Crete Island, is discussed. The first event takes place on 15th June 2013 in the front of the Hellenic Arc, south from central Crete, while the second one on 12th October, 2013 on the western part of Crete. The two main shocks and their aftershock sequences have been relocated with the use of hypoinverse earthquake location software and an appropriate crust model. The HSNC identified more than 500 and 300 aftershocks respectively followed after the main events. The detailed construction of aftershocks catalogue permits the applicability of modern theories based on complexity sciences as described recently in the frame of non extensive statistical physics. In addition site effects in the stations locations are presented using event and noise recordings. This work was implemented through the project IMPACT-ARC in the framework of action "ARCHIMEDES III-Support of Research Teams at TEI of Crete" (MIS380353) of the Operational Program "Education and Lifelong Learning" and is co-financed by the European Union (European Social Fund) and Greek national funds References A. Tzanis and F. Vallianatos, "Distributed power-law seismicity changes and crustal deformation in the EW Hellenic Arc", Natural Hazards and Earth Systems Sciences, 3, 179-195, 2003 F. Vallianatos, G

  10. Three Ingredients for Improved Global Aftershock Forecasts: Tectonic Region, Time-Dependent Catalog Incompleteness, and Inter-Sequence Variability

    NASA Astrophysics Data System (ADS)

    Page, M. T.; Hardebeck, J.; Felzer, K. R.; Michael, A. J.; van der Elst, N.

    2015-12-01

    Following a large earthquake, seismic hazard can be orders of magnitude higher than the long-term average as a result of aftershock triggering. Due to this heightened hazard, there is a demand from emergency managers and the public for rapid, authoritative, and reliable aftershock forecasts. In the past, USGS aftershock forecasts following large, global earthquakes have been released on an ad-hoc basis with inconsistent methods, and in some cases, aftershock parameters adapted from California. To remedy this, we are currently developing an automated aftershock product that will generate more accurate forecasts based on the Reasenberg and Jones (Science, 1989) method. To better capture spatial variations in aftershock productivity and decay, we estimate regional aftershock parameters for sequences within the Garcia et al. (BSSA, 2012) tectonic regions. We find that regional variations for mean aftershock productivity exceed a factor of 10. The Reasenberg and Jones method combines modified-Omori aftershock decay, Utsu productivity scaling, and the Gutenberg-Richter magnitude distribution. We additionally account for a time-dependent magnitude of completeness following large events in the catalog. We generalize the Helmstetter et al. (2005) equation for short-term aftershock incompleteness and solve for incompleteness levels in the global NEIC catalog following large mainshocks. In addition to estimating average sequence parameters within regions, we quantify the inter-sequence parameter variability. This allows for a more complete quantification of the forecast uncertainties and Bayesian updating of the forecast as sequence-specific information becomes available.

  11. Correlation between the parameters of the aftershock rate equation: Implications for the forecasting of future sequences

    NASA Astrophysics Data System (ADS)

    Gasperini, Paolo; Lolli, Barbara

    2006-06-01

    We analyzed the correlations among the parameters of the Reasenberg and Jones [Reasenberg, P.A., Jones, L.M., 1989. Earthquake hazard after a mainshock in California, Science 243, 1173-1176] formula describing the aftershock rate after a mainshock as a function of time and magnitude, on the basis of parameter estimates made in previous works for New Zealand, Italy and California. For all of three datasets we found that the magnitude-independent productivity a is significantly correlated with the b-value of the Gutenberg-Richter law and, in some cases, with parameters p and c of the modified Omori's law. We also found significant correlations between p and c but, different from some previous works, not between p and b. We verified that assuming a coefficient for mainshock magnitude α ≈ 2/3 b (instead of b) removes the correlation between a and b and improves the ability to forecast the behavior of Italian sequences occurred from 1997 to 2003 on the basis of average parameters estimated from sequences occurred from 1981 to 1996. This assumption well agrees with direct α estimates made in the framework of an epidemic type model (ETAS) from the data of some large Italian sequences. Our results suggest a modification of the original Reasenberg and Jones (1989) formulation leading to predict lower rates (and probabilities) for stronger mainshocks and conversely higher rates for weaker ones. We also inferred that the correlation of a with p and c might be the consequence of the trade-off between the two parameters of the modified Omori's law. In this case the correlation can be partially removed by renormalizing the time-dependent part of the rate equation. Finally, the absence of correlation between p and b, observed for all the examined datasets, indicates that such correlation, previously inferred from theoretical considerations and empirical results in some regions, does not represent a common property of aftershock sequences in different part of the world.

  12. Triggering of aftershocks in viscoelastic spring-block models

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Shcherbakov, R.

    2013-12-01

    Identifying the mechanisms of the aftershock generation is an important part in the comprehensive theory of earthquake physics. The mechanism of the aftershock generation remains controversial, and models that yield robust aftershock statistics are still in search. The dynamics of earthquake faults can be modelled by a spring-block system, as first proposed by Burridge and Knopoff (1967). However, the quantitative difference between the spring-block model dynamics and the realistic seismicity may be due to the oversimplified setup of the spring-block model, which might not capture effectively the essential physical mechanisms of earthquake dynamics. In particular, the interactions of the spring-block system are purely elastic. The rheology of the fault zone, which plays an important rule in the earthquake dynamics, is thus neglected. In this work, several possible models are studied in order to reproduce the scaling relations of the aftershocks, especially the Omori's law. We adopt the basic picture of the spring-block model, and introduce the crustal relaxation process during the stress redistribution and the global loading. This is implemented by incorporating viscoelastic interactions in the system: the viscoelastic transmission and the viscoelastic driving. The viscoelastic transmission mechanism features an instantaneous response of the stress transmission, which immediately leads to an avalanche followed by the relaxation. The viscoelastic driving mechanism features an instantaneous stress drop, which is later partly restored by the crustal relaxation. We combine the two mechanisms, and find that the dynamics of the system is determined by three parameters, the elastic transmission parameter α, the relaxation time of the viscoelastic driving τ_L , and the relaxation time of the viscoelastic transmission τ. Different with the elastic spring-block model, avalanches can be triggered either by the global loading or by the relaxation in this combined

  13. A possible mechanism for aftershocks: time-dependent stress relaxation in a slider-block model

    NASA Astrophysics Data System (ADS)

    Gran, Joseph D.; Rundle, John B.; Turcotte, Donald L.

    2012-08-01

    We propose a time-dependent slider-block model which incorporates a time-to-failure function for each block dependent on the stress. We associate this new time-to-failure mechanism with the property of stress fatigue. We test two failure time functions including a power law and an exponential. Failure times are assigned to 'damaged' blocks with stress above a damage threshold, σW and below a static failure threshold, σF. If the stress of a block is below the damage threshold the failure time is infinite. During the aftershock sequence the loader-plate remains fixed and all aftershocks are triggered by stress transfer from previous events. This differs from standard slider-block models which initiate each event by moving the loader-plate. We show the resulting behaviour of the model produces both the Gutenberg-Richter scaling law for event sizes and the Omori's scaling law for the rate of aftershocks when we use the power-law failure time function. The exponential function has limited success in producing Omori's law for the rate of aftershocks. We conclude the shape of the failure time function is key to producing Omori's law.

  14. The May 29 2008 earthquake aftershock sequence within the South Iceland Seismic Zone: Fault locations and source parameters of aftershocks

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Parsons, M.; White, R. S.; Gudmundsson, O.; Drew, J.

    2010-12-01

    The mid-Atlantic plate boundary breaks up into a series of segments across Iceland. The South Iceland Seismic Zone (SISZ) is a complex transform zone where left-lateral E-W shear between the Reykjanes Peninsula Rift Zone and the Eastern Volcanic Zone is accommodated by bookshelf faulting along N-S lateral strike-slip faults. The SISZ is also a transient feature, migrating sideways in response to the southward propagation of the Eastern Volcanic Zone. Sequences of large earthquakes (M > 6) lasting from days to years and affecting most of the seismic zone have occurred repeatedly in historical time (last 1100 years), separated by intervals of relative quiescence lasting decades to more than a century. On May 29 2008, a Mw 6.1 earthquake struck the western part of the South Iceland Seismic Zone, followed within seconds by a slightly smaller event on a second fault ~5 km further west. Aftershocks, detected by a temporal array of 11 seismometers and three permanent Icelandic Meteorological Office stations were located using an automated Coalescence Microseismic Mapping technique. The epicenters delineate two major and several smaller N-S faults as well as an E-W zone of activity stretching further west into the Reykjanes Peninsula Rift Zone. Fault plane solutions show both right lateral and oblique strike slip mechanisms along the two major N-S faults. The aftershocks deepen from 3-5 km in the north to 8-9 km in the south, suggesting that the main faults dip southwards. The faulting is interpreted to be driven by the local stress due to transform motion between two parallel segments of the divergent plate boundary crossing Iceland.

  15. Generalized Omori-Utsu law for aftershock sequences in southern California

    NASA Astrophysics Data System (ADS)

    Davidsen, J.; Gu, C.; Baiesi, M.

    2015-05-01

    We investigate the validity of a proposed generalized Omori-Utsu law for the aftershock sequences for the Landers, Hector Mine, Northridge and Superstition Hills earthquakes, the four largest events in the southern California catalogue we analyse. This law unifies three of the most prominent empirical laws of statistical seismology-the Gutenberg-Richter law, the Omori-Utsu law, and a generalized version of Båth's law-in a formula casting the parameters in the Omori-Utsu law as a function of the lower magnitude cutoff mc for the aftershocks considered. By applying a recently established general procedure for identifying aftershocks, we confirm that the generalized Omori-Utsu law provides a good approximation for the observed rates overall. In particular, we provide convincing evidence that the characteristic time c is not constant but a genuine function of mc, which cannot be attributed to short-term aftershock incompleteness. However, the estimation of the specific parameters is somewhat sensitive to the aftershock selection method used. This includes c(mc), which has important implications for inferring the underlying stress field.

  16. Spatial and temporal analysis of the Mw 7.7, 2007, Tocopilla aftershock sequence

    NASA Astrophysics Data System (ADS)

    Eggert, Silke; Sobiesiak, Monika

    2010-05-01

    On 14 November 2007, 15:40:51 UTC a large Mw 7.7 earthquake occurred in the region of Tocopilla in Northern Chile. The epicenter is located at 22.30°S, 69.89°W, ~ 35 km south east of the city of Tocopilla and 160 km north of Antofagasta (earthquake location by GEOFON network). The earthquake took place in the southern part of the Northern Chile seismic gap which is supposed to be at the end of its seismic cycle. Currently, the gap is spanning the rupture area of the Mw=9 1877 Iquique event, a region which is now unbroken for almost 150 years. Therefore, the 2007 Tocopilla earthquake is the first large event that occurred inside the Northern Chile seismic gap since 1877. We present a study of the spatial and temporal distribution of the aftershock activity following the 2007 Tocopilla event using the frequency-magnitude distribution and other parameters. Studying this aftershock sequence will provide closer insight into the fault dimension of this subduction zone earthquake and the tectonic setting of the region. The distribution of aftershocks into depth shows that the majority of the hypocenters are located along the subduction interface, reaching down to ~ 50 km depth. In the western part, the aftershock sequence splits into two branches, one heading towards the trench, the other bending into the crust in front of the Mejillones Peninsula. In the epicentral horizontal, we observe a concentration of aftershocks around the northern part of the Mejillones Peninsula and along the coast up to the Río Loa. This leads to the conclusion that the shallow part in the north west did probably not break during the event. The spatial density of aftershocks shows two offshore patches north-east of the peninsula. Analyzing the spatio-temporal distribution of our aftershock data set, we can see that the fault rupture propagated towards the south west with a fault plane of about 150 km length. These observations are consistent with first results by other studies. Our

  17. The Pegasus Bay aftershock sequence of the Mw 7.1 Darfield (Canterbury), New Zealand earthquake

    NASA Astrophysics Data System (ADS)

    Ristau, John; Holden, Caroline; Kaiser, Anna; Williams, Charles; Bannister, Stephen; Fry, Bill

    2013-10-01

    The Pegasus Bay aftershock sequence is the most recent aftershock sequence of the 2010 September 3 UTC moment magnitude (Mw) 7.1 Darfield earthquake in the Canterbury region of New Zealand. The Pegasus Bay aftershock sequence began on 2011 December 23 UTC with three events of Mw 5.4-5.9 located in the offshore region of Pegasus Bay, east of Christchurch city. We present a summary of key aspects of the sequence derived using various geophysical methods. Relocations carried out using double-difference tomography show a well-defined NNE-SSW to NE-SW series of aftershocks with most of the activity occurring at depths >5 km and an average depth of ˜10 km. Regional moment tensor solutions calculated for the Pegasus Bay sequence indicate that the vast majority (45 of 53 events) are reverse-faulting events with an average P-axis azimuth of 125°. Strong-motion data inversion favours a SE-dipping fault plane for the largest event (Mw 5.9) with a slip patch of 18 km × 15 km and a maximum slip of 0.8 m at 3.5 km depth. Peak ground accelerations ranging up to 0.98 g on the vertical component were recorded during the sequence, and the largest event produced horizontal accelerations of 0.2-0.4 g in the Christchurch central business district. Apparent stress estimates for the two largest events are 1.1 MPa (Mw 5.9) and 0.2 MPa (Mw 5.8), which are compatible with global averages, although lower than other large events in the Canterbury aftershock sequence. Coulomb stress analysis indicates that previous large earthquakes in the Canterbury sequence generate Coulomb stress increases for the two events only at relatively shallow depths (3-5 km). At greater depths, Coulomb stress decreases are predicted at the locations of the two events. The trend of the aftershocks is similar to mapped reverse faults north of Christchurch, and the high number of reverse-faulting mechanisms suggests that similar reverse-faulting structures are present in the offshore region east of Christchurch.

  18. A generalized law for aftershock rates in a damage rheology model

    NASA Astrophysics Data System (ADS)

    Ben Zion, Y.; Lyakhovsky, V.

    2003-12-01

    for the damage evolution contains error functions and is richer than a simple power law relation. However, the results associated with the analytical expression can be fitted well for various values of R with a power law similar to the modified Omori law for aftershocks. This also holds for 3D numerical simulations of aftershock sequences with our damage rheology model. Initial results based on 3D simulations indicate that high values of R corresponding to low viscosity material produce diffuse (swarm-like) aftershock sequences, while low values of R corresponding to more brittle material produce clear (Omori-like) aftershock sequences.

  19. Multiple event location analysis of aftershock sequences in the Pannonian basin

    NASA Astrophysics Data System (ADS)

    Bekesi, Eszter; Sule, Balint; Bondar, Istvan

    2016-04-01

    Accurate seismic event location is crucial to understand tectonic processes such as crustal faults that are most commonly investigated by studying seismic activity. Location errors can be significantly reduced using multiple event location methods. We applied the double difference method to relocate the earthquake occurred near Oroszlány and its 200 aftershocks to identify the geometry of the related fault. We used the extended ISC location algorithm, iLoc to determine the absolute single event locations for the Oroszlány aftershock sequence and applied double difference algorithm on the new hypocenters. To improve location precision, we added differential times from waveform cross-correlation to the multiple event location process to increase the accuracy of arrival time readings. We also tested the effect of various local 1-D velocity models on the results. We compared hypoDD results of bulletin and iLoc hypocenters to investigate the effect of initial hypocenter parameters on the relocation process. We show that hypoDD collapses the initial, rather diffuse locations into a smaller cluster and the vertical cross-sections show sharp images of seismicity. Unsurprisingly, the combined use of catalog and cross-correlation data sets provides the more accurate locations. Some of the relocated events in the cluster are ground truth quality with a location accuracy of 5 km or better. Having achieved accurate locations for the event cluster we are able to resolve the fault plane ambiguity in the moment tensor solutions and determine the accurate strike of the fault.

  20. DETERMINATION OF ELASTIC WAVE VELOCITY AND RELATIVE HYPOCENTER LOCATIONS USING REFRACTED WAVES. II. APPLICATION TO THE HAICHENG, CHINA, AFTERSHOCK SEQUENCE.

    USGS Publications Warehouse

    Shedlock, Kaye M.; Jones, Lucile M.; Ma, Xiufang

    1985-01-01

    The authors located the aftershocks of the February 4, 1975 Haicheng, China, aftershock sequence using an arrival time difference (ATD) simultaneous inversion method for determining the near-source (in situ) velocity and the location of the aftershocks with respect to a master event. The aftershocks define a diffuse zone, 70 km multiplied by 25 km, trending west-northwest, perpendicular to the major structural trend of the region. The main shock and most of the large aftershocks have strike-slip fault plane solutions. The preferred fault plane strikes west-northwest, and the inferred sense of motion is left-lateral. The entire Haicheng earthauake sequence appears to have been the response of an intensely faulted range boundary to a primarily east-west crustal compression and/or north-south extension.

  1. Full waveform modelling of aftershock seismicity in the Chilean subduction zone using the VERCE platform

    NASA Astrophysics Data System (ADS)

    Garth, T.; Hicks, S. P.; Fuenzalida Velasco, A. J.; Casarotti, E.; Spinuso, A.; Rietbrock, A.

    2014-12-01

    The VERCE platform allows high resolution waveforms to be simulated through an interactive web-based portal. The platform runs on a variety of HPC clusters, and waveforms are calculated using SPECFEM3D. We use the full waveform modelling techniques supported on the VERCE platform to test the validity of a number of subduction zone velocity models from the Chilean subduction zone. Waveforms are calculated for aftershocks of the 2010 Mw 8.8 Maule (central Chile) and the Mw 8.1 2014 Pisagua (Northern Chile) earthquakes. For the Maule region, we use a 2D tomographic model of the rupture area (Hicks et al., 2012), and the focal mechanisms of Agurto et al., (2012). For the Pisagua earthquake, we use a 2.5D composite velocity model based on tomographic studies of the region (e.g. Husen et al., 2000, Contreras-Reyes et al., 2012) and Slab1.0 (Hayes et al., 2012). Focal mechanisms for the Pisagua aftershock sequence are produced from waveforms recorded on the IPOC network using the program ISOLA (Sokos and Zahradnik, 2008). We also test a number of synthetic velocity models. The simulated waveforms are directly compared to waveforms recorded on the temporary deployment for the Maule earthquake aftershocks, and waveforms recorded on the IPOC network for the Pisagua earthquake aftershocks. The waveforms produced by the 3D full waveform simulations are also compared to the waveforms produced by the focal mechanism inversion, which assume a 1D velocity model. The VERCE platform allows waveforms from the full 3D model to be produced easily, and allows us to quantifiably assess the validity of both the velocity model and the source mechanisms. In particular the dependence of the dip of the focal mechanism on the velocity model used is explored, in order to assess the reliability of current models of the plate interface geometry in the Chilean subduction zone.

  2. Deterministic model of earthquake clustering shows reduced stress drops for nearby aftershocks

    NASA Astrophysics Data System (ADS)

    Shaw, Bruce E.; Richards-Dinger, Keith; Dieterich, James H.

    2015-11-01

    While a number of viable physical mechanisms have been offered to explain the temporal clustering of aftershocks, the spatial clustering of aftershocks, in particular the concentrated productivity of aftershocks very near the mainshock rupture area, has been difficult to reproduce with physical models. Here we present a new deterministic physical model capable of reproducing both the spatial and temporal clustering. We apply this new model to a longstanding puzzling question raised by ground motion observations, which suggest that nearby aftershocks show reduced ground motions relative to similar magnitude mainshocks. In the model, the physical basis for these observations is reduced stress drops for nearby aftershocks compared to similar magnitude mainshocks. These reduced stress drops are due to nearby aftershocks rerupturing incompletely healed parts of the fault which ruptured in the mainshock.

  3. The aftershock sequence of the 2015 April 25 Gorkha-Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Adhikari, L. B.; Gautam, U. P.; Koirala, B. P.; Bhattarai, M.; Kandel, T.; Gupta, R. M.; Timsina, C.; Maharjan, N.; Maharjan, K.; Dahal, T.; Hoste-Colomer, R.; Cano, Y.; Dandine, M.; Guilhem, A.; Merrer, S.; Roudil, P.; Bollinger, L.

    2015-12-01

    The M 7.8 2015 April 25 Gorkha earthquake devastated the mountainous southern rim of the High Himalayan range in central Nepal. The main shock was followed by 553 earthquakes of local magnitude greater than 4.0 within the first 45 days. In this study, we present and qualify the bulletin of the permanent National Seismological Centre network to determine the spatio-temporal distribution of the aftershocks. The Gorkha sequence defines a ˜140-km-long ESE trending structure, parallel to the mountain range, abutting on the presumed extension of the rupture plane of the 1934 M 8.4 earthquake. In addition, we observe a second seismicity belt located southward, under the Kathmandu basin and in the northern part of the Mahabarat range. Many aftershocks of the Gorkha earthquake sequence have been felt by the 3 millions inhabitants of the Kathmandu valley.

  4. Short-term forecasting of aftershock sequences, microseismicity and swarms inside the Corinth Gulf continental rift

    NASA Astrophysics Data System (ADS)

    Segou, Margarita

    2014-05-01

    Corinth Gulf (Central Greece) is the fastest continental rift in the world with extension rates 11-15 mm/yr with diverse seismic deformation including earthquakes with M greater than 6.0, several periods of increased microseismic activity, usually lasting few months and possibly related with fluid diffusion, and swarm episodes lasting few days. In this study I perform a retrospective forecast experiment between 1995-2012, focusing on the comparison between physics-based and statistical models for short term time classes. Even though Corinth gulf has been studied extensively in the past there is still today a debate whether earthquake activity is related with the existence of either a shallow dipping structure or steeply dipping normal faults. In the light of the above statement, two CRS realization are based on resolving Coulomb stress changes on specified receiver faults, expressing the aforementioned structural models, whereas the third CRS model uses optimally-oriented for failure planes. The CRS implementation accounts for stress changes following all major ruptures with M greater than 4.5 within the testing phase. I also estimate fault constitutive parameters from modeling the response to major earthquakes at the vicinity of the gulf (Aσ=0.2, stressing rate app. 0.02 bar/yr). The generic ETAS parameters are taken as the maximum likelihood estimates derived from the stochastic declustering of the modern seismicity catalog (1995-2012) with minimum triggering magnitude M2.5. I test whether the generic ETAS can efficiently describe the aftershock spatio-temporal clustering but also the evolution of swarm episodes and microseismicity. For the reason above, I implement likelihood tests to evaluate the forecasts for their spatial consistency and for the total amount of predicted versus observed events with M greater than 3.0 in 10-day time windows during three distinct evaluation phases; the first evaluation phase focuses on the Aigio 1995 aftershock sequence (15

  5. The Mw 5.8 Mineral, Virginia, earthquake of August 2011 and aftershock sequence: constraints on earthquake source parameters and fault geometry

    USGS Publications Warehouse

    McNamara, Daniel E.; Benz, H.M.; Herrmann, Robert B.; Bergman, Eric A.; Earle, Paul; Meltzer, Anne; Withers, Mitch; Chapman, Martin

    2014-01-01

    The Mw 5.8 earthquake of 23 August 2011 (17:51:04 UTC) (moment, M0 5.7×1017  N·m) occurred near Mineral, Virginia, within the central Virginia seismic zone and was felt by more people than any other earthquake in United States history. The U.S. Geological Survey (USGS) received 148,638 felt reports from 31 states and 4 Canadian provinces. The USGS PAGER system estimates as many as 120,000 people were exposed to shaking intensity levels of IV and greater, with approximately 10,000 exposed to shaking as high as intensity VIII. Both regional and teleseismic moment tensor solutions characterize the earthquake as a northeast‐striking reverse fault that nucleated at a depth of approximately 7±2  km. The distribution of reported macroseismic intensities is roughly ten times the area of a similarly sized earthquake in the western United States (Horton and Williams, 2012). Near‐source and far‐field damage reports, which extend as far away as Washington, D.C., (135 km away) and Baltimore, Maryland, (200 km away) are consistent with an earthquake of this size and depth in the eastern United States (EUS). Within the first few days following the earthquake, several government and academic institutions installed 36 portable seismograph stations in the epicentral region, making this among the best‐recorded aftershock sequences in the EUS. Based on modeling of these data, we provide a detailed description of the source parameters of the mainshock and analysis of the subsequent aftershock sequence for defining the fault geometry, area of rupture, and observations of the aftershock sequence magnitude–frequency and temporal distribution. The observed slope of the magnitude–frequency curve or b‐value for the aftershock sequence is consistent with previous EUS studies (b=0.75), suggesting that most of the accumulated strain was released by the mainshock. The aftershocks define a rupture that extends between approximately 2–8 km in depth and 8–10 km along

  6. FAST TRACK PAPER: Observational analysis of correlations between aftershock productivities and regional conditions in the context of a damage rheology model

    NASA Astrophysics Data System (ADS)

    Yang, Wenzheng; Ben-Zion, Yehuda

    2009-05-01

    Aftershock sequences are commonly observed but their properties vary from region to region. Ben-Zion and Lyakhovsky developed a solution for aftershocks decay in a damage rheology model. The solution indicates that the productivity of aftershocks decreases with increasing value of a non-dimensional material parameter R, given by the ratio of timescale for brittle deformation to timescale for viscous relaxation. The parameter R is inversely proportional to the degree of seismic coupling and is expected to increase primarily with increasing temperature and also with existence of sedimentary rocks at seismogenic depth. To test these predictions, we use aftershock sequences from several southern California regions. We first analyse properties of individual aftershock sequences generated by the 1992 Landers and 1987 Superstition Hills earthquakes. The results show that the ratio of aftershock productivities in these sequences spanning four orders of event magnitudes is similar to the ratio of the average heat flow in the two regions. To perform stronger statistical tests, we systematically analyse the average properties of stacked aftershock sequences in five regions. In each region, we consider events with magnitudes between 4.0 and 6.0 to be main shocks. For each main shock, we consider events to be aftershocks if they occur in the subsequent 50 d, within a circular region that scales with the magnitude of the main shock and in the magnitude range between that of the main shock and 2 units lower. This procedure produces 28-196 aftershock sequences in each of the five regions. We stack the aftershock sequences in each region and analyse the properties of the stacked data. The results indicate that the productivities of the stacked sequences are inversely correlated with the heat flow and existence of deep sedimentary covers, in agreement with the damage model predictions. Using the observed ratios of aftershock productivities, along with simple expressions based on the

  7. Hurricane Irene's Impacts on the Aftershock Sequence of the 2011 Mw5.8 Virginia Earthquake

    NASA Astrophysics Data System (ADS)

    Meng, X.; Peng, Z.; Yang, H.; Allman, S.

    2013-12-01

    Recent studies have shown that typhoon could trigger shallow slow-slip events in Taiwan. However, it is unclear whether such extreme weather events could affect the occurrence of regular earthquakes as well. A good opportunity to test this hypothesis occurred in 2011 when an Mw 5.8 earthquake struck Louisa County, Virginia. This event ruptured a shallow, reverse fault. Roughly 5 days later, hurricane Irene struck the coast of Norfolk, Virginia, which is near the epicentral region of the Virginia mainshock. Because aftershocks listed in the ANSS catalog were incomplete immediately after the main shock, it is very difficult to find the genuine correlation between the seismicity rate changes and hurricane Irene. Hence, we use a recently developed waveform matched filter technique to scan through the continuous seismic data to detect small aftershocks that are previously unidentified. A mixture of 7 temporary stations from the IRIS Ramp deployment and 8 temporary stations deployed by Virginia Tech is used. The temporary stations were set up between 24 to 72 hours following the main shock around its immediate vicinity, which provides us a unique dataset recording the majority aftershock sequence of an intraplate earthquake. We us 80 aftershocks identified by Chapman [2013] as template events and scan through the continuous data from 23 August 2011 through 10 September 2011. So far, we have detected 704 events using a threshold of 12 times the median absolute deviation (MAD), which is ~25 times more than listed in the ANSS catalog. The aftershock rate generally decayed with time as predicted by the Omori's law. A statistically significant increase of seismicity rate is found when hurricane Irene passed by the epicentral region. A possible explanation is that the atmosphere pressure drop unloaded the surface, which brought the reverse faults closer to failure. However, we also identified similar fluctuations of seismicity rate changes at other times. Hence, it is still

  8. Seismological aspects of the 27 June 2015 Gulf of Aqaba earthquake and its sequence of aftershocks

    NASA Astrophysics Data System (ADS)

    Abd el-aal, Abd el-aziz Khairy; Badreldin, Hazem

    2016-04-01

    On 27 June 2015, a moderate earthquake with magnitude Mb 5.2 struck the Gulf of Aqaba near Nuweiba City. This event was instrumentally recorded by the Egyptian National Seismic Network (ENSN) and many other international seismological centres. The event was felt in all the cities on the Gulf of Aqaba, as well as Suez City, Hurghada City, the greater Cairo Metropolitan Area, Israel, Jordan and the north-western part of Saudi Arabia. No casualties were reported, however. Approximately 95 aftershocks with magnitudes ranging from 0.7 to 4.2 were recorded by the ENSN following the mainshock. In the present study, the source characteristics of both the mainshock and the aftershocks were estimated using the near-source waveform data recorded by the very broadband stations of the ENSN, and these were validated by the P-wave polarity data from short period stations. Our analysis reveals that an estimated seismic moment of 0.762 × 1017 Nm was released, corresponding to a magnitude of Mw 5.2, a focal depth of 14 km, a fault radius of 0.72 km and a rupture area of approximately 1.65 km2. Monitoring the sequence of aftershocks reveals that they form a cluster around the mainshock and migrated downwards in focal depth towards the west. We compared the results we obtained with the published results from the international seismological centres. Our results are more realistic and accurate, in particular with respect to the epicenteral location, magnitude and fault plane solution which are in accordance with the hypocentre distribution of the aftershocks.

  9. Seismological aspects of the 27 June 2015 Gulf of Aqaba earthquake and its sequence of aftershocks

    NASA Astrophysics Data System (ADS)

    Abd el-aal, Abd el-aziz Khairy; Badreldin, Hazem

    2016-07-01

    On 27 June 2015, a moderate earthquake with magnitude Mb 5.2 struck the Gulf of Aqaba near Nuweiba City. This event was instrumentally recorded by the Egyptian National Seismic Network (ENSN) and many other international seismological centres. The event was felt in all the cities on the Gulf of Aqaba, as well as Suez City, Hurghada City, the greater Cairo Metropolitan Area, Israel, Jordan and the north-western part of Saudi Arabia. No casualties were reported, however. Approximately 95 aftershocks with magnitudes ranging from 0.7 to 4.2 were recorded by the ENSN following the mainshock. In the present study, the source characteristics of both the mainshock and the aftershocks were estimated using the near-source waveform data recorded by the very broadband stations of the ENSN, and these were validated by the P-wave polarity data from short period stations. Our analysis reveals that an estimated seismic moment of 0.762 × 1017 Nm was released, corresponding to a magnitude of Mw 5.2, a focal depth of 14 km, a fault radius of 0.72 km and a rupture area of approximately 1.65 km2. Monitoring the sequence of aftershocks reveals that they form a cluster around the mainshock and migrated downwards in focal depth towards the west. We compared the results we obtained with the published results from the international seismological centres. Our results are more realistic and accurate, in particular with respect to the epicenteral location, magnitude and fault plane solution which are in accordance with the hypocentre distribution of the aftershocks.

  10. Anomalous stress diffusion, Omori's law and Continuous Time Random Walk in the 2010 Efpalion aftershock sequence (Corinth rift, Greece)

    NASA Astrophysics Data System (ADS)

    Michas, Georgios; Vallianatos, Filippos; Karakostas, Vassilios; Papadimitriou, Eleftheria; Sammonds, Peter

    2014-05-01

    Efpalion aftershock sequence occurred in January 2010, when an M=5.5 earthquake was followed four days later by another strong event (M=5.4) and numerous aftershocks (Karakostas et al., 2012). This activity interrupted a 15 years period of low to moderate earthquake occurrence in Corinth rift, where the last major event was the 1995 Aigion earthquake (M=6.2). Coulomb stress analysis performed in previous studies (Karakostas et al., 2012; Sokos et al., 2012; Ganas et al., 2013) indicated that the second major event and most of the aftershocks were triggered due to stress transfer. The aftershocks production rate decays as a power-law with time according to the modified Omori law (Utsu et al., 1995) with an exponent larger than one for the first four days, while after the occurrence of the second strong event the exponent turns to unity. We consider the earthquake sequence as a point process in time and space and study its spatiotemporal evolution considering a Continuous Time Random Walk (CTRW) model with a joint probability density function of inter-event times and jumps between the successive earthquakes (Metzler and Klafter, 2000). Jump length distribution exhibits finite variance, whereas inter-event times scale as a q-generalized gamma distribution (Michas et al., 2013) with a long power-law tail. These properties are indicative of a subdiffusive process in terms of CTRW. Additionally, the mean square displacement of aftershocks is constant with time after the occurrence of the first event, while it changes to a power-law with exponent close to 0.15 after the second major event, illustrating a slow diffusive process. During the first four days aftershocks cluster around the epicentral area of the second major event, while after that and taking as a reference the second event, the aftershock zone is migrating slowly with time to the west near the epicentral area of the first event. This process is much slower from what would be expected from normal diffusion, a

  11. An Autonomous System for Grouping Events in a Developing Aftershock Sequence

    SciTech Connect

    Harris, D. B.; Dodge, D. A.

    2011-03-22

    We describe a prototype detection framework that automatically clusters events in real time from a rapidly unfolding aftershock sequence. We use the fact that many aftershocks are repetitive, producing similar waveforms. By clustering events based on correlation measures of waveform similarity, the number of independent event instances that must be examined in detail by analysts may be reduced. Our system processes array data and acquires waveform templates with a short-term average (STA)/long-term average (LTA) detector operating on a beam directed at the P phases of the aftershock sequence. The templates are used to create correlation-type (subspace) detectors that sweep the subsequent data stream for occurrences of the same waveform pattern. Events are clustered by association with a particular detector. Hundreds of subspace detectors can run in this framework a hundred times faster than in real time. Nonetheless, to check the growth in the number of detectors, the framework pauses periodically and reclusters detections to reduce the number of event groups. These groups define new subspace detectors that replace the older generation of detectors. Because low-magnitude occurrences of a particular signal template may be missed by the STA/LTA detector, we advocate restarting the framework from the beginning of the sequence periodically to reprocess the entire data stream with the existing detectors. We tested the framework on 10 days of data from the Nevada Seismic Array (NVAR) covering the 2003 San Simeon earthquake. One hundred eighty-four automatically generated detectors produced 676 detections resulting in a potential reduction in analyst workload of up to 73%.

  12. Implications of spatial and temporal development of the aftershock sequence for the Mw 8.3 June 9, 1994 Deep Bolivian Earthquake

    NASA Astrophysics Data System (ADS)

    Myers, Stephen C.; Wallace, Terry C.; Beck, Susan L.; Silver, Paul G.; Zandt, George; Vandecar, John; Minaya, Estela

    On June 9, 1994 the Mw 8.3 Bolivia earthquake (636 km depth) occurred in a region which had not experienced significant, deep seismicity for at least 30 years. The mainshock and aftershocks were recorded in Bolivia on the BANJO and SEDA broadband seismic arrays and on the San Calixto Network. We used the joint hypocenter determination method to determine the relative location of the aftershocks. We have identified no foreshocks and 89 aftershocks (m > 2.2) for the 20-day period following the mainshock. The frequency of aftershock occurrence decreased rapidly, with only one or two aftershocks per day occuring after day two. The temporal decay of aftershock activity is similar to shallow aftershock sequences, but the number of aftershocks is two orders of magnitude less. Additionally, a mb ∼6, apparently triggered earthquake occurred just 10 minutes after the mainshock about 330 km east-southeast of the mainshock at a depth of 671 km. The aftershock sequence occurred north and east of the mainshock and extends to a depth of 665 km. The aftershocks define a slab striking N68°W and dipping 45°NE. The strike, dip, and location of the aftershock zone are consistent with this seismicity being confined within the downward extension of the subducted Nazca plate. The location and orientation of the aftershock sequence indicate that the subducted Nazca plate bends between the NNW striking zone of deep seismicity in western Brazil and the N-S striking zone of seismicity in central Bolivia. A tear in the deep slab is not necessitated by the data. A subset of the aftershock hypocenters cluster along a subhorizontal plane near the depth of the mainshock, favoring a horizontal fault plane. The horizontal dimensions of the mainshock [Beck et al., this issue; Silver et al., 1995] and slab defined by the aftershocks are approximately equal, indicating that the mainshock ruptured through the slab.

  13. The 2007 Tocopilla earthquake and its aftershock sequence - A subduction zone earthquake at the edge of the northern Chile seimic gap

    NASA Astrophysics Data System (ADS)

    Eggert, S.; Sobiesiak, M.; Shirzaei, M.

    2010-12-01

    On 14 November 2007 a large Mw 7.7 earthquake occurred in the region of Tocopilla in Northern Chile. The earthquake took place in the southern end of the Northern Chile seismic gap which is supposed to be at the end of its seismic cycle. Studying the event and its aftershock sequence will provide closer insight into the behavior of a subduction zone earthquake at the edge of a subduction zone segment. We present a comprehensive study of the rupture area combining seismic and geodetic data. The aftershock sequence following the earthquake was very well recorded by a local seismic network of 34 short period and broad band stations. The spatial distribution of the aftershock sequence shows a concentration of aftershocks around the north-western part of the Mejillones Peninsula and along the coast up to the Río Loa. The distribution into depth shows that the majority of the hypocenters are located along the subduction interface, reaching down to ~ 50 km depth. In the western part, the aftershock sequence splits into two branches, one heading towards the trench, the other bending into the crust in front of the Mejillones Peninsula. These seismic observations lead to the conclusion that the fault rupture propagated towards the south-west with a fault plane of about 150 km length leaving the shallow part in the north west probably unbroken. To better understand the behavior of the aftershock distribution we model the Coulomb stress transfer along the fault plane. The results show that stresses are increased in the southern part of the rupture area where we find a high concentration of aftershocks. This is consistent with the calculated energy release that shows two main patches along the plate interface rupturing from north to south. The 2007 Tocopilla earthquake is the first large event that occurred inside the Northern Chile seismic gap since the 1877 Iquique event. The rupture process stopped underneath the Mejillones Peninsula, a proposed segment boundary along the

  14. The 2009 L'Aquila sequence (Central Italy): fault system anatomy by aftershock distribution.

    NASA Astrophysics Data System (ADS)

    Chiaraluce, Lauro

    2010-05-01

    On April 6 (01:32 UTC) 2009 a destructive MW 6.13 earthquake struck the Abruzzi region in Central Italy, causing nearly 300 deaths, 40.000 homeless people and strong damage to the cultural heritage of the L'Aquila city and its province. Two strong earthquakes hit the same area in historical times (e.g. the 1461 and 1703 events), but the main fault that drives the extension in this portion of the Apennines was unknown. Seismic data was recorded at both permanent stations of the Centralised Italian National Seismic Network managed by the INGV and 45 temporary stations installed in the epicentral area together with the LGIT of Grenoble (Fr). The resulting geometry of the dense monitoring network allows us to gain very high resolution earthquake locations that we use to investigate the geometry of the activated fault system and to report on seismicity pattern and kinematics of the whole sequence. The mainshock was preceded by a foreshock sequence that activated the main fault plane during the three months before, while the largest foreshock (MW 4.08) occurred one week before (30th of March) nucleated on a antithetic (e.g. off-fault) segment. The distribution of the aftershocks defines a complex, 50 km long, NW-trending normal fault system, with seismicity nucleating within the upper 10-12 km of the crust. There is an exception of an event (MW 5.42) nucleating a couple of kilometers deeper that the 7th of April that activates a high angle normal fault antithetic to the main system. Its role is still unclear. We reconstruct the geometry of the two major SW-dipping normal faults forming a right lateral en-echelon system. The main fault (L'Aquila fault) is activated by the 6th of April mainshock unluckily located right below the city of L'Aquila. A 50°SW-dipping plane with planar geometry about 16 km long. The related seismicity interests the entire first 12 km of the upper crust from the surface. The ground surveys carried out soon after the occurrence of the earthquake

  15. Variation of b and p values from aftershocks sequences along the Mexican subduction zone and their relation to plate characteristics

    NASA Astrophysics Data System (ADS)

    Ávila-Barrientos, L.; Zúñiga, F. R.; Rodríguez-Pérez, Q.; Guzmán-Speziale, M.

    2015-11-01

    Aftershock sequences along the Mexican subduction margin (between coordinates 110ºW and 91ºW) were analyzed by means of the p value from the Omori-Utsu relation and the b value from the Gutenberg-Richter relation. We focused on recent medium to large (Mw > 5.6) events considered susceptible of generating aftershock sequences suitable for analysis. The main goal was to try to find a possible correlation between aftershock parameters and plate characteristics, such as displacement rate, age and segmentation. The subduction regime of Mexico is one of the most active regions of the world with a high frequency of occurrence of medium to large events and plate characteristics change along the subduction margin. Previous studies have observed differences in seismic source characteristics at the subduction regime, which may indicate a difference in rheology and possible segmentation. The results of the analysis of the aftershock sequences indicate a slight tendency for p values to decrease from west to east with increasing of plate age although a statistical significance is undermined by the small number of aftershocks in the sequences, a particular feature distinctive of the region as compared to other world subduction regimes. The b values show an opposite, increasing trend towards the east even though the statistical significance is not enough to warrant the validation of such a trend. A linear regression between both parameters provides additional support for the inverse relation. Moreover, we calculated the seismic coupling coefficient, showing a direct relation with the p and b values. While we cannot undoubtedly confirm the hypothesis that aftershock generation depends on certain tectonic characteristics (age, thickness, temperature), our results do not reject it thus encouraging further study into this question.

  16. An Explosion Aftershock Model with Application to On-Site Inspection

    NASA Astrophysics Data System (ADS)

    Ford, Sean R.; Labak, Peter

    2016-01-01

    An estimate of aftershock activity due to a theoretical underground nuclear explosion is produced using an aftershock rate model. The model is developed with data from the Nevada National Security Site, formerly known as the Nevada Test Site, and the Semipalatinsk Test Site, which we take to represent soft-rock and hard-rock testing environments, respectively. Estimates of expected magnitude and number of aftershocks are calculated using the models for different testing and inspection scenarios. These estimates can help inform the Seismic Aftershock Monitoring System (SAMS) deployment in a potential Comprehensive Test Ban Treaty On-Site Inspection (OSI), by giving the OSI team a probabilistic assessment of potential aftershocks in the Inspection Area (IA). The aftershock assessment, combined with an estimate of the background seismicity in the IA and an empirically derived map of threshold magnitude for the SAMS network, could aid the OSI team in reporting. We apply the hard-rock model to a M5 event and combine it with the very sensitive detection threshold for OSI sensors to show that tens of events per day are expected up to a month after an explosion measured several kilometers away.

  17. Aftershock Characteristics as a Means of Discriminating Explosions from Earthquakes

    SciTech Connect

    Ford, S R; Walter, W R

    2009-05-20

    The behavior of aftershock sequences around the Nevada Test Site in the southern Great Basin is characterized as a potential discriminant between explosions and earthquakes. The aftershock model designed by Reasenberg and Jones (1989, 1994) allows for a probabilistic statement of earthquake-like aftershock behavior at any time after the mainshock. We use this model to define two types of aftershock discriminants. The first defines M{sub X}, or the minimum magnitude of an aftershock expected within a given duration after the mainshock with probability X. Of the 67 earthquakes with M > 4 in the study region, 63 of them produce an aftershock greater than M{sub 99} within the first seven days after a mainshock. This is contrasted with only six of 93 explosions with M > 4 that produce an aftershock greater than M{sub 99} for the same period. If the aftershock magnitude threshold is lowered and the M{sub 90} criteria is used, then no explosions produce an aftershock greater than M{sub 90} for durations that end more than 17 days after the mainshock. The other discriminant defines N{sub X}, or the minimum cumulative number of aftershocks expected for given time after the mainshock with probability X. Similar to the aftershock magnitude discriminant, five earthquakes do not produce more aftershocks than N{sub 99} within 7 days after the mainshock. However, within the same period all but one explosion produce less aftershocks then N{sub 99}. One explosion is added if the duration is shortened to two days after than mainshock. The cumulative number aftershock discriminant is more reliable, especially at short durations, but requires a low magnitude of completeness for the given earthquake catalog. These results at NTS are quite promising and should be evaluated at other nuclear test sites to understand the effects of differences in the geologic setting and nuclear testing practices on its performance.

  18. Aftershocks in a time-to-failure slider-block model

    NASA Astrophysics Data System (ADS)

    Gran, J. D.; Rundle, J. B.; Turcotte, D. L.

    2011-12-01

    Several earthquake models have been used to study the mechanisms that lead to a Gutenberg-Richter distribution of earthquake magnitudes. One such model is the cellular automaton (CA) slider-block model. Events (earthquakes) in this model are initiated by a loader plate increasing stress uniformly on all blocks until a single block reaches a static friction failure threshold which can trigger a cascade of failures of blocks. This model, although useful, misses a key part of the earthquake process, i.e. aftershocks. Aftershocks occur within a short time period following the main-shock and are due to stress redistributions within the earth's crust rather than movement of the interacting tectonic plates. We describe here a modified version of CA slider-block model, which includes a time-to-failure mode, that allows blocks to fail below the static threshold value if enough time passes. This new feature allows multiple independent events to occur during a single plate update. We measure time in Monte Carlo steps and have tested various functions for the time-to-failure to understand the connection between the time-to-failure and Omori's law for the frequency of aftershocks following the main-shock. After each loader plate update, we see a main-shock followed in time by multiple aftershocks that decay in magnitude. We believe this to be another mechanism for the occurrence of aftershocks in addition to that found by Dietrich, JGR(1994).

  19. Early aftershocks statistics: first results of prospective test of alarm-based model (EAST)

    NASA Astrophysics Data System (ADS)

    Shebalin, Peter; Narteau, Clement; Holschneider, Matthias; Schorlemmer, Danijel

    2010-05-01

    It was shown recently that the c-value systematically changes across different faulting styles and thus may reflect the state of stress. Hypothesizing that smaller c-values indicate places more vulnerable to moderate and large earthquakes, we suggested a simple alarm-based forecasting model, called EAST, submitted for the test in CSEP in California (3-month, M ≥ 4 class); the official test was started on July 1, 2009. We replaced the c-value by more robust parameter, the geometric average of the aftershock elapsed times (the ea-value). We normalize the ea-value calculated for last 5 years by the value calculated for preceding 25 years. When and where the normalized ea-value exceeds a given threshold, an 'alarm' is issued: an earthquake is expected to occur within the next 3 months. Retrospective tests of the model show good and stable results (even better for targets M ≥ 5). During the first 6 months of the prospective test 22 target earthquakes took place in the testing area. 14 of them (more than 60%) were forecasted with the alarm threshold resulting in only 1% of space-time occupied by alarms (5% if space is normalized by past earthquake frequencies). This highly encouraging result was obtained mostly due to successful forecast of the sequence of 11 earthquakes near Lone Pine in 1-9 October 2009. However, if we disregard aftershocks as targets, then 4 out of 9 main shocks occurred in alarms with normalized ea-value threshold resulting in 2.5% of normalized space-time occupied by alarms, the result is also impossible to get by chance at a significance level 1%. To expand the evaluation of the EAST model relative to larger number of forecast models, we have developed its frequency-based version. We estimate the expected frequency of earthquakes using joint retrospective statistics of targets and the ea-value.

  20. Modeling of Kashmir Aftershock Decay Based on Static Coulomb Stress Changes and Laboratory-Derived Rate-and-State Dependent Friction Law

    NASA Astrophysics Data System (ADS)

    Javed, F.; Hainzl, S.; Aoudia, A.; Qaisar, M.

    2016-05-01

    We model the spatial and temporal evolution of October 8, 2005 Kashmir earthquake's aftershock activity using the rate-and-state dependent friction model incorporating uncertainties in computed coseismic stress perturbations. We estimated the best possible value for frictional resistance " Aσ n", background seismicity rate " r" and coefficient of stress variation "CV" using maximum log-likelihood method. For the whole Kashmir earthquake sequence, we measure a frictional resistance Aσ n ~ 0.0185 MPa, r ~ 20 M3.7+ events/year and CV = 0.94 ± 0.01. The spatial and temporal forecasted seismicity rate of modeled aftershocks fits well with the spatial and temporal distribution of observed aftershocks that occurred in the regions with positive static stress changes as well as in the apparent stress shadow region. To quantify the effect of secondary aftershock triggering, we have re-run the estimations for 100 stochastically declustered catalogs showing that the effect of aftershock-induced secondary stress changes is obviously minor compared to the overall uncertainties, and that the stress variability related to uncertain slip model inversions and receiver mechanisms remains the major factor to provide a reasonable data fit.

  1. Bayesian Predictive Distribution for the Magnitude of the Largest Aftershock

    NASA Astrophysics Data System (ADS)

    Shcherbakov, R.

    2014-12-01

    Aftershock sequences, which follow large earthquakes, last hundreds of days and are characterized by well defined frequency-magnitude and spatio-temporal distributions. The largest aftershocks in a sequence constitute significant hazard and can inflict additional damage to infrastructure. Therefore, the estimation of the magnitude of possible largest aftershocks in a sequence is of high importance. In this work, we propose a statistical model based on Bayesian analysis and extreme value statistics to describe the distribution of magnitudes of the largest aftershocks in a sequence. We derive an analytical expression for a Bayesian predictive distribution function for the magnitude of the largest expected aftershock and compute the corresponding confidence intervals. We assume that the occurrence of aftershocks can be modeled, to a good approximation, by a non-homogeneous Poisson process with a temporal event rate given by the modified Omori law. We also assume that the frequency-magnitude statistics of aftershocks can be approximated by Gutenberg-Richter scaling. We apply our analysis to 19 prominent aftershock sequences, which occurred in the last 30 years, in order to compute the Bayesian predictive distributions and the corresponding confidence intervals. In the analysis, we use the information of the early aftershocks in the sequences (in the first 1, 10, and 30 days after the main shock) to estimate retrospectively the confidence intervals for the magnitude of the expected largest aftershocks. We demonstrate by analysing 19 past sequences that in many cases we are able to constrain the magnitudes of the largest aftershocks. For example, this includes the analysis of the Darfield (Christchurch) aftershock sequence. The proposed analysis can be used for the earthquake hazard assessment and forecasting associated with the occurrence of large aftershocks. The improvement in instrumental data associated with early aftershocks can greatly enhance the analysis and

  2. Forecasting magnitude, time, and location of aftershocks for aftershock hazard

    NASA Astrophysics Data System (ADS)

    Chen, K.; Tsai, Y.; Huang, M.; Chang, W.

    2011-12-01

    In this study we investigate the spatial and temporal seismicity parameters of the aftershock sequence accompanying the 17:47 20 September 1999 (UTC) 7.45 Chi-Chi earthquake Taiwan. Dividing the epicentral zone into north of the epicenter, at the epicenter, and south of the epicenter, it is found that immediately after the earthquake the area close by the epicenter had a lower value than both the northern and southern sections. This pattern suggests that at the time of the Chi-Chi earthquake, the area close by the epicenter remained prone to large magnitude aftershocks and strong shaking. However, with time the value increases. An increasing value indicates a reduced likelihood of large magnitude aftershocks. The study also shows that the value is higher at the southern section of the epicentral zone, indicating a faster rate of decay in this section. The primary purpose of this paper is to design a predictive model for forecasting the magnitude, time, and location of aftershocks to large earthquakes. The developed model is presented and applied to the 17:47 20 September 1999 7.45 Chi-Chi earthquake Taiwan, and the 09:32 5 November 2009 (UTC) Nantou 6.19, and 00:18 4 March 2010 (UTC) Jiashian 6.49 earthquake sequences. In addition, peak ground acceleration trends for the Nantou and Jiashian aftershock sequences are predicted and compared to actual trends. The results of the estimated peak ground acceleration are remarkably similar to calculations from recorded magnitudes in both trend and level. To improve the predictive skill of the model for occurrence time, we use an empirical relation to forecast the time of aftershocks. The empirical relation improves time prediction over that of random processes. The results will be of interest to seismic mitigation specialists and rescue crews. We apply also the parameters and empirical relation from Chi-Chi aftershocks of Taiwan to forecast aftershocks with magnitude M > 6.0 of 05:46 11 March 2011 (UTC) Tohoku 9

  3. The Hellenic Seismological Network of Crete (HSNC): validation and results of the 2013 aftershock sequences

    NASA Astrophysics Data System (ADS)

    Chatzopoulos, G.; Papadopoulos, I.; Vallianatos, F.

    2016-02-01

    The last century, the global urbanization has leaded the majority of population to move into big, metropolitan areas. Small areas on the Earth's surface are being built with tall buildings in areas close to seismogenic zones. Such an area of great importance is the Hellenic arc in Greece. Among the regions with high seismicity is Crete, located on the subduction zone of the Eastern Mediterranean plate underneath the Aegean plate. The Hellenic Seismological Network of Crete (HSNC) has been built to cover the need on continuous monitoring of the regional seismicity in the vicinity of the South Aegean Sea and Crete Island. In the present work, with the use of Z-map software the spatial variability of Magnitude of Completeness (Mc) is calculated from HSNC's manual analysis catalogue of events from the beginning of 2008 till the end of September 2015, supporting the good coverage of HSNC in the area surrounding Crete Island. Furthermore, we discuss the 2013 seismicity when two large earthquakes occurred in the vicinity of Crete Island. The two main shocks and their aftershock sequences have been relocated with the use of HYPOINVERSE earthquake location software. Finally, the quality of seismological stations is addressed using the standard PQLX software.

  4. The 20th April 2005 Koryakia earthquake (Russia): a case of study for its aftershock seismic sequence

    NASA Astrophysics Data System (ADS)

    Caccamo, D.; Barbieri, L. M.; Lagana, C.; Francesco, P.; D'Amico, S.

    2009-12-01

    Even if the Koryakia earthquake (April 20, 2005 at 23:25:02-UTC) occurred in sparsely populated northeastern Russia about 40 people were injured and the several villages were destroyed. Some buildings and water supply systems were badly damaged as well. The Koryakia earthquake occurred in north-northeast of the Kamchatka Peninsula. The earthquake was in a complicated geological setting where the configuration and interaction of the tectonic plates between northeastern Asia and northwestern North America are still poorly understood. The aim of this paper is to study the Koryakia seismic sequence trough the application of the Delta/Sigma method (PEPI - Caccamo et al. 2005) and using data coming from the USGS data-bank. Using this method is possible to observe statistically significant anomalies in the temporal decay of seismic sequence before the occurrence of a large aftershock. The Delta/Sigma analysis show some anomalies in the temporal decay a few days before the occurrence of large aftershock. They possibly are not random fluctuations but probably could be considered as precursors. Fractal geometry is sometimes important to better explain the mechanisms of seismicity and so it could be useful to analyze the behavior of aftershocks occurrence. In this paper a fractal analysis od the seismic sequence was performed investigating the box-counting dimension (D0) and the correlation dimension (D2).

  5. Aftershocks and Omori's law in a modified Carlson-Langer model with nonlinear viscoelasticity

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Okamura, Kazuki

    2015-05-01

    A modified Carlson-Langer model for earthquakes is proposed, which includes nonlinear viscoelasticity. Several aftershocks are generated after the main shock owing to the damping of the additional viscoelastic force. Both the Gutenberg-Richter law and Omori's law are reproduced in a numerical simulation of the modified Carlson-Langer model on a critical percolation cluster of a square lattice.

  6. The M 7.7 Tocopilla earthquake and its aftershock sequence: deployment of a Task Force local network

    NASA Astrophysics Data System (ADS)

    Sobiesiak, M.; Eggert, S.; Woith, H.; Grosser, H.; Peyrat, S.; Vilotte, J.; Medina, E.; Ruch, J.; Walter, T.; Victor, P.; Barrientos, S.; Gonzalez, G.

    2008-05-01

    After the November 14, 2007 Tocopilla earthquake in northern Chile, a local network of 20 short period seismic stations, 5 strong motion instruments, 6 GPS stations and 3 extensometers has been installed in the fault plane area between Tocopilla and Antofagasta by the German Task Force for earthquakes (GFZ Potsdam). The hydrogeology group of the TF sampled 20 thermal water sources in the area of the El Tatio geyser field, located about 170 km E of the epicentre. In collaboration with the IPG Paris, 4 broad band stations were deployed at the northern end of the fault plane between Tocopilla and Maria Elena. Major targets of the investigations of the aftershock sequence are the segment boundary between the 1995 Antofagasta earthquake and the recent Tocopilla event, stress transfer between both successively ruptured subduction zone segments, structural properties of the fault plane, possible consequences for the northern adjacent Iquique segment, and the influence of earthquake seismic waves on the El Tatio hydrothermal field. In our presentation we would like to show first results on the spatial distribution of the aftershocks and discuss these in relation to studies we have made on the Antofagasta aftershock sequence.

  7. Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence

    USGS Publications Warehouse

    Hardebeck, J.L.; Michael, A.J.

    2006-01-01

    We present a new focal mechanism stress inversion technique to produce regional-scale models of stress orientation containing the minimum complexity necessary to fit the data. Current practice is to divide a region into small subareas and to independently fit a stress tensor to the focal mechanisms of each subarea. This procedure may lead to apparent spatial variability that is actually an artifact of overfitting noisy data or nonuniquely fitting data that does not completely constrain the stress tensor. To remove these artifacts while retaining any stress variations that are strongly required by the data, we devise a damped inversion method to simultaneously invert for stress in all subareas while minimizing the difference in stress between adjacent subareas. This method is conceptually similar to other geophysical inverse techniques that incorporate damping, such as seismic tomography. In checkerboard tests, the damped inversion removes the stress rotation artifacts exhibited by an undamped inversion, while resolving sharper true stress rotations than a simple smoothed model or a moving-window inversion. We show an example of a spatially damped stress field for southern California. The methodology can also be used to study temporal stress changes, and an example for the Coalinga, California, aftershock sequence is shown. We recommend use of the damped inversion technique for any study examining spatial or temporal variations in the stress field.

  8. Propagation of Coulomb stress uncertainties in physics-based aftershock models

    NASA Astrophysics Data System (ADS)

    Cattania, Camilla; Hainzl, Sebastian; Wang, Lifeng; Roth, Frank; Enescu, Bogdan

    2014-10-01

    Stress transfer between earthquakes is recognized as a fundamental mechanism governing aftershock sequences. A common approach to relate stress changes to seismicity rate changes is the rate-and-state constitutive law developed by Dieterich: these elements are the foundation of Coulomb-rate-and-state (CRS) models. Despite the successes of Coulomb hypothesis and of the rate-and-state formulation, such models perform worse than statistical models in an operational forecasting context: one reason is that Coulomb stress is subject to large uncertainties and intrinsic spatial heterogeneity. In this study, we characterize the uncertainties in Coulomb stress inherited from different physical quantities and assess their effect on CRS models. We use a Monte Carlo method and focus on the following aspects: the existence of multiple receiver faults; the stress heterogeneity within grid cells, due to their finite size; and errors inherited from the coseismic slip model. We study two well-recorded sequences from different tectonic settings: the Mw = 6.0 Parkfield and the Mw= 9.0 Tohoku earthquakes. We find that the existence of multiple receiver faults is the most important source of intrinsic stress heterogeneity, and CRS models perform significantly better when this variability is taken into account. The choice of slip model also generates large uncertainties. We construct an ensemble model based on published slip models and find that it outperforms individual models. Our findings highlight the importance of identifying sources of errors and quantifying confidence boundaries in the forecasts; moreover, we demonstrate that consideration of stress heterogeneity and epistemic uncertainty has the potential to improve the performance of operational forecasting models.

  9. Three Dimensional P Wave Velocity Model for the Crust Containing Aftershocks of the Bhuj, India Earthquake

    NASA Astrophysics Data System (ADS)

    Powell, C. A.; Vlahovic, G.; Bodin, P.; Horton, S.

    2001-12-01

    A three-dimensional P wave velocity model has been constructed for the crust in the vicinity of the Mw=7.7 January 26th Bhuj, India earthquake using aftershock data obtained by CERI away teams. Aftershocks were recorded by 8 portable, digital K2 seismographs (the MAEC/ISTAR network) and by a continuously recording Guralp CMG40TD broad-band seismometer. Station spacing is roughly 30 km. The network was in place for 18 days and recorded ground motions from about 2000 aftershocks located within about 100 km of all stations. The 3-D velocity model is based upon an initial subset of 461 earthquakes with 2848 P wave arrivals. The initial 1-D velocity model was determined using VELEST and the 3-D model was determined using the nonlinear travel time tomography method of Benz et al. [1996]. Block size was set at 2 by 2 by 2 km. A 45% reduction in RMS travel time residuals was obtained after 10 iterations holding hypocenters fixed. We imaged velocity anomalies in the range -2 to 4%. Low velocities were found in the upper 6 km and the anomalies follow surface features such as the Rann of Kutch. High velocity features were imaged at depth and are associated with the aftershock hypocenters. High crustal velocities are present at depths exceeding 20 km with the exception of the crust below the Rann of Kutch. The imaged velocity anomaly pattern does not change when different starting models are used and when hypocenters are relocated using P wave arrivals only. The analysis will be extended to an expanded data set of 941 aftershocks.

  10. Aftershocks of the june 20, 1978, Greece earthquake: A multimode faulting sequence

    USGS Publications Warehouse

    Carver, D.; Bollinger, G.A.

    1981-01-01

    A 10-station portable seismograph network was deployed in northern Greece to study aftershocks of the magnitude (mb) 6.4 earthquake of June 20, 1978. The main shock occurred (in a graben) about 25 km northeast of the city of Thessaloniki and caused an east-west zone of surface rupturing 14 km long that splayed to 7 km wide at the west end. The hypocenters for 116 aftershocks in the magnitude range from 2.5 to 4.5 were determined. The epicenters for these events cover an area 30 km (east-west) by 18 km (north-south), and focal depths ranges from 4 to 12 km. Most of the aftershocks in the east half of the aftershock zone are north of the surface rupture and north of the graben. Those in the west half are located within the boundaries of the graben. Composite focalmechanism solutions for selected aftershocks indicate reactivation of geologically mapped normal faults in the area. Also, strike-slip and dip-slip faults that splay off the western end of the zone of surface ruptures may have been activated. The epicenters for four large (M ??? 4.8) foreshocks and the main shock were relocated using the method of joint epicenter determination. Collectively, those five epicenters form an arcuate pattern convex southward, that is north of and 5 km distant from the surface rupturing. The 5-km separation, along with a focal depth of 8 km (average aftershock depth) or 16 km (NEIS main-shock depth), implies that the fault plane dips northward 58?? or 73??, respectively. A preferred nodal-plane dip of 36?? was determined by B.C. Papazachos and his colleagues in 1979 from a focal-mechanism solution for the main shock. If this dip is valid for the causal fault and that fault projects to the zone of surface rupturing, a decrease of dip with depth is required. ?? 1981.

  11. Spatial stress variations in the aftershock sequence following the 2008 M6 earthquake doublet in the South Iceland Seismic Zone

    NASA Astrophysics Data System (ADS)

    Hensch, M.; Árnadóttir, Th.; Lund, B.; Brandsdóttir, B.

    2012-04-01

    The South Iceland Seismic Zone (SISZ) is an approximately 80 km wide E-W transform zone, bridging the offset between the Eastern Volcanic Zone and the Hengill triple junction to the west. The plate motion is accommodated in the brittle crust by faulting on many N-S trending right-lateral strike-slip faults of 2-5 km separation. Major sequences of large earthquakes (M>6) has occurred repeatedly in the SISZ since the settlement in Iceland more than thousand years ago. On 29th May 2008, two M6 earthquakes hit the western part of the SISZ on two adjacent N-S faults within a few seconds. The intense aftershock sequence was recorded by the permanent Icelandic SIL network and a promptly installed temporary network of 11 portable seismometers in the source region. The network located thousands of aftershocks during the following days, illuminating a 12-17 km long region along both major fault ruptures as well as several smaller parallel faults along a diffuse E-W trending region west of the mainshock area without any preceding main rupture. This episode is suggested to be the continuation of an earthquake sequence which started with two M6.5 and several M5-6 events in June 2000. The time delay between the 2000 and 2008 events could be due to an inflation episode in Hengill during 1993-1998, that potentially locked N-S strike slip faults in the western part of the SISZ. Around 300 focal solutions for aftershocks have been derived by analyzing P-wave polarities, showing predominantly strike-slip movements with occasional normal faulting components (unstable P-axis direction), which suggests an extensional stress regime as their driving force. A subsequent stress inversion of four different aftershock clusters reveals slight variations of the directions of the average σ3 axes. While for both southern clusters, including the E-W cluster, the σ3 axes are rather elongated perpendicular to the overall plate spreading axis, they are more northerly trending for shallower clusters

  12. Cumulative Coulomb Stress Triggering as an Explanation for the Canterbury (New Zealand) Aftershock Sequence: Initial Conditions Are Everything?

    NASA Astrophysics Data System (ADS)

    Bebbington, Mark; Harte, David; Williams, Charles

    2016-01-01

    Using 2 years of aftershock data and three fault-plane solutions for each of the initial M7.1 Darfield earthquake and the larger (M >6) aftershocks, we conduct a detailed examination of Coulomb stress transfer in the Canterbury 2010-2011 earthquake sequence. Moment tensor solutions exist for 283 of the events with M ≥ 3.6, while 713 other events of M ≥ 3.6 have only hypocentre and magnitude information available. We look at various methods for deciding between the two possible mechanisms for the 283 events with moment tensor solutions, including conformation to observed surface faulting, and maximum ΔCFF transfer from the Darfield main shock. For the remaining events, imputation methods for the mechanism including nearest-neighbour, kernel smoothing, and optimal plane methods are considered. Fault length, width, and depth are arrived at via a suite of scaling relations. A large (50-70 %) proportion of the faults considered were calculated to have initial loading in excess of the final stress drop. The majority of faults that accumulated positive ΔCFF during the sequence were `encouraged' by the main shock failure, but, on the other hand, of the faults that failed during the sequence, more than 50 % of faults appeared to have accumulated a negative ΔCFF from all preceding failures during the sequence. These results were qualitatively insensitive to any of the factors considered. We conclude that there is much unknown about how Coulomb stress triggering works in practice.

