Science.gov

Sample records for afton public observatory

  1. Educational Programs at the Lake Afton Public Observatory

    NASA Astrophysics Data System (ADS)

    Alexander, D. R.; Novacek, G. R.

    1994-05-01

    The Lake Afton Public Observatory was founded 14 years ago as a joint project of the city, county, local schools, and Wichita State University to provide educational programs for the public and school children. A staff of 4 professional astronomers presents daytime and evening programs at the Observatory and makes presentations in schools to over 20,000 people per year. Programs are scheduled 6 days a week during the academic year and 3 days a week in the summer. Our public programs deviate significantly from the traditional observatory open house by following a specific theme. Selection and discussion of each object is centered on that theme. For example, a program on The Life Story of a Star would view a diffuse nebula (to discuss star formation), a young star cluster (to discuss one outcome of star formation), a double star (to discuss how the properties of stars are determined), and a planetary nebula (to discuss the death of a star). To complement the observing experiences of our visitors, we have developed a wide range of interactive exhibits to develop the concepts touched on in the viewing programs. We have also developed exhibit lending kits for extended use in school classrooms, educational games, activity manuals for teachers, and short videos to introduce single concepts in the classroom. In the past year we have begun to offer a series of workshops for in-service teachers to expand their knowledge of astronomy and to provide them with additional resources for teaching astronomy. This work is supported in part by NSF EPSCoR grant OSR-9255223.

  2. Helping the Public Touch the Stars -- Programs of the Lake Afton Public Observatory

    NASA Astrophysics Data System (ADS)

    Alexander, D. R.; Novacek, G. R.; Kardel, W. S.

    2000-12-01

    The staff of the Lake Afton Public Observatory have been providing programs for the public and school groups for nearly twenty years. While we have many types of programs and activities, our overall objective is to demonstrate to our visitors that science is fun and can be understood by everyone. Programs at the Observatory are organized around an observing theme, with time built in to explore our interactive exhibits. Observatory staff or volunteers are always available to interact with visitors, so that each person has a personalized experience at the Observatory. Because observatories, by necessity, are often located at somewhat remote sites, we should not wait for the public to come to us. As a result, we sponsor a wide range of programs and activities in schools to help children experience the excitement of science. These activities include specially designed learning centers which we introduce with a visit to a classroom. Each learning center has been designed to guide student inquiry as they explore a single topic in astronomy. After our introduction of a learning center, it is left in the classroom for two weeks for students to explore further. Information about the programs of the Observatory is available at our web site (http://www.twsu.edu/ obswww/).

  3. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  4. Public relations for a national observatory

    NASA Astrophysics Data System (ADS)

    Finley, David G.

    The National Radio Astronomy Observatory (NRAO) is a government-funded organization providing state-of-the art observational facilities to the astronomical community on a peer-reviewed basis. In this role, the NRAO must address three principal constituencies with its public-relations efforts. These are: the astronomical community; the funding and legislative bodies of the Federal Government; and the general public. To serve each of these constituencies, the Observatory has developed a set of public-relations initiatives supported by public-relations and outreach professionals as well as by management and scientific staff members. The techniques applied and the results achieved in each of these areas are described.

  5. Meaningful metrics for observatory publication statistics

    NASA Astrophysics Data System (ADS)

    Rots, Arnold H.; Winkelman, Sherry L.; Becker, Glenn E.

    2012-09-01

    Observatories have wrestled for decades with the questions how to measure their importance to the astronomical community, what their scientific impact is, and how their performance in that respect compares to that of other observatories. There is a general sense that the answer is to be found in the publication record - specifically, in the refereed journal articles. However, simple parameters (such as the number of papers) are not helpful, because in isolation (applied to a single observatory) they are meaningless, while in comparison between observatories they are subject to external influences that all but invalidate the comparisons. We were fortunate in having the Chandra X-ray Observatory's bibliographic database with its rich variety of metadata available as a resource for experimenting with more sophisticated metrics. Out of this project we propose a modest set that contains meaningful information when viewed in the isolation of a single observatory as well as in comparison with other observatories. Even so, we urge users not to draw conclusions on the basis of the face value of the comparisons, but only after a serious analysis of potential causes for any differences or similarities. We have designed our metrics to provide useful information in three main areas of interest: speed of publication; fraction of observing time published; and archival usage. The basic measured parameters are the percentage of available observing time published as a function of the data's age, at a few specific age values; the median time it takes to publish observations; and similar parameters for multiple publications of the same observations. Citation of results is a fourth category, but it does not lend itself well to comparisons and defies the search for definite statements.

  6. New Metrics for Observatory Publication Statistics

    NASA Astrophysics Data System (ADS)

    Rots, A.; Winkelman, S.; Becker, G.

    2012-09-01

    We are proposing several new publication metrics that are more meaningful and less sensitive to observatory-specific characteristics than the traditional ones. They fall into three main categories: speed of publication; fraction of observing time published; and archival usage. Citation of results is a fourth category, but it lends itself less well to definite statements. Applied to the bibliography of the Chandra X-ray Observatory, the median time from observation to publication is 2.36 years; after about seven years 90% of the observing time is published; the total annual publication output of the mission is 60-70% of the cumulative observing time available, assuming a two year lag between data retrieval and publication; and after seven years approximately 60% of available exposure time is published more than twice.

  7. A Bibliometric Analysis of Observatory Publications 2008-2012

    NASA Astrophysics Data System (ADS)

    Crabtree, D. R.

    2015-04-01

    Refereed publications are the primary output of modern observatories. I examine the productivity and impact of a significant number of observatories, as well as some other interesting aspects of observatory papers.

  8. Mead Observatory WebCasts: Public Outreach to the World

    NASA Astrophysics Data System (ADS)

    Johnson, Michael; Hood, J.; Williams, R. N. M.; Cruzen, S.; Johnson, C.

    2010-01-01

    The Real-Time Interactive Solar Observatory (RISO) is a web portal that allows educational institutions from around the world to log into and control the solar telescopes and cameras at Columbus State University's Meade Observatory. RISO's technology has also allowed the observatory to stream webcasts for special astronomical events on the web allowing for a larger public audience. This poster will present the tools used for the webcasts and review some of the results from previous webcasts. We will also discuss some of the future paths of RISO and the technology associated with RISO and how this will be able to provide public outreach to a much larger audience. Support for RISO and the webcasts has been provided by NASA through the Georgia Space Science Grant Consortium.

  9. Sendai Astronomical Observatory - Its Renewal and History as an observatory for general public -

    NASA Astrophysics Data System (ADS)

    Watanabe, J.

    2006-08-01

    The Sendai Astronomical Observatory, located in the central part of the Sendai City in the northern part of Japan, is the one of the oldest observatory operated by local government mainly for general public. It has a 41-cm reflector together with a car equipped with a 20-cm refractor for providing chances for remote locations to have astronomical education called "Vega" . It also has a planetarium with a 16-m dome and 200 seats. Open in 1955, it maintained for more than a half century in high level education both to the general public and to school children. Especially all the children in the elementary school visit this observatory at least once as the school program defined in the Sendai city. We are considering a renewal of these facilities along with moving to the new site, Nishikigaoka, to avoid light pollution in the city. The new observatory will have a 1.2-m reflecting telescope, solar telescope, other smaller telescopes for experienced amateur astronomers or people, and a larger planetarium of a 25-m dome with 280 seats. We will introduce the plan of our renewal along with the history of these 50 years.

  10. Preserving Observatory Publications: Microfilming, Scanning...What's Next?

    NASA Astrophysics Data System (ADS)

    Coletti, Donna J.

    Since 1996, the John G. Wolbach Library & Information Resource Center at the Harvard-Smithsonian Center for Astrophysics has participated in a preservation project, funded by the U. S. National Endowment for the Humanities and carried out at Harvard University's Weissman Preservation Center, to preserve the history of science. More than 2,000 volumes of Wolbach Library's 3,000 volume collection of historical observatory publications from around the world have already been preserved on microfilm. A follow-up project to convert the collection to digital format was begun in the year 2000. Meanwhile, Harvard University unveiled its Digital Repository Service (DRS) offering state-of-the-art storage and retrieval of digital collections. DRS goes further than our previous projects by offering full-text searching, page turning capability, color plates, strict metadata requirements, persistent links using universal resource names, reformatting as necessary, and perpetual storage. Harvard also offers the service and guidance of preservation experts from its state-of-the-art Imaging Service and Preservation Department. In anticipation of the LISA IV meeting in Prague, Wolbach Library issued a challenge to Harvard, ``Show us what you can do with a brittle volume from the Observatory Publication collection.'' Harvard accepted. The result is included in this paper and links are provided to allow the reader closer scrutiny of the final product.

  11. The Einstein Observatory: A New Public/Private Observatory Complex for Community Education and Scientific Research

    NASA Astrophysics Data System (ADS)

    Sowell, J.

    1999-12-01

    The Development Authority of Cherokee County (Georgia) is leading a public/private partnership of business/industry professionals, educators, and university scientists that seeks to develop a national prototype educational and scientific research facility for grades K-12, as well as college-level research, that will inspire our youth to become literate in science and technology. In particular, the goal is to make this complex a science, math, and engineering magnet learning facility and to raise the average SAT scores of local area students by 100 points. A dark-site mountain, nestled on the foothills of the Blue Ridge Mountains at the northern-most edge of Atlanta, will become the home for the "Einstein" Observatory. The complex will have four telescopes: one 50-inch, one 24-inch, and two 16-inch telescopes. Each telescope will have digital cameras and an optic-fiber feed to a single, medium-resolution spectroscope. All four telescopes will be electronically accessible from local schools. Professional astronomers will establish suitable observational research projects and will lead K-12 and college students in the acquisition and analysis of data. Astronomers will also assist the local area schoolteachers in methods for nurturing children's scientific inquiry. The observatory mountain will have 100 platform locations for individual viewing by visiting families, school groups, and amateur astronomers. The Atlanta Astronomer Club will provide numerous evening programs and viewing opportunities for the general public. An accompanying Planetarium & Science Center will be located on the nearby campus of Reinhardt College. The Planetarium & Science Center will be integrated with Reinhardt College's theme of learning focused upon studying the past and present as a basis for projecting the future.

  12. Swift Publication Statistics: A Comparison With Other Major Observatories

    NASA Astrophysics Data System (ADS)

    Savaglio, S.; Grothkopf, U.

    2013-03-01

    Swift is a satellite equipped with γ-ray, X-ray, and optical-UV instruments aimed at discovering, localizing, and collecting data from gamma-ray bursts (GRBs). Launched at the end of 2004, this small-size mission finds about a hundred GRBs per year, totaling more than 700 events as of 2012. In addition to GRBs, Swift observes other energetic events, such as active galactic nuclei (AGNs), novae, and supernovae. Here we look at its success using bibliometric tools; that is, the number of papers using Swift data and their impact (i.e., number of citations to those papers). We derived these from the publication years 2005 to 2011, and compared them with the same numbers for other major observatories. Swift provided data for 1101 papers in the interval 2005-2011, with 24 in the first year, to 287 in the last year. In 2011, Swift had more than double the number of publications as Subaru, it overcame Gemini by a large fraction, and reached Keck. It is getting closer to the ~400 publications of the successful high-energy missions XMM-Newton and Chandra, but is still far from the most productive telescopes, VLT (over 500) and HST (almost 800). The overall average number of citations per paper, as of 2012 November, is 28.3, which is comparable to the others, but lower than Keck (41.8). The science topics covered by Swift publications have changed from the first year, when over 80% of the papers were about GRBs, falling to less than 30% in 2011.

  13. NASA Astrophysics Education and Public Outreach: Engaging the Public with NASA's Next Great Observatory

    NASA Astrophysics Data System (ADS)

    Green, Joel David; Jirdeh, Hussein; Eisenhamer, Bonnie; Smith, Denise Anne

    2015-08-01

    The James Webb Space Telescope is the successor to the Hubble Space Telescope. STScI and the Office of Public Outreach are committed to bringing awareness of the technology, the excitement, and the future science potential of this great observatory to the public, to educators and students, and to the scientific community, prior to its 2018 launch. We currently engage the full range of the public and scientific communities using a variety of high impact, memorable initiatives, in combination with modern technologies to extend reach, linking the science goals of Webb to the ongoing discoveries being made by Hubble. We have injected Webb-specific content into ongoing E/PO programs: for example, active classroom learning via the STEM Innovation Project (SIP) and 3-D visualizations developed for modern inexpensive platforms, the production and collection of materials for speakers related to any Webb topic (engineering, science, or education), the addition of Webb materials to the Amazing Space programs and updating them for general usage, and the development of simulated Webb observations illustrating the science of the next decade.

  14. Education and public outreach of the Pierre Auger Observatory

    SciTech Connect

    Garcia, B.; Snow, G.

    2005-08-01

    The Auger collaboration's broad mission in education, outreach and public relations is coordinated in a separate task. Its goals are to encourage and support a wide range of outreach efforts that link schools and the public with the Auger scientists and the science of cosmic rays, particle physics, and associated technologies. This report focuses on recent activities and future initiatives.

  15. Education & Public Outreach in Montana, Supporting the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Winter, H. D.; McKenzie, D. E.

    2005-05-01

    In the Space Public Outreach Team (SPOT) program at Montana State University (MSU), currently a major component of SDO Education and Public Outreach at MSU, the hallmark of the program has been the presentation of cutting-edge science regarding topics of current interest. The program, under the management of Montana Space Grant Consortium since 1996, is a proven way to bring the excitement of NASA space science investigations to primary and secondary schools, while simultaneously involving university students in E/PO. The program is remarkably cost-effective, useful as a service-learning device, and extremely popular. We will outline the mechanisms of the SPOT program, including the involvement of a diverse group of undergraduates, and its recent expansion to reach more of Montana's students.

  16. Education and Public Outreach of the Pierre Auger Cosmic Ray Observatory

    NASA Astrophysics Data System (ADS)

    Snow, Gregory

    2012-03-01

    The scale and scope of the physics studied at the Auger Observatory offer significant opportunities for original outreach work. Education, outreach and public relations of the Auger collaboration are coordinated in a separate task whose goals are to encourage and support a wide range of education and outreach efforts that link schools and the public with the Auger scientists and the science of cosmic rays, particle physics, and associated technologies. The presentation will focus on the impact of the collaboration in Mendoza Province, Argentina, as: the Auger Visitor Center in Malarg"ue that has hosted over 60,000 visitors since 2001 and a third collaboration-sponsored science fair held on the Observatory campus in November 2010. The Rural Schools Program, which is run by Observatory staff and which brings cosmic-ray science and infrastructure improvements to remote schools, will be highlighted. Numerous online resources, video documentaries, and animations of extensive air showers have been created for wide public release. Increasingly, collaborators draw on these resources to develop Auger related displays and outreach events at their institutions and in public settings to disseminate the science and successes of the Observatory worldwide.

  17. How to Communicate Near Earth Objects with the Public - Klet Observatory Experience

    NASA Astrophysics Data System (ADS)

    Ticha, Jana; Tichy, Milos; Kocer, Michal

    2015-08-01

    Near-Earth Object (NEO) research is counted among the most popular parts of communicating astronomy with the public. Increasing research results in the field of Near-Earth Objects as well as impact hazard investigations cause growing interest among general public and media. Furthermore NEO related issues have outstanding educational value. So thus communicating NEO detection, NEO characterization, possible impact effects, space missions to NEOs, ways of mitigation and impact warnings with the public and media belong to the most important tasks of scientists and research institutions.Our institution represents an unique liaison of the small professional research institution devoted especially to NEO studies (the Klet Observatory, Czech Republic) and the educational and public outreach branch (the Observatory and Planetarium Ceske Budejovice, Czech Republic). This all has been giving us an excellent opportunity for bringing NEO information to wider audience. We have been obtaining a wide experience in communicating NEOs with the public more than twenty years.There is a wide spectrum of public outreach tools aimed to NEO research and hazard. As the most useful ones we consider two special on-line magazines (e-zins) devoted to asteroids (www.planetky.cz) and comets (www.komety.cz) in Czech language, educational multimedia presentations for schools at different levels in planetarium, summer excursions for wide public just at the Klet Observatory on the top of the Klet mountain, public lectures, meetings and exhibitions. It seems to be very contributing and favoured by public to have opportunities for more or less informal meetings just with NEO researchers from time to time. Very important part of NEO public outreach consists of continuous contact with journalists and media including press releases, interviews, news, periodical programs. An increasing role of social media is taken into account through Facebook and Twitter profiles.The essential goal of all mentioned NEO

  18. Swift Publication Statistics and the Comparison with Other Major Observatories

    NASA Astrophysics Data System (ADS)

    Savaglio, S.; Grothkopf, U.

    2015-04-01

    Swift is a satellite aimed at detecting gamma-ray bursts (GRB), the most energetic explosions in the universe. Launched at the end of 2004 and funded until 2016, it is equipped with γ-ray, X-ray, and optical-UV instrumentation and discovers, localizes, and collects data for more than a hundred GRBs per year. We studied the bibliometrics produced with Swift data and found that it is one of the most successful medium-size missions ever. The production in 2005 was 24 papers, and has steadily increased to 328 in the year 2013, surpassing the Keck telescope. If this trend continues, Swift may soon be approaching the publication numbers of the other two high-energy satellites XMM-Newton and Chandra. Also, the number of citations shows a great success for Swift. The Swift user community publishes mostly in ApJS (almost 50% of the papers) as well as A&A and MNRAS (approx. a quarter each). In the years 2005-2013, 47 papers (2.7%) were published in the high-impact journals Nature and Science.

  19. Databases of publications and observations as a part of the Crimean Astronomical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Shlyapnikov, A.; Bondar', N.; Gorbunov, M.

    We describe the main principles of formation of databases (DBs) with information about astronomical objects and their physical characteristics derived from observations obtained at the Crimean Astrophysical Observatory (CrAO) and published in the ``Izvestiya of the CrAO'' and elsewhere. Emphasis is placed on the DBs missing from the most complete global library of catalogs and data tables, VizieR (supported by the Center of Astronomical Data, Strasbourg). We specially consider the problem of forming a digital archive of observational data obtained at the CrAO as an interactive DB related to database objects and publications. We present examples of all our DBs as elements integrated into the Crimean Astronomical Virtual Observatory. We illustrate the work with the CrAO DBs using tools of the International Virtual Observatory: Aladin, VOPlot, VOSpec, in conjunction with the VizieR and Simbad DBs.

  20. The Mauna Kea Observatories Outreach Committee brings Astronomy to the Hawaiian Public

    NASA Astrophysics Data System (ADS)

    Heyer, Ingeborg; Harvey, J.; Usuda, K. S.; Fujihara, G.

    2010-01-01

    The Mauna Kea Observatories Outreach Committee (MKOOC) combines the outreach activities of the 13 telescopes on Mauna Kea on the Big Island of Hawai`i. For the International Year of Astronomy (IYA) 2009 we branded our annual local events, and in addition developed several unique activities and products to bring astronomy to the public during IYA. Our Journey Through The Universe classroom visit and teacher training program was augmented by several evening public events for the whole family. For AstroDay we developed a set of astronomy trading cards, such that people had to visit all the observatory booths to collect the whole set. In collaboration with the local newspapers we produced an astronomy supplement, available both on paper and online, highlighting the work being done at our observatories. A year-long introductory astronomy class for K-12 teachers was held, emphasizing hands-on activities to teach important concepts. In collaboration with a local supermarket we held a poster contest for students, making the connection between astronomy and Hawaiian culture. We also participated in the "100 Hours for Astronomy" webcast. In the fall we celebrated the Galilean Nights with an all-observatories block party, with activities, music, and give-aways.

  1. The Mauna Kea Observatories Outreach Committee Brings Astronomy To The Hawaiian Public

    NASA Astrophysics Data System (ADS)

    Heyer, I.; Harvey, J.; Usuda, K. S.; Fujihara, G.; Hamilton, J.

    2010-08-01

    The Mauna Kea Observatories Outreach Committee (MKOOC) combines the outreach activities of the 13 telescopes on Mauna Kea on the Big Island of Hawaii. For the International Year of Astronomy (IYA) 2009 we branded our annual local events, and in addition developed several unique activities and products to bring astronomy to the public during IYA. Our Journey Through The Universe classroom visit and teacher training program was augmented by several evening public events for the whole family. For AstroDay we developed a set of astronomy trading cards, such that people had to visit all the observatory booths to collect the whole set. In collaboration with the local newspapers, we produced an astronomy supplement, available both on paper and online, highlighting the work being done at our observatories. A year-long introductory astronomy class for K-12 teachers was held, emphasizing hands-on activities to teach important concepts. In collaboration with a local supermarket, we held a poster contest for students, making the connection between astronomy and Hawaiian culture. We also participated in the "100 Hours of Astronomy" webcast. In the fall, we celebrated the Galilean Nights with an all-observatories block party, with activities, music, and give-aways.

  2. Participants' Expectations and Prior Astronomy Knowledge in a Public Observatory Setting

    NASA Astrophysics Data System (ADS)

    Sarrazine, A.; Albin, E.

    2005-12-01

    Across the country, thousands of novice sky watchers flock to publicly operated observatories each week for a look at the heavens. The purpose of the current investigation is to acquire a better understanding of the knowledge level and viewing desires of the average public stargazer. Over a three month period, data were collected from several hundred participants attending open house on either Thursday or Friday evening at the Fernbank Science Center observatory in Atlanta, GA. The facility operates a 0.9 meter Cassegrain reflecting telescope dedicated to secondary and public education -- and was established in 1967 as part of a large planetarium / museum complex. Typical objects observed include planets, binary stars, bright Messier objects as well as naked eye observations of constellations and artificial satellites. A twenty question survey was employed as a data collection tool. Questions were divided into two categories: a) participant expectations and b) prior astronomy knowledge. Results will assist in better tailoring observatory open house sessions and outreach programs to the interests and needs of the public.

  3. Flood boundaries and water-surface profile for the computed 100-year flood, Swift Creek at Afton, Wyoming, 1986

    USGS Publications Warehouse

    Rankl, James G.; Wallace, Joe C.

    1989-01-01

    Flood flows on Swift Creek near Afton, Wyoming, were analyzed. Peak discharge with an average recurrence interval of 100 years was computed and used to determine the flood boundaries and water surface profile in the study reach. The study was done in cooperation with Lincoln County and the Town of Afton to determine the extent of flooding in the Town of Afton from a 100-year flood on Swift Creek. The reach of Swift Creek considered in the analysis extends upstream from the culvert at Allred County Road No. 12-135 to the US Geological Survey streamflow-gaging station located in the Bridger National Forest , a distance of 3.2 miles. Boundaries of the 100-year flood are delineated on a map using the computed elevation of the flood at each cross section, survey data, and a 1983 aerial photograph. The computed water surface elevation for the 100-year flood was plotted at each cross section, then the lateral extent of the flood was transferred to the flood map. Boundaries between cross sections were sketched using information taken from the aerial photograph. Areas that are inundated, but not part of the active flow, are designated on the cross sections. (Lantz-PTT)

  4. Jointing in the Ordovician Platteville Formation on either side of the Hudson-Afton horst in Wisconsin and Minnesota

    SciTech Connect

    Sykora, A.K.

    1994-04-01

    Jointing is a characteristic feature of the Platteville Formation. A total of 1,577 joint orientations were measured at fourteen localities in east-central Minnesota and west-central Wisconsin. All the joints are vertical with north-south to east-west exposure orientations. Four major joint sets including a longitudinal, a crosscutting, and two diagonal sets are identifiable for over 75% of the localities. The analysis of rose diagrams superimposed on the site map help to recognize a trend in joint patterns from location to location. The localities east and south of the Hudson-Afton horst appear to have similar trend and development of joint patterns. The orientations of the major joint sets are: N10E, N60E, N40W, and N85W. The localities west of the Hudson-Afton horst differ from the east and south localities in both trend and development of joint patterns. The approximate orientations of the major joint sets are: N05W, N50E, N45W, and N80W. The joint pattern appears to be related to the structural trend of the Hudson-Afton horst. The horst, an associated feature of the Midcontinental rift, is an uplifted block of Precambrian igneous and sedimentary rocks bounded by faults. These faults are a possible cause for the jointing. The faults strike at an azimuth of approximately N22E which correlates well with the idealized azimuth for the maximum principal stress as deduced from the rose diagrams.

  5. Education and public outreach at the Carl Sagan Solar Observatory of the University of Sonora

    PubMed Central

    Saucedo-Morales, Julio; Loera-González, Pablo

    2013-01-01

    We discuss the importance of small solar observatories for EPO (Education and Public Outreach), mentioning why they are relevant and what kind of equipment and software require. We stress the fact that technological advances have made them affordable and that they should be widely available. This work is a result of our experience with one: The Carl Sagan Solar Observatory (CSSO). We briefly describe its status and the solar data obtained daily with students participation. We present examples of the data obtained in the visible, Ca II and two in Hα. Data which is widely used for education. Finally we talk about the capability for remote operation as an open invitation for collaboration in educational and scientific projects. PMID:25685436

  6. Education and public outreach at the Carl Sagan Solar Observatory of the University of Sonora.

    PubMed

    Saucedo-Morales, Julio; Loera-González, Pablo

    2013-05-01

    We discuss the importance of small solar observatories for EPO (Education and Public Outreach), mentioning why they are relevant and what kind of equipment and software require. We stress the fact that technological advances have made them affordable and that they should be widely available. This work is a result of our experience with one: The Carl Sagan Solar Observatory (CSSO). We briefly describe its status and the solar data obtained daily with students participation. We present examples of the data obtained in the visible, Ca II and two in Hα. Data which is widely used for education. Finally we talk about the capability for remote operation as an open invitation for collaboration in educational and scientific projects. PMID:25685436

  7. Education and public outreach at the Carl Sagan Solar Observatory of the University of Sonora

    NASA Astrophysics Data System (ADS)

    Saucedo-Morales Julio; Loera-González, Pablo

    2013-05-01

    We discuss the importance of small solar observatories for EPO (Education and Public Outreach), mentioning why they are relevant and what kind of equipment and software require. We stress the fact that technological advances have made them affordable and that they should be widely available. This work is a result of our experience with one: The Carl Sagan Solar Observatory (CSSO). We briefly describe its status and the solar data obtained daily with students participation. We present examples of the data obtained in the visible, Ca II and two in Hα. Data which is widely used for education. Finally we talk about the capability for remote operation as an open invitation for collaboration in educational and scientific projects.

  8. Education and Public Outreach Programs at Columbus State University's Mead Observatory

    NASA Astrophysics Data System (ADS)

    Cruzen, S.; Rutland, C.; Carr, D.; Seckinger, M.

    2003-12-01

    Columbus State University (CSU) has made a substantial commitment to community education in astronomy and space science. Through the programs of the Mead Observatory at CSU's Coca-Cola Space Science Center, students, staff and faculty have been providing public outreach programs in astronomy for more than seven years. Recently, a generous grant from a private foundation has facilitated an astounding growth in the observatory's astronomy outreach activities. The grant made possible the purchase of a van, a portable planetarium, and additional telescope and computer equipment. It also funded a two-year scholarship that has supported a pair of CSU's science education majors who have staffed the program and made it a success. NASA, through the Georgia Space Grant Consortium, has provided additional funding for scholarships for 2003-2004. Prior to receiving these funds, the observatory program consisted of monthly open houses, occasional public observing nights at remote locations and approximately 6 to 8 school visits per year. Annually, these programs served approximately 3500 people. Since beginning the new phase of this program in October of 2001, the number of people served has soared to more than 23,000 in only 24 months. Over 60 schools have been visited, increasing our previous annual rate by nearly five times. Additional groups served include boys and girls scouting groups, state parks and other community organizations. School presentations have been designed to assist K-12 teachers in meeting science education standards. More than 200 teachers were asked to assess the program, and their responses were quite positive. More information about the program is available at our website (http://www.ccssc.org).

  9. Impacts of Chandra X-ray Observatory Public Communications and Engagement

    NASA Astrophysics Data System (ADS)

    Arcand, Kimberly K.; Watzke, Megan; Lestition, Kathleen; Edmonds, Peter

    2015-01-01

    The Chandra X-ray Observatory Center runs a multifaceted Public Communications & Engagement program encompassing press relations, public engagement, and education. Our goals include reaching a large and diverse audience of national and international scope, establishing direct connections and working relationships with the scientists whose research forms the basis for all products, creating peer-reviewed materials and activities that evolve from an integrated pipeline design and encourage users toward deeper engagement, and developing materials that target underserved audiences such as women, Spanish speakers, and the sight and hearing impaired. This talk will highlight some of the key features of our program, from the high quality curated digital presence to the cycle of research and evaluation that informs our practice at all points of the program creation. We will also discuss the main impacts of the program, from the tens of millions of participants reached through the establishment and sustainability of a network of science 'volunpeers.'

  10. Public Outreach at Appalachian State University's Dark Sky Observatory Cline Visitor Center

    NASA Astrophysics Data System (ADS)

    Caton, Daniel B.; Hawkins, L.; Smith, A. B.

    2012-01-01

    With the recent completion of the Cline Visitor Center we have begun a program of public nights at our Dark Sky Observatory's 32-inch telescope. Events are ticketed online using an inexpensive commercial ticketing service and are limited to two groups of 60 visitors per night that arrive for 1.5-hour sessions. We are installing two large (70-inch) flat panel displays in the Center and planning additional exhibits to entertain visitors while they await their turn at the telescope's eyepiece. The facility is fully ADA compliant, with eyepiece access via a DFM Engineering Articulated Relay Eyepiece, and a wheelchair lift if needed. We present some of our experiences in this poster and encourage readers to offer suggestions. The Visitor Center was established with the support of Mr. J. Donald Cline, for which we are very grateful. The telescope was partially funded by the National Science Foundation.

  11. Developing an Education and Public Outreach (EPO) program for the Caltech Tectonics Observatory

    NASA Astrophysics Data System (ADS)

    Kovalenko, L.; Nadin, E.; Avouac, J.

    2008-12-01

    The Caltech Tectonics Observatory (TO) is an interdisciplinary center, focused on geological processes occurring at the boundaries of Earth's tectonic plates. The timescales of these processes span from a few tens of seconds (the typical duration of an earthquake) to tens of millions of years (the time it takes to build mountains). Over the past four years, the TO has brought together 15 Caltech faculty from different fields, several visiting scientists from around the globe, and a few tens of graduate students and postdoctoral students, collaborating on scientific projects. A major objective of the TO now is to develop an Education and Public Outreach (EPO) program. Our goals are to (1) stimulate the interest of students and the general public in Earth Sciences, particularly in the study of tectonic processes, (2) inform and educate the general public about TO discoveries and advancements, and (3) make available the data and techniques developed by the TO for use in classrooms of all levels. To this effect, we have been developing our website for accessibility by the general public and writing educational web articles on TO research. A recent well-visited example is "The science behind the recent 2008 earthquake in China." We distribute animations that illustrate the mechanisms of earthquakes and tsunamis, and the various techniques used by TO scientists in their scientific investigations. The TO website also provides access to geodetic data collected by TO instruments and to the source models of recent large earthquakes as analyzed by TO scientists. The TO hosts tours of its facilities for local elementary school students and is working on developing education modules for high school and undergraduate classes. We are now working on a plan to offer short courses over the summer for undergraduate and graduate students in other institutions, in order to train them to analyze a variety of data and use techniques developed by TO scientists.

  12. An Update of the Analytical Groundwater Modeling to Assess Water Resource Impacts at the Afton Solar Energy Zone

    SciTech Connect

    Quinn, John J.; Greer, Christopher B.; Carr, Adrianne E.

    2014-10-01

    The purpose of this study is to update a one-dimensional analytical groundwater flow model to examine the influence of potential groundwater withdrawal in support of utility-scale solar energy development at the Afton Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program. This report describes the modeling for assessing the drawdown associated with SEZ groundwater pumping rates for a 20-year duration considering three categories of water demand (high, medium, and low) based on technology-specific considerations. The 2012 modeling effort published in the Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar PEIS; BLM and DOE 2012) has been refined based on additional information described below in an expanded hydrogeologic discussion.

  13. Partial Restoration of Public Education and Outreach at the Dominion Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Hesser, James E.

    2015-01-01

    Since first light on 6 May 1918, DAO's historic 1.8-m Plaskett Telescope has been open on varying schedules to the public for interactions with astronomers and stargazing. In June 2001 the National Research Council of Canada (NRC) opened the adjacent, purpose-built, Centre of the Universe (CU) building. It was staffed by professional informal educators offering year-round outreach that helped visitors, including thousands of students annually, appreciate exciting current research, as well as Canada's high standing in contemporary astronomy, development of complex instrumentation and the associated societal benefits. On 24 August 2013 the CU-based EPO program ceased operation. Upon announcement by NRC in June 2013 of the pending closure, swift public reaction—locally, nationally and internationally—led to widespread publicity, predominantly negative, as well as two petitions signed by several thousand people. A November meeting convened by BC Legislator Lana Popham, in whose electoral district the Observatory is located, brought community leaders together with NRC senior managers to discuss ways of making available the physical assets to restore EPO activities through community organizations, rather than Federal employees, a scenario senior NRC management endorsed. Subsequently a smaller community group chaired by Don Moffatt, a DAO interpreter in the 1990s, provided a forum for discussing paths to having some outreach activities in summer 2014. The resulting two successful activities were: a) Saturday night observing sessions run by the amateur astronomers of the Royal Astronomical Society of Canada, Victoria Centre; and b) week-long space and astronomy camps for children of grades 3-8 run by the University of Victoria's Science Venture program. As will be described, both organizations delivered well-received programs, and are in conversation with NRC about possible continuation and evolution.

  14. Developing an Education and Public Outreach (EPO) program for Caltech's Tectonics Observatory

    NASA Astrophysics Data System (ADS)

    Kovalenko, L.; Jain, K.; Maloney, J.

    2012-12-01

    The Caltech Tectonics Observatory (TO) is an interdisciplinary center, focused on geological processes occurring at the boundaries of Earth's tectonic plates (http://www.tectonics.caltech.edu). Over the past four years, the TO has made a major effort to develop an Education and Public Outreach (EPO) program. Our goals are to (1) inspire students to learn Earth Sciences, particularly tectonic processes, (2) inform and educate the general public about science in the context of TO discoveries, and (3) provide opportunities for graduate students, postdocs, and faculty to do outreach in the local K-12 schools and community colleges. Our work toward these goals includes hosting local high school teachers and students each summer for six weeks of research experience (as part of Caltech's "Summer Research Connection"); organizing and hosting an NAGT conference aimed at Geoscience teachers at community colleges; participating in teacher training workshops (organized by the local school district); hosting tours for K-12 students from local schools as well as from China; and bringing hands-on activities into local elementary, middle, and high school classrooms. We also lead local school students and teachers on geology field trips through nearby canyons; develop education modules for undergraduate classes (as part of MARGINS program); write educational web articles on TO research (http://www.tectonics.caltech.edu/outreach/highlights/), and regularly give presentations to the general public. This year, we started providing content expertise for the development of video games to teach Earth Science, being created by GameDesk Institute. And we have just formed a scientist/educator partnership with a 6th grade teacher, to help in the school district's pilot program to incorporate new national science standards (NSTA's Next Generation Science Standards, current draft), as well as use Project-Based Learning. This presentation gives an overview of these activities.