  13. Non extensive statistical physics properties of the 2003 (Mw6.2), Lefkada, Ionian island Greece, aftershock sequence

    NASA Astrophysics Data System (ADS)

    Vallianatos, F.; Karakostas, V.; Papadimitriou, E.

    2012-04-01

    On 14 August 2003, Lefkada Island (Central Ionian) was affected by an Mw=6.2 earthquake. Due to a dense temporary seismic network that operating immediately after the main shock occurrence, hundreds of aftershocks were recorded and located with high precision whereas relocation of the main shock and early strong aftershocks became also feasible. Thus, the spatio-temporal distribution of aftershocks onto the main and the neighboring fault segments was investigated in detail enabling the recognition of four distinctive seismicity clusters separated by less active patches. The aftershock spatiotemporal properties studied here using the concept of Non-Extensive Statistical Physics (NESP). The cumulative distribution functions of the inter-event times and the inter-event distances are estimated for the data set in each seismicity cluster and the analysis results to a value of the statistical thermodynamic qT and qD parameters for each cluster, where qT varies from 1.15 to 1.47 and qD from 0.5 to 0.77 for the interevent times and distances distributions respectively. These values confirm the complexity and non-additivity of the spatiotemporal evolution of seismicity and the usefulness of NESP in investigating such phenomena. The temporal structure is also discussed using the complementary to NESP approach of superstatistics, which is based on a superposition of ordinary local equilibrium statistical mechanics. The result indicates that the temporal evolution of the Lefkada aftershock sequence in clusters A, B and C governed by very low number of degrees of freedom while D is less organized seismicity structure with a much higher number of degrees of freedom. Acknowledgments. This work was supported in part by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled "Integrated understanding of Seismicity, using innovative Methodologies of Fracture mechanics along with Earthquake and non extensive

  14. A case study of two M~5 mainshocks in Anza, California: Is the footprint of an aftershock sequence larger than we think?

    USGS Publications Warehouse

    Fritts, Karen R.; Kilb, Debi

    2009-01-01

    It has been traditionally held that aftershocks occur within one to two fault lengths of the mainshock. Here we demonstrate that this perception has been shaped by the sensitivity of seismic networks. The 31 October 2001 Mw 5.0 and 12 June 2005 Mw 5.2 Anza mainshocks in southern California occurred in the middle of the densely instrumented ANZA seismic network and thus were unusually well recorded. For the June 2005 event, aftershocks as small as M 0.0 could be observed stretching for at least 50 km along the San Jacinto fault even though the mainshock fault was only ∼4.5 km long. It was hypothesized that an observed aseismic slipping patch produced a spatially extended aftershock-triggering source, presumably slowing the decay of aftershock density with distance and leading to a broader aftershock zone. We find, however, the decay of aftershock density with distance for both Anza sequences to be similar to that observed elsewhere in California. This indicates there is no need for an additional triggering mechanism and suggests that given widespread dense instrumentation, aftershock sequences would routinely have footprints much larger than currently expected. Despite the large 2005 aftershock zone, we find that the probability that the 2005 Anza mainshock triggered the M 4.9 Yucaipa mainshock, which occurred 4.2 days later and 72 km away, to be only 14%±1%. This probability is a strong function of the time delay; had the earthquakes been separated by only an hour, the probability of triggering would have been 89%.

  15. The 2012 August 11 MW 6.5, 6.4 Ahar-Varzghan earthquakes, NW Iran: aftershock sequence analysis and evidence for activity migration

    NASA Astrophysics Data System (ADS)

    Rezapour, Mehdi

    2016-02-01

    The Ahar-Varzghan doublet earthquakes with magnitudes MW 6.5 and 6.4 occurred on 2012 August 11 in northwest Iran and were followed by many aftershocks. In this paper, we analyse ˜5 months of aftershocks of these events. The Ahar-Varzghan earthquakes occurred along complex faults and provide a new constraint on the earthquake hazard in northwest Iran. The general pattern of relocated aftershocks defines a complex seismic zone covering an area of approximately 25 × 10 km2. The Ahar-Varzghan aftershock sequence shows a secondary activity which started on November 7, approximately 3 months after the main shocks, with a significant increase in activity, regarding both number of events and their magnitude. This stage was characterized by a seismic zone that propagated to the west of the main shocks. The catalogue of aftershocks for the doublet earthquake has a magnitude completeness of Mc 2.0. A below-average b-value for the Ahar-Varzghan sequence indicates a structural heterogeneity in the fault plane and the compressive stress state of the region. Relocated aftershocks occupy a broad zone clustering east-west with near-vertical dip which we interpret as the fault plane of the first of the doublet main shocks (MW 6.5). The dominant depth range of the aftershocks is from 3 to about 20 km, and the focal depths decrease toward the western part of the fault. The aftershock activity has its highest concentration in the eastern and middle parts of the active fault, and tapers off toward the western part of the active fault segment, indicating mainly a unilateral rupture toward west.

  16. Precise Relocation of the Northern Extent of the Aftershock Sequence Following the 4 April 2010 M7.2 El Mayor-Cucapah Earthquake Kayla A. Kroll (UCR) and Elizabeth S. Cochran (UCR)

    NASA Astrophysics Data System (ADS)

    Kroll, K.; Cochran, E. S.

    2010-12-01

    Following the 4 April 2010 M7.2 El Mayor-Cucapah earthquake, teams from UC Riverside, UC Santa Barbara, and San Diego State University installed an array of 8 temporary seismometers in the Yuha Desert area north of the Mexican border. This temporary array complemented the existing network stations and continuously recorded data from the aftershock sequence from 6 April through 14 June 2010. SCSN and the temporary aftershock array data will be used to study several aspects of fault structure and behavior, including precise relocation of the aftershock sequence. While the mainshock sequence ruptured multiple fault strands west of the Cerro Prieto fault, and south of the Sierra Cucapah Range, the aftershocks are densely clustered in three areas. The largest cluster is located to the northwest of the mainshock, in an area with no previously mapped faults. By relocating aftershocks, we hope to illuminate the network of faults that extend from the Laguna Salada fault in Mexico to its northern extension towards the Elsinore and San Jacinto faults. Right-lateral displacements up to 2 cm were identified on several right- and left-lateral fault segments by the USGS/CGS geologists in the area south of Hwy 98, and into the Pinto Wash (Treiman et al., personal communication, 2010). We relocate aftershocks within a 20 km by 14 km region containing 1 network and 8 temporary stations. Within this region over 4,000 aftershocks are in the SCEDC catalog from 6 April to 14 June 2010, during the time the temporary network was installed. The P and S wave arrival times for both the network and temporary stations were manually picked for each of these events. We compute the double difference hypocenter locations using the picked phase arrivals and waveform cross-correlations in the hypocenter relocation program, hypoDD (Waldhauser & Ellsworth 2000). In the event relocation, we used the velocity profile for the Imperial Valley from the SCEC Unified Velocity Model (Version 4). Future work

  17. Focal Depth of the WenChuan Earthquake Aftershocks from modeling of Seismic Depth Phases

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zeng, X.; Chong, J.; Ni, S.; Chen, Y.

    2008-12-01

    After the 05/12/2008 great WenChuan earthquake in Sichuan Province of China, tens of thousands earthquakes occurred with hundreds of them stronger than M4. Those aftershocks provide valuable information about seismotectonics and rupture processes for the mainshock, particularly accurate spatial distribution of aftershocks is very informational for determining rupture fault planes. However focal depth can not be well resolved just with first arrivals recorded by relatively sparse network in Sichuan Province, therefore 3D seismicity distribution is difficult to obtain though horizontal location can be located with accuracy of 5km. Instead local/regional depth phases such as sPmP, sPn, sPL and teleseismic pP,sP are very sensitive to depth, and be readily modeled to determine depth with accuracy of 2km. With reference 1D velocity structure resolved from receiver functions and seismic refraction studies, local/regional depth phases such as sPmP, sPn and sPL are identified by comparing observed waveform with synthetic seismograms by generalized ray theory and reflectivity methods. For teleseismic depth phases well observed for M5.5 and stronger events, we developed an algorithm in inverting both depth and focal mechanism from P and SH waveforms. Also we employed the Cut and Paste (CAP) method developed by Zhao and Helmberger in modeling mechanism and depth with local waveforms, which constrains depth by fitting Pnl waveforms and the relative weight between surface wave and Pnl. After modeling all the depth phases for hundreds of events , we find that most of the M4 earthquakes occur between 2-18km depth, with aftershocks depth ranging 4-12km in the southern half of Longmenshan fault while aftershocks in the northern half featuring large depth range up to 18km. Therefore seismogenic zone in the northern segment is deeper as compared to the southern segment. All the aftershocks occur in upper crust, given that the Moho is deeper than 40km, or even 60km west of the

  18. Tomographic velocity model for the aftershock region of the 2001 Gujarat, India earthquake

    NASA Astrophysics Data System (ADS)

    Negishi, H.; Kumar, S.; Mori, J. J.; Sato, T.; Bodin, P.; Rastogi, B.

    2002-12-01

    A tomographic inversion was applied to the aftershock data collected after the January 26, 2001 Bhuj earthquake (Ms 7.9, Mw 7.7), which occurred on a south dipping (~50 degrees) reverse fault in the state of Gujarat in western India. We used high quality arrivals from 8,374 P and 7,994 S waves of 1404 aftershocks recorded on 27 digital stations from temporary seismic arrays setup by the India-Japan team; NGRI, India; and CERI, Memphis Univ., USA, following the Bhuj main shock. First, we used the Joint Hypocenters Determination Method for obtaining relocated hypocenters and a one-dimensional Vp and Vs velocity model, and then the resultant hypocenters and 1-D velocity model were used as the initial parameters for a 3-D tomographic inversion. The tomography technique is based on a grid-modeling method by Zhao et al. . Vp, Vs and hypocenters are determined simultaneously. We tried to use the Cross-Validation Technique for determining an optimum model in the seismic tomography. This approach has been applied to other tomographic studies to investigate the quantitative fluctuation range of velocity perturbations . Significant variations in the velocity (up to 6%) and Poisson's ratio (up to 8%) are revealed in the aftershock area. It seems that the aftershock distribution corresponds to the boundary between high and low velocity heterogeneities. Small values of Vp/Vs are generally found at depths of 10 to 35 km, i.e. the depth range of aftershock distribution. However, the deeper region below the hypocenter of the mainshock, at depths of 35 to 45 km, is characterized by relatively high values of Vp/Vs and low values of Vs. This anomaly may be due to a weak fractured and fluid filled rock matrix, which might have contributed to triggering this earthquake. This earthquake occurred on a relatively deep and steeply dipping fault with a large stress drop . Theoretically it is difficult to slip steep faults, especially in the lower crust. Our tomographic investigation provides

  19. Full waveform modelling using the VERCE platform - application to aftershock seismicity in the Chile subduction zone

    NASA Astrophysics Data System (ADS)

    Garth, Thomas; Rietbrock, Andreas; Hicks, Steve; Fuenzalida Velasco, Amaya; Casarotti, Emanuele; Spinuso, Alessandro

    2015-04-01

    The VERCE platform is an online portal that allows full waveform simulations to be run for any region where a suitable velocity model exists. We use this facility to simulate the waveforms from aftershock earthquakes from the 2014 Pisagua earthquake, and 2010 Maule earthquake that occurred at the subduction zone mega thrust in Northern and Central Chile respectively. Simulations are performed using focal mechanisms from both global earthquake catalogues, and regional earthquake catalogues. The VERCE platform supports specFEM Cartesian, and simulations are run using meshes produced by CUBIT. The full waveform modelling techniques supported on the VERCE platform are used to test the validity of a number of subduction zone velocity models from the Chilean subduction zone. For the Maule earthquake we use a 2D and 3D travel time tomography model of the rupture area (Hicks et al. 2011; 2014). For the Pisagua earthquake we test a 2D/3D composite velocity model based on tomographic studies of the region (e.g. Husen et al. 2000, Contreyes-Reyes et al. 2012) and slab1.0 (Hayes et al. 2012). Focal mechanisms from the cGMT catalogue and local focal mechanisms calculated using ISOLA (e.g. Agurto et al. 2012) are used in the simulations. The waveforms produced are directly compared to waveforms recorded on the temporary deployment for the Maule earthquake aftershocks, and waveforms recorded on the IPOC network for the Pisagua earthquake aftershocks. This work demonstrates how the VERCE platform allows waveforms from the full 3D simulations to be easily produced, allowing us to quantify the validity of both the velocity model and the source mechanisms. These simulations therefore provide an independent test of the velocity models produced synthetically and by travel time tomography studies. Initial results show that the waveform is reasonably well reproduced in the 0.05 - 0.25 frequency band using a refined 3D travel time tomography, and locally calculated focal mechanisms.

  20. Aftershocks hazard in Italy Part I: Estimation of time-magnitude distribution model parameters and computation of probabilities of occurrence

    NASA Astrophysics Data System (ADS)

    Lolli, Barbara; Gasperini, Paolo

    We analyzed the available instrumental data on Italian earthquakes from1960 to 1996 to compute the parameters of the time-magnitudedistribution model proposed by Reasenberg and Jones (1989) andcurrently used to make aftershock forecasting in California. From 1981 to1996 we used the recently released Catalogo Strumentale deiTerremoti `Italiani' (CSTI) (Instrumental Catalog Working Group, 2001)joining the data of the Istituto Nazionale di Geofisica e Vulcanologia(INGV) and of the Italian major local seismic network, with magnituderevalued according to Gasperini (2001). From 1960 to 1980 we usedinstead the Progetto Finalizzato Geodinamica (PFG) catalog(Postpischl, 1985) with magnitude corrected to be homogeneous with thefollowing period. About 40 sequences are detected using two differentalgorithms and the results of the modeling for the corresponding ones arecompared. The average values of distribution parameters (p= 0.93±0.21, Log10(c) = -1.53±0.54, b = 0.96±0.18 and a = -1.66±0.72) are in fair agreementwith similar computations performed in other regions of the World. We alsoanalyzed the spatial variation of model parameters that can be used topredict the sequence behavior in the first days of future Italian seismic crisis,before a reliable modeling of the ongoing sequence is available. Moreoversome nomograms to expeditiously estimate probabilities and rates ofaftershock in Italy are also computed.

  1. A Non-Extensive Statistical Physics View in the Spatiotemporal Properties of the 2003 (Mw6.2) Lefkada, Ionian Island Greece, Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    Vallianatos, F.; Karakostas, V.; Papadimitriou, E.

    2014-07-01

    Investigation of the spatiotemporal properties of the 2003 Lefkada seismic sequence is performed through non-extensive statistical physics. Information on highly accurate aftershock source parameters became feasible from the recordings of a portable digital seismological network that was installed and operated in the study area, during the evolution of the seismic sequence. Thus, the spatiotemporal distribution of aftershocks onto the main and neighboring fault segments was investigated in detail, enabling the recognition of four distinctive seismicity clusters separated by less active patches. The aftershock spatiotemporal properties are studied here, using the ideas of non-extensive statistical physics (NESP). The cumulative distribution functions of the inter-event times and the inter-event distances are presented using the data set in each seismicity cluster, and the analysis results in values for the statistical thermodynamic q T and q D parameters for each cluster, where q T varies from 1.16 to 1.47 and q D from 0.42 to 0.77 for the inter-event times and distances distributions, respectively. These values confirm the complexity and non-additivity of the spatiotemporal evolution of seismicity, and the applicability of the NESP approach in investigating aftershocks sequence. The temporal pattern is discussed using the closely connected to NESP approach of superstatistics, which is based on a superposition of ordinary local equilibrium statistical mechanics. The result indicates that the temporal evolution of the Lefkada aftershock sequence in clusters A, B and C is governed by very low number of degrees of freedom, while D is a less organized seismicity structure with a much higher number of degrees of freedom.

  2. The 1979 Homestead Valley earthquake sequence, California: control of aftershocks and postseismic deformation.

    USGS Publications Warehouse

    Stein, R.S.; Lisowski, M.

    1983-01-01

    The coseismic slip and geometry of the March 15, 1979, Homestead Valley, California, earthquake sequence are well constrained by precise horizontal and vertical geodetic observations and by data from a dense local seismic network. These observations indicate 0.52 + or - 0.10 m of right-lateral slip and 0.17 + or - 0.04 m of reverse slip on a buried vertical 6-km-long and 5-km-deep fault and yield a mean static stress drop of 7.2 + or -1.3 MPa. The largest shock had Ms = 5.6. Observations of the ground rupture revealed up to 0.1 m of right-lateral slip on two mapped faults that are subparallel to the modeled seismic slip plane. In the 1.9 years since the earthquakes, geodetic network displacements indicate that an additional 60+ or -10 mm of postseismic creep took place. The rate of postseismic shear strain (0.53 + or - 0.13 mu rad/yr) measured within a 30 X 30-km network centered on the principal events was anomalously high compared to its preearthquake value and the postseismic rate in the adjacent network. This transient cannot be explained by postseismic slip on the seismic fault but rather indicates that broadside release of strain followed the earthquake sequence. -Authors

  3. The Aftershock Sequence of the 2008 Achaia, Greece, Earthquake: Joint Analysis of Seismicity Relocation and Persistent Scatterers Interferometry

    NASA Astrophysics Data System (ADS)

    Karakostas, Vassilis; Mirek, Katarzyna; Mesimeri, Maria; Papadimitriou, Eleftheria; Mirek, Janusz

    2016-08-01

    On 8 June 2008 an earthquake of Mw6.4 took place in the northwestern part of Peloponnese, Greece. The main shock was felt in a wide area and caused appreciable damage along the main rupture area and particularly at the antipodal of the main shock epicenter fault edge, implying strongly unilateral rupture and stopping phase effects. Abundant aftershocks were recorded within an area of ~50 km in length in the period 8 June 2008-end of 2014, by a sufficient number of stations that secure location accuracy because the regional network is adequately dense in the area. All the available phases from seismological stations in epicentral distances up to 140 km until the end of 2014 were used for relocation with the double difference technique and waveform cross-correlation. A quite clear 3-D representation is obtained for the aftershock zone geometry and dimensions, revealing the main rupture and the activated adjacent fault segments. SAR data are processed using Stanford Method for Persistent Scatterers (StaMPS) and a surface deformation map constructed based on PS point displacement for the coseismic period. A variable slip model, with maximum slip of ~1.0 m located at the lower part of the rupture plane, is suggested and used for calculating the deformation field which was found in adequate agreement with geodetic measurements. With the same slip model the static stress changes were calculated evidencing possible triggering of the neighboring faults that were brought closer to failure. The data availability allowed monitoring the temporal variation of b values that after a continuous increase in the first 5 days, returned and stabilized to 1.0-1.1 in the following years. The fluctuation duration is considered as the equivalent time for fault healing, which appeared very short but in full accordance with the cessation of onto-fault seismicity.

  4. On the adaptive daily forecasting of seismic aftershock hazard

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Hossein; Jalayer, Fatemeh; Asprone, Domenico; Lombardi, Anna Maria; Marzocchi, Warner; Prota, Andrea; Manfredi, Gaetano

    2013-04-01

    Post-earthquake ground motion hazard assessment is a fundamental initial step towards time-dependent seismic risk assessment for buildings in a post main-shock environment. Therefore, operative forecasting of seismic aftershock hazard forms a viable support basis for decision-making regarding search and rescue, inspection, repair, and re-occupation in a post main-shock environment. Arguably, an adaptive procedure for integrating the aftershock occurrence rate together with suitable ground motion prediction relations is key to Probabilistic Seismic Aftershock Hazard Assessment (PSAHA). In the short-term, the seismic hazard may vary significantly (Jordan et al., 2011), particularly after the occurrence of a high magnitude earthquake. Hence, PSAHA requires a reliable model that is able to track the time evolution of the earthquake occurrence rates together with suitable ground motion prediction relations. This work focuses on providing adaptive daily forecasts of the mean daily rate of exceeding various spectral acceleration values (the aftershock hazard). Two well-established earthquake occurrence models suitable for daily seismicity forecasts associated with the evolution of an aftershock sequence, namely, the modified Omori's aftershock model and the Epidemic Type Aftershock Sequence (ETAS) are adopted. The parameters of the modified Omori model are updated on a daily basis using Bayesian updating and based on the data provided by the ongoing aftershock sequence based on the methodology originally proposed by Jalayer et al. (2011). The Bayesian updating is used also to provide sequence-based parameter estimates for a given ground motion prediction model, i.e. the aftershock events in an ongoing sequence are exploited in order to update in an adaptive manner the parameters of an existing ground motion prediction model. As a numerical example, the mean daily rates of exceeding specific spectral acceleration values are estimated adaptively for the L'Aquila 2009

  5. Aftershock distribution as a constraint on the geodetic model of coseismic slip for the 2004 Parkfield earthquake

    USGS Publications Warehouse

    Bennington, Ninfa; Thurber, Clifford; Feigl, Kurt; Murray-Moraleda Jessica

    2011-01-01

    Several studies of the 2004 Parkfield earthquake have linked the spatial distribution of the event’s aftershocks to the mainshock slip distribution on the fault. Using geodetic data, we find a model of coseismic slip for the 2004 Parkfield earthquake with the constraint that the edges of coseismic slip patches align with aftershocks. The constraint is applied by encouraging the curvature of coseismic slip in each model cell to be equal to the negative of the curvature of seismicity density. The large patch of peak slip about 15 km northwest of the 2004 hypocenter found in the curvature-constrained model is in good agreement in location and amplitude with previous geodetic studies and the majority of strong motion studies. The curvature-constrained solution shows slip primarily between aftershock “streaks” with the continuation of moderate levels of slip to the southeast. These observations are in good agreement with strong motion studies, but inconsistent with the majority of published geodetic slip models. Southeast of the 2004 hypocenter, a patch of peak slip observed in strong motion studies is absent from our curvature-constrained model, but the available GPS data do not resolve slip in this region. We conclude that the geodetic slip model constrained by the aftershock distribution fits the geodetic data quite well and that inconsistencies between models derived from seismic and geodetic data can be attributed largely to resolution issues.

  6. Reduced Aftershock Productivity in Regions with Known Slow Slip Events

    NASA Astrophysics Data System (ADS)

    Collins, G.; Mina, A.; Richardson, E.; McGuire, J. J.

    2013-12-01

    Reduced aftershock activity has been observed in areas with high rates of aseismic slip, such as transform fault zones and some subduction zones. Fault conditions that could explain both of these observations include a low effective normal stress regime and/or a high temperature, semi-brittle/plastic rheology. To further investigate the possible connection between areas of aseismic slip and reduced aftershock productivity, we compared the mainshock-aftershock sequences in subduction zones where aseismic slip transients have been observed to those of adjacent (along-strike) regions where no slow slip events have been detected. Using the Advanced National Seismic System (ANSS) catalog, we counted aftershocks that occurred within 100 km and 14 days of 112 M>=5.0 slab earthquake mainshocks from January 1980 - July 2013, including 90 since January 2000, inside observed regions of detected slow slip: south central Alaska, Cascadia, the Nicoya Peninsula (Costa Rica), Guerrero (Mexico), and the North Island of New Zealand. We also compiled aftershock counts from 97 mainshocks from areas adjacent to each of these regions using the same criteria and over the same time interval. Preliminary analysis of these two datasets shows an aftershock triggering exponent (alpha in the ETAS model) of approximately 0.8, consistent with previous studies of aftershocks in a variety of tectonic settings. Aftershock productivity for both datasets is less than that of continental earthquakes. Contrasting the two datasets, aftershock productivity inside slow slip regions is lower than in adjacent areas along the same subduction zone and is comparable to that of mid-ocean ridge transform faults.

  7. Some characteristics of aftershock sequences of major earthquakes from 1994 to 2002 in the Kivu province, Western Rift Valley of Africa

    NASA Astrophysics Data System (ADS)

    Mavonga, Tuluka

    2007-07-01

    The temporal and spatial distribution of the aftershock sequences of the Ruwenzori (February 5, 1994, Mb (5.8)), Masisi (April 29, 1995, Mb (5.1)) and Kalehe (October 24, 2002, Mb (5.9)) earthquakes have been studied. It has been found that most of the aftershocks of the Ruwenzori earthquake are located on the eastern flank of the main escarpment and those of the Masisi earthquake are confined to the northwest of Lake Kivu margin where earthquake occurrence of swarm-type was normally observed. The Kalehe earthquake occurred in the central part of Lake Kivu and it was the largest earthquake observed in the Lake Kivu basin since 1900. The rate of decrease in aftershock activity with the time has shown that the p-value for Ruwenzori and Masisi earthquake equals 0.6, somehow smaller than that found in other geotectonic zones where p is close to 1. The p-value of the Kalehe earthquake is a normal value equal to 1. From an area delimited by spatial distribution of aftershocks, the linear dimension of the fault was estimated. The fault area determined in this study correlates well with those of previous studies which occurred in the Western Rift Valley of Africa including the Tanganyika and Upemba Rift.

  8. April 25, 2015, Gorkha Earthquake, Nepal and Sequence of Aftershocks: Key Lessons

    NASA Astrophysics Data System (ADS)

    Guragain, R.; Dixit, A. M.; Shrestha, S. N.

    2015-12-01

    The Gorkha Earthquake of M7.8 hit Nepal on April 25, 2015 at 11:56 am local time. The epicenter of this earthquake was Barpak, Gorkha, 80 km northwest of Kathmandu Valley. The main shock was followed by hundreds of aftershocks including M6.6 and M6.7 within 48 hours and M7.3 on May 12, 2015. According to the Government of Nepal, a total of 8,686 people lost their lives, 16,808 people injured, over 500,000 buildings completely collapsed and more than 250,000 building partially damaged. The National Society for Earthquake Technology - Nepal (NSET), a not-for-profit civil society organization that has been focused on earthquake risk reduction in Nepal for past 21 years, conducted various activities to support people and the government in responding to the earthquake disaster. The activities included: i) assisting people and critical facility institutions to conduct rapid visual building damage assessment including the training; ii) information campaign to provide proper information regarding earthquake safety; iii) support rescue organizations on search and rescue operations; and iv) provide technical support to common people on repair, retrofit of damaged houses. NSET is also involved in carrying out studies related to earthquake damage, geotechnical problems, and causes of building damages. Additionally, NSET has done post-earthquake detail damage assessment of buildings throughout the affected areas. Prior to the earthquake, NSET has been working with several institutions to improve seismic performance of school buildings, private residential houses, and other critical structures. Such activities implemented during the past decade have shown the effectiveness of risk reduction. Retrofitted school buildings performed very well during the earthquake. Preparedness activities implemented at community levels have helped communities to respond immediately and save lives. Higher level of earthquake awareness achieved including safe behavior, better understanding of

  9. Typical Scenario of Preparation, Implementation, and Aftershock Sequence of a Large Earthquake

    NASA Astrophysics Data System (ADS)

    Rodkin, Mikhail

    2016-04-01

    We have tried here to construct and examine the typical scenario of a large earthquake occurrence. The Harvard seismic moment GCMT catalog was used to construct the large earthquake generalized space-time vicinity (LEGV) and to investigate the seismicity behavior in LEGV. LEGV was composed of earthquakes falling into the zone of influence of any of the considerable number (100, 300, or 1,000) of largest earthquakes. The LEGV construction is aimed to enlarge the available statistics, diminish a strong random component, and to reveal in result the typical features of pre- and post-shock seismic activity in more detail. In result of the LEGV construction the character of fore- and aftershock cascades was examined in more detail than it was possible without of the use of the LEGV approach. It was shown also that the mean earthquake magnitude tends to increase, and the b-values, mean mb/mw ratios, apparent stress values, and mean depth tend to decrease. Amplitudes of all these anomalies increase with an approach to a moment of the generalized large earthquake (GLE) as a logarithm of time interval from GLE occurrence. Most of the discussed anomalies agree well with a common scenario of development of instability. Besides of such precursors of common character, one earthquake-specific precursor was found. The revealed decrease of mean earthquake depth during large earthquake preparation testifies probably for the deep fluid involvement in the process. The revealed in LEGV typical features of development of shear instability agree well with results obtained in laboratory acoustic emission (AE) study. Majority of the revealed anomalies appear to have a secondary character and are connected mainly with an increase in a mean earthquake magnitude in LEGV. The mean magnitude increase was shown to be connected mainly with a decrease of a portion of moderate size events (Mw 5.0 - 5.5) in a closer GLE vicinity. We believe that this deficit of moderate size events hardly can be

  10. Attempt to identify seismic sources in the eastern Mitidja basin using gravity data and aftershock sequence of the Boumerdes (May 21, 2003; Algeria) earthquake

    NASA Astrophysics Data System (ADS)

    Ouyed, Merzouk; Idres, Mouloud; Bourmatte, Amar; Boughacha, Mohamed Salah; Samai, Sadek; Yelles, Abdelkrim; Haned, Abderrahmene; Aidi, Chafik

    2011-04-01

    In order to try to identify the seismogenic sources in the epicentral area, we interpreted data collected from gravity and aftershocks in the eastern part of the Mitidja basin after the occurrence of the 21 May 2003 Boumerdes earthquake (Mw = 6.8). The residual gravity anomaly and the horizontal gradient maps revealed the basement shape and density discontinuities. A seismotectonic model obtained from the aftershocks distribution and gravity data is proposed. This model highlights three active faults: one offshore and two onshore. The offshore reverse fault striking NE-SW, parallel to the coast, is consistent with the USGS focal mechanism of the main event, which is assumed to have the most moment release. The two onshore dipping blind active faults are postulated at crossing angles near the SW tip of the main fault. The interpretation is based mainly on the re-location and distribution of aftershocks, and their focal solutions. It is also supported by the basin structures obtained from the inversion and interpretation of residual gravity anomalies, as well as by additional compiled information such as the pattern of coastal co-seismic uplift. This configuration puts forward the failure mode complexity during the main shock. The topography of the basement obtained from 3D gravity inversion shows that all the onshore located aftershocks occurred in the basement, and the area between the two onshore faults rose as a consequence of their sliding.

  11. GIS-based 3D modeling and visualization of the Mw7.7, 2007, Tocopilla aftershocks

    NASA Astrophysics Data System (ADS)

    Eggert, S.; Sobiesiak, M.

    2009-04-01

    The November 14, 2007 Mw 7.7 earthquake nucleated on the west coast of northern Chile about 40 km east of the city of Tocopilla. It took place in the southern part of the of a large seismic gap namely, the Iquique subduction zone segment which is supposed to be at the end of its seismic cycle. The Tocopilla fault plane appears to be the northern continuation of the Mw 8.0, 1995 Antofagasta earthquake. We present a complex 3D model of the rupture area including first hypocenter localizations of aftershocks following the event. The data was recorded during a mission of the German Task Force for Earthquakes after the 2007 Tocopilla earthquake. 34 seismic stations were recording the aftershocks from November 2007 until May 2008. In general, subduction zones have a complex structure where most of the volumes examined are characterized by strong variations in physical and material parameters and are far away from a homogeneously layered half space. Therefore, 3D representation of the geophysical and geological conditions to be found are of great importance to understand such a subduction environment. Using ArcScene as a three-dimensional modeling tool gives us the possibility to visualize the aftershock distribution along the subducting slab and identify clear structures and clusters within the data set. Furthermore we combine the 2007 Tocopilla data set with the 1995 Antofagasta aftershocks which provides a new, three-dimensional insight into the segment boundary of these two events.

  12. Aftershocks of the 2014 South Napa, California, Earthquake: Complex faulting on secondary faults

    USGS Publications Warehouse

    Hardebeck, Jeanne L.; Shelly, David R.

    2016-01-01

    We investigate the aftershock sequence of the 2014 MW6.0 South Napa, California, earthquake. Low-magnitude aftershocks missing from the network catalog are detected by applying a matched-filter approach to continuous seismic data, with the catalog earthquakes serving as the waveform templates. We measure precise differential arrival times between events, which we use for double-difference event relocation in a 3D seismic velocity model. Most aftershocks are deeper than the mainshock slip, and most occur west of the mapped surface rupture. While the mainshock coseismic and postseismic slip appears to have occurred on the near-vertical, strike-slip West Napa fault, many of the aftershocks occur in a complex zone of secondary faulting. Earthquake locations in the main aftershock zone, near the mainshock hypocenter, delineate multiple dipping secondary faults. Composite focal mechanisms indicate strike-slip and oblique-reverse faulting on the secondary features. The secondary faults were moved towards failure by Coulomb stress changes from the mainshock slip. Clusters of aftershocks north and south of the main aftershock zone exhibit vertical strike-slip faulting more consistent with the West Napa Fault. The northern aftershocks correspond to the area of largest mainshock coseismic slip, while the main aftershock zone is adjacent to the fault area that has primarily slipped postseismically. Unlike most creeping faults, the zone of postseismic slip does not appear to contain embedded stick-slip patches that would have produced on-fault aftershocks. The lack of stick-slip patches along this portion of the fault may contribute to the low productivity of the South Napa aftershock sequence.

  13. When and where the aftershock activity was depressed: Contrasting decay patterns of the proximate large earthquakes in southern California

    USGS Publications Warehouse

    Ogata, Y.; Jones, L.M.; Toda, S.

    2003-01-01

    Seismic quiescence has attracted attention as a possible precursor to a large earthquake. However, sensitive detection of quiescence requires accurate modeling of normal aftershock activity. We apply the epidemic-type aftershock sequence (ETAS) model that is a natural extension of the modified Omori formula for aftershock decay, allowing further clusters (secondary aftershocks) within an aftershock sequence. The Hector Mine aftershock activity has been normal, relative to the decay predicted by the ETAS model during the 14 months of available data. In contrast, although the aftershock sequence of the 1992 Landers earthquake (M = 7.3), including the 1992 Big Bear earthquake (M = 6.4) and its aftershocks, fits very well to the ETAS up until about 6 months after the main shock, the activity showed clear lowering relative to the modeled rate (relative quiescence) and lasted nearly 7 years, leading up to the Hector Mine earthquake (M = 7.1) in 1999. Specifically, the relative quiescence occurred only in the shallow aftershock activity, down to depths of 5-6 km. The sequence of deeper events showed clear, normal aftershock activity well fitted to the ETAS throughout the whole period. We argue several physical explanations for these results. Among them, we strongly suspect aseismic slips within the Hector Mine rupture source that could inhibit the crustal relaxation process within "shadow zones" of the Coulomb's failure stress change. Furthermore, the aftershock activity of the 1992 Joshua Tree earthquake (M = 6.1) sharply lowered in the same day of the main shock, which can be explained by a similar scenario.

  14. A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece)

    NASA Astrophysics Data System (ADS)

    Vallianatos, Filippos; Michas, Giorgos; Papadakis, Giorgos; Sammonds, Peter

    2012-06-01

    In the present study, the spatiotemporal properties of the Aigion earthquake (15 June 1995) aftershock sequence are being studied using the concept of non-extensive statistical physics (NESP). The cumulative distribution functions of the inter-event times and the inter-event distances are being estimated for the data set which is assumed to be complete and the analysis yielded the thermodynamic q parameter to be qT = 1.58 and q r = 0.53 for the two distributions, respectively. The results fit rather well to the inter-event distances and times distributions, implying the complexity of the spatiotemporal properties of seismicity and the usefulness of NESP in investigating such phenomena. The temporal structure is also being discussed using the complementary to NESP approach of superstatistics, which is based on a superposition of ordinary local equilibrium statistical mechanics. The result indicates that very low degrees of freedom describe the temporal evolution of the Aigion earthquake aftershock seismicity.

  15. Preliminary report on aftershock sequence for earthquake of January 31, 1986, near Painesville, Ohio (time period: 2/1/86-2/10/86)

    USGS Publications Warehouse

    Borcherdt, R. D., (Edited By)

    1986-01-01

    A ten-station array of broad-band digital instrumentation (GEOS) was deployed by the U. S. Geological Survey with partial support provided by Electric Power Research Institute to record the aftershock sequence of the moderate (mb ~ 4.9) earthquake that occurred on January 31, 1986 (16:46:43 UTC) near Painesville, Ohio. The occurrence of the event has raised questions concerning possible contributory factors to the occurrence of the event and questions concerning the character of earthquake-induced high-frequency ground motions in the area. To aid in the timely resolution of the implications of some of these questions, this preliminary report provides copies of the ground motion time-histories and corresponding spectra for the six identified aftershocks and two events, thought to be quarry blasts, recorded as of February 10, 1986. Recording station locations and epicenter locations based on two preliminary estimates of local seismic velocity structure are provided.

  16. Aftershock Duration of the 1976 Ms 7.8 Tangshan Earthquake: Implication for the Seismic Hazard Model with a Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Zhong, Q.; Shi, B.

    2011-12-01

    The disaster of the Ms 7.8 earthquake occurred in Tangshan, China, on July 28th 1976 caused at least 240,000 deaths. The mainshock was followed by two largest aftershocks, the Ms 7.1 occurred after 15 hr later of the mainshock, and the Ms 6.9 occurred on 15 November. The aftershock sequence is lasting to date, making the regional seismic activity rate around the Tangshan main fault much higher than that of before the main event. If these aftershocks are involved in the local main event catalog for the PSHA calculation purpose, the resultant seismic hazard calculation will be overestimated in this region and underestimated in other place. However, it is always difficult to accurately determine the time duration of aftershock sequences and identifies the aftershocks from main event catalog for seismologist. In this study, by using theoretical inference and empirical relation given by Dieterich, we intended to derive the plausible time length of aftershock sequences of the Ms 7.8 Tangshan earthquake. The aftershock duration from log-log regression approach gives us about 120 years according to the empirical Omori's relation. Based on Dietrich approach, it has been claimed that the aftershock duration is a function of remote shear stressing rate, normal stress acting on the fault plane, and fault frictional constitutive parameters. In general, shear stressing rate could be estimated in three ways: 1. Shear stressing rate could be written as a function of static stress drop and a mean earthquake recurrence time. In this case, the time length of aftershock sequences is about 70-100 years. However, since the recurrence time inherits a great deal of uncertainty. 2. Ziv and Rubin derived a general function between shear stressing rate, fault slip speed and fault width with a consideration that aftershock duration does not scale with mainshock magnitude. Therefore, from Ziv's consideration, the aftershock duration is about 80 years. 3. Shear stressing rate is also can be

  17. Relocation of Early and Late Aftershocks of the 2001 Bhuj Earthquake Using Joint Hypocentral Determination (JHD) Technique: Implication toward the Continued Aftershock Activity for more than Four Years

    NASA Astrophysics Data System (ADS)

    Mandal, Prantik; Narsaiah, R.; Sairam, B.; Satyamurty, C.; Raju, I. P.

    2006-08-01

    We employed layered model joint hypocentral determination (JHD) with station corrections to improve location identification for the 26 January, 2001 Mw 7.7 Bhuj early and late aftershock sequence. We relocated 999 early aftershocks using the data from a close combined network (National Geophysical Research Institute, India and Center for Earthquake Research Institute, USA) of 8 18 digital seismographs during 12 28 February, 2001. Additionally, 350 late aftershocks were also relocated using the data from 4 10 digital seismographs/accelerographs during August 2002 to December 2004. These precisely relocated aftershocks (error in the epicentral location<30 meter, error in the focal depth estimation < 50 meter) delineate an east-west trending blind thrust (North Wagad Fault, NWF) dipping (~ 45°) southward, about 25 km north of Kachchh main land fault (KMF), as the causative fault for the 2001 Bhuj earthquake. The aftershock zone is confined to a 60-km long and 40-km wide region lying between the KMF to the south and NWF to the north, extending from 2 to 45 km depth. Estimated focal depths suggest that the aftershock zone became deeper with the passage of time. The P- and S-wave station corrections determined from the JHD technique indicate that the larger values (both +ve and -ve) characterize the central aftershock zone, which is surrounded by the zones of smaller values. The station corrections vary from -0.9 to +1.1 sec for the P waves and from -0.7 to +1.4 sec for the S waves. The b-value and p-value of the whole aftershock (2001 2004) sequences of Mw ≥ 3 are estimated to be 0.77 ± 0.02 and 0.99 ± 0.02, respectively. The p-value indicates a smaller value than the global median of 1.1, suggesting a relatively slow decay of aftershocks, whereas, the relatively lower b-value (less than the average b-value of 1.0 for stable continental region earthquakes of India) suggests a relatively higher probability for larger earthquakes in Kachchh in comparison to other

  18. Early aftershock statistics

    NASA Astrophysics Data System (ADS)

    Narteau, C.; Shebalin, P.; Holschneider, M.; Schorlemmer, D.

    2009-04-01

    In the Limited Power Law model (LPL) we consider that after a triggering event - the so-called mainshock - rocks subject to sufficiently large differential stress can fail spontaneously by static fatigue. Then, earlier aftershocks occur in zones of highest stress and the c-value, i.e. the delay before the onset of the power-law aftershock decay rate, depends on the amplitude of the stress perturbation in the aftershock zone. If we assume that this stress perturbation is proportional to the absolute level of stress in the area, the model also predicts that shorter delay occur in zones of higher stress. Here, we present two analyses that support such a prediction. In these analyses, we use only aftershocks of 2.5 < M < 4.5 earthquakes to avoid well-known artifacts resulting from overlapping records. First, we analyze the c-value across different types of faulting in southern California to compare with the differential shear stress predicted by a Mohr-Coulomb failure criterion. As expected, we find that the c-value is on average shorter for thrust earthquakes (high stress) than for normal ones (low stress), taking intermediate values for strike-slip earthquakes (intermediate stress). Second, we test the hypothesis that large earthquakes occur in zones where the level of stress is abnormally high. Instead of the c-value we use the < t >-value, the geometric average of early aftershock times. One more time, we observed that M > 5 earthquakes occur where and when the < t >-value is small. This effect is even stronger for M > 6 earthquakes.

  19. Estimating Spatially Variable Parameters of the Epidemic Type Aftershock Sequence (ETAS) in California

    NASA Astrophysics Data System (ADS)

    Nandan, Shyam; Ouillon, Guy; Sornette, Didier; Wiemer, Stefan

    2016-04-01

    The ETAS model is widely employed to model the spatio-temporal distribution of earthquakes, generally using spatially invariant parameters, which is most likely a gross simplification considering the extremely heterogeneous structure of the Earth's crust. We propose an efficient method for the estimation of spatially varying parameters, using an expectation maximization (EM) algorithm and spatial Voronoi tessellations. We assume that each Voronoi cell is characterized by a set of eight constant ETAS parameters. For a given number of randomly distributed cells, Vi=1 to N, we jointly invert the ETAS parameters within each cell using an EM algorithm. This process is progressively repeated several times for a given N (which controls the complexity), which is itself increased incrementally. We use the Bayesian Information Criterion (BIC) to rank all the inverted models given their likelihood and complexity and select the top 1% models to compute the average model at any location. Using a synthetic catalog, we also check that the proposed method correctly inverts the known parameters. We apply the proposed method to earthquakes (M>=3) included in the ANSS catalog that occurred within the time period 1981-2016 in the spatial polygon defined by RELM/CSEP around California. The results indicate significant spatial variation of the ETAS parameters. Using these spatially variable estimates of ETAS parameters, we are better equipped to answer some important questions: (1) What is the seismic hazard (both long- and short-term) in a given region? (2) What kind of earthquakes dominate triggering? (3) are there regions where earthquakes are most likely preceded by foreshocks? Last but not the least, a possible correlation of the spatially varying ETAS parameters with spatially variable geophysical properties can lead to an improved understanding of the physics of earthquake triggering beside providing physical meaning to the parameters of the purely statistical ETAS model.

  20. What Controls the Duration of Aftershocks, and Why It Matters for Probabilistic Seismic Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Stein, R. S.; Toda, S.

    2014-12-01

    A fundamental problem confronting hazard modelers in slowly deforming regions such as the central and eastern United States, Australia, and inner Honshu, is whether the current seismicity represents the steady state earthquake potential, or is instead a decaying potential associated with past mainshocks. If the current seismicity were composed of long-lived aftershock sequences, it might then be anti-correlated with the next large earthquakes. While aftershock productivity is known to be a property of the mainshock magnitude, aftershock duration (the time until the aftershock rate decays to the pre-mainshock rate) should, according to rate/state friction theory of Dieterich[1994], be inversely proportional to the fault stressing rate. If so, slowly deforming regions would be expected to sustain long aftershock sequences. Most tests have supported the Dieterich hypothesis, but use ambiguous proxies for the fault stressing rate, such as the mainshock recurrence interval. Here we test the hypothesis by examining off-fault aftershocks of the 2011 M=9 Tohoku-oki rupture up to 250 km from the source, as well as near-fault aftershocks of six large Japanese mainshocks, sampling a range of receiver faults, from thrusts slipping 80 mm/yr, to normal faults slipping 0.1 mm/yr. We find that aftershock sequences lasted a month on the fastest-slipping faults, have durations of 10-100 years on faults slipping 1-10 mm/yr, and are projected to persist for at least 200 years on the slowest faults. Although the Omori decay exponent for short and long sequences is similar, the very different background rates account for the duration differences. If the stressing rate is generally proportional to fault slip rate, then aftershock durations indeed support the Dieterich hypothesis. The test means that the hazard associated with aftershocks depends on local tectonic conditions rather than on the mainshock magnitude alone. Because declustering approaches do not remove such long

  1. Aftershock Decay Rates in the Iranian Plateau

    NASA Astrophysics Data System (ADS)

    Ommi, S.; Zafarani, H.; Zare, M.

    2016-07-01

    Motivated by the desire to have more information following the occurrence of damaging events, the main purpose of this article is to study aftershock sequence parameters in the Iranian plateau. To this end, the catalogue of the Iranian earthquakes between 2002 to the end of 2013 has been collected and homogenized among which 15 earthquakes have been selected to study their aftershock decay rates. For different tectonic provinces, the completeness magnitudes ( M c) of the earthquake catalogue have been calculated in different time intervals. Also, the M c variability in spatial and temporal windows has been determined for each selected event. For major Iranian earthquakes, catalogue of aftershocks has been collected thanks to three declustering methods: first, the classical windowing method of Gardner and Knopoff (Bull Seismol Soc Am 64:1363-1367, 1974); second, a modified version of this using spatial windowing based on the Wells and Coppersmith (Bull Seismol Soc Am 84:974-1002, 1994) relations; and third, the Burkhard and Grünthal (Swiss J Geosci 102:149-188, 2009) scheme. Effects of the temporal windows also have been investigated using the time periods of 1 month, 100 days, and 1 year in the declustering method of Gardner and Knopoff (Bull Seismol Soc Am 64:1363-1367, 1974). In the next step, the modified Omori law coefficients have been calculated for the 15 selected earthquakes. The calibrated regional generic model describing the temporal and magnitude distribution of aftershocks is of interest for time-dependent seismic hazard forecasts. The regional characteristics of the aftershock decay rates have been studied for the selected Iranian earthquakes in the Alborz, Zagros and Central Iran regions considering their different seismotectonics regimes. However, due to the lack of sufficient data, no results have been reported for the Kopeh-Dagh and Makran seismotectonic regions.

  2. Aftershock Decay Rates in the Iranian Plateau

    NASA Astrophysics Data System (ADS)

    Ommi, S.; Zafarani, H.; Zare, M.

    2016-04-01

    Motivated by the desire to have more information following the occurrence of damaging events, the main purpose of this article is to study aftershock sequence parameters in the Iranian plateau. To this end, the catalogue of the Iranian earthquakes between 2002 to the end of 2013 has been collected and homogenized among which 15 earthquakes have been selected to study their aftershock decay rates. For different tectonic provinces, the completeness magnitudes (M c) of the earthquake catalogue have been calculated in different time intervals. Also, the M c variability in spatial and temporal windows has been determined for each selected event. For major Iranian earthquakes, catalogue of aftershocks has been collected thanks to three declustering methods: first, the classical windowing method of uc(Gardner) and uc(Knopoff) (Bull Seismol Soc Am 64:1363-1367, 1974); second, a modified version of this using spatial windowing based on the uc(Wells) and uc(Coppersmith) (Bull Seismol Soc Am 84:974-1002, 1994) relations; and third, the uc(Burkhard) and uc(Grünthal) (Swiss J Geosci 102:149-188, 2009) scheme. Effects of the temporal windows also have been investigated using the time periods of 1 month, 100 days, and 1 year in the declustering method of uc(Gardner) and uc(Knopoff) (Bull Seismol Soc Am 64:1363-1367, 1974). In the next step, the modified Omori law coefficients have been calculated for the 15 selected earthquakes. The calibrated regional generic model describing the temporal and magnitude distribution of aftershocks is of interest for time-dependent seismic hazard forecasts. The regional characteristics of the aftershock decay rates have been studied for the selected Iranian earthquakes in the Alborz, Zagros and Central Iran regions considering their different seismotectonics regimes. However, due to the lack of sufficient data, no results have been reported for the Kopeh-Dagh and Makran seismotectonic regions.

  3. The M w6.7 12 October 2013 western Hellenic Arc main shock and its aftershock sequence: implications for the slab properties

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Eleftheria; Karakostas, Vassilis; Mesimeri, Maria; Vallianatos, Filippos

    2016-01-01

    The 12 October 2013 M w6.7 earthquake offshore Crete Island is one of the few strong earthquakes to have occurred in the last few decades in the southwestern part of the Hellenic subduction zone (HSZ), providing the opportunity to evaluate characteristics of the descending slab. The HSZ has experienced several strong (M ≥ 7.0) earthquakes in historical times with the largest one being the 365 AD, M w = 8.4 earthquake, the largest known ever occurred in the Mediterranean region. The 2013 main shock occurred in close proximity with the 365 event, on an interplate thrust fault at a depth of 26 km, onto the coupled part of the overriding and descending plates. GCMT solution shows a slightly oblique (rake = 130°) thrust faulting with downdip compression on a nearly horizontal (dip = 3°) northeast-dipping fault plane with strike (340°) parallel to the subduction front, with the compression axis being oriented in the direction of plate convergence. The subduction interface can be more clearly resolved with the integration of aftershock locations and CMT solution. For this scope, the aftershocks were relocated after obtaining a v p/v s ratio equal to 1.76, a one-dimensional velocity model and time delays that approximate the velocity structure of the study area, and the employment of double-difference technique for both phase pick data and cross-correlation differential times. The first-day relocated seismicity, alike aftershocks in the first 2 months, shows activation of an area at the upper part of the descending slab, with most activity being concentrated between 13 and 27 km, where the main shock is also encompassed. Aftershocks are rare near to the main shock, implying homogeneous slip on a large patch of the rupture plane. Based on the aftershock distribution, the size of the activated area estimated is about 24 km long and 17 km wide. Coulomb stress changes resolved for transpressive motion reveal negligible off-fault aftershock triggering, evidencing a

  4. Comparison between Utsu's and Vere-Jones' aftershocks model by means of a computer simulation based on the acceptance-rejection sampling of von Neumann

    NASA Astrophysics Data System (ADS)

    Reyes, J.; Morales-Esteban, A.; González, E.; Martínez-Álvarez, F.

    2016-07-01

    In this research, a new algorithm for generating a stochastic earthquake catalog is presented. The algorithm is based on the acceptance-rejection sampling of von Neumann. The result is a computer simulation of earthquakes based on the calculated statistical properties of each zone. Vere-Jones states that an earthquake sequence can be modeled as a series of random events. This is the model used in the proposed simulation. Contrariwise, Utsu indicates that the mainshocks are special geophysical events. The algorithm has been applied to zones of Chile, China, Spain, Japan, and the USA. This allows classifying the zones according to Vere-Jones' or Utsu's model. The results have been quantified relating the mainshock with the largest aftershock within the next 5 days (which has been named as Bath event). The results show that some zones fit Utsu's model and others Vere-Jones'. Finally, the fraction of seismic events that satisfy certain properties of magnitude and occurrence is analyzed.

  5. Triggering cascades and statistical properties of aftershocks

    NASA Astrophysics Data System (ADS)

    Gu, C.; Davidsen, J.

    2011-12-01

    Applying a recently introduced general statistical procedure for identifying aftershocks based on complex network theory, we investigate the statistical properties of aftershocks for a high-resolution earthquake catalog covering Southern California. In comparison with earlier studies of aftershock sequences, we show that many features depend sensitively on how one defines aftershocks and whether one includes only first-generation of aftershocks or one also takes all indirectly triggered aftershocks into account. This includes the temporal variation in the rate of aftershocks for mainshocks of small magnitude, for example, as well as the variation in the rate of aftershocks for short to intermediate times after a mainshock. Other features are, however, robust indicating that they truly characterize aftershock sequences. These include the p-values in the Omori-Utsu law for large mainshocks, B{aa}th's law and the productivity law with an exponent smaller than the b-value in the Gutenberg-Richter law. We also find that, for large mainshocks, the dependence of the parameters in the Omori-Utsu law on the lower magnitude cut-off are in excellent agreement with a recent proposition based on B{aa}th's law and the Gutenberg-Richter law, giving rise to a generalized Omori-Utsu law. Our analysis also provides evidence that the exponent p in the Omori-Utsu law does not vary significantly with mainshock magnitude.

  6. Source Process of the Mw 5.0 Au Sable Forks, New York, Earthquake Sequence from Local Aftershock Monitoring Network Data

    NASA Astrophysics Data System (ADS)

    Kim, W.; Seeber, L.; Armbruster, J. G.

    2002-12-01

    On April 20, 2002, a Mw 5 earthquake occurred near the town of Au Sable Forks, northeastern Adirondacks, New York. The quake caused moderate damage (MMI VII) around the epicentral area and it is well recorded by over 50 broadband stations in the distance ranges of 70 to 2000 km in the Eastern North America. Regional broadband waveform data are used to determine source mechanism and focal depth using moment tensor inversion technique. Source mechanism indicates predominantly thrust faulting along 45° dipping fault plane striking due South. The mainshock is followed by at least three strong aftershocks with local magnitude (ML) greater than 3 and about 70 aftershocks are detected and located in the first three months by a 12-station portable seismographic network. The aftershock distribution clearly delineate the mainshock rupture to the westerly dipping fault plane at a depth of 11 to 12 km. Preliminary analysis of the aftershock waveform data indicates that orientation of the P-axis rotated 90° from that of the mainshock, suggesting a complex source process of the earthquake sequence. We achieved an important milestone in monitoring earthquakes and evaluating their hazards through rapid cross-border (Canada-US) and cross-regional (Central US-Northeastern US) collaborative efforts. Hence, staff at Instrument Software Technology, Inc. near the epicentral area joined Lamont-Doherty staff and deployed the first portable station in the epicentral area; CERI dispatched two of their technical staff to the epicentral area with four accelerometers and a broadband seismograph; the IRIS/PASSCAL facility shipped three digital seismographs and ancillary equipment within one day of the request; the POLARIS Consortium, Canada sent a field crew of three with a near real-time, satellite telemetry based earthquake monitoring system. The Polaris station, KSVO, powered by a solar panel and batteries, was already transmitting data to the central Hub in London, Ontario, Canada within

  7. New techniques for the analysis of earthquake sources from local array data with an application to the 1993 Scotts Mills, Oregon, aftershock sequence

    NASA Astrophysics Data System (ADS)

    Schurr, Bernd; Nábělek, John

    1999-06-01

    We analysed aftershocks recorded by a temporary digital seismic network following the moderate M_w =5.5 1993, Scotts Mills, Oregon, earthquake. A technique to retrieve source moment tensors from local waveforms was developed, tested, and applied to 41 small earthquakes (M_w ranging from 1.6 to 3.2). The derived focal mechanisms, although well resolved, are highly variable and do not share a common nodal plane. In contrast, the majority of the events, relocated with a joint hypocentre determination algorithm, collapse to a well-focused plane. The incompatibility of the nodal planes of most events with the plane defined by their locations suggests that the aftershocks did not occur on the fault plane, but tightly around it, outlining the rupture area rather than defining it. Furthermore, the moment tensors reveal stable P-axes, whereas T-axes plunges are highly dispersed. We detect a rotation of average T-axis plunge with depth, indicating a change from shallower, predominantly dip-slip mechanisms to deeper strike-slip mechanisms. These characteristics are difficult to explain by remnant stress concentrations on the main-shock rupture plane or asperity- and barrier-type models. We suggest that the aftershocks occurred under the ambient regional stress, triggered by a sudden weakening of the region surrounding the main-shock slip, rather than from a shear stress increase due to the main shock.

  8. Performance of aftershock forecasts: problem and formulation

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Wu, Z.; Li, L.

    2010-12-01

    WFSD project deals with the problems of earthquake physics, in which one of the important designed aims is the forecast of the on-going aftershock activity of the Wenchuan earthquake, taking the advantage of the fast response to great earthquakes. Correlation between fluid measurements and aftershocks provided heuristic clues to the forecast of aftershocks, invoking the discussion on the performance of such ‘precursory anomalies’, even if in a retrospective perspective. In statistical seismology, one of the critical issues is how to test the statistical significance of an earthquake forecast scheme against real seismic activity. Due to the special characteristics of aftershock series and the feature of aftershock forecasts that it deals with a limited spatial range and specific temporal duration, the test of the performance of aftershock forecasts has to be different from the standard tests for main shock series. In this presentation we address and discuss the possible schemes for testing the performance of aftershock forecasts - a seemingly simple but practically important issue in statistical seismology. As a simple and preliminary approach, we use an alternative form of Receiver Operating Characteristic (ROC) test, as well as other similar tests, considering the properties of aftershock series by using Omori law, ETAS model, and/or CFS calculation. We also discussed the lessons and experiences of the Wenchuan aftershock forecasts, exploring how to make full use of the present knowledge of the regularity of aftershocks to serve the earthquake rescue and relief endeavor as well as the post-earthquake reconstruction.

  9. Studies of the South Napa Earthquake Aftershocks

    NASA Astrophysics Data System (ADS)

    Turcotte, D. L.; Shcherbakov, R.; Yikilmaz, M. B.; Kellogg, L. H.; Rundle, J. B.

    2014-12-01

    In this paper we present studies of the aftershock sequence of the 24 August, 2014, M = 6.0 South Napa earthquake. We give the cumulative frequency-magnitude distributions of the aftershocks for several time intervals following the main shock. We give the magnitude of the largest aftershock (Bath's law) as well as the largest aftershock obtained from a Gutenberg-Richter fit to the frequency-magnitude data (modified form of Bath's law). The latter is a measure of the aftershock productivity. We also give the rates of occurrence of aftershocks as a function of time after the main shock for several magnitude ranges. The fit of this data to Omori's law is discussed. We compare the results of our study of the South Napa earthquake with our previous study of the aftershock statistics of the 28 September, 2004, M = 6.0 Parkfield earthquake. Specifically we will discuss any difference that can be attributed to the large difference in recurrence intervals for the two earthquakes. We also present studies of the three dimensional distribution of aftershock locations as a function of time and their association with the surface rupture. Aftershocks at large distances from the rupture zone will be discussed particularly those in the Geysers geothermal area.

  10. Aftershocks and triggered events of the Great 1906 California earthquake

    USGS Publications Warehouse

    Meltzner, A.J.; Wald, D.J.

    2003-01-01

    and an M ???5.0 event under or near Santa Monica Bay, 11.3 and 31.3 hr after the San Francisco mainshock, respectively. The western Arizona event is inferred to have been triggered dynamically. In general, the largest aftershocks occurred at the ends of the 1906 rupture or away from the rupture entirely; very few significant aftershocks occurred along the mainshock rupture itself. The total number of large aftershocks was less than predicted by a generic model based on typical California mainshock-aftershock statistics, and the 1906 sequence appears to have decayed more slowly than average California sequences. Similarities can be drawn between the 1906 aftershock sequence and that of the 1857 (Mw 7.9) San Andreas fault earthquake.

  11. The LVD signals during the early-mid stages of the L'Aquila seismic sequence and the radon signature of some aftershocks of moderate magnitude.

    PubMed

    Cigolini, C; Laiolo, M; Coppola, D

    2015-01-01

    The L'Aquila seismic swarm culminated with the mainshock of April 6, 2009 (ML = 5.9). Here, we report and analyze the Large Volume Detector (LVD, used in neutrinos research) low energy traces (∼0.8 MeV), collected during the early-mid stages of the seismic sequence, together with the data of a radon monitoring experiment. The peaks of LVD traces do not correlate with the evolution and magnitude of earthquakes, including major aftershocks. Conversely, our radon measurements obtained by utilizing three automatic stations deployed along the regional NW-SE faulting system, seem to be, in one case, more efficient. In fact, the timeseries collected on the NW-SE Paganica fracture recorded marked variations and peaks that occurred during and prior moderate aftershocks (with ML > 3). The Paganica monitoring station (PGN) seems to better responds to active seismicity due to the fact that the radon detector was placed directly within the bedrock of an active fault. It is suggested that future networks for radon monitoring of active seismicity should preferentially implement this setting. PMID:25464041

  12. Nonlinear Viscoelastic Stress Transfer As a Possible Aftershock Triggering Mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Shcherbakov, R.

    2014-12-01

    The earthquake dynamics can be modelled by employing the spring-block system [Burridge and Knopoff, 1967]. In this approach the earthquake fault is modelled by an array of blocks coupling the loading plate and the lower plate. The dynamics of the system is governed by the system of equations of motion for each block. It is possible to map this system into a cellular automata model, where the stress acting on each block is increased in each time step, and the failing process (frictional slip) is described by stress transfer rules [Olami et al, 1992]. The OFC model produces a power-law distribution for avalanche statistics but it is not capable of producing robust aftershock sequences which follow Omori's law.We propose a nonlinear viscoelastic stress transfer mechanism in the aftershock triggering. In a basic spring-block model setting, we introduce the nonlinear viscoelastic stress transfer between neighbouring blocks, as well as between blocks and the top loading plate. The shear stress of the viscous component is a power-law function of the velocity gradient with an exponent smaller or greater than 1 for the nonlinear viscoelasticity, or 1 for the linear case. The stress transfer function of this nonlinear viscoelastic model has a power-law time-dependent form. It features an instantaneous stress transmission triggering an instantaneous avalanche, which is the same as the original spring-block model; and a power-law relaxation term, which could trigger further aftershocks. We incorporate this nonlinear viscoelasticity mechanism in a lattice cellular automata model. The model could exhibit both the Gutenberg-Richter scaling for the frequency-magnitude distribution and a power-law time decay of aftershocks, which is in accordance with Omori's law. Our study suggests that the stress transfer function may play an important role in the aftershock triggering. We have found that the time decay curve of aftershocks is affected by the shape of the stress transfer function

  13. CHARACTERISTICS OF THE AFTERSHOCK SEQUENCE OF THE BORAH PEAK, IDAHO, EARTHQUAKE DETERMINED FROM DIGITAL RECORDINGS OF THE EVENTS.

    USGS Publications Warehouse

    Boatwright, John

    1985-01-01

    The U. S. Geological Survey, Menlo Park, deployed and maintained a network of twelve digital instruments over the 2 weeks following the October 28, 1983, Borah Peak, Idaho, earthquake. The network recorded 45 events with M greater than equivalent to 3. 0, and 6 events with M less than equivalent to 4. 0. The seismic moments of the aftershocks increase with increasing hypocentral depth below 12 km. The dynamic stress drops of the events do not show any systematic variation with depth, however. Most of the events with large stress drops are clustered in the northwest limb of the aftershock distribution; the average stress drop of the southern events is 31 plus or minus 16 bars, while the average stress drop of the events in the northwest limb is 77 plus or minus 52 bars. This clustering of events with large stress drops marks an apparent stress concentration, possibly associated with the arrest of the main shock rupture propagation by a fracture barrier at depth.

  14. International Aftershock Forecasting: Lessons from the Gorkha Earthquake

    NASA Astrophysics Data System (ADS)

    Michael, A. J.; Blanpied, M. L.; Brady, S. R.; van der Elst, N.; Hardebeck, J.; Mayberry, G. C.; Page, M. T.; Smoczyk, G. M.; Wein, A. M.

    2015-12-01

    Following the M7.8 Gorhka, Nepal, earthquake of April 25, 2015 the USGS issued a series of aftershock forecasts. The initial impetus for these forecasts was a request from the USAID Office of US Foreign Disaster Assistance to support their Disaster Assistance Response Team (DART) which coordinated US Government disaster response, including search and rescue, with the Government of Nepal. Because of the possible utility of the forecasts to people in the region and other response teams, the USGS released these forecasts publicly through the USGS Earthquake Program web site. The initial forecast used the Reasenberg and Jones (Science, 1989) model with generic parameters developed for active deep continental regions based on the Garcia et al. (BSSA, 2012) tectonic regionalization. These were then updated to reflect a lower productivity and higher decay rate based on the observed aftershocks, although relying on teleseismic observations, with a high magnitude-of-completeness, limited the amount of data. After the 12 May M7.3 aftershock, the forecasts used an Epidemic Type Aftershock Sequence model to better characterize the multiple sources of earthquake clustering. This model provided better estimates of aftershock uncertainty. These forecast messages were crafted based on lessons learned from the Christchurch earthquake along with input from the U.S. Embassy staff in Kathmandu. Challenges included how to balance simple messaging with forecasts over a variety of time periods (week, month, and year), whether to characterize probabilities with words such as those suggested by the IPCC (IPCC, 2010), how to word the messages in a way that would translate accurately into Nepali and not alarm the public, and how to present the probabilities of unlikely but possible large and potentially damaging aftershocks, such as the M7.3 event, which had an estimated probability of only 1-in-200 for the week in which it occurred.