  15. Knowing the people who come to public astronomical observatories: The case of Akita prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Kawamura, N.

    2015-03-01

    The purpose of this research is to know and gain a better understanding of people who come to astronomical observatories and to find out more about their experiences and thoughts on astronomy. To find some of the issues about science communication in astronomy, the author carried out questionnaire research studies involving high school students and junior high school and elementary school teachers.

  16. Keele Observatory

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Albinson, James; Bagnall, Alan; Bryant, Lian; Caisley, Dave; Doody, Stephen; Johnson, Ian; Klimczak, Paul; Maddison, Ron; Robinson, StJohn; Stretch, Matthew; Webb, John

    2015-08-01

    Keele Observatory was founded by Dr. Ron Maddison in 1962, on the hill-top campus of Keele University in central England, hosting the 1876 Grubb 31cm refractor from Oxford Observatory. It since acquired a 61cm research reflector, a 15cm Halpha solar telescope and a range of other telescopes. Run by a group of volunteering engineers and students under directorship of a Keele astrophysicist, it is used for public outreach as well as research. About 4,000 people visit the observatory every year, including a large number of children. We present the facility, its history - including involvement in the 1919 Eddington solar eclipse expedition which proved Albert Einstein's theory of general relativity - and its ambitions to erect a radio telescope on its site.

  17. All About EVE: Education and Public Outreach for the Extreme Ultraviolet Variability Experiment (EVE) of the NASA Solar Dynamic Observatory

    NASA Astrophysics Data System (ADS)

    Eparvier, F. G.; McCaffrey, M. S.; Buhr, S. M.

    2008-12-01

    With the aim of meeting NASA goals for education and public outreach as well as support education reform efforts including the National Science Education Standards, a suite of education materials and strategies have been developed by the Cooperative Institute for Environmental Sciences (CIRES) with the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado for the Extreme Ultraviolet Variability Experiment (EVE), which is an instrument aboard the Solar Dynamic Observatory. This paper will examine the education materials that have been developed for teachers in the classroom and scientists who are conducting outreach, including handouts, a website on space weather for teachers, a slideshow presentation about the overall Solar Dynamic Observatory mission, and a DVD with videos explaining the construction and goals of the EVE instrument, a tour of LASP, and an overview of space science careers. The results and potential transferability of a pilot project developed through this effort that engaged English Second Language learners in a semester-long course on space weather that incorporated the used of a Sudden Ionospheric Disturbance (SID) Monitor will be highlighted.

  18. Introducing the first publicly available Content-Based Image-Retrieval system for the Solar Dynamics Observatory mission

    NASA Astrophysics Data System (ADS)

    Michael, Schuh A.; Banda, J.; Angryk, R.; Martens, P. C.

    2013-07-01

    Since its first presentation as a demo at the 220th American Astronomical Society Meeting, the Solar Dynamics Observatory (SDO) Content-Based Image-Retrieval (CBIR) system has been open for public usage since December 2012. Incorporating the valuable feedback gathered at the AAS meeting, as well as working closely with solar physicists from Montana State University, this first version of our system provides similar image search capability for the SDO image data repository. In this work we present an overview of the system capabilities, architecture, and future improvements. We also present practical search examples, basic usage instructions, and some of the science data that can be extracted from our system. This work aims to gather more feedback on the system usability and functionality while making the community aware of a promising new tool for exploring SDO data.

  19. Impacts of Chandra X-ray Observatory Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Lestition, K.; Arcand, K.; Watzke, M.

    2014-07-01

    The overarching goal of Chandra's multifaceted communications and public engagement (EPO) program is to open access for anyone to be a learner and explorer of the Universe. To achieve this goal, the Chandra EPO team develops products and activities that share new discoveries about the Universe with diverse audiences, engages the imaginations of students, teachers, and the general public, and increases learning opportunities. We partner with organizations such as the National Science Olympiad, the 4-H, the NASA Museum Alliance, and the American Library Association to leverage their distribution networks for national impact. We summarize the results of a sample of wide-reaching, synthesized suite of programs—ranging from press, to outreach, to informal and formal education—that communicate the compelling topics that only the high-energy Universe can reveal.

  20. Changing perceptions one classroom at a time: Evaluation results from the Solar Dynamics Observatory formal Education and Public Outreach programs

    NASA Astrophysics Data System (ADS)

    Wawro, M.; Haden, C.

    2013-12-01

    The Solar Dynamics Observatory's (SDO) education and public outreach (EPO) team has developed and implemented a number of formal education programs for K-12 students and teachers. Programs include the Day At Goddard field trip for high school students, SDO Ambassador in the Classroom outreach to elementary classrooms, and teacher support materials for solar science education. These programs have been designed to foster student interest and engagement in science especially solar science, and increase their awareness and interest in NASA and STEM careers. Magnolia Consulting, who worked closely with the SDO EPO team to both design a substantive evaluation program, as well as improve the education programs offered, has extensively evaluated these programs. Evaluation findings indicate that teachers highly value the opportunities and resources provided by SDO EPO and that student impacts include increased interest and engagement in solar science topics and awareness of STEM careers. This presentation will be a summary of the results of the evaluation of these formal education programs including lessons learned that can be of value to the STEM EPO community.

  1. Response of the Alaska Volcano Observatory to Public Inquiry Concerning the 2006 Eruption of Augustine Volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    Adleman, J. N.

    2006-12-01

    The 2006 eruption of Augustine Volcano provided the Alaska Volcano Observatory (AVO) with an opportunity to test its newly renovated Operations Center (Ops) at the Alaska Science Center in Anchorage. Because of the demand for interagency operations and public communication, Ops became the hub of Augustine monitoring activity, twenty-four hours a day, seven days a week, from January 10 through May 19, 2006. During this time, Ops was staffed by 17 USGS AVO staff, and over two dozen Fairbanks-based AVO staff from the Alaska Department of Geological and Geophysical Surveys and the University of Alaska Fairbanks Geophysical Institute and USGS Volcano Hazards Program staff from outside Alaska. This group engaged in communicating with the public, media, and other responding agencies throughout the eruption. Before and during the eruption, reference sheets - ;including daily talking - were created, vetted, and distributed to prepare staff for questions about the volcano. These resources were compiled into a binder stationed at each Ops phone and available through the AVO computer network. In this way, AVO was able to provide a comprehensive, uniform, and timely response to callers and emails at all three of its cooperative organizations statewide. AVO was proactive in scheduling an Information Scientist for interviews on-site with Anchorage television stations and newspapers several times a week. Scientists available, willing, and able to speak clearly about the current activity were crucial to AVO's response. On January 19, 2006, two public meetings were held in Homer, 120 kilometers northeast of Augustine Volcano. AVO, the West Coast Alaska Tsunami Warning Center, and the Kenai Peninsula Borough Office of Emergency Management gave brief presentations explaining their roles in eruption response. Representatives from several local, state, and federal agencies were also available. In addition to communicating with the public by daily media interviews and phone calls to Ops

  2. Contributions to Public Understanding of Science by the Lamont-Doherty Earth Observatory (I): Programs and Workshops

    NASA Astrophysics Data System (ADS)

    Passow, M. J.; Turrin, M.; Kenna, T. C.; Newton, R.; Buckley, B.

    2009-12-01

    The Lamont-Doherty Earth Observatory of Columbia University (LDEO) continues its long history of contributions to public understanding of Science through “live” and web-based programs that provide teachers, students, and the other access to new discoveries and updates on key issues. We highlight current activities in paired posters. Part 1 focuses on events held at the Palisades, NY, campus. "Earth2Class (E2C)" is a unique program integrating science content with increased understanding about classroom learning and technology. Monthly workshops allow K-14 participants to combine talks by researchers about cutting-edge investigations with acquisition of background knowledge and classroom-ready applications. E2C has sponsored 100 workshops by more than 60 LDEO scientists for hundreds of teachers. A vast array of resources on includes archived versions of workshops, comprehensive sets of curriculum units, and professional development opportunities. It has been well received by both workshop participants and others who have only accessed the web site. "Hudson River Snapshot Day" celebrates the Hudson River Estuary and educates participants on the uniqueness of our nearby estuary as part of the annual National Estuaries Week. The New York State Department of Environmental Conservation Hudson River Estuary Program and Hudson Basin River Watch coordinate the event. LDEO scientists help coordinate annual data collection by school classes to create a day-in-the-life picture all along the river. LDEO researchers also participate in "River Summer," bringing together participants from a variety of perspectives to look at the Hudson River and foster better understanding of how the same features can appear very differently to artists, writers, political scientists, economists, or scientists. These perspectives aid in recognizing the Hudson’s unique characteristics and history by identifying cross-disciplinary relationships and fostering new

  3. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  4. Ondrejov Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Ondrejov Observatory is located 20 miles from Prague in the village of Ondrejov. It was established in 1898 as a private observatory and donated to the state of Czechoslovakia in 1928. Since 1953 it has been part of the Astronomical Institute, Academy of Sciences of the Czech Republic; there are 40 astronomers....

  5. Amateur Observatories

    NASA Astrophysics Data System (ADS)

    Gavin, M.

    1997-08-01

    A roundup of amateur observatories in this country and abroad, with construction and location details, concluding with a detailed description and architect's drawing of the author's own observatory at Worcester Park, Surrey. The text of the 1996 Presidential Address to the British Astronomical Association.

  6. Using Solar Science to Inspire: The Education and Public Outreach Projects of the HMI Instrument on NASA's Solar Dynamics Observatory (SDO)

    NASA Astrophysics Data System (ADS)

    Scherrer, D. K.

    2005-05-01

    Solar exploration inspires students and the public to gain a better understanding of the Sun's role in the Earth's environment. New solar discoveries also inspire innovative educational efforts to communicate the results of these explorations. We will describe the E/PO plans associated with the Helioseismic and Magnetic Imager (HMI) instrument planned for NASA's Solar Dynamics Observatory, to be launched in 2008. Our program addresses aspects of formal education, informal education, and public outreach. Projects include a student Science Fellow program being developed in collaboration with Stanford's Haas Center for Public Service, a high-school-appropriate ionospheric disturbance monitor that tracks solar-induced changes in the Earth's ionosphere, development of a new solar program for portable planetaria -- including almost-full-dome projection, and a planned StarDate radio series.

  7. Taosi Observatory

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Taosi observatory is the remains of a structure discovered at the later Neolithic Taosi site located in Xiangfen County, Shanxi Province, in north-central China. The structure is a walled enclosure on a raised platform. Only rammed-earth foundations of the structure remained. Archaeoastronomical studies suggest that this structure functioned as an astronomical observatory. Historical circumstantial evidence suggests that it was probably related to the legendary kingdom of Yao from the twenty-first century BC.

  8. Public outreach and communications of the Alaska Volcano Observatory during the 2005-2006 eruption of Augustine Volcano: Chapter 27 in The 2006 eruption of Augustine Volcano, Alaska

    USGS Publications Warehouse

    Adleman, Jennifer N.; Cameron, Cheryl E.; Snedigar, Seth F.; Neal, Christina A.; Wallace, Kristi L.

    2010-01-01

    The AVO Web site, with its accompanying database, is the backbone of AVO's external and internal communications. This was the first Cook Inlet volcanic eruption with a public expectation of real-time access to data, updates, and hazards information over the Internet. In March 2005, AVO improved the Web site from individual static pages to a dynamic, database-driven site. This new system provided quick and straightforward access to the latest information for (1) staff within the observatory, (2) emergency managers from State and local governments and organizations, (3) the media, and (4) the public. From mid-December 2005 through April 2006, the AVO Web site served more than 45 million Web pages and about 5.5 terabytes of data.

  9. Creating Griffith Observatory

    NASA Astrophysics Data System (ADS)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  10. Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Lowenstern, Jacob

    2008-01-01

    Eruption of Yellowstone's Old Faithful Geyser. Yellowstone hosts the world's largest and most diverse collection of natural thermal features, which are the surface expression of magmatic heat at shallow depths in the crust. The Yellowstone system is monitored by the Yellowstone Volcano Observatory (YVO), a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and the University of Utah. YVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Yellowstone and YVO at http://volcanoes.usgs.gov/yvo.

  11. Everyday astronomy @ Sydney Observatory

    NASA Astrophysics Data System (ADS)

    Parello, S. L.

    2008-06-01

    Catering to a broad range of audiences, including many non-English speaking visitors, Sydney Observatory offers everything from school programmes to public sessions, day care activities to night observing, personal interactions to web-based outreach. With a history of nearly 150 years of watching the heavens, Sydney Observatory is now engaged in sharing the wonder with everybody in traditional and innovative ways. Along with time-honoured tours of the sky through two main telescopes, as well as a small planetarium, Sydney Observatory also boasts a 3D theatre, and offers programmes 363 days a year - rain or shine, day and night. Additionally, our website neversleeps, with a blog, YouTube videos, and night sky watching podcasts. And for good measure, a sprinkling of special events such as the incomparable Festival of the Stars, for which most of northern Sydney turns out their lights. Sydney Observatory is the oldest working observatory in Australia, and we're thrilled to be looking forward to our 150th Anniversary next year in anticipation of the International Year of Astronomy immediately thereafter.

  12. Grand Observatory

    NASA Technical Reports Server (NTRS)

    Young, Eric W.

    2002-01-01

    Various concepts have been recently presented for a 100 m class astronomical observatory. The science virtues of such an observatory are many: resolving planets orbiting around other stars, resolving the surface features of other stars, extending our temporal reach back toward the beginning (at and before stellar and galactic development), improving on the Next Generation Space Telescope, and other (perhaps as yet) undiscovered purposes. This observatory would be a general facility instrument with wide spectral range from at least the near ultraviolet to the mid infrared. The concept espoused here is based on a practical, modular design located in a place where temperatures remain (and instruments could operate) within several degrees of absolute zero with no shielding or cooling. This location is the bottom of a crater located near the north or south pole of the moon, most probably the South Polar Depression. In such a location the telescope would never see the sun or the earth, hence the profound cold and absence of stray light. The ideal nature of this location is elaborated herein. It is envisioned that this observatory would be assembled and maintained remotely through the use of expert robotic systems. A base station would be located above the crater rim with (at least occasional) direct line-of-sight access to the earth. Certainly it would be advantageous, but not absolutely essential, to have humans travel to the site to deal with unexpected contingencies. Further, observers and their teams could eventually travel there for extended observational campaigns. Educational activities, in general, could be furthered thru extended human presence. Even recreational visitors and long term habitation might follow.

  13. The Public Nights Program at Appalachian State University's Dark Sky Observatory Cline Visitor Center: Our First Year’s Results

    NASA Astrophysics Data System (ADS)

    Caton, Daniel B.; Smith, A. B.; Hawkins, R. L.

    2013-01-01

    We have completed our first year of public nights at our Dark Sky Observatory’s 32-inch telescope and the adjacent Cline Visitor Center. Our monthly public nights are composed of two groups of 60 visitors each that arrive for 1.5-hour sessions. Shorter summer nights limit us to one session. We use two large (70-inch) flat panel displays in the Center for a brief pre-observing discussion and to entertain visitors while they await their turn at the telescope’s eyepiece. One of them runs a Beta version of Microsoft’s Worldwide Telescope for Kinect. While the facility is fully ADA compliant, with eyepiece access via a DFM Engineering Articulated Relay Eyepiece, and a wheelchair lift if needed, we have only had one occasion to use this capability. We present some of our experiences in this poster and encourage readers to offer suggestions. The Visitor Center was established with the support of Mr. J. Donald Cline, for which we are very grateful. The Kinect system was donated by Marley Gray, at Microsoft/Charlotte. The telescope was partially funded by the National Science Foundation.

  14. Armenian Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2015-07-01

    Vast amount of information continuously accumulated in astronomy requires finding new solutions for its efficient storage, use and dissemination, as well as accomplishing new research projects. Virtual Observatories (VOs) have been created in a number of countries to set up a new environment for these tasks. Based on them, the International Virtual Observatory Alliance (IVOA) was created in 2002, which unifies 19 VO projects, including Armenian Virtual Observatory (ArVO) founded in 2005. ArVO is a project of Byurakan Astrophysical Observatory (BAO) aimed at construction of a modern system for data archiving, extraction, acquisition, reduction, use and publication. ArVO technical and research projects are presented, including the Global Spectroscopic Database, which is being built based on Digitized First Byurakan Survey (DFBS). Quick optical identification of radio, IR or X-ray sources will be possible by plotting their positions in the DFBS or other spectroscopic plate and matching all available data. Accomplishment of new projects by combining data is so important that the International Council of Scientific Unions (ICSU) recently created World Data System (WDS) for unifying data coming from all science areas, and BAO has also joined it.

  15. Ice Observatory

    NASA Astrophysics Data System (ADS)

    blugerman, n.

    2015-10-01

    My project is to make ice observatories to perceive astral movements as well as light phenomena in the shape of cosmic rays and heat, for example.I find the idea of creating an observation point in space, that in time will change shape and eventually disappear, in consonance with the way we humans have been approaching the exploration of the universe since we started doing it. The transformation in the elements we use to understand big and small transformations, within the universe elements.

  16. Virtual Observatories

    NASA Astrophysics Data System (ADS)

    Genova, Françoise

    2011-06-01

    Astronomy has been at the forefront among scientific disciplines for the sharing of data, and the advent of the World Wide Web has produced a revolution in the way astronomers do science. The recent development of the concept of Virtual Observatory builds on these foundations. This is one of the truly global endeavours of astronomy, aiming at providing astronomers with seamless access to data and tools, including theoretical data. Astronomy on-line resources provide a rare example of a world-wide, discipline-wide knowledge infrastructure, based on internationally agreed interoperability standards.

  17. Changing perceptions one classroom at a time: Evaluation results from the Solar Dynamics Observatory formal Education and Public Outreach programs

    NASA Astrophysics Data System (ADS)

    Wawro, Martha; Haden, Carol

    2014-06-01

    The Solar Dynamics Observatory’s (SDO) education and public outreach (EPO) team has developed and implemented a number of formal education programs for K-12 students and teachers. Programs include the Day At Goddard field trip for high school students, SDO Ambassador in the Classroom outreach to elementary classrooms, and teacher support materials for solar science education. These programs have been designed to foster student interest and engagement in science especially solar science, and increase their awareness and interest in NASA and STEM careers. Magnolia Consulting, who worked closely with the SDO EPO team to both design a substantive evaluation program, as well as improve the education programs offered, has extensively evaluated these programs. Evaluation findings indicate that teachers highly value the opportunities and resources provided by SDO EPO and that student impacts include increased interest and engagement in solar science topics and awareness of STEM careers. This presentation will be a summary of the results of the evaluation of these formal education programs including lessons learned that can be of value to the STEM EPO community.

  18. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  19. Haystack Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Radio astronomy programs comprise three very-long-baseline interferometer projects, ten spectral line investigations, one continuum mapping in the 0.8 cm region, and one monitoring of variable sources. A low-noise mixer was used in mapping observations of 3C273 at 31 GHz and in detecting of a new methyl alcohol line at 36,169 MHz in Sgr B2. The new Mark 2 VLBI recording terminal was used in galactic H2O source observations using Haystack and the Crimean Observatory, USSR. One feature in W29 appears to have a diameter of 0.3 millisec of arc and a brightness temperature of 1.4 x 10 to the 15th power K. Geodetic baseline measurements via VLBI between Green Bank and Haystack are mutually consistent within a few meters. Radar investigations of Mercury, Venus, Mars, and the Moon have continued. The favorable opposition of Mars and improvements in the radar permit measurements on a number of topographic features with unprecedented accuracy, including scarps and crater walls. The floor of Mare Serenitatis slopes upward towards the northeast and is also the location of a strong gravitational anomaly.

  20. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    astronomical technology and is one of the premier facilities in the world for optical and near-infrared observations. In addition to the state-of-the-art Very Large Telescope and the four Auxiliary Telescopes of 1.8-m diameter which can move to relocate in up to 30 different locations feeding the interferometer, Paranal will also be home to the 2.6-m VLT Survey telescope (VST) and the 4.2-m VISTA IR survey telescope. Both Paranal and La Silla have a proven record of their unique ability to address most current issues in observational astronomy. In 2004 alone, each observatory provided data for the publication of about 350 peer-reviewed journal articles, more than any other ground-based observatory. With the present merging of these top-ranking astronomical observatories, fostering synergies and harmonizing the many diverse activities, ESO and the entire community of European astronomers will profit even more from these highly efficient research facilities. Images of ESO's observatories and telescopes are available in the ESO gallery.

  1. Contributions to Public Understanding of Science by the Lamont-Doherty Earth Observatory (II): Web-Based Projects for Teachers and Students

    NASA Astrophysics Data System (ADS)

    Passow, M. J.; Kastens, K. A.; Goodwillie, A. M.; Brenner, C.

    2009-12-01

    The Lamont-Doherty Earth Observatory of Columbia University (LDEO) continues its long history of contributions to public understanding of Science. Highlights of current efforts are described in paired posters. Part 2 focuses on web-based activities that foster access to LDEO cutting-edge research for worldwide audiences. “Geoscience Data Puzzles" are activities that purposefully present a high ratio of insight-to-effort for students. Each Puzzle uses selected authentic data to illuminate fundamental Earth processes typically taught in Earth Science curricula. Data may be in the form of a graph, table, map, image or combination of the above. Some Puzzles involve downloading a simple Excel file, but most can be worked from paper copies. Questions guide students through the process of data interpretion. Most Puzzles involve calculations, with emphasis on the too-seldom-taught skill of figuring out what math process is useful to answer an unfamiliar question or solve a problem. Every Puzzle offers "Aha" insights, when the connection between data and process or data and problem comes clear in a rewarding burst of illumination. Time needed to solve a Puzzle is between 15 minutes and an hour. “GeoMapApp” is a free, map-based data exploration and visualization application from the LDEO Marine Geoscience Data System group. GeoMapApp provides direct access to hundreds of data sets useful to geoscience educators, including continuously-updated Global Multi-Resolution Topography compilations that incorporates high-resolution bathymetry in the oceans and Space Shuttle elevations over land. A new User Guide, multi-media tutorials and webinar offer follow-along help and examples. “Virtual Ocean” integrates GeoMapApp functionality with NASA World Wind code to provide a powerful new 3-D platform for interdisciplinary geoscience research and education. Both GeoMapApp and Virtual Ocean foster scientific understanding and provide training in new data visualization

  2. Observatory Bibliographies as Research Tools

    NASA Astrophysics Data System (ADS)

    Rots, Arnold H.; Winkelman, S. L.

    2013-01-01

    Traditionally, observatory bibliographies were maintained to provide insight in how successful a observatory is as measured by its prominence in the (refereed) literature. When we set up the bibliographic database for the Chandra X-ray Observatory (http://cxc.harvard.edu/cgi-gen/cda/bibliography) as part of the Chandra Data Archive ((http://cxc.harvard.edu/cda/), very early in the mission, our objective was to make it primarily a useful tool for our user community. To achieve this we are: (1) casting a very wide net in collecting Chandra-related publications; (2) including for each literature reference in the database a wealth of metadata that is useful for the users; and (3) providing specific links between the articles and the datasets in the archive that they use. As a result our users are able to browse the literature and the data archive simultaneously. As an added bonus, the rich metadata content and data links have also allowed us to assemble more meaningful statistics about the scientific efficacy of the observatory. In all this we collaborate closely with the Astrophysics Data System (ADS). Among the plans for future enhancement are the inclusion of press releases and the Chandra image gallery, linking with ADS semantic searching tools, full-text metadata mining, and linking with other observatories' bibliographies. This work is supported by NASA contract NAS8-03060 (CXC) and depends critically on the services provided by the ADS.

  3. Next Generation Virtual Observatories

    NASA Astrophysics Data System (ADS)

    Fox, P.; McGuinness, D. L.

    2008-12-01

    Virtual Observatories (VO) are now being established in a variety of geoscience disciplines beyond their origins in Astronomy and Solar Physics. Implementations range from hydrology and environmental sciences to solid earth sciences. Among the goals of VOs are to provide search/ query, access and use of distributed, heterogeneous data resources. With many of these goals being met and usage increasing, new demands and requirements are arising. In particular there are two of immediate and pressing interest. The first is use of VOs by non-specialists, especially for information products that go beyond the usual data, or data products that are sought for scientific research. The second area is citation and attribution of artifacts that are being generated by VOs. In some sense VOs are re-publishing (re-packaging, or generating new synthetic) data and information products. At present only a few VOs address this need and it is clear that a comprehensive solution that includes publishers is required. Our work in VOs and related semantic data framework and integration areas has lead to a view of the next generation of virtual observatories which the two above-mentioned needs as well as others that are emerging. Both of the needs highlight a semantic gap, i.e. that the meaning and use for a user or users beyond the original design intention is very often difficult or impossible to bridge. For example, VOs created for experts with complex, arcane or jargon vocabularies are not accessible to the non-specialist and further, information products the non-specialist may use are not created or considered for creation. In the second case, use of a (possibly virtual) data or information product (e.g. an image or map) as an intellectual artifact that can be accessed as part of the scientific publication and review procedure also introduces terminology gaps, as well as services that VOs may need to provide. Our supposition is that formalized methods in semantics and semantic web

  4. Distributed Observatory Management

    NASA Astrophysics Data System (ADS)

    Godin, M. A.; Bellingham, J. G.

    2006-12-01

    posted to the COOP tool on a daily basis, and updated with announcements on schedule, system status, voting results from previous day, ocean, atmosphere, hardware, adaptive sampling and coordinated control and forecast. The collection of standardized data files was used to generate daily plots of observed and predicted currents, temperature, and salinity. Team members were able to participate from any internet-accessible location using common Internet browsers, and any team member could add to the day's summary, point out trends and discuss observations, and make an adaptation proposal. If a team member submitted a proposal, team-wide discussion and voting followed. All interactions were archived and left publicly accessible so that future experiments could be made more systematic with increased automation. The need for collaboration and data handling tools is important for future ocean observatories, which will require 24-hour per day, 7-day a week interactions over many years. As demonstrated in the ASAP experiment, the COOP tool and associated data handling tools allowed scientists to coherently and collaboratively manage an ocean observatory, without being co-located at the observatory. Lessons learned from operating these collaborative tools during the ASAP experiment provide an important foundation for creating even more capable portals.

  5. The Role of the Observatories

    NASA Astrophysics Data System (ADS)

    Robson, I.

    2005-12-01

    Observatories are the engine room of astronomical outreach. They provide the tools that allow research discoveries to be made in addition to employing many of the research astronomers and public information officers (PIOs). Where accessible, they provide a natural venue for public visits and centres of excellence. They engage in a wide variety of outreach activities in their own right with varying degrees of success, often linked to funding. In all of this, the enthusiasm and high calibre activities of individuals can never be overestimated. We review the above and report the results from a 'health of stock' survey conducted of a large sample of mainly ground-based observatories refl ecting their overall activities and experiences.

  6. Operations of and Future Plans for the Pierre Auger Observatory

    SciTech Connect

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Auger Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.

  7. The U.S. National Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert

    The U.S. National Virtual Observatory project is a development effort aimed at implementing the framework for an eventual Virtual Observatory facility. Project activities include the development of metadata standards resource and service registries table and image access protocols interfaces to the computational grid and access to VO resources for education and public outreach. Select science prototypes are used to guide technical development and demonstrate the capabilities of the VO framework for enhancing research. The US NVO project works closely with international VO partners through the International Virtual Observatory Alliance. The US NVO project is funded by the National Science Foundation under Cooperative Agreement AST0122449 with The Johns Hopkins University.

  8. Norwegian Ocean Observatory Network (NOON)

    NASA Astrophysics Data System (ADS)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  9. The Cincinnati Observatory as a Research Instrument for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Abel, Nicholas; Regas, Dean; Flateau, Davin C.; Larrabee, Cliff

    2016-06-01

    The Cincinnati Observatory, founded in 1842, was the first public observatory in the Western Hemisphere. The history of Cincinnati is closely intertwined with the history of the Observatory, and with the history of science in the United States. Previous directors of the Observatory helped to create the National Weather Service, the Minor Planet Center, and the first astronomical journal in the U.S. The Cincinnati Observatory was internationally known in the late 19th century, with Jules Verne mentioning the Cincinnati Observatory in two of his books, and the Observatory now stands as a National Historic Landmark.No longer a research instrument, the Observatory is now a tool for promoting astronomy education to the general public. However, with the 11" and 16" refracting telescopes, the Observatory telescopes are very capable of collecting data to fuel undergraduate research projects. In this poster, we will discuss the history of the Observatory, types of student research projects capable with the Cincinnati Observatory, future plans, and preliminary results. The overall goal of this project is to produce a steady supply of undergraduate students collecting, analyzing, and interpreting data, and thereby introduce them to the techniques and methodology of an astronomer at an early stage of their academic career.

  10. INTERMAGNET and magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, Arnaud

    2012-01-01

    A magnetic observatory is a specially designed ground-based facility that supports time-series measurement of the Earth’s magnetic field. Observatory data record a superposition of time-dependent signals related to a fantastic diversity of physical processes in the Earth’s core, mantle, lithosphere, ocean, ionosphere, magnetosphere, and, even, the Sun and solar wind.

  11. The Norwegian Naval Observatories

    NASA Astrophysics Data System (ADS)

    Pettersen, Bjørn Ragnvald

    2007-07-01

    Archival material has revealed milestones and new details in the history of the Norwegian Naval Observatories. We have identified several of the instrument types used at different epochs. Observational results have been extracted from handwritten sources and an extensive literature search. These allow determination of an approximate location of the first naval observatory building (1842) at Fredriksvern. No physical remains exist today. A second observatory was established in 1854 at the new main naval base at Horten. Its location is evident on military maps and photographs. We describe its development until the Naval Observatory buildings, including archives and instruments, were completely demolished during an allied air bomb raid on 23 February 1945. The first director, C.T.H. Geelmuyden, maintained scientific standards at the the Observatory between 1842 and 1870, and collaborated with university astronomers to investigate, develop, and employ time-transfer by telegraphy. Their purpose was accurate longitude determination between observatories in Norway and abroad. The Naval Observatory issued telegraphic time signals twice weekly to a national network of sites, and as such served as the first national time-service in Norway. Later the Naval Observatory focused on the particular needs of the Navy and developed into an internal navigational service.

  12. Beijing Ancient Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Yunli

    The Beijing Ancient Observatory is now the only complete example of an observatory from the seventeenth century in the world. It is a monument to the prosperity of astronomy in traditional China. Its instruments are emblems of the encounter and amalgamation of Chinese and European Science in the seventeenth and eighteenth centuries.

  13. Svetloe Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Rahimov, Ismail

    2013-01-01

    This report summarizes information about the Svetloe Radio Astronomical Observatory activities in 2012. Last year, a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to their required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  14. Zelenchukskaya Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Dyakov, Andrei

    2013-01-01

    This report summarizes information about Zelenchukskaya Radio Astronomical Observatory activities in 2012. Last year a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to the required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  15. Public Performance

    NASA Astrophysics Data System (ADS)

    Krupp, E. C.

    2013-01-01

    America’s first planetaria all opened in the 1930s, and each was the distinctive product of local circumstances. In Los Angeles, the populist sensibilities of Griffith J. Griffith prompted him to value the transformative power of a personal encounter with a telescope, and he quickly embraced the idea of a public observatory with free access to all. Griffith Observatory and its planetarium emerged from that intent. Authenticity, intelligibility, and theatricality were fundamental principles in Griffith’s thinking, and they were transformed into solid and enduring scientific and astronomical values by those who actually guided the Observatory’s design, construction, and programming. That said, the public profile of Griffith Observatory was most defined by its inspired hilltop location, its distinctive, commanding architecture, and its felicitous proximity to Hollywood. The Observatory is theatric in placement and in appearance, and before the Observatory even opened, it was used as a motion picture set. That continuing vocation turned Griffith Observatory into a Hollywood star. Because entertainment industry objectives and resources were part of the Los Angeles landscape, they influenced Observatory programming throughout the Observatory’s history. Public astronomy in Los Angeles has largely been framed by the Observatory’s fundamental nature. It has exhibits, but it is not a museum. It has a planetarium, but it is essentially an observatory. As a public observatory, it is filled with instruments that transform visitors into observers. This role emphasized the importance of personal experience and established the perception of Griffith Observatory as a place for public gathering and shared contact with the cosmos. The Observatory’s close and continuous link with amateur astronomers made amateurs influential partners in the public enterprise. In full accord with Griffith J. Griffith’s original intent, Griffith Observatory has all been about putting

  16. Strasbourg's "Academy" observatory

    NASA Astrophysics Data System (ADS)

    Heck, André

    2011-08-01

    The observing post located on the roof of Strasbourg's 19th-century "Academy" is generally considered as the second astronomical observatory of the city: a transitional facility between the (unproductive) turret lantern at the top of the Hospital Gate and the German (Wilhelminian) Observatory. The current paper reviews recent findings from archives (blueprints, inventories, correspondence, decrees and other documents) shedding some light on this observatory of which virtually nothing was known to this day. While being, thanks to Chrétien Kramp (1760-1826), an effective attempt to establish an actual observatory equipped with genuine instrumentation, the succession of political regimes in France and the continual bidding for moving the university to other locations, together with the faltering of later scholars, torpedoed any significant scientific usage of the place. A meridian instrument with a Cauchoix objective doublet was however recovered by the German observatory and is still existing.

  17. The Virtual Observatory: I

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2014-11-01

    The concept of the Virtual Observatory arose more-or-less simultaneously in the United States and Europe circa 2000. Ten pages of Astronomy and Astrophysics in the New Millennium: Panel Reports (National Academy Press, Washington, 2001), that is, the detailed recommendations of the Panel on Theory, Computation, and Data Exploration of the 2000 Decadal Survey in Astronomy, are dedicated to describing the motivation for, scientific value of, and major components required in implementing the National Virtual Observatory. European initiatives included the Astrophysical Virtual Observatory at the European Southern Observatory, the AstroGrid project in the United Kingdom, and the Euro-VO (sponsored by the European Union). Organizational/conceptual meetings were held in the US at the California Institute of Technology (Virtual Observatories of the Future, June 13-16, 2000) and at ESO Headquarters in Garching, Germany (Mining the Sky, July 31-August 4, 2000; Toward an International Virtual Observatory, June 10-14, 2002). The nascent US, UK, and European VO projects formed the International Virtual Observatory Alliance (IVOA) at the June 2002 meeting in Garching, with yours truly as the first chair. The IVOA has grown to a membership of twenty-one national projects and programs on six continents, and has developed a broad suite of data access protocols and standards that have been widely implemented. Astronomers can now discover, access, and compare data from hundreds of telescopes and facilities, hosted at hundreds of organizations worldwide, stored in thousands of databases, all with a single query.

  18. The Penllergare Observatory

    NASA Astrophysics Data System (ADS)

    Birks, J. L.