  15. Source Parameters of the Bhuj Mainshock and Larger Aftershocks from Modeling of Broadband Teleseismic and Regional Waveform data

    NASA Astrophysics Data System (ADS)

    Gaur, V.; Maggi, A.; Priestley, K.; Rai, S.; Davuluri, S.

    2001-12-01

    The January 26, 2001 mb 6.9 Bhuj mainshock was well recorded at both teleseismic and regional distances. Many of the larger aftershocks were also well recorded at regional distances by digital broadband seismographs operated by the National Geophysical Research Institute of India, the University of Cambridge and the Indian Meteorological Office. We have modeled the teleseismic P- and SH-waveforms to retrieve the mechanism and focal depth of the mainshock and find a thrust faulting mechanism with a fault strike 281 degrees, dip 42 degrees, rake 107 degrees, a seismic moment of 2.31*E20 Nm and a centroid focal depth of 20 km. The long-period source time function shows a relatively simple source of about 15 seconds duration. We use the source parameters for the mainshock derived from the teleseismic inversion and the records for the mainshock at the regional stations mentioned above to calibrate the 1-D propagation characteristics for these regional paths. Using the calibrated regional propagation paths, we invert the complete regional broadband waveforms (P-wave through the surface wave-train) for the source parameters of the larger aftershocks (M0 1015 to 1017 Nm) which are too small to derive from teleseismic recordings. We model the broadband waveforms using the time-domain, linear moment-tensor inversion code of Randall et al, 1995.

  16. Rupture Processes of the Mw8.3 Sea of Okhotsk Earthquake and Aftershock Sequences from 3-D Back Projection Imaging

    NASA Astrophysics Data System (ADS)

    Jian, P. R.; Hung, S. H.; Meng, L.

    2014-12-01

    On May 24, 2013, the largest deep earthquake ever recorded in history occurred on the southern tip of the Kamchatka Island, where the Pacific Plate subducts underneath the Okhotsk Plate. Previous 2D beamforming back projection (BP) of P- coda waves suggests the mainshock ruptured bilaterally along a horizontal fault plane determined by the global centroid moment tensor solution. On the other hand, the multiple point source inversion of P and SH waveforms argued that the earthquake comprises a sequence of 6 subevents not located on a single plane but actually distributed in a zone that extends 64 km horizontally and 35 km in depth. We then apply a three-dimensional MUSIC BP approach to resolve the rupture processes of the manishock and two large aftershocks (M6.7) with no a priori setup of preferential orientations of the planar rupture. The maximum pseudo-spectrum of high-frequency P wave in a sequence of time windows recorded by the densely-distributed stations from US and EU Array are used to image 3-D temporal and spatial rupture distribution. The resulting image confirms that the nearly N-S striking but two antiparallel rupture stages. The first subhorizontal rupture initially propagates toward the NNE direction, while at 18 s later it directs reversely to the SSW and concurrently shifts downward to 35 km deeper lasting for about 20 s. The rupture lengths in the first NNE-ward and second SSW-ward stage are about 30 km and 85 km; the estimated rupture velocities are 3 km/s and 4.25 km/s, respectively. Synthetic experiments are undertaken to assess the capability of the 3D MUSIC BP for the recovery of spatio-temporal rupture processes. Besides, high frequency BP images based on the EU-Array data show two M6.7 aftershocks are more likely to rupture on the vertical fault planes.

  17. Analysing the 1811-1812 New Madrid earthquakes with recent instrumentally recorded aftershocks

    USGS Publications Warehouse

    Mueller, K.; Hough, S.E.; Bilham, R.

    2004-01-01

    Although dynamic stress changes associated with the passage of seismic waves are thought to trigger earthquakes at great distances, more than 60 per cent of all aftershocks appear to be triggered by static stress changes within two rupture lengths of a mainshock. The observed distribution of aftershocks may thus be used to infer details of mainshock rupture geometry. Aftershocks following large mid-continental earthquakes, where background stressing rates are low, are known to persist for centuries, and models based on rate-and-state friction laws provide theoretical support for this inference. Most past studies of the New Madrid earthquake sequence have indeed assumed ongoing microseismicity to be a continuing aftershock sequence. Here we use instrumentally recorded aftershock locations and models of elastic stress change to develop a kinematically consistent rupture scenario for three of the four largest earthquakes of the 1811-1812 New Madrid sequence. Our results suggest that these three events occurred on two contiguous faults, producing lobes of increased stress near fault intersections and end points, in areas where present-day microearthquakes have been hitherto interpreted as evidence of primary mainshock rupture. We infer that the remaining New Madrid mainshock may have occurred more than 200 km north of this region in the Wabash Valley of southern Indiana and Illinois-an area that contains abundant modern microseismicity, and where substantial liquefaction was documented by historic accounts. Our results suggest that future large midplate earthquake sequences may extend over a much broader region than previously suspected.

  18. Analysing the 1811-1812 New Madrid earthquakes with recent instrumentally recorded aftershocks.

    PubMed

    Mueller, Karl; Hough, Susan E; Bilham, Roger

    2004-05-20

    Although dynamic stress changes associated with the passage of seismic waves are thought to trigger earthquakes at great distances, more than 60 per cent of all aftershocks appear to be triggered by static stress changes within two rupture lengths of a mainshock. The observed distribution of aftershocks may thus be used to infer details of mainshock rupture geometry. Aftershocks following large mid-continental earthquakes, where background stressing rates are low, are known to persist for centuries, and models based on rate-and-state friction laws provide theoretical support for this inference. Most past studies of the New Madrid earthquake sequence have indeed assumed ongoing microseismicity to be a continuing aftershock sequence. Here we use instrumentally recorded aftershock locations and models of elastic stress change to develop a kinematically consistent rupture scenario for three of the four largest earthquakes of the 1811-1812 New Madrid sequence. Our results suggest that these three events occurred on two contiguous faults, producing lobes of increased stress near fault intersections and end points, in areas where present-day microearthquakes have been hitherto interpreted as evidence of primary mainshock rupture. We infer that the remaining New Madrid mainshock may have occurred more than 200 km north of this region in the Wabash Valley of southern Indiana and Illinois--an area that contains abundant modern microseismicity, and where substantial liquefaction was documented by historic accounts. Our results suggest that future large mid-plate earthquake sequences may extend over a much broader region than previously suspected. PMID:15152249

  19. Forecasting aftershock activity: 1. Adaptive estimates based on the Omori and Gutenberg-Richter laws

    NASA Astrophysics Data System (ADS)

    Baranov, S. V.; Shebalin, P. N.

    2016-05-01

    The method for forecasting the intensity of the aftershock processes after strong earthquakes in different magnitude intervals is considered. The method is based on the joint use of the time model of the aftershock process and the Gutenberg-Richter law. The time model serves for estimating the intensity of the aftershock flow with a magnitude larger than or equal to the magnitude of completeness. The Gutenberg-Richter law is used for magnitude scaling. The suggested approach implements successive refinement of the parameters of both components of the method, which is the main novelty distinguishing it from the previous ones. This approach, to a significant extent, takes into account the variations in the parameters of the frequency-magnitude distribution, which often show themselves by the decreasing fraction of stronger aftershocks with time. Testing the method on eight aftershock sequences in the regions with different patterns of seismicity demonstrates the high probability of successful forecasts. The suggested technique can be employed in seismological monitoring centers for forecasting the aftershock activity of a strong earthquake based on the results of operational processing.

  20. Aftershocks of the 2014 M6 South Napa Earthquake: Detection, Location, and Focal Mechanisms

    NASA Astrophysics Data System (ADS)

    Hardebeck, J.; Shelly, D. R.

    2014-12-01

    The aftershock sequence of the South Napa earthquake is notable both for its low productivity and for its geometric complexity. The aftershocks do not clearly define a fault plane consistent with the NNW-striking vertical plane implied by the mainshock moment tensor and the mapped surface rupture, but instead seem to delineate multiple secondary structures at depth. We investigate this unusual sequence by identifying additional aftershocks that do not appear in the network catalog, relocating the combined aftershock catalog using waveform cross-correlation arrival times and double-difference techniques, and determining focal mechanisms for individual events and event clusters. Additional aftershocks are detected by applying a matched filter approach to the continuous seismic data at nearby stations, with the catalog earthquakes serving as the waveform templates. In tandem with new event detections, we measure precise differential arrival times between events, which we then use in double-difference event location. We detect about 4 times as many well-located aftershocks as in the network catalog. We relocate the events using double-difference in both a 1D and a 3D velocity model. Most of the aftershocks occur between 8 and 11 km depth, similar depth to the mainshock hypocenter and deeper than most of the slip imaged seismically and geodetically. The aftershocks form a diffuse NNW-trending structure, primarily to the north of the mainshock hypocenter and on the west side of the main surface rupture. Within this diffuse trend there are clusters of aftershocks, some suggesting a N-S strike, and some that appear to dip to the east or west. Preliminary single-event and composite focal mechanisms also imply N-S striking strike-slip structures. The mainshock hypocenter and many of the aftershocks occur near the intersection of a sharply defined NE-dipping seismicity structure and the probable location of the West Napa fault, suggesting that stress is concentrated at a

  1. The 2010 Haiti earthquake sequence: new insight of the tectonic pattern from aftershocks and marine geophysical data : Haiti-OBS cruise

    NASA Astrophysics Data System (ADS)

    Mercier de Lepinay, B. F.; Mazabraud, Y.; Klingelhoefer, F.; Clouard, V.; Hello, Y.; Graindorge, D.; Marcaillou, B.; Crozon, J.; Saurel, J.; Charvis, P.; Mildor, B. S.; Deschamps, A.; Bouin, M.; Perrot, J.

    2010-12-01

    The devastating 2010 Haiti earthquake ruptured only a relatively short segment (~50km) of the Enriquillo-Plantain Garden fault (EPGF) a 600km long strike-slip fault running onland and offshore from Jamaica to Dominican Republic, with apparently no major surface rupture in the epicentral area. Considering the general behavior of such strike-slip fault (i.e. North Anatolian fault, San Andreas fault), we can expect that, following the 2010 earthquake, other large earthquakes will occur in the near future on adjacent segments. To contribute to the multinational scientific effort for a better understanding of the rupture process and the stress relaxation of this earthquake, we organized the Haiti-OBS cruise of the R/V L'Atalante few weeks after the catastrophe (Feb.5 to Feb.15, 2010, from and to Pointe-a-Pitre, Guadeloupe). Our goal was 1) to deploy a temporary network of seismologic stations -21 OBS, Ocean Bottom Seismometer, and 4 onland stations- and 2) to survey the detailed sea-floor features in relation with the deformation pattern of the area (multibeam bathymetry and mud-penetrator). We show that the distribution pattern of the aftershocks as well as the compressive surface structures observed in the geology and onshore/offshore morphology of the area are consistent with a deformation model implying a major left-lateral component along the EPGF, and a strong reverse component. The January 12, 2010 mainshock has been shown as very complex. However, in the first order, the mainshock and the distribution of the aftershocks, better localized by our temporary network, can be explained by the interaction between the strike-slip EPGF system and a blind folds-and-thrusts system. Thus, the general geological setting shows a southern extension until the southern part of the Canal du Sud area of the well-known fold and thrust system of the Hispaniola main block.

  2. Mechanical origin of aftershocks.

    PubMed

    Lippiello, E; Giacco, F; Marzocchi, W; Godano, C; de Arcangelis, L

    2015-01-01

    Aftershocks are the most striking evidence of earthquake interactions and the physical mechanisms at the origin of their occurrence are still intensively debated. Novel insights stem from recent results on the influence of the faulting style on the aftershock organisation in magnitude and time. Our study shows that the size of the aftershock zone depends on the fault geometry. We find that positive correlations among parameters controlling aftershock occurrence in time, energy and space are a stable feature of seismicity independently of magnitude range and geographic areas. We explain the ensemble of experimental findings by means of a description of the Earth Crust as an heterogeneous elastic medium coupled with a Maxwell viscoelastic asthenosphere. Our results show that heterogeneous stress distribution in an elastic layer combined with a coupling to a viscous flow are sufficient ingredients to describe the physics of aftershock triggering. PMID:26497720

  3. Mechanical origin of aftershocks

    NASA Astrophysics Data System (ADS)

    Lippiello, E.; Giacco, F.; Marzocchi, W.; Godano, C.; de Arcangelis, L.

    2015-10-01

    Aftershocks are the most striking evidence of earthquake interactions and the physical mechanisms at the origin of their occurrence are still intensively debated. Novel insights stem from recent results on the influence of the faulting style on the aftershock organisation in magnitude and time. Our study shows that the size of the aftershock zone depends on the fault geometry. We find that positive correlations among parameters controlling aftershock occurrence in time, energy and space are a stable feature of seismicity independently of magnitude range and geographic areas. We explain the ensemble of experimental findings by means of a description of the Earth Crust as an heterogeneous elastic medium coupled with a Maxwell viscoelastic asthenosphere. Our results show that heterogeneous stress distribution in an elastic layer combined with a coupling to a viscous flow are sufficient ingredients to describe the physics of aftershock triggering.

  4. Mechanical origin of aftershocks

    PubMed Central

    Lippiello, E.; Giacco, F.; Marzocchi, W.; Godano, C.; de Arcangelis, L.

    2015-01-01

    Aftershocks are the most striking evidence of earthquake interactions and the physical mechanisms at the origin of their occurrence are still intensively debated. Novel insights stem from recent results on the influence of the faulting style on the aftershock organisation in magnitude and time. Our study shows that the size of the aftershock zone depends on the fault geometry. We find that positive correlations among parameters controlling aftershock occurrence in time, energy and space are a stable feature of seismicity independently of magnitude range and geographic areas. We explain the ensemble of experimental findings by means of a description of the Earth Crust as an heterogeneous elastic medium coupled with a Maxwell viscoelastic asthenosphere. Our results show that heterogeneous stress distribution in an elastic layer combined with a coupling to a viscous flow are sufficient ingredients to describe the physics of aftershock triggering. PMID:26497720

  5. Data sensitivity in a hybrid STEP/Coulomb model for aftershock forecasting

    NASA Astrophysics Data System (ADS)

    Steacy, S.; Jimenez Lloret, A.; Gerstenberger, M.

    2014-12-01

    Operational earthquake forecasting is rapidly becoming a 'hot topic' as civil protection authorities seek quantitative information on likely near future earthquake distributions during seismic crises. At present, most of the models in public domain are statistical and use information about past and present seismicity as well as b-value and Omori's law to forecast future rates. A limited number of researchers, however, are developing hybrid models which add spatial constraints from Coulomb stress modeling to existing statistical approaches. Steacy et al. (2013), for instance, recently tested a model that combines Coulomb stress patterns with the STEP (short-term earthquake probability) approach against seismicity observed during the 2010-2012 Canterbury earthquake sequence. They found that the new model performed at least as well as, and often better than, STEP when tested against retrospective data but that STEP was generally better in pseudo-prospective tests that involved data actually available within the first 10 days of each event of interest. They suggested that the major reason for this discrepancy was uncertainty in the slip models and, in particular, in the geometries of the faults involved in each complex major event. Here we test this hypothesis by developing a number of retrospective forecasts for the Landers earthquake using hypothetical slip distributions developed by Steacy et al. (2004) to investigate the sensitivity of Coulomb stress models to fault geometry and earthquake slip, and we also examine how the choice of receiver plane geometry affects the results. We find that the results are strongly sensitive to the slip models and moderately sensitive to the choice of receiver orientation. We further find that comparison of the stress fields (resulting from the slip models) with the location of events in the learning period provides advance information on whether or not a particular hybrid model will perform better than STEP.

  6. Statistical properties of aftershock rate decay: Implications for the assessment of continuing activity

    NASA Astrophysics Data System (ADS)

    Adamaki, Aggeliki; Papadimitriou, Eleftheria; Tsaklidis, George; Karakostas, Vassilios

    2011-08-01

    Aftershock rates seem to follow a power law decay, but the assessment of the aftershock frequency immediately after an earthquake, as well as during the evolution of a seismic excitation remains a demand for the imminent seismic hazard. The purpose of this work is to study the temporal distribution of triggered earthquakes in short time scales following a strong event, and thus a multiple seismic sequence was chosen for this purpose. Statistical models are applied to the 1981 Corinth Gulf sequence, comprising three strong (M = 6.7, M = 6.5, and M = 6.3) events between 24 February and 4 March. The non-homogeneous Poisson process outperforms the simple Poisson process in order to model the aftershock sequence, whereas the Weibull process is more appropriate to capture the features of the short-term behavior, but not the most proper for describing the seismicity in long term. The aftershock data defines a smooth curve of the declining rate and a long-tail theoretical model is more appropriate to fit the data than a rapidly declining exponential function, as supported by the quantitative results derived from the survival function. An autoregressive model is also applied to the seismic sequence, shedding more light on the stationarity of the time series.

  7. Foreshock activity related to enhanced aftershock production

    NASA Astrophysics Data System (ADS)

    Marsan, D.; Helmstetter, A.; Bouchon, M.; Dublanchet, P.

    2014-10-01

    Foreshock activity sometimes precedes the occurrence of large earthquakes, but the nature of this seismicity is still debated, and whether it marks transient deformation and/or slip nucleation is still unclear. We here study at the worldwide scale how foreshock occurrence affects the postseismic phase and find a significant positive correlation between foreshock and aftershock activities: earthquakes preceded by accelerating seismicity rates produce 40% more aftershocks on average, and the length of the aftershock zone after 20 days is 20% larger. These observations cannot be reproduced by standard earthquake clustering models that predict the accelerating pattern of foreshock occurrence but not its impact on aftershock activity. This strongly suggests that slow deformation transients, possibly related to episodic creep, could initiate prior to the main shock and extend past the coseismic phase, resulting in compound ruptures that include a very long period (up to tens of days) component.

  8. High-resolution relocation and mechanism of aftershocks of the 2007 Tocopilla (Chile) earthquake

    NASA Astrophysics Data System (ADS)

    Fuenzalida, A.; Schurr, B.; Lancieri, M.; Sobiesiak, M.; Madariaga, R.

    2013-08-01

    We study the distribution of the aftershocks of Tocopilla Mw 7.7 earthquake of 2007 November 14 in northern Chile in detail. This earthquake broke the lower part of the seismogenic zone at the southern end of the Northern Chile gap, a region that had its last megathrust earthquake in 1877. The aftershocks of Tocopilla occurred in several steps: the first day they were located along the coast inside the co-seismic rupture zone. After the second day they extended ocean-wards near the Mejillones peninsula. Finally in December they concentrated in the South near the future rupture zone of the Michilla intermediate depth earthquake of 2007 December 16. The aftershock sequence was recorded by the permanent IPOC (Integrated Plate Boundary Observatory in Chile) network and the temporary task force network installed 2 weeks after the main event. A total of 1238 events were identified and the seismic arrival times were directly read from seismograms. Initially we located these events using a single event procedure and then we relocated them using the double-difference method and a cross-correlation technique to measure time differences for clusters of aftershocks. We tested a 1-D velocity model and a 2-D one that takes into account the presence of the subducted Nazca Plate. Relocation significantly reduced the width of the aftershock distribution: in the inland area, the plate interface imaged by the aftershocks is thinner than 2 km. The two velocity models give similar results for earthquakes under the coast and a larger difference for events closer to the trench. The surface imaged by the aftershocks had a length of 160 km. It extends from 30 to 50 km depth in the northern part of the rupture zone; and between 5 and 55 km depth near the Mejillones peninsula. We observed a change in the dip angle of the subduction interface from 18° to 24° at a depth of 30 km. We propose that this change in dip is closely associated with the upper limit of the rupture zone of the main

  9. A Jurassic Shock-Aftershock Earthquake Sequence Recorded by Small Clastic Pipes and Dikes within Dune Cross-Strata, Zion National Park, Utah

    NASA Astrophysics Data System (ADS)

    Loope, D. B.; Zlotnik, V. A.; Kettler, R. M.; Pederson, D. T.

    2012-12-01

    dune lee slope through a pipe, the erupted sand dried and was buried by climbing wind-ripple strata as the large dune continued to advance downwind. The mapped cluster recording eight distinct seismic events lies within thin-laminated sediment that was deposited by wind ripples during 1 m (~ 1 year) of southeastward dune migration. We conclude that the small pipes and dikes of our study sites are products of numerous >MM 5 earthquakes, some of which recurred at intervals of less than 2 months. We interpret one small cluster of pipes and dikes with well-defined upward terminations as a distinct shock-aftershock sequence. Because the largest modern earthquakes can produce surface liquefaction only up to about 175 km from their epicenters, the Jurassic epicenters must have been well within that distance. The tendency of modern plate boundaries to produce high-frequency aftershocks suggests that the epicenter for this Jurassic sequence lay to the southwest, within the plate boundary zone (not within continental rocks to the east). As eolian dunes steadily migrate over interdune surfaces underlain by water-saturated dune cross-strata, the thin, distinct laminae produced by the wind ripples that occupy dune toes can faithfully record high-frequency seismic events.

  10. Triggering of Aftershocks by Free Oscillations

    NASA Astrophysics Data System (ADS)

    Bufe, C. G.; Varnes, D. J.

    2001-12-01

    Periodicities observed in aftershock sequences may result from earthquake triggering by free oscillations of the Earth produced by the main shock. Using an algorithm we developed to compute spectra of inter-event times, we examine inter-event intervals of teleseismically recorded aftershock sequences from large (M>7.5) main shocks that occurred during 1980-2001. Observed periodicities may result from triggering at intervals that are multiples of normal mode periods. We have focussed our analysis of inter-event times on identification of triggering by free oscillations at periods in the range 6-60 minutes. In this paper we describe our most commonly observed aftershock inter-event times and the free oscillation modes most likely to be the triggers. Because of their separation, the longer period modes are easiest to identify in the aftershock data (0S2 at 53.9 minutes, 0S3 at 35.6 minutes, 0S4 at 25.8 minutes, and 0T2 at 43.9 minutes). Evidence of triggering by 0S2 and 0T2 was also found in the aftershocks of the 1989 Loma Prieta, CA (M 7) earthquake (Kamal and Mansinha, 1996). Because of the plethora of higher modes, shorter inter-event periods are more difficult to identify with a particular mode. Preliminary analysis of the 2001 Bhuj, India (M 7.7) earthquake sequence tentatively identifies a contribution to triggering of the first four large aftershocks by multiples of 0S12 (8.37 minutes).

  11. Comparison of the non-proliferation event aftershocks with other Nevada Test Site events

    SciTech Connect

    Jarpe, S.; Goldstein, P.; Zucca, J.J.

    1994-04-01

    As part of a larger effort to develop technology for on-site inspection of ambiguous underground seismic events, we have been working to identify phenomenology of aftershock seismicity which would be useful for discriminating between nuclear explosions, chemical explosions, earthquakes or other seismic events. Phenomenology we have investigated includes; the spatial distribution of aftershocks, the number of aftershocks as a function of time after the main event, the size of the aftershocks, and waveform frequency content. Our major conclusions are: (1) Depending on local geologic conditions, aftershock production rate two weeks after zero time ranges from 1 to 100 per day. (2) Aftershocks of concentrated chemical explosions such as the NPE are indistinguishable from aftershocks of nuclear explosions. (3) Earthquake and explosion aftershock sequences may be differentiated on the basis of depth, magnitude, and in some cases, frequency content of seismic signals.

  12. GIS-based 3D visualization of the Mw 7.7, 2007, Tocopilla aftershocks

    NASA Astrophysics Data System (ADS)

    Eggert, S.; Sobiesiak, M.; Altenbrunn, K.

    2009-12-01

    The November 14, 2007 Mw 7.7 earthquake nucleated on the west coast of northern Chile about 40 km east of the city of Tocopilla. It took place in the southern part of a large seismic gap, the Iquique subduction zone segment which is supposed to be at the end of its seismic cycle. The Tocopilla fault plane appears to be the northern continuation of the Mw 8.0, 1995 Antofagasta earthquake. We present a complex 3D model of the rupture area including first hypocenter localizations of aftershocks following the event. The data was recorded during a mission of the German Task Force for Earthquakes after the 2007 Tocopilla earthquake. The seismic stations were recording the aftershocks from November 2007 until May 2008. In general, subduction zones have a complex structure where most of the volumes examined are characterized by strong variations in physical and material parameters. Therefore, 3D representation of the geophysical and geological conditions to be found are of great importance to understand such a subduction environment. We start with a two-dimensional visualization of the geological and geophysical setting. In a second step, we use GIS as a three-dimensional modeling tool which gives us the possibility to visualize the complex geophysical processes. One can easily add and delete data and focus on the information one needs. This allows us to investigate the aftershock distribution along the subducting slab and identify clear structures and clusters within the data set. Furthermore we combine the 2007 Tocopilla data set with the 1995 Antofagasta aftershocks which provides a new, three-dimensional insight into the segment boundary of these two events. Analyzing the aftershock sequence with a GIS-based model will not only help to visualize the setting but also be the base for various calculations and further explorations of the complex structures. Aftershocks following the 1995 Antofagasta earthquake and the 2007 Tocopilla earthquake

  13. Aftershock production rate of driven viscoelastic interfaces

    NASA Astrophysics Data System (ADS)

    Jagla, E. A.

    2014-10-01

    We study analytically and by numerical simulations the statistics of the aftershocks generated after large avalanches in models of interface depinning that include viscoelastic relaxation effects. We find in all the analyzed cases that the decay law of aftershocks with time can be understood by considering the typical roughness of the interface and its evolution due to relaxation. In models where there is a single viscoelastic relaxation time there is an exponential decay of the number of aftershocks with time. In models in which viscoelastic relaxation is wave-vector dependent we typically find a power-law dependence of the decay rate that is compatible with the Omori law. The factors that determine the value of the decay exponent are analyzed.

  14. Aftershock production rate of driven viscoelastic interfaces.

    PubMed

    Jagla, E A

    2014-10-01

    We study analytically and by numerical simulations the statistics of the aftershocks generated after large avalanches in models of interface depinning that include viscoelastic relaxation effects. We find in all the analyzed cases that the decay law of aftershocks with time can be understood by considering the typical roughness of the interface and its evolution due to relaxation. In models where there is a single viscoelastic relaxation time there is an exponential decay of the number of aftershocks with time. In models in which viscoelastic relaxation is wave-vector dependent we typically find a power-law dependence of the decay rate that is compatible with the Omori law. The factors that determine the value of the decay exponent are analyzed. PMID:25375460

  15. Insights on earthquake triggering processes from early aftershocks of repeating microearthquakes

    NASA Astrophysics Data System (ADS)

    Lengliné, O.; Ampuero, J.-P.

    2015-10-01

    Characterizing the evolution of seismicity rate of early aftershocks can yield important information about earthquake nucleation and triggering. However, this task is challenging because early aftershock seismic signals are obscured by those of the mainshock. Previous studies of early aftershocks employed high-pass filtering and template matching but had limited performance and completeness at very short times. Here we take advantage of repeating events previously identified on the San Andreas Fault at Parkfield and apply empirical Green's function deconvolution techniques. Both Landweber and sparse deconvolution methods reveal the occurrence of aftershocks as early as few tenths of a second after the mainshock. These events occur close to their mainshock, within one to two rupture lengths away. The aftershock rate derived from this enhanced catalog is consistent with Omori's law, with no flattening of the aftershock rate down to the shortest resolvable timescale ˜0.3 s. The early aftershock rate decay determined here matches seamlessly the decay at later times derived from the original earthquake catalog, yielding a continuous aftershock decay over timescales spanning nearly 8 orders of magnitude. Aftershocks of repeating microearthquakes may hence be governed by the same mechanisms from the earliest time resolved here, up to the end of the aftershock sequence. Our results suggest that these early aftershocks are triggered by relatively large stress perturbations, possibly induced by aseismic afterslip with very short characteristic time. Consistent with previous observations on bimaterial faults, the relative location of early aftershocks shows asymmetry along strike, persistent over long periods.

  16. Evolution of aftershock statistics with depth

    NASA Astrophysics Data System (ADS)

    Narteau, C.; Shebalin, P.; Holschneider, M.

    2013-12-01

    The deviatoric stress varies with depth and may strongly affect earthquake statistics. Nevertheless, if the Anderson faulting theory may be used to define the relative stress magnitudes, it remains extremely difficult to observe significant variations of earthquake properties from the top to the bottom of the seismogenic layer. Here, we concentrate on aftershock sequences in normal, strike-slip and reverse faulting regimes to isolate specific temporal properties of this major relaxation process with respect to depth. More exactly, we use Bayesian statistics of the Modified Omori Law to characterize the exponent p of the power-law aftershock decay rate and the duration c of the early stage of aftershock activity that does not fit with this power-law regime. Preliminary results show that the c-value decreases with depth without any significant variation of the p-value. Then, we infer the duration of a non power-law aftershock decay rate over short times can be related to the level of stress in the seismogenic crust.

  17. The Mw 5.8 Virginia Earthquake of August 23, 2011 and its Aftershocks: A Shallow High Stress Drop Event

    NASA Astrophysics Data System (ADS)

    Ellsworth, W. L.; Imanishi, K.; Luetgert, J. H.; Kruger, J.; Hamilton, J.

    2011-12-01

    We analyze the hypocentral distribution and source parameters of the aftershocks of the Virginia Earthquake of August 23, 2011 using a temporary array of telemetered instruments deployed within 20 km of the main shock. Our data come from four USGS NetQuakes accelerometers and seven IRIS/PASSCAL seismometers that were established within a few days of the earthquake. Aftershock seismograms at these near-source stations are characterized by impulsive, high-frequency P and S phases at most sites. In addition, we use the five closest permanent stations (60 - 310 km distance) to analyze the main shock. Hypocenters, crustal velocity model and station corrections were determined using the program VELEST (Kissling, et al, 1994). The aftershocks define a 10-km-long, N 30 degree E striking, 45 degree ESE dipping fault. This fault plane agrees well with the USGS moment tensor solutions for the main shock. Aftershock depths range from 2.5 to 8 km, placing the sequence in the Cambrian metamorphic rocks of the Eastern Piedmont thrust sheet. We relocated the main shock relative to a well-located Mw 3.5 aftershock using the P-wave arrival times at the five permanent stations. The main shock epicenter lies in the middle of the aftershock zone. Its focal depth, although not well constrained, is similar to the aftershocks. A crustal-scale seismic reflection profile was acquired by the USGS in 1981 along I-64 just 4 km southwest of the nearest aftershocks. This profile runs nearly parallel to the dip direction of the aftershock zone and has been interpreted to contain many ESE-dipping reverse faults in the allochthonous upper crust (Harris et al., 1986; Pratt, et al., 1988). When projected onto the reflection profile the aftershocks locate within a relatively non-reflective zone bounded above and below by prominent bands of more shallowly dipping reflectors reported by Pratt et al. (1988) raising the question whether or not the earthquake reactivated a pre-existing fault. Seismic

  18. Aftershock relocation and frequency-size distribution, stress inversion and seismotectonic setting of the 7 August 2013 M = 5.4 earthquake in Kallidromon Mountain, central Greece

    NASA Astrophysics Data System (ADS)

    Ganas, Athanassios; Karastathis, Vassilios; Moshou, Alexandra; Valkaniotis, Sotirios; Mouzakiotis, Evangelos; Papathanassiou, George

    2014-03-01

    On August 7, 2013 a moderate earthquake (NOA ML = 5.1, NOA Mw = 5.4) occurred in central Kallidromon Mountain, in the Pthiotis region of central Greece. 2270 aftershocks were relocated using a modified 1-D velocity model for this area. The b-value of the aftershock sequence was b = 0.85 for a completeness magnitude of Mc = 1.7. The rate of aftershock decay was determined at p = 0.63. The spatial distribution of the aftershock sequence points towards the reactivation of a N70° ± 10°E striking normal fault at crustal depths between 8 and 13 km. A NNW-SSE cross-section imaged the activation of a steep, south dipping normal fault. A stress inversion analysis of 12 focal mechanisms showed that the minimum horizontal stress is extensional at N173°E. No primary surface ruptures were observed in the field; however, the earthquake caused severe damage in the villages of the Kallidromon area. The imaged fault strike and the orientation of the long-axis of the aftershock sequence distribution are both at a high-angle to the strike of known active faults in this area of central Greece. We interpret the Kallidromon seismic sequence as release of extensional seismic strain on secondary, steep faults inside the Fokida-Viotia crustal block.

  19. Geodetic model of the 2015 April 25 Mw 7.8 Gorkha Nepal Earthquake and Mw 7.3 aftershock estimated from InSAR and GPS data

    NASA Astrophysics Data System (ADS)

    Feng, Guangcai; Li, Zhiwei; Shan, Xinjian; Zhang, Lei; Zhang, Guohong; Zhu, Jianjun

    2015-11-01

    We map the complete surface deformation of 2015 Mw 7.8 Gorkha Nepal earthquake and its Mw 7.3 aftershock with two parallel ALOS2 descending ScanSAR paths' and two ascending Stripmap paths' images. The coseismic fault-slip model from a combined inversion of InSAR and GPS data reveals that this event is a reverse fault motion, with a slight right-lateral strike-slip component. The maximum thrust-slip and right-lateral strike-slip values are 5.7 and 1.2 m, respectively, located at a depth of 7-15 km, southeast to the epicentre. The total seismic moment 7.55 × 1020 Nm, corresponding to a moment magnitude Mw 7.89, is similar to the seismological estimates. Fault slips of both the main shock and the largest aftershock are absent from the upper thrust shallower than 7 km, indicating that there is a locking lower edge of Himalayan Main Frontal Thrust and future seismic disaster is not unexpected in this area. We also find that the energy released in this earthquake is much less than the accumulated moment deficit over the past seven centuries estimated in previous studies, so the region surrounding Kathmandu is still under the threaten of seismic hazards.

  20. An analysis of Haiti earthquake (January 12., 2010) from its aftershock sequence using land-based and off-shore temporary seismic stations

    NASA Astrophysics Data System (ADS)

    Duchatelier, M. U.; Arroucau, P.; Mulrooney, T.; Vlahovic, G.; Deschamps, A.

    2011-12-01

    The Mw=7.0 earthquake that occurred in the vicinity of Port-au-Prince, Haiti on january 12th, 2010 caused significant damage to the infrastructures of the country and resulted in more than 200,00 casualties. The Republic of Haiti is part of the island of Hispaniola and is located at the boundary between the North American and Caribbean tectonic plates. The 20 mm/yr relative motion between these two plates results in long-term stress accumulation along this boundary and can explain the seismic activity of that region. First reports on the Haiti earthquake attributed that event to the Enriquillo Plaintain Garden fault Zone (EPGFZ), a major fault system whose location and geometry was compatible with earthquake scenarios inferred from previous studies. However, subsequent analyses have shown that the actual fault involved in that earthquake was probably a buried one, with expression at the surface. Detailed information about the source location and geometry of earthquakes can be obtained from the analysis of their aftershock distribution. In this work, we present location results for a set of 50 aftershocks recorded by a temporary array of 19 offshore and 5 onshore seismic stations deployed in the epicentral region a few days after January 12th earthquake.

  1. Ranking and Sequencing Model

    2009-08-13

    This database application (commonly called the Supermodel) provides a repository for managing critical facility/project information, allows the user to subjectively an objectively assess key criteria , quantify project risks, develop ROM cost estimates, determine facility/project end states, ultimately performing risk-based modeling to rank facilities/project based on risk, sequencing project schedules and provides an optimized recommended sequencing/scheduling of these projects which maximize the S&M cost savings to perform closure projects which benefit all stakeholders.

  2. Spatial correlation of aftershock locations and on-fault main shock properties

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Schorlemmer, D.; Wiemer, S.; Mai, P. M.

    2006-08-01

    We quantify the correlation between spatial patterns of aftershock hypocenter locations and the distribution of coseismic slip and stress drop on a main shock fault plane using two nonstandard statistical tests. Test T1 evaluates if aftershock hypocenters are located in low-slip regions (hypothesis H1), test T2 evaluates if aftershock hypocenters occur in regions of increased shear stress (hypothesis H2). In the tests, we seek to reject the null hypotheses H0: Aftershock hypocenters are not correlated with (1) low-slip regions or (2) regions of increased shear stress, respectively. We tested the hypotheses on four strike-slip events for which multiple earthquake catalogs and multiple finite fault source models of varying accuracy exist. Because we want to retain earthquake clustering as the fundamental feature of aftershock seismicity, we generate slip distributions using a random spatial field model and derive the stress drop distributions instead of generating seismicity catalogs. We account for uncertainties in the aftershock locations by simulating them within their location error bounds. Our findings imply that aftershocks are preferentially located in regions of low-slip (u ≤ ?umax) and of increased shear stress (Δσ < 0). In particular, the correlation is more significant for relocated than for general network aftershock catalogs. However, the results show that stress drop patterns provide less information content on aftershock locations. This implies that static shear stress change of the main shock may not be the governing process for aftershock genesis.

  3. A Fluid-driven Earthquake Cycle, Omori's Law, and Fluid-driven Aftershocks

    NASA Astrophysics Data System (ADS)

    Miller, S. A.

    2015-12-01

    Few models exist that predict the Omori's Law of aftershock rate decay, with rate-state friction the only physically-based model. ETAS is a probabilistic model of cascading failures, and is sometimes used to infer rate-state frictional properties. However, the (perhaps dominant) role of fluids in the earthquake process is being increasingly realised, so a fluid-based physical model for Omori's Law should be available. In this talk, I present an hypothesis for a fluid-driven earthquake cycle where dehydration and decarbonization at depth provides continuous sources of buoyant high pressure fluids that must eventually make their way back to the surface. The natural pathway for fluid escape is along plate boundaries, where in the ductile regime high pressure fluids likely play an integral role in episodic tremor and slow slip earthquakes. At shallower levels, high pressure fluids pool at the base of seismogenic zones, with the reservoir expanding in scale through the earthquake cycle. Late in the cycle, these fluids can invade and degrade the strength of the brittle crust and contribute to earthquake nucleation. The mainshock opens permeable networks that provide escape pathways for high pressure fluids and generate aftershocks along these flow paths, while creating new pathways by the aftershocks themselves. Thermally activated precipitation then seals up these pathways, returning the system to a low-permeability environment and effective seal during the subsequent tectonic stress buildup. I find that the multiplicative effect of an exponential dependence of permeability on the effective normal stress coupled with an Arrhenius-type, thermally activated exponential reduction in permeability results in Omori's Law. I simulate this scenario using a very simple model that combines non-linear diffusion and a step-wise increase in permeability when a Mohr Coulomb failure condition is met, and allow permeability to decrease as an exponential function in time. I show very

  4. Decay of aftershock density with distance indicates triggering by dynamic stress.

    PubMed

    Felzer, K R; Brodsky, E E

    2006-06-01

    The majority of earthquakes are aftershocks, yet aftershock physics is not well understood. Many studies suggest that static stress changes trigger aftershocks, but recent work suggests that shaking (dynamic stresses) may also play a role. Here we measure the decay of aftershocks as a function of distance from magnitude 2-6 mainshocks in order to clarify the aftershock triggering process. We find that for short times after the mainshock, when low background seismicity rates allow for good aftershock detection, the decay is well fitted by a single inverse power law over distances of 0.2-50 km. The consistency of the trend indicates that the same triggering mechanism is working over the entire range. As static stress changes at the more distant aftershocks are negligible, this suggests that dynamic stresses may be triggering all of these aftershocks. We infer that the observed aftershock density is consistent with the probability of triggering aftershocks being nearly proportional to seismic wave amplitude. The data are not fitted well by models that combine static stress change with the evolution of frictionally locked faults. PMID:16760974

  5. Decay of aftershock density with distance indicates triggering by dynamic stress

    USGS Publications Warehouse

    Felzer, K.R.; Brodsky, E.E.

    2006-01-01

    The majority of earthquakes are aftershocks, yet aftershock physics is not well understood. Many studies suggest that static stress changes trigger aftershocks, but recent work suggests that shaking (dynamic stresses) may also play a role. Here we measure the decay of aftershocks as a function of distance from magnitude 2-6 mainshocks in order to clarify the aftershock triggering process. We find that for short times after the mainshock, when low background seismicity rates allow for good aftershock detection, the decay is well fitted by a single inverse power law over distances of 0.2-50 km. The consistency of the trend indicates that the same triggering mechanism is working over the entire range. As static stress changes at the more distant aftershocks are negligible, this suggests that dynamic stresses may be triggering all of these aftershocks. We infer that the observed aftershock density is consistent with the probability of triggering aftershocks being nearly proportional to seismic wave amplitude. The data are not fitted well by models that combine static stress change with the evolution of frictionally locked faults. ?? 2006 Nature Publishing Group.

  6. Adversary Sequence Interruption Model

    1985-11-15

    PC EASI is an IBM personal computer or PC-compatible version of an analytical technique for measuring the effectiveness of physical protection systems. PC EASI utilizes a methodology called Estimate of Adversary Sequence Interruption (EASI) which evaluates the probability of interruption (PI) for a given sequence of adversary tasks. Probability of interruption is defined as the probability that the response force will arrive before the adversary force has completed its task. The EASI methodology is amore » probabilistic approach that analytically evaluates basic functions of the physical security system (detection, assessment, communications, and delay) with respect to response time along a single adversary path. It is important that the most critical scenarios for each target be identified to ensure that vulnerabilities have not been overlooked. If the facility is not overly complex, this can be accomplished by examining all paths. If the facility is complex, a global model such as Safeguards Automated Facility Evaluation (SAFE) may be used to identify the most vulnerable paths. PC EASI is menu-driven with screen forms for entering and editing the basic scenarios. In addition to evaluating PI for the basic scenario, the sensitivities of many of the parameters chosen in the scenario can be analyzed. These sensitivities provide information to aid the analyst in determining the tradeoffs for reducing the probability of interruption. PC EASI runs under the Micro Data Base Systems'' proprietary database management system Knowledgeman. KMAN provides the user environment and file management for the specified basic scenarios, and KGRAPH the graphical output of the sensitivity calculations. This software is not included. Due to errors in release 2 of KMAN, PC EASI will not execute properly; release 1.07 of KMAN is required.« less

  7. Aftershock process of Chu earthquake

    NASA Astrophysics Data System (ADS)

    Emanov, Alexey; Leskova, Ekaterina; Emanov, Aleksandr; Kolesnikov, Yury; Fateyev, Aleksandr

    2010-05-01

    Chu earthquake of 27.09.2003, Ms =7.3 occurred in joint zone of Chagan-Uzun raised block with North-Chu ridge. Epicentral zone cover a series of contrast geological structures of Mountain Altai (two hollows: Chu and Kurai, devided by Chagan-Uzun block, and mountain range, franking them,: Nort-Chu, Kurai, South-Chu, Aigulak). The seismic process occurred in zone of expressive block structure, and this is embodied in its space-time structure. The high accuracy of hypocental construction in epicenral zone of Chu earthquake is provided by local network of seismological stations (fifteen stations) and experiments with temporary station network in this zone (20-50 stations). The first stage of aftershock process formation is connected with Chagan-Uzun block. The second large aftershock of 01.10.2003 changes cardinally spatial pattern of aftershock process. Instead of round area an elongate aftershock area is formed along boundary of Kurai hollow with North-Chu ridge. In the following process spread out in north-west angle of Chu hollow. Linear elongate aftershock area is subdivided into four elements. The north-west element has form of horse tail, starting as a line in area of outlet of Aktru River in Kurai hollow, and ramifies short of settlement Chibit. Slope of plane of aftershocks for this element is determined from hollow under North-Chu ridge. The seismic process is going not along boundary hollow-mountain ridge, but displaced in hollow side. The central part of element - this are mainly horizontal shift faults, and outlying districts have pronounced vertical components of displacements. The second element stretches from Aktru River to Chagan-Uzun block. Earthquake epicenters in plane make two curved parallel lines. In the angle of Chagan-Uzun block are ceiling amount of uplifts. The third element is the boundary of Chagan-Uzun block with North-Chu ridge. The forth element is formed by aftershocks, leaving in range of Chu hollow. Areal dispersal of earthquakes is

  8. Evolution of the vigorous 2006 swarm in Zakynthos (Greece) and probabilities for strong aftershocks occurrence

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Eleftheria; Gospodinov, Dragomir; Karakostas, Vassilis; Astiopoulos, Anastasios

    2013-04-01

    A multiplet of moderate-magnitude earthquakes (5.1 ≤ M ≤ 5.6) took place in Zakynthos Island and offshore area (central Ionian Islands, Greece) in April 2006. The activity in the first month occupied an area of almost 35 km long, striking roughly NNW-SSE, whereas aftershocks continued for several months, decaying with time but persisting at the same place. The properties of the activated structure were investigated with accurate relocated data and the available fault plane solutions of some of the stronger events. Both the distribution of seismicity and fault plane solutions show that thrusting with strike-slip motions are both present in high-angle fault segments. The segmentation of the activated structure could be attributed to the faulting complexity inherited from the regional compressive tectonics. Investigation of the spatial and temporal behavior of seismicity revealed possible triggering of adjacent fault segments that may fail individually, thus preventing coalescence in a large main rupture. In an attempt to forecast occurrence probabilities of six of the strong events ( M w ≥ 5.0), estimations were performed following the restricted epidemic-type aftershock sequence model, applied to data samples before each one of these strong events. Stochastic modeling was also used to identify "quiescence" periods before the examined aftershocks. In two out of the six cases, real aftershock rate did decrease before the next strong shock compared to the modeled one. The latter results reveal that rate decrease is not a clear precursor of strong shocks in the swarm and no quantitative information, suitable to supply probability gain, could be extracted from the data.

  9. Preparation phase and consequences of a large earthquake: insights from foreshocks and aftershocks of the 2014 Mw 8.1 Iquique earthquake, Chile

    NASA Astrophysics Data System (ADS)

    Cesca, Simone; Grigoli, Francesco; Heimann, Sebastian; Dahm, Torsten

    2015-04-01

    The April 1, 2014, Mw 8.1 Iquique earthquake in Northern Chile, was preceded by an anomalous, extensive preparation phase. The precursor seismicity at the ruptured slab segment was observed sporadically several months before the main shock, with a significant increment in seismicity rates and observed magnitudes in the last three weeks before the main shock. The large dataset of regional recordings helped us to investigate the role of such precursor activity, comparing foreshock and aftershock seismicity to test models of rupture preparation and models of strain and stress rotation during an earthquake. We used full waveforms techniques to locate events, map the seismicity rate, derive source parameters, and assess spatiotemporal stress changes. Results indicate that the spatial distributions of foreshocks delineated the shallower part of the rupture areas of the main shock and its largest aftershock, and is well matching the spatial extension of the aftershocks. During the foreshock sequence, seismicity spatially is mainly localized in two clusters, separated by a region of high locking. The ruptures of mainshock and largest aftershock nucleate within these clusters and propagate to the locked region; the aftershocks are again localized in correspondence to the original spatial clusters, and the central region is locked again. More than 300 moment tensor inversions were performed, down to Mw 4.0, most of them corresponding to almost pure double couple thrust mechanisms, with a geometry consistent with the slab orientation. No significant differences are observed among thrust mechanisms in different areas, nor among thrust foreshocks and aftershocks. However, a new family of normal fault mechanisms appears after the main shock, likely affecting the shallow wedge structure in consequence of the increased extensional stress in this region. We infer a stress rotation after the main shock, as proposed for recent larger thrust earthquakes, which suggests that the April

  10. Larger aftershocks happen farther away: Nonseparability of magnitude and spatial distributions of aftershocks

    NASA Astrophysics Data System (ADS)

    Elst, Nicholas J.; Shaw, Bruce E.

    2015-07-01

    Aftershocks may be driven by stress concentrations left by the main shock rupture or by elastic stress transfer to adjacent fault sections or strands. Aftershocks that occur within the initial rupture may be limited in size, because the scale of the stress concentrations should be smaller than the primary rupture itself. On the other hand, aftershocks that occur on adjacent fault segments outside the primary rupture may have no such size limitation. Here we use high-precision double-difference relocated earthquake catalogs to demonstrate that larger aftershocks occur farther away than smaller aftershocks, when measured from the centroid of early aftershock activity—a proxy for the initial rupture. Aftershocks as large as or larger than the initiating event nucleate almost exclusively in the outer regions of the aftershock zone. This observation is interpreted as a signature of elastic rebound in the earthquake catalog and can be used to improve forecasting of large aftershocks.

  11. Aftershock communication during the Canterbury Earthquakes, New Zealand: implications for response and recovery in the built environment

    USGS Publications Warehouse

    Julia Becker; Wein, Anne; Sally Potter; Emma Doyle; Ratliff, Jamie L.

    2015-01-01

    On 4 September 2010, a Mw7.1 earthquake occurred in Canterbury, New Zealand. Following the initial earthquake, an aftershock sequence was initiated, with the most significant aftershock being a Mw6.3 earthquake occurring on 22 February 2011. This aftershock caused severe damage to the city of Christchurch and building failures that killed 185 people. During the aftershock sequence it became evident that effective communication of aftershock information (e.g., history and forecasts) was imperative to assist with decision making during the response and recovery phases of the disaster, as well as preparedness for future aftershock events. As a consequence, a joint JCDR-USGS research project was initiated to investigate: • How aftershock information was communicated to organisations and to the public; • How people interpreted that information; • What people did in response to receiving that information; • What information people did and did not need; and • What decision-making challenges were encountered relating to aftershocks. Research was conducted by undertaking focus group meetings and interviews with a range of information providers and users, including scientists and science advisors, emergency managers and responders, engineers, communication officers, businesses, critical infrastructure operators, elected officials, and the public. The interviews and focus group meetings were recorded and transcribed, and key themes were identified. This paper focuses on the aftershock information needs for decision-making about the built environment post-earthquake, including those involved in response (e.g., for building assessment and management), recovery/reduction (e.g., the development of new building standards), and readiness (e.g. between aftershocks). The research has found that the communication of aftershock information varies with time, is contextual, and is affected by interactions among roles, by other information, and by decision objectives. A number

  12. Simulating Aftershocks for an On Site Inspection (OSI) Exercise

    SciTech Connect

    Sweeney, J. J.; Ford, S. R.

    2015-10-05

    The experience of IFE14 emphasizes the need for a better way to simulate aftershocks during an OSI exercise. The obvious approach is to develop a digital model of aftershocks that can be used either for a real field exercise or for a computer simulation that can be done in an office, for training for example. However, this approach involves consideration of several aspects, such as how and when to introduce waveforms in a way that maximizes the realism of the data and that will be convincing to a savvy, experienced seismic analyst. The purpose of this report is to outline a plan for how this approach can be implemented.

  13. Seismological evidence of an active footwall shortcut thrust in the Northern Itoigawa-Shizuoka Tectonic Line derived by the aftershock sequence of the 2014 M 6.7 Northern Nagano earthquake

    NASA Astrophysics Data System (ADS)

    Panayotopoulos, Yannis; Hirata, Naoshi; Hashima, Akinori; Iwasaki, Takaya; Sakai, Shin'ichi; Sato, Hiroshi

    2016-06-01

    A destructive M 6.7 earthquake struck Northern Nagano prefecture on November 22, 2014. The main shock occurred on the Kamishiro fault segment of the northern Itoigawa-Shizuoka Tectonic Line (ISTL). We used data recorded at 41 stations of the local seismographic network in order to locate 2118 earthquakes that occurred between November 18 and November 30, 2014. To estimate hypocenters, we assigned low Vp models to stations within the Northern Fossa Magna (NFM) basin thus accounting for large lateral crustal heterogeneities across the Kamishiro fault. In order to further improve accuracy, the final hypocenter locations were recalculated inside a 3D velocity model using the double-difference method. We used the aftershock activity distribution and focal mechanism solutions of major events in order to estimate the source fault area of the main shock. Our analysis suggests that the shallow part of the source fault corresponds to the surface trace of the Kamishiro fault and dips 30°-45° SE, while the deeper part of the source fault corresponds to the downdip portion of the Otari-Nakayama fault, a high angle fault dipping 50°-65° SE that formed during the opening of the NFM basin in the Miocene. Along its surface trace the Otari-Nakayama fault has been inactive during the late Quaternary. We verified the validity of our model by calculating surface deformation using a simple homogeneous elastic half-space model and comparing it to observed surface deformation from satellite interferometry, assuming large coseismic slip in the areas of low seismicity and small coseismic slip in the areas of high seismicity. Shallowing of the source fault from 50°-65° to 30°-45° in the upper 4 km, in the areas where both surface fault traces are visible, is a result of footwall shortcut thrusting by the Kamishiro fault off the Otari-Nakayama fault.

  14. Self-similar aftershock rates.

    PubMed

    Davidsen, Jörn; Baiesi, Marco

    2016-08-01

    In many important systems exhibiting crackling noise-an intermittent avalanchelike relaxation response with power-law and, thus, self-similar distributed event sizes-the "laws" for the rate of activity after large events are not consistent with the overall self-similar behavior expected on theoretical grounds. This is particularly true for the case of seismicity, and a satisfying solution to this paradox has remained outstanding. Here, we propose a generalized description of the aftershock rates which is both self-similar and consistent with all other known self-similar features. Comparing our theoretical predictions with high-resolution earthquake data from Southern California we find excellent agreement, providing particularly clear evidence for a unified description of aftershocks and foreshocks. This may offer an improved framework for time-dependent seismic hazard assessment and earthquake forecasting. PMID:27627324

  15. Exploring aftershock properties with depth using Bayesian statistics

    NASA Astrophysics Data System (ADS)

    Narteau, Clement; Shebalin, Peter; Holschneider, Matthias

    2013-04-01

    Stress magnitudes and frictional faulting properties vary with depth and may strongly affect earthquake statistics. Nevertheless, if the Anderson faulting theory may be used to define the relative stress magnitudes, it remains extremely difficult to observe significant variations of earthquake properties from the top to the bottom of the seismogenic layer. Here, we concentrate on aftershock sequences in normal, strike-slip and reverse faulting regimes to isolate specific temporal properties of this major relaxation process with respect to depth. More exactly, we use Bayesian statistics of the Modified Omori Law to characterize the exponent p of the power-law aftershock decay rate and the duration c of the early stage of aftershock activity that does not fit with this power-law regime. Preliminary results show that the c-value decreases with depth without any significant variation of the p-value. Then, we infer the duration of a non power-law aftershock decay rate over short times can be related to the level of stress in the seismogenic crust.

  16. Forecasting Aftershocks from Multiple Earthquakes: Lessons from the Mw=7.3 2015 Nepal Earthquake

    NASA Astrophysics Data System (ADS)

    Jiménez, Abigail; NicBhloscaidh, Mairéad; McCloskey, John

    2016-04-01

    The Omori decay of aftershocks is often perturbed by large secondary events which present particular, but not uncommon, challenges to aftershock forecasting. The Mw = 7.8, 25 April 2015, Gorkha, Nepal earthquake was followed on 12 May by the Mw = 7.3 Kodari earthquake, superimposed its own aftershocks on the Gorkha sequence, immediately invalidating forecasts made by single-mainshock forecasting methods. The complexity of the Gorkha rupture process, where the hypocentre and moment centroid were separated by some 75 km, provided an insurmountable challenge for other standard forecasting methods. Here, we report several modifications of existing algorithms, which were developed in response to the complexity of this sequence and which appear to provide a more general framework for the robust and dependable forecasting of aftershock probabilities. We suggest that these methods may be operationalised to provide a scientific underpinning for an evidence-based management system for post-earthquake crises.

  17. Stress Triggering of Conjugate Normal Faulting: Late Aftershocks of the 1983 M 7.3 Borah Peak, Idaho Earthquake

    SciTech Connect

    Suzette J. Payne; James Zollweg; David Rodgers

    2004-06-01

    The 1984 Devil Canyon sequence was a late aftershock sequence of the 28 October 1983 Ms 7.3 Borah Peak, Idaho, earthquake. The sequence began on 22 August 1984 with the ML 5.8 Devil Canyon earthquake, which nucleated at a depth of 12.8 ± 0.7 km between the surface traces of two normal faults, the Challis segment of the Lost River fault and the Lone Pine fault. Two hundred thirty-seven aftershocks were recorded by a temporary array during a 3-week period. Their focal mechanisms and hypocenter distribution define a cross-sectional "V" pattern whose base corresponds to the ML 5.8 event, whose tips correspond to the exposed fault traces, and whose sides define two planar fault zones oriented N25°W, 75°SW (Challis fault segment) and N39°W, 58°NE (Lone Pine fault). This pattern describes a graben bounded by conjugate normal faults. Temporal aspects of the Devil Canyon sequence provide strong evidence that slip on conjugate normal faults occurs sequentially. Aftershocks occurred primarily along the Challis segment until the occurrence of the 8 September 1984 ML 5.0 earthquake along the Lone Pine fault, after which aftershocks primarily occurred along this fault. These observations are consistent with worldwide seismologic and geologic observations and with physical and numerical models of conjugate normal faulting. Aftershocks of the Devil Canyon sequence occurred immediately northwest of the ML 5.8 Devils Canyon earthquake, which itself was immediately northwest of the Thousand Springs segment of the Lost River fault (the fault that slipped in association with the Ms 7.3 Borah Peak earthquake). Coulomb failure stress analysis indicates that stress increases resulting from both the Borah Peak mainshock and Devil Canyon ML 5.8 earthquake were sufficient to induce failure on the Lone Pine fault. These space–time patterns suggest that conjugate normal faults may transfer stress or accommodate stress changes at the terminations of major normal faults in the Basin and

  18. Aftershock Statistics of the 1999 Chi-Chi, Taiwan Earthquake and the Concept of Omori Times

    NASA Astrophysics Data System (ADS)

    Lee, Ya-Ting; Turcotte, Donald L.; Rundle, John B.; Chen, Chien-Chih

    2013-01-01

    In this paper we consider the statistics of the aftershock sequence of the m = 7.65 20 September 1999 Chi-Chi, Taiwan earthquake. We first consider the frequency-magnitude statistics. We find good agreement with Gutenberg-Richter scaling but find that the aftershock level is anomalously high. This level is quantified using the difference in magnitude between the main shock and the largest inferred aftershock {{Updelta}}m^{ *}. Typically, {{Updelta}}m^{ *} is in the range 0.8-1.5, but for the Chi-Chi earthquake the value is {{Updelta}}m^{ *} = 0.03. We suggest that this may be due to an aseismic slow-earthquake component of rupture. We next consider the decay rate of aftershock activity following the earthquake. The rates are well approximated by the modified Omori's law. We show that the distribution of interoccurrence times between aftershocks follow a nonhomogeneous Poisson process. We introduce the concept of Omori times to study the merging of the aftershock activity with the background seismicity. The Omori time is defined to be the mean interoccurrence time over a fixed number of aftershocks.

  19. Seismotectonic framework of the 2010 February 27 Mw 8.8 Maule, Chile earthquake sequence

    USGS Publications Warehouse

    Hayes, Gavin P.; Bergman, Eric; Johnson, Kendra J.; Benz, Harley M.; Brown, Lucy; Meltzer, Anne S.

    2013-01-01

    After the 2010 Mw 8.8 Maule earthquake, an international collaboration involving teams and instruments from Chile, the US, the UK, France and Germany established the International Maule Aftershock Deployment temporary network over the source region of the event to facilitate detailed, open-access studies of the aftershock sequence. Using data from the first 9-months of this deployment, we have analyzed the detailed spatial distribution of over 2500 well-recorded aftershocks. All earthquakes have been relocated using a hypocentral decomposition algorithm to study the details of and uncertainties in both their relative and absolute locations. We have computed regional moment tensor solutions for the largest of these events to produce a catalogue of 465 mechanisms, and have used all of these data to study the spatial distribution of the aftershock sequence with respect to the Chilean megathrust. We refine models of co-seismic slip distribution of the Maule earthquake, and show how small changes in fault geometries assumed in teleseismic finite fault modelling significantly improve fits to regional GPS data, implying that the accuracy of rapid teleseismic fault models can be substantially improved by consideration of existing fault geometry model databases. We interpret all of these data in an integrated seismotectonic framework for the Maule earthquake rupture and its aftershock sequence, and discuss the relationships between co-seismic rupture and aftershock distributions. While the majority of aftershocks are interplate thrust events located away from regions of maximum co-seismic slip, interesting clusters of aftershocks are identified in the lower plate at both ends of the main shock rupture, implying internal deformation of the slab in response to large slip on the plate boundary interface. We also perform Coulomb stress transfer calculations to compare aftershock locations and mechanisms to static stress changes following the Maule rupture. Without the

  20. Seismotectonic framework of the 2010 February 27 Mw 8.8 Maule, Chile earthquake sequence

    NASA Astrophysics Data System (ADS)

    Hayes, Gavin P.; Bergman, Eric; Johnson, Kendra L.; Benz, Harley M.; Brown, Lucy; Meltzer, Anne S.

    2013-11-01

    After the 2010 Mw 8.8 Maule earthquake, an international collaboration involving teams and instruments from Chile, the US, the UK, France and Germany established the International Maule Aftershock Deployment temporary network over the source region of the event to facilitate detailed, open-access studies of the aftershock sequence. Using data from the first 9-months of this deployment, we have analyzed the detailed spatial distribution of over 2500 well-recorded aftershocks. All earthquakes have been relocated using a hypocentral decomposition algorithm to study the details of and uncertainties in both their relative and absolute locations. We have computed regional moment tensor solutions for the largest of these events to produce a catalogue of 465 mechanisms, and have used all of these data to study the spatial distribution of the aftershock sequence with respect to the Chilean megathrust. We refine models of co-seismic slip distribution of the Maule earthquake, and show how small changes in fault geometries assumed in teleseismic finite fault modelling significantly improve fits to regional GPS data, implying that the accuracy of rapid teleseismic fault models can be substantially improved by consideration of existing fault geometry model databases. We interpret all of these data in an integrated seismotectonic framework for the Maule earthquake rupture and its aftershock sequence, and discuss the relationships between co-seismic rupture and aftershock distributions. While the majority of aftershocks are interplate thrust events located away from regions of maximum co-seismic slip, interesting clusters of aftershocks are identified in the lower plate at both ends of the main shock rupture, implying internal deformation of the slab in response to large slip on the plate boundary interface. We also perform Coulomb stress transfer calculations to compare aftershock locations and mechanisms to static stress changes following the Maule rupture. Without the

  1. Aftershocks illuninate the 2011 Mineral, Virginia, earthquake causative fault zone and nearby active faults

    USGS Publications Warehouse

    Horton, Jr., J. Wright; Shah, Anjana K.; McNamara, Daniel E.; Snyder, Stephen L.; Carter, Aina M

    2015-01-01

    Deployment of temporary seismic stations after the 2011 Mineral, Virginia (USA), earthquake produced a well-recorded aftershock sequence. The majority of aftershocks are in a tabular cluster that delineates the previously unknown Quail fault zone. Quail fault zone aftershocks range from ~3 to 8 km in depth and are in a 1-km-thick zone striking ~036° and dipping ~50°SE, consistent with a 028°, 50°SE main-shock nodal plane having mostly reverse slip. This cluster extends ~10 km along strike. The Quail fault zone projects to the surface in gneiss of the Ordovician Chopawamsic Formation just southeast of the Ordovician–Silurian Ellisville Granodiorite pluton tail. The following three clusters of shallow (<3 km) aftershocks illuminate other faults. (1) An elongate cluster of early aftershocks, ~10 km east of the Quail fault zone, extends 8 km from Fredericks Hall, strikes ~035°–039°, and appears to be roughly vertical. The Fredericks Hall fault may be a strand or splay of the older Lakeside fault zone, which to the south spans a width of several kilometers. (2) A cluster of later aftershocks ~3 km northeast of Cuckoo delineates a fault near the eastern contact of the Ordovician Quantico Formation. (3) An elongate cluster of late aftershocks ~1 km northwest of the Quail fault zone aftershock cluster delineates the northwest fault (described herein), which is temporally distinct, dips more steeply, and has a more northeastward strike. Some aftershock-illuminated faults coincide with preexisting units or structures evident from radiometric anomalies, suggesting tectonic inheritance or reactivation.

  2. The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty

    NASA Astrophysics Data System (ADS)

    Duputel, Z.; Jiang, J.; Jolivet, R.; Simons, M.; Rivera, L.; Ampuero, J.-P.; Riel, B.; Owen, S. E.; Moore, A. W.; Samsonov, S. V.; Ortega Culaciati, F.; Minson, S. E.

    2015-10-01

    The subduction zone in northern Chile is a well-identified seismic gap that last ruptured in 1877. On 1 April 2014, this region was struck by a large earthquake following a two week long series of foreshocks. This study combines a wide range of observations, including geodetic, tsunami, and seismic data, to produce a reliable kinematic slip model of the Mw=8.1 main shock and a static slip model of the Mw=7.7 aftershock. We use a novel Bayesian modeling approach that accounts for uncertainty in the Green's functions, both static and dynamic, while avoiding nonphysical regularization. The results reveal a sharp slip zone, more compact than previously thought, located downdip of the foreshock sequence and updip of high-frequency sources inferred by back-projection analysis. Both the main shock and the Mw=7.7 aftershock did not rupture to the trench and left most of the seismic gap unbroken, leaving the possibility of a future large earthquake in the region.

  3. The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty

    USGS Publications Warehouse

    Duputel, Zacharie; Jiang, Junle; Jolivet, Romain; Simons, Mark; Rivera, Luis; Ampuero, Jean-Paul; Riel, Bryan; Owen, Susan E; Moore, Angelyn W; Samsonov, Sergey V; Ortega Culaciati, Francisco; Minson, Sarah E.