    2005-12-01

    This rather picturesque and historically important Victorian observatory was built by the wealthy John Dillwyn Llewelyn near to his mansion, some four miles north-west of Swansea, Wales. He had many scientific interests, in addition to astronomy, and was a notable pioneer of photography in Wales. Together with his eldest daughter, Thereza, (who married the grandson of the fifth Astronomer Royal, Nevil Maskelyne), he took some early photographs of the Moon from this site. This paper describes the construction of the observatory, and some of those primarily involved with it. Despite its having undergone restoration work in 1982, the state of the observatory is again the cause for much concern.

  19. Global Health Observatory (GHO)

    MedlinePlus

    ... repository Reports Country statistics Map gallery Standards Global Health Observatory (GHO) data Monitoring health for the SDGs ... relevant web pages on the theme. Monitoring the health goal: indicators of overall progress Mortality and global ...

  20. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  1. Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Big Bear Solar Observatory (BBSO) is located at the end of a causeway in a mountain lake more than 2 km above sea level. The site has more than 300 sunny days a year and a natural inversion caused by the lake which makes for very clean images. BBSO is the only university observatory in the US making high-resolution observations of the Sun. Its daily images are posted at http://www.bbso.njit.e...

  2. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  3. Science with Indian Astronomical Observatory, Hanle

    NASA Astrophysics Data System (ADS)

    Prabhu, T. P.; Anupama, G. C.

    Indian Astronomical Observatory, Hanle, is the high altitude (4500 m above msl) observatory operated by the Indian Institute of Astrophysics, Bangalore. The 2-m Himalayan Chandra Telescope (HCT) installed in the autumn of 2000 as a first step towards a national large telescope is operated remotely from Bangalore. HCT data has resulted in 70 research publications till date, with average citations of 9.2 per paper. Some of the results are described in this brief review. The development of this high altitude site has also attracted other facilities in the area of Very High Energy gamma ray astronomy using atmospheric Čerenkov technique, and also in earth sciences.

  4. Observatory Sponsoring Astronomical Image Contest

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  5. WFIRST Observatory Performance

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.

    2012-01-01

    The WFIRST observatory will be a powerful and flexible wide-field near-infrared facility. The planned surveys will provide data applicable to an enormous variety of astrophysical science. This presentation will provide a description of the observatory and its performance characteristics. This will include a discussion of the point spread function, signal-to-noise budgets for representative observing scenarios and the corresponding limiting sensitivity. Emphasis will be given to providing prospective Guest Observers with information needed to begin thinking about new observing programs.

  6. Publications

    Cancer.gov

    Information about NCI publications including PDQ cancer information for patients and health professionals, patient-education publications, fact sheets, dictionaries, NCI blogs and newsletters and major reports.

  7. Torun Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Torun Center for Astronomy is located at Piwnice, 15 km north of Torun, Poland. A part of the Faculty of Physics and Astronomy of the Nicolaus Copernicus University, it was created by the union of Torun Radio Astronomy Observatory (TRAO) and the Institute of Astronomy on 1 January 1997....

  8. Strasbourg's "First" astronomical observatory

    NASA Astrophysics Data System (ADS)

    Heck, André

    2011-08-01

    The turret lantern located at the top of the Strasbourg Hospital Gate is generally considered as the first astronomical observatory of the city, but such a qualification must be treated with caution. The thesis of this paper is that the idea of a tower-observatory was brought back by a local scholar, Julius Reichelt (1637-1717), after he made a trip to Northern Europe around 1666 and saw the "Rundetårn" (Round Tower) recently completed in Copenhagen. There, however, a terrace allowed (and still allows) the full viewing of the sky, and especially of the zenith area where the atmospheric transparency is best. However, there is no such terrace in Strasbourg around the Hospital Gate lantern. Reichelt had also visited Johannes Hevelius who was then developing advanced observational astronomy in Gdansk, but nothing of the kind followed in Strasbourg. Rather, the Hospital Gate observatory was built essentially for the prestige of the city and for the notoriety of the university, and the users of this observing post did not make any significant contributions to the progress of astronomical knowledge. We conclude that the Hospital Gate observatory was only used for rudimentary viewing of bright celestial objects or phenomena relatively low on the horizon.

  9. High Energy Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.

  10. Poznan acute Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    This Poznan acute Astronomical Observatory is a unit of the Adam Mickiewicz University, located in Poznan acute, Poland. From its foundation in 1919, it has specialized in astrometry and celestial mechanics (reference frames, dynamics of satellites and small solar system bodies). Recently, research activities have also included planetary and stellar astrophysics (asteroid photometry, catalysmic b...

  11. Arecibo Observatory for All

    ERIC Educational Resources Information Center

    Bartus, P.; Isidro, G. M.; La Rosa, C.; Pantoja, C. A.

    2007-01-01

    We describe new materials available at the Arecibo Observatory for visitors with visual impairments. These materials include a guide in Braille that describes the telescope, explains some basic terms used in radio astronomy, and lists frequently asked questions. We have also designed a tactile model of the telescope. Our interest is in enabling…

  12. The University of Montana's Blue Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Friend, D. B.

    2004-12-01

    The University of Montana's Department of Physics and Astronomy runs the state of Montana's only professional astronomical observatory. The Observatory, located on nearby Blue Mountain, houses a 16 inch Boller and Chivens Cassegrain reflector (purchased in 1970), in an Ash dome. The Observatory sits just below the summit ridge, at an elevation of approximately 6300 feet. Our instrumentation includes an Op-Tec SSP-5A photoelectric photometer and an SBIG ST-9E CCD camera. We have the only undergraduate astronomy major in the state (technically a physics major with an astronomy option), so our Observatory is an important component of our students' education. Students have recently carried out observing projects on the photometry of variable stars and color photometry of open clusters and OB associations. In my poster I will show some of the data collected by students in their observing projects. The Observatory is also used for public open houses during the summer months, and these have become very popular: at times we have had 300 visitors in a single night.

  13. A National Solar Digital Observatory

    NASA Astrophysics Data System (ADS)

    Hill, F.

    2000-05-01

    The continuing development of the Internet as a research tool, combined with an improving funding climate, has sparked new interest in the development of Internet-linked astronomical data bases and analysis tools. Here I outline a concept for a National Solar Digital Observatory (NSDO), a set of data archives and analysis tools distributed in physical location at sites which already host such systems. A central web site would be implemented from which a user could search all of the component archives, select and download data, and perform analyses. Example components include NSO's Digital Library containing its synoptic and GONG data, and the forthcoming SOLIS archive. Several other archives, in various stages of development, also exist. Potential analysis tools include content-based searches, visualized programming tools, and graphics routines. The existence of an NSDO would greatly facilitate solar physics research, as a user would no longer need to have detailed knowledge of all solar archive sites. It would also improve public outreach efforts. The National Solar Observatory is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation.

  14. NASA's Great Observatories: Paper Model.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational brief discusses observatory stations built by the National Aeronautics and Space Administration (NASA) for looking at the universe. This activity for grades 5-12 has students build paper models of the observatories and study their history, features, and functions. Templates for the observatories are included. (MVL)

  15. Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Mount Wilson Observatory, located in the San Gabriel Mountains near Pasadena, California, was founded in 1904 by George Ellery Hale with financial support from Andrew Carnegie. In the 1920s and 1930s, working at the 2.5 m Hooker telescope, Edwin Hubble made two of the most important discoveries in the history of astronomy: first, that `nebulae' are actually island universes—galaxies—each with bil...

  16. Arcetri Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Arcetri Astrophysical Observatory, a government research institute founded in 1972, is located close to the villa where Galileo spent the last 11 years of his life. Under the directorship of Giorgio Abetti (1921-53) it became the growth point of Italian astrophysics with emphasis on solar physics; a tradition continued by his successor Guglielmo Righini (1953-78). Since 1978 the activities ha...

  17. Publications.

    ERIC Educational Resources Information Center

    Aviation/Space, 1980

    1980-01-01

    Presents a variety of publications available from government and nongovernment sources. The government publications are from the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) and are designed for educators, students, and the public. (Author/SA)

  18. Megalithic observatory Kokino

    NASA Astrophysics Data System (ADS)

    Cenev, Gj.

    2006-05-01

    In 2001, on the footpath of a mountain peak, near the village of Kokino, archeologist Jovica Stankovski discovered an archeological site from The Bronze Age. The site occupies a large area and is scaled in two levels. Several stone seats (thrones) are dominant in this site and they are pointing towards the east horizon. The high concentration of the movable archeological material found on the upper platform probably indicates its use in a function containing still unknown cult activities. Due to precise measurements and a detailed archaeoastronomical analysis of the site performed in the past three years by Gjore Cenev, physicist from the Planetarium in Skopje, it was shown that the site has characteristics of a sacred site, but also of a Megalithic Observatory. The markers found in this observatory point on the summer and winter solstices and spring and autumn equinoxes. It can be seen that on both sides of the solstice markers, that there are markers for establishing Moon's positions. The markers are crafted in such a way that for example on days when special rites were performed (harvest rites for example) the Sun filled a narrow space of the marker and special ray lighted the man sitting on only one of the thrones, which of course had a special meaning. According to the positions of the markers that are used for Sun marking, especially on the solstice days, it was calculated that this observatory dates from 1800 B.C.

  19. Sierra Remote Observatories

    NASA Astrophysics Data System (ADS)

    Ringwald, Fred; Morgan, G. E.; Barnes, F. S., III; Goldman, D. S.; Helm, M. R.; Mortfield, P.; Quattrocchi, K. B.; Van Vleet, L.

    2009-05-01

    We report the founding of a new facility for astrophotography and small-telescope science. Sierra Remote Observatories are eight small observatories at 4610' altitude in the Sierra Nevada Mountains of California. The sky brightness during New Moon typically rates 3 on the Bortle scale. Typical seeing is 1.2", with a one-sigma range between 1.0" and 1.6", measured during 2007 June-September. All eight observatories are operated by remote control over the Internet, from as far away as Toronto and South Carolina. The telescopes range in aperture from 106 mm to 16 inches. Color images have so far been published in several magazines (Astronomy, Practical Astronomer, and Sky & Telescope) and on NASA's Astronomy Picture of the Day website. Science programs include time-resolved photometry of cataclysmic variables including the discovery of a 3.22-hour periodicity in the light curve of the nova-like V378 Pegasi, the serendipitous discovery of a previously undesignated spherical bubble in Cygnus, the discovery of three asteroids, and monitoring of Comet Lulin.

  20. The Russian Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Dluzhnevskaya, O. B.; Malkov, O. Yu.; Kilpio, A. A.; Kilpio, E. Yu.; Kovaleva, D. A.; Sat, L. A.

    The Russian Virtual Observatory (RVO) will be an integral component of the International Virtual Observatory (IVO). The RVO has the main goal of integrating resources of astronomical data accumulated in Russian observatories and institutions (databases, archives, digitized glass libraries, bibliographic data, a remote access system to information and technical resources of telescopes etc.), and providing transparent access for scientific and educational purposes to the distributed information and data services that comprise its content. Another goal of the RVO is to provide Russian astronomers with on-line access to the rich volumes of data and metadata that have been, and will continue to be, produced by astronomical survey projects. Centre for Astronomical Data (CAD), among other Russian institutions, has had the greatest experience in collecting and distributing astronomical data for more than 20 years. Some hundreds of catalogs and journal tables are currently available from the CAD repository. More recently, mirrors of main astronomical data resources (VizieR, ADS, etc) are now maintained in CAD. Besides, CAD accumulates and makes available for the astronomical community information on principal Russian astronomical resources.

  1. Chandra X-ray Observatory (CXO): overview

    NASA Astrophysics Data System (ADS)

    Weisskopf, Martin C.; Tananbaum, Harvey D.; Van Speybroeck, Leon P.; O'Dell, Stephen L.

    2000-07-01

    The Chandra X-Ray Observatory, the x-ray component of NASA's Great Observatories, was launched early in the morning of 1999, July 23 by the Space Shuttle Columbia. The Shuttle launch was only the first step in placing the observatory in orbit. After release from the cargo bay, the Inertial Upper Stage performed two firings, and separated from the observatory as planned. Finally, after five firings of Chandra's own Integral Propulsion System--the last of which took place 15 days after launch--the observatory was placed in its highly elliptical orbit of approximately 140,000 km apogee and approximately 10,000 km perigee. After activation, the first x-rays focused by the telescope were observed on 1999, August 12. Beginning with these initial observations one could see that the telescope had survived the launch environment and was operating as expected. The month following the opening of the sun-shade door was spent adjusting the focus for each set of instrument configurations, determining the optical axis, calibrating the star camera, establishing the relative response functions, determining energy scales, and taking a series of `publicity' images. Each observation proved to be far more revealing than was expected. Finally, and despite an initial surprise and setback due to the discovery that the Chandra x-ray telescope was far more efficient for concentrating low-energy protons that had been anticipated, the observatory is performing well and is returning superb scientific data. Together with other space observations, most notably the recently activated XMM-Newton, it is clear that we are entering a new era of discovery in high-energy astrophysics.

  2. Using Virtual Observatory Services in Sky View

    NASA Technical Reports Server (NTRS)

    McGlynn, Thomas A.

    2007-01-01

    For over a decade Skyview has provided astronomers and the public with easy access to survey and imaging data from all wavelength regimes. SkyView has pioneered many of the concepts that underlie the Virtual Observatory. Recently SkyView has been released as a distributable package which uses VO protocols to access image and catalog services. This chapter describes how to use the Skyview as a local service and how to customize it to access additional VO services and local data.

  3. e-VLBI Development at Haystack Observatory

    NASA Astrophysics Data System (ADS)

    Whitney, Alan

    Haystack Observatory continues an aggressive program of e-VLBI development, particularly with respect to the use of public (shared) high-speed networds for data transfer. Much of 2002 was spent preparing for a Gbps e-VLBI demonstration experiment using antennas at Westford, MA and Greenbelt, MD; this experiment was succcesully conducted using both near-real-time and real-time data transfers to the Mark 4 correlator at Haystack Observatory, though correlation was not done in real time. In early 2003 a dedicated e-VLBI Gigabit-Ethernet wavelength was establisted between Haystack Observatory and MIT Lincoln Laboratory, giving Haystack easy access to the high-speed Abilene network in the U.S. Also in October 2002, preliminary e-VLBI experiments were conducted between Westford, MA and Kashima, Japan; this set of experiments is continuing with increasing data-rate transfers. These experiments use the Mark 5 system at Westford and the K5 system at Kashima; data is transferred in both directions and correlated at both sites. Preparations are now underway to begin e-VLBI transfers from Wettzell, Germany and Kokee Park, Kauaii for routine daily observation of UT1. Haystack Observatory has recently been awarded a 3-year grant the the National Science Foundation for the development of new IP protocols specifically tailored for e-VLBI and similar applications.

  4. Portable coastal observatories

    USGS Publications Warehouse

    Frye, Daniel; Butman, Bradford; Johnson, Mark; von der Heydt, Keith; Lerner, Steven

    2000-01-01

    Ocean observational science is in the midst of a paradigm shift from an expeditionary science centered on short research cruises and deployments of internally recording instruments to a sustained observational science where the ocean is monitored on a regular basis, much the way the atmosphere is monitored. While satellite remote sensing is one key way of meeting the challenge of real-time monitoring of large ocean regions, new technologies are required for in situ observations to measure conditions below the ocean surface and to measure ocean characteristics not observable from space. One method of making sustained observations in the coastal ocean is to install a fiber optic cable from shore to the area of interest. This approach has the advantage of providing power to offshore instruments and essentially unlimited bandwidth for data. The LEO-15 observatory offshore of New Jersey (yon Alt et al., 1997) and the planned Katama observatory offshore of Martha's Vineyard (Edson et al., 2000) use this approach. These sites, along with other cabled sites, will play an important role in coastal ocean science in the next decade. Cabled observatories, however, have two drawbacks that limit the number of sites that are likely to be installed. First, the cable and the cable installation are expensive and the shore station needed at the cable terminus is often in an environmentally sensitive area where competing interests must be resolved. Second, cabled sites are inherently limited geographically to sites within reach of the cable, so it is difficult to cover large areas of the coastal ocean.

  5. The PS1 Observatory

    NASA Astrophysics Data System (ADS)

    Kaiser, Nick; Morgan, J.; Pier, E.; Chambers, K.

    2007-12-01

    The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) will use gigapixel cameras on multi-aperture telescopes to survey the sky in the visible and near-infrared bands. The first surveys will begin in 2008 using a single telescope system (PS1) has been deployed on Haleakala, Maui. This facility is currently undergoing commissioning tests. The PS1 telescope is a 1.8-m f/4 Richey-Chretien design that employs three 50 cm diameter correcting lens. The optical system produces a 3 degree diameter field of view at the focal plane. Images will be recorded on a 1.4 gigapixel CCD camera (described in an accompanying poster presentation). The survey programs will be conducted using g, r, i, and z filters which closely approximate the band-pass and response of those used in the Sloan Digital Sky Survey. These filters will be supplemented with a y band filter further to the infrared of z and a wide w filter for solar system observations. The images from the PS1 camera are supplemented by an Imaging Sky Probe that will provide co-pointed photometric calibration images of each target field. An all-sky camera at the observatory monitors sky conditions and transparency. The operation of the PS1 telescope is supported by the Observatory, Telescope, and Instrument Software (OTIS) system. The OTIS software interfaces the telescope control software provided by the vendor and the CCD camera computer systems. OTIS also records and archives environmental metadata from the dome and the observatory weather station.

  6. Research, Education, and Outreach at the Oakley Observatories

    NASA Astrophysics Data System (ADS)

    Ditteon, Richard

    2013-05-01

    Rose-Hulman Institute of Technology is a four-year college specializing in undergraduate engineering, science and mathematics education. Rose students have a strong interest in anything space-related. In the early days of the space age, Rose established a campus observatory to collect data on man-made satellites. In 2000, a new observatory was completed and named the Oakley Observatory. The new observatory was designed primarily for education and outreach, but we have successfully used it for minor planet astrometry, and photometry of minor planets and variable stars. Rose-Hulman students have discovered 33 main belt asteroids. Faculty, Rose students, and local high school students have worked together to publish more than 350 minor planet lightcurves. To supplement the campus observatory, The Oakley Southern Sky Observatory was completed in 2007 near Siding Spring in New South Wales, Australia. OSSO makes it possible to observe the southern sky, and it has much less cloud cover, as well as, significantly darker skies than our campus. Rose-Hulman offers an area minor in astronomy and all of the astronomy courses are available to all majors as technical electives. Classes are normally filled to capacity. Finally, we also use the campus observatory for public outreach. We host scout troops, school classes and many other types of groups who want to look through a telescope. We also hold public open houses for special astronomical events such as the transit of Venus.

  7. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  8. NASA's Heliophysics System Observatory

    NASA Astrophysics Data System (ADS)

    Clarke, Steven

    2016-04-01

    NASA formulates and implements a national research program for understanding the Sun and its interactions with the Earth and the solar system and how these phenomena impact life and society. This research provides theory, data, and modeling development services to national and international space weather efforts utilizing a coordinated and complementary fleet of spacecraft, called the Heliophysics System Observatory (HSO), to understand the Sun and its interactions with Earth and the solar system, including space weather. This presentation will focus on NASA's role in space weather research and the contributions the agency continues to provide to the science of space weather, leveraging inter-agency and international collaborations for the benefit of society.

  9. Strasbourg Observatory Archives Revisited

    NASA Astrophysics Data System (ADS)

    Heck, A.

    2002-12-01

    Official talks in France and Germany after World War I were generally of hatred and revenge. Strasbourg Observatory had just changed nationality (from Prussian to French) for the first time (this would happen again at the outbreak of WWII and after the conflict). Documents show that astronomers did not share the general attitude. For example the inventory book started in German was continued in French after 1918. It is moving to see those different handwritings in two different languages on the same pages -- making of that book a unique document in various respects, but also reminding us that the native language of the region was in fact Alsacian.

  10. Acquirement of the observatory code of Langkawi National Observatory

    NASA Astrophysics Data System (ADS)

    Loon, Chin Wei; Zainuddin, Mohd. Zambri; Ahmad, Nazhatulshima; Shukor, Muhammad Shamim; Tahar, Muhammad Redzuan

    2015-04-01

    Observatory code was assigned by The International Astronomical Union (IAU) Minor Planet Center (MPC) for a permanent observatory that intended to do astrometric CCD-observing program of minor planet or comets in solar system. The purpose of acquiring an observatory code is to document specific details about a particular observation site and the types of instruments used within the observatory. In addition, many astronomical centers and stations worldwide will know there is an active observatory at the particular location and international cooperation program in astronomy observation is possible. The Langkawi National Observatory has initiated an observation program to monitor minor planet, specifically those Near Earth Objects (NEOs) that may bring potentially hazardous to the Earth. In order to fulfil the requirement that stated by MPC for undertaking astrometric CCD-observing program, an observatory code was required. The instruments and methods that applied to obtain the observatory code will be discussed. The Langkawi National Observatory is now coded as O43 and listed in the MPC system, the single worldwide location for receipt and distribution of positional measurements of minor planets, comets and outer irregular natural satellites of major planets.

  11. The Asiago Observatory's reflectogoniometer

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Pernechele, C.; Barbieri, C.

    1999-09-01

    We present the Asiago Astrophysical Observatory reflectogoniometer, a useful instrument which allows to perform laboratory studies of transmitted and diffuse light. In particular the instrument allows a complete characterization of the Bidirectional Reflectance Function (BDRF) for spherical shape samples and of the Transmittance Function for plane samples. The instrument is placed in an optical laboratory of the Asiago Astrophysical Observatory. Data are acquired by a CCD camera, equipped with its own frame grabber card, and analysed by a pc. Image calibration, i.e. the procedure that converts the value of each pixel of a CCD frame in a radiometric quantity, follows the standard sequence used for remote sensing application (bias, dark, flat fielding, distortion corrections, reflectogoniometric calibration, using a reflectometric standard), and it is implemented in a data reduction pipeline. The instrument tests performed until now have confirm that the imaging-goniophotometer is an instrument suitable for the quick characterization of diffusing surfaces in all the tree possible configuration: transmittance measurements (translucent plates), partial reflectance measurements (diffusing sheets), and bidirectional function characterization (coatings and paints). The goniophotometer may have different astronomical and industrial applications: it can be used for the characterization of absorbance properties of paints for baffling in spatial missions, of diffusive properties of flat field panels, of trasmittance properties of different glasses type and of reflective properties of rocks surfaces, like, for example, meteorites samples.

  12. Wendelstein Observatory Operations Software

    NASA Astrophysics Data System (ADS)

    Gössl, C. A.; Snigula, J. M.; Munzert, T.

    2014-05-01

    LMU München operates an astrophysical observatory on Mt. Wendelstein which has been equipped with a modern 2m-class telescope recently. The new Fraunhofer telescope is starting science operations now with a 64 Mpixel, 0.5°×0.5° FoV wide field camera and will successively be equipped with a three channel optical/NIR camera and two fibre coupled spectrographs (IFU spectrograph VIRUSW already in operation at the 2.7m McDonald, Texas and an upgraded Echelle spectrograph FOCES formerly operated at Calar Alto oberservatory, Spain). All instruments will be mounted simultaneously and can be activated within a minute. The observatory also operates a small 40cm telescope with a CCD-camera and a simple fibre coupled spectrograph for students lab and photometric monitoring as well as a large number of support equipment like a meteo station, allsky cameras, a multitude of webcams, in addition to a complex building control system environment. Here we describe the ongoing effort to build a centralised controlling interface for all. This includes remote/robotic operation, visualisation via browser technologies, and data processing and archiving.

  13. Wendelstein Observatory control software

    NASA Astrophysics Data System (ADS)

    Gössl, Claus; Snigula, Jan; Kodric, Mihael; Riffeser, Arno; Munzert, Tobias

    2014-07-01

    LMU München operates an astrophysical observatory on Mt. Wendelstein1 which has been equipped with a modern 2m-class telescope2, 3 recently. The new Fraunhofer telescope has started science operations in autumn 2013 with a 64 Mpixel, 0:5 x 0:5 square degree FoV wide field camera,4 and will successively be equipped with a 3 channel optical/NIR camera5 and 2 fibre coupled spectrographs (IFU spectrograph VIRUSW6 already in operation at the 2.7 McDonald, Texas and an upgraded Echelle spectrograph FOCES7, 8 formerly operated at Calar Alto oberservatory, Spain). All instruments will be mounted simultaneously and can be activated within a minute. The observatory also operates a small 40cm telescope with a CCD-camera and a simple fibre coupled spectrograph for students lab and photometric monitoring as well as a large number of support equipment like a meteo station, allsky cameras, a multitude of webcams, in addition to a complex building control system environment. Here we describe the ongoing effort to build a centralised controlling interface for all hardware. This includes remote/robotic operation, visualisation via web browser technologies, and data processing and archiving.

  14. Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Young, E.; Marcum, P.; Krabbe, A.

    2010-12-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  15. GPM Core Observatory Launch Animation

    NASA Video Gallery

    This animation depicts the launch of the Global Precipitation Measurement (GPM) Core Observatory satellite from Tanegashima Space Center, Japan. The launch is currently scheduled for Feb. 27, 2014....

  16. Toward a Global Lake Ecological Observatory Network

    NASA Astrophysics Data System (ADS)

    Kratz, T.; Arzberger, P.; Benson, B.; Chiu, C.; Chiu, K.; Ding, L.; Fountain, T.; Hamilton, D.; Hanson, P.; Hu, Y.; Lin, F.; McMullen, D.; Tilak, S.; Wu, C.

    2006-12-01

    The Global Lake Ecological Observatory Network (GLEON; www.gleon.org) is a grassroots network of limnologists, information technology experts, and engineers who have a common goal of building a scalable, persistent, international network of lake ecology observatories. Data from these observatories will help us to better understand key issues such as the effects of climate and landuse change on lake function, the role of episodic events such as typhoons or mixing events in resetting lake dynamics, and carbon cycling within lakes. The observatories consist of instrumented platforms capable of sensing key limnological variables and moving the data in near-real time, often through wireless networks, to web-accessible databases. A common web portal is being developed to allow easy access to data and information by researchers and the public. A series of web services supported by this portal are being developed to allow automation of processes associated with instrument management and data quality assurance/quality control, and to allow computation of metrics based on the high frequency data. Such metrics include, for example, estimates of rates of important processes such as gross primary production and respiration, or physical stability of the water column. Lakes from the following locations are currently in the network: Australia, Canada, China, Finland, Israel, New Zealand, South Korea, Taiwan, United Kingdom and the US. A global network of dozens or even hundreds of automated lake observatories, each collecting and transferring data in near real time, is within our grasp in the next decade, and will offer new opportunities in scientific collaboration and understanding of lake processes.

  17. Social Media Programs at the National Optical Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Sparks, Robert T.; Walker, Constance Elaine; Pompea, Stephen M.

    2015-08-01

    Observatories and other science research organizations want to share their research and activities with the public. The last several years, social media has become and increasingly important venue for communicating information about observatory activities, research and education and public outreach.The National Optical Astronomy Observatory (NOAO) uses a wide variety of social media to communicate with different audiences. NOAO is active on social media platforms including Facebook, Twitter, Google+ and Pinterest. Our social media accounts include those for the National Optical Astronomy Observatory, Cerro Tololo Inter-American Observatory, Kitt Peak National Observatory and our dark skies conservation program Globe at Night.Our social media programs have a variety of audiences. NOAO uses social media to announce and promote NOAO sponsored meetings, observatory news and proposal deadlines to the professional astronomical community. Social media accounts are used to disseminate NOAO press releases, images from the observatory and other science using data from NOAO telescopes.Social media is important in our Education and Public Outreach programs (EPO). Globe at Night has very active facebook and twitter accounts encouraging people to become involved in preserving dark skies. Social media plays a role in recruiting teachers for professional development workshops such as Project Astro.NOAO produces monthly podcasts for the 365 Days of Astronomy podcast featuring interviews with NOAO astronomers. Each podcast highlights the science of an NOAO astronomer, an NOAO operated telescope or instrument, or an NOAO program. A separate series of podcasts is produced for NOAO’s Dark Skies Education programs. All the podcasts are archived at 365daysofastronomy.org.

  18. Implementing a Network of Hydrologic Observatories

    NASA Astrophysics Data System (ADS)

    Band, L.; Reckhow, K.; Famiglietti, J.; Genereux, D.; Helly, J.; Hooper, R.; Krajewski, W.; McKnight, D.; Ogden, F.; Scanlon, B.; Shabman, L.; Duffy, C.

    2003-12-01

    The Neuse prototyping effort will result in an implementation plan for a hydrologic observatory that will include Design concepts to address both CUAHSI science drivers as well as local-interest hypotheses The resulting data collection network, including an strategy for integration with existing activities within the basin A coordination plan with local universities, various government agencies, and stakeholder groups (such as watershed associations to enable collection of data on private lands) Detailed budget, including build-out strategies, capital, operating and staffing costs. Plans to disseminate information to the community coordinated with the Hydrologic Information Science (HIS) committee, including contributions to the HIS concept of "Digital Watersheds" Design of infrastructure to facilitate use of the observatories by individuals or groups of scientists by competitive proposal Two of the three data pools described by Reckhow et al. (this session) will be designed by this effort: the core data and the design data. Core data will be made public as soon as possible and will be subject to oversight by CUAHSI to achieve comparability of data among all observatories. The design data will be proprietary to the principal investigators for a reasonable period of time (e.g., 2 years) to permit interpretation and publication of results. The third data pool, the "network" pool, is data collected specifically to enable intersite comparisons to be made. The intersite studies will be awarded on a competitive basis once multiple observatories have been established. In the long run, we envision resources to be divided evenly among these three activities, although the proportions may shift in favor of the first two pools as observatories are being established. Once the Neuse plan has been reviewed by the community and comments have been received, CUAHSI will hold a competition to select approximately 10 additional groups to develop implementation plans at sites around

  19. Observatory ends scientific investigations

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The Orbiting Astronomical Observatory (OAO-3), which was instrumental in the discovery of the first suspected black hole, wound up its scientific investigation at the end of 1980. Spacecraft science operations were terminated after 8½ years of operation. Named Copernicus, OAO-3 performed consistently beyond design specifications and 7½ years beyond project requirements. Its performance profile, according to the NASA-Goddard engineers and scientists, was ‘astonishing.’While formal scientific investigations were ended December 31, a series of engineering tests are still being made until February 15. At that time, all contact with the spacecraft will end. Project engineers are uncertain whether Copernicus will orient itself permanently toward the sun, begin a permanent orbital tumbling action, or a variation of both.

  20. The Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Bellerive, A.; Klein, J. R.; McDonald, A. B.; Noble, A. J.; Poon, A. W. P.

    2016-07-01

    This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from 8B decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. This review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data.

  1. Orbiting Carbon Observatory

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    Human impact on the environment has produced measurable changes in the geological record since the late 1700s. Anthropogenic emissions of CO2 today may cause the global climate to depart for its natural behavior for many millenia. CO2 is the primary anthropogenic driver of climate change. The Orbiting Carbon Observatory goals are to help collect measurements of atmospheric CO2, answering questions such as why the atmospheric CO2 buildup varies annually, the roles of the oceans and land ecosystems in absorbing CO2, the roles of North American and Eurasian sinks and how these carbon sinks respond to climate change. The present carbon cycle, CO2 variability, and climate uncertainties due atmospheric CO2 uncertainties are highlighted in this presentation.

  2. The virtual observatory registry

    NASA Astrophysics Data System (ADS)

    Demleitner, M.; Greene, G.; Le Sidaner, P.; Plante, R. L.

    2014-11-01

    In the Virtual Observatory (VO), the Registry provides the mechanism with which users and applications discover and select resources-typically, data and services-that are relevant for a particular scientific problem. Even though the VO adopted technologies in particular from the bibliographic community where available, building the Registry system involved a major standardisation effort, involving about a dozen interdependent standard texts. This paper discusses the server-side aspects of the standards and their application, as regards the functional components (registries), the resource records in both format and content, the exchange of resource records between registries (harvesting), as well as the creation and management of the identifiers used in the system based on the notion of authorities. Registry record authors, registry operators or even advanced users thus receive a big picture serving as a guideline through the body of relevant standard texts. To complete this picture, we also mention common usage patterns and open issues as appropriate.

  3. Global geodetic observatories

    NASA Astrophysics Data System (ADS)

    Boucher, Claude; Pearlman, Mike; Sarti, Pierguido

    2015-01-01

    Global geodetic observatories (GGO) play an increasingly important role both for scientific and societal applications, in particular for the maintenance and evolution of the reference frame and those applications that rely on the reference frame for their viability. The International Association of Geodesy (IAG), through the Global Geodetic Observing System (GGOS), is fully involved in coordinating the development of these systems and ensuring their quality, perenniality and accessibility. This paper reviews the current role, basic concepts, and some of the critical issues associated with the GGOs, and advocates for their expansion to enhance co-location with other observing techniques (gravity, meteorology, etc). The historical perspective starts with the MERIT campaign, followed by the creation of international services (IERS, IGS, ILRS, IVS, IDS, etc). It provides a basic definition of observing systems and observatories and the build up of the international networks and the role of co-locations in geodesy and geosciences and multi-technique processing and data products. This paper gives special attention to the critical topic of local surveys and tie vectors among co-located systems in sites; the agreement of space geodetic solutions and the tie vectors now place one of the most significant limitations on the quality of integrated data products, most notably the ITRF. This topic focuses on survey techniques, extrapolation to instrument reference points, computation techniques, systematic biases, and alignment of the individual technique reference frames into ITRF. The paper also discusses the design, layout and implementation of network infrastructure, including the role of GGOS and the benefit that would be achieved with better standardization and international governance.

  4. Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Beier, E. W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in Jan. 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical Cl-37 and Ga-71 experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

  5. Global Ionosphere Radio Observatory

    NASA Astrophysics Data System (ADS)

    Galkin, I. A.; Reinisch, B. W.; Huang, X. A.

    2014-12-01

    The Global Ionosphere Radio Observatory (GIRO) comprises a network of ground-based high-frequency vertical sounding sensors, ionosondes, with instrument installations in 27 countries and a central Lowell GIRO Data Center (LGDC) for data acquisition and assimilation, including 46 real-time data streams as of August 2014. The LGDC implemented a suite of technologies for post-processing, modeling, analysis, and dissemination of the acquired and derived data products, including: (1) IRI-based Real-time Assimilative Model, "IRTAM", that builds and publishes every 15-minutes an updated "global weather" map of the peak density and height in the ionosphere, as well as a map of deviations from the classic IRI climate; (2) Global Assimilative Model of Bottomside Ionosphere Timelines (GAMBIT) Database and Explorer holding 15 years worth of IRTAM computed maps at 15 minute cadence;. (3) 17+ million ionograms and matching ionogram-derived records of URSI-standard ionospheric characteristics and vertical profiles of electron density; (4) 10+ million records of the Doppler Skymaps showing spatial distributions over the GIRO locations and plasma drifts; (5) Data and software for Traveling Ionospheric Disturbance (TID) diagnostics; and (6) HR2006 ray tracing software mated to the "realistic" IRTAM ionosphere. In cooperation with the URSI Ionosonde Network Advisory Group (INAG), the LGDC promotes cooperative agreements with the ionosonde observatories of the world to accept and process real-time data of HF radio monitoring of the ionosphere, and to promote a variety of investigations that benefit from the global-scale, prompt, detailed, and accurate descriptions of the ionospheric variability.

  6. Golden legacy from ESA's observatory

    NASA Astrophysics Data System (ADS)

    2003-07-01

    'milestone number' of 1000 scientific papers was reached. Even now ISO's data archive remains a valuable source of new results. For example, some of the latest papers describe the detection of water in 'protostars', which are stars in the process of being born, and studies of numerous nearby galaxies. "Of course we were confident ISO was going to do very well, but its actual productivity has been far beyond our expectations. The publication rate does not even seem to have peaked yet! We expect many more results," Salama says. Note for editors ISO's data archive contains scientific data from about 30 000 observations. Astronomers from all over the world have downloaded almost eight times the equivalent of the entire scientific archive. As much as 35% of all ISO observations have already been published at least once in prestigious scientific journals. ESA is now preparing to continue its infrared investigation of the Universe. The next generation of infrared space observatories is already in the pipeline. ISO is to be followed by the NASA SIRTF observatory to be launched later this year. Then, in 2007, ESA will follow up the pioneering work of ISO with the Herschel Space Observatory, which will become the largest imaging telescope ever put into space. ISO The Infrared Space Observatory (ISO) was launched in 1995 and operated from November that year to May 1998, when it ran out of the coolant needed to keep its detectors working. At the time it was the most sensitive infrared satellite ever launched and made particularly important studies of the dusty regions of the Universe, where visible light telescopes can see nothing. ESA will reopen its examination of the infrared Universe when Herschel is launched in 2007. Herschel Herschel will be the largest space telescope when, in 2007, it is launched on an Ariane-5 rocket, together with ESA’s cosmology mission, Planck. Herschel’s 3.5-metre diameter mirror will collect longwave infrared radiation from some of the coolest and most

  7. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  8. The Transformation of Observatory Newsletters - A Gemini Perspective

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu

    2015-08-01

    Astronomical observatories publish newsletters to communicate the observatory’s new discoveries and activities with its user communities, funding agencies, and general public. Gemini Observatory started publishing the newsletter in March 1992. Over the years, it transformed from a no-frills black and white publication to a full-color magazine type newsletter with a special name “GeminiFocus”. Since 2012, the contents of GeminiFocus moved from print to digital with an additional print issue of the Year in Review. The newsletter transformation is in sync with the rapid development of the internet technologies. We discuss here the evolvement of Gemini newsletter and the lessons learned.

  9. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    research opportunities for Russian and American students. AVO was a three-way partnership of the federal and state geological surveys and the state university from the start. This was not a flowering of ecumenism but was rather at the insistence of the Alaska congressional delegation. Such shared enterprises are not managerially convenient, but they do bring a diversity of roles, thinking, and expertise that would not otherwise be possible. Through AVO, the USGS performs its federally mandated role in natural hazard mitigation and draws on expertise available from its network of volcano observatories. The Alaska Division of Geological and Geophysical Surveys performs a similar role at the state level and, in the tradition of state surveys, provides important public communications, state data base, and mapping functions. The University of Alaska Fairbanks brought seismological, remote sensing, geodetic, petrological, and physical volcanological expertise, and uniquely within US academia was able to engage students directly in volcano observatory activities. Although this "model" cannot be adopted in total elsewhere, it has served to point the USGS Volcano Hazards Program in a direction of greater openness and inclusiveness.

  10. Klimovskaya: A new geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Soloviev, A. A.; Sidorov, R. V.; Krasnoperov, R. I.; Grudnev, A. A.; Khokhlov, A. V.

    2016-05-01

    In 2011 Geophysical Center RAS (GC RAS) began to deploy the Klimovskaya geomagnetic observatory in the south of Arkhangelsk region on the territory of the Institute of Physiology of Natural Adaptations, Ural Branch, Russian Academy of Sciences (IPNA UB RAS). The construction works followed the complex of preparatory measures taken in order to confirm that the observatory can be constructed on this territory and to select the optimal configuration of observatory structures. The observatory equipping stages are described in detail, the technological and design solutions are described, and the first results of the registered data quality control are presented. It has been concluded that Klimovskaya observatory can be included in INTERMAGNET network. The observatory can be used to monitor and estimate geomagnetic activity, because it is located at high latitudes and provides data in a timely manner to the scientific community via the web-site of the Russian-Ukrainian Geomagnetic Data Center. The role of ground observatories such as Klimovskaya remains critical for long-term observations of secular variation and for complex monitoring of the geomagnetic field in combination with low-orbiting satellite data.

  11. The Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2008-01-01

    The Solar Dynamics Observatory (SDO) is the first Space Weather Mission in NASA's Living With a Star Program. SDO's main goal is to understand, driving towards a predictive capability, those solar variations that influence life on Earth and humanity's technological systems. The past decade has seen an increasing emphasis on understanding the entire Sun, from the nuclear reactions at the core to the development and loss of magnetic loops in the corona. SDO's three science investigations (HMI, AIA, and EVE) will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. SDO will return full-disk Dopplergrams, full-disk vector magnetograms, full-disk images at nine EIUV wavelengths, and EUV spectral irradiances, all taken at a rapid cadence. This means you can 'observe the database' to study events, but we can also move forward in producing quantitative models of what the Sun is doing today. SDO is scheduled to launch in 2008 on an Atlas V rocket from the Kennedy Space Center, Cape Canaveral, Florida. The satellite will fly in a 28 degree inclined geosynchronous orbit about the longitude of New Mexico, where a dedicated Ka-band ground station will receive the 150 Mbps data flow. How SDO data will transform the study of the Sun and its affect on Space Weather studies will be discussed.

  12. Ten Years of the Armenian Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Astsatryan, H. V.; Knyazyan, A. V.; Magakian, T. Yu.; Mikayelyan, G. A.; Erastova, L. K.; Hovhannisyan, L. R.; Sargsyan, L. A.; Sinamyan, P. K.

    2016-06-01

    Armenian Virtual Observatory (ArVO, www.aras.am/Arvo/arvo.htm) was created 10 years ago, in 2005, when after the accomplishment of the Digitized First Byurakan Survey (DFBS, www.aras.am/Dfbs/dfbs.html) we had enough resources to run a VO project and contribute in the International Virtual Observatory Alliance (IVOA, www.ivoa.net). ArVO is a project of Byurakan Astrophysical Observatory (BAO) aimed at construction of a modern system for data archiving, extraction, acquisition, reduction, use and publication. ArVO technical and research projects include Global Spectroscopic Database, which is being built based on DFBS. Quick optical identification of radio, IR or X-ray sources will be possible by plotting their positions in the DFBS or other spectroscopic plate and matching all available data. Accomplishment of new projects by combining data is so important that the International Council of Scientific Unions (ICSU) recently created World Data System (WDS, www.icsu-wds.org/) for unifying data coming from all science areas, and BAO has also joined it due to DFBS and ArVO projects.

  13. Architecture of Chinese Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cui, Chen-Zhou; Zhao, Yong-Heng

    2004-06-01

    Virtual Observatory (VO) is brought forward under the background of progresses of astronomical technologies and information technologies. VO architecture design embodies the combination of above two technologies. As an introduction of VO, principle and workflow of Virtual Observatory are given firstly. Then the latest progress on VO architecture is introduced. Based on the Grid technology, layered architecture model and service-oriented architecture model are given for Chinese Virtual Observatory. In the last part of the paper, some problems on architecture design are discussed in detail.

  14. Development of Mykolaiv Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Mazhaev, A.; Protsyuk, Yu.

    Results obtained in 2010-2013 on the development of astronomical databases and web services are presented. Mykolaiv Virtual Observatory (MVO) is a part of the Ukrainian Virtual Observatory (UkrVO). At present, MVO consists of three major databases containing data on: astrometric catalogues, photographic plates, CCD observations. The databases facilitate the process of data mining and provide easy access to the textual and graphic information on the results of observations and their reduction obtained during the whole history of Nikolaev Astronomical Observatory (NAO).

  15. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  16. Didactic applications of remote and robotic observatories

    NASA Astrophysics Data System (ADS)

    Vaquerizo, J. A.; Cabezas, D. H.; Cesar Team; Partner Team

    2013-05-01

    Nowadays the use of remote and robotic observatories for astronomy education and public outreach has become a reality. Students can access these resources from their schools by using the Internet, regardless of the geographic location. Teachers have a wide range of educational and outreach projects that can be implemented in the classroom. In the present work we display, from a general point of view, the most common approaches adopted, as well as, in particular, the potential synergies between them. As an example of this, we present the new CESAR project and the synergies with PARTNeR project.

  17. The International Virtual Observatory: Summary of the first decade

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.

    2012-01-01

    International Virtual Observatory is a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that will combine existing databases from ground-based and space-born observatories and make them easily accessible to researchers. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies have been compiled from observations in a variety of wavelengths: optical, radio, infrared, gamma ray, X-ray and more. Each wavelength can provide different information about a celestial event or object, but also requires a special expertise to interpret. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. The International Virtual Observatory Alliance (IVOA) represents 20 national and international projects working in coordination to realize the essential technologies and interoperability standards necessary to create a new research infrastructure. Russian Virtual Observatory is one of the founders and important members of the IVOA. The International Virtual Observatory project was launched about ten years ago, and its major achievements in science and technology in recent years are discussed in this paper. Standards for accessing large astronomical data sets were developed. Such data sets can accommodate the full range of wavelengths and observational techniques for all types of astronomical data: catalogues, images, spectra and time series. The described standards include standards for metadata, data formats, query language, etc. Services for the federation of massive, distributed data sets, regardless of the wavelength, resolution and type of data were

  18. History of the Marseille Observatory

    NASA Astrophysics Data System (ADS)

    Prévot, Marie-Louise; Caplan, James

    The Marseille Observatory was founded in 1702 by the Jesuit order. It was located near the Vieux Port until the 1860s, when it was taken over as an annex to the Paris Observatory, directed by Le Verrier, and moved to its present location on the Plateau Longchamp. It again became independent in 1873. For information on the early history of the observatory we are largely indebted to F.X. von Zach, who spent several years in Marseille, and who was a good friend of J. Thulis, director from 1801 to 1810. Some aspects of the foundation and early history of the observatory, and of the lives of some of the astronomers who worked there, are presented and illustrated. Our collection of old instruments and documents are described.

  19. Haystack Observatory Technology Development Center

    NASA Technical Reports Server (NTRS)

    Beaudoin, Chris; Corey, Brian; Niell, Arthur; Cappallo, Roger; Whitney, Alan

    2013-01-01

    Technology development at MIT Haystack Observatory were focused on four areas in 2012: VGOS developments at GGAO; Digital backend developments and workshop; RFI compatibility at VLBI stations; Mark 6 VLBI data system development.

  20. Islamic Astronomical Instruments and Observatories

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Tofigh

    This chapter is a brief survey of astronomical instruments being used and developed in Islamic territories from the eighth to the fifteenth centuries as well as a concise account of major observatories and observational programs in this period.

  1. The Infrared Space Observatory (ISO)

    NASA Technical Reports Server (NTRS)

    Helou, George; Kessler, Martin F.

    1995-01-01

    ISO, scheduled to launch in 1995, will carry into orbit the most sophisticated infrared observatory of the decade. Overviews of the mission, instrument payload and scientific program are given, along with a comparison of the strengths of ISO and SOFIA.

  2. Bibliometric Investigations at the Special Astrophysical Observatory RAS

    NASA Astrophysics Data System (ADS)

    Filippova, Ekaterina

    Bibliometric data for the Special Astrophysical Observatory are presented. Statistics and analysis of issues being brought out at SAO are given. Statistical data on publication of SAO research papers from the day of foundation of the observatory through 2000 are presented. The numbers of papers that appeared in domestic and foreign scientific issues are compared. An attempt is made to analyze the correlation of the number of scientific papers with the research of the observatory and also with the economical situation in Russia. It can be seen that the steady rise in publications observed from 1968 to 1991 gave way to an abrupt fall during the first (1991--1995) and second (1998) crises in our country.

  3. Sofia Observatory Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Temi, Pasquale; Miller, Walter; Dunham, Edward; McLean, Ian; Wolf, Jurgen; Becklin, Eric; Bida, Tom; Brewster, Rick; Casey, Sean; Collins, Peter; Jakob, Holger; Killebrew, Jana; Lampater, Ulrich; Mandushev, Georgi; Marcum, Pamela; Meyer, Allan; Pfueller, Enrico; Reinacher, Andreas; Roeser, Hans-Peter; Savage, Maureen; Teufel, Stefan; Wiedemann, Manuel

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization And Integration (SCAI) flights have been conducted from June to December 2011. The HIPO science instrument in conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM Science Instrument configuration (FLIPO). A number of additional tests and measurements have targeted basic Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation and imager sensitivity. SCAI activities included in-flight partial Science Instrument commissioning prior to the use of the instruments as measuring engines. This paper reports on the data collected during the SCAI flights and presents current SOFIA Observatory performance and characterization.

  4. Observatory Bibliographies: Toward Multi-usage and Better Metrics

    NASA Astrophysics Data System (ADS)

    Rots, A. H.; Winkelman, S. L.

    2015-04-01

    There are typically two areas of motivation for the establishment of observatory bibliographies. One area of motivation is to provide a management-oriented tool that facilitates the compilation of metrics that yield some measure of the performance of the observatory. The second area of motivation is to produce a research tool that allows the science community to integrate the mining of published works in their research. It is important to keep in mind that these two objectives impose different requirements on the metadata that are collected in a bibliography. We submit that there are good reasons to integrate the two objectives in the formulation of requirements and in the design of observatory bibliographies: they benefit from each other and the yield from the sum of the metadata collections is greater than the sum of their individual yields. Further integration of the bibliography with the observatory's databases offers an additional important benefit for metrics regarding the performance of the observatory. We propose a suite of metrics, enabled by the extended metadata and database linking, that provides better insight into how well the observatory functions and is being used. These include measuring the delay between observation and publication, the percentage of data that gets published, and the re-use of the data and their archival value.

  5. ESO's First Observatory Celebrates 40th Anniversary

    NASA Astrophysics Data System (ADS)

    2009-03-01

    ESO's La Silla Observatory, which is celebrating its 40th anniversary, became the largest astronomical observatory of its time. It led Europe to the frontline of astronomical research, and is still one of the most scientifically productive in ground-based astronomy. ESO PR Photo 12a/09 La Silla Aerial View ESO PR Photo 12b/09 The ESO New Technology Telescope ESO PR Photo 12c/09 SEST on La Silla ESO PR Photo 12d/09 Looking for the best site ESO PR Video 12a/09 ESOcast 5 With about 300 refereed publications attributable to the work of the observatory per year, La Silla remains at the forefront of astronomy. It has led to an enormous number of scientific discoveries, including several "firsts". The HARPS spectrograph is the world's foremost exoplanet hunter. It detected the system around Gliese 581, which contains what may be the first known rocky planet in a habitable zone, outside the Solar System (ESO 22/07). Several telescopes at La Silla played a crucial role in discovering that the expansion of the Universe is accelerating (ESO 21/98) and in linking gamma-ray bursts -- the most energetic explosions in the Universe since the Big Bang - with the explosions of massive stars (ESO 15/98). Since 1987, the ESO La Silla Observatory has also played an important role in the study and follow-up of the nearest supernova, SN 1987A (ESO 08/07). "The La Silla Observatory continues to offer the astronomical community exceptional capabilities," says ESO Director General, Tim de Zeeuw. "It was ESO's first presence in Chile and as such, it triggered a very long and fruitful collaboration with this country and its scientific community." The La Silla Observatory is located at the edge of the Chilean Atacama Desert, one of the driest and loneliest areas of the world. Like other observatories in this geographical area, La Silla is located far from sources of polluting light and, as the Paranal Observatory that houses the Very Large Telescope, it has one of the darkest and clearest

  6. The Carl Sagan solar and stellar observatories as remote observatories

    NASA Astrophysics Data System (ADS)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  7. Far-Infrared Astronomy with The Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger, H.

    1997-01-01

    This report summarizes work made possible by NASA's Kuiper Airborne Observatory. The results of the work have appeared in over 80 papers. The publications fall in three main areas: instrumentation, observations, and analysis. Although there is considerable overlap between these categories it will be convenient to group them separately.

  8. SOFIA, an airborne observatory for infrared astronomy

    NASA Astrophysics Data System (ADS)

    Krabbe, Alfred; Mehlert, Dörte; Röser, Hans-Peter; Scorza, Cecilia

    2013-11-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project operating a 2.7 m infrared airborne telescope onboard a modified Boeing 747-SP in the stratosphere at altitudes up to 13.7 km. SOFIA covers a spectral range from 0.3 µm to 1.6 mm, with an average atmospheric transmission greater than 80%. After successfully completing its commissioning, SOFIA commenced regular astronomical observation in spring 2013, and will ramp up to more than one hundred 8 to 10 h flights per year by 2015. The observatory is expected to operate until the mid 2030s. SOFIA's initial complement of seven focal plane instruments includes broadband imagers, moderate-resolution spectrographs and high-resolution spectrometers. SOFIA also includes an elaborate program for Education and Public Outreach. We describe the SOFIA facility together with its first light instrumentation and include some of its first scientific results. In addition, the education and public outreach program is presented.

  9. GEOSCOPE Observatory Recent Developments

    NASA Astrophysics Data System (ADS)

    Leroy, N.; Pardo, C.; Bonaime, S.; Stutzmann, E.; Maggi, A.

    2010-12-01

    The GEOSCOPE observatory consists of a global seismic network and a data center. The 31 GEOSCOPE stations are installed in 19 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1 or STS2) and 24 or 26 bit digitizers, as required by the Federation of Seismic Digital Network (FDSN). In most stations, a pressure gauge and a thermometer are also installed. Currently, 23 stations send data in real or near real time to GEOSCOPE Data Center and tsunami warning centers. In 2009, two stations (SSB and PPTF) have been equipped with warpless base plates. Analysis of one year of data shows that the new installation decreases long period noise (20s to 1000s) by 10 db on horizontal components. SSB is now rated in the top ten long period stations for horizontal components according to the LDEO criteria. In 2010, Stations COYC, PEL and RER have been upgraded with Q330HR, Metrozet electronics and warpless base plates. They have been calibrated with the calibration table CT-EW1 and the software jSeisCal and Calex-EW. Aluminum jars are now installed instead of glass bells. A vacuum of 100 mbars is applied in the jars which improves thermal insulation of the seismometers and reduces moisture and long-term corrosion in the sensor. A new station RODM has just been installed in Rodrigues Island in Mauritius with standard Geoscope STS2 setup: STS2 seismometer on a granite base plate and covered by cooking pot and thermal insulation, it is connected to Q330HR digitizer, active lightning protection, Seiscomp PC and real-time internet connection. Continuous data of all stations are collected in real time or with a delay by the GEOSCOPE Data Center in Paris where they are validated, archived and made available to the international scientific community. Data are freely available to users by different interfaces according data types (see : http://geoscope.ipgp.fr) - Continuous data in real time coming

  10. Digitising the Patrimonial Collections of the Paris Observatory Library

    NASA Astrophysics Data System (ADS)

    Laurenceau, A.

    2015-04-01

    In the past few years, there have been many emerging digital library projects, and digitising heritage collections has become a major issue for libraries. Digitisation supports the preservation of collections and facilitates accessibility to the public. Furthermore, the richness and variety of the Paris Observatory's patrimonial collections, which includes ancient books, periodicals, manuscripts, archives, and iconographic documents, makes it an invaluable source for research on the history of astronomy. This is why the Paris Observatory library has started work on a digitisation policy and has since launched several digitisation projects.

  11. Magdalena Ridge Observatory Project Overview

    NASA Astrophysics Data System (ADS)

    Laubscher, Bryan E.; Buscher, David F.; Chang, Mark J.; Cobb, Michael L.; Haniff, Chris A.; Horton, Richard F.; Jorgensen, Anders M.; Klinglesmith, Dan; Loos, Gary; Nemzek, Robert J.

    The Magdalena Ridge Observatory (MRO) is a project with the goal of building a state of the art observatory on Magdalena Ridge west of Socorro New Mexico. This observatory will be sited above 3700 meters and will consist of a 10-element 400-meter baseline optical/infrared imaging interferometer and a separate 2.4-meter telescope with fast response capability. The MRO consortium members include New Mexico Institute of Mining and Technology University of Puerto Rico Mew Mexico Highlands University New Mexico State University and the Los Alamos National Laboratory. The University of Cambridge is a joint participant in the current design phase of the interferometer and expects to join the consortium. We will present an overview of the optical interferometer and single telescope designs and review their instrumentation and science programs

  12. Visits to La Plata Observatory

    NASA Astrophysics Data System (ADS)

    Feinstein, A.

    1985-03-01

    La Plata Observatory will welcome visitors to ESO-La Silla that are willing to make a stop at Buenos Aires on their trip to Chile or on their way back. There is a nice guesthouse at the Observatory that can be used, for a couple of days or so, by astronomers interested in visiting the Observatory and delivering talks on their research work to the Argentine colleagues. No payments can, however, be made at present. La Plata is at 60 km from Buenos Aires. In the same area lie the Instituto de Astronomia y Fisica dei Espacio (IAFE), in Buenos Aires proper, and the Instituto Argentino de Radioastronomia (IAR). about 40 km from Buenos Aires on the way to La Plata. Those interested should contacl: Sr Decano Prof. Cesar A. Mondinalli, or Dr Alejandro Feinstein, Observatorio Astron6mico, Paseo dei Bosque, 1900 La Plata, Argentina. Telex: 31216 CESLA AR.

  13. Technology progress of Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cui, Chenzhou; Zhao, Yongheng; Zhao, Gang; Zhang, Yanxia

    2002-12-01

    The project of Virtual Observatory (VO) is the result of breakthroughs in telescope, detector, computer and Internet technologies. The combination with the new information technology is the major characteristic of the VO development. Extensible markup language (XML) and Grid as two trends of information technology will be adopted widely in the VO. The VO architecture is based upon the standard layered architecture of Grid. In the paper, technologies related in each layer of the VO architecture are introduced. The global Virtual Observatory provides new chances for Chinese astronomy. Using the abundant resources in the Internet and chances provided by open-source software, Chinese astronomers should cooperate with national IT experts and push the Virtual Observatory projects of China as soon as possible.

  14. The Compton Observatory Science Workshop

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R. (Editor); Gehrels, Neil (Editor); Dennis, Brian (Editor)

    1992-01-01

    The Compton Observatory Science Workshop was held in Annapolis, Maryland on September 23-25, 1991. The primary purpose of the workshop was to provide a forum for the exchange of ideas and information among scientists with interests in various areas of high energy astrophysics, with emphasis on the scientific capabilities of the Compton Observatory. Early scientific results, as well as reports on in-flight instrument performance and calibrations are presented. Guest investigator data products, analysis techniques, and associated software were discussed. Scientific topics covered included active galaxies, cosmic gamma ray bursts, solar physics, pulsars, novae, supernovae, galactic binary sources, and diffuse galactic and extragalactic emission.

  15. High Energy Astronomy Observatory (HEAO)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is an artist's concept describing the High Energy Astronomy Observatory (HEAO). The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. This concept was painted by Jack Hood of the Marshall Space Flight Center (MSFC). Hardware support for the imaging instruments was provided by American Science and Engineering. The HEAO spacecraft were built by TRW, Inc. under project management of the MSFC.

  16. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  17. Jesuit Geophysical Observatories

    NASA Astrophysics Data System (ADS)

    Udias, Agustin; Stauder, William

    Jesuits have had ah interest in observing and explaining geophysical phenomena since this religious order, the Society of Jesus, was founded by Ignatius of Loyola in 1540. Three principal factors contributed to this interest: their educational work in colleges and universities, their missionary endeavors to remote lands where they observed interesting and often as yet undocumented natural phenomena, and a network of communication that brought research of other Jesuits readily to their awareness.One of the first and most important Jesuit colleges was the Roman College (today the Gregorian University) founded in 1551 in Rome, which served as a model for many other universities throughout the world. By 1572, Christopher Clavius (1537-1612), professor of mathematics at the Roman College, had already initiated an important tradition of Jesuit research by emphasizing applied mathematics and insisting on the need of serious study of mathematics in the program of studies in the humanities. In 1547 he directed a publication of Euclid's work with commentaries, and published several treatises on mathematics, including Arithmetica Practica [1585], Gnomonicae [1581], and Geometrica Practica [1606]. Clavius was also a Copernican and supported his friend Galileo when he announced the discovery of the satellites of Jupiter.

  18. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Redmond, Jay; Kodak, Charles

    2001-01-01

    This report summarizes the technical parameters and the technical staff of the Very Long Base Interferometry (VLBI) system at the fundamental station Goddard Geophysical and Astronomical Observatory (GGAO). It also gives an overview about the VLBI activities during the previous year. The outlook lists the outstanding tasks to improve the performance of GGAO.

  19. ISS images for Observatory protection

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2015-08-01

    Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.

  20. Planetary research at Lowell Observatory

    NASA Technical Reports Server (NTRS)

    Baum, William A.

    1988-01-01

    Scientific goals include a better determination of the basic physical characteristics of cometary nuclei, a more complete understanding of the complex processes in the comae, a survey of abundances and gas/dust ratios in a large number of comets, and measurement of primordial (12)C/(13)C and (14)N/(15)N ratios. The program also includes the observation of Pluto-Charon mutual eclipses to derive dimensions. Reduction and analysis of extensive narrowband photometry of Comet Halley from Cerro Tololo Inter-American Observatory, Perth Observatory, Lowell Observatory, and Mauna Kea Observatory were completed. It was shown that the 7.4-day periodicity in the activity of Comet Halley was present from late February through at least early June 1986, but there is no conclusive evidence of periodic variability in the preperihelion data. Greatly improved NH scalelengths and lifetimes were derived from the Halley data which lead to the conclusion that the abundance of NH in comets is much higher than previously believed. Simultaneous optical and thermal infrared observations were obtained of Comet P/Temple 2 using the MKO 2.2 m telescope and the NASA IRTF. Preliminary analysis of these observations shows that the comet's nucleus is highly elongated, very dark, and quite red.

  1. The Coronal Solar Magnetism Observatory

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Landi, E.; Zhang, J.; Lin, H.; DeLuca, E. E.

    2015-12-01

    Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the processes responsible for coronal heating, coronal dynamics and the generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment, and to understand the formation of coronal mass ejections (CME) and their relation to other forms of solar activity. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) with partners at the University of Michigan, the University of Hawaii and George Mason University in support of the solar and heliospheric community. It will replace the current NCAR Mauna Loa Solar Observatory (http://mlso.hao.ucar.edu). COSMO will enhance the value of existing and new observatories on the ground and in space by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. The design and current status of the COSMO will be reviewed.

  2. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  3. The Virtual Observatory in Transition

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2006-07-01

    In the past several years, the Virtual Observatory has progressed from concept to implementation. There is now a well-established International Virtual Observatory Alliance {http://ivoa.net/} with formal processes for the development and promotion of technical standards. The national VO projects have developed science applications layered on the core technologies, and these applications are providing new research opportunities for the astronomy community. The VO projects are also actively engaging the community through technical training programs such as the EuroVO Workshop (June 2005), AstroGrid Workshop (July 2005), and the US National Virtual Observatory Summer School (September 2005). As the research community begins to adopt VO tools and technology and rely on VO services, the VO projects need to prepare for something akin to routine observatory operations. System integration and testing, revision tracking, version/platform support, documentation, resource allocation, service reliability, metadata curation, and user support all need to be taken seriously in an environment/system that is inherently distributed, uncentralized, and undergoing continuing enhancements to the infrastructure.

  4. Lunar astronomical observatories - Design studies

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Burns, Jack O.; Chua, Koon Meng; Duric, Nebojsa; Gerstle, Walter H.

    1990-01-01

    The best location in the inner solar system for the grand observatories of the 21st century may be the moon. A multidisciplinary team including university students and faculty in engineering, astronomy, physics, and geology, and engineers from industry is investigating the moon as a site for astronomical observatories and is doing conceptual and preliminary designs for these future observatories. Studies encompass lunar facilities for radio astronomy and astronomy at optical, ultraviolet, and infrared wavelengths of the electromagnetic spectrum. Although there are significant engineering challenges in design and construction on the moon, the rewards for astronomy can be great, such as detection and study of earth-like planets orbiting nearby stars, and the task for engineers promises to stimulate advances in analysis and design, materials and structures, automation and robotics, foundations, and controls. Fabricating structures in the reduced-gravity environment of the moon will be easier than in the zero-gravity environment of earth orbit, as Apollo and space-shuttle missions have revealed. Construction of observatories on the moon can be adapted from techniques developed on the earth, with the advantage that the moon's weaker gravitational pull makes it possible to build larger devices than are practical on earth.

  5. Lidar Atmospheric Observatory in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Ulitsky, Arkady; Wang, Tin-Yu; Flood, Martin; Smith, Brent

    1992-01-01

    During the last decade there have been growing concerns about a broad variety of atmospheric properties. Among these, a depletion of the stratospheric ozone layer has attracted considerable attention from the general public, politicians and scientists due to its vital impact for the entire global biosphere. One of the major warning signs was the discovery of the 'ozone hole' in the Antarctic region where the concentration of the ozone in the stratosphere was significantly reduced. At present the stratospheric ozone layer in this region is being continuously monitored by groups of scientists from around the world and numerous observations of the ozone layer on the global scale have clearly demonstrated the process of ozone depletion. Recent observations by NASA have shown significant depletion in the Arctic region. This paper provides an initial description of two lidars that are planned to be installed in a new observatory for atmospheric studies in the Canadian Arctic. This observatory is being constructed under the supervision of the Atmospheric Environment Services (AES) of Canada as a part of Green Plan - an initiative of the Federal Government of Canada. The station is located at Eureka on Ellesmere Island at a latitude of 80 degrees N and a longitude of 86 degrees W.

  6. Outreach Activities of National Astronomical Observatory of Japan

    NASA Astrophysics Data System (ADS)

    Ono, T.; Watanabe, J.; Agata, H.

    2006-08-01

    The activities on the outreach issues in the National Astronomical Observatory of Japan (NAOJ) are mainly conducted by the Public Relations Center established in June 1998. Its mission is to present the latest findings in astronomy to the public in a manner that is understandable, contemporary, and exciting. For this purpose, we provide a wide range of services and deliver a variety of scientific information through multiple ways. We also maintain an effective partnership with lots of dissemination experts working at the public observatories, the science museums, and the planetariums in Japan. The representative outreach activities in NAOJ are follows. • Telephone service to answer the questions on astronomy (about 10,000 calls a year) • Press release (about 60 a year) to about 100 registered journalists • Press Members' Lounge" for registered journalists • A special seminar for science journalists every year • Service of astronomical ephemeredes, and nautical almanacs. • Weekly news letter service named "Astro-Topics" • Monthly paper magazine "NAOJ news" • Web site service (http://www.nao.ac.jp/) (about 10^7 hits a year) • Open campus or visitor service to the public • Regular star party using a modern 50-cm reflector twice a month • Coordination and cooperation with other astronomical facilities. Such as Public Astronomical Observatory Network (PAONET), Star Week Program

  7. Tools for Coordinating Planning Between Observatories

    NASA Astrophysics Data System (ADS)

    Jones, J.; Maks, L.; Fishman, M.; Grella, V.; Kerbel, U.; Misra, D.; Pell, V.

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wave bands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only a single observatory. Thus, programs using multiple observatories are limited not by scientific restrictions, but by operational inefficiencies. At present, multi-observatory programs are initiated by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among staffs at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming and error-prone, and the outcome of requests is not certain until the very end. To increase multi-observatory operations efficiency, such resource intensive processes need to be re-engineered. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the probability of scheduling all observations.

  8. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Becker, Eric; Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  9. SOFIA - Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  10. The Magnetic Observatory Buildings at the Royal Observatory, Cape

    NASA Astrophysics Data System (ADS)

    Glass, I. S.

    2015-10-01

    During the 1830s there arose a strong international movement, promoted by Carl Friedrich Gauss and Alexander von Humboldt, to characterise the earth's magnetic field. By 1839 the Royal Society in London, driven by Edward Sabine, had organised a "Magnetic Crusade" - the establishment of a series of magnetic and meteorological observatories around the British Empire, including New Zealand, Australia, St Helena and the Cape. This article outlines the history of the latter installation, its buildings and what became of them.

  11. The MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.

    1994-12-01

    A group of scientists, engineers and educators based at the Harvard-Smithsonian Center for Astrophysics (CfA) has developed a prototype of a small, inexpensive and fully integrated automated astronomical telescope and image processing system. The project team is now building five second generation instruments. The MicroObservatory has been designed to be used for classroom instruction by teachers as well as for original scientific research projects by students. Probably in no other area of frontier science is it possible for a broad spectrum of students (not just the gifted) to have access to state-of-the-art technologies that would allow for original research. The MicroObservatory combines the imaging power of a cooled CCD, with a self contained and weatherized reflecting optical telescope and mount. A microcomputer points the telescope and processes the captured images. The MicroObservatory has also been designed to be used as a valuable new capture and display device for real time astronomical imaging in planetariums and science museums. When the new instruments are completed in the next few months, they will be tried with high school students and teachers, as well as with museum groups. We are now planning to make the MicroObservatories available to students, teachers and other individual users over the Internet. We plan to allow the telescope to be controlled in real time or in batch mode, from a Macintosh or PC compatible computer. In the real-time mode, we hope to give individual access to all of the telescope control functions without the need for an "on-site" operator. Users would sign up for a specific period of time. In the batch mode, users would submit jobs for the telescope. After the MicroObservatory completed a specific job, the images would be e-mailed back to the user. At present, we are interested in gaining answers to the following questions: (1) What are the best approaches to scheduling real-time observations? (2) What criteria should be used

  12. Cyberinfrastructure for the NSF Ocean Observatories Initiative

    NASA Astrophysics Data System (ADS)

    Orcutt, J. A.; Vernon, F. L.; Arrott, M.; Chave, A.; Schofield, O.; Peach, C.; Krueger, I.; Meisinger, M.

    2008-12-01

    The Ocean Observatories Initiative (OOI) is an environmental observatory covering a diversity of oceanic environments, ranging from the coastal to the deep ocean. The physical infrastructure comprises a combination of seafloor cables, buoys and autonomous vehicles. It is currently in the final design phase, with construction planned to begin in mid-2010 and deployment phased over five years. The Consortium for Ocean Leadership manages this Major Research Equipment and Facilities Construction program with subcontracts to Scripps Institution of Oceanography, University of Washington and Woods Hole Oceanographic Institution. High-level requirements for the CI include the delivery of near-real-time data with minimal latencies, open data, data analysis and data assimilation into models, and subsequent interactive modification of the network (including autonomous vehicles) by the cyberinfrastructure. Network connections include a heterogeneous combination of fiber optics, acoustic modems, and Iridium satellite telemetry. The cyberinfrastructure design loosely couples services that exist throughout the network and share common software and middleware as necessary. In this sense, the system appears to be identical at all scales, so it is self-similar or fractal by design. The system provides near-real-time access to data and developed knowledge by the OOI's Education and Public Engagement program, to the physical infrastructure by the marine operators and to the larger community including scientists, the public, schools and decision makers. Social networking is employed to facilitate the virtual organization that builds, operates and maintains the OOI as well as providing a variety of interfaces to the data and knowledge generated by the program. We are working closely with NOAA to exchange near-real-time data through interfaces to their Data Interchange Facility (DIF) program within the Integrated Ocean Observing System (IOOS). Efficiencies have been emphasized through

  13. Astronomical observatory for shuttle. Phase A study

    NASA Technical Reports Server (NTRS)

    Guthals, D. L.