    2016-01-01

    The subduction zone in northern Chile is a well-identified seismic gap that last ruptured in 1877. On 1 April 2014, this region was struck by a large earthquake following a two week long series of foreshocks. This study combines a wide range of observations, including geodetic, tsunami, and seismic data, to produce a reliable kinematic slip model of the Mw=8.1 main shock and a static slip model of the Mw=7.7 aftershock. We use a novel Bayesian modeling approach that accounts for uncertainty in the Green's functions, both static and dynamic, while avoiding nonphysical regularization. The results reveal a sharp slip zone, more compact than previously thought, located downdip of the foreshock sequence and updip of high-frequency sources inferred by back-projection analysis. Both the main shock and the Mw=7.7 aftershock did not rupture to the trench and left most of the seismic gap unbroken, leaving the possibility of a future large earthquake in the region.

  4. Delayed Triggering of Early Aftershocks by Multiple Waves Circling the Earth

    NASA Astrophysics Data System (ADS)

    Sullivan, B.; Peng, Z.

    2011-12-01

    It is well known that direct surface waves of large earthquakes are capable of triggering shallow earthquakes and deep tremor at long-range distances. Recent studies have shown that multiple surface waves circling the earth could also remotely trigger microearthquakes [Peng et al., 2011]. However, it is still not clear whether multiple surface waves returning back to the mainshock epicenters could also trigger/modulate aftershock activities. Here we conduct a study to search for evidence of such triggering by systematically examining aftershock activities of 20 magnitude-8-or-higher earthquakes since 1990 that are capable of producing surface waves circling the globe repeatedly. We compute the magnitude of completeness for each sequence, and stack all the sequences together to compute the seismicity and moment rates by sliding data windows. The sequences are also shuffled randomly and these rates are compared to the actual data as well as synthetic aftershock sequences to estimate the statistical significance of the results. We also compare them with varying stacks of magnitude 7-8 earthquakes to better understand the possible biases that could be introduced by our rate calculation method. Our preliminary results suggest that there is some moderate increase of early aftershock activity after a few hours when the surface waves return to the epicentral region. However, we could not completely rule out the possibility that such an increase is purely due to random fluctuations of aftershocks or caused by missing aftershocks in the first few hours after the mainshock. We plan to examine continuous waveform data of selected sequences to obtain a better understanding of the multiple surface waves and aftershock activity.

  5. Aftershock triggering by complete Coulomb stress changes

    USGS Publications Warehouse

    Kilb, Debi; Gomberg, J.; Bodin, P.

    2002-01-01

    We examine the correlation between seismicity rate change following the 1992, M7.3, Landers, California, earthquake and characteristics of the complete Coulomb failure stress (CFS) changes (??CFS(t)) that this earthquake generated. At close distances the time-varying "dynamic" portion of the stress change depends on how the rupture develops temporally and spatially and arises from radiated seismic waves and from permanent coseismic fault displacement. The permanent "static" portion (??CFS) depends only on the final coseismic displacement. ??CFS diminishes much more rapidly with distance than the transient, dynamic stress changes. A common interpretation of the strong correlation between ??CFS and aftershocks is that load changes can advance or delay failure. Stress changes may also promote failure by physically altering properties of the fault or its environs. Because it is transient, ??CFS(t) can alter the failure rate only by the latter means. We calculate both ??CFS and the maximum positive value of ??CFS(t) (peak ??CFS(t)) using a reflectivity program. Input parameters are constrained by modeling Landers displacement seismograms. We quantify the correlation between maps of seismicity rate changes and maps of modeled ??CFS and peak ??CFS(t) and find agreement for both models. However, rupture directivity, which does not affect ??CFS, creates larger peak ??CFS(t) values northwest of the main shock. This asymmetry is also observed in seismicity rate changes but not in ??CFS. This result implies that dynamic stress changes are as effective as static stress changes in triggering aftershocks and may trigger earthquakes long after the waves have passed.

  6. Iterative Strategies for Aftershock Classification in Automatic Seismic Processing Pipelines

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Kværna, Tormod; Harris, David B.; Dodge, Douglas A.

    2016-04-01

    Aftershock sequences following very large earthquakes present enormous challenges to near-realtime generation of seismic bulletins. The increase in analyst resources needed to relocate an inflated number of events is compounded by failures of phase association algorithms and a significant deterioration in the quality of underlying fully automatic event bulletins. Current processing pipelines were designed a generation ago and, due to computational limitations of the time, are usually limited to single passes over the raw data. With current processing capability, multiple passes over the data are feasible. Processing the raw data at each station currently generates parametric data streams which are then scanned by a phase association algorithm to form event hypotheses. We consider the scenario where a large earthquake has occurred and propose to define a region of likely aftershock activity in which events are detected and accurately located using a separate specially targeted semi-automatic process. This effort may focus on so-called pattern detectors, but here we demonstrate a more general grid search algorithm which may cover wider source regions without requiring waveform similarity. Given many well-located aftershocks within our source region, we may remove all associated phases from the original detection lists prior to a new iteration of the phase association algorithm. We provide a proof-of-concept example for the 2015 Gorkha sequence, Nepal, recorded on seismic arrays of the International Monitoring System. Even with very conservative conditions for defining event hypotheses within the aftershock source region, we can automatically remove over half of the original detections which could have been generated by Nepal earthquakes and reduce the likelihood of false associations and spurious event hypotheses. Further reductions in the number of detections in the parametric data streams are likely using correlation and subspace detectors and/or empirical matched

  7. Relocation of aftershocks of the 2001 Bhuj earthquake: A new insight into seismotectonics of the Kachchh seismic zone, Gujarat, India

    NASA Astrophysics Data System (ADS)

    Mandal, Prantik; Pandey, O. P.

    2010-05-01

    In view of an anomalous crust-mantle structure beneath the 2001 Bhuj earthquake region, double-difference relocations of 1402 aftershocks of the 2001 Bhuj earthquake were determined, using an improved 1D velocity model constructed from 3D velocity tomograms based on data from 10 to 58 three-component seismograph stations. This clearly delineated four major tectonic features: (i) south-dipping north Wagad fault (NWF), (ii and iii) south-dipping south Wagad faults 1 and 2 (SWF 1, SWF 2), and (iv) a northeast dipping transverse fault (ITF), which is a new find. The relocated aftershocks correlate satisfactorily with the geologically mapped and inferred faults in the epicentral region. The relocated focal depths delineate a marked variation to the tune of 12 km in the brittle-ductile transition depths beneath the central aftershock zone that could be attributed to a lateral variation in crustal composition (more or less mafic) or in the level of fracturing across the fault zone. A fault intersection between the NWF and ITF has been clearly mapped in the 10-20 km depth range beneath the central aftershock zone. It is inferred that large intraplate stresses associated with the fault intersection, deepening of the brittle-ductile transition to a depth of 34 km due to the presence of mafic/ultramafic material in the crust-mantle transition zone, and the presence of aqueous fluids (released during the metamorphic process of eclogitisation of lower crustal olivine-rich rocks) and volatile CO 2 at the hypocentral depths, might have resulted in generating the 2001 Bhuj earthquake sequence covering the entire lower crust.

  8. Foreshocks and aftershocks of Pisagua 2014 earthquake: time and space evolution of megathrust event.

    NASA Astrophysics Data System (ADS)

    Fuenzalida Velasco, Amaya; Rietbrock, Andreas; Wollam, Jack; Thomas, Reece; de Lima Neto, Oscar; Tavera, Hernando; Garth, Thomas; Ruiz, Sergio

    2016-04-01

    The 2014 Pisagua earthquake of magnitude 8.2 is the first case in Chile where a foreshock sequence was clearly recorded by a local network, as well all the complete sequence including the mainshock and its aftershocks. The seismicity of the last year before the mainshock include numerous clusters close to the epicentral zone (Ruiz et al; 2014) but it was on 16th March that this activity became stronger with the Mw 6.7 precursory event taking place in front of Iquique coast at 12 km depth. The Pisagua earthquake arrived on 1st April 2015 breaking almost 120 km N-S and two days after a 7.6 aftershock occurred in the south of the rupture, enlarging the zone affected by this sequence. In this work, we analyse the foreshocks and aftershock sequence of Pisagua earthquake, from the spatial and time evolution for a total of 15.764 events that were recorded from the 1st March to 31th May 2015. This event catalogue was obtained from the automatic analyse of seismic raw data of more than 50 stations installed in the north of Chile and the south of Peru. We used the STA/LTA algorithm for the detection of P and S arrival times on the vertical components and then a method of back propagation in a 1D velocity model for the event association and preliminary location of its hypocenters following the algorithm outlined by Rietbrock et al. (2012). These results were then improved by locating with NonLinLoc software using a regional velocity model. We selected the larger events to analyse its moment tensor solution by a full waveform inversion using ISOLA software. In order to understand the process of nucleation and propagation of the Pisagua earthquake, we also analysed the evolution in time of the seismicity of the three months of data. The zone where the precursory events took place was strongly activated two weeks before the mainshock and remained very active until the end of the analysed period with an important quantity of the seismicity located in the upper plate and having

  9. A Quantitative Test for the Spatial Relationship Between Aftershock Distributions and Mainshock Rupture Properties

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Ripperger, J.; Mai, M. P.; Wiemer, S.

    2004-12-01

    Correlating the properties of the mainshock rupture with the location of corresponding aftershocks may provide insight into the relationship between mainshock-induced static stress changes and aftershock occurrence. In this study, we develop a rigorous statistical test to quantify the spatial pattern of aftershock locations with the corresponding distributions of coseismic slip and stress-drop. Well-located aftershock hypocenters are projected onto the mainshock fault plane and coseismic slip and stress drop values are interpolated to their respective location. The null hypothesis H0 for the applied test statistic is: Aftershock hypocenters are randomly distributed on the mainshock fault plane and are not correlated with mainshock properties. Because we want to maintain spatial earthquake clustering as one of the important observed features of seismicity, we synthesize slip distributions using a random spatial field model from which we then compute the respective stress-drop distributions. For each simulation of earthquake slip, we compute the test statistic for the slip and stress-drop distribution, testing whether or not an apparent correlation between mainshock properties and aftershock locations exists. Uncertainties in the aftershock locations are accounted for by simulating a thousand catalogues for which we randomize the location of the aftershocks within their given location error bounds. We then determine the number of aftershocks in low-slip or negative stress-drop regions for simulated slip distributions, and compare those to the measurements obtained for finite-source slip inversions. We apply the test to crustal earthquakes in California and Japan. If possible, we use different source models and earthquake catalogues with varying accuracy to investigate the dependence of the test results on, for example, the location uncertainties of aftershocks. Contrary to the visual impression, we find that for some strike-slip earthquakes or segments of the

  10. Recent Scope-and-Sequence Models.

    ERIC Educational Resources Information Center

    Beem, Ronald

    1990-01-01

    Presents scope-and-sequence models from the National Commission on Social Studies in the Schools, the Bradley Commission on History in Schools, and three from the National Council for the Social Studies (NCSS) Ad Hoc Committee on Scope and Sequence. Provides NCSS's criteria on scope and sequence and notes that sequence of the five models varies…

  11. RNA sequence analysis using covariance models.

    PubMed Central

    Eddy, S R; Durbin, R

    1994-01-01

    We describe a general approach to several RNA sequence analysis problems using probabilistic models that flexibly describe the secondary structure and primary sequence consensus of an RNA sequence family. We call these models 'covariance models'. A covariance model of tRNA sequences is an extremely sensitive and discriminative tool for searching for additional tRNAs and tRNA-related sequences in sequence databases. A model can be built automatically from an existing sequence alignment. We also describe an algorithm for learning a model and hence a consensus secondary structure from initially unaligned example sequences and no prior structural information. Models trained on unaligned tRNA examples correctly predict tRNA secondary structure and produce high-quality multiple alignments. The approach may be applied to any family of small RNA sequences. Images PMID:8029015

  12. Correlating Aftershock Hypocenters With On-fault Main Shock Properties: Introducing Non-standard Statistical Tests

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Schorlemmer, D.; Wiemer, S.; Mai, P. M.

    2005-12-01

    Quantitatively correlating properties of finite-fault source models with hypocenters of aftershocks may provide new insight in the relationship between either slip or static stress change distributions and aftershock occurrence. We present advanced non-standard statistical test approaches to evaluate the test hypotheses (1) if aftershocks are preferentially located in areas of low slip and (2) if aftershocks are located in increased shear stress against the null hypothesis: aftershocks are located randomly on the fault plane. By using multiple test approaches, we investigate possible pitfalls and the information content of statistical testing. To perform the tests, we use earthquakes for which multiple finite-fault source models and earthquake catalogs of varying accuracy exist. The aftershock hypocenters are projected onto the main-shock rupture plane and uncertainties are accounted for by simulating hypocenter locations in the given error bounds. For the statistical tests, we retain the spatial clustering of earthquakes as the most important observed features of seismicity and synthesize random slip distributions with different approaches: first, using standard statistical methods that randomize the obtained finite-fault source model values and second, using a random spatial field model. We then determine the number of aftershocks in low-slip or increased shear-stress regions for simulated slip distributions, and compare those to the measurements obtained for finite-source slip inversions. We apply the tests to prominent earthquakes in California and Japan and find statistical significant evidence that aftershocks are preferentially located in low-slip regions. The tests, however, show a lower significance for the correlation with the shear-stress distribution, but are in general agreement with the expectations of the asperity model. Tests using the hypocenters of relocated catalogs show higher significances.

  13. Shape of the plate interface near the Mejillones Peninsula in Northern Chile inferred from high resolution relocation of Tocopilla aftershocks

    NASA Astrophysics Data System (ADS)

    Fuenzalida, A.; Schurr, B.; Lancieri, M.; Madariaga, R. I.

    2011-12-01

    The 14 November, Mw 7.8 2007 Tocopilla earthquake broke the southern part of seismic gap of northern Chile. The earthquake broke a rupture area 130 km by 30km along the deep plate interface between the Nazca and South American plates.The aftershock of this event were very well recorded by the IPOC (GFZ-IPGP-DGF) and Task Force networks (GFZ). Since the IPOC network was installed before the main Tocopilla earthquake we could locate the first two weeks of aftershocks with low accuracy.The first two weeks of aftershocks were characterised by a strong seismicity in the southern area starting with two big events of Mw 6.8 and 6.3 one day after the Tocopilla earthquake. On 29 November 2007 a Task Force (TF) Network of 20 short period instruments was installed by the GFZ team in the area of the Mejillones Peninsula. On 16 December a large Mw 6.8 slab push event took place at the center of this network. This event broke the oceanic crust of the subducted Nazca plate.(see Ruiz and Madariaga, this meeting). We have analysed in detail the TF data from its installation to 20 December. Hypocentral locations of the sequence were computed by automatic identification of the aftershocks and careful hand made readings of the arrival times of P and S phases for each seismogram. In a first study, we used the the nonlinear location software,NonLinLoc of Anthony Lomax using both a 1D model proposed by Husen from the study of earlier events in the region and the 2D model proposed by Patzwall et al from seismic profiles across the Mejillones Peninsula. We find that aftershocks were located along a thin, clearly defined zone that we interpret as the plate interface. As expected events situated off-shore of the Mejillones peninsula are less well located by Nonlinloc although our results suggest that several of these events occurred above the plate interface in the South American wedge. In a second step we relocated 850 events using the HypoDD method of Waldhauser et al with time delays

  14. Complex faulting associated with the 22 December 2003 Mw 6.5 San Simeon California, earthquake, aftershocks and postseismic surface deformation

    USGS Publications Warehouse

    McLaren, M.K.; Hardebeck, J.L.; van der Elst, N.; Unruh, J.R.; Bawden, G.W.; Blair, J.L.

    2008-01-01

    We use data from two seismic networks and satellite interferometric synthetic aperture radar (InSAR) imagery to characterize the 22 December 2003 Mw 6.5 San Simeon earthquake sequence. Absolute locations for the mainshock and nearly 10,000 aftershocks were determined using a new three-dimensional (3D) seismic velocity model; relative locations were obtained using double difference. The mainshock location found using the 3D velocity model is 35.704?? N, 121.096?? W at a depth of 9.7 ?? 0.7 km. The aftershocks concentrate at the northwest and southeast parts of the aftershock zone, between the mapped traces of the Oceanic and Nacimiento fault zones. The northwest end of the mainshock rupture, as defined by the aftershocks, projects from the mainshock hypocenter to the surface a few kilometers west of the mapped trace of the Oceanic fault, near the Santa Lucia Range front and the > 5 mm postseismic InSAR imagery contour. The Oceanic fault in this area, as mapped by Hall (1991), is therefore probably a second-order synthetic thrust or reverse fault that splays upward from the main seismogenic fault at depth. The southeast end of the rupture projects closer to the mapped Oceanic fault trace, suggesting much of the slip was along this fault, or at a minimum is accommodating much of the postseismic deformation. InSAR imagery shows ???72 mm of postseismic uplift in the vicinity of maximum coseismic slip in the central section of the rupture, and ???48 and ???45 mm at the northwest and southeast end of the aftershock zone, respectively. From these observations, we model a ???30-km-long northwest-trending northeast-dipping mainshock rupture surface - called the mainthrust - which is likely the Oceanic fault at depth, a ???10-km-long southwest-dipping backthrust parallel to the mainthrust near the hypocenter, several smaller southwest-dipping structures in the southeast, and perhaps additional northeast-dipping or subvertical structures southeast of the mainshock plane

  15. The Use of Explosion Aftershock Probabilities for Planning and Deployment of Seismic Aftershock Monitoring System for an On-site Inspection

    NASA Astrophysics Data System (ADS)

    Labak, P.; Ford, S. R.; Sweeney, J. J.; Smith, A. T.; Spivak, A.

    2011-12-01

    One of four elements of CTBT verification regime is On-site inspection (OSI). Since the sole purpose of an OSI shall be to clarify whether a nuclear weapon test explosion or any other nuclear explosion has been carried out, inspection activities can be conducted and techniques used in order to collect facts to support findings provided in inspection reports. Passive seismological monitoring, realized by the seismic aftershock monitoring (SAMS) is one of the treaty allowed techniques during an OSI. Effective planning and deployment of SAMS during the early stages of an OSI is required due to the nature of possible events recorded and due to the treaty related constrains on size of inspection area, size of inspection team and length of an inspection. A method, which may help in planning the SAMS deployment is presented. An estimate of aftershock activity due to a theoretical underground nuclear explosion is produced using a simple aftershock rate model (Ford and Walter, 2010). The model is developed with data from the Nevada Test Site and Semipalatinsk Test Site, which we take to represent soft- and hard-rock testing environments, respectively. Estimates of expected magnitude and number of aftershocks are calculated using the models for different testing and inspection scenarios. These estimates can help to plan the SAMS deployment for an OSI by giving a probabilistic assessment of potential aftershocks in the Inspection Area (IA). The aftershock assessment combined with an estimate of the background seismicity in the IA and an empirically-derived map of threshold magnitude for the SAMS network could aid the OSI team in reporting. We tested the hard-rock model to a scenario similar to the 2008 Integrated Field Exercise 2008 deployment in Kazakhstan and produce an estimate of possible recorded aftershock activity.

  16. April 7, 2009, Mw 5.5 aftershock of the L'Aquila earthquake: seismogenic fault geometry and its implication for the central Apennines active extensional tectonics (Italy).

    NASA Astrophysics Data System (ADS)

    Adinolfi, Guido Maria; Lavecchia, Giusy; De Matteis, Raffaella; Nardis Rita, De; Francesco, Brozzetti; Federica, Ferrarini; Zollo, Aldo

    2015-04-01

    , using the empirical Green's function (EGF) method (Vallée, 2004). We finally inverted the ASTFs to obtain a kinematic rupture model by the isochrone back-projection technique (Festa and Zollo, 2006) constraining the rupture plane geometry. Afterward, we integrated our results with surface and sub-surface geological data in order to define the seismotectonic role of the April 7 aftershock (Mw 5.5) fault structure in the intra-Apennine Quaternary extensional system. As preliminary results, our analysis constrains an east dipping extensional basal detachment and extends the knowledge of the complex fault pattern activated during the 2009 L'Aquila sequence also at greater depths (> 10 km).

  17. Aftershock patterns and main shock faulting

    USGS Publications Warehouse

    Mendoza, C.; Hartzell, S.H.

    1988-01-01

    We have compared aftershock patterns following several moderate to large earthquakes with the corresponding distributions of coseismic slip obtained from previous analyses of the recorded strong ground motion and teleseismic waveforms. Our results are consistent with a hypothesis of aftershock occurrence that requires a secondary redistribution of stress following primary failure on the earthquake fault. Aftershocks followng earthquakes examined in this study occur mostly outside of or near the edges of the source areas indicated by the patterns of main shock slip. The spatial distribution of aftershocks reflects either a continuation of slip in the outer regions of the areas of maximum coseismic displacement or the activation of subsidiary faults within the volume surrounding the boundaries of main shock rupture. -from Authors

  18. A detailed study of the Pernik (Bulgaria) seismic sequence of 2012

    NASA Astrophysics Data System (ADS)

    Raykova, Plamena; Solakov, Dimcho; Simeonova, Stela; Dimitrova, Liliya

    2014-05-01

    A detailed study of the Pernik (Bulgaria) seismic sequence of 2012 D.Solakov, S.Simeonova ,I. Georgiev, P.Raykova, L.Dimitrova and V.Protopopova National Institute of Geophysics, Geodesy and Geography-BAS, Sofia, Bulgaria The spatial and temporal clustering of aftershocks is the dominant non-random element of seismicity, so that when aftershocks are removed, the remaining activity can be modelled (as first approximation) as a Poisson process. The properties of aftershock sequences (distinct cluster, for example; even aftershocks can have aftershocks) allow time-dependent prediction of aftershock probabilities. Consideration of recent earthquake sequences suggests that aftershocks to large earthquakes although they are still, by definition, smaller events, can be very damaging and should be addressed in emergence planning scenarios. Because of the factors such as location and radiation pattern and the cumulative nature of building damage, aftershocks can cause more damage than the main shock. An earthquake of moment magnitude 5.6 hit Sofia seismic zone, on May 22nd, 2012. The earthquake occurred in the vicinity of Pernik city, at about 25 km south west of the city of Sofia (the capital of Bulgaria). The event was followed by intensive activity. The active area is situated in the central part of western Bulgaria. That is the most populated (more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria. Seismicity in the zone is related to the marginal neotectonic faults of Sofia graben. The boundaries of the graben are represented by SE-NW fault system with expressive neotectonic activity. This zone is characterized by shallow earthquakes. The strongest known event in the region is the 1858 quake with intensity I0=9-10 MSK. The 1858 earthquake caused heavy destruction in the city of Sofia and the appearance of thermal spring. It is worth mentioning that the seismic sequence of May 2912 occurred in an area characterized by a long quiescence (of 95 years

  19. Aftershock source imaging using reverse time migration of data from the dense AIDA array deployed after the 2011 Virginia earthquake

    NASA Astrophysics Data System (ADS)

    Wang, K.; Davenport, K. K.; Hole, J. A.; Chapman, M. C.; Quiros, D. A.; Brown, L. D.

    2013-12-01

    Reverse time migration has previously been used to back-project energy recorded by dense arrays to the source region of large subduction-zone earthquakes. The results have illuminated energy release as a function of time and space on the fault surface, improving our understanding of rupture processes. We apply reverse time migration to data from a dense local aftershock array to image magnitude <0 to 3.7 events. AIDA (Aftershock Imaging with Dense Arrays) recorded aftershocks of the August 23, 2011, magnitude 5.8 earthquake in Louisa County, Virginia. AIDA deployed 201 stations in three phases to record wavefields at 200-400 m spacing to reduce spatial aliasing and to lower the event detection threshold. Aftershocks recorded by AIDA were reverse-time migrated in a velocity model created by aftershock travel-time tomography. An aftershock with a magnitude less than 0 was successfully imaged as a point source with a resolution of <200 m. Slip propagation was successfully imaged for a magnitude 3.7 aftershock, propagating 200-300 m shallower and southward. Both P and S-wave data were independently migrated, with similar results. The method is being applied to automatically detect and locate tiny events with low signal-to-noise ratio. Tests show that the images are limited by insufficient temporal sampling and predictable migration artifacts caused by the station geometry. Future aftershock deployments can improve these conditions.

  20. Constraints on recent earthquake source parameters, fault geometry and aftershock characteristics in Oklahoma

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Benz, H.; Herrmann, R. B.; Bergman, E. A.; McMahon, N. D.; Aster, R. C.

    2014-12-01

    In late 2009, the seismicity of Oklahoma increased dramatically. The largest of these earthquakes was a series of three damaging events (Mw 4.8, 5.6, 4.8) that occurred over a span of four days in November 2011 near the town of Prague in central Oklahoma. Studies suggest that these earthquakes were induced by reactivation of the Wilzetta fault due to the disposal of waste water from hydraulic fracturing ("fracking") and other oil and gas activities. The Wilzetta fault is a northeast trending vertical strike-slip fault that is a well known structural trap for oil and gas. Since the November 2011 Prague sequence, thousands of small to moderate (M2-M4) earthquakes have occurred throughout central Oklahoma. The most active regions are located near the towns of Stillwater and Medford in north-central Oklahoma, and Guthrie, Langston and Jones near Oklahoma City. The USGS, in collaboration with the Oklahoma Geological Survey and the University of Oklahoma, has responded by deploying numerous temporary seismic stations in the region in order to record the vigorous aftershock sequences. In this study we use data from the temporary seismic stations to re-locate all Oklahoma earthquakes in the USGS National Earthquake Information Center catalog using a multiple-event approach known as hypo-centroidal decomposition that locates earthquakes with decreased uncertainty relative to one another. Modeling from this study allows us to constrain the detailed geometry of the reactivated faults, as well as source parameters (focal mechanisms, stress drop, rupture length) for the larger earthquakes. Preliminary results from the November 2011 Prague sequence suggest that subsurface rupture lengths of the largest earthquakes are anomalously long with very low stress drop. We also observe very high Q (~1000 at 1 Hz) that explains the large felt areas and we find relatively low b-value and a rapid decay of aftershocks.

  1. High-Resolution Low Power, Intergrated Aftershock and Microzonation System

    NASA Astrophysics Data System (ADS)

    Zimakov, L.; Passmore, P.

    2012-04-01

    Refraction Technology, Inc. has developed a self-contained, fully integrated Aftershock System, model 160-03, providing the customer simple and quick deployment during aftershock emergency mobilization and microzonation studies. The 160-03 has no external cables or peripheral equipment for command/control and operation in the field. The 160-03 contains three major components integrated in one case: a) 24-bit resolution state-of-the art low power ADC with CPU and Lid interconnect boards; b) power source; and c) three component 2 Hz sensors (two horizontals and one vertical), and built-in ±4g accelerometer. Optionally, the 1 Hz sensors can be built-in the 160-03 system at the customer's request. The self-contained rechargeable battery pack provides power autonomy up to 7 days during data acquisition at 200 sps on continuous three weak motion and triggered three strong motion recording channels. For longer power autonomy, the 160-03 Aftershock System battery pack can be charged from an external source (solar power system). The data in the field is recorded to a built-in swappable USB flash drive. The 160-03 configuration is fixed based on a configuration file stored on the system. The detailed specifications and performance are presented and discussed

  2. The Importance of Small Aftershocks for Earthquake Triggering

    NASA Astrophysics Data System (ADS)

    Woessner, Jochen; Meier, Men-Andrin; Werner, Max; Wiemer, Stefan

    2013-04-01

    Earthquakes occur in response to changes in the crust's stress state, however, the full picture of the causative process for earthquake triggering remains unclear. Many researchers have employed Coulomb stress change theory, which quantifies the changes in static Coulomb stress from nearby ruptures. This theory seems to at least partly explain the spatial patterns of triggered earthquakes, in particular during aftershock sequences and along faults. Several assumptions are needed to facilitate the calculation of stress changes. Here, we challenge the typical neglect of stress changes induced by the small but numerous and strongly clustered aftershocks during the evolution of the sequence. Both empirical observations and a simple scaling law suggest that this neglect may not be justified. We estimate the evolution of Coulomb stress changes during the 1992 Mw 7.3 Landers earthquake sequence by including the effect of the detected aftershocks using the focal mechanisms from the recently updated Southern California catalog. This estimation is hampered by that only 62% of located events from our study window have a focal mechanism, by the neglect of events that are too small to be detected and by the unreliability of near-field stress change estimations. As a consequence, we are limited to analyzing only a part of the full stress change signal imparted by small events. Despite these shortcomings, our calculations suggest that small to moderate events strongly dominate static stress redistribution in dense secondary aftershock clusters. However, their relative importance varies over space and is, on average, smaller than the main shock contribution. Furthermore, we find that aftershocks - with their reported relative orientations and positions - impose more often positive than negative stress changes, which is what would be expected if they were actively involved in triggering processes. However, this effect appears to be limited to event pairs with inter-event distances

  3. The enigma of the Arthur's Pass, New Zealand, earthquake 1. Reconciling a variety of data for an unusual earthquake sequence

    USGS Publications Warehouse

    Abercrombie, R.E.; Webb, T.H.; Robinson, R.; McGinty, P.J.; Mori, J.J.; Beavan, R.J.

    2000-01-01

    The 1994 Arthur's Pass earthquake (Mw6.7) is the largest in a recent sequence of earthquakes in the central South Island, New Zealand. No surface rupture was observed the aftershock distribution was complex, and routine methods of obtaining the faulting orientation of this earthquake proved contradictory. We use a range of data and techniques to obtain our preferred solution, which has a centroid depth of 5 km, Mo=1.3??1019 N m, and a strike, dip, and rake of 221??, 47??, 112??, respectively. Discrepancies between this solution and the Harvard centroid moment tensor, together with the Global Positioning System (GPS) observations and unusual aftershock distribution, suggest that the rupture may not have occurred on a planar fault. A second, strike slip, subevent on a more northerly striking plane is suggested by these data but neither the body wave modeling nor regional broadband recordings show any complexity or late subevents. We relocate the aftershocks using both one-dimensional and three-dimensional velocity inversions. The depth range of the aftershocks (1-10 km) agrees well with the preferred mainshock centroid depth. The aftershocks near the hypocenter suggest a structure dipping toward the NW, which we interpret to be the mainshock fault plane. This structure and the Harper fault, ???15 km to the south appear to have acted as boundaries to the extensive aftershock zone trending NNW-SSE Most of the ML???5 aftershocks, including the two largest (ML6.1 and ML5.7), clustered near the Harper fault and have strike slip mechanisms consistent with motion on this fault and its conjugates. Forward modeling of the GPS data suggests that a reverse slip mainshock, combined with strike slip aftershock faulting in the south, is able to match the observed displacements. The occurrence of this earthquake sequence implies that the level of seismic hazard in the central South Island is greater than previous estimates. Copyright 2000 by the American Geophysical Union.

  4. Spectral scaling of the aftershocks of the Tocopilla 2007 earthquake in northern Chile

    NASA Astrophysics Data System (ADS)

    Lancieri, M.; Madariaga, R.; Bonilla, F.

    2012-04-01

    We study the scaling of spectral properties of a set of 68 aftershocks of the 2007 November 14 Tocopilla (M 7.8) earthquake in northern Chile. These are all subduction events with similar reverse faulting focal mechanism that were recorded by a homogenous network of continuously recording strong motion instruments. The seismic moment and the corner frequency are obtained assuming that the aftershocks satisfy an inverse omega-square spectral decay; radiated energy is computed integrating the square velocity spectrum corrected for attenuation at high frequencies and for the finite bandwidth effect. Using a graphical approach, we test the scaling of seismic spectrum, and the scale invariance of the apparent stress drop with the earthquake size. To test whether the Tocopilla aftershocks scale with a single parameter, we introduce a non-dimensional number, ?, that should be constant if earthquakes are self-similar. For the Tocopilla aftershocks, Cr varies by a factor of 2. More interestingly, Cr for the aftershocks is close to 2, the value that is expected for events that are approximately modelled by a circular crack. Thus, in spite of obvious differences in waveforms, the aftershocks of the Tocopilla earthquake are self-similar. The main shock is different because its records contain large near-field waves. Finally, we investigate the scaling of energy release rate, Gc, with the slip. We estimated Gc from our previous estimates of the source parameters, assuming a simple circular crack model. We find that Gc values scale with the slip, and are in good agreement with those found by Abercrombie and Rice for the Northridge aftershocks.

  5. Tests of remote aftershock triggering by small mainshocks using Taiwan's earthquake catalog

    NASA Astrophysics Data System (ADS)

    Peng, W.; Toda, S.

    2014-12-01

    To understand earthquake interaction and forecast time-dependent seismic hazard, it is essential to evaluate which stress transfer, static or dynamic, plays a major role to trigger aftershocks and subsequent mainshocks. Felzer and Brodsky focused on small mainshocks (2≤M<3) and their aftershocks, and then argued that only dynamic stress change brings earthquake-to-earthquake triggering, whereas Richards-Dingers et al. (2010) claimed that those selected small mainshock-aftershock pairs were not earthquake-to-earthquake triggering but simultaneous occurrence of independent aftershocks following a larger earthquake or during a significant swarm sequence. We test those hypotheses using Taiwan's earthquake catalog by taking the advantage of lacking any larger event and the absence of significant seismic swarm typically seen with active volcano. Using Felzer and Brodsky's method and their standard parameters, we only found 14 mainshock-aftershock pairs occurred within 20 km distance in Taiwan's catalog from 1994 to 2010. Although Taiwan's catalog has similar number of earthquakes as California's, the number of pairs is about 10% of the California catalog. It may indicate the effect of no large earthquakes and no significant seismic swarm in the catalog. To fully understand the properties in the Taiwan's catalog, we loosened the screening parameters to earn more pairs and then found a linear aftershock density with a power law decay of -1.12±0.38 that is very similar to the one in Felzer and Brodsky. However, none of those mainshock-aftershock pairs were associated with a M7 rupture event or M6 events. To find what mechanism controlled the aftershock density triggered by small mainshocks in Taiwan, we randomized earthquake magnitude and location. We then found that those density decay in a short time period is more like a randomized behavior than mainshock-aftershock triggering. Moreover, 5 out of 6 pairs were found in a swarm-like temporal seismicity rate increase

  6. A model of random sequences for de novo peptide sequencing

    SciTech Connect

    Jarman, Kenneth D.; Cannon, William R.; Jarman, Kristin H.; Heredia-Langner, Alejandro

    2003-04-15

    We present a model for the probability of random sequences appearing in product ion spectra obtained from tandem mass spectrometry experiments using collision-induced dissociation. We demonstrate the use of these probabilities for ranking candidate peptide sequences obtained using a de novo algorithm. Sequence candidates are obtained from a spectrum graph that is greatly reduced in size from those in previous graph-theoretical de novo approaches. Evidence of multiple instances of subsequences of each candidate, due to different fragment ion type series as well as isotopic peaks, is incorporated in a hierarchical scoring scheme. This approach is shown to be useful for confirming results from database search and as a first step towards a statistically rigorous de novo algorithm.

  7. Using aftershocks to Image the Subducting Pacific Plate in a Region of Deep Slow Slip, Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Jacobs, K. M.; Hirschberg, H.; Louie, J. N.; Savage, M. K.; Bannister, S. C.

    2014-12-01

    We present seismic migrations using aftershocks of two M>6 earthquakes as sources. The Southern Cook Strait earthquake sequence, beginning on 19 July 2013, included the 21 July M=6.5 and 16 August M=6.6 2013 earthquakes, which were the largest shallow earthquakes to strike the Wellington region since 1942. Following the two largest earthquakes we began the Seddon Earthquake Aftershock Structural Investigation (SEASI) and deployed a line of 21 seismometers stretching approximately 400 km along the strike of the Hikurangi subduction zone in order to use aftershocks to illuminate the structure of the subducted Pacific slab. The SEASI line ties into the SAHKE line, which was an array of up to 900 seismometers that recorded air gun and explosion shots in deployments from 2009-2011. The SAHKE project characterized the structures perpendicular to the strike of the subduction zone. Our results use the SAHKE line as a starting point and look for strike-parallel variations in the depth of the Moho and other structures. Previous studies have suggested potential changes along strike in this region, and deep slow slip events (> 35 km) are also observed north of Wellington, further indicating that variation in properties exists along slab strike. We have used 246 M > 3 earthquakes that occurred from September 2013 through January 2014 to create common receiver gathers. Multicomponent prestack depth migration of these receiver gathers, with operator antialiasing control and prestack coherency filtering, produces reflectivity sections using a 1-D velocity model derived from the SAHKE project. Relocation of aftershocks of the Seddon earthquakes using the deployment of a temporary array by New Zealand GeoNet facilitates the migration. An initial P-P migration shows a north-dipping reflector at 15-25 km depth under the earthquake sequence, and suggests the Moho at 20-25 km depth. From Wellington, a reflector dips very gently south from 25-35 km depth, which is probably the slab

  8. Towards modeling DNA sequences as automata

    NASA Astrophysics Data System (ADS)

    Burks, Christian; Farmer, Doyne

    1984-01-01

    We seek to describe a starting point for modeling the evolution and role of DNA sequences within the framework of cellular automata by discussing the current understanding of genetic information storage in DNA sequences. This includes alternately viewing the role of DNA in living organisms as a simple scheme and as a complex scheme; a brief review of strategies for identifying and classifying patterns in DNA sequences; and finally, notes towards establishing DNA-like automata models, including a discussion of the extent of experimentally determined DNA sequence data present in the database at Los Alamos.

  9. Dynamical model for DNA sequences

    NASA Astrophysics Data System (ADS)

    Allegrini, P.; Barbi, M.; Grigolini, P.; West, B. J.

    1995-11-01

    We address the problem of DNA sequences, developing a ``dynamical'' method based on the assumption that the statistical properties of DNA paths are determined by the joint action of two processes, one deterministic with long-range correlations, and the other random and δ-function correlated. The generator of the deterministic evolution is a nonlinear map, belonging to a class of maps recently tailored to mimic the processes of weak chaos that are responsible for the birth of anomalous diffusion. It is assumed that the deterministic process corresponds to unknown biological rules that determine the DNA path, whereas the noise mimics the influence of an infinite-dimensional environment on the biological process under study. We prove that the resulting diffusion process, if the effect of the random process is neglected, is an α-stable Lévy process with 1<α<2. We also show that, if the diffusion process is determined by the joint action of the deterministic and the random process, the correlation effects of the ``deterministic dynamics'' are cancelled on the short-range scale, but show up in the long-range one. We denote our prescription to generate statistical sequences as the copying mistake map (CMM). We carry out our analysis of several DNA sequences and their CMM realizations with a variety of techniques, and we especially focus on a method of regression to equilibrium, which we call the Onsager analysis. With these techniques we establish the statistical equivalence of the real DNA sequences with their CMM realizations. We show that long-range correlations are present in exons as well as in introns, but are difficult to detect, since the exon ``dynamics'' is shown to be determined by the entanglement of three distinct and independent CMM's.

  10. Sequence modelling and an extensible data model for genomic database

    SciTech Connect

    Li, Peter Wei-Der Lawrence Berkeley Lab., CA )

    1992-01-01

    The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS's do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data model that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the Extensible Object Model'', to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.

  11. Sequence modelling and an extensible data model for genomic database

    SciTech Connect

    Li, Peter Wei-Der |

    1992-01-01

    The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS`s do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data model that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the ``Extensible Object Model``, to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.

  12. REvolver: modeling sequence evolution under domain constraints.

    PubMed

    Koestler, Tina; von Haeseler, Arndt; Ebersberger, Ingo

    2012-09-01

    Simulating the change of protein sequences over time in a biologically realistic way is fundamental for a broad range of studies with a focus on evolution. It is, thus, problematic that typically simulators evolve individual sites of a sequence identically and independently. More realistic simulations are possible; however, they are often prohibited by limited knowledge concerning site-specific evolutionary constraints or functional dependencies between amino acids. As a consequence, a protein's functional and structural characteristics are rapidly lost in the course of simulated evolution. Here, we present REvolver (www.cibiv.at/software/revolver), a program that simulates protein sequence alteration such that evolutionarily stable sequence characteristics, like functional domains, are maintained. For this purpose, REvolver recruits profile hidden Markov models (pHMMs) for parameterizing site-specific models of sequence evolution in an automated fashion. pHMMs derived from alignments of homologous proteins or protein domains capture information regarding which sequence sites remained conserved over time and where in a sequence insertions or deletions are more likely to occur. Thus, they describe constraints on the evolutionary process acting on these sequences. To demonstrate the performance of REvolver as well as its applicability in large-scale simulation studies, we evolved the entire human proteome up to 1.5 expected substitutions per site. Simultaneously, we analyzed the preservation of Pfam and SMART domains in the simulated sequences over time. REvolver preserved 92% of the Pfam domains originally present in the human sequences. This value drops to 15% when traditional models of amino acid sequence evolution are used. Thus, REvolver represents a significant advance toward a realistic simulation of protein sequence evolution on a proteome-wide scale. Further, REvolver facilitates the simulation of a protein family with a user-defined domain architecture at

  13. On the origin of diverse aftershock mechanisms following the 1989 Loma Prieta earthquake

    USGS Publications Warehouse

    Kilb, Debi; Ellis, M.; Gomberg, J.; Davis, S.

    1997-01-01

    We test the hypothesis that the origin of the diverse suite of aftershock mechanisms following the 1989 M 7.1 Loma Prieta, California, earthquake is related to the post-main-shock static stress field. We use a 3-D boundary-element algorithm to calculate static stresses, combined with a Coulomb failure criterion to calculate conjugate failure planes at aftershock locations. The post-main-shock static stress field is taken as the sum of a pre-existing stress field and changes in stress due to the heterogeneous slip across the Loma Prieta rupture plane. The background stress field is assumed to be either a simple shear parallel to the regional trend of the San Andreas fault or approximately fault-normal compression. A suite of synthetic aftershock mechanisms from the conjugate failure planes is generated and quantitatively compared (allowing for uncertainties in both mechanism parameters and earthquake locations) to well-constrained mechanisms reported in the US Geological Survey Northern California Seismic Network catalogue. We also compare calculated rakes with those observed by resolving the calculated stress tensor onto observed focal mechanism nodal planes, assuming either plane to be a likely rupture plane. Various permutations of the assumed background stress field, frictional coefficients of aftershock fault planes, methods of comparisons, etc. explain between 52 and 92 per cent of the aftershock mechanisms. We can explain a similar proportion of mechanisms however by comparing a randomly reordered catalogue with the various suites of synthetic aftershocks. The inability to duplicate aftershock mechanisms reliably on a one-to-one basis is probably a function of the combined uncertainties in models of main-shock slip distribution, the background stress field, and aftershock locations. In particular we show theoretically that any specific main-shock slip distribution and a reasonable background stress field are able to generate a highly variable suite of failure

  14. Comparison of Early Aftershocks for the 2004 Mid-Niigata and 2007 Noto Hanto Earthquakes in Japan

    NASA Astrophysics Data System (ADS)

    Mori, J.; Kano, Y.; Enescu, B.

    2007-12-01

    We compared the aftershock sequences of the similar 2004 Mid-Niigata (Mw6.6) and 2007 Noto Hanto (Mw6.7) earthquakes in central Japan. Although the two mainshocks had similar size, depth, and focal mechanisms, the numbers of aftershocks were quite different, with the Niigata mainshock producing a much stronger sequence. We examined the continuously recorded data from nearby Hi-Net stations operated by the National Institute for Earth Science and Disaster Prevention (NIED), to identify the early aftershocks following both mainshocks. A 5 hz high-pass filter was chosen to facilitate identification of the high-frequency arrivals from individual aftershocks. We used 6 stations distributed at distances within about 30 km. Aftershocks were identified by looking at large printouts of the continuous records for the six stations and peak amplitudes were measured to calculate the magnitude. The magnitude determination using these high-pass filtered records was calibrated by using a set of 30 earthquakes that were also listed in the catalog of the Japan Meteorological Agency (JMA). We estimate that the completeness level of small aftershocks is about Mj3.5. The event counts show that the aftershock sequences of the two earthquakes were quite similar for about the first 7 minutes. Following that time, the Niigata aftershocks clearly continue at a much higher rate which is about 3 times the rate of the Noto earthquake. The time where the rates diverge corresponds to the occurrence of a Mj6.3 earthquake in the Niigata sequence. This pattern can be seen in both the plots for the Mj¡Ý3.5 and Mj¡Ý4.0 events. Since there are more earthquakes for the Mj¡Ý3.5 data set, the time resolution is better. These results show an enhanced triggering of aftershocks for the Niigata sequence several minutes after the mainshock. The Niigata region is an area of hydrocarbon production with regions of high pressure fluids, and Sibson (2007) proposes that the swarm-like behavior is due to

  15. Spatial/Temporal interdependence of aftershocks following the 10/31/2001 M5.1 Anza Earthquake

    NASA Astrophysics Data System (ADS)

    Kilb, D.; Martynov, V.; Vernon, F. L.

    2004-12-01

    On 10/31/2001, a M5.1 earthquake occurred in the middle of the ANZA network (7 24-bit broadband stations were within 20 km of the epicenter) that spans the San Jacinto fault zone in southern California. A high pass filter (f > 1.0 Hz) was used to identify seismic arrival times of the aftershocks and in turn determine the aftershock locations. In this way, we cataloged 599 events (0< M < 2.5) in the initial 2 hours of this sequence and 4500 aftershocks within the first 2 months, complete to M ≈ 0.0. Here, we study three different temporal/spatial features found in these data. (1) Initially we suspected earthquakes within the region of the mainshock had a bimodal distribution of earthquake magnitudes (peaks at M=0.1 and M=1.5); however, we found this distribution was an artifact of the spatial recording capabilities of small magnitude aftershocks. (2) In the original aftershock locations we found two linear voids in seismicity (trends ˜N45W and ˜N45E) in the primary aftershock cluster forming an X pattern. This is not likely caused by the number of significant digits in the location algorithm because these voids do not follow individual latitude or longitude lines, nor is this likely due to recording inaccuracies because the network coverage of the region is more than optimal. We are investigating other causes of these voids. (3) In the broadband data, we found only one detectable aftershock in the first 2 minutes of the continuous waveforms; yet on the short period records at one of the closest stations, TRO, we can identify an additional event at 15 seconds into the sequence. To quantify our detection capabilities, we estimate when aftershocks of different magnitudes can be identified within the mainshock coda. We are fairly confident that \\> M 1.5 events 45 seconds or longer after the mainshock should be detectable, which suggests that the lack of seismicity in the 45 second-2.0 minute range is potentially real. This non-zero lag-time between the mainshock

  16. The aftershock signature of supershear earthquakes.

    PubMed

    Bouchon, Michel; Karabulut, Hayrullah

    2008-06-01

    Recent studies show that earthquake faults may rupture at speeds exceeding the shear wave velocity of rocks. This supershear rupture produces in the ground a seismic shock wave similar to the sonic boom produced by a supersonic airplane. This shock wave may increase the destruction caused by the earthquake. We report that supershear earthquakes are characterized by a specific pattern of aftershocks: The fault plane itself is remarkably quiet whereas aftershocks cluster off the fault, on secondary structures that are activated by the supershear rupture. The post-earthquake quiescence of the fault shows that friction is relatively uniform over supershear segments, whereas the activation of off-fault structures is explained by the shock wave radiation, which produces high stresses over a wide zone surrounding the fault. PMID:18535239

  17. A neurocomputational model of automatic sequence production.

    PubMed

    Helie, Sebastien; Roeder, Jessica L; Vucovich, Lauren; Rünger, Dennis; Ashby, F Gregory

    2015-07-01

    Most behaviors unfold in time and include a sequence of submovements or cognitive activities. In addition, most behaviors are automatic and repeated daily throughout life. Yet, relatively little is known about the neurobiology of automatic sequence production. Past research suggests a gradual transfer from the associative striatum to the sensorimotor striatum, but a number of more recent studies challenge this role of the BG in automatic sequence production. In this article, we propose a new neurocomputational model of automatic sequence production in which the main role of the BG is to train cortical-cortical connections within the premotor areas that are responsible for automatic sequence production. The new model is used to simulate four different data sets from human and nonhuman animals, including (1) behavioral data (e.g., RTs), (2) electrophysiology data (e.g., single-neuron recordings), (3) macrostructure data (e.g., TMS), and (4) neurological circuit data (e.g., inactivation studies). We conclude with a comparison of the new model with existing models of automatic sequence production and discuss a possible new role for the BG in automaticity and its implication for Parkinson's disease. PMID:25671503

  18. The 1886-1889 aftershocks of the Charleston, South Carolina, Earthquake: A Widespread burst of seismicity

    NASA Astrophysics Data System (ADS)

    Seeber, L.; Armbruster, J. G.

    1987-03-01

    A systematic search of contemporary newspapers in South Carolina, North Carolina, Georgia and eastern Tennessee during the 1886-1889 (inclusive) aftershock sequence of the August 31, 1886 earthquake near Charleston, South Carolina has provided more than 3000 intensity reports for 522 earthquakes as compared to 144 previously known earthquakes for the same period. Of these 144 events, 138 were felt in Charleston/Summerville and had been assigned epicenters in that area. In contrast the new data provide 112 well-constrained macroseismic epicenters. The 1886-1889 seismicity is characterized by a linear relation between log frequency and magnitude with a slope b≈1, a temporal decay of earthquake frequency proportional to time-1, and a low level of seismicity prior to the main shock. These are frequently observed characteristics of aftershock sequences. By 1889, the level of seismicity had decreased more than 2 orders of magnitude, reaching approximately the current level in the same area. The 1886-1889 epicenters delineate a large aftershock zone that extends northwest about 250 km across Appalachian strike from the coast into the Piedmont and at least 100 km along strike near the Fall Line of South Carolina and Georgia. An abrupt change in stress and/or effective strength is required over this zone. If this change can only occur in the near field of a single fault dislocation, this fault must be larger horizontally than the thickness of the seismogenic zone by an order of magnitude and must be shallow dipping. The correlation between the area of intensity VIII in the main shock with the area of large aftershocks is consistent with this hypothesis. The lack of a major fault affecting the post-Upper Jurassic onlap sediments also favors a shallow dipping active fault, possibly a Paleozoic-Mesozoic southeasterly dipping fault or detachment that may outcrop northwest of the aftershock zone. The 1886-1889 aftershocks occupy the same area as the South Carolina

  19. Do aftershock probabilities decay with time?

    USGS Publications Warehouse

    Michael, Andrew J.

    2012-01-01

    So, do aftershock probabilities decay with time? Consider a thought experiment in which we are at the time of the mainshock and ask how many aftershocks will occur a day, week, month, year, or even a century from now. First we must decide how large a window to use around each point in time. Let's assume that, as we go further into the future, we are asking a less precise question. Perhaps a day from now means 1 day 10% of a day, a week from now means 1 week 10% of a week, and so on. If we ignore c because it is a small fraction of a day (e.g., Reasenberg and Jones, 1989, hereafter RJ89), and set p = 1 because it is usually close to 1 (its value in the original Omori law), then the rate of earthquakes (K=t) decays at 1=t. If the length of the windows being considered increases proportionally to t, then the number of earthquakes at any time from now is the same because the rate decrease is canceled by the increase in the window duration. Under these conditions we should never think "It's a bit late for this to be an aftershock."

  20. Triggering of earthquake aftershocks by dynamic stresses.

    PubMed

    Kilb, D; Gomberg, J; Bodin, P

    2000-11-30

    It is thought that small 'static' stress changes due to permanent fault displacement can alter the likelihood of, or trigger, earthquakes on nearby faults. Many studies of triggering in the near-field, particularly of aftershocks, rely on these static changes as the triggering agent and consider them only in terms of equivalent changes in the applied load on the fault. Here we report a comparison of the aftershock pattern of the moment magnitude Mw = 7.3 Landers earthquake, not only with static stress changes but also with transient, oscillatory stress changes transmitted as seismic waves (that is, 'dynamic' stresses). Dynamic stresses do not permanently change the applied load and thus can trigger earthquakes only by altering the mechanical state or properties of the fault zone. These dynamically weakened faults may fail after the seismic waves have passed by, and might even cause earthquakes that would not otherwise have occurred. We find similar asymmetries in the aftershock and dynamic stress patterns, the latter being due to rupture propagation, whereas the static stress changes lack this asymmetry. Previous studies have shown that dynamic stresses can promote failure at remote distances, but here we show that they can also do so nearby. PMID:11117741

  1. Forecasting large aftershocks within one day after the main shock

    PubMed Central

    Omi, Takahiro; Ogata, Yosihiko; Hirata, Yoshito; Aihara, Kazuyuki

    2013-01-01

    Forecasting the aftershock probability has been performed by the authorities to mitigate hazards in the disaster area after a main shock. However, despite the fact that most of large aftershocks occur within a day from the main shock, the operational forecasting has been very difficult during this time-period due to incomplete recording of early aftershocks. Here we propose a real-time method for efficiently forecasting the occurrence rates of potential aftershocks using systematically incomplete observations that are available in a few hours after the main shocks. We demonstrate the method's utility by retrospective early forecasting of the aftershock activity of the 2011 Tohoku-Oki Earthquake of M9.0 in Japan. Furthermore, we compare the results by the real-time data with the compiled preliminary data to examine robustness of the present method for the aftershocks of a recent inland earthquake in Japan. PMID:23860594

  2. Improved understanding of aftershock triggering by waveform detection of aftershocks with GPU computing

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Meng, X.; Hong, B.; Yu, X.

    2012-12-01

    Large shallow earthquakes are generally followed by increased seismic activities around the mainshock rupture zone, known as "aftershocks". Whether static or dynamic triggering is responsible for triggering aftershocks is still in debate. However, aftershocks listed in standard earthquake catalogs are generally incomplete immediately after the mainshock, which may result in inaccurate estimation of seismic rate changes. Recent studies have used waveforms of existing earthquakes as templates to scan through continuous waveforms to detect potential missing aftershocks, which is termed 'matched filter technique'. However, this kind of data mining is computationally intensive, which raises new challenges when applying to large data sets with tens of thousands of templates, hundreds of seismic stations and years of continuous waveforms. The waveform matched filter technique exhibits parallelism at multiple levels, which allows us to use GPU-based computation to achieve significant acceleration. By dividing the procedure into several routines and processing them in parallel, we have achieved ~40 times speedup for one Nvidia GPU card compared to sequential CPU code, and further scaled the code to multiple GPUs. We apply this paralleled code to detect potential missing aftershocks around the 2003 Mw 6.5 San Simeon and 2004 Mw6.0 Parkfield earthquakes in Central California, and around the 2010 Mw 7.2 El Mayor-Cucapah earthquake in southern California. In all these cases, we can detect several tens of times more earthquakes immediately after the mainshocks as compared with those listed in the catalogs. These newly identified earthquakes are revealing new information about the physical mechanisms responsible for triggering aftershocks in the near field. We plan to improve our code so that it can be executed in large-scale GPU clusters. Our work has the long-term goal of developing scalable methods for seismic data analysis in the context of "Big Data" challenges.

  3. Static stress triggering explains the empirical aftershock distance decay

    NASA Astrophysics Data System (ADS)

    Hainzl, Sebastian; Moradpour, Javad; Davidsen, Jörn

    2014-12-01

    The shape of the spatial aftershock decay is sensitive to the triggering mechanism and thus particularly useful for discriminating between static and dynamic stress triggering. For California seismicity, it has been recently recognized that its form is more complicated than typically assumed consisting of three different regimes with transitions at the scale of the rupture length and the thickness of the crust. The intermediate distance range is characterized by a relative small decay exponent of 1.35 previously declared to relate to dynamic stress triggering. We perform comprehensive simulations of a simple clock-advance model, in which the number of aftershocks is just proportional to the Coulomb-stress change, to test whether the empirical result can be explained by static stress triggering. Similarly to the observations, the results show three scaling regimes. For simulations adapted to the depths and focal mechanisms observed in California, we find a remarkable agreement with the observation over the whole distance range for a fault distribution with fractal dimension of 1.8, which is shown to be in good agreement with an independent analysis of California seismicity.

  4. Seismogenesis and earthquake triggering during the Van (Turkey) 2011 seismic sequence

    NASA Astrophysics Data System (ADS)

    Bayrak, Yusuf; Yadav, R. B. S.; Kalafat, Doğan; Tsapanos, T. M.; Çınar, Hakan; Singh, A. P.; Bayrak, Erdem; Yılmaz, Şeyda; Öcal, Feyza; Koravos, G.

    2013-08-01

    A unique and very interesting earthquake of magnitude Mw 7.2 occurred in the Van region of Turkey on October 23, 2011 that caused a heavy loss of human lives and properties. The earthquake occurred on a blind oblique thrust fault oriented towards the NE-SW direction and dipping towards NW as evidenced by focal mechanism solution and aftershock distribution. In this study, we analyzed the seismogenesis and earthquake triggering during this sequence with the help of estimated seismological parameters (b-value of frequency-magnitude relation, p-value of aftershocks temporal decay and D-value of fractal dimension), 2D mapping of b- and p-values, 3D mapping of b-value and coseismic Coulomb stress modeling. The estimated seismic b-value equal to 0.89 reveals that the mainshock occurred in a highly stressed region and sequence comprised larger magnitude aftershocks due to the presence of large size asperities within the rupture zone. The normal estimate of p-value (0.98) suggests a tectonic genesis of the aftershocks sequence. The estimated D-value equal to 1.80 reveals that rupture propagated in a two-dimensional plane filled up by fractures. The spatial 2D and 3D mapping of seismic b-value suggests that the Van earthquake originated in a highly heterogeneous fractured rock matrix with fluid intrusions into it at deeper depth beneath the mainshock hypocenter region. The estimated coseismic Coulomb stress using the variable slip model for depth range 0-30 km exhibits a 'butterfly' pattern and most of the aftershocks fall (90%) in the region of enhanced Coulomb stress. This suggests that most of the aftershock activities have been triggered by transfer of positive Coulomb stress due to coseismic slip of the mainshock. The results estimated in the present study have potential useful implications in future seismic hazard assessment and risk mitigation in Van and the surrounding regions.

  5. High-Resolution Locations and Focal Mechanisms of Aftershocks of the September 5, 2012 Mw=7.6 Nicoya, Costa Rica Earthquake

    NASA Astrophysics Data System (ADS)

    Laure, Duboeuf; Susan, Schwartz

    2015-04-01

    Subduction beneath the Nicoya Peninsula, Costa Rica generates the largest underthrusting earthquakes in the country with a recurrence interval of about 50 years. The most recent of these events occurred on September 5th 2012 (Mw 7.6). A vigorous aftershock sequence of more than 6400 earthquakes was recorded by a local seismic network within the first 4 months of the mainshock. We identify those aftershocks occurring on the mainshock fault plane and compare their locations to the 2012 mainshock slip distribution, the location of past interplate seismicity, and slow slip phenomena to better understand the mechanical behavior of this plate interface. Our focal mechanism determination includes all aftershocks occurring within the first nine days after the mainshock and aftershocks with magnitude greater than four occurring through the end of December 2012. We use the HASH (Hardebeck and Shearer, 2002) software package, based on first motion polarities, to obtain aftershock focal mechanisms. We are able to determine reliable focal mechanisms for 583 of the aftershocks and identify 264 of them as occurring on the plate interface. All of these are relocated using HypoDD (Waldhauser and Ellsworth, 2000) and their locations are compared with other plate boundary activity. We find no significant seismicity patterns as a function of time or magnitude, but confirm that deeper underthrusting events occur in the north compared to the south as revealed by previous studies (Newman et al., 2002). Most of the aftershocks occur in and around the updip part of the coseismic rupture zone. This suggests that the Nicoya mainshock released all of the accumulated strain in the deeper part of the plate interface, leaving none to occur as aftershocks. Previous interface seismicity in this region reveals a similar distribution to the aftershocks, however it extends to deeper depth and defines the entire seismogenic zone. The coseismic slip occurs even deeper than the background interface

  6. Increasing lengths of aftershock zones with depths of moderate-size earthquakes on the San Jacinto Fault suggests triggering of deep creep in the middle crust

    NASA Astrophysics Data System (ADS)

    Meng, Xiaofeng; Peng, Zhigang

    2016-01-01

    Recent geodetic studies along the San Jacinto Fault (SJF) in southern California revealed a shallower locking depth than the seismogenic depth outlined by microseismicity. This disagreement leads to speculations that creeping episodes drive seismicity in the lower part of the seismogenic zone. Whether deep creep occurs along the SJF holds key information on how fault slips during earthquake cycle and potential seismic hazard imposed to southern California. Here we apply a matched filter technique to 10 M > 4 earthquake sequences along the SJF since 2000 and obtain more complete earthquake catalogues. We then systematic investigate spatio-temporal evolutions of these aftershock sequences. We find anomalously large aftershock zones for earthquakes occurred below the geodetically inferred locking depth (i.e. 11-12 km), while aftershock zones of shallower main shocks are close to expectations from standard scaling relationships. Although we do not observe clear migration of aftershocks, most aftershock zones do expand systematically with logarithmic time since the main shock. All the evidences suggest that aftershocks near or below the locking depth are likely driven by deep creep following the main shock. The presence of a creeping zone below 11-12 km may have significant implications on the maximum sizes of events in this region.

  7. Local near instantaneously dynamically triggered aftershocks of large earthquakes.

    PubMed

    Fan, Wenyuan; Shearer, Peter M

    2016-09-01

    Aftershocks are often triggered by static- and/or dynamic-stress changes caused by mainshocks. The relative importance of the two triggering mechanisms is controversial at near-to-intermediate distances. We detected and located 48 previously unidentified large early aftershocks triggered by earthquakes with magnitudes between ≥7 and 8 within a few fault lengths (approximately 300 kilometers), during times that high-amplitude surface waves arrive from the mainshock (less than 200 seconds). The observations indicate that near-to-intermediate-field dynamic triggering commonly exists and fundamentally promotes aftershock occurrence. The mainshocks and their nearby early aftershocks are located at major subduction zones and continental boundaries, and mainshocks with all types of faulting-mechanisms (normal, reverse, and strike-slip) can trigger early aftershocks. PMID:27609887

  8. Joint inversion of teleseismic body-waves and geodetic data for the Mw6.8 aftershock of the Balochistan earthquake with refined epicenter location

    NASA Astrophysics Data System (ADS)

    Wei, S.; Wang, T.; Jonsson, S.; Avouac, J. P.; Helmberger, D. V.

    2014-12-01

    Aftershocks of the 2013 Balochistan earthquake are mainly concentrated along the northeastern end of the mainshock rupture despite of much larger coseismic slip to the southwest. The largest event among them is an Mw6.8 earthquake which occurred three days after the mainshock. A kinematic slip model of the mainshock was obtained by joint inversion of the teleseismic body-waves and horizontal static deformation field derived from remote sensing optical and SAR data, which is composed of seven fault segments with gradually changing strikes and dips [Avouac et al., 2014]. The remote sensing data provide well constraints on the fault geometry and spatial distribution of slip but no timing information. Meanwhile, the initiation of the teleseismic waveform is very sensitive to fault geometry of the epicenter segment (strike and dip) and spatial slip distribution but much less sensitive to the absolute location of the epicenter. The combination of the two data sets allows a much better determination of the absolute epicenter location, which is about 25km to the southwest of the NEIC epicenter location. The well located mainshock epicenter is used to establish path calibrations for teleseismic P-waves, which are essential for relocating the Mw6.8 aftershock. Our grid search shows that the refined epicenter is located right at the northeastern end of the mainshock rupture. This is confirmed by the SAR offsets calculated from images acquired after the mainshock. The azimuth and range offsets display a discontinuity across the rupture trace of the mainshock. Teleseismic only and static only, as well as joint inversions all indicate that the aftershock ruptured an asperity with 25km along strike and range from 8km to 20km in depth. The earthquake was originated in a positive Coulomb stress change regime due to the mainshock and has complementary slip distribution to the mainshock rupture at the northeastern end, suggesting that the entire seismic generic zone in the crust was

  9. 3D imaging of crustal structure under the Piedmont province in central Virginia, from reflection RVSP processing of aftershock recordings from the August 23, 2011 Virginia earthquake

    NASA Astrophysics Data System (ADS)

    Quiros, D. A.; Brown, L. D.; Cabolova, A.; Davenport, K. K.; Hole, J. A.; Mooney, W. D.

    2013-12-01

    Aftershocks from the magnitude Mw 5.8 August 23, 2011, central Virginia earthquake were recorded using an unusually dense array of seismometers in what has been termed an AIDA (Aftershock Imaging with Dense Arrays) deployment. Over 200 stations were deployed in the epicentral region of this event to a) more precisely determine hypocentral locations, b) more accurately define velocity structure in the aftershock zone, c) characterize propagation characteristics of the crust in the area, and d) image geologic structures in the hypocentral volume with reflection techniques using aftershocks as sources. The AIDA-Virginia experiment successfully recorded a large number of aftershocks from which local tomographic velocity estimates and accurate hypocentral locations were obtained. These results facilitated the use of aftershocks as sources for reflection imaging. In this study we demonstrate how earthquake sources recorded by surface arrays can be treated using the imaging techniques associated with Vertical Seismic Profiling (VSP), in particular a variant known as Reverse VSP (RVSP). The central VSP processing algorithms used for this study are VSP normal moveout (VSPnmo) and VSP-to-Common Reflection Point (CRP). Applying these techniques to individual aftershocks from the Virginia experiment results in 3D reflection images of structural complexity in the immediate vicinity of the aftershocks. The most prominent feature observed on these 3D images is a strong moderately east-dipping reflector at a depth of approximately 6 to 8 km that directly underlies, and is continuous beneath, the more steeply dipping aftershock zone. We interpret this reflector as part of a complex imbricate thrust sequence associated with Paleozoic convergence during the Appalachian orogeny. Its apparent continuity beneath the fault zone implied by the aftershock's hypocenters suggests that this inferred fault zone has little or no cumulative offset, supporting the speculation that this event

  10. Foreshocks and aftershocks locations of the 2014 Pisagua, N. Chile earthquake: history of a megathrust earthquake nucleation

    NASA Astrophysics Data System (ADS)

    Fuenzalida Velasco, Amaya; Rietbrock, Andreas; Tavera, Hernando; Ryder, Isabelle; Ruiz, Sergio; Thomas, Reece; De Angelis, Silvio; Bondoux, Francis

    2015-04-01

    The April 2014 Mw 8.1 Pisagua earthquake occurred in the Northern Chile seismic gap: a region of the South American subduction zone lying between Arica city and the Mejillones Peninsula. It is believed that this part of the subduction zone has not experienced a large earthquake since 1877. Thanks to the identification of this seismic gap, the north of Chile was well instrumented before the Pisagua earthquake, including the Integrated Plate boundary Observatory Chile (IPOC) network and the Chilean local network installed by the Centro Sismologico Nacional (CSN). These instruments were able to record the full foreshock and aftershock sequences, allowing a unique opportunity to study the nucleation process of large megathrust earthquakes. To improve azimuthal coverage of the Pisagua seismic sequence, after the earthquake, in collaboration with the Instituto Geofisico del Peru (IGP) we installed a temporary seismic network in south of Peru. The network comprised 12 short-period stations located in the coastal area between Moquegua and Tacna and they were operative from 1st May 2014. We also installed three stations on the slopes of the Ticsiani volcano to monitor any possible change in volcanic activity following the Pisagua earthquake. In this work we analysed the continuous seismic data recorded by CSN and IPOC networks from 1 March to 30 June to obtain the catalogue of the sequence, including foreshocks and aftershocks. Using an automatic algorithm based in STA/LTA we obtained the picks for P and S waves. Association in time and space defined the events and computed an initial location using Hypo71 and the 1D local velocity model. More than 11,000 events were identified with this method for the whole period, but we selected the best resolved events that include more than 7 observed arrivals with at least 2 S picks of them, to relocate these events using NonLinLoc software. For the main events of the sequence we carefully estimate event locations and we obtained

  11. Identification of a major segment boundary between two megathrust subduction zone earthquakes from aftershock seismicity

    NASA Astrophysics Data System (ADS)

    Sobiesiak, M.; Victor, P.; Eggert, S.

    2009-04-01

    Aftershock seismicity is commonly used to characterize the extent of rupture planes of megathrust earthquakes. From unique datasets, covering the two adjacent fault planes of the Mw 8.0, 1995, Antofagasta and the Mw 7.7, 2007, Tocopilla earthquakes, we were able to identify a segment boundary (SB), located beneath Mejillones Peninsula. This segment boundary hosted the onset of the Antofagasta rupture and constituted the end of the Tocopilla rupture plane. The data recorded during the mission of the German Task Force for Earthquakes after the 2007 Tocopilla earthquake is supporting our observations regarding the northern part of the SB. 34 seismological stations registered the aftershocks from November 2007 until May 2008. First hypocenter determinations show that the aftershock sequences of both events meet along this E-W oriented segment boundary. The segment boundary is furthermore conformed by the historic record of megathrust events. Evidence for long term persistency of this SB comes from geological observations as differential uplift rates across the boundary and different fault patterns. Geomorpholocical analysis defines a topographic anomaly ~ 20 km wide and oriented along strike the SB..The main shock hypocenter determinations (NEIC, local network, ISC) which are related to the start of the rupture are all located in this zone. The SB is further characterized by intermediate b-values derived from a spatial b-value study of the Antofagasta fault plane and hosts several elongated clusters of aftershock seismicity. A detailed study of the focal mechanism solutions in one of these clusters showed a number of aligned strike slip events with one E-W striking nodal plane having a strike angle which is similar to the angle of subduction obliquity of the oceanic Nazca plate in this area. In further investigations we will search for detailed information on the nature and dynamics of processes along such a segment boundary, their meaning for the initiation of large

  12. Estimates of velocity structure and source depth using multiple P waves from aftershocks of the 1987 Elmore Ranch and Superstition Hills, California, earthquakes

    USGS Publications Warehouse

    Mori, J.

    1991-01-01

    Event record sections, which are constructed by plotting seismograms from many closely spaced earthquakes recorded on a few stations, show multiple free-surface reflections (PP, PPP, PPPP) of the P wave in the Imperial Valley. The relative timing of these arrivals is used to estimate the strength of the P-wave velocity gradient within the upper 5 km of the sediment layer. Consistent with previous studies, a velocity model with a value of 1.8 km/sec at the surface increasing linearly to 5.8 km/sec at a depth of 5.5 km fits the data well. The relative amplitudes of the P and PP arrivals are used to estimate the source depth for the aftershock distributions of the Elmore Ranch and Superstition Hills main shocks. Although the depth determination has large uncertainties, both the Elmore Ranch and Superstition Hills aftershock sequencs appear to have similar depth distribution in the range of 4 to 10 km. -Author

  13. Distribution of similar earthquakes in aftershocks of inland earthquakes

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Hiramatsu, Y.; Aftershock Observations Of 2007 Noto Hanto, G.

    2010-12-01

    Frictional properties control the slip behavior on a fault surface such as seismic slip and aseismic slip. Asperity, as a seismic slip area, is characterized by a strong coupling in the interseismic period and large coseismic slip. On the other hand, steady slip or afterslip occurs in an aseismic slip area around the asperity. If an afterslip area includes small asperities, a repeating rupture of single asperity can generate similar earthquakes due to the stress accumulation caused by the afterslip. We here investigate a detail distribution of similar earthquakes in the aftershocks of the 2007 Noto Hanto earthquake (Mjma 6.9) and the 2000 Western Tottori earthquake (Mjma 7.3), inland large earthquakes in Japan. We use the data obtained by the group for the aftershock observations of the 2007 Noto Hanto Earthquake and by the group for the aftershock observations of the 2000 Western Tottori earthquake. First, we select pairs of aftershocks whose cross correlation coefficients in 10 s time window of band-pass filtered waveforms of 1~4 Hz are greater than 0.95 at more than 5 stations and divide those into groups by a link of the cross correlation coefficients. Second, we reexamine the arrival times of P and S waves and the maximum amplitude for earthquakes of each group and apply the double-difference method (Waldhouser and Ellsworth, 2000) to relocate them. As a result of the analysis, we find 24 groups of similar earthquakes in the aftershocks on the source fault of the 2007 Noto Hanto Earthquake and 86 groups of similar earthquakes in the aftershocks on the source fault of the 2000 Western Tottori Earthquake. Most of them are distributed around or outside the asperity of the main shock. Geodetic studies reported that postseismic deformation was detected for the both earthquakes (Sagiya et al., 2002; Hashimoto et al., 2008). The source area of similar earthquakes seems to correspond to the afterslip area. These features suggest that the similar earthquakes observed

  14. Bias in fitting the ETAS model: a case study based on New Zealand seismicity

    NASA Astrophysics Data System (ADS)

    Harte, D. S.

    2013-01-01

    We fit various forms of the ETAS model to a large region that includes all of the most seismically active areas of New Zealand. The ETAS model contains two components: a component describing background or immigrant events, and a part describing aftershocks of the background events and aftershocks of the aftershocks. We refer to the first part as the background part and the second as the ETAS part. Generally all of the sophistication, and the bulk of the model parameters, lies in the ETAS part of the model. The background component is generally treated as a nuisance component and is often very simplistic. While the main interest lies in the ETAS part of the model, the poor model description of the background part imposes considerable bias on the ETAS part of the model. For example, a poorly specified spatial density of the background events causes many of the background events to be seen as ETAS events. It can also cause the estimated Omori power-law decay p to be too small, and hence the aftershock sequences appear to continue for too long. On the other hand, the boundary of the observation region can impose a reverse bias which causes aftershocks that are close but within the boundary to be seen as background events. In almost all of the large NZ event sequences since 1965, the model consistently under-fits these sequences. Consequently, it over-fits those space-time regions where there is `normal' seismicity with no major events present. This may indicate that the space-time region of a major event sequence is much closer to criticality, in that aftershock events appear to be much more easily initiated. The standard ETAS model does not reflect this observation.

  15. Aftershocks of the western Argentina (Caucete) earthquake of 23 November 1977: some tectonic implications

    USGS Publications Warehouse

    Langer, C.J.; Bollinger, G.A.

    1988-01-01

    An aftershock survey, using a network of eight portable and two permanent seismographs, was conducted for the western Argentina (Caucete) earthquake (MS 7.3) of November 23, 1977. Monitoring began December 6, almost 2 weeks after the main shock and continued for 11 days. The data set includes 185 aftershock hypocenters that range in the depth from near surface to more than 30 km. The spatial distribution of those events occupied a volume of about 100 km long ??50 km wide ??30 km thick. The volumnar nature of the aftershock distribution is interpreted to be a result of a bimodal distribution of foci that define east- and west-dipping planar zones. Efforts to select which of those zones was associated with the causal faulting include special attention to the determination of the mainshock focal depth and dislocation theory modeling of the coseismic surface deformation in the epicentral region. Our focal depth (25-35 km) and modeling studies lead us to prefer an east-dipping plane as causal. A previous interpretation by other investigators used a shallower focal depth (17 km) and similar modeling calculations in choosing a west-dipping plane. Our selection of the east-dipping plane is physically more appealing because it places fault initiation at the base of the crustal seismogenic layer (rather than in the middle of that layer) which requires fault propagation to be updip (rather than downdip). ?? 1988.

  16. Aftershocks are well aligned with the background stress field, contradicting the hypothesis of highly-heterogeneous crustal stress

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2010-01-01

    It has been proposed that the crustal stress field contains small-length-scale heterogeneity of much larger amplitude than the uniform background stress. This model predicts that earthquake focal mechanisms should reflect the loading stress rather than the uniform background stress. So, if the heterogeneous stress hypothesis is correct, focal mechanisms before and after a large earthquake should align with the tectonic loading and the earthquake-induced static stress perturbation, respectively. However, I show that the off-fault triggered aftershocks of the 1992 M7.3 Landers, California, earthquake align with the same stress field as the pre-Landers mechanisms. The aftershocks occurred on faults that were well oriented for failure in the pre-Landers stress field and then loaded by the Landers-induced static stress change. Aftershocks in regions experiencing a 0.05 to 5 MPa coseismic differential stress change align with the modeled Landers-induced static stress change, implying that they were triggered by the stress perturbation. Contrary to the heterogeneous stress hypothesis, these triggered aftershocks are also well aligned with the pre-Landers stress field obtained from inverting the pre-Landers focal mechanisms. Therefore, the inverted pre-Landers stress must represent the persistent background stress field. Earthquake focal mechanisms provide an unbiased sample of the spatially coherent background stress field, which is large relative to any small-scale stress heterogeneity. The counterexample provided by the Landers earthquake is strong evidence that the heterogeneous stress model is not widely applicable.

  17. Teleseismic Body Wave Analysis for the 27 September 2003 Altai, Earthquake (Mw7.4) and Large Aftershocks

    NASA Astrophysics Data System (ADS)

    Gomez-Gonzalez, J. M.; Mellors, R.

    2007-05-01

    We investigate the kinematics of the rupture process for the September 27, 2003, Mw7.3, Altai earthquake and its associated large aftershocks. This is the largest earthquake striking the Altai mountains within the last 50 years, which provides important constraints on the ongoing tectonics. The fault plane solution obtained by teleseismic body waveform modeling indicated a predominantly strike-slip event (strike=130, dip=75, rake 170), Scalar moment for the main shock ranges from 0.688 to 1.196E+20 N m, a source duration of about 20 to 42 s, and an average centroid depth of 10 km. Source duration would indicate a fault length of about 130 - 270 km. The main shock was followed closely by two aftershocks (Mw5.7, Mw6.4) occurred the same day, another aftershock (Mw6.7) occurred on 1 October , 2003. We also modeled the second aftershock (Mw6.4) to asses geometric similarities during their respective rupture process. This aftershock occurred spatially very close to the mainshock and possesses a similar fault plane solution (strike=128, dip=71, rake=154), and centroid depth (13 km). Several local conditions, such as the crustal model and fault geometry, affect the correct estimation of some source parameters. We perfume a sensitivity evaluation of several parameters, including centroid depth, scalar moment and source duration, based on a point and finite source modeling. The point source approximation results are the departure parameters for the finite source exploration. We evaluate the different reported parameters to discard poor constrained models. In addition, deformation data acquired by InSAR are also included in the analysis.

  18. Diversity of the 2014 Iquique's foreshocks and aftershocks: clues about the complex rupture process of a Mw 8.1 earthquake

    NASA Astrophysics Data System (ADS)

    León-Ríos, Sergio; Ruiz, Sergio; Maksymowicz, Andrei; Leyton, Felipe; Fuenzalida, Amaya; Madariaga, Raúl

    2016-03-01

    We study the foreshocks and aftershocks of the 1 April 2014 Iquique earthquake of Mw 8.1. Most of these events were recorded by a large digital seismic network that included the Northern Chile permanent network and up to 26 temporary broadband digital stations. We relocated and computed moment tensors for 151 events of magnitude Mw ≥ 4.5. Most of the foreshocks and aftershocks of the Iquique earthquake are distributed to the southwest of the rupture zone. These events are located in a band of about 50 km from the trench, an area where few earthquakes occur elsewhere in Chile. Another important group of aftershocks is located above the plate interface, similar to those observed during the foreshock sequence. The depths of these events were constrained by regional moment tensor (RMT) solutions obtained using the records of the dense broad band network. The majority of the foreshocks and aftershocks were associated to the interplate contact, with dip and strike angles in good agreement with the characteristics of horst and graben structures (>2000 m offset) typical of the oceanic Nazca Plate at the trench and in the outer rise region. We propose that the spatial distribution of foreshocks and aftershocks, and its seismological characteristics were strongly controlled by the rheological and tectonics conditions of the extreme erosive margin of Northern Chile.

  19. Aftershock activity of the 2015 Gorkha, Nepal, earthquake determined using the Kathmandu strong motion seismographic array

    NASA Astrophysics Data System (ADS)

    Ichiyanagi, Masayoshi; Takai, Nobuo; Shigefuji, Michiko; Bijukchhen, Subeg; Sasatani, Tsutomu; Rajaure, Sudhir; Dhital, Megh Raj; Takahashi, Hiroaki

    2016-02-01

    The characteristics of aftershock activity of the 2015 Gorkha, Nepal, earthquake (Mw 7.8) were evaluated. The mainshock and aftershocks were recorded continuously by the international Kathmandu strong motion seismographic array operated by Hokkaido University and Tribhuvan University. Full waveform data without saturation for all events enabled us to clarify aftershock locations and decay characteristics. The aftershock distribution was determined using the estimated local velocity structure. The hypocenter distribution in the Kathmandu metropolitan region was well determined and indicated earthquakes located shallower than 12 km depth, suggesting that aftershocks occurred at depths shallower than the Himalayan main thrust fault. Although numerical investigation suggested less resolution for the depth component, the regional aftershock epicentral distribution of the entire focal region clearly indicated earthquakes concentrated in the eastern margin of the major slip region of the mainshock. The calculated modified Omori law's p value of 1.35 suggests rapid aftershock decay and a possible high temperature structure in the aftershock region.

  20. Comparison of Short-term and Long-term Earthquake Forecast Models for Southern California

    NASA Astrophysics Data System (ADS)

    Helmstetter, A.; Kagan, Y. Y.; Jackson, D. D.

    2004-12-01

    Many earthquakes are triggered in part by preceding events. Aftershocks are the most obvious examples, but many large earthquakes are preceded by smaller ones. The large fluctuations of seismicity rate due to earthquake interactions thus provide a way to improve earthquake forecasting significantly. We have developed a model to estimate daily earthquake probabilities in Southern California, using the Epidemic Type Earthquake Sequence model [Kagan and Knopoff, 1987; Ogata, 1988]. The forecasted seismicity rate is the sum of a constant external loading and of the aftershocks of all past earthquakes. The background rate is estimated by smoothing past seismicity. Each earthquake triggers aftershocks with a rate that increases exponentially with its magnitude and which decreases with time following Omori's law. We use an isotropic kernel to model the spatial distribution of aftershocks for small (M≤5.5) mainshocks, and a smoothing of the location of early aftershocks for larger mainshocks. The model also assumes that all earthquake magnitudes follow the Gutenberg-Richter law with a unifom b-value. We use a maximum likelihood method to estimate the model parameters and tests the short-term and long-term forecasts. A retrospective test using a daily update of the forecasts between 1985/1/1 and 2004/3/10 shows that the short-term model decreases the uncertainty of an earthquake occurrence by a factor of about 10.

  1. Kinematic rupture process of the 2007 Tocopilla earthquake and its main aftershocks from teleseismic and strong-motion data

    NASA Astrophysics Data System (ADS)

    Peyrat, S.; Madariaga, R.; Buforn, E.; Campos, J.; Asch, G.; Vilotte, J. P.

    2010-09-01

    We study a large Mw = 7.6 earthquake that occurred on 2007 November 14 in the Northern Chile seismic gap near the city of Tocopilla. Using a variety of seismic data we show that this earthquake ruptured only the lower part of the interplate seismic zone and generated a series of plate interface aftershocks. Two large aftershocks on 2007 November 15 ruptured the interplate zone oceanwards of the Mejillones Peninsula, a major geographical feature in the Antofagasta region. On 2007 December 16, a large Mw = 6.8 aftershock, that occurred near the southern bottom of the fault plane of the main event, is shown to be a slab-push earthquake located inside the subducted Nazca Plate and triggered by along slab compression. Aftershocks of this event demonstrate that it occurred on an almost vertical fault. The Tocopilla earthquake took place just after the installation of a new seismological network by Chilean, German and French researchers. The accelerometric data combined with far field seismic data provide a quite complete and consistent view of the rupture process. The earthquake broke a long (130 km) and narrow (about 30-50 km) zone of the plate interface just above the transition zone. Using a non-linear kinematic inversion method, we determined that rupture occurred on two well-defined patches of roughly elliptical shape. We discuss the consequences of this event for models of gap filling earthquakes in Chile proposed in the 1970s.

  2. High-Resolution Uitra Low Power, Intergrated Aftershock and Microzonation System

    NASA Astrophysics Data System (ADS)

    Passmore, P.; Zimakov, L. G.

    2012-12-01

    Rapid Aftershock Mobilization plays an essential role in the understanding of both focal mechanism and rupture propagation caused by strong earthquakes. A quick assessment of the data provides a unique opportunity to study the dynamics of the entire earthquake process in-situ. Aftershock study also provides practical information for local authorities regarding the post earthquake activity, which is very important in order to conduct the necessary actions for public safety in the area affected by the strong earthquake. Refraction Technology, Inc. has developed a self-contained, fully integrated Aftershock System, model 160-03, providing the customer simple and quick deployment during aftershock emergency mobilization and microzonation studies. The 160-03 has no external cables or peripheral equipment for command/control and operation in the field. The 160-03 contains three major components integrated in one case: a) 24-bit resolution state-of-the art low power ADC with CPU and Lid interconnect boards; b) power source; and c) three component 2 Hz sensors (two horizontals and one vertical), and built-in ±4g accelerometer. Optionally, the 1 Hz sensors can be built-in the 160-03 system at the customer's request. The self-contained rechargeable battery pack provides power autonomy up to 7 days during data acquisition at 200 sps on continuous three weak motion and triggered three strong motion recording channels. For longer power autonomy, the 160-03 Aftershock System battery pack can be charged from an external source (solar power system). The data in the field is recorded to a built-in swappable USB flash drive. The 160-03 configuration is fixed based on a configuration file stored on the system, so no external command/control interface is required for parameter setup in the field. For visual control of the system performance in the field, the 160-03 has a built-in LED display which indicates the systems recording status as well as a hot swappable USB drive and battery

  3. Analysis of rupture area of aftershocks caused by twin earthquakes (Case study: 11 April 2012 earthquakes of Aceh-North Sumatra)

    NASA Astrophysics Data System (ADS)

    Diansari, Angga Vertika; Purwana, Ibnu; Subakti, Hendri

    2015-04-01

    The 11 April 2012 earthquakes off-shore Aceh-North Sumatra are unique events for the history of Indonesian earthquake. It is unique because that they have similar magnitude, 8.5 Mw and 8.1 Mw; close to epicenter distance, similar strike-slip focal mechanism, and occuring in outer rise area. The purposes of this research are: (1) comparing area of earthquakes base on models and that of calculation, (2) fitting the shape and the area of earthquake rupture zones, (3) analyzing the relationship between rupture area and magnitude of the earthquakes. Rupture area of the earthquake fault are determined by using 4 different formulas, i.e. Utsu and Seki (1954), Wells and Coppersmith (1994), Ellsworth (2003), and Christophersen and Smith (2000). The earthquakes aftershock parameters are taken from PGN (PusatGempabumiNasional or National Earthquake Information Center) of BMKG (Indonesia Agency Meteorology Climatology and Geophysics). The aftershock epicenters are plotted by GMT's software. After that, ellipse and rectangular models of aftershock spreading are made. The results show that: (1) rupture areas were calculated using magnitude relationship which are larger than the the aftershock distributions model, (2) the best fitting model for that earthquake aftershock distribution is rectangular associated with Utsu and Seki (1954) formula, (3) the larger the magnitude of the earthquake, the larger area of the fault.

  4. Analysis of rupture area of aftershocks caused by twin earthquakes (Case study: 11 April 2012 earthquakes of Aceh-North Sumatra)

    SciTech Connect

    Diansari, Angga Vertika Purwana, Ibnu; Subakti, Hendri

    2015-04-24

    The 11 April 2012 earthquakes off-shore Aceh-North Sumatra are unique events for the history of Indonesian earthquake. It is unique because that they have similar magnitude, 8.5 Mw and 8.1 Mw; close to epicenter distance, similar strike-slip focal mechanism, and occuring in outer rise area. The purposes of this research are: (1) comparing area of earthquakes base on models and that of calculation, (2) fitting the shape and the area of earthquake rupture zones, (3) analyzing the relationship between rupture area and magnitude of the earthquakes. Rupture area of the earthquake fault are determined by using 4 different formulas, i.e. Utsu and Seki (1954), Wells and Coppersmith (1994), Ellsworth (2003), and Christophersen and Smith (2000). The earthquakes aftershock parameters are taken from PGN (PusatGempabumiNasional or National Earthquake Information Center) of BMKG (Indonesia Agency Meteorology Climatology and Geophysics). The aftershock epicenters are plotted by GMT’s software. After that, ellipse and rectangular models of aftershock spreading are made. The results show that: (1) rupture areas were calculated using magnitude relationship which are larger than the the aftershock distributions model, (2) the best fitting model for that earthquake aftershock distribution is rectangular associated with Utsu and Seki (1954) formula, (3) the larger the magnitude of the earthquake, the larger area of the fault.

  5. Spiking neuron model for temporal sequence recognition.

    PubMed

    Byrnes, Sean; Burkitt, Anthony N; Grayden, David B; Meffin, Hamish

    2010-01-01

    A biologically inspired neuronal network that stores and recognizes temporal sequences of symbols is described. Each symbol is represented by excitatory input to distinct groups of neurons (symbol pools). Unambiguous storage of multiple sequences with common subsequences is ensured by partitioning each symbol pool into subpools that respond only when the current symbol has been preceded by a particular sequence of symbols. We describe synaptic structure and neural dynamics that permit the selective activation of subpools by the correct sequence. Symbols may have varying durations of the order of hundreds of milliseconds. Physiologically plausible plasticity mechanisms operate on a time scale of tens of milliseconds; an interaction of the excitatory input with periodic global inhibition bridges this gap so that neural events representing successive symbols occur on this much faster timescale. The network is shown to store multiple overlapping sequences of events. It is robust to variation in symbol duration, it is scalable, and its performance degrades gracefully with perturbation of its parameters. PMID:19842991

  6. Analysis of the Petatlan aftershocks: Numbers, energy release, and asperities

    NASA Astrophysics Data System (ADS)

    ValdéS, Carlos; Meyer, Robert P.; ZuñIga, Ramón; Havskov, Jens; Singh, Shri K.

    1982-10-01

    The Petatlan earthquake of March 14, 1979 (Ms = 7.6), occurred between the Middle America trench and the Mexican coast, 15 km southwest of Petatlan, Guerrero, Mexico. From seismograms recorded on smoked paper, FM, and digital tapes, we have identified 255 aftershocks with coda lengths greater than 60 s that occurred 11 hours to 36 days after the main shock. Based on these events, the aftershock epicentral area defined during the period between 11 and 60 hours was about 2000 km2; between 11 hours and 6 days it was about 2400 km2. Although the area grew to 6060 km2 in 36 days, most of the activity was still confined within the area defined after 6 days. This suggests that the smaller aftershock area might represent an asperity. The distribution of events and energy release per unit area confirm the existence of heterogeneity in the aftershock area. Thus our data support the concept of an inhomogeneous rupture area that includes an asperity, as suggested by Chael and Stewart (1982) to account for the differences they computed for the body and surface wave moments from WWSSN data. However, the combination of the moments Reichle et al. (1982) report for body and surface waves from IDA data and the rupture areas reported in this paper results in a solution that is most physically realizable in terms of stress drop and slip. We calculate stress drops of 5 and 15 bars, the former for the average over the entire area, the latter for the asperity, and an average slip of 60 cm for the entire area and 120 cm for the asperity. These values for slip are 30% and 60%, respectively, of the convergence of the Cocos plate relative to the North America plate during the 36-year period between the last two major earthquakes in the Petatlan area. Hypocenters of the aftershocks define a zone about 25 km thick, dipping 15° with an azimuth of N20°E, which is perpendicular to the Middle America trench. Most aftershocks are below the main shock. The b value estimated for aftershocks in the

  7. Seismic and Aseismic Slip on the San-Jacinto Fault Near Anza, CA, from Joint Analysis of Strain and Aftershock Data

    NASA Astrophysics Data System (ADS)

    Inbal, A.; Avouac, J. P.; Ampuero, J. P.

    2014-12-01

    The San-Jacinto Fault (SJF) is the most active fault in southern California, which together with the southern San-Andreas Fault accommodates a large fraction of the motion across the plate boundary. Seismicity along the SJF is distributed over several fault segments with distinct spatio-temporal characteristics. One of these segments, known as the Anza seismic gap, is a 25 km long strand almost devoid of seismicity. In recent years, four M4-5 events occurred SE of the gap. Despite their moderate magnitudes, these earthquakes triggered rich aftershock sequences and pronounced afterslip that lasted for several weeks, and was well captured by nearby PBO borehole strain meters. A similar transient was remotely triggered by the 2010 El Mayor-Cucapah earthquake. Geodetic and seismic observations following a local M5.4 mainshock indicate that afterslip propagated unilaterally towards the NW at speed of about 5 km/day. We infer the distribution of slip via a joint inversion of the aftershock and strain data. Our approach is based on Dieterich's (1994) model relating the evolution of seismicity rate to applied stresses, within the framework of rate-and-state friction. This approach provides resolution power at depths inaccessible to the surface geodetic network. Moreover, it allows us to gain important insights onto the fault mechanical properties. We apply this inversion scheme to episodes that occurred during 2010. Remarkably, we find that the cumulative moment released post-seismically during the locally triggered transient is 5-10 times larger than the moment of the mainshock. We show that the data favour a model in which deep slip transients, which may develop due to local or remote earthquakes, occur on a weak, close-to-velocity-neutral fault. The transients increase the stress along the Anza gap, and trigger earthquakes outside it through static stress transfer.

  8. Did stress triggering cause the large off-fault aftershocks of the 25 March 1998 MW=8.1 Antarctic plate earthquake?

    USGS Publications Warehouse

    Toda, S.; Stein, R.S.

    2000-01-01

    The 1998 Antarctic plate earthquake produced clusters of aftershocks (MW ??? 6.4) up to 80 km from the fault rupture and up to 100 km beyond the end of the rupture. Because the mainshock occurred far from the nearest plate boundary and the nearest recorded earthquake, it is unusually isolated from the stress perturbations caused by other earthquakes, making it a good candidate for stress transfer analysis despite the absence of near-field observations. We tested whether the off-fault aftershocks lie in regions brought closer to Coulomb failure by the main rupture. We evaluated four published source models for the main rupture. In fourteen tests using different aftershocks sets and allowing the rupture sources to be shifted within their uncertainties, 6 were significant at ??? 99% confidence, 3 at > 95% confidence, and 5 were not significant (< 95% level). For the 9 successful tests, the stress at the site of the aftershocks was typically increased by 1-2 bars (0.1-0.2 MPa). Thus the Antarctic plate event, together with the 1992 MW=7.3 Landers and its MW=6.5 Big Bear aftershock 40 km from the main fault, supply evidence that small stress changes might indeed trigger large earthquakes far from the main fault rupture.

  9. High resolution earthquake source mechanisms in a subduction zone: 3-D waveform simulations of aftershocks from the 2010 Mw 8.8 Chile rupture

    NASA Astrophysics Data System (ADS)

    Hicks, Stephen; Rietbrock, Andreas

    2015-04-01

    The earthquake rupture process is extremely heterogeneous. For subduction zone earthquakes in particular, it is vital to understand how structural variations in the overriding plate and downgoing slab may control slip style. The large-scale 3-D geometry of subduction plate boundaries is rapidly becoming well understood (e.g. Hayes et al., 2012); however, the nature of slip style along any finer-scale structures remains elusive. Regional earthquake moment tensor (RMT) inversion can shed light on faulting mechanisms. However, many traditional regional moment tensor inversions use simplified (1-D) Earth models (e.g. Agurto et al., 2012; Hayes et al., 2013) that only use the lowest frequency parts of the waveform, which may mask source complexity. As a result, we may have to take care when making small-scale interpretations about the causative fault and its slip style. This situation is compounded further by strong lateral variations in subsurface geology, as well as poor station coverage for recording offshore subduction earthquakes. A formal assessment of the resolving capability of RMT inversions in subduction zones is challenging and the application of 3-D waveform simulation techniques in highly heterogeneous media is needed. We generate 3-D waveform simulations of aftershocks from a large earthquake that struck Chile in 2010. The Mw 8.8 Maule earthquake is the sixth largest earthquake ever recorded. Following the earthquake, there was an international deployment of seismic stations in the rupture area, making this one of the best observed aftershock sequences to date. We therefore have a unique opportunity to compare recorded waveforms with simulated waveforms for many earthquakes, shedding light on the effect of 3-D heterogeneity on source imaging. We perform forward simulations using the spectral element wave propagation code, SPEFEM3D (e.g. Komatitsch et al., 2010) for a set of moderate-sized aftershocks (Mw 4.0-5.5). A detailed knowledge of velocity structure

  10. Coulomb stress changes caused by repeated normal faulting earthquakes during the 1997 Umbria-Marche (central Italy) seismic sequence

    NASA Astrophysics Data System (ADS)

    Nostro, Concetta; Chiaraluce, Lauro; Cocco, Massimo; Baumont, David; Scotti, Oona

    2005-05-01

    We investigate fault interaction through elastic stress transfer among a sequence of moderate-magnitude main shocks (5 < Mw < 6) which ruptured distinct normal fault segments during a seismic sequence in the Umbria-Marche region (central Apennines). We also model the spatial pattern of aftershocks and their faulting mechanisms through Coulomb stress changes. We compute stress perturbations caused by earthquake dislocations in a homogeneous half-space. Our modeling results show that seven out of eight main shocks of the sequence occur in areas of enhanced Coulomb stress, implying that elastic stress transfer may have promoted the occurrence of these moderate-magnitude events. Our modeling results show that stress changes caused by normal faulting events reactivated and inverted the slip of a secondary N-S trending strike-slip fault inherited from compressional tectonics in its shallowest part (1-3 km). Of the 1517 available aftershocks, 82% are located in areas of positive stress changes for optimally oriented planes (OOPs) for Coulomb failure. However, only 45% of the 322 available fault plane solutions computed from polarity data is consistent with corresponding focal mechanisms associated with the OOPs. The comparison does not improve if we compute the optimally oriented planes for Coulomb failure by fixing the strike orientation of OOPs using information derived from structural geology. Our interpretation of these modeling results is that elastic stress transfer alone cannot jointly explain the aftershock spatial distribution and their focal mechanisms.

  11. Analyzing the characteristics of focal mechanism solutions of Wenchuan earthquake sequence

    NASA Astrophysics Data System (ADS)

    Cui, X.; Hu, X.; Xie, F.; Yu, C.; Wang, Y.

    2009-12-01

    We firstly read out initial P wave polarity from the digital wave form data given by Chinese national seismic networks, regional seismic networks, temporary seismic networks as well as some IRIS stations. Then employing improved grid point test method we obtain focal mechanism solutions of the strong aftershocks (M≥4.0) and composite fault plane solutions of the moderate and small aftershocks of Wenchuan earthquake sequence. In order to improve the reliability of focal mechanism solutions, we precisely locate the hypocenter location of aftershocks during the determining of focal mechanism solutions. Most of the aftershocks are thrust faulting or strike slip faulting except few ones. Thrust and predominately thrust aftershocks are distributed along the whole rapture zone except the southwest section, while strike slip aftershocks are distributed mainly in the southwest and the northeast sections. In the section from Beichuan to Pingwu, there are hardly any strike slip aftershocks but thrust and predominately thrust aftershocks. In terms of the azimuths of P axes of the focal mechanism solutions of the aftershocks, we find that the ones of the aftershocks with magnitude above 5.0 show good homogeneity, mainly concentrate on the orientation of NWW-SEE, which is consistent with that of Wenchuan mainshock, while as for aftershocks with magnitude below 4.9, they have two dominant distributions of NWW-SEE (azimuth 280°-310°) and NE-SW (azimuth 40°-70°). It shows that the focal mechanism solutions and their distribution characteristics of Wenchuan earthquake sequence are both complex. From the types and the azimuths of P axes of the focal mechanism solutions of the aftershocks, we can obtain the characteristics of segmentation, which is important to realize the dynamic mechanism of the Wenchuan earthquake sequence.

  12. Modeling genome coverage in single-cell sequencing

    PubMed Central

    Daley, Timothy; Smith, Andrew D.

    2014-01-01

    Motivation: Single-cell DNA sequencing is necessary for examining genetic variation at the cellular level, which remains hidden in bulk sequencing experiments. But because they begin with such small amounts of starting material, the amount of information that is obtained from single-cell sequencing experiment is highly sensitive to the choice of protocol employed and variability in library preparation. In particular, the fraction of the genome represented in single-cell sequencing libraries exhibits extreme variability due to quantitative biases in amplification and loss of genetic material. Results: We propose a method to predict the genome coverage of a deep sequencing experiment using information from an initial shallow sequencing experiment mapped to a reference genome. The observed coverage statistics are used in a non-parametric empirical Bayes Poisson model to estimate the gain in coverage from deeper sequencing. This approach allows researchers to know statistical features of deep sequencing experiments without actually sequencing deeply, providing a basis for optimizing and comparing single-cell sequencing protocols or screening libraries. Availability and implementation: The method is available as part of the preseq software package. Source code is available at http://smithlabresearch.org/preseq. Contact: andrewds@usc.edu Supplementary information: Supplementary material is available at Bioinformatics online. PMID:25107873

  13. Teleseismic Source Models and Source Depth Constraints for Events of the Bhuj Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Langston, C. A.

    2001-12-01

    Earthquake locations determined from the MAEC/ISTAR deployment in the epicentral region show a distribution of source depths ranging from the base of the crust to about 5km from the surface. Teleseismic P waveform data are collected from GSN and IMS three component stations and array stations to independently place constraints on source depths of events greater than M4.0 using pP-P and sP-P phase times. Joint analysis of local and teleseismic data are also used to determine source mechanisms and to generate an appropriate model for local structure than can be used in the computation of teleseismic Green's functions and subsequent source inversions. Thick Kachchh basin sediments modify the signature of sP, in particular, and produce reverberation effects later in the P waveforms that may be misconstrued as contributions from shallow faulting. Using the M5.8 aftershock waveforms as empirical Green's functions, a relative inversion of mainshock/aftershock surface waves and a standard slip inversion of teleseimic P and S waves are performed to investigate different models of source geometry and slip distribution for the mainshock.

  14. Geophysical data reveal the crustal structure of the Alaska Range orogen within the aftershock zone of the Mw 7.9 Denali fault earthquake

    USGS Publications Warehouse

    Fisher, M.A.; Ratchkovski, N.A.; Nokleberg, W.J.; Pellerin, L.; Glen, J.M.G.

    2004-01-01

    Geophysical information, including deep-crustal seismic reflection, magnetotelluric (MT), gravity, and magnetic data, cross the aftershock zone of the 3 November 2002 Mw 7.9 Denali fault earthquake. These data and aftershock seismicity, jointly interpreted, reveal the crustal structure of the right-lateral-slip Denali fault and the eastern Alaska Range orogen, as well as the relationship between this structure and seismicity. North of the Denali fault, strong seismic reflections from within the Alaska Range orogen show features that dip as steeply as 25?? north and extend downward to depths between 20 and 25 km. These reflections reveal crustal structures, probably ductile shear zones, that most likely formed during the Late Cretaceous, but these structures appear to be inactive, having produced little seismicity during the past 20 years. Furthermore, seismic reflections mainly dip north, whereas alignments in aftershock hypocenters dip south. The Denali fault is nonreflective, but modeling of MT, gravity, and magnetic data suggests that the Denali fault dips steeply to vertically. However, in an alternative structural model, the Denali fault is defined by one of the reflection bands that dips to the north and flattens into the middle crust of the Alaska Range orogen. Modeling of MT data indicates a rock body, having low electrical resistivity (>10 ??-m), that lies mainly at depths greater than 10 km, directly beneath aftershocks of the Denali fault earthquake. The maximum depth of aftershocks along the Denali fault is 10 km. This shallow depth may arise from a higher-than-normal geothermal gradient. Alternatively, the low electrical resistivity of deep rocks along the Denali fault may be associated with fluids that have weakened the lower crust and helped determine the depth extent of the after-shock zone.

  15. Source parameters and effects of bandwidth and local geology on high- frequency ground motions observed for aftershocks of the northeastern Ohio earthquake of 31 January 1986

    USGS Publications Warehouse

    Glassmoyer, G.; Borcherdt, R.D.

    1990-01-01

    A 10-station array (GEOS) yielded recordings of exceptional bandwidth (400 sps) and resolution (up to 96 dB) for the aftershocks of the moderate (mb???4.9) earthquake that occurred on 31 January 1986 near Painesville, Ohio. Nine aftershocks were recorded with seismic moments ranging between 9 ?? 1016 and 3 ?? 1019 dyne-cm (MW: 0.6 to 2.3). The aftershock recordings at a site underlain by ???8m of lakeshore sediments show significant levels of high-frequency soil amplification of vertical motion at frequencies near 8, 20 and 70 Hz. Viscoelastic models for P and SV waves incident at the base of the sediments yield estimates of vertical P-wave response consistent with the observed high-frequency site resonances, but suggest additional detailed shear-wave logs are needed to account for observed S-wave response. -from Authors

  16. Matched-filter Detection of the Missing Foreshocks and Aftershocks of the 2015 Gorkha earthquake

    NASA Astrophysics Data System (ADS)

    Meng, L.; Huang, H.; Wang, Y.; Plasencia Linares, M. P.

    2015-12-01

    The 25 April 2015 Mw 7.8 Gorkha earthquake occurred at the bottom edge of the locking portion of the Main Himalayan Thrust (MHT), where the Indian plate under-thrusts the Himalayan wedge. The earthquake is followed by a number of large aftershocks but is not preceded by any foreshocks within ~3 weeks according to the NEIC, ISC and NSC catalog. However, a large portion of aftershocks could be missed due to either the contamination of the mainshock coda or small signal to noise ratio. It is also unclear whether there are foreshocks preceding the mainshock, the underlying physical processes of which are crucial for imminent seismic hazard assessment. Here, we employ the matched filter technique to recover the missing events from 22 April to 30 April. We collect 3-component broadband seismic waveforms recorded by one station in Nepal operated by Ev-K2-CNR, OGS Italy and eleven stations in Tibet operated by the China Earthquake Networks Center. We bandpass the seismograms to 1-6 Hz to retain high frequency energies. The template waveforms with high signal-to-noise ratios (> 5) are obtained at several closest stations. To detect and locate the events that occur around the templates, correlograms are shifted at each station with differential travel time as a function of source location based on the CRUST1.0 model. We find ~14 times more events than those listed in the ISC catalog. Some of the detected events are confirmed by visual inspections of the waveforms at the closest stations. The preliminary results show a streak of seismicity occurred around 2.5 days before the mainshock to the southeast of the mainshock hypocenter. The seismicity rate is elevated above the background level during this period of time and decayed subsequently following the Omori's law. The foreshocks appear to migrate towards the hypocenter with logarithmic time ahead of the mainshock, which indicates possible triggering of the mainshock by the propagating afterslip of the foreshocks. Immediately

  17. Disease aftershocks - The health effects of natural disasters

    USGS Publications Warehouse

    Guptill, S.C.

    2001-01-01

    While the initial activity of a natural disaster event may directly injure or kill a number of people, it is possible that a significant number of individuals will be affected by disease outbreaks that occur after the first effects of the disaster have passed. Coupling the epidemiologist's knowledge of disease outbreaks with geographic information systems and remote sensing technology could help natural disaster relief workers to prevent additional victims from disease aftershocks.

  18. Model morphing and sequence assignment after molecular replacement

    SciTech Connect

    Terwilliger, Thomas C.; Read, Randy J.; Adams, Paul D.; Brunger, Axel T.; Afonine, Pavel V.; Hung, Li-Wei

    2013-11-01

    A procedure for model building is described that combines morphing a model to match a density map, trimming the morphed model and aligning the model to a sequence. A procedure termed ‘morphing’ for improving a model after it has been placed in the crystallographic cell by molecular replacement has recently been developed. Morphing consists of applying a smooth deformation to a model to make it match an electron-density map more closely. Morphing does not change the identities of the residues in the chain, only their coordinates. Consequently, if the true structure differs from the working model by containing different residues, these differences cannot be corrected by morphing. Here, a procedure that helps to address this limitation is described. The goal of the procedure is to obtain a relatively complete model that has accurate main-chain atomic positions and residues that are correctly assigned to the sequence. Residues in a morphed model that do not match the electron-density map are removed. Each segment of the resulting trimmed morphed model is then assigned to the sequence of the molecule using information about the connectivity of the chains from the working model and from connections that can be identified from the electron-density map. The procedure was tested by application to a recently determined structure at a resolution of 3.2 Å and was found to increase the number of correctly identified residues in this structure from the 88 obtained using phenix.resolve sequence assignment alone (Terwilliger, 2003 ▶) to 247 of a possible 359. Additionally, the procedure was tested by application to a series of templates with sequence identities to a target structure ranging between 7 and 36%. The mean fraction of correctly identified residues in these cases was increased from 33% using phenix.resolve sequence assignment to 47% using the current procedure. The procedure is simple to apply and is available in the Phenix software package.

  19. Delineating the Fault Planes of the 2006 Pingtung Doublet Earthquakes by Aftershock Locations

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Hsu, S.

    2011-12-01

    The 2006 Pintung doublet earthquakes (Mw=6.9) were occurred in the offshore region of southwestern Taiwan, where were rarely expected to have large earthquake. Based on the global centroid-moment-tensor(CMT) inversion result, the first one is associated with a normal-faulting and the other with a strike-slip faulting. In this study, the aftershock sequences recorded by an OBS array deployed over the source zone for one week, were relocated to estimate the true fault planes. The preliminary relocation results indicate that the most events in the northern part were aligned with the eastward dipping fault plan of the fist mainshock, and the remnants were spread sparsely but seemed to follow the westward dipping fault plan of the second mainshock. This result is not usually expected because the hypocenter of the first event was located southern than that of the second one. However, the more detailed examination is still needed.

  20. Mapping Sensorimotor Sequences to Word Sequences: A Connectionist Model of Language Acquisition and Sentence Generation

    ERIC Educational Resources Information Center

    Takac, Martin; Benuskova, Lubica; Knott, Alistair

    2012-01-01

    In this article we present a neural network model of sentence generation. The network has both technical and conceptual innovations. Its main technical novelty is in its semantic representations: the messages which form the input to the network are structured as sequences, so that message elements are delivered to the network one at a time. Rather…

  1. Recurrent Network Models of Sequence Generation and Memory.

    PubMed

    Rajan, Kanaka; Harvey, Christopher D; Tank, David W

    2016-04-01

    Sequential activation of neurons is a common feature of network activity during a variety of behaviors, including working memory and decision making. Previous network models for sequences and memory emphasized specialized architectures in which a principled mechanism is pre-wired into their connectivity. Here we demonstrate that, starting from random connectivity and modifying a small fraction of connections, a largely disordered recurrent network can produce sequences and implement working memory efficiently. We use this process, called Partial In-Network Training (PINning), to model and match cellular resolution imaging data from the posterior parietal cortex during a virtual memory-guided two-alternative forced-choice task. Analysis of the connectivity reveals that sequences propagate by the cooperation between recurrent synaptic interactions and external inputs, rather than through feedforward or asymmetric connections. Together our results suggest that neural sequences may emerge through learning from largely unstructured network architectures. PMID:26971945

  2. Preliminary Double-Difference Relocations of Bhuj Aftershocks

    NASA Astrophysics Data System (ADS)

    Raphael, A. J.; Bodin, P.; Horton, S.; Gomberg, J.

    2001-12-01

    The Mw=7.7 Bhuj earthquake of 26 January, 2001 in Gujarat, India, was a scientifically important earthquake that took place in a rather poorly instrumented region. Lack of nearby mainshock recordings and lack of surface rupture preclude the calculation of a high-resolution picture of the mainshock rupture processes like those presented for other recent large, better instrumented earthquakes. This is particularly vexing because, given its history of infrequent moderate-to-large earthquakes and its setting within a continental plate interior, the Bhuj earthquake might provide important insights for other high-consequence-but-low-occurrence-rate regions such as the central US. Fortunately we do have excellent recordings of numerous aftershocks on a temporary network of 8 portable seismographs. In order to constrain rupture complexity, we are computing high-resolution relative relocations of aftershocks using HypoDD, the double-difference algorithm of Waldhauser and Ellsworth \\(BSSA, 2000\\) to look for aftershock patterns that may reflect rupture characteristics. We are currently using a subset of all of the aftershocks that have been analyzed \\(P and S phases recorded on at least 4 stations\\) which consists of nearly 1000 events. This subset is less than half of all the data, and more events are being added as they are analyzed. Our preliminary results show concentrated patches of relocated aftershocks that dip to the south between 6 and 37 km deep. Strong clusters appear to illuminate the lateral edges of a rupture, with a NE trending cluster at the eastern side and a NW trending cluster at the western side, both plunging southward. The central part of the apparent rupture, which coincides with teleseismic estimates of maximum slip, appears to be relatively quiescent. We have not up to this point used waveform cross-correlation to provide relative arrival timing, but feel this may be appropriate for subsets of the overall data set. We also note the presence of

  3. Theoretical modelling of epigenetically modified DNA sequences.

    PubMed

    Carvalho, Alexandra Teresa Pires; Gouveia, Maria Leonor; Raju Kanna, Charan; Wärmländer, Sebastian K T S; Platts, Jamie; Kamerlin, Shina Caroline Lynn

    2015-01-01

    We report herein a set of calculations designed to examine the effects of epigenetic modifications on the structure of DNA. The incorporation of methyl, hydroxymethyl, formyl and carboxy substituents at the 5-position of cytosine is shown to hardly affect the geometry of CG base pairs, but to result in rather larger changes to hydrogen-bond and stacking binding energies, as predicted by dispersion-corrected density functional theory (DFT) methods. The same modifications within double-stranded GCG and ACA trimers exhibit rather larger structural effects, when including the sugar-phosphate backbone as well as sodium counterions and implicit aqueous solvation. In particular, changes are observed in the buckle and propeller angles within base pairs and the slide and roll values of base pair steps, but these leave the overall helical shape of DNA essentially intact. The structures so obtained are useful as a benchmark of faster methods, including molecular mechanics (MM) and hybrid quantum mechanics/molecular mechanics (QM/MM) methods. We show that previously developed MM parameters satisfactorily reproduce the trimer structures, as do QM/MM calculations which treat bases with dispersion-corrected DFT and the sugar-phosphate backbone with AMBER. The latter are improved by inclusion of all six bases in the QM region, since a truncated model including only the central CG base pair in the QM region is considerably further from the DFT structure. This QM/MM method is then applied to a set of double-stranded DNA heptamers derived from a recent X-ray crystallographic study, whose size puts a DFT study beyond our current computational resources. These data show that still larger structural changes are observed than in base pairs or trimers, leading us to conclude that it is important to model epigenetic modifications within realistic molecular contexts. PMID:26448859

  4. Leading aftershocks and cascades: two possible stress release processes after a main shock

    NASA Astrophysics Data System (ADS)

    Monterrubio, Marisol; Martinez, Maria-Dolors; Lana, Xavier

    2010-05-01

    Three series of aftershocks in Southern California, associated with the main shocks of Landers (1992), Northridge (1994) and Hector Mine (1999), are interpreted as the superposition of a lasting relaxation stress process and numerous short episodes of sudden stress release. The set of aftershocks belonging to the lasting process are designed as leading aftershocks and its rate decays with time, fitting well to the classical Omori's law. The remaining aftershocks are assigned to the different episodes characterised by sudden release of stresses, each of them being designed as a cascade. Cascades are characterised by four basic properties. First, the number of aftershocks belonging to a cascade is submitted to remarkable time fluctuations. Nevertheless, it is observed a positive trend in the number of aftershocks with respect to the elapsed time measured since the origin time of the main event. Second, the rate for aftershocks belonging to a cascade can be assumed constant. Third, a power law quantifies the rate for every cascade, with the elapsed time since the main event to the beginning of the cascade being the argument of this power law. Fourth, the validity of the Gutemberg-Richter law is preserved both for the set of leading aftershocks as for the set of tremors associated to cascades. Given that the number of available aftershocks for the three seismic crisis is very high (exceeding 10,000 tremors), a detailed analysis of cascades is available.

  5. Double-difference Relocation of the Aftershocks of the Tecomán, Colima, Mexico Earthquake of 22 January 2003

    NASA Astrophysics Data System (ADS)

    Andrews, Vanessa; Stock, Joann; Ramírez Vázquez, Carlos Ariel; Reyes-Dávila, Gabriel

    2011-08-01

    On 22 January 2003, the M w = 7.6 Tecomán earthquake struck offshore of the state of Colima, Mexico, near the diffuse triple junction between the Cocos, Rivera, and North American plates. Three-hundred and fifty aftershocks of the Tecomán earthquake with magnitudes between 2.6 and 5.8, each recorded by at least 7 stations, are relocated using the double difference method. Initial locations are determined using P and S readings from the Red Sismológica Telemétrica del Estado de Colima (RESCO) and a 1-D velocity model. Because only eight RESCO stations were operating immediately following the Tecomán earthquake, uncertainties in the initial locations and depths are fairly large, with average uncertainties of 8.0 km in depth and 1.4 km in the north-south and east-west directions. Events occurring between 24 January and 31 January were located using not only RESCO phase readings but also additional P and S readings from 11 temporary stations. Average uncertainties decrease to 0.8 km in depth, 0.3 km in the east-west direction, and 0.7 km in the north-south direction for events occurring while the temporary stations were deployed. While some preliminary studies of the early aftershocks suggested that they were dominated by shallow events above the plate interface, our results place the majority of aftershocks along the plate interface, for a slab dipping between approximately 20° and 30°. This is consistent with the slab positions inferred from geodetic studies. We do see some upper plate aftershocks that may correspond to forearc fault zones, and faults inland in the upper plate, particularly among events occurring more than 3 months after the mainshock.

  6. 5S rRNA sequences from four marine invertebrates and implications for base pairing models of metazoan sequences.

    PubMed

    Walker, W F; Doolittle, W F

    1983-08-11

    The nucleotide sequences of 5S rRNAs from the starfish Asterias vulgaris, the squid Illex illecebrosus, the sipunculid Phascolopsis gouldii and the jellyfish Aurelia aurita were determined. The sequence from Asterias lends support for one of two previous base pairing models for helix E in metazoan sequences. The Aurelia sequence differs by five nucleotides from that previously reported and does not violate the consensus secondary structure model for eukaryotic 5S rRNA. PMID:6136024

  7. Self-Exciting Point Process Modeling of Conversation Event Sequences

    NASA Astrophysics Data System (ADS)

    Masuda, Naoki; Takaguchi, Taro; Sato, Nobuo; Yano, Kazuo

    Self-exciting processes of Hawkes type have been used to model various phenomena including earthquakes, neural activities, and views of online videos. Studies of temporal networks have revealed that sequences of social interevent times for individuals are highly bursty. We examine some basic properties of event sequences generated by the Hawkes self-exciting process to show that it generates bursty interevent times for a wide parameter range. Then, we fit the model to the data of conversation sequences recorded in company offices in Japan. In this way, we can estimate relative magnitudes of the self excitement, its temporal decay, and the base event rate independent of the self excitation. These variables highly depend on individuals. We also point out that the Hawkes model has an important limitation that the correlation in the interevent times and the burstiness cannot be independently modulated.

  8. Relocation and characteristics of recent earthquake sequences (2013, 2014) on the North Gulf of Evia, Greece

    NASA Astrophysics Data System (ADS)

    Moshou, Alexandra; Ganas, Athanassios; Karastathis, Vassilios; Mouzakiotis, Evangelos

    2015-04-01

    This work presents the results of relocation and stress inversion analysis for two recent earthquake sequences in the northern Gulf of Evia, central Greece. On 12 November 2013 (18:09, UTC) a moderate earthquake, ML=4.8 occurred onshore northern Evia, near the village Taxiarxis. The epicentral area of this event was manually located: φ=38.9133° Ν, λ=23.0977° Ε at depth 14 km, according to NOA. For a period of one month there were 155 aftershocks with magnitude ML>0.5, while the first day there were 85 earthquakes; the largest of them with magnitude ML=3.9. On November 17, 2014, two shallow earthquakes with magnitude ML=5.2 occurred inside the northern Gulf of Evia, about 34 km NW of Chalkis town. For the location of above events broadband data from HUSN network were used. The relocation for both sequences was done by use of the NonLinLoc software of Lomax etal. (2000). For this purpose a local velocity model was used, calculated in the past by traveltime inversion techniques. For the 2013 seismic sequence the phase data from National Observatory of Athens include more than 12700 P and 4800 S - wave arrivals. Only events with at least 8 P-wave and 4 S-wave arrival having an azimuthal gap lower than 180°, location RMS lower than 0.8 sec and vertical and horizontal errors lower than 1.5 km were selected for processing. A NNW-SSE near-vertical fault was revealed after relocation. The second part of this study refers to the calculation of the moment tensor solutions for the main events as well as for the strongest aftershocks of the 2014 seismic sequence. Seismological broadband data from the Hellenic Unified Seismological Network were collected and analyzed in order to determine the source parameters of the events that occurred in the study area. We selected and analyzed the data of 10 broadband seismological stations with three components. The source parameters were calculated based on a moment tensor inversion, using regional waveforms at epicentral distances

  9. Generalized Levy-walk model for DNA nucleotide sequences

    NASA Technical Reports Server (NTRS)

    Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Simons, M.; Stanley, H. E.

    1993-01-01

    We propose a generalized Levy walk to model fractal landscapes observed in noncoding DNA sequences. We find that this model provides a very close approximation to the empirical data and explains a number of statistical properties of genomic DNA sequences such as the distribution of strand-biased regions (those with an excess of one type of nucleotide) as well as local changes in the slope of the correlation exponent alpha. The generalized Levy-walk model simultaneously accounts for the long-range correlations in noncoding DNA sequences and for the apparently paradoxical finding of long subregions of biased random walks (length lj) within these correlated sequences. In the generalized Levy-walk model, the lj are chosen from a power-law distribution P(lj) varies as lj(-mu). The correlation exponent alpha is related to mu through alpha = 2-mu/2 if 2 < mu < 3. The model is consistent with the finding of "repetitive elements" of variable length interspersed within noncoding DNA.

  10. Main sequence models for massive zero-metal stars

    NASA Technical Reports Server (NTRS)

    Cary, N.

    1974-01-01

    Zero-age main-sequence models for stars of 20, 10, 5, and 2 solar masses with no heavy elements are constructed for three different possible primordial helium abundances: Y=0.00, Y=0.23, and Y=0.30. The latter two values of Y bracket the range of primordial helium abundances cited by Wagoner. With the exceptions of the two 20 solar mass models that contain helium, these models are found to be self-consistent in the sense that the formation of carbon through the triple-alpha process during premain sequence contraction is not sufficient to bring the CN cycle into competition with the proton-proton chain on the ZAMS. The zero-metal models of the present study have higher surface and central temperatures, higher central densities, smaller radii, and smaller convective cores than do the population I models with the same masses.

  11. Evaluation of methods for modeling transcription-factor sequence specificity

    PubMed Central

    Weirauch, Matthew T.; Cote, Atina; Norel, Raquel; Annala, Matti; Zhao, Yue; Riley, Todd R.; Saez-Rodriguez, Julio; Cokelaer, Thomas; Vedenko, Anastasia; Talukder, Shaheynoor; Bussemaker, Harmen J.; Morris, Quaid D.; Bulyk, Martha L.; Stolovitzky, Gustavo

    2013-01-01

    Genomic analyses often involve scanning for potential transcription-factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein’s binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For 9 TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro–derived motifs performed similarly to motifs derived from in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices learned by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10%). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences. PMID:23354101

  12. Structuring temporal sequences: comparison of models and factors of complexity.

    PubMed

    Essens, P

    1995-05-01

    Two stages for structuring tone sequences have been distinguished by Povel and Essens (1985). In the first, a mental clock segments a sequence into equal time units (clock model); in the second, intervals are specified in terms of subdivisions of these units. The present findings support the clock model in that it predicts human performance better than three other algorithmic models. Two further experiments in which clock and subdivision characteristics were varied did not support the hypothesized effect of the nature of the subdivisions on complexity. A model focusing on the variations in the beat-anchored envelopes of the tone clusters was proposed. Errors in reproduction suggest a dual-code representation comprising temporal and figural characteristics. The temporal part of the representation is based on the clock model but specifies, in addition, the metric of the level below the clock. The beat-tone-cluster envelope concept was proposed to specify the figural part. PMID:7596749

  13. Plantagora: Modeling Whole Genome Sequencing and Assembly of Plant Genomes

    PubMed Central

    Barthelson, Roger; McFarlin, Adam J.; Rounsley, Steven D.; Young, Sarah

    2011-01-01

    Background Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. Methodology/Principal Findings For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. Conclusions/Significance Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly further. PMID:22174807

  14. Extracting protein alignment models from the sequence database.

    PubMed Central

    Neuwald, A F; Liu, J S; Lipman, D J; Lawrence, C E

    1997-01-01

    Biologists often gain structural and functional insights into a protein sequence by constructing a multiple alignment model of the family. Here a program called Probe fully automates this process of model construction starting from a single sequence. Central to this program is a powerful new method to locate and align only those, often subtly, conserved patterns essential to the family as a whole. When applied to randomly chosen proteins, Probe found on average about four times as many relationships as a pairwise search and yielded many new discoveries. These include: an obscure subfamily of globins in the roundworm Caenorhabditis elegans ; two new superfamilies of metallohydrolases; a lipoyl/biotin swinging arm domain in bacterial membrane fusion proteins; and a DH domain in the yeast Bud3 and Fus2 proteins. By identifying distant relationships and merging families into superfamilies in this way, this analysis further confirms the notion that proteins evolved from relatively few ancient sequences. Moreover, this method automatically generates models of these ancient conserved regions for rapid and sensitive screening of sequences. PMID:9108146

  15. Genome sequencing and analysis of the model grass Brachypodium distachyon.

    PubMed

    2010-02-11

    Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops. PMID:20148030

  16. Genome sequencing and analysis of the model grass Brachypodium distachyon

    SciTech Connect

    Yang, Xiaohan; Kalluri, Udaya C; Tuskan, Gerald A

    2010-01-01

    Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops.

  17. Sequence design in lattice models by graph theoretical methods

    NASA Astrophysics Data System (ADS)

    Sanjeev, B. S.; Patra, S. M.; Vishveshwara, S.

    2001-01-01

    A general strategy has been developed based on graph theoretical methods, for finding amino acid sequences that take up a desired conformation as the native state. This problem of inverse design has been addressed by assigning topological indices for the monomer sites (vertices) of the polymer on a 3×3×3 cubic lattice. This is a simple design strategy, which takes into account only the topology of the target protein and identifies the best sequence for a given composition. The procedure allows the design of a good sequence for a target native state by assigning weights for the vertices on a lattice site in a given conformation. It is seen across a variety of conformations that the predicted sequences perform well both in sequence and in conformation space, in identifying the target conformation as native state for a fixed composition of amino acids. Although the method is tested in the framework of the HP model [K. F. Lau and K. A. Dill, Macromolecules 22, 3986 (1989)] it can be used in any context if proper potential functions are available, since the procedure derives unique weights for all the sites (vertices, nodes) of the polymer chain of a chosen conformation (graph).

  18. Largest Aftershocks of Megathrust Earthquakes in the World

    NASA Astrophysics Data System (ADS)

    Koyama, J.; Tsuzuki, M.

    2012-12-01

    The 2011 Tohoku-oki megathrust earthquake of Mw9.0 induced the earthquake activity in high level all over Japan. It included not only earthquakes near active faults but also volcanic earthquakes. Although we have observed tens of thousands of aftershocks, yet we do not know which is the largest aftershock of the 2011 megathrust. There occurred several megathrust earthquakes worldwide in the last one hundred years, which are almost the same size or larger than the 2011 megathrust. We have studied their largest aftershocks based on our new hypothesis of along-dip double segmentation (ADDS) and along-strike single segmentation (ASSS). ADDS in the Tohoku-oki region along the Japan trench is characterized by the apparent absence of earthquakes in the trench-ward segments as opposed to the Japan Island-ward segments that have repeated small earthquakes of up to Mw8 class. In contrast, the 1960 Chile and the 2010 Maule megathrusts are characterized by ASSS with the weak seismic activity before the main event everywhere in the subduction zone. The difference between these two types of seismic segmentations would be that strongly coupled areas of trench-ward segments give rise to ADDS, whereas almost 100% coupled areas of shallow-parts of subduction zones give rise to ASSS. In other words, the phenomenon of a seismic gap can be identified for an ASSS megathrust, where as a doughnut pattern of seismic activity appears prior to a main ADDS event. In summary, most of the largest aftershocks of ADDS megathrusts are earthquakes of outer-rise(outer trench-slope) normal faultings, where there occur two types, dip-slip and strike-slip, depending on the structure of subducting oceanic plates. The 1933 Sanriku-oki Mw8.6 (the 1896 Meiji-Sanriku M~8.5) and the 2011 Tohoku-oki Mw7.7 (the 2011 Tohoku-oki Mw9.0) are the former and the 1987 Off Alaska Mw7.8 (the 1964 Alaska Mw9.2) and the 2012 Sumatra Mw8.6 (the 2004 Sumatra-Andaman Mw9.3) are the latter. Those of ASSS megathrusts occurred

  19. Efficient inference of hidden Markov models from large observation sequences

    NASA Astrophysics Data System (ADS)

    Priest, Benjamin W.; Cybenko, George

    2016-05-01

    The hidden Markov model (HMM) is widely used to model time series data. However, the conventional Baum- Welch algorithm is known to perform poorly when applied to long observation sequences. The literature contains several alternatives that seek to improve the memory or time complexity of the algorithm. However, for an HMM with N states and an observation sequence of length T, these alternatives require at best O(N) space and O(N2T) time. Given the preponderance of applications that increasingly deal with massive amounts of data, an alternative whose time is O(T)+poly(N) is desired. Recent research presents an alternative to the Baum-Welch algorithm that relies on nonnegative matrix factorization. This document examines the space complexity of this alternative approach and proposes further optimizations using approaches adopted from the matrix sketching literature. The result is a streaming algorithm whose space complexity is constant and time complexity is linear with respect to the size of the observation sequence. The paper also presents a batch algorithm that allow for even further improved space complexity at the expense of an additional pass over the observation sequence.

  20. Supervised learning of hidden Markov models for sequence discrimination

    SciTech Connect

    Mamitsuka, Hiroshi

    1997-12-01

    We present two supervised learning algorithms for hidden Markov models (HMMs) for sequence discrimination. When we model a class of sequences with an HMM, conventional learning algorithms for HMMs have trained the HMM with training examples belonging to the class, i.e. positive examples alone, while both of our methods allow us to use negative examples as well as positive examples. One of our algorithms minimizes a kind of distance between a target likelihood of a given training sequence and an actual likelihood of the sequence, which is obtained by a given HMM, using an additive type of parameter updating based on a gradient-descent learning. The other algorithm maximizes a criterion which represents a kind of ratio of the likelihood of a positive example to the likelihood of the total example, using a multiplicative type of parameter updating which is more efficient in actual computation time than the additive type one. We compare our two methods with two conventional methods on a type of cross-validation of actual motif classification experiments. Experimental results show that in terms of the average number of classification errors, our two methods out-perform the two conventional algorithms. 14 refs., 4 figs., 1 tab.

  1. Accident sequence precursor analysis level 2/3 model development

    SciTech Connect

    Lui, C.H.; Galyean, W.J.; Brownson, D.A.