    1973-01-01

    The design, development, and configuration of the astronomical observatory for shuttle are discussed. The characteristics of the one meter telescope in the spaceborne observatory are described. A variety of basic spectroscopic and image recording instruments and detectors which will permit a large variety of astronomical observations are reported. The stDC 37485elines which defined the components of the observatory are outlined.

  14. New Geophysical Observatory in Uruguay

    NASA Astrophysics Data System (ADS)

    Sanchez Bettucci, L.; Nuñez, P.; Caraballo, R. R.; Ogando, R.

    2013-05-01

    In 2011 began the installation of the first geophysical observatory in Uruguay, with the aim of developing the Geosciences. The Astronomical and Geophysical Observatory Aiguá (OAGA) is located within the Cerro Catedral Tourist Farm (-34 ° 20 '0 .89 "S/-54 ° 42 '44.72" W, h: 270m). This has the distinction of being located in the center of the South Atlantic Magnetic Anomaly. Geologically is emplaced in a Neoproterozoic basement, in a region with scarce anthropogenic interference. The OAGA has, since 2012, with a GSM-90FD dIdD v7.0 and GSM-90F Overhauser, both of GEM Systems. In addition has a super-SID receiver provided by the Stanford University SOLAR Center, as a complement for educational purposes. Likewise the installation of a seismograph REF TEK-151-120A and VLF antenna is being done since the beginning of 2013.

  15. Boscovich and the Brera Observatory .

    NASA Astrophysics Data System (ADS)

    Antonello, E.

    In the mid 18th century both theoretical and practical astronomy were cultivated in Milan by Barnabites and Jesuits. In 1763 Boscovich was appointed to the chair of mathematics of the University of Pavia in the Duchy of Milan, and the following year he designed an observatory for the Jesuit Collegium of Brera in Milan. The Specola was built in 1765 and it became quickly one of the main european observatories. We discuss the relation between Boscovich and Brera in the framework of a short biography. An account is given of the initial research activity in the Specola, of the departure of Boscovich from Milan in 1773 and his coming back just before his death.

  16. International ultraviolet explorer observatory operations

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This volume contains the Final Report for the International Ultraviolet Explorer (IUE) Observatory Operations contract, NAS5-28787. The report summarizes the activities of the IUE Observatory over the 13-month period from November 1985 through November 1986 and is arranged in sections according to the functions specified in the Statement of Work (SOW) of the contract. In order to preserve numerical correspondence between the technical SOW elements specified by the contract and the sections of this report, project management activities (SOW element 0.0.) are reported here in Section 7, following the reports of technical SOW elements 1.0 through 6.0. Routine activities have been summarized briefly whenever possible; statistical compilations, reports, and more lengthy supplementary material are contained in the Appendices.

  17. International Ultraviolet Explorer Observatory operations

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This volume contains the final report for the International Ultraviolet Explorer IUE Observatory Operations contract. The fundamental operational objective of the International Ultraviolet Explorer (IUE) program is to translate competitively selected observing programs into IUE observations, to reduce these observations into meaningful scientific data, and then to present these data to the Guest Observer in a form amenable to the pursuit of scientific research. The IUE Observatory is the key to this objective since it is the central control and support facility for all science operations functions within the IUE Project. In carrying out the operation of this facility, a number of complex functions were provided beginning with telescope scheduling and operation, proceeding to data processing, and ending with data distribution and scientific data analysis. In support of these critical-path functions, a number of other significant activities were also provided, including scientific instrument calibration, systems analysis, and software support. Routine activities have been summarized briefly whenever possible.

  18. Ny-Alesund Geodetic Observatory

    NASA Technical Reports Server (NTRS)

    Sieber, Moritz

    2013-01-01

    In 2012 the 20-m telescope at Ny-Alesund, Svalbard, operated by the Norwegian Mapping Authority (NMA), took part in 163 out of 168 scheduled sessions of the IVS program. Since spring, all data was transferred by network, and the receiver monitoring computer was replaced by a bus-coupler. In autumn, the NMA received building permission for a new observatory from the Governor of Svalbard. The bidding process and first construction work for the infrastructure will start in 2013.

  19. Planetary Science Virtual Observatory architecture

    NASA Astrophysics Data System (ADS)

    Erard, S.; Cecconi, B.; Le Sidaner, P.; Berthier, J.; Henry, F.; Chauvin, C.; André, N.; Génot, V.; Jacquey, C.; Gangloff, M.; Bourrel, N.; Schmitt, B.; Capria, M. T.; Chanteur, G.

    2014-11-01

    In the framework of the Europlanet-RI program, a prototype of Virtual Observatory dedicated to Planetary Science was defined. Most of the activity was dedicated to the elaboration of standards to retrieve and visualize data in this field, and to provide light procedures to teams who wish to contribute with on-line data services. The architecture of this VO system and selected solutions are presented here, together with existing demonstrators.

  20. High Energy Astrophysical Observatory (HEAO)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Series of three NASA orbital observatories. HEAO-1, launched in August 1977, successfully completed the most accurate all-sky survey of x-ray sources up to that time. Discovered the `Cygnus Superbubble' created by a series of supernovae. HEAO-2 (later known as EINSTEIN), launched in 1978, was the first true x-ray astronomy satellite. HEAO-3, launched in September 1979, carried a gamma ray spectro...

  1. Vibration budget for observatory equipment

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Thompson, Hugh

    2015-07-01

    Vibration from equipment mounted on the telescope and in summit support buildings has been a source of performance degradation at existing astronomical observatories, particularly for adaptive optics performance. Rather than relying only on best practices to minimize vibration, we present here a vibration budget that specifies allowable force levels from each source of vibration in the observatory (e.g., pumps, chillers, cryocoolers, etc.). This design tool helps ensure that the total optical performance degradation due to vibration is less than the corresponding error budget allocation and is also useful in design trade-offs, specifying isolation requirements for equipment, and tightening or widening individual equipment vibration specifications as necessary. The vibration budget relies on model-based analysis of the optical consequences that result from forces applied at different locations and frequencies, including both image jitter and primary mirror segment motion. We develop this tool here for the Thirty Meter Telescope but hope that this approach will be broadly useful to other observatories, not only in the design phase, but for verification and operations as well.

  2. ALOHA Cabled Observatory: Early Results

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lukas, R.; Duennebier, F. K.

    2011-12-01

    The ALOHA Cabled Observatory (ACO) was installed 6 June 2011, extending power, network communications and timing to a seafloor node and instruments at 4726 m water depth 100 km north of Oahu. The system was installed using ROV Jason operated from the R/V Kilo Moana. Station ALOHA is the field site of the Hawaii Ocean Time-series (HOT) program that has investigated temporal dynamics in biology, physics, and chemistry since 1988. HOT conducts near monthly ship-based sampling and makes continuous observations from moored instruments to document and study climate and ecosystem variability over semi-diurnal to decadal time scales. The cabled observatory system will provide the infrastructure for continuous, interactive ocean sampling enabling new measurements as well as a new mode of ocean observing that integrates ship and cabled observations. The ACO is a prototypical example of a deep observatory system that uses a retired first-generation fiber-optic telecommunications cable. Sensors provide live video, sound from local and distant sources, and measure currents, pressure, temperature, and salinity. Preliminary results will be presented and discussed.

  3. Las Cumbres Observatory Global Telescope

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.; Rosing, W.; Pickles, A.; Howell, D. A.

    2009-05-01

    Las Cumbres Observatory Global Telescope (LCOGT) is a privately-funded observatory dedicated to time-domain astronomy. Our main observing tool will be a homogeneous world-wide network of 12 x 1m optical telescopes, each equipped for both imaging and spectroscopy. We will also continue to operate 2m telscopes in Hawaii and Australia, and we plan to deploy a few tens of 0.4m imaging telescopes for education and for bright-object research. LCOGT has membership in the Pan-STARRS1 consortium, in the Palomar Transient Factory (PTF), and in LSST. In accord with these affiliations, our staff's scientific interests are concentrated in (but not restricted to) the areas of extrasolar planets, extragalactic transients (especially SNe), and pulsating stars. In this poster we describe the observatory in general terms, including its research agenda, its telescope deployment plans and schedule, its notable technical challenges, and its anticipated methods of working with the wider astronomical community. For more detailed information about LCOGT's aims and projects, please see the related posters in this session.

  4. Solar initiative at Oukaimeden Observatory

    NASA Astrophysics Data System (ADS)

    Benkaldoun, Zouhair; Makela, Jonathan J.; Meriwether, John W.

    2013-07-01

    The solar research program at Oukaimeden Observatory started in 1988 with the helioseimological IRIS network. The Moroccan researchers involved in this research have analyzed solar observations in order to detect and characterize the solar sphere modes of oscillations. In the coming year, the researchers at the Oukaimeden Observatory will add new research capabilities by joining the International Space Weather Initiative (ISWI), installing a suite of optical instruments, comprising a Remote Equatorial Nighttime Observatory of Ionospheric Regions (RENOIR). The scope and objectives to be achieved in this proposed project are to: • deploy a Fabry-Perot interferometer and wide-angle imaging system to the Observatoire Astronomique Universitaire de LOukaimeden; • train students and researchers from Cadi Ayyad University on the operation of the equipment and related analysis techniques; • collect and analyze data from the equipment to study properties of upper-atmospheric winds and temperatures and how they relate to the occurrence of space weather; and • develop an international collaboration network with other researchers using similar instrumentation in Brazil and Peru. We will present here the plan we intend to develop for the Moroccan solar program in connection with ISWI.

  5. Urania in the Marketplace: Observatories as Holiday Destinations

    NASA Astrophysics Data System (ADS)

    Rumstay, Kenneth S.

    2015-01-01

    During the twentieth century astronomical imagery was frequently incorporated, by manufacturers of industrial and consumer goods, into advertisements which appeared in popular magazines in America. The domes and telescopes of major observatories were often featured. In some cases, particularly within the Golden State of California, major astronomical facilities (notably the Lick and Mt. Wilson Observatories) were touted as tourist attractions and were publicized as such by tourist bureaus, railroads, and hotels.A particularly interesting example is provided by the Hotel Vendome in San Jose. With completion of the Lick Observatory (and the 36-inch Great Refractor) in 1887, the local business community felt that the city needed a first-class resort hotel. The architectural firm of Jacob Lenzen & Son was hired to design a grand hotel, comparable to those found in locales such as Monterey and Pasadena. The resulting four-story, 150-room structure cost 250,000, a phenomenal sum in those days. Yet, within just fourteen years, tourist demand led to the construction of a 36-room annex. Of course, a great resort hotel would not be complete without the opportunity for excursion, and the Mt. Hamilton Stage Company offered daily trips to the famous Lick Observatory.Farther south, the Mt. Wilson Observatory began construction of its own hotel in 1905.The original structure was destroyed by fire in 1913, and replaced by a second which was used by visitors until 1966.Early examples of advertisements for these observatories, recalling the heyday of astronomical tourism, are presented. A few more recent ones for Arecibo and Palomar are included for comparison.

  6. The NIRSPEC Data Reduction Pipeline for the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Tran, Hien D.; Cohen, R.; Mader, J. A.; Colson, A.; Berriman, G. Bruce; Gelino, Christopher R.; KOA Team

    2016-01-01

    The Keck Observatory Archive (KOA), a collaboration between the NASA Exoplanet Science Institute and the W. M. Keck Observatory, serves science and calibration data for all current and retired instruments from the twin Keck Telescopes. In addition to the raw data, we publicly serve quick-look, reduced data products for four instruments (HIRES, LWS, NIRC2 and OSIRIS), so that KOA users can easily assess the quality and scientific content of the data. In this paper we present the design and implementation of the data reduction pipeline (DRP) for the NIRSPEC instrument for use with KOA. We discuss the publicly available reduction packages for NIRSPEC, the challenges encountered when designing this fully automated DRP and the algorithm used to determine wavelength calibration from sky lines. The reduced data products from the NIRSPEC DRP are expected to be available in KOA by mid-2016.

  7. GAIA - A Virtual Auroral Observatory

    NASA Astrophysics Data System (ADS)

    Donovan, E.; Spanswick, E.; Syrj M; Marple, S.; Jackel, B.; Kauristie, K.; Honary, F.; Mende, S.; Weatherwax, A.; Moen, J.; Sandahl, I.

    2005-12-01

    Advancements in computer, communications, and instrument technologies have spawned an explosion of activity in ground-based geospace observations. There is increasing interest in the development of virtual observatories as we approach the International Polar and Heliosphysical Years and the electronic Geophysical Year, and are faced with burgeoning data sets from arrays of different instrument types the world over. We are developing a virtual observatory for dealing with data from geospace optical and riometer systems. While these two classes of instruments are very different in their observational technique, they are close relatives in what they observe, which is primarily auroral precipitation. The GAIA (Global Auroral Imaging Access) Project is a network-based set of tools for browsing summary data from All-Sky Imagers (ASIs), Meridian Scanning Photometers (MSPs), and riometers worldwide, and that provides indexes for direct access to data at PI institutes. This program is the virtual observatory component of the IPY Auroral Optical Network (AON) and GLORIA (Global Riometer Imaging Array) projects, and falls under the ICESTAR IPY grouping. As well, GAIA is being developed so as to be fully consistent with the data policies described in the `Declaration of the eGY'. We demonstrate the GAIA concept with ASI data from Canada and Finland, MSP data from Canada, and riometer data from Canada and Scandinavia. We explore the requirements that such a system must meet in order to be successful, which include ease of use, credit to data providers, ability for data providers to monitor usage, and reliance on software rather than hardware. The latter is consistent with our concept of a summary data set consisting of keograms, time series, and thumbnail images, a fully peer to peer data access system, and a relational data base that allows for easy grouping of and linkages between data. We describe how we are ensuring that GAIA is compatible with larger efforts such as SPIDR

  8. Comparing Methodologies Among Observatories Tracking Productivity and Impact

    NASA Astrophysics Data System (ADS)

    Lagerstrom, J.

    2010-10-01

    Many institutions, observatories and facilities track publications as a way to measure impact and productivity as well as provide information for internal decision-making. What are the various methods used to do this? How are these results reported? Are there enough commonalities among the methods to make it possible to compare one institution to another? Or are we stuck with apples and oranges? These questions will be explored; the results of a survey will be discussed.

  9. Site Protection Program and Progress Report of Ali Observatory, Tibet

    NASA Astrophysics Data System (ADS)

    Yao, Yongqiang; Zhou, Yunhe; Wang, Xiaohua; He, Jun; Zhou, Shu

    2015-08-01

    The Ali observatory, Tibet, is a promising new site identified through ten year site survey over west China, and it is of significance to establish rules of site protection during site development. The site protection program is described with five aspects: site monitoring, technical support, local government support, specific organization, and public education. The long-term sky brightness monitoring is ready with site testing instruments and basic for light pollution measurement; the monitoring also includes directions of main light sources, providing periodical reports and suggestions for coordinating meetings. The technical supports with institutes and manufacturers help to publish lighting standards and replace light fixtures; the research pays special attention to the blue-rich sources, which impact the important application of high altitude sites. An official leading group towards development and protection of astronomical resources has been established by Ali government; one of its tasks is to issue regulations against light pollution, including special restrictions of airport, mine, and winter heating, and to supervise lighting inspection and rectification. A site protection office under the official group and local astronomical society are organized by Ali observatory; the office can coordinate in government levels and promote related activities. A specific website operated by the protection office releases activity propaganda, evaluation results, and technical comparison with other observatories. Both the site protection office and Ali observatory take responsibility for public education, including popular science lectures, light pollution and energy conservation education. Ali Night Sky Park has been constructed and opens in 2014, and provides a popular place and observational experience. The establishment of Ali Observatory and Night Sky Park brings unexpected social influence, and the starry sky trip to Ali becomes a new format of culture

  10. NASA's Earth Observatory: Success Story or Work in Progress?

    NASA Astrophysics Data System (ADS)

    Herring, D. D.

    2004-12-01

    After a series of failures and setbacks in a variety of public communications strategies explored, and then despite internal pressure not to build it, a prototype for NASA's Earth Observatory (http://earthobservatory.nasa.gov) was built in the spring of 1998. With no budget and roughly one full-time equivalent (FTE) in personnel, the site was launched in April 1999. Aimed primarily at the "science attentive public," the Earth Observatory is an interactive Web-based magazine focusing on the subjects of climatic and environmental change, with an emphasis on the use of satellite remote sensors to study our planet. Within one year after launch, the site was selected by Popular Science as one of the Web's 50 best, while subscriptions jumped to about 12,000 readers worldwide. Fast forward to 2004, the Earth Observatory core team has grown to 5.5 FTE and enjoys contributions from all across the agency as well as a number of NASA-affiliated agencies and institutions. The site's success hinges on the partnerships that have grown up around it over the years. As a testament to the outstanding content published today in the Earth Observatory, the site was also selected by Scientific American as one of the Web's 50 best, and has twice been nominated by the International Academy of the Digital Arts and Sciences for their annual Webby Awards--in both the "Education" and "Science" categories--winning the Webby once and the People's Voice Award twice. Still, the Earth Observatory is a work in progress as there remain some developmental goals it has yet to attain. In this talk, site founder and Chief Editor David Herring will give a brief tour of the site while elaborating on some of its developmental history, lessons learned along the way, and a brief look ahead at some exciting new developments on its horizon.

  11. CLEANER-Hydrologic Observatory Joint Science Plan

    NASA Astrophysics Data System (ADS)

    Welty, C.; Dressler, K.; Hooper, R.

    2005-12-01

    modeling and decision-support tools to predict the underlying processes or subsequently forecast the effects of different management strategies. Water is a critical driver for the functioning of all ecosystems and development of human society, and it is a key ingredient for the success of industry, agriculture and, national economy. CLEANER-Hydrologic Observatories will foster cutting-edge science and engineering research that addresses major national needs (public and governmental) related to water and include, for example: (i) water resource problems, such as impaired surface waters, contaminated ground water, water availability for human use and ecosystem needs, floods and floodplain management, urban storm water, agricultural runoff, and coastal hypoxia; (ii) understanding environmental impacts on public health; (iii) achieving a balance of economic and environmental sustainability; (iv) reversing environmental degradation; and (v) protecting against chemical and biological threats. CLEANER (Collaborative Large-scale Engineering Analysis Network for Environmental Research) is an ENG initiative; the Hydrologic Observatory Network is GEO initiative through CUAHSI (Consortium of Universities for the Advancement of Hydrologic Science, Inc.). The two initiatives were merged into a joint, bi-directorate program in December 2004.

  12. Cyberinfrastructure (CI) for Interactive Ocean Observatories: LOOKING Ahead

    NASA Astrophysics Data System (ADS)

    Orcutt, J.; Abbott, M.; Bellingham, J.; Chave, A.; Delaney, J.; Johnson, R.; Lazowska, E.; Moline, M.; Smarr, L.

    2004-12-01

    Investments in next-generation facilities to achieve a permanent, interactive telepresence throughout remote or hostile environments can empower a broad spectrum of autonomous sensornet facilities through the NSF Major Research Equipment and Facililties Construction Ocean Observatories Initiative (OOI). These systems must involve powerful suites of generic cyberinfrastructure tools designed to optimize access and benefits to a large academic and public user base. Many future research and educational efforts focused throughout the ocean basins, especially within heavily populated coastal regions, will be empowered by these new systems. Our project LOOKING (Laboratory for the Ocean Observatory Knowledge Integration Grid) is developing prototype CI for the OOI to achieve these goals. In the case of ocean observatory networks, it is essential to establish powerful network infrastructures linking the wet or subsea portion, with a host of shore station facilities. These components in turn must seamlessly communicate with an ensemble of data repositories, and relevant computer and visualization resources designed to serve a widely diverse ocean science community with real time, broadband access to all observatory system data, products, and metadata. This infrastructure must be secure, reliable, and resilient. It must meet the potentially ambitious latency, bandwidth, and performance requirements demanded by a set of evolving autonomous sensor platforms over a period of decades. This Grid environment must seamlessly interconnect all relevant national and international research and education nets accessible through high speed, next generation communication networks. The primary components of LOOKING are remote services that fulfill the CI needs of the ocean observatory community. These services arise from overarching science and education requirements: 1) Instrument Services operate at the sensor end of an ocean observatory, and are dominantly but not exclusively wet. 2

  13. The Millennium Run Observatory: first light

    NASA Astrophysics Data System (ADS)

    Overzier, R.; Lemson, G.; Angulo, R. E.; Bertin, E.; Blaizot, J.; Henriques, B. M. B.; Marleau, G.-D.; White, S. D. M.

    2013-01-01

    Simulations of galaxy evolution aim to capture our current understanding as well as to make predictions for testing by future experiments. Simulations and observations are often compared in an indirect fashion: physical quantities are estimated from the observational data and compared to models. However, many applications can benefit from a more direct approach, where the observing process is also simulated, so that the models are seen fully from the observer's perspective. To facilitate this, we have developed the Millennium Run Observatory (MRObs), a theoretical virtual observatory which uses virtual telescopes to `observe' semi-analytic galaxy formation simulations based on the suite of Millennium Run (MR) dark matter simulations. The MRObs produces data that can be processed and analysed using the standard observational software packages developed for real observations. At present, we produce images in 40 filters covering the rest-frame ultraviolet to infrared for two stellar population synthesis models, for three different models of absorption by the intergalactic medium, and in two cosmologies (Wilkinson Microwave Anisotropy Probe year 1 and 7). Galaxy distributions for a large number of mock light cones can be `observed' using models of major ground- and space-based telescopes. The data include light cone catalogues linked to structural properties of galaxies, pre-observation model images, mock telescope images and Source Extractor products that can all be traced back to the higher level dark matter, semi-analytic galaxy and light cone catalogues available in the MR data base. Here, we describe our methods and announce a first public release of simulated observations that emulate a large number of extragalactic surveys [e.g. Sloan Digital Sky Survey, Canada-France-Hawaii Telescope Legacy Survey (CFHT-LS), Great Observatories Origins Deep Survey (GOODS), GOODS/Early Release Science (ERS), Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS

  14. Preserving the History of Wesleyan University's Van Vleck Observatory

    NASA Astrophysics Data System (ADS)

    Kilgard, Roy E.; Erickson, Paul; Herbst, William; Redfield, Seth; Williams, Amrys

    2016-01-01

    Since its opening in 1916, the Van Vleck Observatory at Wesleyan University has been dedicated to the joint mission of astronomical education and research. In celebration of the Observatory's centennial year, we are undertaking a number of projects to preserve and chronicle its history. The centerpiece of these efforts has been the renovation of the 20-inch Alvan Clark refracting telescope. Through careful compromise of historical restoration and modernization, we have ensured the future of one of the nation's last large, long-focus refractors well into the 21st century. In addition, we are producing an historical exhibition in the Observatory and online that will open to the public in the spring of 2016. Our exhibition explores the place-based nature of astronomical research, the scientific instruments, labor, and individuals that have connected places around the world in networks of observation, and the broader history of how observational astronomy has linked local people, amateur observers, professional astronomers, and the tools and objects that have facilitated their work under Connecticut's skies over the past 100 years. We are also collecting memories from the community to enrich our exhibition. If you have a story about the Van Vleck Observatory you would like to share with our researchers, please contact one of the authors.

  15. The Educational Mission of the PSU/Greenbush Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Kuehn, D. M.

    1996-09-01

    In a cooperative agreement between Pittsburg State University (PSU) and the Southeast Education Service Center (ESC) at Greenbush, KS, the PSU/Greenbush Astrophysical Observatory has been constructed. The main instrument is a 61 cm f/15 Cassegrainian telescope. Currently in house are a Boller and Chivens spectrograph, a custom-built spectrophotometer, and a single-channel photoelectric photometer. The spectrograph has been modified for use with a CCD detector. The observatory's construction was funded by a local telephone cooperative and thirty-four local school districts. Programs for elementary and secondary students and teachers have been initiated; some of these having been funded by the Kansas Board of Education through the Goals 2000 program. The ESC has spent the last several years interconnecting the schools it serves for interactive distant learning (IDL) capability. The observatory will be connected to this network and the telescope will have multiple live video feeds over fiber optic cable. In addition, the telescope is completely remotely controlled with either direct interaction with a computer via mouse and keyboard or through user-independent voice recognition software. Students in classrooms will be able to perform observing projects remotely over their IDL hookup, live two-way video/audio interaction with observatory personnel. Moreover, on-site use by groups of students, teachers, and members of the general public will be encouraged.

  16. The CEOS Recovery Observatory Pilot

    NASA Astrophysics Data System (ADS)

    Hosford, S.; Proy, C.; Giros, A.; Eddy, A.; Petiteville, I.; Ishida, C.; Gaetani, F.; Frye, S.; Zoffoli, S.; Danzeglocke, J.

    2015-04-01

    Over the course of the last decade, large populations living in vulnerable areas have led to record damages and substantial loss of life in mega-disasters ranging from the deadly Indian Ocean tsunami of 2004 and Haiti earthquake of 2010; the catastrophic flood damages of Hurricane Katrina in 2005 and the Tohoku tsunami of 2011, and the astonishing extent of the environmental impact of the Deepwater Horizon explosion in 2009. These major catastrophes have widespread and long-lasting impacts with subsequent recovery and reconstruction costing billions of euros and lasting years. While satellite imagery is used on an ad hoc basis after many disasters to support damage assessment, there is currently no standard practice or system to coordinate acquisition of data and facilitate access for early recovery planning and recovery tracking and monitoring. CEOS led the creation of a Recovery Observatory Oversight Team, which brings together major recovery stakeholders such as the UNDP and the World Bank/Global Facility for Disaster Reduction and Recovery, value-adding providers and leading space agencies. The principal aims of the Observatory are to: 1. Demonstrate the utility of a wide range of earth observation data to facilitate the recovery and reconstruction phase following a major catastrophic event; 2. Provide a concrete case to focus efforts in identifying and resolving technical and organizational obstacles to facilitating the visibility and access to a relevant set of EO data; and 3. Develop dialogue and establish institutional relationships with the Recovery phase user community to best target data and information requirements; The paper presented here will describe the work conducted in preparing for the triggering of a Recovery Observatory including support to rapid assessments and Post Disaster Needs Assessments by the EO community.

  17. Swift Observatory Space Simulation Testing

    NASA Technical Reports Server (NTRS)

    Espiritu, Mellina; Choi, Michael K.; Scocik, Christopher S.

    2004-01-01

    The Swift Observatory is a Middle-Class Explorer (MIDEX) mission that is a rapidly re-pointing spacecraft with immediate data distribution capability to the astronomical community. Its primary objectives are to characterize and determine the origin of Gamma Ray Bursts (GRBs) and to use the collected data on GRB phenomena in order to probe the universe and gain insight into the physics of black hole formation and early universe. The main components of the spacecraft are the Burst Alert Telescope (BAT), Ultraviolet and Optical Telescope (UVOT), X-Ray Telescope (XRT), and Optical Bench (OB) instruments coupled with the Swift spacecraft (S/C) bus. The Swift Observatory will be tested at the Space Environment Simulation (SES) chamber at the Goddard Space Flight Center from May to June 2004 in order to characterize its thermal behavior in a vacuum environment. In order to simulate the independent thermal zones required by the BAT, XRT, UVOT, and OB instruments, the spacecraft is mounted on a chariot structure capable of maintaining adiabatic interfaces and enclosed in a modified, four section MSX fixture in order to accommodate the strategic placement of seven cryopanels (on four circuits), four heater panels, and a radiation source burst simulator mechanism. There are additionally 55 heater circuits on the spacecraft. To mitigate possible migration of silicone contaminants from BAT to the XRT and UVOT instruments, a contamination enclosure is to be fabricated around the BAT at the uppermost section of the MSX fixture. This paper discuses the test requirements and implemented thermal vacuum test configuration for the Swift Observatory.

  18. The Arecibo Observatory Space Academy

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ford, Linda A.; Zambrano-Marin, Luisa; Petty, Bryan M.; Sternke, Elizabeth; Ortiz, Andrew M.; Rivera-Valentin, Edgard G.

    2015-11-01

    The Arecibo Observatory Space Academy (AOSA) is a ten (10) week pre-college research program for students in grades 9-12. Our mission is to prepare students for academic and professional careers by allowing them to receive an independent and collaborative research experience on topics related to space and aide in their individual academic and social development. Our objectives are to (1) Supplement the student’s STEM education via inquiry-based learning and indirect teaching methods, (2) Immerse students in an ESL environment, further developing their verbal and written presentation skills, and (3) To foster in every student an interest in science by exploiting their natural curiosity and knowledge in order to further develop their critical thinking and investigation skills. AOSA provides students with the opportunity to share lectures with Arecibo Observatory staff, who have expertise in various STEM fields. Each Fall and Spring semester, selected high school students, or Cadets, from all over Puerto Rico participate in this Saturday academy where they receive experience designing, proposing, and carrying out research projects related to space exploration, focusing on four fields: Physics/Astronomy, Biology, Engineering, and Sociology. Cadets get the opportunity to explore their topic of choice while practicing many of the foundations of scientific research with the goal of designing a space settlement, which they present at the NSS-NASA Ames Space Settlement Design Contest. At the end of each semester students present their research to their peers, program mentors, and Arecibo Observatory staff. Funding for this program is provided by NASA SSERVI-LPI: Center for Lunar Science and Exploration with partial support from the Angel Ramos Visitor Center through UMET and management by USRA.

  19. Gravity research at Cottrell observatory

    NASA Technical Reports Server (NTRS)

    Tuman, V. S.; Anderson, J. D.; Lau, E. L.

    1977-01-01

    The Cottrell gravity research observatory and work in progress are described. Equipment in place and equipment to be installed, the cryogenic gravity meter (CGM), concrete pads to support the vertical seismometer, CGM, and guest experiments, techniques of data analysis, and improvements needed in the CGM are discussed. Harmonic earth eigenvibrations with multipole moments are examined and their compatibility with a fictitious black hole binary system (of which the primary central mass is assigned a value one million solar masses) located 400 light-years away is shown by calculations.

  20. The Orbiting Carbon Observatory (OCO)

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    CO2 is the principal human generated driver of climate change. Accurate forecasting of future climate requires an improved understanding of the global carbon cycle and its interaction with the climate system. The Orbiting Carbon Observatory (OCO) will make global, space-based observations of atmospheric CO2 with the precision, resolution, and coverage needed to understand sources and sinks. OCO data will provide critical information for decision makers including the scientific basis for policy formulation, guide for carbon management strategies and treaty monitoring.

  1. the Large Aperture GRB Observatory

    SciTech Connect

    Bertou, Xavier

    2009-04-30

    The Large Aperture GRB Observatory (LAGO) aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique (SPT) in ground based water Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on the project progresses and the first operation at high altitude, search for bursts in 6 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  2. Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Becklin, Eric E.

    2001-01-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. Present and future instrumentation will allow unique astrobiology experiments to be carried out. Several experiments related to organic molecules in space will be discussed.

  3. Some Central Asian observatories for the WET

    NASA Astrophysics Data System (ADS)

    Meistas, E.

    1993-01-01

    The Mt. Maidanak Observatory, one of several observatories in the former Soviet Central Asia, is located at an important longitude to fill in the gap in the WET (Whole Earth Telescope) network. The Lithuanian astronomical station on Mt. Maidanak was successfully tested in May 1992 for future WET campaigns. In the September 1992 campaign it provided some useful data for the WET. In February 1993 the observatory was nationalized by the Uzbekistan government, and almost all astronomical activities there have stopped. The future use of this observatory for the WET campaigns is uncertain, but there are some signs that the situation is improving. We have examined the possibility of using other Central Asian observatories for the WET. A contact was established with the Fesenkov Astronomical Institute in Alma-Ata, and in October 1993 WET observations were made at the Assy-Turgen Observatory in Kazakhstan.

  4. Protection of the Guillermo Haro Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Carrasco, E.; Carraminana, A. P.

    The Guillermo Haro Astrophysical Observatory, with a 2m telescope, is one of only two professional observatories in Mexico. The observatory, run by the InstitutoNacional de Astrofisica, Optica y Electronica (INAOE), is located in the north of Mexico, in Cananea, Sonora. Since 1995 the observatory has faced the potential threat of pollution by an open cast mine to be opened at 3kms from the observatory. In the absence of national or regional laws enforcing protection to astronomical sites in Mexico, considerable effort has been needed to guarantee the conditions of the site. We present the studies carried out to ensure the protection of the Guillermo Haro Observatory from pollution due to dust, light and vibrations.

  5. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-06-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  6. EMSO: European multidisciplinary seafloor observatory

    NASA Astrophysics Data System (ADS)

    Favali, Paolo; Beranzoli, Laura

    2009-04-01

    EMSO has been identified by the ESFRI Report 2006 as one of the Research Infrastructures that European members and associated states are asked to develop in the next decades. It will be based on a European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the aim of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes, providing long time series data for the different phenomenon scales which constitute the new frontier for study of Earth interior, deep-sea biology and chemistry, and ocean processes. The development of an underwater network is based on past EU projects and is supported by several EU initiatives, such as the on-going ESONET-NoE, aimed at strengthening the ocean observatories' scientific and technological community. The EMSO development relies on the synergy between the scientific community and industry to improve European competitiveness with respect to countries such as USA, Canada and Japan. Within the FP7 Programme launched in 2006, a call for Preparatory Phase (PP) was issued in order to support the foundation of the legal and organisational entity in charge of building up and managing the infrastructure, and coordinating the financial effort among the countries. The EMSO-PP project, coordinated by the Italian INGV with participation by 11 institutions from as many European countries, started in April 2008 and will last four years.

  7. The Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-01-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  8. Worldwide R&D of Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cui, C. Z.; Zhao, Y. H.

    2008-07-01

    Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in the late 1990s to meet the challenges brought up with data avalanche in astronomy. In the paper, current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects are reviewed, a brief introduction of Chinese Virtual Observatory is given.

  9. Punctuated Evolution of Volcanology: An Observatory Perspective

    NASA Astrophysics Data System (ADS)

    Burton, W. C.; Eichelberger, J. C.