    1997-02-01

    The US Nuclear Regulatory Commission`s Accident Sequence Precursor (ASP) program currently uses simple Level 1 models to assess the conditional core damage probability for operational events occurring in commercial nuclear power plants (NPP). Since not all accident sequences leading to core damage will result in the same radiological consequences, it is necessary to develop simple Level 2/3 models that can be used to analyze the response of the NPP containment structure in the context of a core damage accident, estimate the magnitude of the resulting radioactive releases to the environment, and calculate the consequences associated with these releases. The simple Level 2/3 model development work was initiated in 1995, and several prototype models have been completed. Once developed, these simple Level 2/3 models are linked to the simple Level 1 models to provide risk perspectives for operational events. This paper describes the methods implemented for the development of these simple Level 2/3 ASP models, and the linkage process to the existing Level 1 models.

  2. The study of recent seismicity in the aftershock area of Neftegorsk earthquake using waveform cross correlation

    NASA Astrophysics Data System (ADS)

    Kitov, Ivan; Turuntaev, Sergey; Konovalov, Alexei; Stepnov, Andrey

    2016-04-01

    Unusually long duration of seismic activity (more than 20 years) was observed in the aftershock area of the 1995 Neftegorsk, Sakhalin, Russia catastrophic earthquake (Ms=7.6). To study the phenomena, we have processed seismic data from 130 events occurred within that area as measured between 2006 and 2015. In order to improve the accuracy of relative location and magnitude estimation of these events we have applied new techniques based on waveform cross correlation. We use 7 three-component (3-C) seismic stations which detected most of these events. Three-component waveform templates were prepared for these stations from those events which had signals with SNR>5 at vertical channels. The events with 3 and more templates are used as master-events for waveform cross correlation. Overall, the re-estimated location and magnitudes demonstrate higher precisions and are used for the statistical analysis and numerical modelling of seismo-tectonic regime within the studied zone.

  3. Seismic tomography of the area of the 2010 Beni-Ilmane earthquake sequence, north-central Algeria.

    PubMed

    Abacha, Issam; Koulakov, Ivan; Semmane, Fethi; Yelles-Chaouche, Abd Karim

    2014-01-01

    The region of Beni-Ilmane (District of M'sila, north-central Algeria) was the site of an earthquake sequence that started on 14 May 2010. This sequence, which lasted several months, was triggered by conjugate E-W reverse and N-S dextral faulting. To image the crustal structure of these active faults, we used a set of 1406 well located aftershocks events and applied the local tomography software (LOTOS) algorithm, which includes absolute source location, optimization of the initial 1D velocity model, and iterative tomographic inversion for 3D seismic P- and S-wave velocities (and the Vp/Vs ratio), and source parameters. The patterns of P-wave low-velocity anomalies correspond to the alignments of faults determined from geological evidence, and the P-wave high-velocity anomalies may represent rigid blocks of the upper crust that are not deformed by regional stresses. The S-wave low-velocity anomalies coincide with the aftershock area, where relatively high values of Vp/Vs ratio (1.78) are observed compared with values in the surrounding areas (1.62-1.66). These high values may indicate high fluid contents in the aftershock area. These fluids could have been released from deeper levels by fault movements during earthquakes and migrated rapidly upwards. This hypothesis is supported by vertical sections across the study area show that the major Vp/Vs anomalies are located above the seismicity clusters. PMID:25485193

  4. Imaging and Understanding Foreshock and Aftershock Behavior Around the 2014 Iquique, Northern Chile, Earthquake

    NASA Astrophysics Data System (ADS)

    Yang, H.; Meng, X.; Peng, Z.; Newman, A. V.; Hu, S.; Williamson, A.

    2014-12-01

    On April 1st, 2014, a moment magnitude (MW) 8.2 earthquake occurred offshore Iquique, Northern Chile. There were numerous smaller earthquakes preceding and following the mainshock, making it an ideal case to study the spatio-temporal relation among these events and their association with the mainshock. We applied a matched-filter technique to detect previously missing foreshocks and aftershocks of the 2014 Iquique earthquake. Using more than 900 template events recorded by 19 broadband seismic stations (network code CX) operated by the GEOFON Program of GFZ Potsdam, we found 4392 earthquakes between March 1st and April 3rd, 2014, including more than 30 earthquakes with magnitude larger than 4 that were previously missed in the catalog from the Chile National Seismological Center. Additionally, we found numerous small earthquakes with magnitudes between 1 and 2 preceding the largest foreshock, an MW 6.7 event occurring on March 16th, approximately 2 weeks before the Iquique mainshock. We observed that the foreshocks migrated northward at a speed of approximately 6 km/day. Using a finite fault slip model of the mainshock determined from teleseismic waveform inversion (Hayes, 2014), we calculated the Coulomb stress changes in the nearby regions of the mainshock. We found that there was ~200% increase in seismicity in the areas with increased Coulomb stress. Our next step is to evaluate the Coulomb stress changes associated with earlier foreshocks and their roles in triggering later foreshocks, and possibly the mainshock. For this, we plan to create a fault model of the temporal evolution of the Coulomb behavior along the interface with time, assuming Wells and Coppersmith (1994) type fault parameters. These results will be compared with double-difference relocations (using HypoDD), presenting a more accurate understanding of the spatial-temporal evolution of foreshocks and aftershocks of the 2014 Iquique earthquake.

  5. Aftershock activity of a M2 earthquake in a deep South African gold mine - spatial distribution and magnitude-frequency relation

    NASA Astrophysics Data System (ADS)

    Naoi, M. M.; Nakatani, M.; Kwiatek, G.; Plenkers, K.; Yabe, Y.

    2009-12-01

    An earthquake of M 2.1 occurred on December 27, 2007 in a deep South African gold mine (Yabe et al., 2008). It occurred within a sensitive high frequency seismic network consisting of eight high frequency AE sensors (up to 200 kHz) and a tri-axial accelerometer (up to 25 kHz). Within 150 hours following the earthquake, our AE network detected more than 20,000 events within 250 m of the center of the network. We have located aftershocks assuming homogeneous medium (Fig. a), based on their manually-picked arrival times of P and S waves. This aftershock seismicity can be clearly separated into five clusters. Each sequence obeyed Omori ‘s law and had the similar p-value (p ~ 1.3). The cluster A in Fig. a is very planar. More than 90 % aftershocks of the cluster are within a 3 m thickness while the cluster has a lateral dimension of ~100m x 100m. The density of aftershocks normal to the planar cluster follows an exponential distribution with about 0.6 m characteristic length. The distribution of the cluster A coincides with one of the nodal planes of the main shock estimated by the waveform inversion. Hence, cluster A is thought to delineate the main rupture. Clusters B to E coincide with the edge of mining cavity or background seismicity recognized before the mainshock. Remarkable off-fault aftershock activities occurred only in these four areas. We have determined moment magnitude (Mw) of 17,350 earthquakes using AE waveforms (Mw > -5.4). As AE sensors have complex frequency characteristics, we use the amplitude in a narrow frequency band (2 - 4 kHz). Directivity of the AE sensor (~20 db) is corrected by comparison with the accelerometer record. Absolute magnitude has been given by an empirical relationship between AE amplitude and Mw determined by the spectral level of the accelerometer record. Mw determination from accelerometer record was done for ~ 0.5 % of aftershocks detected by AE sensors. Moment magnitudes of these selected earthquakes resulted in values

  6. Accident Sequence Precursor Program Large Early Release Frequency Model Development

    SciTech Connect

    Brown, T.D.; Brownson, D.A.; Duran, F.A.; Gregory, J.J.; Rodrick, E.G.

    1999-01-04

    The objectives for the ASP large early release frequency (LERF) model development work is to build a Level 2 containment response model that would capture all of the events necessary to define LERF as outlined in Regulatory Guide 1.174, can be directly interfaced with the existing Level 1 models, is technically correct, can be readily modified to incorporate new information or to represent another plant, and can be executed in SAPHIRE. The ASP LERF models being developed will meet these objectives while providing the NRC with the capability to independently assess the risk impact of plant-specific changes proposed by the utilities that change the nuclear power plants' licensing basis. Together with the ASP Level 1 models, the ASP LERF models provide the NRC with the capability of performing equipment and event assessments to determine their impact on a plant's LERF for internal events during power operation. In addition, the ASP LERF models are capable of being updated to reflect changes in information regarding the system operations and phenomenological events, and of being updated to assess the potential for early fatalities for each LERF sequence. As the ASP Level 1 models evolve to include more analysis capabilities, the LERF models will also be refined to reflect the appropriate level of detail needed to demonstrate the new capabilities. An approach was formulated for the development of detailed LERF models using the NUREG-1150 APET models as a guide. The modifications to the SAPHIRE computer code have allowed the development of these detailed models and the ability to analyze these models in a reasonable time. Ten reference LERF plant models, including six PWR models and four BWR models, which cover a wide variety of containment and nuclear steam supply systems designs, will be complete in 1999. These reference models will be used as the starting point for developing the LERF models for the remaining nuclear power plants.

  7. MODELING THE RED SEQUENCE: HIERARCHICAL GROWTH YET SLOW LUMINOSITY EVOLUTION

    SciTech Connect

    Skelton, Rosalind E.; Bell, Eric F.; Somerville, Rachel S.

    2012-07-01

    We explore the effects of mergers on the evolution of massive early-type galaxies by modeling the evolution of their stellar populations in a hierarchical context. We investigate how a realistic red sequence population set up by z {approx} 1 evolves under different assumptions for the merger and star formation histories, comparing changes in color, luminosity, and mass. The purely passive fading of existing red sequence galaxies, with no further mergers or star formation, results in dramatic changes at the bright end of the luminosity function and color-magnitude relation. Without mergers there is too much evolution in luminosity at a fixed space density compared to observations. The change in color and magnitude at a fixed mass resembles that of a passively evolving population that formed relatively recently, at z {approx} 2. Mergers among the red sequence population ('dry mergers') occurring after z = 1 build up mass, counteracting the fading of the existing stellar populations to give smaller changes in both color and luminosity for massive galaxies. By allowing some galaxies to migrate from the blue cloud onto the red sequence after z = 1 through gas-rich mergers, younger stellar populations are added to the red sequence. This manifestation of the progenitor bias increases the scatter in age and results in even smaller changes in color and luminosity between z = 1 and z = 0 at a fixed mass. The resultant evolution appears much slower, resembling the passive evolution of a population that formed at high redshift (z {approx} 3-5), and is in closer agreement with observations. We conclude that measurements of the luminosity and color evolution alone are not sufficient to distinguish between the purely passive evolution of an old population and cosmologically motivated hierarchical growth, although these scenarios have very different implications for the mass growth of early-type galaxies over the last half of cosmic history.

  8. Maximal radius of the aftershock zone in earthquake networks

    NASA Astrophysics Data System (ADS)

    Mezentsev, A. Yu.; Hayakawa, M.

    2009-09-01

    In this paper, several seismoactive regions were investigated (Japan, Southern California and two tectonically distinct Japanese subregions) and structural seismic constants were estimated for each region. Using the method for seismic clustering detection proposed by Baiesi and Paczuski [M. Baiesi, M. Paczuski, Phys. Rev. E 69 (2004) 066106; M. Baiesi, M. Paczuski, Nonlin. Proc. Geophys. (2005) 1607-7946], we obtained the equation of the aftershock zone (AZ). It was shown that the consideration of a finite velocity of seismic signal leads to the natural appearance of maximal possible radius of the AZ. We obtained the equation of maximal radius of the AZ as a function of the magnitude of the main event and estimated its values for each region.

  9. Model for the distributions of k -mers in DNA sequences

    NASA Astrophysics Data System (ADS)

    Chen, Yaw-Hwang; Nyeo, Su-Long; Yeh, Chiung-Yuh

    2005-07-01

    The evolutionary features based on the distributions of k -mers in the DNA sequences of various organisms are studied. The organisms are classified into three groups based on their evolutionary periods: (a) E. coli and T. pallidum (b) yeast, zebrafish, A. thaliana, and fruit fly, (c) mouse, chicken, and human. The distributions of 6-mers of these three groups are shown to be, respectively, (a) unimodal, (b) unimodal with peaks generally shifted to smaller frequencies of occurrence, (c) bimodal. To describe the bimodal feature of the k -mer distributions of group (c), a model based on the cytosine-guanine “ CG ” content of the DNA sequences is introduced and shown to provide reasonably good agreements.

  10. Prediction of Triggered Slip and Aftershocks in the Salton Trough: Which is Better, Dynamic or Static Coulomb Failure Stresses?

    NASA Astrophysics Data System (ADS)

    Clark, J.; Verdugo, D.; Olsen, K.; Mellors, R.

    2005-12-01

    We have modeled static (CFS) and dynamic (dCFS(t)) Coulomb failure stresses within a 140 km by 140 km area in southern California for four recent historical M>6 earthquakes (1968 Borrego Valley, 1979 Imperial Valley, 1987 Elmore Ranch and 1987 Superstition Hills events) using a fourth-order finite-difference method and a layered crustal model. The dynamic stresses, quantified as the peak values of the dCFS(t), are computed using slip models estimated from measured surface offsets and extended down to the bottom of the fault. The CFS and dCFS(t) are correlated with aseismic slip recorded on nearby structures in the Salton Trough, as well as aftershocks from the four events. Our simple models suggest that, compared to static Coulomb failure stress patterns, the patterns of peak dCFS(t) show a higher correlation with triggered slip along nearby faults, and for some of the events, with the location of aftershocks that occurred up to four years after the events. This finding is due to the rupture propagation effects, particularly directivity, included in the dCFS(t) (e.g., Kilb et al, 2000), but omitted for the CFS. Future studies should include a 3D crustal model and refined rupture propagation in the dCFS(t) computation.

  11. PyMod: sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL

    PubMed Central

    2012-01-01

    Background In recent years, an exponential growing number of tools for protein sequence analysis, editing and modeling tasks have been put at the disposal of the scientific community. Despite the vast majority of these tools have been released as open source software, their deep learning curves often discourages even the most experienced users. Results A simple and intuitive interface, PyMod, between the popular molecular graphics system PyMOL and several other tools (i.e., [PSI-]BLAST, ClustalW, MUSCLE, CEalign and MODELLER) has been developed, to show how the integration of the individual steps required for homology modeling and sequence/structure analysis within the PyMOL framework can hugely simplify these tasks. Sequence similarity searches, multiple sequence and structural alignments generation and editing, and even the possibility to merge sequence and structure alignments have been implemented in PyMod, with the aim of creating a simple, yet powerful tool for sequence and structure analysis and building of homology models. Conclusions PyMod represents a new tool for the analysis and the manipulation of protein sequences and structures. The ease of use, integration with many sequence retrieving and alignment tools and PyMOL, one of the most used molecular visualization system, are the key features of this tool. Source code, installation instructions, video tutorials and a user's guide are freely available at the URL http://schubert.bio.uniroma1.it/pymod/index.html PMID:22536966

  12. Relocations and 3-D Velocity Structure for Aftershocks of the 2000 W. Tottori (Japan) Earthquake and 2001 Gujarat (India) Earthquake, Using Waveform Cross-correlations

    NASA Astrophysics Data System (ADS)

    Enescu, B.; Mori, J.

    2004-12-01

    The newly developed double-difference tomography method (Zhang and Thurber,2003) makes use of both absolute and relative arrival times to produce an improved velocity model and highly accurate hypocenter locations. By using this technique, we relocate the aftershocks of the 2000 Western Tottori earthquake (Mw 6.7) and 2001 Gujarat (Mw 7.7) earthquake and obtain a 3D-velocity model of the aftershock region. The first data set consists of 1035 aftershocks recorded at 62 stations during a period of about a month following the mainshock (Shibutani et al.,2002). In order to get the best arrival times a cross-correlation analysis was used to align the waveforms. The epicentral distribution of the relocated events reveals clear earthquake lineations, some of them close to the mainshock, and an increased clustering. The aftershocks' depth distribution shows a mean shift of the hypocenters' centroid of about 580m; a clear upper cutoff of the seismic activity and some clustering can be also seen. The final P-wave velocity model shows higher-value anomalies in the vicinity of the mainshock's hypocenter, in good agreement with the results of Shibutani et al.(2004). The second data set consists of about 1300 earthquakes, recorded during one week of observations by a Japanese-Indian research team in the aftershock region of the Gujarat earthquake (Sato et al.,2001). Using the double-difference algorithm and waveform cross-correlations, we were able to identify a more clear alignment of hypocenters that define the mainshock's fault and an area of relatively few aftershocks in the region of the mainshock's hypocenter. Both studies demonstrate that the cross-correlation techniques applied for events with inter-event distances as large as 10km and cross correlation coefficients as low as 50% can produce more accurate locations than those determined from catalog phase data. We are going to discuss briefly the critical role of frequency filtering and of the time window used for cross

  13. Advanced accident sequence precursor analysis level 2 models

    SciTech Connect

    Galyean, W.J.; Brownson, D.A.; Rempe, J.L.

    1996-03-01

    The U.S. Nuclear Regulatory Commission Accident Sequence Precursor program pursues the ultimate objective of performing risk significant evaluations on operational events (precursors) occurring in commercial nuclear power plants. To achieve this objective, the Office of Nuclear Regulatory Research is supporting the development of simple probabilistic risk assessment models for all commercial nuclear power plants (NPP) in the U.S. Presently, only simple Level 1 plant models have been developed which estimate core damage frequencies. In order to provide a true risk perspective, the consequences associated with postulated core damage accidents also need to be considered. With the objective of performing risk evaluations in an integrated and consistent manner, a linked event tree approach which propagates the front end results to back end was developed. This approach utilizes simple plant models that analyze the response of the NPP containment structure in the context of a core damage accident, estimate the magnitude and timing of a radioactive release to the environment, and calculate the consequences for a given release. Detailed models and results from previous studies, such as the NUREG-1150 study, are used to quantify these simple models. These simple models are then linked to the existing Level 1 models, and are evaluated using the SAPHIRE code. To demonstrate the approach, prototypic models have been developed for a boiling water reactor, Peach Bottom, and a pressurized water reactor, Zion.

  14. Simulation modeling of stratigraphic sequences along the Louisiana offshore

    SciTech Connect

    Kendall, C.G.S.C. ); Lowrie, A.

    1990-09-01

    Sequence stratigraphic analysis of a representative (schematic) dip seismic section along the Louisiana offshore reveals 4th order (Milankovitch) sea-level cycles within 3rd order sequences. This representative line is characteristic of a dip section along the western area where progradation has exceeded subsidence by multifold since the upper Miocene, the last 6.7 m.y., and by twofold through the rest of the Miocene, back to at least 22 m.y. ago. Lowstands cause the outer shelf to act as a sediment bypass zone with shelf deposition during highstands. Salt-sediment interaction is isostatic, the adjustments occurring principally during lowstands. This interpreted stratigraphy has been simulated on an interactive computer program (SEDPAK) developed at the University of South Carolina. SEDPAK erects models of sedimentary geometries by filling in a two-dimensional basin from both sides with a combination of clastic sediment and/or in situ and transported carbonate sediments. Data inputs include the initial basin configuration, local tectonic behavior, sea-level curves, and the amount and source direction of clastic sediment as a function of water depth. The modeled geometries of clastic sediments evolve through time and respond to depositional processes that include tectonic movement, eustasy, sedimentation, sediment compaction, and isostatic response, sedimentary bypass, erosion, and deposition in various physiographic settings such as coastal plains, continental shelf, basin slope, and basin floor. The computer simulation allows for a quantification of the various processes noted and described in the interpretation. Sedimentation rates, isostatic adjustment, and tectonic movement are given in cm/year. Simulation modeling of sequence stratigraphy is seen as a next logical step in the quest for detailed and quantified interpretations.

  15. Advanced accident sequence precursor analysis level 1 models

    SciTech Connect

    Sattison, M.B.; Thatcher, T.A.; Knudsen, J.K.; Schroeder, J.A.; Siu, N.O.

    1996-03-01

    INEL has been involved in the development of plant-specific Accident Sequence Precursor (ASP) models for the past two years. These models were developed for use with the SAPHIRE suite of PRA computer codes. They contained event tree/linked fault tree Level 1 risk models for the following initiating events: general transient, loss-of-offsite-power, steam generator tube rupture, small loss-of-coolant-accident, and anticipated transient without scram. Early in 1995 the ASP models were revised based on review comments from the NRC and an independent peer review. These models were released as Revision 1. The Office of Nuclear Regulatory Research has sponsored several projects at the INEL this fiscal year to further enhance the capabilities of the ASP models. Revision 2 models incorporates more detailed plant information into the models concerning plant response to station blackout conditions, information on battery life, and other unique features gleaned from an Office of Nuclear Reactor Regulation quick review of the Individual Plant Examination submittals. These models are currently being delivered to the NRC as they are completed. A related project is a feasibility study and model development of low power/shutdown (LP/SD) and external event extensions to the ASP models. This project will establish criteria for selection of LP/SD and external initiator operational events for analysis within the ASP program. Prototype models for each pertinent initiating event (loss of shutdown cooling, loss of inventory control, fire, flood, seismic, etc.) will be developed. A third project concerns development of enhancements to SAPHIRE. In relation to the ASP program, a new SAPHIRE module, GEM, was developed as a specific user interface for performing ASP evaluations. This module greatly simplifies the analysis process for determining the conditional core damage probability for a given combination of initiating events and equipment failures or degradations.

  16. Investigation of the high-frequency attenuation parameter, κ (kappa), from aftershocks of the 2010 Mw 8.8 Maule, Chile earthquake

    USGS Publications Warehouse

    Neighbors, Corrie; Liao, E. J.; Cochran, Elizabeth S.; Funning, G. J.; Chung, A. I.; Lawrence, J. F.; Christensen, C. M.; Miller, M.; Belmonte, A.; Sepulveda, H. H. Andrés

    2014-01-01

    The Bío Bío region of Chile experienced a vigorous aftershock sequence following the 2010 February 27 Mw 8.8 Maule earthquake. The immediate aftershock sequence was captured by two temporary seismic deployments: the Quake Catcher Network Rapid Aftershock Mobilization Program (QCN RAMP) and the Incorporated Research Institutions for Seismology CHile Aftershock Mobilization Program (IRIS CHAMP). Here, we use moderate to large aftershocks (ML ≥ 4.0) occurring between 2010 March 1 and June 30 recorded by QCN RAMP and IRIS CHAMP stations to determine the spectral decay parameter, kappa (κ). First, we compare waveforms and κ estimates from the lower-resolution QCN stations to the IRIS CHAMP stations to ensure the QCN data are of sufficient quality. We find that QCN stations provide reasonable estimates of κ in comparison to traditional seismic sensors and provide valuable additional observations of local ground motion variation. Using data from both deployments, we investigate the variation in κ for the region to determine if κ is influenced primarily by local geological structure, path attenuation, or source properties (e.g. magnitude, mechanism and depth). Estimates of κ for the Bío Bío region range from 0.0022 to 0.0704 s with a mean of 0.0295 s and are in good agreement with κ values previously reported for similar tectonic environments. κ correlates with epicentral distance and, to a lesser degree, with source magnitude. We find little to no correlation between the site kappa, κ0, and mapped geology, although we were only able to compare the data to a low-resolution map of surficial geology. These results support an increasing number of studies that suggest κobservations can be attributed to a combination of source, path and site properties; additionally, measured κ are often highly scattered making it difficult to separate the contribution from each of these factors. Thus, our results suggest that contributions from the site

  17. Investigation of the high-frequency attenuation parameter, κ (kappa), from aftershocks of the 2010 Mw 8.8 Maule, Chile earthquake

    NASA Astrophysics Data System (ADS)

    Neighbors, C.; Liao, E. J.; Cochran, E. S.; Funning, G. J.; Chung, A. I.; Lawrence, J. F.; Christensen, C.; Miller, M.; Belmonte, A.; Andrés Sepulveda, H. H.

    2015-01-01

    The Bío Bío region of Chile experienced a vigorous aftershock sequence following the 2010 February 27 Mw 8.8 Maule earthquake. The immediate aftershock sequence was captured by two temporary seismic deployments: the Quake Catcher Network Rapid Aftershock Mobilization Program (QCN RAMP) and the Incorporated Research Institutions for Seismology CHile Aftershock Mobilization Program (IRIS CHAMP). Here, we use moderate to large aftershocks (ML ≥ 4.0) occurring between 2010 March 1 and June 30 recorded by QCN RAMP and IRIS CHAMP stations to determine the spectral decay parameter, kappa (κ). First, we compare waveforms and κ estimates from the lower-resolution QCN stations to the IRIS CHAMP stations to ensure the QCN data are of sufficient quality. We find that QCN stations provide reasonable estimates of κ in comparison to traditional seismic sensors and provide valuable additional observations of local ground motion variation. Using data from both deployments, we investigate the variation in κ for the region to determine if κ is influenced primarily by local geological structure, path attenuation, or source properties (e.g. magnitude, mechanism and depth). Estimates of κ for the Bío Bío region range from 0.0022 to 0.0704 s with a mean of 0.0295 s and are in good agreement with κ values previously reported for similar tectonic environments. κ correlates with epicentral distance and, to a lesser degree, with source magnitude. We find little to no correlation between the site kappa, κ0, and mapped geology, although we were only able to compare the data to a low-resolution map of surficial geology. These results support an increasing number of studies that suggest κ observations can be attributed to a combination of source, path and site properties; additionally, measured κ are often highly scattered making it difficult to separate the contribution from each of these factors. Thus, our results suggest that contributions from the site, path and source

  18. Seismogenic faulting of the sedimentary sequence and laterally variable material properties in the Zagros Mountains (Iran) revealed by the August 2014 Murmuri (E. Dehloran) earthquake sequence

    NASA Astrophysics Data System (ADS)

    Copley, Alex; Karasozen, Ezgi; Oveisi, Behnam; Elliott, John R.; Samsonov, Sergey; Nissen, Edwin

    2015-11-01

    We present source models for the August 2014 Murmuri (Dehloran) earthquake sequence in the Zagros Mountains of Iran. An Mw6.2 mainshock was followed by an aftershock sequence containing five events of Mw ≥ 5.4. Models of P and SH waveforms show that all events had dominantly thrust-faulting mechanisms, and had centroid depths that place them within the thick sedimentary sequence, above the crystalline basement. The combination of our estimated focal mechanisms, relative relocations of the event hypocentres and the surface displacement patterns observed using InSAR imply that the mainshock and largest aftershock ruptured different fault planes and both contributed to the surface deformation. The fault planes both slipped in horizontally elongated patches, possibly due to rheological layering limiting the updip and downdip extent of rupture. The slip vector of the Murmuri mainshock implies that the decollement beneath the Lorestan Arc is weaker than any such feature beneath the Dezful Embayment, providing an explanation for the plan-view sinuosity of the range-front of the Zagros Mountains.

  19. Quantifying Early Aftershock Activity of the 2004 Mid Niigata Prefecture Earthquake (Mw6.6)

    NASA Astrophysics Data System (ADS)

    Enescu, B.; Mori, J.; Miyazawa, M.

    2006-12-01

    We analyse the early aftershock activity of the 2004 Mid Niigata earthquake, using both earthquake catalog data and continuous waveform recordings. The frequency-magnitude distribution analysis of the Japan Meteorological Agency (JMA) catalog shows that the magnitude of completeness of the aftershocks changes from values around 5.0, immediately after the mainshock, to about 1.8, twelve hours later. Such a large incompleteness of early events can bias significantly the estimation of aftershock rates. To better determine the temporal pattern of aftershocks in the first minutes after the Niigata earthquake, we analyse the continuous seismograms recorded at six Hi-Net (High Sensitivity Seismograph Network) stations located close to the aftershock distribution. Clear aftershocks can be seen from about 35 sec. after the mainshock. We use events which are both identified on the filtered waveforms and are listed in the JMA catalogue, to calibrate an amplitude-magnitude relation. We estimate that the events picked on the waveforms recorded at two seismic stations (NGOH and YNTH), situated on opposite sides of the aftershock distribution, are complete above a threshold magnitude of 3.4. The c-value determined by taking these events into account is about 0.003 days (4.3 min). Statistical tests demonstrate that a small, but non-zero, c-value is a reliable result. We also analyse the decay with time of the moment release rates of the aftershocks in the JMA catalog, since these rates should be much less influenced by the missing small events. The moment rates follow a power-law time dependence from a few minutes to months after the mainshock. We finally show that the rate-and-state dependent friction law or stress corrosion could explain well our findings.

  20. Analysis of Mw 7.2 2014 Molucca Sea earthquake and its aftershocks

    NASA Astrophysics Data System (ADS)

    Shiddiqi, Hasbi Ash; Widiyantoro, Sri; Nugraha, Andri Dian; Ramdhan, Mohamad; Wiyono, Samsul Hadi; Wandono, Wandono

    2016-05-01

    A Mw 7.2 earthquake struck an area in the Molucca Sea region on November 15, 2014, and was followed by more than 300 aftershocks until the end of December 2014. This earthquake was the second largest event in the Molucca Sea during the last decade and was well recorded by local networks. Although the seismicity rate of the aftershocks was declining at the end of 2014, several significant earthquakes with magnitude (Mw) larger than five still occurred from January to May 2015 within the vicinity of the mainshock location. In this study, we investigated the earthquake process and its relation to the increasing seismicity in the Molucca Sea within six months after the earthquake. We utilized teleseismic double-difference hypocenter relocation method using local, regional, and teleseismic direct body-wave arrival times of 514 earthquakes from the time of mainshock occurrence to May 2015. Furthermore, we analyzed the focal mechanism solutions from the National Research Institute for Earth Science and Disaster Prevention (NIED), Japan. From our results, we observed that aftershocks propagated along the NNE-SSW direction within a 100 km fault segment length of the Mayu Ridge. The highest number of the aftershocks was located in the SSW direction of the main event. The aftershocks were terminated at around 60 km depth, which may represent the location of the top of the Molucca Sea Plate (MSP). Between January and May 2015, several significant earthquakes propagated westward and were extended to the Molucca Sea slab. From focal mechanism catalog, we found that the mainshock mechanism was reverse with strike 192o and dip 55o. While most of the large aftershock mechanisms were consistent with the main event, several aftershocks had reverse, oblique mechanisms. Stress inversion result from focal mechanism data revealed that the maximum stress direction was SE and was not perpendicular with fault direction. We suggest that the non-perpendicular maximum stress caused several

  1. Incorporating fault mechanics into inversions of aftershock data for the regional remote stress, with application to the 1992 Landers, California earthquake

    NASA Astrophysics Data System (ADS)

    Maerten, Frantz; Madden, Elizabeth H.; Pollard, David D.; Maerten, Laurent

    2016-04-01

    We present a new stress inversion algorithm that accounts for the physics relating the remote stress, slip along complex faults, and aftershock focal mechanisms, in a linear-elastic, heterogeneous, isotropic whole- or half-space. For each new remote stress, the solution of the simulation is obtained by the superposition of three pre-calculated solutions, leading to a constant time evaluation. Consequently, the full three-dimensional boundary element method model need not be recomputed and is independent of the structural complexity of the underlying model. Using a synthetic model, we evaluate several different measures of fit, or cost functions, between aftershocks and model results. Cost functions that account for aftershock slip direction provide good constraint on the remote stress, while functions that evaluate only nodal plane orientations do not. Inversion results are stable for values of friction ≤ 0.5 on mainshock faults. We demonstrate the technique by recovering the remote stress regime at the time of the 1992 M 7.3 Landers, California earthquake from its aftershocks and find that the algorithm performs well relative to methods that invert earthquakes occurring prior to the Landers mainshock. In the mechanical inversion, incorporating fault structures is necessary, but small differences in fault geometries do not impact these inversion results. Each inversion provides a complete solution for an earthquake as output, including fault slip and the stress and deformation fields around the fault(s). This allows for many additional datasets to be used as input, including fault surface slip, GPS data, InSAR data, and/or secondary fracture orientations.

  2. Modeling a bus through a sequence of traffic lights

    NASA Astrophysics Data System (ADS)

    Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Penagos, Juan Felipe; Toledo, Benjamín; Valdivia, Juan Alejandro

    2015-07-01

    We propose a model of a bus traveling through a sequence of traffic lights, which is required to stop between the traffic signals to pick up passengers. A two dimensional model, of velocity and traveled time at each traffic light, is constructed, which shows non-trivial and chaotic behaviors for realistic city traffic parameters. We restrict the parameter values where these non-trivial and chaotic behaviors occur, by following analytically and numerically the fixed points and period 2 orbits. We define conditions where chaos may arise by determining regions in parameter space where the maximum Lyapunov exponent is positive. Chaos seems to occur as long as the ratio of the braking and accelerating capacities are greater than about ˜3.

  3. Modeling a bus through a sequence of traffic lights.

    PubMed

    Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Penagos, Juan Felipe; Toledo, Benjamín; Valdivia, Juan Alejandro

    2015-07-01

    We propose a model of a bus traveling through a sequence of traffic lights, which is required to stop between the traffic signals to pick up passengers. A two dimensional model, of velocity and traveled time at each traffic light, is constructed, which shows non-trivial and chaotic behaviors for realistic city traffic parameters. We restrict the parameter values where these non-trivial and chaotic behaviors occur, by following analytically and numerically the fixed points and period 2 orbits. We define conditions where chaos may arise by determining regions in parameter space where the maximum Lyapunov exponent is positive. Chaos seems to occur as long as the ratio of the braking and accelerating capacities are greater than about ∼3. PMID:26232968

  4. Investigations of Periodic Disturbances on Seismic Aftershock Recordings

    NASA Astrophysics Data System (ADS)

    Liebsch, Mattes; Gorschlüter, Felix; Knoop, Jan-Frederik; Altmann, Jürgen

    2013-04-01

    The Comprehensive Nuclear Test-Ban Treaty Organisation (CTBTO) runs the International Monitoring System (IMS) to detect possible violations of the treaty. The seismic sensors of the IMS are set up to detect every underground explosion with a yield of 1 kT TNT equivalent or even better everywhere on the world. Under consideration of all IMS data the hypocentre of a large underground explosion is located within an area of about 1000 sq km. To verify if it was a violation of the Test-Ban Treaty the CTBTO (after CTBT entry into force) is allowed to carry out an on-site inspection (OSI) in the area of suspicion. During an OSI the hypocentre is to be located much more precisely; for this a local seismic aftershock monitoring system (SAMS) can be installed to detect small seismic events caused as a consequence of the explosion, such as relaxation of the rock around the cavity. However the magnitude of these aftershock signals is extremely weak. Other difficulties arise from other seismic signals in the inspection area, for example caused by vehicles of the inspectors, from coupling of airborne signals to the ground, or even by intended attempts to disturb the OSI. While the aftershock signals have a pulsed shape, man-made seismic signals (primarily created by engines) usually show periodic characteristics and thus are representable as a sum of sine functions and their harmonics. A mathematical expression for the Hann-windowed discrete Fourier transform of the underlying sine is used to characterise every such disturbance by the amplitude, frequency and phase. The contributions of these sines are computed and subtracted from the complex spectrum sequentially. Synthetic sines superposed to real signals, orders of magnitude stronger than the latter, can be removed successfully. Removal of periodic content from the signals of a helicopter overflight reduces the amplitude by a factor 3.3 when the frequencies are approximately constant. To reduce or prevent disturbing seismic

  5. Modeling DNA sequence-based cis-regulatory gene networks.

    PubMed

    Bolouri, Hamid; Davidson, Eric H

    2002-06-01

    Gene network analysis requires computationally based models which represent the functional architecture of regulatory interactions, and which provide directly testable predictions. The type of model that is useful is constrained by the particular features of developmentally active cis-regulatory systems. These systems function by processing diverse regulatory inputs, generating novel regulatory outputs. A computational model which explicitly accommodates this basic concept was developed earlier for the cis-regulatory system of the endo16 gene of the sea urchin. This model represents the genetically mandated logic functions that the system executes, but also shows how time-varying kinetic inputs are processed in different circumstances into particular kinetic outputs. The same basic design features can be utilized to construct models that connect the large number of cis-regulatory elements constituting developmental gene networks. The ultimate aim of the network models discussed here is to represent the regulatory relationships among the genomic control systems of the genes in the network, and to state their functional meaning. The target site sequences of the cis-regulatory elements of these genes constitute the physical basis of the network architecture. Useful models for developmental regulatory networks must represent the genetic logic by which the system operates, but must also be capable of explaining the real time dynamics of cis-regulatory response as kinetic input and output data become available. Most importantly, however, such models must display in a direct and transparent manner fundamental network design features such as intra- and intercellular feedback circuitry; the sources of parallel inputs into each cis-regulatory element; gene battery organization; and use of repressive spatial inputs in specification and boundary formation. Successful network models lead to direct tests of key architectural features by targeted cis-regulatory analysis. PMID

  6. Universal Sequence Replication, Reversible Polymerization and Early Functional Biopolymers: A Model for the Initiation of Prebiotic Sequence Evolution

    PubMed Central

    Walker, Sara Imari; Grover, Martha A.; Hud, Nicholas V.

    2012-01-01

    Many models for the origin of life have focused on understanding how evolution can drive the refinement of a preexisting enzyme, such as the evolution of efficient replicase activity. Here we present a model for what was, arguably, an even earlier stage of chemical evolution, when polymer sequence diversity was generated and sustained before, and during, the onset of functional selection. The model includes regular environmental cycles (e.g. hydration-dehydration cycles) that drive polymers between times of replication and functional activity, which coincide with times of different monomer and polymer diffusivity. Template-directed replication of informational polymers, which takes place during the dehydration stage of each cycle, is considered to be sequence-independent. New sequences are generated by spontaneous polymer formation, and all sequences compete for a finite monomer resource that is recycled via reversible polymerization. Kinetic Monte Carlo simulations demonstrate that this proposed prebiotic scenario provides a robust mechanism for the exploration of sequence space. Introduction of a polymer sequence with monomer synthetase activity illustrates that functional sequences can become established in a preexisting pool of otherwise non-functional sequences. Functional selection does not dominate system dynamics and sequence diversity remains high, permitting the emergence and spread of more than one functional sequence. It is also observed that polymers spontaneously form clusters in simulations where polymers diffuse more slowly than monomers, a feature that is reminiscent of a previous proposal that the earliest stages of life could have been defined by the collective evolution of a system-wide cooperation of polymer aggregates. Overall, the results presented demonstrate the merits of considering plausible prebiotic polymer chemistries and environments that would have allowed for the rapid turnover of monomer resources and for regularly varying monomer

  7. Subduction earthquake deformation associated with 14 November 2007, Mw 7.8 Tocopilla earthquake in Chile: Results from InSAR and aftershocks

    NASA Astrophysics Data System (ADS)

    Motagh, Mahdi; Schurr, Bernd; Anderssohn, Jan; Cailleau, Beatrice; Walter, Thomas R.; Wang, Rongjiang; Villotte, Jean-Pierre

    2010-07-01

    On 14 November 2007, a subduction thrust earthquake, magnitude Mw = 7.8, occurred in the coastal region of northern Chile, causing substantial damage to the city of Tocopilla. We investigate the source fault of the earthquake, slip distribution and fault interaction by integrating aftershock locations, satellite interferometry data and stress model simulations. Aftershock measurements allow us to locate the area and geometry of the rupture plane in the coastal region between the cities of Tocopilla and Antofagasta. Combining two satellite viewing geometries, acquired in Envisat's Wide Swath and Image modes, we observe decimetre-scale coseismic deformation. The maximum line-of-sight displacement is found to be about 40 cm, located at the Mejillones Peninsula. Slip inversions using elastic half-space models with geometry constrained by aftershocks suggest rupturing of an area of ˜ 160 km by ˜50 km along the Nazca -South America convergent margin between latitudes 22°S and 23.5°S. The main slip is concentrated on two asperities, the largest being located in the southern part of the rupture area at a depth of approximately 30-50 km with a magnitude of about 2.5 m. Because aftershock distribution may also suggest a region of shallow crustal deformation activity located offshore, we investigate whether the 2007 Tocopilla earthquake also involved shallow crustal fault slip offshore. Although we find that the latter assumption is supported by Coulomb stress modelling and geologic inferences, our geodetic and seismic data provide insufficient constraints to resolve the exact geometry and kinematics of dislocation on this structure.

  8. Estimating ETAS: the effects of truncation, missing data, and model assumptions

    NASA Astrophysics Data System (ADS)

    Seif, Stefanie; Mignan, Arnaud; Zechar, Jeremy; Werner, Maximilian; Wiemer, Stefan

    2016-04-01

    The Epidemic-Type Aftershock Sequence (ETAS) model is widely used to describe the occurrence of earthquakes in space and time, but there has been little discussion of the limits of, and influences on, its estimation. What has been established is that ETAS parameter estimates are influenced by missing data (e.g., earthquakes are not reliably detected during lively aftershock sequences) and by simplifying assumptions (e.g., that aftershocks are isotropically distributed). In this article, we investigate the effect of truncation: how do parameter estimates depend on the cut-off magnitude, Mcut, above which parameters are estimated? We analyze catalogs from southern California and Italy and find that parameter variations as a function of Mcut are caused by (i) changing sample size (which affects e.g. Omori's cconstant) or (ii) an intrinsic dependence on Mcut (as Mcut increases, absolute productivity and background rate decrease). We also explore the influence of another form of truncation - the finite catalog length - that can bias estimators of the branching ratio. Being also a function of Omori's p-value, the true branching ratio is underestimated by 45% to 5% for 1.05< p <1.2. Finite sample size affects the variation of the branching ratio estimates. Moreover, we investigate the effect of missing aftershocks and find that the ETAS productivity parameters (α and K0) and the Omoris c-value are significantly changed only for low Mcut=2.5. We further find that conventional estimation errors for these parameters, inferred from simulations that do not account for aftershock incompleteness, are underestimated by, on average, a factor of six.

  9. Sensitivity study of forecasted aftershock seismicity based on Coulomb stress calculation and rate- and state-dependent frictional response (Invited)

    NASA Astrophysics Data System (ADS)

    Cocco, M.; Hainzl, S.; Woessner, J.; Enescu, B.; Catalli, F.; Lombardi, A.

    2009-12-01

    It is nowadays well established that both Coulomb stress perturbations and the rate- and state-dependent frictional response of fault populations are needed to model the spatial and temporal evolution of seismicity. This represents the most popular physics-based approach to forecast the rate of earthquake production and its performances have to be verified with respect to alternative statistical methods. Despite the numerous applications of Coulomb stress interactions, a rigorous validation of the forecasting capabilities is still missing. In this work, we use the Dieterich (1994) physics-based approach to simulate the spatio-temporal evolution of seismicity caused by stress changes applied to an infinite population of nucleating patches modelled through a rate- and state-dependent friction law. According to this model, seismicity rate changes depend on the amplitude of stress perturbation, the physical constitutive properties of faults (represented by the parameter Aσ), the stressing rate and the background seismicity rate of the study area. In order to apply this model in a predictive manner, we need to understand the variability of input physical model parameters and their correlations. We first discuss the impact of uncertainties in model parameters and, in particular, in computed coseismic stress perturbations on the seismicity rate changes forecasted through the frictional model. We aim to understand how the variability of Coulomb stress changes affects the correlation between predicted and observed changes in the rate of earthquake production. We use the aftershock activity following the 1992 M 7.3 Landers (California) earthquake as one of our case studies. We analyze the variability of stress changes resulting from the use of different published slip distributions. We find that the standard deviation of the uncertainty is of the same size as the absolute stress change and that their ratio, the coefficient of variation (CV), is approximately constant in

  10. Location and local magnitude of the Tocopilla earthquake sequence of Northern Chile

    NASA Astrophysics Data System (ADS)

    Fuenzalida, A.; Lancieri, M.; Madariaga, R. I.; Sobiesiak, M.

    2010-12-01

    The Northern Chile gap is generally considered to the site of the next megathurst event in Chile. The Tocopilla earthquake of 14 November 2007 (Mw 7.8) and aftershock series broke the southern end of this gap. The Tocopilla event ruptured a narrow strip of 120 km of length and a width that (Peyrat et al.; Delouis et al. 2009) estimated as 30 km. The aftershock sequence comprises five large thrust events with magnitude greater than 6. The main aftershock of Mw 6.7 occurred on November 15, at 15:06 (UTM) seawards of the Mejillones Peninsula. One month later, on December 16 2007, a strong (Mw 6.8) intraplate event with slab-push mechanism occurred near the bottom of the rupture zone. These events represent a unique opportunity for the study of earthquakes in Northern Chile because of the quantity and quality of available data. In the epicentral area, the IPOC network was deployed by GFZ, CNRS/INSU and DGF before the main event. This is a digital, continuously recording network, equipped with both strong-motion and broad-band instrument. On 29 November 2007 a second network named “Task Force” (TF) was deployed by GFZ to study the aftershocks. This is a dense network, installed near the Mejillones peninsula. It is composed by 20 short-period instruments. The slab-push event of 16 december 2007 occurred in the middle of the area covered by the TF network. Aftershocks were detected using an automatic procedure and manually revised in order to pick P and S arrivals. In the 14-28 November period, we detected 635 events recorded at the IPOC network; and a further 552 events were detected between 29 November and 16 December before the slab-push event using the TF network. The events were located using a vertically layered velocity model (Husen et al. 1999), using the NLLoc software of Lomax et al. From the broadband data we estimated the moment magnitude from the displacement spectra of the events. From the short-period instruments we evaluated local magnitudes using the

  11. The tectonic context of the destructive 2010-2011 Canterbury, New Zealand, earthquake sequence

    NASA Astrophysics Data System (ADS)

    Reyners, M.; Eberhart-Phillips, D. M.; Bannister, S. C.; Martin, S.

    2011-12-01

    The destructive Canterbury, New Zealand, earthquake sequence has resulted in 181 deaths and caused damage in the US$15 billion range. A dense network of accelerographs has recorded an exceptional set of strong ground motions, with peak ground accelerations reaching 1.26 g during the Mw 7.1 mainshock on 04 September 2010, 2.20 g during the Mw 6.2 aftershock on 22 February 2011, and 2.04 g during the Mw 6.0 aftershock on 13 June 2011. This ongoing sequence raises important questions about the hazard from infrequent intraplate earthquakes in low strain rate regions (a few mm/yr in the case of the Canterbury region), including: 1) Why was the shaking from these events so strong? 2) Why does this earthquake sequence continue to be so productive? 3) Would we expect a similar earthquake sequence in other low-strain regions? Here we investigate these questions by carrying out a fine scale 3-D tomographic inversion for crustal structure using arrival time data from aftershocks, regional seismicity and active source data. We carry out a series of gradational inversions, using the recently determined New Zealand nationwide 3-D seismic velocity model as our initial model. Our 3-D model shows that structural features shallow around the northern edge of Banks Peninsula, a basaltic shield volcano immediately south of the city of Christchurch that was active during the period 12 - 6 Myr ago. Our results suggest that crustal structure has played a first order role in the earthquake sequence. At approximately 10 km depth, we have a ca. 100 Myr-old plate boundary, marking the subduction thrust where the Hikurangi Plateau (a large igneous province) subducted under the edge of Gondwana. This plateau is extremely strong and has a very deep brittle-ductile transition - small earthquakes extend down to 35 km depth in the mafic plateau. The larger earthquakes in the sequence occurred within the greywacke and schist capping this strong plateau. The high stress drops and strong shaking from

  12. Stellar winds on the main-sequence. I. Wind model

    NASA Astrophysics Data System (ADS)

    Johnstone, C. P.; Güdel, M.; Lüftinger, T.; Toth, G.; Brott, I.

    2015-05-01

    Aims: We develop a method for estimating the properties of stellar winds for low-mass main-sequence stars between masses of 0.4 M⊙ and 1.1 M⊙ at a range of distances from the star. Methods: We use 1D thermal pressure driven hydrodynamic wind models run using the Versatile Advection Code. Using in situ measurements of the solar wind, we produce models for the slow and fast components of the solar wind. We consider two radically different methods for scaling the base temperature of the wind to other stars: in Model A, we assume that wind temperatures are fundamentally linked to coronal temperatures, and in Model B, we assume that the sound speed at the base of the wind is a fixed fraction of the escape velocity. In Paper II of this series, we use observationally constrained rotational evolution models to derive wind mass loss rates. Results: Our model for the solar wind provides an excellent description of the real solar wind far from the solar surface, but is unrealistic within the solar corona. We run a grid of 1200 wind models to derive relations for the wind properties as a function of stellar mass, radius, and wind temperature. Using these results, we explore how wind properties depend on stellar mass and rotation. Conclusions: Based on our two assumptions about the scaling of the wind temperature, we argue that there is still significant uncertainty in how these properties should be determined. Resolution of this uncertainty will probably require both the application of solar wind physics to other stars and detailed observational constraints on the properties of stellar winds. In the final section of this paper, we give step by step instructions for how to apply our results to calculate the stellar wind conditions far from the stellar surface.

  13. Sequence analysis and homology modeling of peroxidase from Medicago sativa

    PubMed Central

    Hooda, Vinita; Gundala, Prasada babu; Chinthala, Paramageetham

    2012-01-01

    Plant peroxidases are one of the most extensively studied group of enzymes which find applications in the environment, health, pharmaceutical, chemical and biotechnological processes. Class III secretary peroxidase from alfalfa (Medicago sativa) has been characterized using bioinformatics approach Physiochemical properties and topology of alfalfa peroxidase were compared with that of soybean and horseradish peroxidase, two most popular commercially available peroxidase preparations. Lower value of instability index as predicted by ProtParam and presence of extra disulphide linkages as predicted by Cys_REC suggested alfalfa peroxidase to be more stable than either of the commercial preparations. Multiple Sequence Alignment (MSA) with other functionally similar proteins revealed the presence of highly conserved catalytic residues. Three dimensional model of alfalfa peroxidase was constructed based on the crystal structure of soybean peroxidase (PDB Id: 1FHF A) by homology modelling approach. The model was checked for stereo chemical quality by PROCHECH, VERIFY 3D, WHAT IF, ERRAT, 3D MATCH AND ProSA servers. The best model was selected, energy minimized and used to analyze structure function relationship with substrate hydrogen peroxide by Autodock 4.0. The enzyme substrate complex was viewed with Swiss PDB viewer and one residue ASP43 was found to stabilize the interaction by hydrogen bonds. The results of the study may be a guiding point for further investigations on alfalfa peroxidase. PMID:23275690

  14. Aftershock Records in the Kathmandu Valley of the 2015 Gorkha, Nepal, Earthquake

    NASA Astrophysics Data System (ADS)

    Shigefuji, M.; Takai, N.; Sasatani, T.; Bijukchhen, S.; Ichiyanagi, M.; Rajaure, S.; Dhital, M. R.

    2015-12-01

    The devastating earthquake, named the Gorkha Earthquake, was followed by a series of aftershocks: more than 350 of them greater than M 4 and four aftershock greater than M 6. The rupture of main shock originating 80 km NW of capital Kathmandu propagated towards east. The ensuing aftershock activities are concentrated in the eastern part of the rupture area. The aftershock of Mw 6.6 occurred about half an hour later at epicentre near to that of the main shock. The other three large aftershocks however, were originated in the eastern extreme of the rupture zone. The aftershock of Mw 7.3 that occurred on 12th May 2015 brought about more damages to infrastructures already vulnerable due to the main shock. To understand the site effect of the Kathmandu valley structure, we installed continuous recording accelerometers in four different parts of the valley. Four stations were installed along a west-to-east profile of the valley at KTP (Kirtipur; hill top), TVU (Kirtipur; hill side), PTN (Patan) and THM (Thimi). The surface S-wave velocity of the KTP site was over 700 cm s-1, but for each of the other three sites it was less than 200 cm s-1. These velocities are consistent with the geological formations; KTP is above hard rock, and TVU, PTN and THM are over the lake sediment of the valley. It is normal for the amplitude of earthquake motion to be larger in areas lying above sedimentary soil than in areas above hard rock, and these motions can be amplified further by certain deep underground structures. To know deep underground structure using with aftershock records, we installed more four instruments in the Kathmandu basin after main shock. We analysed the strong-motion data of these five aftershocks recorded in the eight strong-motion accelerometers. The station of KTP is considered as reference site to compare the effect of sediments on the earthquake waves. The large aftershocks all have highest Peak Ground Velocity (PGV) at TVU and the station of KTP showed the least

  15. Global Omori law decay of triggered earthquakes: Large aftershocks outside the classical aftershock zone

    USGS Publications Warehouse

    Parsons, T.

    2002-01-01

    Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ??? 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occured near (defined as having shear stress change ???????? ??? 0.01 MPa) the Ms ??? 7.0 shocks are associated with calculated shear stress increases, while ???39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ???7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristics rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ??? 7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.

  16. Global Omori law decay of triggered earthquakes: large aftershocks outside the classical aftershock zone

    USGS Publications Warehouse

    Parsons, Tom

    2002-01-01

    Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ≥ 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near (defined as having shear stress change ∣Δτ∣ ≥ 0.01 MPa) the Ms ≥ 7.0 shocks are associated with calculated shear stress increases, while ∼39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ∼7–11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristic rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ≥ 7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.

  17. Global Omori law decay of triggered earthquakes: Large aftershocks outside the classical aftershock zone

    NASA Astrophysics Data System (ADS)

    Parsons, Tom

    2002-09-01

    Triggered earthquakes can be large, damaging, and lethal as evidenced by the1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ≥ 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near (defined as having shear stress change ∣Δτ∣ ≥ 0.01 MPa) the Ms ≥ 7.0 shocks are associated with calculated shear stress increases, while ˜39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ˜7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristic rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ≥ 7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.

  18. Aftershock and induced seismic activity of the 2011 off the Pacific coast of Tohoku Earthquake in the northern part of Tohoku district, NE Japan

    NASA Astrophysics Data System (ADS)

    Kosuga, M.; Watanabe, K.

    2011-12-01

    We investigated the seismic activity around the northern neighbor of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) with special attention to a potential large aftershock in the area. We obtained a combined data set by adding our manually-picked locations to the catalog locations by the Japan Meteorological Agency. The hypocenter distribution delineates active and inactive bands of seismicity. The band of low seismicity corresponds to a zone of a large seismic slip, indicating that aftershocks occurred in peripheral neighbors of the mainshock asperity. The broad band of active seismicity along the coast corresponds to the zone of a large postseismic slip, suggesting the enhancement of the aftershock activity by the slip. Although the northern neighbor of the mainshock fault is a favored region of increased seismicity, as shown from a Coulomb stress calculation, no significant seismic activity is observed within the potential source area except along the Japan Trench and the SW corner. This implies that the zone of interplate moment release by previous large earthquakes and the subsequent slow slip acted as a barrier to the migration of both the mainshock rupture and aftershock activity. However, an aftershock area in the zone may reflect inhomogeneous moment release by past seismic and aseismic sequences. Induced inland seismicity is quite high in the Akita Prefecture on the Japan Sea side apart more than 100 km from the mainshock fault. There are some active clusters including moderate earthquakes with magnitude greater than 5. They are newly formed clusters after the mainshock, while the seismicity of previously active areas decreased significantly. Focal mechanism solutions of earthquakes in the new clusters show the types of strike-slip with consistently NW-SE trending T-axes. The predominant type of focal mechanisms in the Akita area before the mainshock was E-W compressional reverse faulting. Thus the stress field in the area has changed

  19. Complex faulting in the Quetta Syntaxis: fault source modeling of the October 28, 2008 earthquake sequence in Baluchistan, Pakistan, based on ALOS/PALSAR InSAR data

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Furuya, Masato

    2015-09-01

    The Quetta Syntaxis in western Baluchistan, Pakistan, is the result of an oroclinal bend of the western mountain belt and serves as a junction for different faults. As this area also lies close to the left-lateral strike-slip Chaman fault, which marks the boundary between the Indian and Eurasian plates, the resulting seismological behavior of this regime is very complex. In the region of the Quetta Syntaxis, close to the fold and thrust belt of the Sulaiman and Kirthar Ranges, an earthquake with a magnitude of 6.4 (Mw) occurred on October 28, 2008, which was followed by a doublet on the very next day. Six more shocks associated with these major events then occurred (one foreshock and five aftershocks), with moment magnitudes greater than 4. Numerous researchers have tried to explain the source of this sequence based on seismological, GPS, and Environmental Satellite (ENVISAT)/Advanced Synthetic Aperture Radar (ASAR) data. Here, we used Advanced Land Observing Satellite (ALOS)/Phased Array-type L-band Synthetic Aperture Radar (PALSAR) InSAR data sets from both ascending and descending orbits that allow us to more completely detect the deformation signals around the epicentral region. The results indicated that the shock sequence can be explained by two right-lateral and two left-lateral strike-slip faults that also included reverse slip. The right-lateral faults have a curved geometry. Moreover, whereas previous studies have explained the aftershock crustal deformation with a different fault source, we found that the same left-lateral segment of the conjugate fault was responsible for the aftershocks. We thus confirmed the complex surface deformation signals from the moderate-sized earthquake. Intra-plate crustal bending and shortening often seem to be accommodated as conjugate faulting, without any single preferred fault orientation. We also detected two possible landslide areas along with the crustal deformation pattern.

  20. Sequence Determination from Overlapping Fragments: A Simple Model of Whole-Genome Shotgun Sequencing

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Fink, Thomas M.

    2002-02-01

    Assembling fragments randomly sampled from along a sequence is the basis of whole-genome shotgun sequencing, a technique used to map the DNA of the human and other genomes. We calculate the probability that a random sequence can be recovered from a collection of overlapping fragments. We provide an exact solution for an infinite alphabet and in the case of constant overlaps. For the general problem we apply two assembly strategies and give the probability that the assembly puzzle can be solved in the limit of infinitely many fragments.

  1. Comparison of main-shock and aftershock fragility curves developed for New Zealand and US buildings

    USGS Publications Warehouse

    Uma, S.R.; Ryu, H.; Luco, N.; Liel, A.B.; Raghunandan, M.

    2011-01-01

    Seismic risk assessment involves the development of fragility functions to express the relationship between ground motion intensity and damage potential. In evaluating the risk associated with the building inventory in a region, it is essential to capture 'actual' characteristics of the buildings and group them so that 'generic building types' can be generated for further analysis of their damage potential. Variations in building characteristics across regions/countries largely influence the resulting fragility functions, such that building models are unsuitable to be adopted for risk assessment in any other region where a different set of building is present. In this paper, for a given building type (represented in terms of height and structural system), typical New Zealand and US building models are considered to illustrate the differences in structural model parameters and their effects on resulting fragility functions for a set of main-shocks and aftershocks. From this study, the general conclusion is that the methodology and assumptions used to derive basic capacity curve parameters have a considerable influence on fragility curves.

  2. A preliminary study of the Santa Barbara, California, earthquake of August 13, 1978, and its major aftershocks

    USGS Publications Warehouse

    Lee, William Hung Kan; Johnson, C.E.; Henyey, T.L.; Yerkes, R.L.

    1978-01-01

    The ML5.1 Santa Barbara earthquake of August 13, 1978 occurred at lat 34 ? 22.2'N., long 119 ? 43.0' 4 km south of Santa Barbara, Calif. at a depth of 12.5 km in the northeast Santa Barbara Channel, part of the western Transverse Ranges geomorphic-structural province. This part of the province is characterized by seismically active, east-trending reverse faults and rates of coastal uplift that have averaged up to about 10 m/1000 years over the last 45,000 years. No surface rupture was detected onshore. Subsurface rupture propagated northwest from the main shock toward Goleta, 15 km west of Santa Barbara, where a maximum acceleration of 0.44 g was measured at ground level and extensive minor damage occurred; only minor injuries were reported. A fairly well-constrained fault-plane solution of the main shock and distribution of the aftershocks indicate that left-reverse-oblique slip occurred on west-northwest-trending, north-dipping reverse faults; inadequate dip control precludes good correlation with any one of several mapped faults. Had the earthquake been larger and rupture propagated to the southeast or a greater distance to the northwest, it could have posed a hazard to oilfield operations. The fault-plane solution and aftershock pattern closely fit the model of regional deformation and the solution closely resembles those of five previously mapped events located within a 15-km radius.

  3. Aftershock mechanisms from the 2010 Mw 8.8 Maule, Chile earthquake: detailed analysis using full waveform inversion

    NASA Astrophysics Data System (ADS)

    Rietbrock, A.; Hicks, S. P.; Chagas, B.; Detzel, H. A.

    2014-12-01

    Since the earthquake rupture process is extremely heterogeneous, it is vital to understand how structural variations in the overriding plate and downgoing slab may control slip style along the subduction megathrust. The large-scale 3-D geometry of subduction plate boundaries is rapidly becoming well understood; however, the nature of any finer-scale structure along the plate interface remains elusive. A detailed study of earthquake source mechanisms along a megathrust region can shed light on the nature of fine-scale structures along the megathrust. The Mw 8.8 Maule earthquake that struck central Chile in 2010 is the sixth largest earthquake ever recorded. Following the earthquake, there was an international deployment of seismic stations in the rupture area, making this one of the best datasets of an aftershock sequence following a large earthquake. This dataset provides a unique opportunity to perform a detailed study of megathrust earthquake source mechanisms. Based on a high-resolution 3-D velocity model and robust earthquake locations [Hicks et al., 2014], we calculate regional moment tensors using the ISOLA software package [Sokos & Zahradnik, 2008]. We incorporate accelerometer recordings, important for constraining solutions of large earthquakes in the overriding plate. We also validate the robustness of our solutions by assessing the consistency of mechanisms with P-wave polarities observed at both onshore and offshore seismic stations, and compare them to already published solutions. We find that accurate earthquake locations are vital for the fine-scale interpretation of focal mechanisms, particularly for offshore events. Our results show that most moment tensor solutions with thrusting mechanisms have a nodal plane dipping parallel to the subducting plate interface. Interestingly, we also find earthquakes with normal faulting mechanisms lying along to the megathrust plate interface in the south of the rupture area. This finding suggests that megathrust

  4. Insights into induced earthquakes and aftershock activity with in-situ measurements of seismic velocity variations in an active underground mine

    NASA Astrophysics Data System (ADS)

    Brenguier, F.; Olivier, G.; Campillo, M.; Roux, P.; Shapiro, N.; Lynch, R.

    2015-12-01

    The behaviour of the crust shortly after large earthquakes has been the subject of numerous studies, but many co- and post-seismic processes remain poorly understood. Damage and healing of the bulk rock mass, post-seismic deformation and the mechanisms of earthquake triggering are still not well understood. These processes are important to properly model and understand the behaviour of faults and earthquake cycles.In this presentation, we will show how in-situ measurements of seismic velocity variations have given new insights into these co- and post-seismic processes. An experiment was performed where a blast was detonated in a tunnel in an underground mine, while seismic velocity variations were accurately (0.005 %) measured with ambient seismic noise correlations. Additionally, aftershock activity was examined and the influence of the removal of a piece of solid rock was estimated with elastic static stress modelling. The majority of the aftershocks were delayed with respect to the passing of the dynamic waves from the blast, while the locations of the aftershocks appeared clustered and not homogeneously spread around the blast location. A significant velocity drop is visible during the time of the blast, which is interpreted as co-seismic damage and plastic deformation. These non-elastic effects are healed by the confining stresses over a period of 5 days until the seismic velocity converges to a new baseline level. The instantaneous weakening and gradual healing observed from the velocity variations are qualitatively similar to results reported in laboratory studies. The change in the baseline level of the seismic velocity before and after the blast indicate a change in the static stress that is comparable to the results of elastic static stress modelling. The differences between the elastic model predictions and the seismic velocity variations could be due to zones of fractured rock, indicated by the spatial clustering of the aftershocks, that are not

  5. Detailed fault structure of the 2000 Western Tottori, Japan, earthquake sequence

    USGS Publications Warehouse

    Fukuyama, E.; Ellsworth, W.L.; Waldhauser, F.; Kubo, A.

    2003-01-01

    We investigate the faulting process of the aftershock region of the 2000 western Tottori earthquake (Mw 6.6) by combining aftershock hypocenters and moment tensor solutions. Aftershock locations were precisely determined by the double difference method using P- and S-phase arrival data of the Japan Meteorological Agency unified catalog. By combining the relocated hypocenters and moment tensor solutions of aftershocks by broadband waveform inversion of FREESIA (F-net), we successfully resolved very detailed fault structures activated by the mainshock. The estimated fault model resolves 15 individual fault segments that are consistent with both aftershock distribution and focal mechanism solutions. Rupture in the mainshock was principally confined to the three fault elements in the southern half of the zone, which is also where the earliest aftershocks concentrate. With time, the northern part of the zone becomes activated, which is also reflected in the postseismic deformation field. From the stress tensor analysis of aftershock focal mechanisms, we found a rather uniform stress field in the aftershock region, although fault strikes were scattered. The maximum stress direction is N107??E, which is consistent with the tectonic stress field in this region. In the northern part of the fault, where no slip occurred during the mainshock but postseismic slip was observed, the maximum stress direction of N130??E was possible as an alternative solution of stress tensor inversion.

  6. Seismotectonics of the April-May 2015 Nepal earthquakes: An assessment based on the aftershock patterns, surface effects and deformational characteristics

    NASA Astrophysics Data System (ADS)

    Parameswaran, Revathy M.; Natarajan, Thulasiraman; Rajendran, Kusala; Rajendran, C. P.; Mallick, Rishav; Wood, Matthew; Lekhak, Harish C.

    2015-11-01

    Occurrence of the April 25, 2015 (Mw 7.8) earthquake near Gorkha, central Nepal, and another one that followed on May 12 (Mw 7.3), located ∼140 km to its east, provides an exceptional opportunity to understand some new facets of Himalayan earthquakes. Here we attempt to assess the seismotectonics of these earthquakes based on the deformational field generated by these events, along with the spatial and temporal characteristics of their aftershocks. When integrated with some of the post-earthquake field observations, including the localization of damage and surface deformation, it became obvious that although the mainshock slip was mostly limited to the Main Himalayan Thrust (MHT), the rupture did not propagate to the Main Frontal Thrust (MFT). Field evidence, supported by the available InSAR imagery of the deformation field, suggests that a component of slip could have emerged through a previously identified out-of-sequence thrust/active thrust in the region that parallels the Main Central Thrust (MCT), known in the literature as a co-linear physiographic transitional zone called PT2. Termination of the first rupture, triggering of the second large earthquake, and distribution of aftershocks are also spatially constrained by the eastern extremity of PT2. Mechanism of the 2015 sequence demonstrates that the out-of-sequence thrusts may accommodate part of the slip, an aspect that needs to be considered in the current understanding of the mechanism of earthquakes originating on the MHT.