    2010-12-01

    Volcanology from the perspective of crisis prediction and response-the primary function of volcano observatories-is influenced both by steady technological advances and singular events that lead to rapid changes in methodology and procedure. The former can be extrapolated somewhat, while the latter are surprises or shocks. Predictable advances include the conversion from analog to digital systems and the exponential growth of computing capacity and data storage. Surprises include eruptions such as 1980 Mount St Helens, 1985 Nevado del Ruiz, 1989-1990 Redoubt, 1991 Pinatubo, and 2010 Eyjafjallajokull; the opening of GPS to civilian applications, and the advent of an open Russia. Mount St Helens switched the rationale for volcanology in the USGS from geothermal energy to volcano hazards, Ruiz and Pinatubo emphasized the need for international cooperation for effective early warning, Redoubt launched the effort to monitor even remote volcanoes for purposes of aviation safety, and Eyjafjallajokull hammered home the need for improved ash-dispersion and engine-tolerance models; better GPS led to a revolution in volcano geodesy, and the new Russian Federation sparked an Alaska-Kamchatka scientific exchange. The pattern has been that major funding increases for volcano hazards occur after these unpredictable events, which suddenly expose a gap in capabilities, rather than out of a calculated need to exploit technological advances or meet a future goal of risk mitigation. It is up to the observatory and national volcano hazard program to leverage these sudden funding increases into a long-term, sustainable business model that incorporates both the steadily increasing costs of staff and new technology and prepares for the next volcano crisis. Elements of the future will also include the immediate availability on the internet of all publically-funded volcano data, and subscribable, sophisticated hazard alert systems that run computational, fluid dynamic eruption models. These

  10. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric

    2015-08-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared airborne telescope in a Boeing 747SP, is now fully operational with cameras and spectrometers in the 1 to 240 micron region. It will be one of the major observatories for the next 20 years to observe the local ISM in this spectral region. We will give a brief overview of the SOFIA observatory, telescope, instrumentation and recent science. Future observing opportunities and participation in future instrument developments, over the lifetime of the SOFIA observatory will be discussed.

  11. The Uncertain Future of Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Altschuler, D. R.

    2009-05-01

    After forty years of existence, Arecibo Observatory has an uncertain future. On November 3th, 2006 the ``Senior Review'' (SR), an advisory panel, recommended to the astronomy division of NSF that the anual budget destinated to astronomy in the Observatory, should be reduced from US10.5 million annual to US8 million during the first 3 years. The SR also indicated that the Observatory have to be closed in 2011, if an external financial source is not found. The SR panel was called to find near US30 million in savings (approximately 25% of total budget of the five national observatories, including Arecibo) to redirect them to operate new future projects.

  12. SOFIA Observatory Obtains 'First Light' Images

    NASA Video Gallery

    NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, successfully obtained its "First Light"" images during an overnight flight May 26. Scientists are now processing the data gathered...

  13. A new Magnetic Observatory in Pantanal - Brazil

    NASA Astrophysics Data System (ADS)

    Siqueira, F.; Pinheiro, K.; Linthe, H.

    2013-05-01

    The aim of a Magnetic Observatory is to register the variations of the Earth's magnetic field in a long temporal scale. Using this data it is possible to study field variations of both external and internal origins. The external variations concern interactions between the magnetosphere and the solar wind, in general are measured in a short time scale. The internal field generated by convection of a high electrical conductivity fluid in the external core by a mechanism known as the geodynamo. Usually the internal field time variations are longer than in the external field and are called secular variations. Measurements carried out over the last century suggest that field intensity is decreasing rapidly. The decreasing of the field's intensity is not the same around the globe, especially at the SAMA (South Atlantic Magnetic Anomaly) regions, where this reduction is occurring faster. The global distribution of magnetic observatories is uneven, with few observatories in South America. In Brazil, there are three magnetic observatories, but only Vassouras Observatory (VSS- RJ) is part of the INTERMAGNET network. The National Observatory has plans to install seven new observatories in Brazil. Pantanal was the chosen location for installing the first observatory because of its privileged location, close to the SAMA region, and its data can contribute to more information about its origin. We followed the procedures suggested by the IAGA to build this observatory. The first step is to perform a magnetic survey in order to avoid strong magnetic gradients in the location where the absolute and variometers houses will be installed. The next step, the construction of the observatory, includes the selection of special non-magnetic material for the variometer and absolute houses. All materials used were previously tested using a proton magnetometer GSM-19. After construction of the whole infrastructure, the equipment was installed. This Project is a cooperation between Brazilian

  14. NASA capabilities roadmap: advanced telescopes and observatories

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2005-01-01

    The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  15. Astronomical Site Characterization at the Canarian Observatories

    NASA Astrophysics Data System (ADS)

    Muñoz-Tuñón, C.; Varela, A. M.; Castro-Almazán, J. A.

    2015-04-01

    Roque de los Muchachos Observatory (La Palma) and Teide Observatory (Tenerife) are prime astronomical sites, as confirmed by more than 30 years of intensive site-testing campaigns. The IAC has long been aware of the importance of promoting initiatives for the characterization and protection of the Canarian Observatories. For this purpose, in the late ’80s a Sky Team was created to measure the atmospheric parameters relating to astronomical observations, to design and develop new instruments and techniques for astronomical site testing, and to improve and maintain a high level of instrumentation in site characterization. New instruments and techniques are welcomed by the Observatories.

  16. A Digital Synthesis Framework for Virtual Observatories

    NASA Astrophysics Data System (ADS)

    Myers, J. D.; Marini, L.; Bajcsy, P.; Kooper, R.; Liu, Y.; McGrath, R.; Futrelle, J.; McLaren, T.; Collier, A.; Rodriguez, A.

    2008-12-01

    The Digital Synthesis Framework (DSF), being developed as part of the National Center for Supercomputing Applications' Technology Research Education and Commercialization Center (TRECC) project, provides a coherent framework for dynamically publishing visual analysis environments based on underlying observational and modeled information. The initial target of the TRECC effort will be the creation of digital observatories (e.g. digital watersheds) that allow exploration of data from sensor networks and environmental system models. The concept of a synthesis framework involves core capabilities for integrating data from multiple sources, enabling on-demand execution of scientific workflows, and the association of data outputs with multiple visualization and analysis widgets in a dynamically generated web application. In the DSF, NCSA's Cyberintegrator workflow environment is used to integrate data sources and invoke modeling modules. When the workflow is complete, it can be saved and run repeatedly as a service. A publication service allows the workflow outputs (which may be observational data or model outputs) to be associated with visualization widgets and embedded into a dynamically generated scenario viewer web application. The application can display data outputs from completed workflows or can trigger new workflows on demand. Along with maps, graphs, tables, and other displays, the application can display provenance information and links to associated reference material. As a concrete example, we present one of the TRECC pilot projects which presents a web-based dashboard about the status of the bay using information from sensors deployed in and around the bay in Corpus Christi Bay, Texas. The ability to dynamically publish environments that enable exploration of observational and modeled data represents a new level of sophistication in the evolution of virtual observatories and digital watersheds. In addition to presenting DSF capabilities, this presentation

  17. Virtual Energetic Particle Observatory (VEPO)

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Lal, Nand; McGuire, Robert E.; Szabo, Adam; Narock, Thomas W.; Armstrong, Thomas P.; Manweiler, Jerry W.; Patterson, J. Douglas; Hill, Matthew E.; Vandergriff, Jon D.; McKibben, Robert B.; Lopate, Clifford; Tranquille, Cecil

    2008-01-01

    The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events. acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation

  18. Virtual Energetic Particle Observatory (VEPO)

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Lal, N.; McGuire, R. E.; Szabo, A.; Narock, T. W.; Armstrong, T. P.; Manweiler, J. W.; Patterson, J. D.; Hill, M. E.; Vandergriff, J. D.; McKibben, R. B.; Lopate, C.; Tranquille, C.

    2008-12-01

    The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events, acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation

  19. Lessons Learned during the Development and Operation of Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Ohishi, M.; Shirasaki, Y.; Komiya, Y.; Mizumoto, Y.; Yasuda, N.; Tanaka, M.

    2010-12-01

    In the last a few years several Virtual Observatory (VO) projects have entered from the research and development phase to the operations phase. The VO projects include AstroGrid (UK), Virtual Astronomical Observatory (former National Virtual Observatory, USA), EURO-VO (EU), Japanese Virtual Observatory (Japan), and so on. This successful transition from the development phase to the operations phase owes primarily to the concerted action to develop standard interfaces among the VO projects in the world, that has been conducted in the International Virtual Observatory Alliance. The registry interface has been one of the most important key to share among the VO projects and data centers (data providers) with the observed data and the catalog data. Data access protocols and/or language (SIAP, SSAP, ADQL) and the common data format (VOTable) are other keys. Consequently we are able to find scientific papers so far published. However, we had faced some experience during the implementation process as follows:

  20. At the initial stage of the registry implementation, some fraction of the registry meta data were not correctly set, or some meta data were missing. IVOA members found that it would be needed to have validation tools to check the compliance before making the interface public;
  21. It seemed that some data centers and/or data providers might find some difficulties to implement various standardized interfaces (protocols) in order to publish their data through the VO interfaces. If there were some kind of VO interface toolkits, it would be much easier for the data centers to implement the VO interfaces; At the current VO standardization, it has not been discussed in depth on the quality assurance on the published data, or how we could provide indexes on the data quality. Such measures would be quite helpful for the data users in order to judge the data quality. It would be needed to discuss this issue not only within IVOA but with observatories and data

  22. Three Short Videos by the Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Wessells, Stephen; Lowenstern, Jake; Venezky, Dina

    2009-01-01

    This is a collection of videos of unscripted interviews with Jake Lowenstern, who is the Scientist in Charge of the Yellowstone Volcano Observatory (YVO). YVO was created as a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and University of Utah to strengthen the long-term monitoring of volcanic and earthquake unrest in the Yellowstone National Park region. Yellowstone is the site of the largest and most diverse collection of natural thermal features in the world and the first National Park. YVO is one of the five USGS Volcano Observatories that monitor volcanoes within the United States for science and public safety. These video presentations give insights about many topics of interest about this area. Title: Yes! Yellowstone is a Volcano An unscripted interview, January 2009, 7:00 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic features at Yellowstone: 'How do we know Yellowstone is a volcano?', 'What is a Supervolcano?', 'What is a Caldera?','Why are there geysers at Yellowstone?', and 'What are the other geologic hazards in Yellowstone?' Title: Yellowstone Volcano Observatory An unscripted interview, January 2009, 7:15 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions about the Yellowstone Volcano Observatory: 'What is YVO?', 'How do you monitor volcanic activity at Yellowstone?', 'How are satellites used to study deformation?', 'Do you monitor geysers or any other aspect of the Park?', 'Are earthquakes and ground deformation common at Yellowstone?', 'Why is YVO a relatively small group?', and 'Where can I get more information?' Title: Yellowstone Eruptions An unscripted interview, January 2009, 6.45 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic

  1. Real-time Data Access From Remote Observatories

    NASA Astrophysics Data System (ADS)

    Detrick, D. L.; Lutz, L. F.; Etter, J. E.; Rosenberg, T. J.; Weatherwax, A. T.

    2006-12-01

    Real-time access to solar-terrestrial data is becoming increasingly important, not only because it is now possible to acquire and access data rapidly via the internet, but also because of the need for timely publication of real-time data for analysis and modeling efforts. Currently, engineering-scaled summary data are available routinely on a daily basis from many observatories, but only when the observatories have continuous, or at least daily network access. Increasingly, the upgrading of remote data acquisition hardware makes it possible to provide data in real-time, and it is becoming normal to expect timely access to data products. The NSF- supported PENGUIn/AGO constellation of autonomous Antarctic research observatories has provided real-time data since December, 2002, when Iridium satellite modems were installed at three sites. The Iridium telecommunications links are maintained continuously, transferring data between the remote observatories and a U.S.-based data acquisition site. The time-limiting factor with this scenario is now the delay in completing a data record before transmission, which can be as short as minutes depending on the sampling rate. The single-channel data throughput of the current systems is 20-MB/day (megabytes per day), but planned installations will be capable of operating with multiple modem channels. The data records are currently posted immediately to a web site accessible by anonymous FTP client software, for use by the instruments' principal investigators, and survey plots of selected signals are published daily. The web publication facilities are being upgraded, in order to allow other interested researchers rapid access to engineering-scaled data products, in several common formats, as well as providing interactive plotting capabilities. The web site will provide access to data from other collaborating observatories (including South Pole and McMurdo Stations), as well as ancillary data accessible from public sites (e.g., Kp

  2. CCD Photometry from a Small Observatory in a Large City

    NASA Astrophysics Data System (ADS)

    McCormick, J.

    2006-05-01

    Since 2000, Farm Cove Observatory in Auckland New Zealand has contributed observational data to several international collaborative teams. During this time, the author has supplied 1339 hours of data to the Center for Backyard Astrophysics, directly contributed to the co-discovery of the extra-solar planet, OGLE-2005-BLG-071 and has discovered three new eclipsing binary stars. The observational data from FCO has now been used in a number of peer-reviewed scientific publications. This paper describes the observatory equipment, the software used, and provides details on the observations carried out for the international collaborative teams. The paper demonstrates what can be achieved using a small telescope in a large city.

  3. Sensor networks for cabled ocean observatories

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; McGinnis, T.; Kirkham, H.

    2003-04-01

    This paper considers the development of a support infrastructure for subsea observatory sensors and networks. Some sensors will be self-contained individual items, others will be part of a sensor network using, for example, secondary cables and junction boxes to extend the horizontal reach 10s to 100s of km from backbone nodes, or using moorings to distribute observatory capabilities throughout the water column and (equivalently) down boreholes into the crust. Included in the support infrastructure could be acoustic navigation and communications systems, free-swimming AUVs, and bottom rovers that could carry sensors and could provide data and energy "tanker" service. Because of the likely long term observatory application of sensors, and the high cost of access, methods of self-calibration of sensors will also be useful. The sensor infrastructure would supplement the observatory infrastructure that is part of the NSF Ocean Observatories Initiative (OOI). This Initiative plans to provide junction box nodes on the seafloor that furnish power and communications, and distribute time. There are three elements of the OOI: a regional scale cabled observatory (such as NEPTUNE) with dozens of nodes; a sparse global array of buoys with seafloor nodes; and an expanded system of coastal observatories. Each of these observatories will depend on suites of sensors from a number of investigators, and it is likely that once the observatory infrastructure itself has been installed and commissioned, most of the physical interaction with an observatory will be for installing, operating, servicing, and recovering sensors. These activities will be supported by the proposed infrastructure, enabling the full potential of the observatory to be reached.

  4. Overview of Virtual Observatory Tools

    NASA Astrophysics Data System (ADS)

    Allen, M. G.

    2009-07-01

    I provide a brief introduction and tour of selected Virtual Observatory tools to highlight some of the core functions provided by the VO, and the way that astronomers may use the tools and services for doing science. VO tools provide advanced functions for searching and using images, catalogues and spectra that have been made available in the VO. The tools may work together by providing efficient and innovative browsing and analysis of data, and I also describe how many VO services may be accessed by a scripting or command line environment. Early science usage of the VO provides important feedback on the development of the system, and I show how VO portals try to address early user comments about the navigation and use of the VO.

  5. Manastash Ridge Observatory Autoguider Upgrade

    NASA Astrophysics Data System (ADS)

    Lozo, Jason; Huehnerhoff, Joseph; Armstrong, John; Davila, Adrian; Johnson, Courtney; McMaster, Alex; Olinger, Kyle

    2016-06-01

    The Astronomy Undergraduate Engineering Group (AUEG) at the University of Washington has designed and manufactured a novel autoguider system for the 0.8-meter telescope at the Manastash Ridge Observatory in Ellensburg, Washington. The system uses a pickoff mirror placed in the unused optical path, directing the outer field to the guide camera via a system of axi-symmetrically rotating relay mirrors (periscope). This allows the guider to sample nearly 7 times the area that would be possible with the same fixed detector. This system adds closed loop optical feedback to the tracking capabilities of the telescope. When tuned the telescope will be capable of acheiving 0.5 arcsecond tracking or better. Dynamic focusing of the primary optical path will also be an included feature of this system. This unique guider will be a much needed upgrade to the telescope allowing for increased scientific capability.

  6. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Figueroa, Ricardo

    2013-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.

  7. Alaska Volcano Observatory's KML Tools

    NASA Astrophysics Data System (ADS)

    Valcic, L.; Webley, P. W.; Bailey, J. E.; Dehn, J.

    2008-12-01

    Virtual Globes are now giving the scientific community a new medium to present data, which is compatible across multiple disciplines. They also provide scientists the ability to display their data in real-time, a critical factor in hazard assessment. The Alaska Volcano Observatory remote sensing group has developed Keyhole Markup Language (KML) tools that are used to display satellite data for volcano monitoring and forecast ash cloud movement. The KML tools allow an analyst to view the satellite data in a user-friendly web based environment, without a reliance on non-transportable, proprietary software packages. Here, we show how the tools are used operationally for thermal monitoring of volcanic activity, volcanic ash cloud detection and dispersion modeling, using the Puff model. animate.images.alaska.edu/

  8. HELIO: The Heliophysics Integrated Observatory

    NASA Technical Reports Server (NTRS)

    Bentley, R. D.; Csillaghy, A.; Aboudarham, J.; Jacquey, C.; Hapgood, M. A.; Bocchialini, K.; Messerotti, M.; Brooke, J.; Gallagher, P.; Fox, P.; Hurlburt, N.; Roberts, D. A.; Sanchez Duarte, L.

    2011-01-01

    Heliophysics is a new research field that explores the Sun-Solar System Connection; it requires the joint exploitation of solar, heliospheric, magnetospheric and ionospheric observations. HELIO, the Heliophysics Integrated Observatory, will facilitate this study by creating an integrated e-Infrastructure that has no equivalent anywhere else. It will be a key component of a worldwide effort to integrate heliophysics data and will coordinate closely with international organizations to exploit synergies with complementary domains. HELIO was proposed under a Research Infrastructure call in the Capacities Programme of the European Commission's 7th Framework Programme (FP7). The project was selected for negotiation in January 2009; following a successful conclusion to these, the project started on 1 June 2009 and will last for 36 months.

  9. Autonomous Infrastructure for Observatory Operations

    NASA Astrophysics Data System (ADS)

    Seaman, R.

    This is an era of rapid change from ancient human-mediated modes of astronomical practice to a vision of ever larger time domain surveys, ever bigger "big data", to increasing numbers of robotic telescopes and astronomical automation on every mountaintop. Over the past decades, facets of a new autonomous astronomical toolkit have been prototyped and deployed in support of numerous space missions. Remote and queue observing modes have gained significant market share on the ground. Archives and data-mining are becoming ubiquitous; astroinformatic techniques and virtual observatory standards and protocols are areas of active development. Astronomers and engineers, planetary and solar scientists, and researchers from communities as diverse as particle physics and exobiology are collaborating on a vast range of "multi-messenger" science. What then is missing?

  10. Photometry and the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Rodrigo, C.; Solano, E.

    2013-05-01

    Building Spectral Energy Distributions combining data from different sources is becoming more important as astronomy takes an increasingly multi-wavelength approach. In order to do this, photometry data must be described in sufficient detail to allow for the conversion to compatible flux density units (including the description of magnitude systems and zero points). Furthermore, comparing observed photometry with the synthetic one for theoretical models allows to infer physical properties from the observed objects. But in order to do that, an even more detailed description of the observed photometric points is needed, including the transmission curves of the filters corresponding to the observed data. In the Virtual Observatory an important effort has been done towards this standardization with the Photometry Data Model. And in the SVO we have developed several services to help in this direction, providing detailed information about filters, synthetic photometry for theoretical models and tools to use all this to analyze observed data and estimate object physical properties.

  11. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    1993-01-01

    The Arthur Holly Compton Gamma Ray Observatory (Compton) was launched by the Space Shuttle Atlantis on 5 April 1991. The spacecraft and instruments are in good health and returning exciting results. The mission provides nearly six orders of magnitude in spectral coverage, from 30 keV to 30 GeV, with sensitivity over the entire range an order of magnitude better than that of previous observations. The 16,000 kilogram observatory contains four instruments on a stabilized platform. The mission began normal operations on 16 May 1991 and is now over half-way through a full-sky survey. The mission duration is expected to be from six to ten years. A Science Support Center has been established at Goddard Space Flight Center for the purpose of supporting a vigorous Guest Investigator Program. New scientific results to date include: (1) the establishment of the isotropy, combined with spatial inhomogeneity, of the distribution of gamma-ray bursts in the sky; (2) the discovery of intense high energy (100 MeV) gamma-ray emission from 3C 279 and other quasars and BL Lac objects, making these the most distant and luminous gamma-ray sources ever detected; (3) one of the first images of a gamma-ray burst; (4) the observation of intense nuclear and position-annihilation gamma-ray lines and neutrons from several large solar flares; and (5) the detection of a third gamma-ray pulsar, plus several other transient and pulsing hard X-ray sources.

  12. TUM Critical Zone Observatory, Germany

    NASA Astrophysics Data System (ADS)

    Völkel, Jörg; Eden, Marie

    2014-05-01

    Founded 2011 the TUM Critical Zone Observatory run by the Technische Universität München and partners abroad is the first CZO within Germany. TUM CZO is both, a scientific as well as an education project. It is a watershed based observatory, but moving behind this focus. In fact, two mountainous areas are integrated: (1) The Ammer Catchment area as an alpine and pre alpine research area in the northern limestone Alps and forelands south of Munich; (2) the Otter Creek Catchment in the Bavarian Forest with a crystalline setting (Granite, Gneiss) as a mid mountainous area near Regensburg; and partly the mountainous Bavarian Forest National Park. The Ammer Catchment is a high energy system as well as a sensitive climate system with past glacial elements. The lithology shows mostly carbonates from Tertiary and Mesozoic times (e.g. Flysch). Source-to-sink processes are characteristic for the Ammer Catchment down to the last glacial Ammer Lake as the regional erosion and deposition base. The consideration of distal depositional environments, the integration of upstream and downstream landscape effects are characteristic for the Ammer Catchment as well. Long term datasets exist in many regards. The Otter Creek catchment area is developed in a granitic environment, rich in saprolites. As a mid mountainous catchment the energy system is facing lower stage. Hence, it is ideal comparing both of them. Both TUM CZO Catchments: The selected catchments capture the depositional environment. Both catchment areas include historical impacts and rapid land use change. Crosscutting themes across both sites are inbuilt. Questions of ability to capture such gradients along climosequence, chronosequence, anthroposequence are essential.

  13. LIGO Education and Outreach at Twin Observatories

    NASA Astrophysics Data System (ADS)

    Thacker, John

    2007-04-01

    LIGO has twin Gravitational Wave observatories in Hanford, WA and Livingston, LA. Both sites have active outreach programs but each has a different emphasis and methodology. We will briefly describe the nature of these outreach programs. We will then focus attention on the Livingston facility since its outreach program is centered on a new 9000 sq.ft. Science Education Center. We will describe the facility and its exhibits then discuss the structure of the outreach program at the Center. The objectives of the Center are to: communicate LIGO-related science concepts to the public; strengthen skills and abilities of in-service and pre-service teachers and enhance the science and mathematics skills of a broad spectrum of students in Louisiana and the surrounding region. By partnering with a museum (The Exploratorium), a university (Southern University at Baton Rouge) and a state education agency for education reform, LA GEAR UP, we have been able to quickly open up opportunities. Benefiting from our fine collaborators, we've been able to create positive impact in the local science education community in a relatively brief time span.

  14. CSU's MWV Observatory: A Facility for Research, Education and Outreach

    NASA Astrophysics Data System (ADS)

    Hood, John; Carpenter, N. D.; McCarty, C. B.; Samford, J. H.; Johnson, M.; Puckett, A. W.; Williams, R. N.; Cruzen, S. T.

    2014-01-01

    The Mead Westvaco Observatory (MWVO), located in Columbus State University's Coca-Cola Space Science Center, is dedicated to education and research in astronomy through hands-on engagement and public participation. The MWVO has recently received funding to upgrade from a 16-inch Meade LX-200 telescope to a PlaneWave CDK 24-inch Corrected Dall-Kirkham Astrograph telescope. This and other technological upgrades will allow this observatory to stream live webcasts for astronomical events, allowing a worldwide public audience to become a part of the growing astronomical community. This poster will explain the upgrades that are currently in progress as well as the results from the current calibrations. The goal of these upgrades is to provide facilities capable of both research-class projects and widespread use in education and public outreach. We will present our initial calibration and tests of the observatory equipment, as well as its use in webcasts of astronomical events, in solar observing through the use of specialized piggy-backed telescopes, and in research into such topics as asteroids, planetary and nebula imaging. We will describe a pilot research project on asteroid orbit refinement and light curves, to be carried out by Columbus State University students. We will also outline many of the K-12 educational and public outreach activities we have designed for these facilities. Support and funding for the acquisition and installation of the new PlaneWave CDK 24 has been provided by the International Museum and Library Services via the Museums for America Award.

  15. Cosmic Ray Observatories for Space Weather Studies.

    NASA Astrophysics Data System (ADS)

    González, Xavier

    2016-07-01

    The Mexican Space Weather Service (SCiESMEX) was created in October 2014. Some observatories measure data for the service at different frequencies and particles. Two cosmic ray observatories detect the particle variations attributed to solar emissions, and are an important source of information for the SCiESMEX. The Mexico City Cosmic Ray Observatory consists of a neutron monitor (6-NM-64) and a muon telescope, that detect the hadronic and hard component of the secondary cosmic rays in the atmosphere. It has been in continous operation since 1990. The Sierra Negra Cosmic Ray Observatory consists of a solar neutron telescope and the scintillator cosmic ray telescope. These telescopes can detect the neutrons, generated in solar flares and the hadronic and hard components of the secondary cosmic rays. It has been in continous operation since 2004. We present the two observatories and the capability to detect variations in the cosmic rays, generated by the emissions of the solar activity.

  16. The Communication Strategy of NASA's Earth Observatory

    NASA Astrophysics Data System (ADS)

    Simmon, R.; Ward, K.; Riebeek, H.; Allen, J.; Przyborski, P.; Scott, M.; Carlowicz, M. J.

    2010-12-01

    Climate change is a complex, multi-disciplinary subject. Accurately conveying this complexity to general audiences, while still communicating the basic facts, is challenging. Our approach is to combine climate change information with a wide range of Earth system science topics, illustrated by satellite imagery and data visualizations. NASA's Earth Observatory web site (earthobservatory.nasa.gov) uses the broad range of NASA's remote sensing technologies, data, and research to communicate climate change science. We serve two primary audiences: the "attentive public" --people interested in and willing to seek out information about science, technology, and the environment--and media. We cover the breadth of Earth science, with information about climate change integrated with stories about weather, geology, oceanography, and solar flares. Current event-driven imagery is used as a hook to draw readers. We then supply links to supplemental information, either about current research or the scientific basics. We use analogies, carefully explain jargon or acronyms, and build narratives which both attract readers and make information easier to remember. These narratives are accompanied by primers on topics like energy balance or the water cycle. Text is carefully integrated with illustrations and state-of-the-art data visualizations. Other site features include a growing list of climate questions and answers, addressing common misconceptions about global warming and climate change. Maps of global environmental parameters like temperature, rainfall, and vegetation show seasonal change and long-term trends. Blogs from researchers in the field provide a look at the day-to-day process of science. For the media, public domain imagery is supplied at full resolution and links are provided to primary sources.

  17. The Liverpool Bay Coastal Observatory

    NASA Astrophysics Data System (ADS)

    Howarth, Michael John; O'Neill, Clare K.; Palmer, Matthew R.

    2010-05-01

    A pre-operational Coastal Observatory has been functioning since August 2002 in Liverpool Bay, Irish Sea. Its rationale is to develop the science underpinning the ecosystem based approach to marine management, including distinguishing between natural and man-made variability, with particular emphasis on eutrophication and predicting responses of a coastal sea to climate change. Liverpool Bay has strong tidal mixing, receives fresh water principally from the Dee, Mersey and Ribble estuaries, each with different catchment influences, and has enhanced levels of nutrients. Horizontal and vertical density gradients are variable both in space and time. The challenge is to understand and model accurately this variable region which is turbulent, turbid, receives enhanced nutrients and is productive. The Observatory has three components, for each of which the goal is some (near) real-time operation - measurements; coupled 3-D hydrodynamic, wave and ecological models; a data management and web-based data delivery system which provides free access to the data, http://cobs.pol.ac.uk. The integrated measurements are designed to test numerical models and have as a major objective obtaining multi-year records, covering tidal, event (storm / calm / bloom), seasonal and interannual time scales. The four main strands on different complementary space or time scales are:- a) fixed point time series (in situ and shore-based); very good temporal and very poor spatial resolution. These include tide gauges; a meteorological station on Hilbre Island at the mouth of the Dee; two in situ sites, one by the Mersey Bar, measuring waves and the vertical structure of current, temperature and salinity. A CEFAS SmartBuoy whose measurements include surface nutrients is deployed at the Mersey Bar site. b) regular (nine times per year) spatial water column surveys on a 9 km grid; good vertical resolution for some variables, limited spatial coverage and resolution, and limited temporal resolution. The

  18. Challenges of the GEOSCOPE Observatory.

    NASA Astrophysics Data System (ADS)

    Pardo, C.; Bonaime, S.; Stutzmann, E.; Roult, G.; Maggi, A.; GEOSCOPE Group

    2007-12-01

    The GEOSCOPE observatory consists of a global seismic network and a data center. The observatory was launched in 1982 by the French National Center of Scientific Research (CNRS/INSU) and progressively 30 stations have been installed across all continents and on islands throughout the oceans. The GEOSCOPE stations are located on 18 countries and equipped with three component very broad-band seismometers (STS1 or STS2) and 24 or 26 bit digitizers, as required by the Federation of Seismic Digital Network (FDSN). In most stations a pressure gauge and a thermometer are also installed. During the last years, 13 stations have been upgraded in order to send data in real or near real time to GEOSCOPE Data Center. In 2008, two new real time stations will be installed in the Indian Ocean: in the South of Madagascar and on Rodrigues island. Four stations in the Carribean region and in South America will also be upgraded to send real time data to GEOSCOPE Data Center and to local tsunami warning centers. Continuous data of all stations are collected in real time or with a delay by the GEOSCOPE Data Center in Paris where they are validated, stored and made accessible to the international scientific community. Users have free and open access to: - real time data from 13 stations. These data are transfered from the stations to the Geoscope Data Center using the seedlink protocol developed by GEOFON. Seedlink also enables to make these data accessible to the Tsunami Warning Centers and to other data center. These data are available to users through the GEOSCOPE web interface. - validated continous waveforms and meta data of all stations by using the NetDC system (Networked Data Centers). Data can be requested from the GEOSCOPE Data Center and from other networked centers associated to the FDSN. - a selection of seismograms corresponding to large earthquakes via a web interface - the power spectrum estimates of the seismic noise averaged over sequences of 24 hours for each station

  19. EMSO: European Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Favali, Paolo

    2010-05-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap (Report 2006, http://cordis.europa.eu/esfri/roadmap.htm), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. The development of an underwater network is based on previous EU-funded projects since early '90 and is being supported by several EU initiatives, as the on-going ESONET-NoE, coordinated by IFREMER (2007-2011, http://www.esonet-emso.org/esonet-noe/), and aims at gathering together the Research Community of the Ocean Observatories. In 2006 the FP7 Capacities Programme launched a call for Preparatory Phase (PP) projects, that will provide the support to create the legal and organisational entities in charge of managing the infrastructures, and coordinating the financial effort among the countries. Under this call the EMSO-PP project was approved in 2007 with the coordination of INGV and the participation of other 11 Institutions of 11 countries. The project has started in April 2008 and will last 4 years. The EMSO is a key-infrastructure both for Ocean Sciences and for Solid Earth Sciences. In this respect it will enhance and complement profitably the capabilities of other European research infrastructures such as EPOS, ERICON-Aurora Borealis, and SIOS. The perspective of the synergy among EMSO and other ESFRI Research Infrastructures will be outlined. EMSO Partners: IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph

  20. EMSO: European Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Favali, P.; Partnership, Emso

    2009-04-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. EMSO will reply also to the need expressed in the frame of GMES (Global Monitoring for Environment and Security) to develop a marine segment integrated in the in situ and satellite global monitoring system. The EMSO development relays upon the synergy between the scientific community and the industry to improve the European competitiveness with respect to countries like USA/Canada, NEPTUNE, VENUS and MARS projects, Taiwan, MACHO project, and Japan, DONET project. In Europe the development of an underwater network is based on previous EU-funded projects since early '90, and presently supported by EU initiatives. The EMSO infrastructure will constitute the extension to the sea of the land-based networks. Examples of data recorded by seafloor observatories will be presented. EMSO is presently at the stage of Preparatory Phase (PP), funded in the EC FP7 Capacities Programme. The project has started in April 2008 and will last 4 years with the participation of 12 Institutions representing 12 countries. EMSO potential will be significantly increased also with the interaction with other Research Infrastructures addressed to Earth Science. 2. IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph Waldmann); IMI-Irish Marine Institute (Ireland, ref. Michael Gillooly); UTM-CSIC-Unidad de

  1. The North Pole Environmental Observatory

    NASA Astrophysics Data System (ADS)

    Morison, J.; Aagaard, K.; Falkner, K.; Heiberg, A.; McPhee, M.; Moritz, D.; Overland, J.; Perovich, D.; Richter-Menge, J.; Shimada, K.; Steele, M.; Takizawa, T.; Woodgate, R.

    2001-12-01

    The Arctic environment is changing. The North Pole Environmental Observatory (NPEO) was established as a type of program of long-term observations required to understand Arctic change. The North Pole region was chosen because it is central to observed changes, there is a reasonable past history of measurements, and there is often a large gap there in the coverage of surface measurements. NPEO has three main components, (1) an automated drifting station composed of several buoys to measure atmospheric, upper ocean, and ice variables, (2) a sub-surface mooring at the Pole measuring ocean properties and ice draft, and (3) an airborne hydrographic survey that provides a snapshot spatial description of upper ocean properties. The first observatory was established at the Pole in April 2000 by aircraft flying out of Alert. The drifting station portion consisted of ocean ice and meteorological buoys. Over one year the drifting station passed south through Fram Strait and stopped operating in the Greenland Sea. The airborne hydrographic survey made 6 stations between Alert, the Pole, and beyond. The sub-surface mooring was not deployed. In 2001 the drifting station was similar, but the operation was expanded to deploy a 4000-m mooring at the Pole. The mooring includes current meters, C-T sensors, ADCP, and an ice draft-profiling sonar. It will be recovered in 2002. The hydrographic survey covered a new line from the Pole to 85N, 170W. The 2000 hydrographic survey showed that the changes characterizing the Pole region in the 1990s persist, but with some deepening and some slight retreat toward climatology. The section from Alert shows that upper ocean conditions near the coast have become much like the Western Arctic with low mixed layer salinity and a secondary shallow temperature maximum. The observations indicate a general counterclockwise shift in water mass locations. Among other things, the NPEO 2000 drifting station data indicate the cold halocline is still thinner

  2. The GEOSCOPE broadband seismic observatory

    NASA Astrophysics Data System (ADS)

    Douet, Vincent; Vallée, Martin; Zigone, Dimitri; Bonaimé, Sébastien; Stutzmann, Eléonore; Maggi, Alessia; Pardo, Constanza; Bernard, Armelle; Leroy, Nicolas; Pesqueira, Frédéric; Lévêque, Jean-Jacques; Thoré, Jean-Yves; Bes de Berc, Maxime; Sayadi, Jihane

    2016-04-01

    The GEOSCOPE observatory has provided continuous broadband data to the scientific community for the past 34 years. The 31 operational GEOSCOPE stations are installed in 17 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1, T240 or STS2) and 24 or 26 bit digitizers (Q330HR). Seismometers are installed with warpless base plates, which decrease long period noise on horizontal components by up to 15dB. All stations send data in real time to the IPGP data center, which transmits them automatically to other data centers (FDSN/IRIS-DMC and RESIF) and tsunami warning centers. In 2016, three stations are expected to be installed or re-installed: in Western China (WUS station), in Saint Pierre and Miquelon Island (off the East coast of Canada) and in Walis and Futuna (SouthWest Pacific Ocean). The waveform data are technically validated by IPGP (25 stations) or EOST (6 stations) in order to check their continuity and integrity. Scientific data validation is also performed by analyzing seismic noise level of the continuous data and by comparing real and synthetic earthquake waveforms (body waves). After these validations, data are archived by the IPGP data center in Paris. They are made available to the international scientific community through different interfaces (see details on http://geoscope.ipgp.fr). Data are duplicated at the FDSN/IRIS-DMC data center and a similar duplication at the French national data center RESIF will be operational in 2016. The GEOSCOPE broadband seismic observatory also provides near-real time information on global moderate-to-large seismicity (above magnitude 5.5-6) through the automated application of the SCARDEC method (Vallée et al., 2011). By using global data from the FDSN - in particular from GEOSCOPE and IRIS/USGS stations -, earthquake source parameters (depth, moment magnitude, focal mechanism, source time function) are determined about 45

  3. Graduate Astronomy Education in the Early Days of Lick Observatory.

    ERIC Educational Resources Information Center

    Osterbrock, Donald E.

    1980-01-01

    Discusses Lick Observatory's (University of California) early graduate students and graduate program in astronomy. The history of the Lick Observatory and famous astronomy professors and astronomers associated with the Lick Observatory are also discussed. (DS)

  4. The Little Thompson Observatory's Astronomy Education Programs

    NASA Astrophysics Data System (ADS)

    Schweitzer, Andrea E.

    2007-12-01

    The Little Thompson Observatory is a community-built E/PO observatory and is a member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. Annually we have approximately 5,000 visitors, which is roughly equal to the population of the small town of Berthoud, CO. This past year, we have used the funding from our NASA ROSS E/PO grant to expand our teacher workshop programs, and included the baseball-sized meteorite that landed in Berthoud three years ago. Our teacher programs have involved scientists from the Southwest Research Institute and from Fiske Planetarium at CU-Boulder. We thank the NASA ROSS E/PO program for providing this funding! We also held a Colorado Project ASTRO-GEO workshop, and the observatory continues to make high-school astronomy courses available to students from the surrounding school districts. Statewide, this year we helped support the development and construction of three new educational observatories in Colorado, located in Estes Park, Keystone, and Gunnison. The LTO is grateful to have received the recently-retired 24-inch telescope from Mount Wilson Observatory as part of the TIE program. To provide a new home for this historic telescope, we have doubled the size of the observatory and are building a second dome (all with volunteer labor). During 2008 we plan to build a custom pier and refurbish the telescope.

  5. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2004-05-01

    The Little Thompson Observatory is the first community-built E/PO observatory that is accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. The observatory will celebrate its fifth anniversary in summer 2004, and we are planning to expand the building to accommodate our growing number of visitors! We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. We have recently submitted ROSS E/PO proposals toward future teacher programs. A committee of teachers and administrators from the Thompson School District selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Our program is also accredited by Colorado State University.

  6. The Malaysian Robotic Solar Observatory (P29)

    NASA Astrophysics Data System (ADS)

    Othman, M.; Asillam, M. F.; Ismail, M. K. H.

    2006-11-01

    Robotic observatory with small telescopes can make significant contributions to astronomy observation. They provide an encouraging environment for astronomers to focus on data analysis and research while at the same time reducing time and cost for observation. The observatory will house the primary 50cm robotic telescope in the main dome which will be used for photometry, spectroscopy and astrometry observation activities. The secondary telescope is a robotic multi-apochromatic refractor (maximum diameter: 15 cm) which will be housed in the smaller dome. This telescope set will be used for solar observation mainly in three different wavelengths simultaneously: the Continuum, H-Alpha and Calcium K-line. The observatory is also equipped with an automated weather station, cloud & rain sensor and all-sky camera to monitor the climatic condition, sense the clouds (before raining) as well as to view real time sky view above the observatory. In conjunction with the Langkawi All-Sky Camera, the observatory website will also display images from the Malaysia - Antarctica All-Sky Camera used to monitor the sky at Scott Base Antarctica. Both all-sky images can be displayed simultaneously to show the difference between the equatorial and Antarctica skies. This paper will describe the Malaysian Robotic Observatory including the systems available and method of access by other astronomers. We will also suggest possible collaboration with other observatories in this region.

  7. National Virtual Aeronomical Observatory (NVAO)

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Cosby, P. C.; Slanger, T. G.

    2002-05-01

    The Applied Information Systems Research program of NASA's Office of Space Science has indicated its plan to fund SRI's proposal for establishment of the National Virtual Aeronomical Observatory (NVAO). Astronomers' echelle spectrographs are already recording high-resolution survey spectra of optical emissions from excited atoms and molecules in the Earth's night atmosphere, during every hour of every night at numerous locations world-wide. Since 1997 SRI researchers, under support from NSF's Atmospheric Sciences Division, have been finding atmospheric surprises in a small subset of the potentially available sky spectra, collected from a few collaborating astronomers using the Keck telescopes. The NVAO will collect such spectra and make them available to all atmospheric scientists, in standardized formats, with appropriate access and inquiry tools. Students and researchers will be able to perform ``observations" on the ``real atmosphere" from their desktops, either as educational exercises, as publishable research, or as ``dry run" experiments before taking the field. We seek to identify astronomers who might be willing to donate sky spectra. We also want to learn about other telescope and spectrograph capabilities and operations, especially wavelength and intensity calibration and archiving.

  8. Lyman Alpha Spicule Observatory (LASO)

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2011-01-01

    The Lyman Alpha Spicule Observatory (LASO) sounding rocket will observe smallscale eruptive events called "Rapid Blue-shifted Events" (RBEs) [Rouppe van der Voort et al., 2009], the on-disk equivalent of Type-II spicules, and extend observations that explore their role in the solar coronal heating problem [De Pontieu et al., 2011]. LASO utilizes a new and novel optical design to simultaneously observe two spatial dimensions at 4.2" spatial resolution (2.1" pixels) over a 2'x2' field of view with high spectral resolution of 66mAngstroms (33mAngstroms pixels) across a broad 20Angstrom spectral window. This spectral window contains three strong chromospheric and transition region emissions and is centered on the strong Hydrogen Lyman-a emission at 1216Angstroms. This instrument makes it possible to obtain new data crucial to the physical understanding of these phenomena and their role in the overall energy and momentum balance from the upper chromosphere to lower corona. LASO was submitted March 2011 in response to the ROSES SHP-LCAS call.

  9. Operations with the FUSE observatory

    NASA Astrophysics Data System (ADS)

    Blair, William P.; Kruk, Jeffrey W.; Moos, Henry W.; Oegerle, William R.

    2003-02-01

    The Far Ultraviolet Spectroscopic Explorer satellite (FUSE) is a NASA Origins mission launched on 1999 June 24 and operated from the Johns Hopkins University Homewood campus in Baltimore, MD. FUSE consists of four aligned telescopes feeding twin far-ultraviolet spectrographs that achieve a spectral resolution of R=20,000 over the 905-1187 Å spectral region. This makes FUSE complementary to the Hubble Space Telescope and of broad general interest to the astronomical community. FUSE is operated as a general-purpose observatory with proposals evaluated and selected by NASA. The FUSE mission concept evolved dramatically over time. The version of FUSE that was built and flown was born out of the "faster, better, cheaper" era, which drove not only the mission development but also plans for operations. Fixed price contracts, a commercial spacecraft, and operations in the University environment were all parts of the low cost strategy. The satellite performs most functions autonomously, with ground contacts limited typically to seven 12-minute contacts per day through a dedicated ground station. All support functions are managed by a staff of 40 scientists and engineers located at Johns Hopkins. In this configuration, we have been able to achieve close to 30% average on-target science efficiency. In short, FUSE is a successful example of the "faster, better, cheaper" philosophy.

  10. Pulsar Observatory for Students (POS)

    NASA Astrophysics Data System (ADS)

    Joshi, Bhal Chandra; Manoharan, P. K.; Gopakumar, A.; Mitra, D.; Bagchi, Joydeep; Saikia, D. J.

    2012-07-01

    A new program, to initiate motivated undergraduate students to the methodology of pulsar astronomy in particular and radio astronomy in general, is being launched at the Ooty Radio Telescope (ORT). The ORT is a 530 m X 30 m cylindrical radio telescope operating at 325 MHz, having an equatorial mount. Its equatorial mount allows modestly trained students to make pulsar observations without any substantial help from the observatory. Due to its large collecting area, it is a sensitive instrument for pulsar astronomy, capable of detecting a large number of pulsars with short observation time. The program consists of biannual workshops that will introduce scores of students to basics of radio-astronomy and pulsars. It will also train them in the use of the ORT as well as expose them to the future prospects and excitements in the field. The second leg of the program involves live ORT observations by these trained students during various academic breaks. There is a possibility for a follow up program of highly motivated students, selected from this program, to pursue projects of their interest from the data obtained in these sensitive observations. The long term aim of the program is to enlarge the pulsar astronomy community in the country. The presentation will highlight the main features of this program and describe the experience drawn from such programs.

  11. The Orbiting Carbon Observatory mission

    NASA Technical Reports Server (NTRS)

    Crisp, David; Johnson, Christyl

    2003-01-01

    The Orbiting Carbon Observatory (OCO) mission was selected by NASA's Office of Earth Science as the fifth mission in its Earth System Science Pathfinder (ESSP) Program. OCO will make the first global, space-based measurements of atmospheric CO2 with the precision, resolution, and coverage needed to characterize sources and sinks of this important greenhouse gas. These measurements will improve our ability to forecasts CO2-induced climate change. OCO will fly in a 1:15 PM sun-synchronous orbit, sharing its ground track with the Earth Observing System (EOS) Aqua platform. It will carry high-resolution spectrometers to measure reflected sunlight in the molecular oxygen (O2) A-band at 0.76-microns and the CO2 bands at 1.61 and 2.06 microns to retrieve the column-averaged CO2 dry air mole fraction, XCO2. A comprehensive validation and correlative measurement program has been incorporated into this mission to ensure that XCO2 can be retrieved with precisions of 0.3% (1 ppm) on regional scales.

  12. Lyman Alpha Spicule Observatory (LASO)

    NASA Astrophysics Data System (ADS)

    Chamberlin, Phillip C.; Allred, J.; Airapetian, V.; Gong, Q.; Fontenla, J.; McIntosh, S.; de Pontieu, B.

    2011-05-01

    The Lyman Alpha Spicule Observatory (LASO) sounding rocket will observe small-scale eruptive events called "Rapid Blue-shifted Events” (RBEs), the on-disk equivalent of Type-II spicules, and extend observations that explore their role in the solar coronal heating problem. LASO utilizes a new and novel optical design to simultaneously observe two spatial dimensions at 4.2" spatial resolution (2.1” pixels) over a 2'x2' field of view with high spectral resolution of 66mÅ (33mÅ pixels) across a broad 20Å spectral window. This spectral window contains three strong chromospheric and transition region emissions and is centered on the strong Hydrogen Lyman-α emission at 1216Å. This instrument makes it possible to obtain new data crucial to the physical understanding of these phenomena and their role in the overall energy and momentum balance from the upper chromosphere to lower corona. LASO was submitted March 2011 in response to the ROSES SHP-LCAS call.

  13. Lyman Alpha Spicule Observatory (LASO)

    NASA Astrophysics Data System (ADS)

    Chamberlin, P. C.; Allred, J. C.; Airapetian, V.; Gong, Q.; Mcintosh, S. W.; De Pontieu, B.; Fontenla, J. M.

    2011-12-01

    The Lyman Alpha Spicule Observatory (LASO) sounding rocket will observe small-scale eruptive events called "Rapid Blue-shifted Events" (RBEs) [Rouppe van der Voort et al., 2009], the on-disk equivalent of Type-II spicules, and extend observations that explore their role in the solar coronal heating problem [De Pontieu et al., 2011]. LASO utilizes a new and novel optical design to simultaneously observe two spatial dimensions at 4.2" spatial resolution (2.1" pixels) over a 2'x2' field of view with high spectral resolution of 66mÅ (33mÅ pixels) across a broad 20Å spectral window. This spectral window contains three strong chromospheric and transition region emissions and is centered on the strong Hydrogen Lyman-α emission at 1216Å. This instrument makes it possible to obtain new data crucial to the physical understanding of these phenomena and their role in the overall energy and momentum balance from the upper chromosphere to lower corona. LASO was submitted March 2011 in response to the ROSES SHP-LCAS call.

  14. Science and the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Dowler, Patrick; Schade, David

    The Canadian Virtual Observatory (CVO) is the cornerstone of a budding international partnership that delivers high quality scientific content and capabilities to the astronomical community. We have developed a uniform astronomical data model to characterise all types of observational data across the entire electromagnetic spectrum; this model enables users to find archive data based on the content and the quality without letting the technology get in the way. We have also developed general purpose source and object catalogs to store information extracted from the data using standard techniques and algorithms. These catalogs are explorable with a variety of scientific tools from a web interface for simple tasks to a programmatic interface for sophisticated analysis involving client and server side processing. Finally all of the data processing and analysis tasks we have executed or will execute are viewable via our processing catalog; links between object and source catalogs processing catalogs and observation catalogs allow users to examine the complete pedigree of every single derived value. Thus the entire system is open to peer review which is the cornerstone of science.

  15. EMSO: European Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Favali, Paolo; Partnership, Emso

    2010-05-01

    EEMSO, an ESFRI Research Infrastructure, is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. EMSO will reply also to the need expressed in the frame of GMES (Global Monitoring for Environment and Security) to develop a marine segment integrated in the in situ and satellite global monitoring system. The EMSO infrastructure will extend the coverage to the sea of the monitoring, integrating the land-based networks with multidisciplinary seafloor measurements. With this aim the two European research infrastructures EPOS (European Plate Observing System) and EMSO can operate in coordination in order to increase the mutual benefits. EMSO is presently at the stage of Preparatory Phase, funded in the EC FP7. The EMSO status, the perspectives and relations with other existing or incoming sensor networks and data infrastructures are outlined.

  16. Research Experiences for Undergraduates at MIT Haystack Observatory

    NASA Astrophysics Data System (ADS)

    Salah, J. E.; Erickson, P. J.; Pratap, P.

    2005-12-01

    Initiated in 1987, the NSF-supported Research Experiences for Undergraduates (REU) program at MIT Haystack Observatory has provided internships in upper atmospheric physics and radio astronomy to over 150 science and engineering students recruited nationally. Post-REU surveys by Haystack indicate that the majority of the students elected to pursue graduate education and careers in science and engineering, with many of them citing the REU program as an important influence in their decision process. During their internships at Haystack, the students have utilized the Observatory's radar and radio telescope facilities and analyzed the resulting measurements, they developed instrumentation or software that were implemented as part of our projects, and they participated in professional conferences where they presented their project results. Mentored by a Haystack researcher, each undergraduate student selected a research project that was part of the Observatory's overall program and became engaged in a full research experience from inception to publication. The students also interacted with local area pre-college teachers and students who were actively pursuing educational outreach programs at Haystack that were synergistic with the REU efforts.

  17. Solar Education and Outreach at Columbus State University's Mead Observatory

    NASA Astrophysics Data System (ADS)

    Johnson, Michael; Hood, J.; Cruzen, S. T.

    2006-12-01

    Since Columbus State University’s Mead Observatory opened its doors in 1996, the primary goals have been public outreach and education using its main 16-inch telescope and an army of smaller 8and 10inch telescopes that travel to many locations giving adults and children a new view on the night sky. In 2001, Mead Observatory’s main instrument, the 16-inch Meade LX200, was converted to a full-time solar telescope with a generous grant from a private foundation. Since 2001, the Solar Observatory has grown to include an online accessibility that allows schools from around the world to log on and experience the Sun from their own classroom. At the beginning of 2006, the decision was made to upgrade some of the hardware and software used for online access. The upgrades were intended to make the online experience easier for teachers and allow for better imaging over the internet. This poster highlights how these changes enhance the online experience and allow the Mead Observatory to achieve is educational outreach goals.

  18. Education and Popularization of Astronomy at Gunma Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Obayashi, H.

    Gunma Astronomical Observatory is designed for both astronomical research and public use, and was established in April 1999 by Gunma Prefecture, located in Takayama village, about 100 km north-west of Tokyo. It is equipped with all devices and facilities needed to conduct full-scale observational research, including a telescope of 150 cm diameter. Based upon fundamental philosophy of providing every visitor with a real experience, we are also engaged in educational activities that are linked to school or life-long education to spread astronomical observation, as well as observational research activities at our observatory. We are hoping that all of those who visit our observatory come in contact with wonders of their cosmos or the latest information about astronomy; thereby being able to have an opportunity to think about nature, the environment and the future of the human race in general. There are about 30 staff members; 9 of them have the degree of doctor, 12 of them belong to the section of research and education. We had 38 317 visitors in the last year (April 2001 to March 2002).

  19. Gemini Observatory Takes its Local Communities on an Expanding Journey

    NASA Astrophysics Data System (ADS)

    Harvey, Janice; Michaud, Peter

    2012-08-01

    Currently in its 7th year (2011) Hawaii's annual Journey through the Universe (JttU) program is a flagship Gemini Observatory public education/outreach initiative involving a broad cross-section of the local Hawai'i Island astronomical community, the public, educators, businesses, local government officials, and thousands of local students. This paper describes the program, its history, planning, implementation, as well as the program's objectives and philosophy. The success of this program is documented here, as measured by continuous and expanding engagement of educators, the community, and the public, along with formal evaluation feedback and selected informal verbal testimony. The program's success also serves as justification for the planned adaptation of a version of the program in Chile in 2011 (adapted for Chilean educational and cultural differences). Finally, lessons learned are shared which have refined the program for Gemini's host communities but can also apply to any institution wishing to initiate a similar program.

  20. SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    SOFIA (Stratospheric Observatory For Infrared Astronomy) with Telescope Configuration Changes Artwork. Concepts: Based on 18 Years of Experience of Kuiper Airborne Observatory (KAO) Operation, Characteristics, Operations and Science

  1. Using Virtual Observatories for Heliophysics Research

    NASA Astrophysics Data System (ADS)

    Weigel, Robert S.; Baker, Daniel N.; Roberts, D. Aaron; King, Todd

    2009-11-01

    Scientific satellites, balloons, ground-based instruments, and other observational platforms are producing rich streams of data about the Earth and space. Ensuring widespread access to such data has led to the development of a new type of observatory: the virtual observatory. Existing only in cyberspace, virtual observatories are Web-based interfaces that point users to online data repositories. More important, they allow users not only to access and view multiple sources of information at the same time but also to cross-compare data to build new insights.

  2. AURA and its US National Observatories

    NASA Astrophysics Data System (ADS)

    Edmondson, Frank K.

    1997-04-01

    The subject of this history is the science and politics of the establishment, funding, construction and operation of two important American observatories, the Kitt Peak National Observatory (KPNO) and the Cerro Tololo Inter-American Observatory (CTIO) by the Association of Universities for Research in Astronomy (AURA). The book is written from the unique perspective of Frank K. Edmondson, a former member of the AURA board of directors. Drawing on oral histories, archival material, as well as the author's personal participation from 1956 to the present, this is a personal account of a period of major innovation in American optical astronomy. Will be of interest to historians and astronomers alike.

  3. Education and Outreach for the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Snow, G.

    The scale and scope of the physics studied at the Auger Observatory offer significant opportunities for original outreach work. Education, outreach and public relations of the Auger collaboration are coordinated in a separate task whose goals are to encourage and support a wide range of education and outreach efforts that link schools and the public with the Auger scientists and the science of cosmic rays, particle physics, and associated technologies. The presentation will focus on the impact of the collaboration in Mendoza Province, Argentina, as: the Auger Visitor Center in Malargüe that has hosted over 25,000 visitors since 2001, the Auger Celebration and a collaboration-sponsored science fair held on the Observatory campus in November 2005, the opening of the James Cronin School in Malargüe in November 2006, public lectures, school visits, and courses for science teachers. As the collaboration prepares its northern hemisphere site proposal, plans for an enhanced outreach program are being developed in parallel and will be described.

  4. The Stanford Solar Observatory Group E/PO Program

    NASA Astrophysics Data System (ADS)

    Scherrer, P. H.

    2003-12-01

    As PI for the SOHO/MDI and SDO/HMI investigations and a Co-I in the NSF CISM STC program I have had the opportunity to help in the formulation and development of a multifaceted education and public outreach program. Our E/PO effort began with a web page and press relations but has grown to include the development of an inexpensive spectrometer with supporting materials, poster development and distribution, and a series of webcasts in collaboration with NASA. The present program, with the support of a dedicated E/PO team, includes the development of a solar planetarium program, and a space weather monitor that can be made available through traditional distribution methods. In collaboration with the Stanford Haas Center for Public Service we are also developing a university course that will teach the essentials of science education as part of a lifetime commitment to public service. The development of the Stanford solar E/PO program and involvement of science professionals in that program will be discussed. (The Michelson Doppler Imager (MDI) is an instrument on the Joint ESA & NASA Solar and Heliospheric Observatory (SOHO) mission. The Helioseismic and Magnetic Imager (HMI), is an instrument on the NASA Solar Dynamics Observatory (SDO) mission which is under development. The Center for Space Weather Modeling (CISM) led by Jeff Hughes at Boston University is an NSF Science and Technology Center.)

  5. Sydney Observatory and astronomy teaching in the 90s

    NASA Astrophysics Data System (ADS)

    Lomb, N.

    1996-05-01

    Computers and the Internet have created a revolution in the way astronomy can be communicated to the public. At Sydney Observatory we make full use of these recent developments. In our lecture room a variety of sophisticated computer programs can show, with the help of a projection TV system, the appearance and motion of the sky at any place, date or time. The latest HST images obtained from the Internet can be shown, as can images taken through our own Meade 16 inch telescope. This recently installed computer-controlled telescope with its accurate pointing is an ideal instrument for a light-polluted site such as ours.

  6. Creating a global observatory for health R&D.

    PubMed

    Terry, Robert F; Salm, José F; Nannei, Claudia; Dye, Christopher

    2014-09-12

    A global map of health R&D activity would improve the coordination of research and help to match limited resources with public health priorities, such as combating antimicrobial resistance. The challenges of R&D mapping are large because there are few standards for research classification and governance and limited capacity to report on R&D data, especially in low-income countries. Nevertheless, based on developments in semantic classification, and with better reporting of funded research though the Internet, it is now becoming feasible to create a global observatory for health R&D. PMID:25214621

  7. 'Encouraging progress' for Armagh Observatory's dark sky campaign

    NASA Astrophysics Data System (ADS)

    McFarland, J.; Bailey, M. E.; Christou, A. A.

    2004-08-01

    Due to increased astronomical observing activities at the Armagh Observatory, Mark Bailey and Apostolos Christou anticipated the need to minimise the growth of light pollution in the City. In 2003 January they produced a dark sky leaflet: Light Pollution and the City of Armagh, to emphasise the detrimental environmental effects of poor lighting, and how to improve the general public's access to dark skies. This excellent leaflet, available free on application to the lead author, also may be downloaded from the web site: http://star.arm.ac.uk/darksky/armagh.html.

  8. Unique Science Needs: CAWSES-II and Virtual Observatories (Invited)

    NASA Astrophysics Data System (ADS)

    Kozyra, J. U.; Fox, P. A.; Avery, S. K.; Rodger, A. S.; Melkers, J. E.; Paxton, L. J.; Barnes, R. J.

    2009-12-01

    A focus on the interaction between Sun-Earth system elements in space research is not new. However, two recent events have pushed us within reach of a comprehensive attack on system-science frontiers. During the last solar cycle, we acquired the capability to observe simultaneously in regions from the Sun to the Earth, in the neighborhoods of other solar system planets and even at locations approaching the boundary between the heliosphere and interplanetary space. Simultaneity is critical because only under these conditions can interactions between components be observed and unraveled. Of equal importance is the implementation (still ongoing) of open data policies in the US and in other countries that has resulted in a worldwide flow of data served through the Internet directly and by Virtual Observatories. These open data sets and underlying cyber-infrastructure provide the framework around which a system science observatory can be fashioned and directed toward grand challenge investigations. This effort must be both interdisciplinary and international in scope. The development of just such a virtual environment is a major goal of the Climate and Weather of the Sun-Earth System (CAWSES) - II effort (covering 2009-2013) within SCOSTEP, which is a program of the International Council for Science (ICSU) representing 113 member nations and 29 international scientific unions. With the collaboration of ongoing programs in countries around the world, this virtual environment is envisioned as a means to combine worldwide capabilities inherent in virtual observatories and other types of cyber-infrastructure in ways that support and enable system science investigations, allow international and interdisciplinary communities to develop focused system-level science objectives, exchange information intuitively between discipline areas, share resources, educate students, advise policy makers, and reach out and inform a worldwide public of exciting new discoveries and their

  9. The Extreme Universe Space Observatory

    NASA Technical Reports Server (NTRS)

    Adams, Jim; Six, N. Frank (Technical Monitor)

    2002-01-01

    This talk will describe the Extreme Universe Space Observatory (EUSO) mission. EUSO is an ESA mission to explore the most powerful energy sources in the universe. The mission objectives of EUSO are to investigate EECRs, those with energies above 3x10(exp 19) eV, and very high-energy cosmic neutrinos. These objectives are directly related to extreme conditions in the physical world and possibly involve the early history of the big bang and the framework of GUTs. EUSO tackles the basic problem posed by the existence of these extreme-energy events. The solution could have a unique impact on fundamental physics, cosmology, and/or astrophysics. At these energies, magnetic deflection is thought to be so small that the EECR component would serve as the particle channel for astronomy. EUSO will make the first measurements of EAS from space by observing atmospheric fluorescence in the Earth's night sky. With measurements of the airshower track, EUSO will determine the energy and arrival direction of these extreme-energy events. EUSO will make high statistics observations of CRs beyond the predicted GZK cutoff energy and widen the channel for high-energy neutrino astronomy. The energy spectra, arrival directions, and shower profiles will be analyzed to distinguish the nature of these events and search for their sources. With EUSO data, we will have the possibility to discover a local EECR source, test Z-burst scenarios and other theories, and look for evidence of the breakdown of the relativity principle at extreme Lorentz factors.

  10. Virtual Observatory Services at WFAU

    NASA Astrophysics Data System (ADS)

    Holliman, M.; Read, M.; Hambly, N.; Mann, R. G.

    2010-12-01

    The Wide Field Astronomy Unit hosts a large number of Virtual Observatory (VO) services that enable access to both data and processing applications housed on our servers in Edinburgh. These services provide astronomers with a powerful set of tools for obtaining and processing data in ways unattainable through conventional access methods. The services offered include cone search and ADQL access to a number of major databases developed by our data centre such as UKIDSS, SuperCOSMOS Science Archive, and the 6dF Galaxy Survey, and also many mirrors of important databases developed elsewhere, such as SDSS, IRAS, and 2XMM. Images for UKIDSS and SuperCOSMOS are accessible through SIA services. There are useful data processing tools like the STILTS library for table manipulation, a data mining tool for classification using kernel density analysis, and a service for converting VOTables into KML for use in Google Sky. Also hosted are a number of VO infrastructure services like a full registry and VOSpace that enable users to find resources and store data in an online accessible location. WFAU provides secured VO services to the proprietary UKIDSS releases, which are the first secured VO services for a major proprietary data resource in the entire VO. With a limited knowledge of python and a copy of the VODesktop software astronomers can script up workflows that utilize these services to perform complex operations like cross matching between disparate datasets or extracting catalogues from images remotely. Since many of our databases are too large to be downloaded and accessed locally these services make it possible to accomplish complicated tasks online and on dedicated hardware. WFAU’s list of VO services will continue to grow as new IVOA standards are implemented and with the addition of new datasets like the VISTA surveys.

  11. Cerro Tololo Inter-American Observatory (CTIO)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    CTIO is operated by the ASSOCIATION OF UNIVERSITIES FOR RESEARCH IN ASTRONOMY Inc. (AURA), under a cooperative agreement with the National Science Foundation as part of the National Optical Astronomy Observatories....

  12. In Brief: Deep-sea observatory

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  13. Resource Information Management in Chinese Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Li, Chang-Hua; Cui, Chen-Zhou; Li, Lian; Zhao, Yong-Heng

    2008-06-01

    Information technology has been affecting on all fields of traditional scientific research deeply. Virtual Observatory is a typical example of combination of the latest information technologies with astronomy. Taking advantages of advanced information technologies, for example, Grid technology, it aims to achieve the seamless and global access to astronomical information and maximum scientific output of huge modern astronomic datasets. In the process of design and implementation of resource information system for Chinese Virtual Observatory, the authors adopt Open Grid Service Architecture (OGSA) as its infrastructure, and all resources are managed in the system as services. Resource management, especially resource registry and discovery is a key consideration for both Grid and Virtual Observatory, which affects directly on the performance of the whole system. Based on OGSA and one of its implementations, GT3, this paper describes the design and implementation of resource information management system in Chinese Virtual Observatory.

  14. Astronomical research at the Hopkins PHOENIX Observatory

    NASA Astrophysics Data System (ADS)

    Hopkins, J. L.

    1985-09-01

    After trying astrophotography and radio astronomy it was decided that the best way to do meaningful astronomical research at a small private observatory was by doing photoelectric photometry. Having the observatory located in the back yard of a private residence affors the luxury of observing any time the sky conditions permit. Also modest equipment is all that is needed to do accurate UBV photometry of stars 8th magnitude and brighter. Since beginning in 1980 the Hopkins Phoenix Observatory has published papers on several RS CVn star systems, 31 Cygni, 22 Vul, 18 Tau Per, and has followed the 1982-1984 eclipse of Epsilon Aurigae from its start to the present with over 1000 UBV measurements. In addition the Hopkins Phoenix Observatory has developed several pieces of photometry equipment including the HPO PEPH-101 photometer head and photon counting electronics.

  15. Asteroid Lightcurves from the Preston Gott Observatory

    NASA Astrophysics Data System (ADS)

    Clark, Maurice

    2012-04-01

    Results of analysis of CCD photometry observations obtained at the Preston Gott Observatory of asteroids 970 Primula, 3015 Candy, 3751 Kiang, 6746 Zagar, 7750 McEwen, 10046 Creighton, and 19251 Totziens are presented.

  16. The Astrophysical Multimessenger Observatory Network (AMON)

    NASA Technical Reports Server (NTRS)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; Barthelmy, S. D.; Coutu, S.; DeYoung, T.; Falcone, A. D.; Gao, Shan; Hashemi, B.; Homeier, A.; Marka, S.; Owen, B. J.; Taboada, I.

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  17. SOFIA Observatory Conducts Night Checkout Flight

    NASA Video Gallery

    This spectacular video captures NASA's Stratospheric Observatory for Infrared Astronomy as it flew a nighttime checkout flight over northern and central California the first week of March 2013. The...

  18. The Arecibo Observatory as an MST radar

    NASA Technical Reports Server (NTRS)

    Woodman, R. F.

    1983-01-01

    The radars and other systems at the Arecibo Observatory were designed and built, originally, for incoherent-scatter and radio-astronomy research. More recently, important additions have been made for planetary radar and artificial RF heating of the ionosphere. Although designed and built for a different application, these systems have shown to be very powerful tools for tropospheric, stratospheric and mesospheric research. The Observatory at present has two main radars: one at 430 and the other at 2380 MHz. In addition, 50-MHz MST radar work has been done using portable transmitters brought to the Observatory for this purpose. This capability will become permanent with the recent acquisition of a transmitter at this frequency. Furthermore, control and data processing systems have been developed to use the powerful HF transmitter and antennas of the HF-heating facility as an HF bistatic radar. A brief description of the four radars available at the Observatory is presented.

  19. Renewable Energy for the Paranal Observatory

    NASA Astrophysics Data System (ADS)

    Weilenmann, U.

    2012-06-01

    The operation of observatories at remote sites presents significant demands for electrical energy. The use of renewable energy may become the solution to cope with the ever-rising prices for electrical energy produced from fossil fuels. There is not only a purely commercial aspect, but also the carbon footprint of observatory activities has to be considered. As a first step on the way to a "greener" Paranal Observatory, we propose the installation of a solar cooling system for the cooling of the telescope enclosures, using the abundant insolation that is freely available in the north of Chile. Further into the future, feasible options for photovoltaic and wind energy could supply the needs of the Paranal Observatory in a sustainable manner.

  20. Margaret Huggins and Tulse Hill Observatory

    NASA Astrophysics Data System (ADS)

    Becker, Barbara J.

    2016-04-01

    Photography, instrument design, methodology, interpretation - all skills brought to William Huggins' observatory by his persistent and careful wife Margaret. Together they developed spectroscopy into a powerful research tool. Barbara Becker tells the story.

  1. Observing at Kitt Peak National Observatory.

    ERIC Educational Resources Information Center

    Cohen, Martin

    1981-01-01

    Presents an abridged version of a chapter from the author's book "In Quest of Telescopes." Includes personal experiences at Kitt Peak National Observatory, and comments on telescopes, photographs, and making observations. (SK)

  2. Ten years of the Spanish Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Solano, E.

    2015-05-01

    The main objective of the Virtual Observatory (VO) is to guarantee an easy and efficient access and analysis of the information hosted in astronomical archives. The Spanish Virtual Observatory (SVO) is a project that was born in 2004 with the goal of promoting and coordinating the VO-related activities at national level. SVO is also the national contact point for the international VO initiatives, in particular the International Virtual Observatory Alliance (IVOA) and the Euro-VO project. The project, led by Centro de Astrobiología (INTA-CSIC), is structured around four major topics: a) VO compliance of astronomical archives, b) VO-science, c) VO- and data mining-tools, and d) Education and outreach. In this paper I will describe the most important results obtained by the Spanish Virtual Observatory in its first ten years of life as well as the future lines of work.

  3. A Green Robotic Observatory for Astronomy Education

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  4. Early German Plans for a Southern Observatory

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century the Heidelberg astronomer Max Wolf (1863-1932) proposed a southern observatory. In 1907 Hermann Carl Vogel (1841-1907), director of the Astrophysical Observatory Potsdam, suggested a southern station in Spain. His ideas for building an observatory in Windhuk for photographing the sky and measuring the solar constant were taken over by the Göttingen astronomers. In 1910 Karl Schwarzschild (1873-1916), after having visited the observatories in America, pointed out the usefulness of an observatory in South West Africa, where it would have better weather than in Germany and also give access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhuk to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963, as is well described by Blaauw (1991). Blaauw, Adriaan: ESO's Early History. The European Southern Observatory from Concept to Reality. Garching bei München: ESO 1991.