  7. Rupture processes of the 2015 Mw 7.9 Gorkha earthquake and its Mw 7.3 aftershock and their implications on the seismic risk

    NASA Astrophysics Data System (ADS)

    Liu, Chengli; Zheng, Yong; Wang, Rongjiang; Shan, Bin; Xie, Zujun; Xiong, Xiong; Ge, Can

    2016-07-01

    The rupture processes of the 2015 April 25 Gorkha earthquake and its strongest aftershock occurred on May 12 in Nepal are investigated by joint inversion of seismological and geodetic data. Synthetic test shows that the sedimentary layers in the source region play an important role in the rupture process inversion. Our optimized model of the mainshock shows that the rupture has a unilateral propagation pattern. The dominant mechanism is pure thrust with maximum slip of 5.8 m, the rupture scale extends ~ 60 km along dip and ~ 150 km along strike, and the largest static stress change is ~ 7.6 MPa. The total seismic moment is 7.87 × 1020 N m, equivalent to Mw 7.9. Most seismic moment was released within 80 s and the majority seismic moment was released at the first 40 s. The rupture propagated in main slip asperity with a velocity of ~ 3.0 km/s. The strong aftershock magnitude is about Mw 7.3, and the peak slip is about 5.0 m, close to the peak slip of the mainshock. Moreover, the slips of the mainshock and the aftershocks are in good complementary, suggesting a triggering relationship between them. Considering the strain accumulation, the Gorkha earthquake ruptured only part of the seismic gap alone, thus still poses high earthquake risk, especially in the west side of the mainshock rupture zone.

  8. Model annotation for synthetic biology: automating model to nucleotide sequence conversion

    PubMed Central

    Misirli, Goksel; Hallinan, Jennifer S.; Yu, Tommy; Lawson, James R.; Wimalaratne, Sarala M.; Cooling, Michael T.; Wipat, Anil

    2011-01-01

    Motivation: The need for the automated computational design of genetic circuits is becoming increasingly apparent with the advent of ever more complex and ambitious synthetic biology projects. Currently, most circuits are designed through the assembly of models of individual parts such as promoters, ribosome binding sites and coding sequences. These low level models are combined to produce a dynamic model of a larger device that exhibits a desired behaviour. The larger model then acts as a blueprint for physical implementation at the DNA level. However, the conversion of models of complex genetic circuits into DNA sequences is a non-trivial undertaking due to the complexity of mapping the model parts to their physical manifestation. Automating this process is further hampered by the lack of computationally tractable information in most models. Results: We describe a method for automatically generating DNA sequences from dynamic models implemented in CellML and Systems Biology Markup Language (SBML). We also identify the metadata needed to annotate models to facilitate automated conversion, and propose and demonstrate a method for the markup of these models using RDF. Our algorithm has been implemented in a software tool called MoSeC. Availability: The software is available from the authors' web site http://research.ncl.ac.uk/synthetic_biology/downloads.html. Contact: anil.wipat@ncl.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21296753

  9. Quantifying Aluminum Crystal Size Part 2: The Model-Development Sequence

    ERIC Educational Resources Information Center

    Hjalmarson, Margret; Diefes-Dux, Heidi A.; Bowman, Keith; Zawojewski, Judith S.

    2006-01-01

    We have designed model-development sequences using a common context to provide authentic problem-solving experiences for first-year students. The model-development sequence takes a model-eliciting activity a step further by engaging students in the exploration and adaptation of a mathematical model (e.g., procedure, algorithm, method) for solving…

  10. Retrieval of Branching Sequences in an Associative Memory Model with Common External Input and Bias Input

    NASA Astrophysics Data System (ADS)

    Katahira, Kentaro; Kawamura, Masaki; Okanoya, Kazuo; Okada, Masato

    2007-04-01

    We investigate a recurrent neural network model with common external and bias inputs that can retrieve branching sequences. Retrieval of memory sequences is one of the most important functions of the brain. A lot of research has been done on neural networks that process memory sequences. Most of it has focused on fixed memory sequences. However, many animals can remember and recall branching sequences. Therefore, we propose an associative memory model that can retrieve branching sequences. Our model has bias input and common external input. Kawamura and Okada reported that common external input enables sequential memory retrieval in an associative memory model with auto- and weak cross-correlation connections. We show that retrieval processes along branching sequences are controllable with both the bias input and the common external input. To analyze the behaviors of our model, we derived the macroscopic dynamical description as a probability density function. The results obtained by our theory agree with those obtained by computer simulations.

  11. Aftershock locations and rupture characteristics of the 2006 May 27, Yogyakarta-Indonesia earthquake

    NASA Astrophysics Data System (ADS)

    Irwan, M.; Ando, M.; Kimata, F.; Tadokoro, K.; Nakamichi, H.; Muto, D.; Okuda, T.; Hasanuddin, A.; Mipi A., K.; Setyadji, B.; Andreas, H.; Gamal, M.; Arif, R.

    2006-12-01

    A strong earthquake (M6.3) rocked the Bantul district, south of Yogyakarta Special Province (DIY) on the morningof May 27, 2006. We installed a temporary array of 6 seismographs to record aftershocks of the earthquake. The area of aftershocks, which may be interpreted as mainshock ruptured area has dimensions of about 25 km length and 20 km width, in the N48E direction. At depth the seismicity mainly concentrated between 5 to 15 km. The distribution of aftershock does not appear to come very close to the surface. There is no obvious surface evidence of causative fault in this area, though we find many crack and fissures that seem to have produced by the strong ground motion. We used the orientation and size of the fault determined from our aftershock results to carry out an inversion of teleseismic data for the slip distribution. We used broad- band seismograms of the IRIS network with epicentral distances between 30 and 90 degrees. We assume a single fault plane, strike 48 degree and dip 80 degree, which is inferred from the aftershock distribution. The total seismic moment is 0.369 x 10(19) Nm with maximum slip 0.4 meters. The asperity is located about 5 km away southwest of USGS estimated epicenter. Although the distances from the seismic source to heavily damaged areas Bantul and Klaten are 10 to 50 km, soft sedimentary soil likely to have generated very damaging motions within the area.

  12. Thrust-faulting earthquake induced many normal-faulting aftershocks, in northeastern Chiba Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Sakai, S.; Kato, A.; Hirata, N.; Nakagawa, S.; Kasahara, K.; Sato, H.; Kurashimo, E.; Nanjo, K.; Panayotopoulos, Y.; Obara, K.; Aketagawa, T.; Kimura, H.

    2010-12-01

    A thrust faulting type earthquake of a local body wave magnitude (MJMA) of 4.9 occurred near the upper interface of the subducting Philippine Sea Plate (PHS) in northeastern Chiba Prefecture on July 22, 2010. We have been developing a dense seismic net work call the MeSO-net in the Tokyo Metropolitan area. So far, 249 stations are available for the study of a large felt earthquakes and small event as low as M=1.5. We also deployed a temporary seismic array 24 of which were used for the analysis of the aftershocks. We locate the July 22 earthquake(MJMA=4.9) and its 19 aftershocks (M>1.5) by the double difference location algorithm. We also determine focal mechanisms for the main- and after-shocks. The locations of the main shock and three aftershocks are closely distributed near the upper interface of PHS, which is consistent with the idea that the event occurred on the plate interface. However, most aftershocks whose focal mechanism is normal-fault type with a T-axis directing NE-SW are located off the upper interface indicating that intra-slab events are also generated by the event. Acknowledgement: The present study is supported by Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

  13. Decay of aftershock density with distance does not indicate triggering by dynamic stress

    USGS Publications Warehouse

    Richards-Dinger, K.; Stein, R.S.; Toda, S.

    2010-01-01

    Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤ M  M  M ≥ 2 aftershocks showed a uniform power-law decay with slope −1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤  M< 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case.

  14. Chapter D. The Loma Prieta, California, Earthquake of October 17, 1989 - Aftershocks and Postseismic Effects

    USGS Publications Warehouse

    Reasenberg, Paul A., (Edited By)

    1997-01-01

    While the damaging effects of the earthquake represent a significant social setback and economic loss, the geophysical effects have produced a wealth of data that have provided important insights into the structure and mechanics of the San Andreas Fault system. Generally, the period after a large earthquake is vitally important to monitor. During this part of the seismic cycle, the primary fault and the surrounding faults, rock bodies, and crustal fluids rapidly readjust in response to the earthquake's sudden movement. Geophysical measurements made at this time can provide unique information about fundamental properties of the fault zone, including its state of stress and the geometry and frictional/rheological properties of the faults within it. Because postseismic readjustments are rapid compared with corresponding changes occurring in the preseismic period, the amount and rate of information that is available during the postseismic period is relatively high. From a geophysical viewpoint, the occurrence of the Loma Prieta earthquake in a section of the San Andreas fault zone that is surrounded by multiple and extensive geophysical monitoring networks has produced nothing less than a scientific bonanza. The reports assembled in this chapter collectively examine available geophysical observations made before and after the earthquake and model the earthquake's principal postseismic effects. The chapter covers four broad categories of postseismic effect: (1) aftershocks; (2) postseismic fault movements; (3) postseismic surface deformation; and (4) changes in electrical conductivity and crustal fluids.

  15. Analysis of strong ground motions and site effects at Kantipath, Kathmandu, from 2015 Mw 7.8 Gorkha, Nepal, earthquake and its aftershocks

    NASA Astrophysics Data System (ADS)

    Dhakal, Yadab P.; Kubo, Hisahiko; Suzuki, Wataru; Kunugi, Takashi; Aoi, Shin; Fujiwara, Hiroyuki

    2016-04-01

    Strong ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake and its eight aftershocks recorded by a strong-motion seismograph at Kantipath (KATNP), Kathmandu, were analyzed to assess the ground-motion characteristics and site effects at this location. Remarkably large elastic pseudo-velocity responses exceeding 300 cm/s at 5 % critical damping were calculated for the horizontal components of the mainshock recordings at peak periods of 4-5 s. Conversely, the short-period ground motions of the mainshock were relatively weak despite the proximity of the site to the source fault. The horizontal components of all large-magnitude (Mw ≥ 6.3) aftershock recordings showed peak pseudo-velocity responses at periods of 3-4 s. Ground-motion prediction equations (GMPEs) describing the Nepal Himalaya region have not yet been developed. A comparison of the observational data with GMPEs for Japan showed that with the exception of the peak ground acceleration (PGA) of the mainshock, the observed PGAs and peak ground velocities at the KATNP site are generally well described by the GMPEs for crustal and plate interface events. A comparison of the horizontal-to-vertical ( H/ V) spectral ratios for the S-waves of the mainshock and aftershock recordings suggested that the KATNP site experienced a considerable nonlinear site response, which resulted in the reduced amplitudes of short-period ground motions. The GMPEs were found to underestimate the response values at the peak periods (approximately 4-5 s) of the large-magnitude events. The deep subsurface velocity model of the Kathmandu basin has not been well investigated. Therefore, a one-dimensional velocity model was constructed for the deep sediments beneath the recording station based on an analysis of the H/ V spectral ratios for S-wave coda from aftershock recordings, and it was revealed that the basin sediments strongly amplified the long-period components of the ground motions of the mainshock and large

  16. Modeling and optimization of defense high level waste removal sequencing

    NASA Astrophysics Data System (ADS)

    Paul, Pran Krishna

    A novel methodology has been developed which makes possible a very fast running computational tool, capable of performing 30 to 50 years of simulation of the entire Savannah River Site (SRS) high level waste complex in less than 2 minutes on a work station. The methodology has been implemented in the Production Planning Model (ProdMod) simulation code which uses Aspen Technology's dynamic simulation software development package SPEEDUP. ProdMod is a pseudo-dynamic simulation code solely based on algebraic equations, using no differential equations. The dynamic nature of the plant process is captured using linear constructs in which the time dependence is implicit. Another innovative approach implemented in ProdMod development is the mapping of event-space on to time-space and vice versa, which accelerates the computation without sacrificing the necessary details in the event-space. ProdMod uses this approach in coupling the time-space continuous simulation with the event-space batch simulation, avoiding the discontinuities inherent in dynamic simulation batch processing. In addition, a general purpose optimization scheme has been devised based on the pseudo-dynamic constructs and the event- and time-space algorithms of ProdMod. The optimization scheme couples a FORTRAN based stand-alone optimization driver with the SPEEDUP based ProdMod simulator to perform dynamic optimization. The scheme is capable of generating single or multiple optimal input conditions for different types of objective functions over single or multiple years of operations depending on the nature of the objective function and operating constraints. The resultant optimal inputs are then interfaced with ProdMod to simulate the dynamic behavior of the waste processing operations. At the conclusion on an optimized advancement step, the simulation parameters are then passed to the optimization driver to generate the next set of optimized parameters. An optimization algorithm using linear programming

  17. Lancang—Gengma Earthquake: A Preliminary Report on the November 6, 1988, Event and Its Aftershocks

    NASA Astrophysics Data System (ADS)

    Chen, Yuntai; Wu, Francis T.

    On November 6, 1988, two earthquakes with magnitude >7 occurred within 15 minutes in southwestern Yunnan Province, China, near the Burmese border. The aftershock series in the next six weeks included three earthquakes with magnitude >6.0. Rapid deployment of accelerographs enabled us to record a large number of aftershocks, including two Ms >6 events, at near-source distances.At 130314.5 UT on November 6 an earthquake with Ms = 7.6 (U.S. Geological Survey Ms = 7.3) occurred 40 km northwest of Lancang (Figure 1). Thirteen minutes later another large event with Ms = 7.2 (USGS Ms 6.4) occurred 60 km north-northwest of the first shock. By December 20 more than 600 aftershocks with Ms >3 had occurred.

  18. A Nonparametric Bayesian Approach to Seismic Hazard Modeling Using the ETAS Framework

    NASA Astrophysics Data System (ADS)

    Ross, G.

    2015-12-01

    The epidemic-type aftershock sequence (ETAS) model is one of the most popular tools for modeling seismicity and quantifying risk in earthquake-prone regions. Under the ETAS model, the occurrence times of earthquakes are treated as a self-exciting Poisson process where each earthquake briefly increases the probability of subsequent earthquakes occurring soon afterwards, which captures the fact that large mainshocks tend to produce long sequences of aftershocks. A triggering kernel controls the amount by which the probability increases based on the magnitude of each earthquake, and the rate at which it then decays over time. This triggering kernel is usually chosen heuristically, to match the parametric form of the modified Omori law for aftershock decay. However recent work has questioned whether this is an appropriate choice. Since the choice of kernel has a large impact on the predictions made by the ETAS model, avoiding misspecification is crucially important. We present a novel nonparametric version of ETAS which avoids making parametric assumptions, and instead learns the correct specification from the data itself. Our approach is based on the Dirichlet process, which is a modern class of Bayesian prior distribution which allows for efficient inference over an infinite dimensional space of functions. We show how our nonparametric ETAS model can be fit to data, and present results demonstrating that the fit is greatly improved compared to the standard parametric specification. Additionally, we explain how our model can be used to perform probabilistic declustering of earthquake catalogs, to classify earthquakes as being either aftershocks or mainshocks. and to learn the causal relations between pairs of earthquakes.

  19. High frequencies are a critical component of aftershock triggering at <100-150 km (Invited)

    NASA Astrophysics Data System (ADS)

    Felzer, K. R.

    2010-12-01

    Triggered earthquakes at large distances from the mainshock have been observed to closely follow the arrival of ~0.03-0.6 Hz surface waves (Hill, 2008). Triggering by body waves at these distances is generally not observed. At distances closer than 50-100 km, however, surface waves are not well developed and have minimal amplitude. Thus triggering at these distances is presumably accomplished by static stress change and/or by body waves via a mechanism that does not work at further distances. Pollitz (2006) demonstrated that slow slip events on the San Andreas fault do not trigger many aftershocks, suggesting that static stresses alone are not effective triggers, while Felzer and Brodsky (2006) demonstrated that dynamic stresses alone do appear to trigger aftershocks at least in the 10--50 km range. Yet Parsons and Velasco (2009) found that underground nuclear tests, which are essentially dynamic-only sources, do not produce aftershocks at regional distances. Here we demonstrate that Southern California quarry blasts also fail to produce aftershocks. Both nuclear tests and quarry blasts are depleted in high frequency energy in comparison to tectonic earthquakes (Su et al. 1991; Allman et al. 2008). Therefore the observation that both slow slip events and blasts fail to trigger many aftershocks suggests that the missing ingredient of high frequency body wave energy plays a critical role in the triggering process. Quarry blast spectra data and scaling considerations allow the critical triggering frequency to be constrained to > 20-60 Hz. Energy in this frequency band may be expected to persist at depth at least out to 100 km (Leary, 1995). Huc and Main (2003) found that aftershock triggering by global earthquakes follows a continuous decay curve out to ~150 km, suggesting that triggering by high frequency body waves might extend this far. At much further distances the high frequencies are likely attenuated, explaining why only low frequency surface wave triggering

  20. An information theoretic approach to macromolecular modeling: I. Sequence alignments.

    PubMed

    Aynechi, Tiba; Kuntz, Irwin D

    2005-11-01

    We are interested in applying the principles of information theory to structural biology calculations. In this article, we explore the information content of an important computational procedure: sequence alignment. Using a reference state developed from exhaustive sequences, we measure alignment statistics and evaluate gap penalties based on first-principle considerations and gap distributions. We show that there are different gap penalties for different alphabet sizes and that the gap penalties can depend on the length of the sequences being aligned. In a companion article, we examine the information content of molecular force fields. PMID:16254389

  1. Modeling of the Nano- and Picoseismicity Rate Changes Resulting from Static Stress Triggering due to Small (MW2.2) Event Recorded at Mponeng Deep Gold Mine, South Africa

    NASA Astrophysics Data System (ADS)

    Kozlowska, M.; Orlecka-Sikora, B.; Kwiatek, G.; Boettcher, M. S.; Dresen, G. H.

    2014-12-01

    Static stress changes following large earthquakes are known to affect the rate and spatio-temporal distribution of the aftershocks. Here we utilize a unique dataset of M ≥ -3.4 earthquakes following a MW 2.2 earthquake in Mponeng gold mine, South Africa, to investigate this process for nano- and pico- scale seismicity at centimeter length scales in shallow, mining conditions. The aftershock sequence was recorded during a quiet interval in the mine and thus enabled us to perform the analysis using Dietrich's (1994) rate and state dependent friction law. The formulation for earthquake productivity requires estimation of Coulomb stress changes due to the mainshock, the reference seismicity rate, frictional resistance parameter, and the duration of aftershock relaxation time. We divided the area into six depth intervals and for each we estimated the parameters and modeled the spatio-temporal patterns of seismicity rates after the stress perturbation. Comparing the modeled patterns of seismicity with the observed distribution we found that while the spatial patterns match well, the rate of modeled aftershocks is lower than the observed rate. To test our model, we used four metrics of the goodness-of-fit evaluation. Testing procedure allowed rejecting the null hypothesis of no significant difference between seismicity rates only for one depth interval containing the mainshock, for the other, no significant differences have been found. Results show that mining-induced earthquakes may be followed by a stress relaxation expressed through aftershocks located on the rupture plane and in regions of positive Coulomb stress change. Furthermore, we demonstrate that the main features of the temporal and spatial distribution of very small, mining-induced earthquakes at shallow depths can be successfully determined using rate- and state-based stress modeling.

  2. Reference genome sequence of the model plant Setaria

    SciTech Connect

    Bennetzen, Jeffrey L; Schmutz, Jeremy; Wang, Hao; Percifield, Ryan; Hawkins, Jennifer; Pontaroli, Ana C.; Estep, Matt; Feng, Liang; Vaughn, Justin N; Grimwood, Jane; Jenkins, Jerry; Barry, Kerrie; Lindquist, Erika; Hellsten, Uffe; Deshpande, Shweta; Wang, Xuewen; Wu, Xiaomei; Mitros, Therese; Triplett, Jimmy; Yang, Xiaohan; Ye, Chuyu; Mauro-Herrera, Margarita; Wang, Lin; Li, Pinghua; Sharma, Manoj; Sharma, Rita; Ronald, Pamela; Panaud, Olivier; Kellogg, Elizabeth A.; Brutnell, Thomas P.; Doust, Andrew N.; Tuskan, Gerald A; Rokhsar, Daniel; Devos, Katrien M

    2012-01-01

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  3. Reference genome sequence of the model plant Setaria

    SciTech Connect

    Bennetzen, Jeffrey L; Yang, Xiaohan; Ye, Chuyu; Tuskan, Gerald A

    2012-01-01

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The {approx}400-Mb assembly covers {approx}80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  4. The 2007 M7.7 Tocopilla northern Chile earthquake sequence: Implications for along-strike and downdip rupture segmentation and megathrust frictional behavior

    NASA Astrophysics Data System (ADS)

    Schurr, B.; Asch, G.; Rosenau, M.; Wang, R.; Oncken, O.; Barrientos, S.; Salazar, P.; Vilotte, J.-P.

    2012-05-01

    In 2007 a M7.7 earthquake occurred near the town of Tocopilla within the northern Chile seismic gap. Main shock slip, derived from coseismic surface deformation, was confined to the depth range between 30 and 55 km. We relocated ˜1100 events during six months before and one week after the main shock. Aftershock seismicity is first congruent to the main shock slip and then it spreads offshore west and northwest of Mejillones Peninsula (MP). Waveform modeling for 38 aftershocks reveals source mechanisms that are in the majority similar to the main shock. However, a few events appear to occur in the upper plate, some with extensional mechanisms. Juxtaposing the Tocopilla aftershocks with those following the neighboring 1995 Antofagasta earthquake produces a striking symmetry across an EW axis in the center of MP. Events seem to skirt around MP, probably due to a shallower Moho there. We suggest that the seismogenic coupling zone in northern Chile changes its frictional behavior in the downdip direction from unstable to mostly conditionally stable. For both earthquake sequences, aftershocks agglomerate in the conditionally stable region, whereas maximum inter-seismic slip deficit and co-seismic slip occurs in the unstable region. The boundary between the unstable and conditionally stable zones parallels the coastline. We identify a similar segmentation for other earthquakes in Chile and Peru, where the offshore segments break in great M > 8 earthquakes, and the onshore segments in smaller M < 8 earthquakes. Using critical taper analysis, we demonstrate a causal relationship between varying slip behavior on the interface and forearc wedge anatomy that can be attributed to spatial variations in the rate-dependency of friction.

  5. On the c-values of the off-fault aftershocks triggered by the 1995 Kobe earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Sugaya, K.; Hiramatsu, Y.; Furumoto, M.; Katao, H.; Ogata, Y.

    2010-12-01

    The Omori-Utsu law is applicable not only to aftershocks in a source region but also to off-fault aftershocks triggered by the mainshock.In this study, we estimate the c-values using the maximum-likelihood method (Ogata, 1983) from the seismicity activation in the Tamba region induced by the coseismic static stress change due to the 1995 Kobe earthquake of M7.3, Japan. We use earthquakes (M≥1.8) shallower than 20 km from the JMA catalog and remove remarked clusters of the aftershock due to moderate earthquakes with the method of Reasenberg (1985). Our analyzed period is from the occurrence of the earthquake (17 January 1995) to December 1995. The obtained c-values in the divided subregions, near and far to the rupture zone, are 58.1 ± 26.1 days and 164.7 ± 98.0 days, respectively. This is consistent with the rate- and state-dependent friction law of Dieterich (1994) in that the c-values of induced off-fault seismicity are larger than those of the source region depending on the static stress change. We estimate Aσ and the stressing rate after the earthquake in the whole region with the average ΔCFS of 30 kPa (Hashimoto, 1995, 1997) using a grid search following Toda et al. (2005). The friction law’s parameters in the whole region are estimated to be 13.8 ~ 16.2 kPa/yr and 15.0 ~ 16.6 kPa at the stressing rate and Aσ, respectively. Furthermore, we estimate ΔCFSs in the two subregions using the stressing rate of 15.5 kPa/yr and Aσ of 15.5 kPa obtained above. The obtained ΔCFSs in the divided subregions, near and far to the rupture zone, are 39.9 ~ 43.4 kPa and 17.3 ~ 19.9 kPa, respectively. These are coincident with the distribution of ΔCFS drawn by using a geodetic fault model (Hashimoto et al., 1996).

  6. Seismic source study of the Racha-Dzhava (Georgia) earthquake from aftershocks and broad-band teleseismic body-wave records: An example of active nappe tectonics

    USGS Publications Warehouse

    Fuenzalida, H.; Rivera, L.; Haessler, H.; Legrand, D.; Philip, H.; Dorbath, L.; McCormack, D.; Arefiev, S.; Langer, C.; Cisternas, A.

    1997-01-01

    The Racha-Dzhava earthquake (Ms = 7.0) that occurred on 1991 April 29 at 09:12:48.1 GMT in the southern border of the Great Caucasus is the biggest event ever recorded in the region, stronger than the Spitak earthquake (Ms = 6.9) of 1988. A field expedition to the epicentral area was organised and a temporary seismic network of 37 stations was deployed to record the aftershock activity. A very precise image of the aftershock distribution is obtained, showing an elongated cloud oriented N105??, with one branch trending N310?? in the western part. The southernmost part extends over 80 km, with the depth ranging from 0 to 15 km, and dips north. The northern branch, which is about 30 km long, shows activity that ranges in depth from 5 to 15 km. The complex thrust dips northwards. A stress-tensor inversion from P-wave first-motion polarities shows a state of triaxial compression, with the major principal axis oriented roughly N-S, the minor principal axis being vertical. Body-waveform inversion of teleseismic seismograms was performed for the main shock, which can be divided into four subevents with a total rupture-time duration of 22 s. The most important part of the seismic moment was released by a gentle northerly dipping thrust. The model is consistent with the compressive tectonics of the region and is in agreement with the aftershock distribution and the stress tensor deduced from the aftershocks. The focal mechanisms of the three largest aftershocks were also inverted from body-wave records. The April 29th (Ms = 6.1) and May 5th (Ms = 5.4) aftershocks have thrust mechanisms on roughly E-W-oriented planes, similar to the main shock. Surprisingly, the June 15th (Ms = 6.2) aftershock shows a thrust fault striking N-S. This mechanism is explained by the structural control of the rupture along the east-dipping geometry of the Dzirula Massif close to the Borzhomi-Kazbeg strike-slip fault. In fact, the orientation and shape of the stress tensor produce a thrust on a N

  7. Probabilistic topic modeling for the analysis and classification of genomic sequences

    PubMed Central

    2015-01-01

    Background Studies on genomic sequences for classification and taxonomic identification have a leading role in the biomedical field and in the analysis of biodiversity. These studies are focusing on the so-called barcode genes, representing a well defined region of the whole genome. Recently, alignment-free techniques are gaining more importance because they are able to overcome the drawbacks of sequence alignment techniques. In this paper a new alignment-free method for DNA sequences clustering and classification is proposed. The method is based on k-mers representation and text mining techniques. Methods The presented method is based on Probabilistic Topic Modeling, a statistical technique originally proposed for text documents. Probabilistic topic models are able to find in a document corpus the topics (recurrent themes) characterizing classes of documents. This technique, applied on DNA sequences representing the documents, exploits the frequency of fixed-length k-mers and builds a generative model for a training group of sequences. This generative model, obtained through the Latent Dirichlet Allocation (LDA) algorithm, is then used to classify a large set of genomic sequences. Results and conclusions We performed classification of over 7000 16S DNA barcode sequences taken from Ribosomal Database Project (RDP) repository, training probabilistic topic models. The proposed method is compared to the RDP tool and Support Vector Machine (SVM) classification algorithm in a extensive set of trials using both complete sequences and short sequence snippets (from 400 bp to 25 bp). Our method reaches very similar results to RDP classifier and SVM for complete sequences. The most interesting results are obtained when short sequence snippets are considered. In these conditions the proposed method outperforms RDP and SVM with ultra short sequences and it exhibits a smooth decrease of performance, at every taxonomic level, when the sequence length is decreased. PMID:25916734

  8. Aftershock seismicity and Tectonic Setting of the 16 September 2015 Mw 8.3 Illapel earthquake

    NASA Astrophysics Data System (ADS)

    Lange, Dietrich; Geersen, Jacob; Barrientos, Sergio; Moreno, Marcos; Grevemeyer, Ingo; Contreras-Reyes, Eduardo; Kopp, Heidrun

    2016-04-01

    Powerful subduction zone earthquakes rupture thousands of square kilometers along continental margins but at certain locations earthquake rupture terminates. On 16 September 2015 the Mw. 8.3 Illapel earthquake ruptured a 200 km long stretch of the Central Chilean subduction zone, triggering a tsunami and causing significant damage. Here we analyze the spatial pattern of coseismic rupture and the temporal and spatial pattern of local seismicity for aftershocks and foreshocks in relation to the tectonic setting in the earthquake area. Aftershock seismicity surrounds the rupture area in lateral and downdip direction. For the first 24 hours following the mainshock we observe aftershock migration to both lateral directions with velocities of approximately 2.5 and 5 km/h. At the southern earthquake boundary aftershocks cluster around individual subducted seamounts located on the prolongation of the downthrusting Juan Fernández Ridge indicating stress transfer from the main rupture area. In the northern part of the rupture area a deeper band of local seismicity is observed indicating an alternation of seismic to aseismic behavior of the plate interface in downdip direction. This aseismic region at ~30 km depth that is also observed before the Illapel 2015 earthquake is likely controlled by the intersection of the continental Moho with the subducting slab.

  9. Sequenced Contractions and Abbreviations for Model 2 Reading.

    ERIC Educational Resources Information Center

    Cronnell, Bruce

    The nature and use of contractions and abbreviations in beginning reading is discussed and applied to the Southwest Regional Laboratory (SWRL) Mod 2 Reading Program, a four-year program (K-3) for teaching reading skills to primary-grade children. The contractions and abbreviations are listed and sequenced for the reading program. The results of…

  10. SNP discovery in non-model organisms using 454 next generation sequencing.

    PubMed

    Wheat, Christopher W

    2012-01-01

    Roche 454 sequencing of the transcriptome has become a standard approach for efficiently obtaining single nucleotide polymorphisms (SNPs) in non-model species. In this chapter, the primary issues facing the development of SNPs from the transcriptome in non-model species are presented: tissue and sampling choices, mRNA preparation, considerations of normalization, pooling and barcoding, how much to sequence, how to assemble the data and assess the assembly, calling transcriptome SNPs, developing these into genomic SNPs, and publishing the work. Discussion also covers the comparison of this approach to RAD-tag sequencing and the potential of using other sequencing platforms for SNP development. PMID:22665274

  11. Subsurface Rock Damage Structure of the Mw7.1 Darfield and Mw6.3 Christchurch Earthquake Sequence Viewed with Fault-Zone Trapped Waves

    NASA Astrophysics Data System (ADS)

    Li, Y.; De Pascale, G. P.; Quigley, M. C.; Gravley, D.

    2012-12-01

    In order to document the subsurface structure of the damage zones caused by multiple slips in the 2010 Mw7.1 Darfield - 2011 Mw6.3 Christchurch earthquake sequence in NZ's South Island, we deployed two short linear seismic arrays in the Canterbury region to record aftershocks in middle 2011. Array 1 was deployed across the central Greendale fault (GF) where right-lateral slip of ~4.5 m was measured across the surface rupture of the 2010 Darfield mainshock. Array 2 was located at the surface projection of an aftershock zone along the blind Port Hills fault (PHF) which ruptured in the 2011 Christchurch earthquake. We have examined the data for 853 aftershocks and identified prominent fault-zone trapped waves (FZTWs) with large amplitude and long wavetrains following S-arrivals at stations of Array 1 within the ~200-m-wide rupture zone for aftershocks occurring along the GF and the PHF. The post-S durations of these FZTWs increase as event depth and epicentral distance increase, showing an effective low-velocity waveguide formed by severely damaged rocks extending along the GF and PHF at seismogenic depth, but with variations in its geometry and velocity reduction along multiple rupture segments. The FZTWs suggest that the Darfield rupture zone extends eastward as bifurcating blind fault segments an additional ~5-8 km beyond the mapped ~30-km extent of the GF surface rupture, consistent with aftershock distributions and geodetic models. On the other hand, the main rupture of the Mw6.3 Christchurch earthquake is ~15-km in length on the blind PHF dipping to SSE, but it likely extends westward along the aftershock lineament approaching the east blind extension of the GF/Darfield rupture. These two main rupture segments might connect through a weak portion of the low-velocity waveguide formed by rocks along blind faults that experienced milder damage beneath the dilatational fault step-over where accumulated seismic energy release was lower than adjacent rupture zones in

  12. 2008 Little Andaman aftershock: Genetic linkages with the subducting 90°E ridge and 2004 Sumatra-Andaman earthquake

    NASA Astrophysics Data System (ADS)

    Catherine, J. K.; Gahalaut, V. K.; Ambikapathy, A.; Kundu, Bhaskar; Subrahmanyam, C.; Jade, S.; Bansal, Amit; Chadha, R. K.; Narsaiah, M.; Premkishore, L.; Gupta, D. C.

    2009-12-01

    We analyse the June 27, 2008 Little Andaman aftershock (Mw 6.6) of December 26, 2004 Sumatra-Andaman earthquake (Mw 9.2) that occurred near the trench in the subducting India plate beneath the Sunda Plate. Unlike majority of the other aftershocks in the frontal arc, the Little Andaman aftershock and its own aftershocks occurred through normal slip on the north-south oriented steep planes. We use the coseismic and ongoing postseismic deformation due to the 2004 Sumatra-Andaman earthquake at a GPS site nearest to the Little Andaman aftershock and compute changes in the Coulomb stresses due to the coseismic slip and postseismic afterslip. The Coulomb stress on the Little Andaman aftershock fault plane progressively increased since the 2004 Sumatra-Andaman earthquake which probably led to the occurrence of the Little Andaman aftershock on the pre-existing N-S oriented strike-slip steep planes of the subducting 90°E ridge that were reactivated through normal slip.

  13. Statistical discrimination of induced and tectonic earthquake sequences in Central and Eastern US based on waveform detected catalogs

    NASA Astrophysics Data System (ADS)

    Meng, X.; Daniels, C.; Smith, E.; Peng, Z.; Chen, X.; Wagner, L. S.; Fischer, K. M.; Hawman, R. B.

    2015-12-01

    Since 2001, the number of M>3 earthquakes increased significantly in Central and Eastern United States (CEUS), likely due to waste-water injection, also known as "induced earthquakes" [Ellsworth, 2013]. Because induced earthquakes are driven by short-term external forcing and hence may behave like earthquake swarms, which are not well characterized by branching point-process models, such as the Epidemic Type Aftershock Sequence (ETAS) model [Ogata, 1988]. In this study we focus on the 02/15/2014 M4.1 South Carolina and the 06/16/2014 M4.3 Oklahoma earthquakes, which likely represent intraplate tectonic and induced events, respectively. For the South Carolina event, only one M3.0 aftershock is identified by the ANSS catalog, which may be caused by a lack of low-magnitude events in this catalog. We apply a recently developed matched filter technique to detect earthquakes from 02/08/2014 to 02/22/2014 around the epicentral region. 15 seismic stations (both permanent and temporary USArray networks) within 100 km of the mainshock are used for detection. The mainshock and aftershock are used as templates for the initial detection. Newly detected events are employed as new templates, and the same detection procedure repeats until no new event can be added. Overall we have identified more than 10 events, including one foreshock occurred ~11 min before the M4.1 mainshock. However, the numbers of aftershocks are still much less than predicted with the modified Bath's law. For the Oklahoma event, we use 1270 events from the ANSS catalog and 182 events from a relocated catalog as templates to scan through continuous recordings 3 days before to 7 days after the mainshock. 12 seismic stations within the vicinity of the mainshock are included in the study. After obtaining more complete catalogs for both sequences, we plan to compare the statistical parameters (e.g., b, a, K, and p values) between the two sequences, as well as their spatial-temporal migration pattern, which may

  14. Decay of aftershock density with distance does not indicate triggering by dynamic stress.

    PubMed

    Richards-Dinger, Keith; Stein, Ross S; Toda, Shinji

    2010-09-30

    Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤ M < 3 and 3 ≤ M < 4 mainshocks and found that their magnitude M ≥ 2 aftershocks showed a uniform power-law decay with slope -1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤ M < 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case. PMID:20882015

  15. Models of hydrocarbon-bearing sequences of West Siberia

    SciTech Connect

    Mkrtohyan, O.M.; Gogonenkov, G.N.; Pavlov, N.E. )

    1991-03-01

    The West Siberian province located within a young plate (platform) is one of the largest in the world in size, reserves, number of unique fields, and hydrocarbon production. The southern, central, and western areas of the province are dominantly oil-bearing, the northern portion gas-bearing. All commercial reserves are within the Devonian-Cenomanian stratigraphic interval. Small accumulations in fractured-vuggy Devon-Carboniferous rocks are located in the zone of unconformity between this sequence and the Jurassic. The potential of the pre-plate middle Paleozoic, platform upper Paleozoic, and Triassic sequences recognized by seismic data in the northern, deepest, part of the plate is not known yet. Most hydrocarbon pools are located in the Jurassic-Cretaceous hydrocarbon-bearing sequences (HBS) within the plate cover. Structural-depositional oil accumulations with very changeable flow rates, a large stratigraphic-depositional accumulation in high permeability basal (quartz) reservoirs, and an oil-condensate and a multiple-pool structural gas field are discovered in the Middle Jurassic composed of potential continental coal-bearing and marine deposits. In most HBS, there is still a prospect of discovering new hydrocarbon pools including pools in more complex traps.

  16. Geodetic displacements and aftershocks following the 2001 Mw = 8.4 Peru earthquake: Implications for the mechanics of the earthquake cycle along subduction zones

    NASA Astrophysics Data System (ADS)

    Perfettini, H.; Avouac, J.-P.; Ruegg, J.-C.

    2005-09-01

    We analyzed aftershocks and postseismic deformation recorded by the continuous GPS station AREQ following the Mw = 8.4, 23 June 2001 Peru earthquake. This station moved by 50 cm trenchward, in a N235°E direction during the coseismic phase, and continued to move in the same direction for an additional 15 cm over the next 2 years. We compare observations with the prediction of a simple one-dimensional (1-D) system of springs, sliders, and dashpot loaded by a constant force, meant to simulate stress transfer during the seismic cycle. The model incorporates a seismogenic fault zone, obeying rate-weakening friction, a zone of deep afterslip, the brittle creep fault zone (BCFZ) obeying rate-strengthening friction, and a zone of viscous flow at depth, the ductile fault zone (DFZ). This simple model captures the main features of the temporal evolution of seismicity and deformation. Our results imply that crustal strain associated with stress accumulation during the interseismic period is probably not stationary over most of the interseismic period. The BCFZ appears to control the early postseismic response (afterslip and aftershocks), although an immediate increase, by a factor of about 1.77, of ductile shear rate is required, placing constraints on the effective viscosity of the DFZ. Following a large subduction earthquake, displacement of inland sites is trenchward in the early phase of the seismic cycle and reverse to landward after a time ti for which an analytical expression is given. This study adds support to the view that the decay rate of aftershocks may be controlled by reloading due to deep afterslip. Given the ratio of preseismic to postseismic viscous creep, we deduce that frictional stresses along the subduction interface account for probably 70% of the force transmitted along the plate interface.

  17. Stochastic model of homogeneous coding and latent periodicity in DNA sequences.

    PubMed

    Chaley, Maria; Kutyrkin, Vladimir

    2016-02-01

    The concept of latent triplet periodicity in coding DNA sequences which has been earlier extensively discussed is confirmed in the result of analysis of a number of eukaryotic genomes, where latent periodicity of a new type, called profile periodicity, is recognized in the CDSs. Original model of Stochastic Homogeneous Organization of Coding (SHOC-model) in textual string is proposed. This model explains the existence of latent profile periodicity and regularity in DNA sequences. PMID:26656186

  18. Complete mitochondrial genome sequence of the heart failure model of cardiomyopathic Syrian hamster (Mesocricetus auratus).

    PubMed

    Hu, Bo; Liu, Dong-Xing; Zhang, Yu-Qing; Song, Jian-Tao; Ji, Xian-Fei; Hou, Zhi-Qiang; Zhang, Zhen-Hai

    2016-05-01

    In this study we sequenced the complete mitochondrial genome sequencing of a heart failure model of cardiomyopathic Syrian hamster (Mesocricetus auratus) for the first time. The total length of the mitogenome was 16,267 bp. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region. PMID:25469817

  19. Designing and Validating Two Teaching-Learning Sequences about Particle Models. Special Issue

    ERIC Educational Resources Information Center

    Meheut, Martine

    2004-01-01

    This paper presents a retrospective analysis of two teaching-learning sequences about particle models. We will describe the design process for each sequence and will discuss it with respect to general frameworks such as Ingenierie Didactique and Educational Reconstruction. We will also describe and compare the ways we collected data and…

  20. The great 1933 Sanriku-oki earthquake: reappraisal of the mainshock and its aftershocks and implications for its tsunami using regional tsunami and seismic data

    NASA Astrophysics Data System (ADS)

    Uchida, Naoki; Kirby, Stephen; Umino, Norihito; Hino, Ryota; Kazakami, Tomoe

    2016-06-01

    high-angle fault confined at a shallow depth (depth ≦ 50 km). The upward motion of the1933 tsunami waveform records observed at Sanriku coast also cannot be explained from a single high-angle west-dipping normal fault. If we consider additional fault, involvement of high-angle, east-dipping normal faults can better explain the tsunami first motion and triggering of the aftershock in a wide area under the inner trench slope. Therefore multiple off-trench normal faults may have activated during the 1933 earthquake. We also relocated recent (2001-2012) seismicity by the same method. The results show that the present seismicity in the outer trench-slope region can be divided into several groups along the trench. Comparison of the 1933 rupture dimensions based on our aftershock relocations with the morphologies of fault scarps in the outer trench slope suggest that the rupture was limited to the region where fault scarps are largely trench parallel and cross cuts the seafloor spreading fabric. These findings imply that bending geometry and structural segmentation of the incoming plate largely controls the spatial extent of the 1933 seismogenic faulting. In this shallow rupture model for this largest outer trench earthquake, triggered seismicity in the forearc and structural control of faulting represents an important deformation styles for off-trench and shallow megathrust zones. (500< = 500 words)

  1. Modeling sustainable groundwater management: packaging and sequencing of policy interventions.

    PubMed

    Esteban, Encarna; Dinar, Ariel

    2013-04-15

    Of the many studies estimating effectiveness of policy reforms most have been considering various types of policy reforms in isolation from each other. Such pattern has also been the case in water resource regulations. In the case of groundwater almost all policy interventions considered in the literature have been implemented individually, without taking into account the possible interactions and impacts among them. In this paper, we focus on two policy instruments: water quota and uniform water tax. The paper demonstrates how packaging and sequencing sets of policy interventions, with possible triggers to initiate their time of implementation, may be more effective in achieving a sustainable groundwater management than single policies when environmental externalities exist. The policy instruments are applied to the Western la Mancha aquifer in Southeast Spain, a major aquifer that is managed by a command and control approach. PMID:23467104

  2. The use of synthetic input sequences in time series modeling

    NASA Astrophysics Data System (ADS)

    de Oliveira, Dair José; Letellier, Christophe; Gomes, Murilo E. D.; Aguirre, Luis A.

    2008-08-01

    In many situations time series models obtained from noise-like data settle to trivial solutions under iteration. This Letter proposes a way of producing a synthetic (dummy) input, that is included to prevent the model from settling down to a trivial solution, while maintaining features of the original signal. Simulated benchmark models and a real time series of RR intervals from an ECG are used to illustrate the procedure.

  3. Estimation of the parameters of ETAS models by Simulated Annealing

    PubMed Central

    Lombardi, Anna Maria

    2015-01-01

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context. PMID:25673036

  4. Spin models inferred from patient-derived viral sequence data faithfully describe HIV fitness landscapes

    NASA Astrophysics Data System (ADS)

    Shekhar, Karthik; Ruberman, Claire F.; Ferguson, Andrew L.; Barton, John P.; Kardar, Mehran; Chakraborty, Arup K.

    2013-12-01

    Mutational escape from vaccine-induced immune responses has thwarted the development of a successful vaccine against AIDS, whose causative agent is HIV, a highly mutable virus. Knowing the virus' fitness as a function of its proteomic sequence can enable rational design of potent vaccines, as this information can focus vaccine-induced immune responses to target mutational vulnerabilities of the virus. Spin models have been proposed as a means to infer intrinsic fitness landscapes of HIV proteins from patient-derived viral protein sequences. These sequences are the product of nonequilibrium viral evolution driven by patient-specific immune responses and are subject to phylogenetic constraints. How can such sequence data allow inference of intrinsic fitness landscapes? We combined computer simulations and variational theory á la Feynman to show that, in most circumstances, spin models inferred from patient-derived viral sequences reflect the correct rank order of the fitness of mutant viral strains. Our findings are relevant for diverse viruses.

  5. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions

    USGS Publications Warehouse

    Spudich, P.; Hellweg, M.; Lee, W.H.K.

    1996-01-01

    The Northridge earthquake caused 1.78 g acceleration in the east-west direction at a site in Tarzana, California, located about 6 km south of the mainshock epicenter. The accelerograph was located atop a hill about 15-m high, 500-m long, and 130-m wide, striking about N78??E. During the aftershock sequence, a temporary array of 21 three-component geophones was deployed in six radial lines centered on the accelerograph, with an average sensor spacing of 35 m. Station COO was located about 2 m from the accelerograph. We inverted aftershock spectra to obtain average relative site response at each station as a function of direction of ground motion. We identified a 3.2-Hz resonance that is a transverse oscillation of the hill (a directional topographic effect). The top/base amplification ratio at 3.2 Hz is about 4.5 for horizontal ground motions oriented approximately perpendicular to the long axis of the hill and about 2 for motions parallel to the hill. This resonance is seen most strongly within 50 m of COO. Other resonant frequencies were also observed. A strong lateral variation in attenuation, probably associated with a fault, caused substantially lower motion at frequencies above 6 Hz at the east end of the hill. There may be some additional scattered waves associated with the fault zone and seen at both the base and top of the hill, causing particle motions (not spectral ratios) at the top of the hill to be rotated about 20?? away from the direction transverse to the hill. The resonant frequency, but not the amplitude, of our observed topographic resonance agrees well with theory, even for such a low hill. Comparisons of our observations with theoretical results indicate that the 3D shape of the hill and its internal structure are important factors affecting its response. The strong transverse resonance of the hill does not account for the large east-west mainshock motions. Assuming linear soil response, mainshock east-west motions at the Tarzana accelerograph

  6. Ground Motion Scaling in Kachchh: a Preliminary Assessment from Aftershocks of the 2001 Bhuj, India, Earthquake

    NASA Astrophysics Data System (ADS)

    Bodin, P.; Malagnini, L.; Akinci, A.

    2002-12-01

    Considerable controversy surrounds the issues of how much and how systematically source and propagation characteristics of earthquakes that take place in relatively "stable" continental settings differ from those of earthquakes in more mobile crust. The 2001 Mw 7.7 Bhuj, India, earthquake may have been the largest such earthquake in more than 100 years. We are analyzing ground motions from aftershocks of the Bhuj earthquake recorded on a temporary network deployed within 100 km of the mainshock epicenter. Our goal is to determine the source and propagation characteristics in the region, taking into account site effects at our network sites, to facilitate comparison with similar studies in other tectonic environments. To date we have used data from about 1100 earthquakes ranging in magnitude from about 2 to about 5 1/2. We model peak amplitudes as a function of source-receiver distance for bandpass-filtered time series and the spectral amplitudes of time-windowed seismograms. Because the earthquakes occurred over a wide depth range, we have analyzed the data in two overlapping depth subsets-shallower than 25 km and deeper than 20 km. We find that propagation is well-modeled by a frequency-dependent quality factor Q = 680f0.48 combined with a rather simple geometric spreading function that varies only slightly between the deep and shallow data subsets. We modeled the source terms with an w2 single corner (Brune) model with a magnitude dependent stress drop. The larger earthquakes had stress drops of about 160 bars. Extrapolating our source and propagation values using Random Vibration Theory to an Mw 7.5 earthquake yields ground motion estimates that coincide closely with similar current estimates for eastern North America (ENA) earthquakes. Our preliminary assessment is that, from a ground motion perspective, the Bhuj earthquake presents an important opportunity to study an earthquake that (a) differs significantly from earthquakes in mobile crust, and (b) resembles

  7. Sequence analysis and homology modeling of laccase from Pycnoporus cinnabarinus.

    PubMed

    Meshram, Rohan J; Gavhane, Aj; Gaikar, Rb; Bansode, Ts; Maskar, Au; Gupta, Ak; Sohni, Sk; Patidar, Ma; Pandey, Tr; Jangle, Sn

    2010-01-01

    Industrial effluents of textile, paper, and leather industries contain various toxic dyes as one of the waste material. It imparts major impact on human health as well as environment. The white rot fungus Pycnoporus cinnabarinus Laccase is generally used to degrade these toxic dyes. In order to decipher the mechanism of process by which Laccase degrade dyes, it is essential to know its 3D structure. Homology modeling was performed in presented work, by satisfying Spatial restrains using Modeller Program, which is considered as standard in this field, to generate 3D structure of Laccase in unison, SWISSMODEL web server was also utilized to generate and verify the alternative models. We observed that models created using Modeller stands better on structure evaluation tests. This study can further be used in molecular docking techniques, to understand the interaction of enzyme with its mediators like 2, 2-azinobis (3-ethylbenzthiazoline-6-sulfonate) (ABTS) and Vanillin that are known to enhance the Laccase activity. PMID:21364777

  8. A Local Poisson Graphical Model for inferring networks from sequencing data.

    PubMed

    Allen, Genevera I; Liu, Zhandong

    2013-09-01

    Gaussian graphical models, a class of undirected graphs or Markov Networks, are often used to infer gene networks based on microarray expression data. Many scientists, however, have begun using high-throughput sequencing technologies such as RNA-sequencing or next generation sequencing to measure gene expression. As the resulting data consists of counts of sequencing reads for each gene, Gaussian graphical models are not optimal for this discrete data. In this paper, we propose a novel method for inferring gene networks from sequencing data: the Local Poisson Graphical Model. Our model assumes a Local Markov property where each variable conditional on all other variables is Poisson distributed. We develop a neighborhood selection algorithm to fit our model locally by performing a series of l1 penalized Poisson, or log-linear, regressions. This yields a fast parallel algorithm for estimating networks from next generation sequencing data. In simulations, we illustrate the effectiveness of our methods for recovering network structure from count data. A case study on breast cancer microRNAs (miRNAs), a novel application of graphical models, finds known regulators of breast cancer genes and discovers novel miRNA clusters and hubs that are targets for future research. PMID:23955777

  9. Real-time forecast of aftershocks from a single seismic station signal

    NASA Astrophysics Data System (ADS)

    Lippiello, E.; Cirillo, A.; Godano, G.; Papadimitriou, E.; Karakostas, V.

    2016-06-01

    The evaluation of seismic hazard in the hours following large earthquakes is strongly affected by biases due to difficulties in determining earthquake location. This leads to the huge incompleteness of instrumental catalogs. Here we show that if, on the one hand, the overlap of aftershock coda waves hides many small events, on the other hand, it leads to a well-determined empirical law controlling the decay of the amplitude of the seismic signal at a given site. The fitting parameters of this law can be related to those controlling the temporal decay of the aftershock number, and it is then possible to obtain short-term postseismic occurrence probability from a single recorded seismic signal. We therefore present a novel procedure which, without requiring earthquake location, produces more accurate and almost real-time forecast, in a site of interest, directly from the signal of a seismic station installed at that site.

  10. Aftershocks of the December 7, 2012 intraplate doublet near the Japan Trench axis

    NASA Astrophysics Data System (ADS)

    Obana, Koichiro; Kodaira, Shuichi; Nakamura, Yasuyuki; Sato, Takeshi; Fujie, Gou; Takahashi, Tsutomu; Yamamoto, Yojiro

    2014-12-01

    On December 7, 2012, a pair of large Mw 7.2 intraplate earthquakes occurred near the Japan Trench axis off Miyagi, northeast Japan. This doublet consisted of a deep reverse-faulting event followed by a shallow normal-faulting event. Aftershock observations using conventional and newly developed ultra-deep ocean bottom seismographs in the trench axis area showed that the shallow normal-faulting event occurred in the subducting Pacific plate just landward of the trench axis. The shallow normal-faulting aftershock activity indicated that in-plate tension in the incoming/subducting Pacific plate extends to a depth of at least 30 km, which is deeper than before the 2011 Tohoku-Oki earthquake, whereas in-plate compression occurs at depths of more than 50 km. Hence, we concluded that the neutral plane of the in-plate stress is located between depths of 30 and 50 km near the trench axis.

  11. Modeling financial markets by the multiplicative sequence of trades

    NASA Astrophysics Data System (ADS)

    Gontis, V.; Kaulakys, B.

    2004-12-01

    We introduce the stochastic multiplicative point process modeling trading activity of financial markets. Such a model system exhibits power-law spectral density S(f)∝1/fβ, scaled as power of frequency for various values of β between 0.5 and 2. Furthermore, we analyze the relation between the power-law autocorrelations and the origin of the power-law probability distribution of the trading activity. The model reproduces the spectral properties of trading activity and explains the mechanism of power-law distribution in real markets.

  12. Aftershocks of the 2010 Mw 7.2 El Mayor-Cucapah earthquake revealcomplex faulting in the Yuha Desert, California

    USGS Publications Warehouse

    Kroll, K.; Cochran, Elizabeth S.; Richards-Dinger, K.; Sumy, Danielle

    2013-01-01

    We detect and precisely locate over 9500 aftershocks that occurred in the Yuha Desert region during a 2 month period following the 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake. Events are relocated using a series of absolute and relative relocation procedures that include Hypoinverse, Velest, and hypoDD. Location errors are reduced to ~40 m horizontally and ~120 m vertically.Aftershock locations reveal a complex pattern of faulting with en echelon fault segments trending toward the northwest, approximately parallel to the North American-Pacific plate boundary and en echelon, conjugate features trending to the northeast. The relocated seismicity is highly correlated with published surface mapping of faults that experienced triggered surface slip in response to the EMC main shock. Aftershocks occurred between 2 km and 11 km depths, consistent with previous studies of seismogenic thickness in the region. Three-dimensional analysis reveals individual and intersecting fault planes that are limited in their along-strike length. These fault planes remain distinct structures at depth, indicative of conjugate faulting, and do not appear to coalesce onto a throughgoing fault segment. We observe a complex spatiotemporal migration of aftershocks, with seismicity that jumps between individual fault segments that are active for only a few days to weeks. Aftershock rates are roughly consistent with the expected earthquake production rates of Dieterich (1994). The conjugate pattern of faulting and nonuniform aftershock migration patterns suggest that strain in the Yuha Desert is being accommodated in a complex manner.

  13. Aftershock seismicity and tectonic setting of the 16 September 2015 Mw 8.3 Illapel earthquake, Central Chile

    NASA Astrophysics Data System (ADS)

    Lange, Dietrich; Geersen, Jacob; Barrientos, Sergio; Moreno, Marcos; Grevemeyer, Ingo; Contreras-Reyes, Eduardo; Kopp, Heidrun

    2016-06-01

    Powerful subduction zone earthquakes rupture thousands of square kilometers along continental margins but at certain locations earthquake rupture terminates. To date detailed knowledge of the parameters that govern seismic rupture and aftershocks is still incomplete. On 16 September 2015 the Mw. 8.3 Illapel earthquake ruptured a 200 km long stretch of the Central Chilean subduction zone, triggering a tsunami and causing significant damage. Here we analyze the temporal and spatial pattern of the co-seismic rupture and aftershocks in relation to the tectonic setting in the earthquake area. Aftershocks cluster around the area of maximum coseismic slip, in particular in lateral and downdip direction. During the first 24 hours after the mainshock, aftershocks migrated in both lateral directions with velocities of approximately 2.5 and 5 km/h. At the southern rupture boundary aftershocks cluster around individual subducted seamounts that are related to the downthrusting Juan Fernández Ridge. In the northern part of the rupture area aftershocks separate into an upper cluster (above 25 km depth) and a lower cluster (below 35 km depth). This dual seismic-aseismic transition in downdip direction is also observed in the interseismic period suggesting that it may represent a persistent feature for the Central Chilean subduction zone.

  14. The Mechanisms and Spatiotemporal Behavior of the 2011 Mw7.1 Van, Eastern Turkey Earthquake Aftershocks

    NASA Astrophysics Data System (ADS)

    Ezgi Guvercin Isik, Sezim; Ozgun Konca, A.; Karabulut, Hayrullah

    2016-04-01

    We studied the mechanisms and spatiotemporal distribution of the aftershocks of the Mw7.1 Van Earthquake, in Eastern Turkey. The 2011 Van Earthquake occurred on a E-W trending blind thrust fault in Eastern Turkey which is under N-S compression due to convergence of the Arabian plate toward the Eurasia. In this study, we relocated and studied the mechanisms of the M3.5-5.5 aftershocks from regional Pnl and surface waves using the "Cut and Paste" algorithm of Zhu and Helmberger (1996). Our results reveal that the aftershocks in the first day following the mainshock are in the vicinity of the co-seismic slip and have mostly thrust mechanism consistent with the mainshock. In the following day, a second cluster of activity at the northeast termination of the fault ( North of Lake Erçek) has started. These aftershocks have approximately N-S lineation and left lateral source mechanisms. The aftershocks surrounding the mainshock rupture are deeper (>20 km) than the aftershocks triggered on the north (<15km). We also observe strike slip earthquakes on the south of the mainshock. Both of delayed activities (north of the mainshock and south of the mainshock) are consistent with the Coulomb stress increase due to slip on the mainshock. We propose that the Van Fault is truncated by two strike-slip faults at each end, which has determined the along-strike rupture extent of the 2011 mainshock.

  15. Aftershock seismicity and tectonic setting of the 2015 September 16 Mw 8.3 Illapel earthquake, Central Chile

    NASA Astrophysics Data System (ADS)

    Lange, Dietrich; Geersen, Jacob; Barrientos, Sergio; Moreno, Marcos; Grevemeyer, Ingo; Contreras-Reyes, Eduardo; Kopp, Heidrun

    2016-08-01

    Powerful subduction zone earthquakes rupture thousands of square kilometres along continental margins but at certain locations earthquake rupture terminates. To date, detailed knowledge of the parameters that govern seismic rupture and aftershocks is still incomplete. On 2015 September 16, the Mw 8.3 Illapel earthquake ruptured a 200 km long stretch of the Central Chilean subduction zone, triggering a tsunami and causing significant damage. Here, we analyse the temporal and spatial pattern of the coseismic rupture and aftershocks in relation to the tectonic setting in the earthquake area. Aftershocks cluster around the area of maximum coseismic slip, in particular in lateral and downdip direction. During the first 24 hr after the main shock, aftershocks migrated in both lateral directions with velocities of approximately 2.5 and 5 km hr-1. At the southern rupture boundary, aftershocks cluster around individual subducted seamounts that are related to the downthrusting Juan Fernández Ridge. In the northern part of the rupture area, aftershocks separate into an upper cluster (above 25 km depth) and a lower cluster (below 35 km depth). This dual seismic-aseismic transition in downdip direction is also observed in the interseismic period suggesting that it may represent a persistent feature for the Central Chilean subduction zone.

  16. Array-based evolution of DNA aptamers allows modelling of an explicit sequence-fitness landscape

    PubMed Central

    Knight, Christopher G.; Platt, Mark; Rowe, William; Wedge, David C.; Khan, Farid; Day, Philip J. R.; McShea, Andy; Knowles, Joshua; Kell, Douglas B.

    2009-01-01

    Mapping the landscape of possible macromolecular polymer sequences to their fitness in performing biological functions is a challenge across the biosciences. A paradigm is the case of aptamers, nucleic acids that can be selected to bind particular target molecules. We have characterized the sequence-fitness landscape for aptamers binding allophycocyanin (APC) protein via a novel Closed Loop Aptameric Directed Evolution (CLADE) approach. In contrast to the conventional SELEX methodology, selection and mutation of aptamer sequences was carried out in silico, with explicit fitness assays for 44 131 aptamers of known sequence using DNA microarrays in vitro. We capture the landscape using a predictive machine learning model linking sequence features and function and validate this model using 5500 entirely separate test sequences, which give a very high observed versus predicted correlation of 0.87. This approach reveals a complex sequence-fitness mapping, and hypotheses for the physical basis of aptameric binding; it also enables rapid design of novel aptamers with desired binding properties. We demonstrate an extension to the approach by incorporating prior knowledge into CLADE, resulting in some of the tightest binding sequences. PMID:19029139

  17. Urban seismology - Northridge aftershocks recorded by multi-scale arrays of portable digital seismographs

    USGS Publications Warehouse

    Meremonte, M.; Frankel, A.; Cranswick, E.; Carver, D.; Worley, D.

    1996-01-01

    We deployed portable digital seismographs in the San Fernando Valley (SFV), the Los Angeles basin (LAB), and surrounding hills to record aftershocks of the 17 January 1994 Northridge California earthquake. The purpose of the deployment was to investigate factors relevant to seismic zonation in urban areas, such as site amplification, sedimentary basin effects, and the variability of ground motion over short baselines. We placed seismographs at 47 sites (not all concurrently) and recorded about 290 earthquakes with magnitudes up to 5.1 at five stations or more. We deployed widely spaced stations for profiles across the San Fernando Valley, as well as five dense arrays (apertures of 200 to 500 m) in areas of high damage, such as the collapsed Interstate 10 overpass, Sherman Oaks, and the collapsed parking garage at CalState Northridge. Aftershock data analysis indicates a correlation of site amplification with mainshock damage. We found several cases where the site amplification depended on the azimuth of the aftershock, possibly indicating focusing from basin structures. For the parking garage array, we found large ground-motion variabilities (a factor of 2) over 200-m distances for sites on the same mapped soil unit. Array analysis of the aftershock seismograms demonstrates that sizable arrivals after the direct 5 waves consist of surface waves traveling from the same azimuth as that of the epicenter. These surface waves increase the duration of motions and can have frequencies as high as about 4 Hz. For the events studied here, we do not observe large arrivals reflected from the southern edge of the San Fernando Valley.

  18. Main shock and aftershock records of the 1999 Izmit and Duzce, Turkey earthquakes

    USGS Publications Warehouse

    Celebi, M.; Akkar, Sinan; Gulerce, U.; Sanli, A.; Bundock, H.; Salkin, A.

    2001-01-01

    The August 17, 1999 Izmit (Turkey) earthquake (Mw=7.4) will be remembered as one of the largest earthquakes of recent times that affected a large urban environment (U.S. Geological Survey, 1999). This significant event was followed by many significant aftershocks and another main event (Mw=7.2) that occurred on November 12, 1999 near Duzce (Turkey). The shaking that caused the widespread damage and destruction was recorded by a handful of accelerographs (~30) in the earthquake area operated by different networks. The characteristics of these records show that the recorded peak accelerations, shown in Figure 1, even those from near field stations, are smaller than expected (Çelebi, 1999, 2000). Following this main event, several organizations from Turkey, Japan, France and the USA deployed temporary accelerographs and other aftershock recording hardware. Thus, the number of recording stations in the earthquake affected area was quadrupled (~130). As a result, as seen in Figure 2, smaller magnitude aftershocks yielded larger peak accelerations, indicating that because of the sparse networks, recording of larger motions during the main shock of August 17, 1999 were possibly missed.

  19. On species sampling sequences induced by residual allocation models.

    PubMed

    Rodríguez, Abel; Quintana, Fernando A

    2015-02-01

    We discuss fully Bayesian inference in a class of species sampling models that are induced by residual allocation (sometimes called stick-breaking) priors on almost surely discrete random measures. This class provides a generalization of the well-known Ewens sampling formula that allows for additional flexibility while retaining computational tractability. In particular, the procedure is used to derive the exchangeable predictive probability functions associated with the generalized Dirichlet process of Hjort (2000) and the probit stick-breaking prior of Chung and Dunson (2009) and Rodriguez and Dunson (2011). The procedure is illustrated with applications to genetics and nonparametric mixture modeling. PMID:25477705

  20. On species sampling sequences induced by residual allocation models

    PubMed Central

    Rodríguez, Abel; Quintana, Fernando A.

    2014-01-01

    We discuss fully Bayesian inference in a class of species sampling models that are induced by residual allocation (sometimes called stick-breaking) priors on almost surely discrete random measures. This class provides a generalization of the well-known Ewens sampling formula that allows for additional flexibility while retaining computational tractability. In particular, the procedure is used to derive the exchangeable predictive probability functions associated with the generalized Dirichlet process of Hjort (2000) and the probit stick-breaking prior of Chung and Dunson (2009) and Rodriguez and Dunson (2011). The procedure is illustrated with applications to genetics and nonparametric mixture modeling. PMID:25477705

  1. Modeling Transformations of Neurodevelopmental Sequences across Mammalian Species

    PubMed Central

    Workman, Alan D.; Charvet, Christine J.; Clancy, Barbara; Darlington, Richard B.

    2013-01-01

    A general model of neural development is derived to fit 18 mammalian species, including humans, macaques, several rodent species, and six metatherian (marsupial) mammals. The goal of this work is to describe heterochronic changes in brain evolution within its basic developmental allometry, and provide an empirical basis to recognize equivalent maturational states across animals. The empirical data generating the model comprises 271 developmental events, including measures of initial neurogenesis, axon extension, establishment, and refinement of connectivity, as well as later events such as myelin formation, growth of brain volume, and early behavioral milestones, to the third year of human postnatal life. The progress of neural events across species is sufficiently predictable that a single model can be used to predict the timing of all events in all species, with a correlation of modeled values to empirical data of 0.9929. Each species' rate of progress through the event scale, described by a regression equation predicting duration of development in days, is highly correlated with adult brain size. Neural heterochrony can be seen in selective delay of retinogenesis in the cat, associated with greater numbers of rods in its retina, and delay of corticogenesis in all species but rodents and the rabbit, associated with relatively larger cortices in species with delay. Unexpectedly, precocial mammals (those unusually mature at birth) delay the onset of first neurogenesis but then progress rapidly through remaining developmental events. PMID:23616543

  2. Modeling transformations of neurodevelopmental sequences across mammalian species.

    PubMed

    Workman, Alan D; Charvet, Christine J; Clancy, Barbara; Darlington, Richard B; Finlay, Barbara L

    2013-04-24

    A general model of neural development is derived to fit 18 mammalian species, including humans, macaques, several rodent species, and six metatherian (marsupial) mammals. The goal of this work is to describe heterochronic changes in brain evolution within its basic developmental allometry, and provide an empirical basis to recognize equivalent maturational states across animals. The empirical data generating the model comprises 271 developmental events, including measures of initial neurogenesis, axon extension, establishment, and refinement of connectivity, as well as later events such as myelin formation, growth of brain volume, and early behavioral milestones, to the third year of human postnatal life. The progress of neural events across species is sufficiently predictable that a single model can be used to predict the timing of all events in all species, with a correlation of modeled values to empirical data of 0.9929. Each species' rate of progress through the event scale, described by a regression equation predicting duration of development in days, is highly correlated with adult brain size. Neural heterochrony can be seen in selective delay of retinogenesis in the cat, associated with greater numbers of rods in its retina, and delay of corticogenesis in all species but rodents and the rabbit, associated with relatively larger cortices in species with delay. Unexpectedly, precocial mammals (those unusually mature at birth) delay the onset of first neurogenesis but then progress rapidly through remaining developmental events. PMID:23616543

  3. Combining next-generation sequencing and online databases for microsatellite development in non-model organisms.

    PubMed

    Rico, Ciro; Normandeau, Eric; Dion-Côté, Anne-Marie; Rico, María Inés; Côté, Guillaume; Bernatchez, Louis

    2013-01-01

    Next-generation sequencing (NGS) is revolutionising marker development and the rapidly increasing amount of transcriptomes published across a wide variety of taxa is providing valuable sequence databases for the identification of genetic markers without the need to generate new sequences. Microsatellites are still the most important source of polymorphic markers in ecology and evolution. Motivated by our long-term interest in the adaptive radiation of a non-model species complex of whitefishes (Coregonus spp.), in this study, we focus on microsatellite characterisation and multiplex optimisation using transcriptome sequences generated by Illumina® and Roche-454, as well as online databases of Expressed Sequence Tags (EST) for the study of whitefish evolution and demographic history. We identified and optimised 40 polymorphic loci in multiplex PCR reactions and validated the robustness of our analyses by testing several population genetics and phylogeographic predictions using 494 fish from five lakes and 2 distinct ecotypes. PMID:24296905

  4. Combining next-generation sequencing and online databases for microsatellite development in non-model organisms

    PubMed Central

    Rico, Ciro; Normandeau, Eric; Dion-Côté, Anne-Marie; Rico, María Inés; Côté, Guillaume; Bernatchez, Louis

    2013-01-01

    Next-generation sequencing (NGS) is revolutionising marker development and the rapidly increasing amount of transcriptomes published across a wide variety of taxa is providing valuable sequence databases for the identification of genetic markers without the need to generate new sequences. Microsatellites are still the most important source of polymorphic markers in ecology and evolution. Motivated by our long-term interest in the adaptive radiation of a non-model species complex of whitefishes (Coregonus spp.), in this study, we focus on microsatellite characterisation and multiplex optimisation using transcriptome sequences generated by Illumina® and Roche-454, as well as online databases of Expressed Sequence Tags (EST) for the study of whitefish evolution and demographic history. We identified and optimised 40 polymorphic loci in multiplex PCR reactions and validated the robustness of our analyses by testing several population genetics and phylogeographic predictions using 494 fish from five lakes and 2 distinct ecotypes. PMID:24296905

  5. Reactive Secondary Sequence Oxidative Pathology Polymer Model and Antioxidant Tests

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Aims To provide common Organic Chemistry/Polymer Science thermoset free-radical crosslinking Sciences for Medical understanding and also present research findings for several common vitamins/antioxidants with a new class of drugs known as free-radical inhibitors. Study Design Peroxide/Fenton transition-metal redox couples that generate free radicals were combined with unsaturated lipid oils to demonstrate thermoset-polymer chain growth by crosslinking with the α-β-unsaturated aldehyde acrolein into rubbery/adhesive solids. Further, Vitamin A and beta carotene were similarly studied for crosslink pathological potential. Also, free-radical inhibitor hydroquinone was compared for antioxidant capability with Vitamin E. Place and Duration of Study Department of Materials Science and Engineering and Department of Biomaterials, University of Alabama at Birmingham, between June 2005 and August 2012. Methodology Observations were recorded for Fenton free-radical crosslinking of unsaturated lipids and vitamin A/beta carotene by photography further with weight measurements and percent-shrinkage testing directly related to covalent crosslinking of unsaturated lipids recorded over time with different concentrations of acrolein. Also, hydroquinone and vitamin E were compared at concentrations from 0.0–7.3wt% as antioxidants for reductions in percent-shrinkage measurements, n = 5. Results Unsaturated lipid oils responded to Fenton thermoset-polymer reactive secondary sequence reactions only by acrolein with crosslinking into rubbery-type solids and different non-solid gluey products. Further, molecular oxygen crosslinking was demonstrated with lipid peroxidation and acrolein at specially identified margins. By peroxide/Fenton free-radical testing, both vitamin A and beta-carotene demonstrated possible pathology chemistry for chain-growth crosslinking. During lipid/acrolein testing over a 50 hour time period at 7.3wt% antioxidants, hydroquinone significantly reduced percent

  6. Non-homogeneous models of sequence evolution in the Bio++ suite of libraries and programs

    PubMed Central

    2008-01-01

    Background Accurately modeling the sequence substitution process is required for the correct estimation of evolutionary parameters, be they phylogenetic relationships, substitution rates or ancestral states; it is also crucial to simulate realistic data sets. Such simulation procedures are needed to estimate the null-distribution of complex statistics, an approach referred to as parametric bootstrapping, and are also used to test the quality of phylogenetic reconstruction programs. It has often been observed that homologous sequences can vary widely in their nucleotide or amino-acid compositions, revealing that sequence evolution has changed importantly among lineages, and may therefore be most appropriately approached through non-homogeneous models. Several programs implementing such models have been developed, but they are limited in their possibilities: only a few particular models are available for likelihood optimization, and data sets cannot be easily generated using the resulting estimated parameters. Results We hereby present a general implementation of non-homogeneous models of substitutions. It is available as dedicated classes in the Bio++ libraries and can hence be used in any C++ program. Two programs that use these classes are also presented. The first one, Bio++ Maximum Likelihood (BppML), estimates parameters of any non-homogeneous model and the second one, Bio++ Sequence Generator (BppSeqGen), simulates the evolution of sequences from these models. These programs allow the user to describe non-homogeneous models through a property file with a simple yet powerful syntax, without any programming required. Conclusion We show that the general implementation introduced here can accommodate virtually any type of non-homogeneous models of sequence evolution, including heterotachous ones, while being computer efficient. We furthermore illustrate the use of such general models for parametric bootstrapping, using tests of non-homogeneity applied to an

  7. Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants

    PubMed Central

    Unamba, Chibuikem I. N.; Nag, Akshay; Sharma, Ram K.

    2015-01-01

    Non-model plants i.e., the species which have one or all of the characters such as long life cycle, difficulty to grow in the laboratory or poor fecundity, have been schemed out of sequencing projects earlier, due to high running cost of Sanger sequencing. Consequently, the information about their genomics and key biological processes are inadequate. However, the advent of fast and cost effective next generation sequencing (NGS) platforms in the recent past has enabled the unearthing of certain characteristic gene structures unique to these species. It has also aided in gaining insight about mechanisms underlying processes of gene expression and secondary metabolism as well as facilitated development of genomic resources for diversity characterization, evolutionary analysis and marker assisted breeding even without prior availability of genomic sequence information. In this review we explore how different Next Gen Sequencing platforms, as well as recent advances in NGS based high throughput genotyping technologies are rewarding efforts on de-novo whole genome/transcriptome sequencing, development of genome wide sequence based markers resources for improvement of non-model crops that are less costly than phenotyping. PMID:26734016

  8. Antibody-specific model of amino acid substitution for immunological inferences from alignments of antibody sequences.

    PubMed

    Mirsky, Alexander; Kazandjian, Linda; Anisimova, Maria

    2015-03-01

    Antibodies are glycoproteins produced by the immune system as a dynamically adaptive line of defense against invading pathogens. Very elegant and specific mutational mechanisms allow B lymphocytes to produce a large and diversified repertoire of antibodies, which is modified and enhanced throughout all adulthood. One of these mechanisms is somatic hypermutation, which stochastically mutates nucleotides in the antibody genes, forming new sequences with different properties and, eventually, higher affinity and selectivity to the pathogenic target. As somatic hypermutation involves fast mutation of antibody sequences, this process can be described using a Markov substitution model of molecular evolution. Here, using large sets of antibody sequences from mice and humans, we infer an empirical amino acid substitution model AB, which is specific to antibody sequences. Compared with existing general amino acid models, we show that the AB model provides significantly better description for the somatic evolution of mice and human antibody sequences, as demonstrated on large next generation sequencing (NGS) antibody data. General amino acid models are reflective of conservation at the protein level due to functional constraints, with most frequent amino acids exchanges taking place between residues with the same or similar physicochemical properties. In contrast, within the variable part of antibody sequences we observed an elevated frequency of exchanges between amino acids with distinct physicochemical properties. This is indicative of a sui generis mutational mechanism, specific to antibody somatic hypermutation. We illustrate this property of antibody sequences by a comparative analysis of the network modularity implied by the AB model and general amino acid substitution models. We recommend using the new model for computational studies of antibody sequence maturation, including inference of alignments and phylogenetic trees describing antibody somatic hypermutation in

  9. Mouse Genome Database: from sequence to phenotypes and disease models

    PubMed Central

    Eppig, Janan T.; Richardson, Joel E.; Kadin, James A.; Smith, Cynthia L.; Blake, Judith A.; Bult, Carol J.

    2015-01-01

    The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here we describe the data acquisition process, specifics about MGD’s key data areas, methods to access and query MGD data, and outreach and user help facilities. PMID:26150326

  10. Mouse Genome Database: From sequence to phenotypes and disease models.

    PubMed

    Eppig, Janan T; Richardson, Joel E; Kadin, James A; Smith, Cynthia L; Blake, Judith A; Bult, Carol J

    2015-08-01

    The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. PMID:26150326

  11. Object relations theory and activity theory: a proposed link by way of the procedural sequence model.

    PubMed

    Ryle, A

    1991-12-01

    An account of object relations theory (ORT), represented in terms of the procedural sequence model (PSM), is compared to the ideas of Vygotsky and activity theory (AT). The two models are seen to be compatible and complementary and their combination offers a satisfactory account of human psychology, appropriate for the understanding and integration of psychotherapy. PMID:1786224

  12. Sequence-Based Pronunciation Variation Modeling for Spontaneous ASR Using a Noisy Channel Approach

    NASA Astrophysics Data System (ADS)

    Hofmann, Hansjörg; Sakti, Sakriani; Hori, Chiori; Kashioka, Hideki; Nakamura, Satoshi; Minker, Wolfgang

    The performance of English automatic speech recognition systems decreases when recognizing spontaneous speech mainly due to multiple pronunciation variants in the utterances. Previous approaches address this problem by modeling the alteration of the pronunciation on a phoneme to phoneme level. However, the phonetic transformation effects induced by the pronunciation of the whole sentence have not yet been considered. In this article, the sequence-based pronunciation variation is modeled using a noisy channel approach where the spontaneous phoneme sequence is considered as a “noisy” string and the goal is to recover the “clean” string of the word sequence. Hereby, the whole word sequence and its effect on the alternation of the phonemes will be taken into consideration. Moreover, the system not only learns the phoneme transformation but also the mapping from the phoneme to the word directly. In this study, first the phonemes will be recognized with the present recognition system and afterwards the pronunciation variation model based on the noisy channel approach will map from the phoneme to the word level. Two well-known natural language processing approaches are adopted and derived from the noisy channel model theory: Joint-sequence models and statistical machine translation. Both of them are applied and various experiments are conducted using microphone and telephone of spontaneous speech.

  13. Triggering processes of earthquake bursts in Japan: evidence from statistical modeling

    NASA Astrophysics Data System (ADS)

    Chen, X.; Kato, A.

    2013-12-01

    We search for spatial-temporal isolated earthquake bursts across Japan using the JMA catalog from 2000 to 2013. For each identified burst, we obtain a set of parameters, which include: Δσquasi (ratio between total moment release and volume of the burst), tmax, duration, radius, planarity and dip. A total of 290 bursts are identified, and 90 bursts exhibit 'repeating-like' feature: they tend to occur within 2 km of at least one other burst. Bursts with tmax ≥ 0.05 exhibit significantly longer duration and lower Δσquasi. To understand the temporal evolution of possible external stressing rate change, we select 18 areas through examination of 'repeating' bursts, and apply ETAS model to all earthquakes in each area with magnitude ≥ Mc (local). We compare models with constant background seismicity rate μ0 and time varying μ(t), the latter general produce higher likelihood (better fit to observations). All the 18 areas feature high background seismicity fraction, ranging from 37% to 91%. Variations in background seismicity rate range 1-to-4 orders of magnitude. Increased aftershock productivity α (range from 0.9 to 1.5) is generally observed for models with μ(t). For earthquakes within the Izu-Tobu volcanic area and during the 2000 Miyakijima eruption, extremely fast Omori's-law aftershock decay (p > 3) and high background fraction (≥ 90%) are observed. Seismicity in the two areas is almost entirely related to dike intrusion processes with very little earthquake interaction, and the high p-value may relate to the strong stress heterogeneity or temperature. The background seismicity rates in the 18 areas are usually superimposition of smooth-shaped slow transient process and pulse-like sudden onset with exponential decay. For comparison, we obtain ETAS parameters for six shallow crustal mainshock-aftershock sequences with Mw ≥ 6.5, and include earthquakes prior to mainshocks for modeling. These sequences all feature higher aftershock productivity (α>2

  14. Precision Measurements of the Cluster Red Sequence using an Error Corrected Gaussian Mixture Model

    SciTech Connect

    Hao, Jiangang; Koester, Benjamin P.; Mckay, Timothy A.; Rykoff, Eli S.; Rozo, Eduardo; Evrard, August; Annis, James; Becker, Matthew; Busha, Michael; Gerdes, David; Johnston, David E.; /Northwestern U. /Brookhaven

    2009-07-01

    The red sequence is an important feature of galaxy clusters and plays a crucial role in optical cluster detection. Measurement of the slope and scatter of the red sequence are affected both by selection of red sequence galaxies and measurement errors. In this paper, we describe a new error corrected Gaussian Mixture Model for red sequence galaxy identification. Using this technique, we can remove the effects of measurement error and extract unbiased information about the intrinsic properties of the red sequence. We use this method to select red sequence galaxies in each of the 13,823 clusters in the maxBCG catalog, and measure the red sequence ridgeline location and scatter of each. These measurements provide precise constraints on the variation of the average red galaxy populations in the observed frame with redshift. We find that the scatter of the red sequence ridgeline increases mildly with redshift, and that the slope decreases with redshift. We also observe that the slope does not strongly depend on cluster richness. Using similar methods, we show that this behavior is mirrored in a spectroscopic sample of field galaxies, further emphasizing that ridgeline properties are independent of environment. These precise measurements serve as an important observational check on simulations and mock galaxy catalogs. The observed trends in the slope and scatter of the red sequence ridgeline with redshift are clues to possible intrinsic evolution of the cluster red-sequence itself. Most importantly, the methods presented in this work lay the groundwork for further improvements in optically-based cluster cosmology.

  15. Genome sequence of the model mushroom Schizophyllum commune

    SciTech Connect

    Ohm, Robin A.; de Jong, Jan F.; Lugones, Luis G.; Aerts, Andrea; Kothe, Erika; Stajich, Jason E.; de Vries, Ronald P.; Record, Eric; Levasseur, Anthony; Baker, Scott E.; Bartholomew, Kirk A.; Coutinho, Pedro M.; Erdmann, Susann; Fowler, Thomas J.; Gathman, Allen C.; Lombard, Vincent; Henrissat, Bernard; Knabe, Nicole; Kues, Ursula; Lilly, Walt; Lindquist, Erika; Lucas, Susan; Magnuson, Jon K.; Piumi, Francois; Raudaskoski, Marjatta; Salamov, Asaf; Schmutz, Jeremy; Schwarze, Francis W.; vanKuyk, Patricia A.; Horton, J. S.; Grigoriev, Igor V.; Wosten, Han

    2010-09-01

    Much remains to be learned about the biology of mushroom-forming fungi, which are an important source of food, secondary metabolites and industrial enzymes. The wood-degrading fungus Schizophyllum commune is both a genetically tractable model for studying mushroom development and a likely source of enzymes capable of efficient degradation of lignocellulosic biomass. Comparative analyses of its 38.5-megabase genome, which encodes 13,210 predicted genes, reveal the species's unique wood-degrading machinery. One-third of the 471 genes predicted to encode transcription factors are differentially expressed during sexual development of S. commune. Whereas inactivation of one of these, fst4, prevented mushroom formation, inactivation of another, fst3, resulted in more, albeit smaller, mushrooms than in the wild-type fungus. Antisense transcripts may also have a role in the formation of fruiting bodies. Better insight into the mechanisms underlying mushroom formation should affect commercial production of mushrooms and their industrial use for producing enzymes and pharmaceuticals.

  16. Online homology modelling as a means of bridging the sequence-structure gap.

    PubMed

    Sheehan, David; O'Sullivan, Siobhán

    2011-01-01

    For even the best-studied species, there is a large gap in their representation in the protein databank (PDB) compared to within sequence databases. Typically, less than 2% of sequences are represented in the PDB. This is partly due to the considerable experimental challenge and manual inputs required to solve three dimensional structures by methods such as X-ray diffraction and multi-dimensional nuclear magnetic resonance (NMR) spectroscopy in comparison to high-throughput sequencing. This gap is made even wider by the high level of redundancy within the PDB and under-representation of some protein categories such as membrane-associated proteins which comprise approximately 25% of proteins encoded in genomes. A traditional route to closing the sequence-structure gap is offered by homology modelling whereby the sequence of a target protein is modelled on a template represented in the PDB using in silico energy minimisation approaches. More recently, online homology servers have become available which automatically generate models from proffered sequences. However, many online servers give little indication of the structural plausibility of the generated model. In this paper, the online homology server Geno3D will be described. This server uses similar software to that used in modelling structures during structure determination and thus generates data allowing determination of the structural plausibility of models. For illustration, modelling of a chemotaxis protein (CheY) from Pseudomononas entomophila L48 (accession YP_609298) on a template (PDB id. 1mvo), the phosphorylation domain of an outer membrane protein PhoP from Bacillus subtilis, will be described. PMID:22064508

  17. A nonlinear dynamic model of DNA with a sequence-dependent stacking term

    PubMed Central

    Alexandrov, Boian S.; Gelev, Vladimir; Monisova, Yevgeniya; Alexandrov, Ludmil B.; Bishop, Alan R.; Rasmussen, Kim Ø.; Usheva, Anny

    2009-01-01

    No simple model exists that accurately describes the melting behavior and breathing dynamics of double-stranded DNA as a function of nucleotide sequence. This is especially true for homogenous and periodic DNA sequences, which exhibit large deviations in melting temperature from predictions made by additive thermodynamic contributions. Currently, no method exists for analysis of the DNA breathing dynamics of repeats and of highly G/C- or A/T-rich regions, even though such sequences are widespread in vertebrate genomes. Here, we extend the nonlinear Peyrard–Bishop–Dauxois (PBD) model of DNA to include a sequence-dependent stacking term, resulting in a model that can accurately describe the melting behavior of homogenous and periodic sequences. We collect melting data for several DNA oligos, and apply Monte Carlo simulations to establish force constants for the 10 dinucleotide steps (CG, CA, GC, AT, AG, AA, AC, TA, GG, TC). The experiments and numerical simulations confirm that the GG/CC dinucleotide stacking is remarkably unstable, compared with the stacking in GC/CG and CG/GC dinucleotide steps. The extended PBD model will facilitate thermodynamic and dynamic simulations of important genomic regions such as CpG islands and disease-related repeats. PMID:19264801

  18. Estimating Genomic Distance from DNA Sequence Location in Cell Nuclei by a Random Walk Model

    NASA Astrophysics Data System (ADS)

    van den Engh, Ger; Sachs, Rainer; Trask, Barbara J.

    1992-09-01

    The folding of chromatin in interphase cell nuclei was studied by fluorescent in situ hybridization with pairs of unique DNA sequence probes. The sites of DNA sequences separated by 100 to 2000 kilobase pairs (kbp) are distributed in interphase chromatin according to a random walk model. This model provides the basis for calculating the spacing of sequences along the linear DNA molecule from interphase distance measurements. An interphase mapping strategy based on this model was tested with 13 probes from a 4-megabase pair (Mbp) region of chromosome 4 containing the Huntington disease locus. The results confirmed the locations of the probes and showed that the remaining gap in the published maps of this region is negligible in size. Interphase distance measurements should facilitate construction of chromosome maps with an average marker density of one per 100 kbp, approximately ten times greater than that achieved by hybridization to metaphase chromosomes.

  19. Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model

    SciTech Connect

    Engh, G. van den; Trask, B.J. ); Sachs, R. )

    1992-09-04

    The folding of chromatin in interphase cell nuclei was studied by fluorescent in situ hybridization with pairs of unique DNA sequence probes. The sites of DNA sequences separated by 100 to 2000 kilobase pairs (kbp) are distributed in interphase chromatin according to a random walk model. This model provides the basis for calculating the spacing of sequences along the linear DNA molecule from interphase distance measurements. An interphase mapping strategy based on this model was tested with 13 probes from a 4-megabase pair (Mbp) region of chromosome 4 containing the Huntington disease locus. The results confirmed the locations of the probes and showed that the remaining gap in the published maps of this region is negligible in size. Interphase distance measurements should facilitate construction of chromosome maps with an average marker density of one per 100 kbp, approximately ten times greater than that achieved by hybridization to metaphase chromosomes.

  20. Modeling Pseudorandom Sequence Generators using Cellular Automata: The Alternating Step Generator

    NASA Astrophysics Data System (ADS)

    Pazo-Robles, María Eugenia; Fúster-Sabater, Amparo

    2007-12-01

    Stream ciphers are pseudorandom bit generators whose output sequences are combined with the sensitive information by means of a mathematical function currently an addition module 2. The Alternating Step Generator is a pseudorandom sequence generator with good cryptographic properties and non-linear structure. In this work, we propose two different ways to model such a generator by using linear and discrete mathematical functions e.g. Cellular Automata. One of these ways deals with the realization of a linear model from a pair of basic automata provided by the Catell and Muzio algorithm. The other way is a new approach based on automata's addition consisting in the realization of a new automaton with non-primitive polynomial and short length. Both methods provide linear models able to generate the output sequence of the Alternating Step Generator.

  1. On Sequence Learning Models: Open-loop Control Not Strictly Guided by Hick's Law.

    PubMed

    Pavão, Rodrigo; Savietto, Joice P; Sato, João R; Xavier, Gilberto F; Helene, André F

    2016-01-01

    According to the Hick's law, reaction times increase linearly with the uncertainty of target stimuli. We tested the generality of this law by measuring reaction times in a human sequence learning protocol involving serial target locations which differed in transition probability and global entropy. Our results showed that sigmoid functions better describe the relationship between reaction times and uncertainty when compared to linear functions. Sequence predictability was estimated by distinct statistical predictors: conditional probability, conditional entropy, joint probability and joint entropy measures. Conditional predictors relate to closed-loop control models describing that performance is guided by on-line access to past sequence structure to predict next location. Differently, joint predictors relate to open-loop control models assuming global access of sequence structure, requiring no constant monitoring. We tested which of these predictors better describe performance on the sequence learning protocol. Results suggest that joint predictors are more accurate than conditional predictors to track performance. In conclusion, sequence learning is better described as an open-loop process which is not precisely predicted by Hick's law. PMID:26975409

  2. On Sequence Learning Models: Open-loop Control Not Strictly Guided by Hick’s Law

    PubMed Central

    Pavão, Rodrigo; Savietto, Joice P.; Sato, João R.; Xavier, Gilberto F.; Helene, André F.

    2016-01-01

    According to the Hick’s law, reaction times increase linearly with the uncertainty of target stimuli. We tested the generality of this law by measuring reaction times in a human sequence learning protocol involving serial target locations which differed in transition probability and global entropy. Our results showed that sigmoid functions better describe the relationship between reaction times and uncertainty when compared to linear functions. Sequence predictability was estimated by distinct statistical predictors: conditional probability, conditional entropy, joint probability and joint entropy measures. Conditional predictors relate to closed-loop control models describing that performance is guided by on-line access to past sequence structure to predict next location. Differently, joint predictors relate to open-loop control models assuming global access of sequence structure, requiring no constant monitoring. We tested which of these predictors better describe performance on the sequence learning protocol. Results suggest that joint predictors are more accurate than conditional predictors to track performance. In conclusion, sequence learning is better described as an open-loop process which is not precisely predicted by Hick’s law. PMID:26975409

  3. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    SciTech Connect

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromeric regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops

  4. Identification and utilization of arbitrary correlations in models of recombination signal sequences

    PubMed Central

    Cowell, Lindsay G; Davila, Marco; Kepler, Thomas B; Kelsoe, Garnett

    2002-01-01

    Background A significant challenge in bioinformatics is to develop methods for detecting and modeling patterns in variable DNA sequence sites, such as protein-binding sites in regulatory DNA. Current approaches sometimes perform poorly when positions in the site do not independently affect protein binding. We developed a statistical technique for modeling the correlation structure in variable DNA sequence sites. The method places no restrictions on the number of correlated positions or on their spatial relationship within the site. No prior empirical evidence for the correlation structure is necessary. Results We applied our method to the recombination signal sequences (RSS) that direct assembly of B-cell and T-cell antigen-receptor genes via V(D)J recombination. The technique is based on model selection by cross-validation and produces models that allow computation of an information score for any signal-length sequence. We also modeled RSS using order zero and order one Markov chains. The scores from all models are highly correlated with measured recombination efficiencies, but the models arising from our technique are better than the Markov models at discriminating RSS from non-RSS. Conclusions Our model-development procedure produces models that estimate well the recombinogenic potential of RSS and are better at RSS recognition than the order zero and order one Markov models. Our models are, therefore, valuable for studying the regulation of both physiologic and aberrant V(D)J recombination. The approach could be equally powerful for the study of promoter and enhancer elements, splice sites, and other DNA regulatory sites that are highly variable at the level of individual nucleotide positions. PMID:12537561

  5. The 2008 Mw 6.0 Wells, Nevada Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Smith, K.; Depolo, D.; Torrisi, J.; Edwards, N.; Biasi, G.; Slater, D.

    2008-12-01

    The Mw 6.0 February 21, 2008 (06:16 AM PDT) Wells, Nevada normal faulting earthquake occurred in Town Creek Flat about 8 km northeast of the small community of Wells. A preliminary set of about 1000 aftershock relocations clearly defines a 55-60 degree southeast dipping fault plane. The structure projects to the surface along the southern end of the Snake Range, although no surface offsets have been identified. The earthquake occurred east of the Ruby Mountains and Snake Range west dipping range front faults, possibly on a northern extension of an east dipping normal fault system on the eastern side of the East Humbolt Range. The depth of the mainshock is estimated to be 10.5 km with the aftershock sequence extending to about 15 km. Typical of moderate sized Basin and Range earthquakes, the early aftershock period included several earthquakes of M > 4 and these were felt strongly by the residents of Wells. From the preliminary relocations, the source radius of the mainshock is estimated to be about 4 km, resulting in an estimated displacement of 55 to 83 cm and static stress drop of 72 to 86 bars, depending on the seismic moment estimate used. Aftershock relocations suggest a radial rupture mechanism. Fortunately, the EarthScope USArray network was operating in Nevada at the time of the event and provided unique controls on the mainshock and early aftershock locations. The earthquake occurred in an area of relatively low seismic hazard and the only permanent seismograph in the region was the U.S. National Network broadband station east of the Ruby Mountains south of Wells. The University of Utah and University of Nevada deployed locally recorded strong motion instruments in the Wells area. Also, an 8 station IP telemetered strong motion network, jointly deployed by the U.S. Geological Survey and University of Nevada Reno, provided real-time data for quick high-quality aftershock relocations and ground motion estimates. In addition, the University of Utah

  6. ToPS: a framework to manipulate probabilistic models of sequence data.

    PubMed

    Kashiwabara, André Yoshiaki; Bonadio, Igor; Onuchic, Vitor; Amado, Felipe; Mathias, Rafael; Durham, Alan Mitchell

    2013-01-01

    Discrete Markovian models can be used to characterize patterns in sequences of values and have many applications in biological sequence analysis, including gene prediction, CpG island detection, alignment, and protein profiling. We present ToPS, a computational framework that can be used to implement different applications in bioinformatics analysis by combining eight kinds of models: (i) independent and identically distributed process; (ii) variable-length Markov chain; (iii) inhomogeneous Markov chain; (iv) hidden Markov model; (v) profile hidden Markov model; (vi) pair hidden Markov model; (vii) generalized hidden Markov model; and (viii) similarity based sequence weighting. The framework includes functionality for training, simulation and decoding of the models. Additionally, it provides two methods to help parameter setting: Akaike and Bayesian information criteria (AIC and BIC). The models can be used stand-alone, combined in Bayesian classifiers, or included in more complex, multi-model, probabilistic architectures using GHMMs. In particular the framework provides a novel, flexible, implementation of decoding in GHMMs that detects when the architecture can be traversed efficiently. PMID:24098098

  7. Sequence-dependent dynamics of duplex DNA: the applicability of a dinucleotide model.

    PubMed Central

    Okonogi, T M; Alley, S C; Reese, A W; Hopkins, P B; Robinson, B H

    2002-01-01

    The short-time (submicrosecond) bending dynamics of duplex DNA were measured to determine the effect of sequence on dynamics. All measurements were obtained from a single site on duplex DNA, using a single, site-specific modified base containing a rigidly tethered, electron paramagnetic resonance active spin probe. The observed dynamics are interpreted in terms of single-step sequence-dependent bending force constants, determined from the mean squared amplitude of bending relative to the end-to-end vector using the modified weakly bending rod model. The bending dynamics at a single site are a function of the sequence of the nucleotides constituting the duplex DNA. We developed and examined several dinucleotide-based models for flexibility. The models indicate that the dominant feature of the dynamics is best explained in terms of purine- and pyrimidine-type steps, although distinction is made among all 10 unique steps: It was found that purine-purine steps (which are the same as pyrimidine-pyrimidine steps) were near average in flexibility, but the pyrimidine-purine steps (5' to 3') were nearly twice as flexible, whereas purine-pyrimidine steps were more than half as flexible as average DNA. Therefore, the range of stepwise flexibility is approximately fourfold and is characterized by both the type of base pair step (pyrimidine/purine combination) and the identity of the bases within the pair (G, A, T, or C). All of the four models considered here underscore the complexity of the dependence of dynamics on DNA sequence with certain sequences not satisfactorily explainable in terms of any dinucleotide model. These findings provide a quantitative basis for interpreting the dynamics and kinetics of DNA-sequence-dependent biological processes, including protein recognition and chromatin packaging. PMID:12496111

  8. Estimating seismic site response in Christchurch City (New Zealand) from dense low-cost aftershock arrays

    USGS Publications Warehouse

    Kaiser, Anna E.; Benites, Rafael A.; Chung, Angela I.; Haines, A. John; Cochran, Elizabeth S.; Fry, Bill

    2011-01-01

    The Mw 7.1 September 2010 Darfield earthquake, New Zealand, produced widespread damage and liquefaction ~40 km from the epicentre in Christchurch city. It was followed by the even more destructive Mw 6.2 February 2011 Christchurch aftershock directly beneath the city’s southern suburbs. Seismic data recorded during the two large events suggest that site effects contributed to the variations in ground motion observed throughout Christchurch city. We use densely-spaced aftershock recordings of the Darfield earthquake to investigate variations in local seismic site response within the Christchurch urban area. Following the Darfield main shock we deployed a temporary array of ~180 low-cost 14-bit MEMS accelerometers linked to the global Quake-Catcher Network (QCN). These instruments provided dense station coverage (spacing ~2 km) to complement existing New Zealand national network strong motion stations (GeoNet) within Christchurch city. Well-constrained standard spectral ratios were derived for GeoNet stations using a reference station on Miocene basalt rock in the south of the city. For noisier QCN stations, the method was adapted to find a maximum likelihood estimate of spectral ratio amplitude taking into account the variance of noise at the respective stations. Spectral ratios for QCN stations are similar to nearby GeoNet stations when the maximum likelihood method is used. Our study suggests dense low-cost accelerometer aftershock arrays can provide useful information on local-scale ground motion properties for use in microzonation. Preliminary results indicate higher amplifications north of the city centre and strong high-frequency amplification in the small, shallower basin of Heathcote Valley.

  9. The March-April 2014 sequence of earthquakes in North Chile

    NASA Astrophysics Data System (ADS)

    Ashtari Jafari, Mohammad

    2015-10-01

    During March-April 2014 a series of earthquakes occurred around the Iquique city located in the northern Chile region. The two largest events of this sequence are the Mw8.2, April 1, 2014 and Mw7.7, April 4, 2014 quakes. Here we computed the nodal planes of eight of the large and well teleseismically recorded events of this series based on grid search, teleseismic moment tensors inversion, empirical Green's function deconvolution and its stack to average the deconvolutions for the Mw = 8.2, April 1, 2014, synthetic Green's function deconvolution and its stack to average the deconvolutions for the same event and 3D static deformation analysis of the above mentioned events based on the AK135 model. Grid search nodal planes and moment tensors suggest the dominance of reverse faulting. Almost all of the calculated teleseismic moment tensors represent a considerable amount of DC (usually more than 90%) and lower amount of CLVD for this sequence of events. Empirical and synthetic Green's function deconvolution showing down dip rupture propagation and 3D static deformation representing higher amount of vertical deformation in comparison with horizontal deformation components plus the existence of uplift and subsidence. According to the aftershocks distribution there is a bilateral distribution of the aftershocks around the first large event of this sequence that occurred March 16, 2014 (Mw6.7) so that they are approximately limited between the Mw8.2 (at north) and Mw7.7 (at south) quakes. Moreover there exist two bands of regional seismicity during early-mid 2014: a shallow off-shore band between the trench and coast and a deeper inland band under the active volcanic chain (both nearly parallel to the trench).

  10. Coda Q in the Kachchh Basin, Western India Using Aftershocks of the Bhuj Earthquake of January 26, 2001

    NASA Astrophysics Data System (ADS)

    Gupta, S. C.; Kumar, Ashwani; Shukla, A. K.; Suresh, G.; Baidya, P. R.

    2006-08-01

    Q C -estimates of Kachchh Basin in western India have been obtained in a high frequency range from 1.5 to 24.0 Hz using the aftershock data of Bhuj earthquake of January 26, 2001 recorded within an epicentral distance of 80 km. The decay of coda waves of 30 sec window from 186 seismograms has been analysed in four lapse time windows, adopting the single backscattering model. The study shows that Q c is a function of frequency and increases as frequency increases. The frequency dependent Q c relations obtained for four lapse-time windows are: Q c =82 f 1.17 (20 50 sec), Q c =106 f 1.11 (30 60 sec), Q c =126f 1.03 (40 70 sec) and Q c =122f 1.02 (50 80 sec). These empirical relations represent the average attenuation properties of a zone covering the surface area of about 11,000, 20,000, 28,000 and 38,000 square km and a depth extent of about 60, 80, 95, 110 km, respectively. With increasing window length, the degree of frequency dependence, n, decreases marginally from 1.17 to 1.02, whereas Q 0 increases significantly from 82 to 122. At lower frequencies up to 6 Hz, Q c -1 of Kachchh Basin is in agreement with other regions of the world, whereas at higher frequencies from 12 to 24 Hz it is found to be low.

  11. Stellar models of multiple populations in globular clusters - I. The main sequence of NGC 6752

    NASA Astrophysics Data System (ADS)

    Dotter, Aaron; Ferguson, Jason W.; Conroy, Charlie; Milone, A. P.; Marino, A. F.; Yong, David

    2015-01-01

    We present stellar atmosphere and evolution models of main-sequence stars in two stellar populations of the Galactic globular cluster NGC 6752. These populations represent the two extremes of light-element abundance variations in the cluster. NGC 6752 is a benchmark cluster in the study of multiple stellar populations because of the rich array of spectroscopic abundances and panchromatic Hubble Space Telescope photometry. The spectroscopic abundances are used to compute stellar atmosphere and evolution models. The synthetic spectra for the two populations show significant differences in the ultraviolet and, for the coolest temperatures, in the near-infrared. The stellar evolution models exhibit insignificant differences in the Hertzsprung-Russell (H-R) diagram except on the lower main sequence. The appearance of multiple sequences in the colour-magnitude diagrams (CMDs) of NGC 6752 is almost exclusively due to spectral effects caused by the abundance variations. The models reproduce the observed splitting and/or broadening of sequences in a range of CMDs. The ultraviolet CMDs are sensitive to variations in carbon, nitrogen, and oxygen but the models are not reliable enough to directly estimate abundance variations from photometry. On the other hand, the widening of the lower main sequence in the near-infrared CMD, driven by oxygen variation via the water molecule, is well described by the models and can be used to estimate the range of oxygen present in a cluster from photometry. We confirm that it is possible to use multiband photometry to estimate helium variations among the different populations, with the caveat that the estimated amount of helium enhancement is model dependent.

  12. Aftershock Imaging with Dense Arrays (AIDA): Results and lessons learned from the dense deployment of EarthScope portable instruments following the August 23, 2011, Mw 5.8, Virginia Earthquake

    NASA Astrophysics Data System (ADS)

    Brown, L. D.; Davenport, K.; Quiros, D. A.; Hole, J. A.; Han, L.; Horowitz, F. G.; Chen, C.; Mooney, W. D.; Barnhart, W. D.; Lohman, R.; Bastien, P.; Fennig, N.; Ferguson, A.

    2012-12-01

    The Mw 5.8 Virginia earthquake of August 23, 2011, provided an opportunity to explore the feasibility of deploying large numbers of portable seismographs at close spacing to record aftershocks and the value of their recordings for improved characterization of the rupture process and structure in the hypocentral region. The main event, which occurred in the previously recognized "Central Virginia Seismic Zone", had a NE-striking reverse focal mechanism, hypocentral depth of 6 km (USGS). As this event passes with ca. 15 km of a NW-SE oriented deep seismic reflection profile contracted in 1981 by the USGS, there exists a rare opportunity for the eastern U.S. to link seismicity. The preliminary hypocentral estimate suggests that the earthquake occurred within a complex zone of east-dipping reflections that define an imbricated Paleozoic thrust sheet of the central Appalachian Piedmont that is underlain by Grenville basement at a depth of ca. 9 km. On August 27, 2011, four days after the main shock, we deployed 103 portable "Texan" one component, short-period recorders along two linear profiles over the hypocentral zone. An additional 105 "Texan" instruments were added six days later to extend the array more directly over the aftershock zone and along a regional NE-SW profile. The latter employed three component sensors to quantify regional attenuation characteristics of both P and S waves. Our initial analyses has focused on the contribution of the dense arrays to a) lowering the threshold for detecting/locating aftershocks b) improving hypocentral locations , c) computing more detailed velocity models (e.g. via tomography), and d) imaging crustal structure within and below the hypocenters using reflection P and S phases. Of particular interest was evaluating the usefulness of interferometric techniques by treating the aftershocks as a distributed "ambient noise" source. In addition to confirming our original expectations regarding improved event detection

  13. Oxygen-enhanced models for globular cluster stars. III - Horizontal-branch sequences

    NASA Technical Reports Server (NTRS)

    Dorman, Ben

    1992-01-01

    A large grid of horizontal-branch (HB) evolutionary sequences which have been calculated with core expansion and semiconvection and with enhanced oxygen composition are presented and described. Tracks for 10 different metallicities are computed; they range from (Fe/H) = -0.47 to -2.26 and comprise a total of 115 sequences. The evolution is traced from the zero-age horizontal-branch (ZAHB) to the lower AGB at a point where log L/solar luminosity = 2.25. All of the sequences are illustrated on both the theoretical H-R diagram and on the B, V color-magnitude diagram. A complete set of tables for the ZAHB models and a representative sample of tabulations of the track parameters are provided. The phenomena which control HB evolution morphology, and existing certainties in theoretical HB models are discussed.

  14. Geotechnical effects of the 2015 magnitude 7.8 Gorkha, Nepal, earthquake and aftershocks

    USGS Publications Warehouse

    Moss, Robb E S; Thompson, Eric; Kieffer, D Scott; Tiwari, Binod; Hashash, Youssef M A; Acharya, Indra; Adhikari, Basanta; Asimaki, Domniki; Clahan, Kevin B.; Collins, Brian D.; Dahal, Sachindra; Jibson, Randall W.; Khadka, Diwakar; Macdonald, Amy; Madugo, Chris L M; Mason, H Benjamin; Pehlivan, Menzer; Rayamajhi, Deepak; Uprety, Sital

    2015-01-01

    This article summarizes the geotechnical effects of the 25 April 2015 M 7.8 Gorkha, Nepal, earthquake and aftershocks, as documented by a reconnaissance team that undertook a broad engineering and scientific assessment of the damage and collected perishable data for future analysis. Brief descriptions are provided of ground shaking, surface fault rupture, landsliding, soil failure, and infrastructure performance. The goal of this reconnaissance effort, led by Geotechnical Extreme Events Reconnaissance, is to learn from earthquakes and mitigate hazards in future earthquakes.

  15. Seismic amplitude measurements suggest foreshocks have different focal mechanisms than aftershocks.

    PubMed

    Lindh, A; Fuis, G; Mantis, C

    1978-07-01

    The ratio of the amplitudes of P and S waves from the foreshocks and aftershocks to three recent California earthquakes show a characteristic change at the time of the main events. As this ratio is extremely sensitive to small changes in the orientation of the fault plane, a small systematic change in stress or fault configuration in the source region may be inferred. These results suggest an approach to the recognition of foreshocks based on simple measurements of the amplitudes of seismic waves. PMID:17777756

  16. Uniform Accuracy of the Maximum Likelihood Estimates for Probabilistic Models of Biological Sequences

    PubMed Central

    Ekisheva, Svetlana

    2010-01-01

    Probabilistic models for biological sequences (DNA and proteins) have many useful applications in bioinformatics. Normally, the values of parameters of these models have to be estimated from empirical data. However, even for the most common estimates, the maximum likelihood (ML) estimates, properties have not been completely explored. Here we assess the uniform accuracy of the ML estimates for models of several types: the independence model, the Markov chain and the hidden Markov model (HMM). Particularly, we derive rates of decay of the maximum estimation error by employing the measure concentration as well as the Gaussian approximation, and compare these rates. PMID:21318122

  17. A Flexible, Efficient Binomial Mixed Model for Identifying Differential DNA Methylation in Bisulfite Sequencing Data.

    PubMed

    Lea, Amanda J; Tung, Jenny; Zhou, Xiang

    2015-11-01

    Identifying sources of variation in DNA methylation levels is important for understanding gene regulation. Recently, bisulfite sequencing has become a popular tool for investigating DNA methylation levels. However, modeling bisulfite sequencing data is complicated by dramatic variation in coverage across sites and individual samples, and because of the computational challenges of controlling for genetic covariance in count data. To address these challenges, we present a binomial mixed model and an efficient, sampling-based algorithm (MACAU: Mixed model association for count data via data augmentation) for approximate parameter estimation and p-value computation. This framework allows us to simultaneously account for both the over-dispersed, count-based nature of bisulfite sequencing data, as well as genetic relatedness among individuals. Using simulations and two real data sets (whole genome bisulfite sequencing (WGBS) data from Arabidopsis thaliana and reduced representation bisulfite sequencing (RRBS) data from baboons), we show that our method provides well-calibrated test statistics in the presence of population structure. Further, it improves power to detect differentially methylated sites: in the RRBS data set, MACAU detected 1.6-fold more age-associated CpG sites than a beta-binomial model (the next best approach). Changes in these sites are consistent with known age-related shifts in DNA methylation levels, and are enriched near genes that are differentially expressed with age in the same population. Taken together, our results indicate that MACAU is an efficient, effective tool for analyzing bisulfite sequencing data, with particular salience to analyses of structured populations. MACAU is freely available at www.xzlab.org/software.html. PMID:26599596

  18. A Flexible, Efficient Binomial Mixed Model for Identifying Differential DNA Methylation in Bisulfite Sequencing Data

    PubMed Central

    Lea, Amanda J.

    2015-01-01

    Identifying sources of variation in DNA methylation levels is important for understanding gene regulation. Recently, bisulfite sequencing has become a popular tool for investigating DNA methylation levels. However, modeling bisulfite sequencing data is complicated by dramatic variation in coverage across sites and individual samples, and because of the computational challenges of controlling for genetic covariance in count data. To address these challenges, we present a binomial mixed model and an efficient, sampling-based algorithm (MACAU: Mixed model association for count data via data augmentation) for approximate parameter estimation and p-value computation. This framework allows us to simultaneously account for both the over-dispersed, count-based nature of bisulfite sequencing data, as well as genetic relatedness among individuals. Using simulations and two real data sets (whole genome bisulfite sequencing (WGBS) data from Arabidopsis thaliana and reduced representation bisulfite sequencing (RRBS) data from baboons), we show that our method provides well-calibrated test statistics in the presence of population structure. Further, it improves power to detect differentially methylated sites: in the RRBS data set, MACAU detected 1.6-fold more age-associated CpG sites than a beta-binomial model (the next best approach). Changes in these sites are consistent with known age-related shifts in DNA methylation levels, and are enriched near genes that are differentially expressed with age in the same population. Taken together, our results indicate that MACAU is an efficient, effective tool for analyzing bisulfite sequencing data, with particular salience to analyses of structured populations. MACAU is freely available at www.xzlab.org/software.html. PMID:26599596

  19. Statistical Properties of the Immediate Aftershocks of the 15 October 2013 Magnitude 7.1 Earthquake in Bohol, Philippines

    NASA Astrophysics Data System (ADS)

    Batac, Rene C.

    2016-02-01

    The aftershock records of the magnitude 7.1 earthquake that hit the island of Bohol in central Philippines on 15 October 2013 is investigated in the light of previous results for the Philippines using historical earthquakes. Statistics of interevent distances and interevent times between successive aftershocks recorded for the whole month of October 2013 show marked differences from those of historical earthquakes from two Philippine catalogues of varying periods and completeness levels. In particular, the distributions closely follow only the regimes of the historical distributions that were previously attributed to the strong spatio-temporal correlations. The results therefore suggest that these correlated regimes which emerged naturally from the analyses are strongly dominated by the clustering of aftershock events.

  20. Radiated seismic energy of aftershocks of the 20 March 2012 earthquake, Mw7.5, Ometepec-Pinotepa Nacional, Mexico.

    NASA Astrophysics Data System (ADS)

    Plata Martinez, R. O.; Perez-Campos, X.; Singh, S. K.

    2014-12-01

    Radiated seismic energy is a valuable parameter in assessing the size and source characteristics of an earthquake. We study aftershocks of the 20 March 2012 earthquake (Mw7.5) in Ometepec-Pinotepa Nacional,located in the subduction zone of the Pacific coast of Mexico, with the purpose of examining the distribution of the scaled seismic energy (Es) with seismic moment (Mo), Es/Mo, over the main event's rupture area. We estimate Es from regional velocity and acceleration records. For some, larger, aftershocks we also estimate Es from teleseismic data. Preliminary energy estimations suggest that aftershocks closer to the trench have a smaller Es/Mo ratio. In contrast, Es/Mo is larger for events closer to the coast (near the epicenter of the mainshock).

  1. Dialogic/Authoritative Discourse and Modelling in a High School Teaching Sequence on Optics

    ERIC Educational Resources Information Center

    Buty, Christian; Mortimer, Eduardo F.

    2008-01-01

    In this paper we aim to establish a link between two theoretical frames: modelling and its use in the design and analysis of scientific teaching sequences, and the communicative approaches as they alternate in classroom activities. In this case study, we follow the interactions between the teacher and a pair of students during an entire teaching…

  2. A model-based sequence similarity with application to handwritten word spotting.

    PubMed

    Rodríguez-Serrano, José A; Perronnin, Florent

    2012-11-01

    This paper proposes a novel similarity measure between vector sequences. We work in the framework of model-based approaches, where each sequence is first mapped to a Hidden Markov Model (HMM) and then a measure of similarity is computed between the HMMs. We propose to model sequences with semicontinuous HMMs (SC-HMMs). This is a particular type of HMM whose emission probabilities in each state are mixtures of shared Gaussians. This crucial constraint provides two major benefits. First, the a priori information contained in the common set of Gaussians leads to a more accurate estimate of the HMM parameters. Second, the computation of a similarity between two SC-HMMs can be simplified to a Dynamic Time Warping (DTW) between their mixture weight vectors, which significantly reduces the computational cost. Experiments are carried out on a handwritten word retrieval task in three different datasets-an in-house dataset of real handwritten letters, the George Washington dataset, and the IFN/ENIT dataset of Arabic handwritten words. These experiments show that the proposed similarity outperforms the traditional DTW between the original sequences, and the model-based approach which uses ordinary continuous HMMs. We also show that this increase in accuracy can be traded against a significant reduction of the computational cost. PMID:22248634

  3. Construction and application of 3D model sequence to illustrate the development of the human embryo

    NASA Astrophysics Data System (ADS)

    Mizuta, Shinobu; Kakusho, Koh; Minekura, Yutaka; Minoh, Michihiko; Nakatsu, Tomoko; Shiota, Kohei

    2002-05-01

    Embryology is one of the basic subjects in medical education, to learn the process of human development especially from fertilization to birth. The shape deformation in the development of human embryo is one of the most important points to be comprehended, but it is difficult to illustrate the deformation by texts, 2D drawings, photographs and so on, because it is extremely complicated. The purpose of our research is to construct a 3D model sequence to illustrate the deformation of human embryo, and to make the model sequence into the teaching materials for medical education. Firstly, 3D images of the specimens of human embryo were acquired using MR microscopy. Next, an initial 3D model sequence was manually modified by comparing with the features of the acquired images under the supervision of medical doctors, because the images were influenced not only by the noise or limitation of resolution in MR image acquisition, but also by the variation of shape depending on the difference of subject. Using the constructed 3D model sequence, CG animations and an interactive VRML system were composed as the teaching materials for embryology. These materials were quite helpful to understand the shape deformation compared with the conventional materials.

  4. Simultaneous Bayesian Estimation of Alignment and Phylogeny under a Joint Model of Protein Sequence and Structure

    PubMed Central

    Herman, Joseph L.; Challis, Christopher J.; Novák, Ádám; Hein, Jotun; Schmidler, Scott C.

    2014-01-01

    For sequences that are highly divergent, there is often insufficient information to infer accurate alignments, and phylogenetic uncertainty may be high. One way to address this issue is to make use of protein structural information, since structures generally diverge more slowly than sequences. In this work, we extend a recently developed stochastic model of pairwise structural evolution to multiple structures on a tree, analytically integrating over ancestral structures to permit efficient likelihood computations under the resulting joint sequence–structure model. We observe that the inclusion of structural information significantly reduces alignment and topology uncertainty, and reduces the number of topology and alignment errors in cases where the true trees and alignments are known. In some cases, the inclusion of structure results in changes to the consensus topology, indicating that structure may contain additional information beyond that which can be obtained from sequences. We use the model to investigate the order of divergence of cytoglobins, myoglobins, and hemoglobins and observe a stabilization of phylogenetic inference: although a sequence-based inference assigns significant posterior probability to several different topologies, the structural model strongly favors one of these over the others and is more robust to the choice of data set. PMID:24899668

  5. Bayesian clustering of DNA sequences using Markov chains and a stochastic partition model.

    PubMed

    Jääskinen, Väinö; Parkkinen, Ville; Cheng, Lu; Corander, Jukka

    2014-02-01

    In many biological applications it is necessary to cluster DNA sequences into groups that represent underlying organismal units, such as named species or genera. In metagenomics this grouping needs typically to be achieved on the basis of relatively short sequences which contain different types of errors, making the use of a statistical modeling approach desirable. Here we introduce a novel method for this purpose by developing a stochastic partition model that clusters Markov chains of a given order. The model is based on a Dirichlet process prior and we use conjugate priors for the Markov chain parameters which enables an analytical expression for comparing the marginal likelihoods of any two partitions. To find a good candidate for the posterior mode in the partition space, we use a hybrid computational approach which combines the EM-algorithm with a greedy search. This is demonstrated to be faster and yield highly accurate results compared to earlier suggested clustering methods for the metagenomics application. Our model is fairly generic and could also be used for clustering of other types of sequence data for which Markov chains provide a reasonable way to compress information, as illustrated by experiments on shotgun sequence type data from an Escherichia coli strain. PMID:24246289

  6. Standard pre-main sequence models of low-mass stars

    SciTech Connect

    Prada Moroni, P. G.; Degl'Innocenti, S.; Tognelli, E.

    2014-05-09

    The main characteristics of standard pre-main sequence (PMS) models are described. A discussion of the uncer-tainties affecting the current generation of PMS evolutionary tracks and isochrones is also provided. In particular, the impact of the uncertainties in the adopted equation of state, radiative opacity, nuclear cross sections, and initial chemical abundances are analysed.

  7. Localization of electronic states in chain models based on real DNA sequence

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroaki

    2004-11-01

    We investigate the localization property of an electron in the disordered two- and three-chain systems (ladder model) with long-range correlation as a simple model for electronic property in a double strand of DNA. The chains are constructed by repetition of the sugar-phosphate sites, and the inter-chain hopping at the sugar sites come from nucleotide pairs, i.e., A- T or G- C pairs. It has been found that some DNA sequences have long-range correlation. In this Letter we investigate the localization properties of the electronic states in some actual DNA sequences such as bacteriophages of Escherichia coli, human chromosome 22 and histone protein. We will present some numerical results for the Lyapunov exponent (inverse localization length) of the wave function in the cases in comparison to the results for artificial sequence generated by an asymmetric modified Bernoulli map. It is shown that the correlation and asymmetry of the sequence affect on the localization in both the artificial and the real DNA sequences.

  8. Alignment of 3D Building Models and TIR Video Sequences with Line Tracking

    NASA Astrophysics Data System (ADS)

    Iwaszczuk, D.; Stilla, U.

    2014-11-01

    Thermal infrared imagery of urban areas became interesting for urban climate investigations and thermal building inspections. Using a flying platform such as UAV or a helicopter for the acquisition and combining the thermal data with the 3D building models via texturing delivers a valuable groundwork for large-area building inspections. However, such thermal textures are useful for further analysis if they are geometrically correctly extracted. This can be achieved with a good coregistrations between the 3D building models and thermal images, which cannot be achieved by direct georeferencing. Hence, this paper presents methodology for alignment of 3D building models and oblique TIR image sequences taken from a flying platform. In a single image line correspondences between model edges and image line segments are found using accumulator approach and based on these correspondences an optimal camera pose is calculated to ensure the best match between the projected model and the image structures. Among the sequence the linear features are tracked based on visibility prediction. The results of the proposed methodology are presented using a TIR image sequence taken from helicopter in a densely built-up urban area. The novelty of this work is given by employing the uncertainty of the 3D building models and by innovative tracking strategy based on a priori knowledge from the 3D building model and the visibility checking.

  9. Characterization of a transcriptome from a non-model organism, Cladonia rangiferina, the grey reindeer lichen, using high-throughput next generation sequencing and EST sequence data

    PubMed Central

    2012-01-01

    Background Lichens are symbiotic organisms that have a remarkable ability to survive in some of the most extreme terrestrial climates on earth. Lichens can endure frequent desiccation and wetting cycles and are able to survive in a dehydrated molecular dormant state for decades at a time. Genetic resources have been established in lichen species for the study of molecular systematics and their taxonomic classification. No lichen species have been characterised yet using genomics and the molecular mechanisms underlying the lichen symbiosis and the fundamentals of desiccation tolerance remain undescribed. We report the characterisation of a transcriptome of the grey reindeer lichen, Cladonia rangiferina, using high-throughput next-generation transcriptome sequencing and traditional Sanger EST sequencing data. Results Altogether 243,729 high quality sequence reads were de novo assembled into 16,204 contigs and 49,587 singletons. The genome of origin for the sequences produced was predicted using Eclat with sequences derived from the axenically grown symbiotic partners used as training sequences for the classification model. 62.8% of the sequences were classified as being of fungal origin while the remaining 37.2% were predicted as being of algal origin. The assembled sequences were annotated by BLASTX comparison against a non-redundant protein sequence database with 34.4% of the sequences having a BLAST match. 29.3% of the sequences had a Gene Ontology term match and 27.9% of the sequences had a domain or structural match following an InterPro search. 60 KEGG pathways with more than 10 associated sequences were identified. Conclusions Our results present a first transcriptome sequencing and de novo assembly for a lichen species and describe the ongoing molecular processes and the most active pathways in C. rangiferina. This brings a meaningful contribution to publicly available lichen sequence information. These data provide a first glimpse into the molecular nature

  10. Distribution and migration of aftershocks of the 2010 Mw 7.4 Ogasawara Islands intraplate normal-faulting earthquake related to a fracture zone in the Pacific plate

    NASA Astrophysics Data System (ADS)

    Obana, Koichiro; Takahashi, Tsutomu; No, Tetsuo; Kaiho, Yuka; Kodaira, Shuichi; Yamashita, Mikiya; Sato, Takeshi; Nakamura, Takeshi

    2014-04-01

    describe the aftershocks of a Mw 7.4 intraplate normal-faulting earthquake that occurred 150 km east Ogasawara (Bonin) Islands, Japan, on 21 December 2010. It occurred beneath the outer trench slope of the Izu-Ogasawara trench, where the Pacific plate subducts beneath the Philippine Sea plate. Aftershock observations using ocean bottom seismographs (OBSs) began soon after the earthquake and multichannel seismic reflection surveys were conducted across the aftershock area. Aftershocks were distributed in a NW-SE belt 140 km long, oblique to the N-S trench axis. They formed three subparallel lineations along a fracture zone in the Pacific plate. The OBS observations combined with data from stations on Chichi-jima and Haha-jima Islands revealed a migration of the aftershock activity. The first hour, which likely outlines the main shock rupture, was limited to an 80 km long area in the central part of the subsequent aftershock area. The first hour activity occurred mainly around, and appears to have been influenced by, nearby large seamounts and oceanic plateau, such as the Ogasawara Plateau and the Uyeda Ridge. Over the following days, the aftershocks expanded beyond or into these seamounts and plateau. The aftershock distribution and migration suggest that crustal heterogeneities related to a fracture zone and large seamounts and oceanic plateau in the incoming Pacific plate affected the rupture of the main shock. Such preexisting structures may influence intraplate normal-faulting earthquakes in other regions of plate flexure prior to subduction.

  11. Stress evolution following the 1999 Chi-Chi, Taiwan, earthquake: Consequences for afterslip, relaxation, aftershocks and departures from Omori decay

    USGS Publications Warehouse

    Chan, C.-H.; Stein, R.S.

    2009-01-01

    We explore how Coulomb stress transfer and viscoelastic relaxation control afterslip and aftershocks in a continental thrust fault system. The 1999 September 21 Mw = 7.6 Chi-Chi shock is typical of continental ramp-d??collement systems throughout the world, and so inferences drawn from this uniquely well-recorded event may be widely applicable. First, we find that the spatial and depth distribution of aftershocks and their focal mechanisms are consistent with the calculated Coulomb stress changes imparted by the coseismic rupture. Some 61 per cent of the M ??? 2 aftershocks and 83 per cent of the M ??? 4 aftershocks lie in regions for which the Coulomb stress increased by ???0.1 bars, and there is a 11-12 per cent gain in the percentage of aftershocks nodal planes on which the shear stress increased over the pre-Chi Chi control period. Second, we find that afterslip occurred where the calculated coseismic stress increased on the fault ramp and d??collement, subject to the condition that friction is high on the ramp and low on the d??collement. Third, viscoelastic relaxation is evident from the fit of the post-seismic GPS data on the footwall. Fourth, we find that the rate of seismicity began to increase during the post-seismic period in an annulus extending east of the main rupture. The spatial extent of the seismicity annulus resembles the calculated ???0.05-bar Coulomb stress increase caused by viscoelastic relaxation and afterslip, and we find a 9-12 per cent gain in the percentage of focal mechanisms with >0.01-bar shear stress increases imparted by the post-seismic afterslip and relaxation in comparison to the control period. Thus, we argue that post-seismic stress changes can for the first time be shown to alter the production of aftershocks, as judged by their rate, spatial distribution, and focal mechanisms. ?? Journal compilation ?? 2009 RAS.

  12. Simulating the folding of HP-sequences with a minimalist model in an inhomogeneous medium.

    PubMed

    Alas, S J; González-Pérez, P P

    2016-01-01

    The phenomenon of protein folding is a fundamental issue in the field of the computational molecular biology. The protein folding inside the cells is performed in a highly inhomogeneous, tortuous, and correlated environment. Therefore, it is important to include in the theoretical studies the medium where the protein folding is developed. In this work we present the combination of three models to mimic the protein folding inside of an inhomogeneous medium. The models used here are Hydrophobic-Polar (HP) in 2D square arrangement, Evolutionary Algorithms (EA), and the Dual Site Bond Model (DSBM). The DSBM model is used to simulate the environment where the HP beads are folded; in this case the medium is correlated and is fractal-like. The analysis of five benchmark HP sequences shows that the inhomogeneous space provided with a given correlation length and fractal dimension plays an important role for correct folding of these sequences, which does not occur in a homogeneous space. PMID:27020756

  13. The 2007 M7.7 Tocopilla northern Chile earthquake sequence - along and across strike rupture segmentation

    NASA Astrophysics Data System (ADS)

    Schurr, B.; Asch, G.; Motagh, M.; Oncken, O.; Chong Diaz, G.; Barrientos, S. E.; Vilotte, J.

    2010-12-01

    In November 2007 a M7.7 earthquake occurred near the coastal town of Tocopilla in the southern part of a presumed seismic gap extending some 500 km along the northern Chile subduction zone. This major segment last broke in a magnitude ≧8.5 earthquake in 1877. Assuming a complete lock of the interface, it has accumulated more than 8 m of slip deficit. The contiguous segments to the north and south broke in M≧8 earthquakes in 2001 and 1995. Teams from Chile (Universidad Católica del Norte and Universidad de Chile), France (IPGP) and Germany (GFZ) started in 2006 to install semi-permanent multi-parameter observatories within the Integrated Plate Boundary Observatory Chile (IPOC) Initiative to monitor deformation at a variety of spatial and temporal scales in the final stage of the seismic cycle. At the time of the Tocopilla earthquake, 12 sites were equipped with seismic broadband and strong-motion sensors recording both the mainshock and its aftershock series. The earthquake rupture extended for about 160 km from the centre of the Mejillones peninsula (MP) to about 20 km north of the town of Tocopilla. Slip was confined to the depth range 30-55 km and concentrated in two patches in the north and south with a maximum of about 2.6 m. Hence the earthquake released only a fraction of the slip deficit and broke only the down-dip part of the plate interface, with the up-dip limit of the rupture approximately following the coastline. This poses the important question why rupture did not extend offshore, where the interface is presumably locked based on models of long-term interseismic deformation. We relocated more than 1000 aftershocks occurring in the week following the mainshock using hand-picked arrival times, cross-correlation based differential travel times and the double-difference algorithm. Despite the sparseness of the network, the aftershocks sharply define the plate interface. Seismicity in the first 24h is congruent to the slip distribution with the area

  14. Correlation of Static and Peak Dynamic Coulomb Failure Stress with Aftershocks, Seismicity Rate Change, and Triggered Slip in the Salton Trough

    NASA Astrophysics Data System (ADS)

    Eddo, J.; Olsen, K.

    2007-12-01

    Numerous studies have found significant correlation of static Coulomb Failure Stress (sCFS, co-seismic earthquake induced stresses) with the occurrence of mainshocks, aftershocks, and triggered slip (e.g. Stein, 1999; Kilb, 2003; King et al., 1994, Arnadottir, 2003; Du et al., 2003; Freed, 2005). Static CFS estimates are primarily dependent on the final co-seismic slip distribution and fault geometry. Recently, complete or dynamic Coulomb Failure Stress, parameterized by its largest positive value (peak dCFS), has been proposed as an alternative triggering mechanism (Kilb, 2002). Peak dCFS estimates, in addition to the final slip dependence, have been shown to be strongly dependent on co-seismic source effects, such as rupture directivity (Kilb, 2002). However, most studies of stress transfer and earthquake