  5. Recent results from the Pierre Auger Observatory

    SciTech Connect

    Gascón, Alberto; Collaboration: Pierre Auger Collaboration

    2014-07-23

    The Pierre Auger Observatory has been designed to investigate the origin and nature of Ultra High Energy Cosmic Rays (UHECR) using a hybrid detection technique. In this contribution we present some of the most recent results of the observatory, namely the upper-end of the spectrum of cosmic rays, state-of-the-art analyses on mass composition, the measurements of the proton-air cross-section, and the number of muons at ground.

  6. Callable Virtual Observatory Functionality: Sample Use Cases

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph B.

    2007-01-01

    A virtual observatory with an Application Programming Interface (API) can become a powerful tool in analysis and modeling. In particular, an API that integrates time selection on such criteria as "most recent" and closest to a given absolute time simplifies the user-end programming considerably. We examine three types of use cases (nowcasting, data assimilation input, and user-defined sampling rates) for such functionality in the Virtual Solar Observatory (VSO).

  7. The Near-Infrared Chromosphere Observatory

    NASA Astrophysics Data System (ADS)

    Rust, David M.; Bernasconi, Pietro N.; Labonte, Barry J.; Georgoulis, Manolis K.; Fox, Nicola J.; Kalkofen, Wolfgang; Lin, Haoseng

    2002-10-01

    The Near-Infrared Chromosphere Observatory (NICO) is a proposed balloon-borne observatory aiming to investigate the magnetic structure and the sources of heating in the solar chromosphere. NICO will be based on the successful Flare Genesis Experiment (FGE), a pioneer in applying novel technologies for the study of the Sun. NICO will map magnetic fields, velocity fields, and heating events in the chromosphere with unprecedented quality.

  8. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Davidson, J. A.

    1993-01-01

    SOFIA, (Stratospheric Observatory for Infrared Astronomy) is a planned 2.5 meter telescope to be installed in a Boeing 747 aircraft and operated at altitudes from 41,000 to 46,000 feet. It will permit routine measurement of infrared radiation inaccessible from the ground-based sites, and observation of astronomical objects and transient events from anywhere in the world. The concept is based on 18 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA would replace.

  9. G. V. Schiaparelli and the Arcetri Observatory .

    NASA Astrophysics Data System (ADS)

    Bianchi, S.; Galli, D.; Gasperini, A.

    In Autumn 1873, Schiaparelli was offered the directorship of the Arcetri Observatory in Florence, vacant because of the death of G. B. Donati. Schiaparelli accepted the position, intrigued by the possibility of working in an newly built institute of modern concept, hosting the largest refractor available in Italy. However, at the beginning of 1874 he withdrew his acceptance, due to family affairs. Nevertheless, he committed to follow the development of the Observatory, giving his advice at least until 1878.

  10. Early German plans for southern observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    2002-07-01

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century, Heidelberg and Potsdam astronomers proposed a southern observatory. Then Göttingen astronomers suggested building an observatory in Windhoek for photographing the sky and measuring the solar constant. In 1910 Karl Schwarzschild (1873-1916), after a visit to observatories in the United States, pointed out the usefulness of an observatory in South West Africa, in a climate superior to that in Germany, giving German astronomers access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhoek to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963.

  11. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2002-12-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." In addition, this past summer our program became an accredited course by Colorado State University. Our next project is to partner with the Discovery Center Science Museum and Colorado State University to provide additional teacher education programs. Our training materials have also been shared with TIE/Mt. Wilson, NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  12. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.; Sackett, C.

    2001-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools in Colorado to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. We are honored that a committee of teachers and administrators from the Thompson School district have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Also in the past year, our training materials have been shared with NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  13. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2003-05-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." In addition, this past summer our program became an accredited course by Colorado State University. Our next project is to partner with the Discovery Center Science Museum and Colorado State University to provide additional teacher education programs. Our training materials have also been shared with TIE/Mt. Wilson, NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  14. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2003-12-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Our program is also accredited by Colorado State University.

  15. Observatories of Sawai Jai Singh II

    NASA Astrophysics Data System (ADS)

    Johnson-Roehr, Susan N.

    Sawai Jai Singh II, Maharaja of Amber and Jaipur, constructed five observatories in the second quarter of the eighteenth century in the north Indian cities of Shahjahanabad (Delhi), Jaipur, Ujjain, Mathura, and Varanasi. Believing the accuracy of his naked-eye observations would improve with larger, more stable instruments, Jai Singh reengineered common brass instruments using stone construction methods. His applied ingenuity led to the invention of several outsize masonry instruments, the majority of which were used to determine the coordinates of celestial objects with reference to the local horizon. During Jai Singh's lifetime, the observatories were used to make observations in order to update existing ephemerides such as the Zīj-i Ulugh Begī. Jai Singh established communications with European astronomers through a number of Jesuits living and working in India. In addition to dispatching ambassadorial parties to Portugal, he invited French and Bavarian Jesuits to visit and make use of the observatories in Shahjahanabad and Jaipur. The observatories were abandoned after Jai Singh's death in 1743 CE. The Mathura observatory was disassembled completely before 1857. The instruments at the remaining observatories were restored extensively during the nineteenth and twentieth centuries.

  16. The South African Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Topics discussed in the Overview of Year 1988 include the following: Supernova in the Large Magellanic Cloud; Galaxies; Ground based observations of celestial x ray sources; the Magellanic Clouds; Pulsating variables; Galactic structure; Binary star phenomena; The provision of photometric standards; Nebulae and interstellar matter; Stellar astrophysics; Astrometry; Solar system studies; Visitors programs; Publications; and General matters.

  17. "Route of astronomical observatories'' project: classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2015-08-01

    Observatories offer a good possibility for serial transnational applications. A well-known example for a thematic programme is the Struve arc, already recognized as World Heritage.I will discuss what has been achieved and show examples, like the route of astronomical observatories or the transition from classical astronomy to modern astrophysics (La Plata, Hamburg, Nice, etc.), visible in the architecture, the choice of instruments, and the arrangement of the observatory buildings in an astronomy park. This corresponds to the main categories according to which the ``outstanding universal value'' (UNESCO criteria ii, iv and vi) of the observatories have been evaluated: historic, scientific, and aesthetic. This proposal is based on the criteria of a comparability of the observatories in terms of the urbanistic complex and the architecture, the scientific orientation, equipment of instruments, authenticity and integrity of the preserved state, as well as in terms of historic scientific relations and scientific contributions.Apart from these serial transnational applications one can also choose other groups like baroque or neo-classical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments and made by the same famous firm. I will also discuss why the implementation of the Astronomy and World Heritage Initiative is difficult and why there are problems to nominate observatories for election in the national Tentative Lists

  18. What's Educational about Online Telescopes? Evaluating 10 Years of MicroObservatory

    ERIC Educational Resources Information Center

    Gould, Roy; Dussault, Mary; Sadler, Philip

    2007-01-01

    The MicroObservatory network of five online telescopes has been used by middle and high school students, their teachers, and the public in all 50 states to carry out a wide variety of inquiry-driven projects. From an analysis of 475 student projects and other data, we report substantial gains in students' conceptual understanding of what…

  19. Designing Hydrologic Observatories as a Community Resource

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Duncan, J. M.

    2004-12-01

    CUAHSI convened a workshop in August 2004 to explore what makes a successful hydrologic observatory. Because of their high cost, only a small number of observatories will be operated, at least initially. (CUAHSI has recommended a pilot network of 5 observatories to develop operational experience and an eventual network of approximately 15 sites.) Because hydrologic scientists can work "in their backyard" (unlike oceanographers or astronomers), hydrologic observatories must offer significant advantages over current methods of field work to successfully attract researchers. Twenty-four teams of scientists submitted "prospectuses" of potential locations for hydrologic observatories for consideration by network attendees. These documents (available at http://www.cuahsi.org) were marketing documents to the workshop participants, who voted for a hypothetical network of 5 observatories from the 24 proposed sites. This network formed the basis for a day of discussions on necessary attributes of core data and how to form a network of observatories from a collection of sites that are designed and implemented individually. Key findings included: 1) Core data must be balanced among disciplines. Although the hydrologic cycle is an organizing principle for the design of HOs, physical data cannot dominate the core data; chemical and biological data, although more expensive to collect, must be given equal footing. 2) New data collection must strategically leverage existing data. Resources are always limited, so that a successful HO must carefully target gaps in existing data, as determined by an explicitly stated conceptual model, and fill them rather than designing an independent study. 3) Site logistics must support remote researchers. Significant resources will be necessary for on-site staff to handle housing, transportation, permitting and other needs. 4) Network-level hypotheses are required early in the implementation of HOs. A network will only emerge around hypotheses

  20. The Little Thompson Observatory's Astronomy Education Programs

    NASA Astrophysics Data System (ADS)

    Schweitzer, Andrea E.

    2008-05-01

    The Little Thompson Observatory is a community-built E/PO observatory and is a member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. Annually we have approximately 5,000 visitors, which is roughly equal to the population of the small town of Berthoud, CO. In spring 2008, we offered a special training session to boost participation in the GLOBE at Night international observing program. During 2005-2007 we used the funding from our NASA ROSS E/PO grant to expand our teacher workshop programs, and included the baseball-sized meteorite that landed in Berthoud four years ago. Our teacher programs are ongoing, and include scientists from the Southwest Research Institute and from Fiske Planetarium at CU-Boulder. We thank the NASA ROSS E/PO program for providing this funding! Statewide, we are a founding member of Colorado Project ASTRO-GEO, and the observatory offers high-school astronomy courses to students from the surrounding school districts. We continue to support the development and construction of three new educational observatories in Colorado, located in Estes Park, Keystone and Gunnison. The LTO is grateful to have received the retired 24-inch telescope from Mount Wilson Observatory as part of the TIE program. To provide a new home for this historic telescope, we have doubled the size of the observatory and are building a second dome (almost all construction done with volunteer labor). During 2008 we will be building a custom pier and refurbishing the telescope.

  1. The Fram Strait integrated ocean observatory

    NASA Astrophysics Data System (ADS)

    Fahrbach, E.; Beszczynska-Möller, A.; Rettig, S.; Rohardt, G.; Sagen, H.; Sandven, S.; Hansen, E.

    2012-04-01

    A long-term oceanographic moored array has been operated since 1997 to measure the ocean water column properties and oceanic advective fluxes through Fram Strait. While the mooring line along 78°50'N is devoted to monitoring variability of the physical environment, the AWI Hausgarten observatory, located north of it, focuses on ecosystem properties and benthic biology. Under the EU DAMOCLES and ACOBAR projects, the oceanographic observatory has been extended towards the innovative integrated observing system, combining the deep ocean moorings, multipurpose acoustic system and a network of gliders. The main aim of this system is long-term environmental monitoring in Fram Strait, combining satellite data, acoustic tomography, oceanographic measurements at moorings and glider sections with high-resolution ice-ocean circulation models through data assimilation. In future perspective, a cable connection between the Hausgarten observatory and a land base on Svalbard is planned as the implementation of the ESONET Arctic node. To take advantage of the planned cabled node, different technologies for the underwater data transmission were reviewed and partially tested under the ESONET DM AOEM. The main focus was to design and evaluate available technical solutions for collecting data from different components of the Fram Strait ocean observing system, and an integration of available data streams for the optimal delivery to the future cabled node. The main components of the Fram Strait integrated observing system will be presented and the current status of available technologies for underwater data transfer will be reviewed. On the long term, an initiative of Helmholtz observatories foresees the interdisciplinary Earth-Observing-System FRAM which combines observatories such as the long term deep-sea ecological observatory HAUSGARTEN, the oceanographic Fram Strait integrated observing system and the Svalbard coastal stations maintained by the Norwegian ARCTOS network. A vision

  2. The Rare Book Collection of Capodimonte Astronomical Observatory Will be on the Web: Ancient Science Available to Everyone

    NASA Astrophysics Data System (ADS)

    Cirella, E. O.; Caprio, G.

    2015-04-01

    This paper describes a project for the preservation, promotion, and creation of a website for the rare book collection of Capodimonte Astronomical Observatory. The project, promoted by INAF—Capodimonte Astronomical Observatory, was supported by the Campania Region through European funds. The final component of the project was the publication of a bibliographical catalog, Le Cinquecentine dell'Osservatorio Astronomico di Capodimonte, which was addressed to specialized users, including historians of science and bibliophiles.

  3. Design of a Lunar Farside Observatory

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design of a mantendable lunar farside observatory and science base is presented. A farside observatory will allow high accuracy astronomical observations, as well as the opportunity to perform geological and low gravity studies on the Moon. The requirements of the observatory and its support facilities are determined, and a preliminary timeline for the project development is presented. The primary areas of investigation include observatory equipment, communications, habitation, and surface operations. Each area was investigated to determine the available options, and each option was evaluated to determine the advantages and disadvantages. The options selected for incorporation into the design of the farside base are presented. The observatory equipment deemed most suitable for placement on the lunar farside consist of large optical and radio arrays and seismic equipment. A communications system consisting of a temporary satellite about the L sub 2 libration point and followed by a satellite at the stable L sub 5 libration point was selected. A space station common module was found to be the most practical option for housing the astronauts at the base. Finally, a support system based upon robotic construction vehicles and the use of lunar materials was determined to be a necessary component of the base.

  4. Fostering Student Awareness in Observatory STEM Careers

    NASA Astrophysics Data System (ADS)

    Keonaonaokalauae Acohido, Alexis Ann; Michaud, Peter D.; Gemini Public Information and Outreach Staff

    2016-01-01

    It takes more than scientists to run an observatory. Like most observatories, only about 20% of Gemini Observatory's staff is PhD. Scientists, but 100% of those scientists would not be able to do their jobs without the help of engineers, administrators, and other support staff that make things run smoothly. Gemini's Career Brochure was first published in 2014 to show that there are many different career paths available (especially in local host communities) at an astronomical observatory. Along with the printed career brochure, there are supplementary videos available on Gemini's website and Youtube pages that provide a more detailed and personal glimpse into the day-in-the-life of a wide assortment of Gemini employees. A weakness in most observatory's outreach programming point to the notion that students (and teachers) feel there is a disconnect between academics and where students would like to end up in their career future. This project is one of the ways Gemini addresses these concerns. During my 6-month internship at Gemini, I have updated the Career Brochure website conducted more in-depth interviews with Gemini staff to include as inserts with the brochure, and expanded the array of featured careers. The goal of my work is to provide readers with detailed and individualized employee career paths to show; 1) that there are many ways to establish a career in the STEM fields, and 2), that the STEM fields are vastly diverse.

  5. The Livingston Island Geomagnetic and Ionospheric Observatory

    NASA Astrophysics Data System (ADS)

    Altadill, David; Marsal, Santiago; Blanch, Estefania; Miquel Torta, J.; Quintana-Seguí, Pere; Germán Solé, J.; Cid, Òscar; José Curto, Juan; Ibáñez, Miguel; Segarra, Antoni; Lluís Pijoan, Joan; Juan, Juan Miguel

    2014-05-01

    The Ebre Observatory Institute manages a geophysical observatory installed at the Spanish Antarctic Station (SAS) Juan Carlos I. It was set up in 1995 and it has been updated yearly by our team throughout several projects carried out since then. Nowadays, it hosts a magnetic station providing 1-second data of the 3 components (X, Y, Z) and the total force (F) during the entire year, and an ionospheric station providing vertical and oblique data during austral summer. This observatory has provided long data series of high scientific value from this remote region of the Earth. They have been used to improve the knowledge of the climate and weather behavior of the geomagnetic field and ionosphere in the area, and to model and expand the capacity of data transmission. This contribution aims to present a brief review of the instruments installed at SAS, the research results obtained from their data, and the developing activities under the current project. Finally, future perspectives are outlined with regard to adapting our geophysical observatory to the evolving needs of observatory practice.

  6. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2002-05-01

    The Little Thompson Observatory is believed to be the first of its kind, located next to a high school and accessible to other schools remotely over the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction was done completely by volunteer labor, and the observatory was built on the grounds of Berthoud High School in northern Colorado. During 2001, we averaged 400-500 visitors per month. We are grateful to have received a STScI IDEAS grant to provide teacher training workshops for K-12 schools in northern Colorado to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. We are honored that a committee of teachers and administrators from the Thompson School district have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Also in the past year, our training materials have been shared with NASA Goddard and Howard University, which are working together to develop a similar teacher education program. Our next goal is to add solar observing capability! Please visit our website at www.starkids.org.

  7. Undergraduate Astronomy Instruction with an Automated Observatory

    NASA Astrophysics Data System (ADS)

    Fanelli, M. N.; Littler, C.; Weathers, D.

    2001-12-01

    The University of North Texas (UNT) currently enrolls about 2400 students per academic year in survey astronomy classes. All students complete a 1-credit laboratory course, designed to fulfill a laboratory science curriculum requirement. As one element in our laboratory program, we are developing an automated observatory for use by these students. The UNT Monroe Observatory, located at a dark site 45 miles from campus, has been designed with a roll-off roof covering two (expandable to four) observing stations. Each station consists of a Celestron 14-inch telescope on a Paramount GT-1100 base from Software Bisque, outfitted with an AP7 CCD camera from Apogee Instruments. We intend to remotely operate these stations from the university in Denton. We are developing an integrated astronomy laboratory sequence, employing digital imagery from the remote observatory, multimedia presentations in a planetarium, and table-top experiments in a lab setting. The automated observatory will permit students to conduct individualized observational astronomy experiments in a manner similar to those employed in astronomical research. As of October 2001, we have acquired equipment for two observing stations, prepared the site, completed the building design, and signed a construction contract. We anticipate first use during the 2002-2003 academic year. The UNT Observatory has been funded in part through the National Science Foundation's CCLI grant program, #9950630.

  8. An international network of magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, A.

    2013-01-01

    Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [eg. Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management ads well as methods for data processing and checking. INTERMAGNET institute have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists. Today the INTERMAGNET consortium encompasses 57 institutes from 40 countries supporting 120 observatories (see Figures 1a and 1b). INTERMAGNET data record a wide variety of time series signals related to a host of different physical processes in the Earth's interiors and in the Earth's surrounding space environment [e.g., Love, 2008]. Observatory data have always had a diverse user community, and to meet evolving demand, INTERMAGNET has recently coordinated the introduction of several new data services.

  9. Science Enabled by Ocean Observatory Acoustics

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lee, C.; Gobat, J.; Freitag, L.; Miller, J. H.; Committee, I.

    2004-12-01

    Ocean observatories have the potential to examine the physical, chemical, biological, and geological parameters and processes of the ocean at time and space scales previously unexplored. Acoustics provides an efficient and cost-effective means by which these parameters and processes can be measured and information can be communicated. Integrated acoustics systems providing navigation and communications for mobile platforms and conducting acoustical measurements in support of science objectives are critical and essential elements of the ocean observatories presently in the planning and implementation stages. The ORION Workshop (Puerto Rico, 4-8 January 2004) developed science themes that can be addressed utilizing ocean observatory infrastructure. The use of acoustics to sense the 3-d/volumetric ocean environment on all temporal and spatial scales was discussed in many ORION working groups. Science themes that are related to acoustics and measurements using acoustics are reviewed and tabulated, as are the related and sometimes competing requirements for passive listening, acoustic navigation and acoustic communication around observatories. Sound in the sea, brought from observatories to universities and schools via the internet, will also be a major education and outreach mechanism.

  10. Atmospheric turbulence measurements at Ali Observatory, Tibet

    NASA Astrophysics Data System (ADS)

    Liu, Liyong; Yao, Yongqiang; Vernin, Jean; Chadid, Merieme; Wang, Yiping; Wang, Hongshuai; Yin, Jia; Giordano, Christophe; Qian, Xuan

    2012-09-01

    The atmospheric turbulence characteristics are important to evaluate the quality of ground-based astronomical observatory. In order to characterize Ali observatory, Tibet. we have developed a single star Scidar (SSS) system, which is able to continuously monitor the vertical profiles of both optical turbulence and wind speed. The main SSS configuration includes a 40cm telescope and a CCD camera for fast sampling the star scintillation pattern. The SSS technique analyzes the scintillation patterns in real time, by computing the spatial auto-correlation and at least two cross-correlation images, and retrieves both C2 n (h) and V (h) vertical profiles from the ground up to 30km. This paper presents the first turbulence measurements with SSS at Ali observatory in October, 2011. We have successfully obtained the profiles of optical turbulence and wind speed, as well as the key parameters for adaptive optics, such as seeing, coherence time, and isoplanatic angle. The favourable results indicate that Ali observatory can be an excellent astronomical observatory.

  11. Maintenance management at La Silla Paranal Observatory

    NASA Astrophysics Data System (ADS)

    Montano, Nelson

    2008-07-01

    From the beginning of the VLT project, the European Southern Observatory (ESO) considered the application of a competent maintenance strategy a fundamental aspect for future operations of the Paranal Observatory. For that purpose, a special maintenance philosophy was developed during the project stage and applied during the initial years of operations. The merging of the La Silla and Paranal Observatories in 2005 added a new managerial challenge to the regular operational requirements (high availability and reliability) which motivated ESO Management to develop a stronger strategy for the operations of the new merged Observatory. Part of the new strategy considered the creation of a dedicated department for the management of all maintenance activities, separating this support from the traditional scheme where the Engineering Department had the responsibility for the entire technical support to operations. In order to keep a competent level of maintenance operations for the new unified Observatory, the La Silla Paranal (LSP) Maintenance Department has been using a well known maintenance management model used in various industrial applications as a guide. Today the operations of the Maintenance Department are concentrated on developing and implementing practices regarding concepts such as Maintenance Tactics, Planning, Data Management, Performance Indicators and Material Management. In addition to that, advances related to Reliability Analysis been taken in order to reach a superior level of excellence. The results achieved by the LSP Maintenance Department are reflected in a reduced rate of functional failures, allowing uninterrupted operations of the Observation sites.

  12. Virtual Astronomy: The Legacy of the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, J.; Szalay, A. S.; Fabbiano, G.; Plante, R. L.; McGlynn, T. A.; Evans, J.; Emery Bunn, S.; Claro, M.; VAO Project Team

    2014-01-01

    Over the past ten years, the Virtual Astronomical Observatory (VAO, http://usvao.org) and its predecessor, the National Virtual Observatory (NVO), have developed and operated a software infrastructure consisting of standards and protocols for data and science software applications. The Virtual Observatory (VO) makes it possible to develop robust software for the discovery, access, and analysis of astronomical data. Every major publicly funded research organization in the US and worldwide has deployed at least some components of the VO infrastructure; tens of thousands of VO-enabled queries for data are invoked daily against catalog, image, and spectral data collections; and groups within the community have developed tools and applications building upon the VO infrastructure. Further, NVO and VAO have helped ensure access to data internationally by co-founding the International Virtual Observatory Alliance (IVOA, http://ivoa.net). The products of the VAO are being archived in a publicly accessible repository. Several science tools developed by the VAO will continue to be supported by the organizations that developed them: the Iris spectral energy distribution package (SAO), the Data Discovery Tool (STScI/MAST, HEASARC), and the scalable cross-comparison service (IPAC). The final year of VAO is focused on development of the data access protocol for data cubes, creation of Python language bindings to VO services, and deployment of a cloud-like data storage service that links to VO data discovery tools (SciDrive). We encourage the community to make use of these tools and services, to extend and improve them, and to carry on with the vision for virtual astronomy: astronomical research enabled by easy access to distributed data and computational resources. Funding for VAO development and operations has been provided jointly by NSF and NASA since May 2010. NSF funding will end in September 2014, though with the possibility of competitive solicitations for VO-based tool

  13. Precipitable Water Vapour at the ESO Observatories: The Skill of the Forecasts

    NASA Astrophysics Data System (ADS)

    Sarazin, M.; Kerber, F.; De Breuck, C.

    2013-06-01

    Atmospheric precipitable water vapour (PWV) above an observatory is a crucial parameter for the success and quality of submillimetre and mid-infrared science observations. High precision water vapour radiometers are deployed at the ESO observatories on Paranal (VLT) and Chajnantor (APEX and ALMA), providing continuous high time-resolution measurements of PWV. These data have been used to compare the actual conditions with the forecast delivered by the publicly available Global Forecast System provided by the National Oceanographic and Atmospheric Administration. The quality of these predictions has now reached a level at which it can contribute to optimising science operations.

  14. The Observers Observed: Charles Dickens at the Royal Observatory, Greenwich, in 1850

    NASA Astrophysics Data System (ADS)

    Chapman, A.

    2005-12-01

    In 1850 the magazine Household Words, which Charles Dickens edited, published three articles describing the instruments and workings of the Royal Observatory, Greenwich. These 'popular' articles are invaluable primary sources for the historian of astronomy. They convey some of the Victorian public's fascination with an Institution believed by some to be a lighthouse for night-time shipping on the river Thames; by others, a national repository of 'divining rods' and 'magic mirrors'. Dickens was clearly impressed by the pragmatic usefulness of the Observatory to a commercial and maritime nation, and by seemingly magical, self-acting and recording instruments whereby the wind wrote its own 'Aeolian Autobiography'.

  15. Using the Virtual Observatory: multi-instrument, multi-wavelength study of high-energy sources

    NASA Astrophysics Data System (ADS)

    Derrière, S.; Goosmann, R. W.; Bot, C.; Bonnarel, F.

    2014-12-01

    This paper presents a tutorial explaining the use of Virtual Observatory tools in high energy astrophysics. Most of the tools used in this paper were developed at the Strasbourg astronomical Data Center and we show how they can be applied to conduct a multi-instrument, multi-wavelength analysis of sources detected by the High Energy Stereoscopic System and the Fermi Large Area Telescope. The analysis involves queries of different data catalogs, selection and cross-correlation techniques on multi-waveband images, and the construction of high energy color-color plots and multi-wavelength spectra. The tutorial is publicly available on the website of the European Virtual Observatory project.

  16. Teaching Astronomy at the UCM Observatory

    NASA Astrophysics Data System (ADS)

    Montes, D.; Zamorano, J.; Gallego, J.; de Castro, E.

    There is a long tradition on teaching Astronomy at the UCM University. Since 1972 it is possible to study Astrophysics at the Faculty of Physics of the UCM. The facilities of the UCM Observatory are improving continuously every year. Nowadays two domes (4 m) are available. The west dome is mainly used for doing solar observations while the east dome is generally used to do night observations. The available instruments allow us to make a small-scaled reproduction of how people work in a large observatory. At the UCM Observatory students of the Astrophysics career do many different kinds of exercises based on the current techniques used by professional astronomers. In addition, during the last years of the career they also have the opportunity of doing a research work under the supervision of a professor.

  17. The Lowell Observatory Predoctoral Scholar Program

    NASA Astrophysics Data System (ADS)

    van Belle, Gerard; Prato, Lisa A.

    2016-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its eighth year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. The Observatory's new 4.3 meter Discovery Channel Telescope has successfully begun science operations and we anticipate the commissioning of new instruments in 2015, making this a particularly exciting time in our history. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2016 are due by May 1, 2016.

  18. Undergraduate Astronomy Instruction With an Automated Observatory

    NASA Astrophysics Data System (ADS)

    Fanelli, Michael; Littler, Christopher; Weathers, Duncan

    2001-10-01

    The University of North Texas currently enrolls 2400 students per academic year in survey astronomy classes. As one element in our laboratory program, we are developing an automated observatory for use by these students. The UNT Monroe Observatory is located at a dark site approximately 45 miles northwest of Denton (80 miles from the Dallas / Fort Worth Metroplex). We plan 2-4 telescopes in the 36-40 cm range, outfitted with CCD cameras, to be remotely operated from the University in Denton. This automated observatory will permit students to conduct individualized observational astronomy experiments in a manner similar to those employed in astronomical research. These imaging experiments will be the centerpiece of the students' laboratory experience. Our goal is to provide an exemplary laboratory experience for students attempting to meet a natural science curriculum requirement. Currently, the equipment has been procured and the observing site prepared. We anticipate first use during the 2002-2003 academic year.

  19. Earth Atmosphere Observatory Formation at L2

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Acikmese, A. Behcet; Breckenridge, William G.; Mecenka, Steven A.; Tubbs, Eldred F.

    2004-01-01

    This paper is a product of research supported by NASA under RASC (the Revolutionary Aerospace Systems Concepts) program. It presents an overall system architecture, and covers issues of deployment, navigation, and control related to a formation of two spacecraft in the neighborhood of the Sun-Earth L2 Lagrange point (on the Sun-Earth line), that serves as an observatory of Earth's atmosphere. The observatory concept definition study was a multi-center NASA effort conducted in 2003, and covered a much wider scope than is presented in this focused paper.The Earth observatory at L2 is a unique design concept that can improve the knowledge and understanding of dynamic, chemical and radiative mechanisms that cause changes in the atmosphere, and can lead to the development of models and techniques to predict short and long-term climate changes.

  20. OSO-7 Orbiting Solar Observatory program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The seventh Orbiting Solar Observatory (OSO-7) in the continuing series designed to gather solar and celestial data that cannot be obtained from the earth's surface is described. OSO-7 was launched September 29, 1971. It has been highly successful in returning scientific data giving new and important information about solar flare development, coronal temperature variations, streamer dynamics of plasma flow, and solar nuclear processes. OSO-7 is expected to have sufficient lifetime to permit data comparisons with the Skylab A mission during 1973. The OSO-7 is a second generation observatory. It is about twice as large and heavy as its predecessors, giving it considerably greater capability for scientific measurements. This report reviews mission objectives, flight history, and scientific experiments; describes the observatory; briefly compares OSO-7 with the first six OSO's; and summarizes the performance of OSO-7.

  1. High Energy Astronomy Observatory (HEAO)-1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This artist's conception depicts the High Energy Astronomy Observatory (HEAO)-1 in orbit. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit. The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. Hardware support for the imaging instruments was provided by American Science and Engineeing. The HEAO spacecraft were built by TRW, Inc. under project management of the Marshall Space Flight Center.

  2. High Energy Astronomy Observatory (HEAO)-1

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This drawing is a schematic of the High Energy Astronomy Observatory (HEAO)-1. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit. The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. Hardware support for the imaging instruments was provided by American Science and Engineeing. The HEAO spacecraft were built by TRW, Inc. under project management of the Marshall Space Flight Center.

  3. Space Weather in Magnetic Observatory Noise

    NASA Astrophysics Data System (ADS)

    Gilder, S. A.; Truong, F.

    2012-12-01

    Space weather impacts human activity by degrading satellite operation or disrupting electrical power grids. By exploiting small differences in the time stamp between magnetometer pairs to facilitate data filtering, we find that ground-based magnetic observatories are well suited to measure space weather phenomena, and in particular, high frequency fluctuations known as pulsations. Several of the world's consortium of INTERMAGNET observatories are used in the analyses. They show that pulsation amplitudes attain a maximum near local noon over diurnal periods. Long-term trends in pulsation amplitude correlate well with the solar cycle, with the greatest effect occurring during the waning part of the cycle when the derivative of the number of sunspots attains a maximum rate of decrease. Seasonal variability and total amplitude of the diurnal expression of pulsations depends on latitude. Our study highlights the utility of ground-based observatories to understand solar phenomena and suggests how INTERMAGNET data and protocol could be better tuned to monitor space weather.

  4. Developing an astronomical observatory in Paraguay

    NASA Astrophysics Data System (ADS)

    Troche-Boggino, Alexis E.

    Background: Paraguay has some heritage from the astronomy of the Guarani Indians. Buenaventura Suarez S.J. was a pioneer astronomer in the country in the XVIII century. He built various astronomical instruments and imported others from England. He observed eclipses of Jupiter's satellites and of the Sun and Moon. He published his data in a book and through letters. The Japanese O.D.A. has collaborated in obtaining equipment and advised their government to assist Paraguay in building an astronomical observatory, constructing a moving-roof observatory and training astronomers as observatory operators. Future: An astronomical center is on the horizon and some possible fields of research are being considered. Goal: To improve education at all possible levels by not only observing sky wonders, but also showing how instruments work and teaching about data and image processing, saving data and building a data base. Students must learn how a modern scientist works.

  5. Environmental effects on lunar astronomical observatories

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Taylor, G. Jeffrey; Wetzel, John P.

    1992-01-01

    The Moon offers a stable platform with excellent seeing conditions for astronomical observations. Some troublesome aspects of the lunar environment will need to be overcome to realize the full potential of the Moon as an observatory site. Mitigation of negative effects of vacuum, thermal radiation, dust, and micrometeorite impact is feasible with careful engineering and operational planning. Shields against impact, dust, and solar radiation need to be developed. Means of restoring degraded surfaces are probably essential for optical and thermal control surfaces deployed in long-lifetime lunar facilities. Precursor missions should be planned to validate and enhance the understanding of the lunar environment (e.g., dust behavior without and with human presence) and to determine environmental effects on surfaces and components. Precursor missions should generate data useful in establishing keepout zones around observatory facilities where rocket launches and landings, mining, and vehicular traffic could be detrimental to observatory operation.

  6. Astronomical Limiting Magnitude at Langkawi Observatory

    NASA Astrophysics Data System (ADS)

    Zainuddin, Mohd. Zambri; Loon, Chin Wei; Harun, Saedah

    2010-07-01

    Astronomical limiting magnitude is an indicator for astronomer to conduct astronomical measurement at a particular site. It gives an idea to astronomer of that site what magnitude of celestial object can be measured. Langkawi National Observatory (LNO) is situated at Bukit Malut with latitude 6°18' 25'' North and longitude 99°46' 52'' East in Langkawi Island. Sky brightness measurement has been performed at this site using the standard astronomical technique. The value of the limiting magnitude measured is V = 18.6+/-1.0 magnitude. This will indicate that astronomical measurement at Langkawi observatory can only be done for celestial objects having magnitude less than V = 18.6 magnitudes.

  7. Latest results from the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Lhenry-Yvon, Isabelle

    2016-07-01

    The Pierre Auger Observatory has been designed to investigate the origin and nature of Ultra High Energy Cosmic Rays (UHECR) with energies from 1017 to 1020 eV. In this paper we will review some of the most recent results obtained from data of the Pierre Auger Observatory, namely the spectrum of cosmic rays, the anisotropies in arrival directions and the studies related to mass composition and to the number of muons measured at the ground. We will also discuss the implication of these results for assembling a consistent description of the composition, origin and propagation of cosmic rays.

  8. Chicago's Dearborn Observatory: a study in survival

    NASA Astrophysics Data System (ADS)

    Bartky, Ian R.

    2000-12-01

    The Dearborn Observatory, located on the Old University of Chicago campus from 1863 until 1888, was America's most promising astronomical facility when it was founded. Established by the Chicago Astronomical Society and directed by one of the country's most gifted astronomers, it boasted the largest telescope in the world and virtually unlimited operating funds. The Great Chicago Fire of 1871 destroyed its funding and demolished its research programme. Only via the sale of time signals and the heroic efforts of two amateur astronomers did the Dearborn Observatory survive.

  9. Three Worlds of the Megalithic Observatory Kokino

    NASA Astrophysics Data System (ADS)

    Cenev, G.

    2011-06-01

    Mountain in its symbolic presentation can be considered as a world axis and place for alliance of three worlds: heavenly world, ours or middle world and underworld. Image of the three worlds represents also intellectual establishment, proportion and unity among Gods, Cosmos and Man. The three observation posts of the Megalithic Observatory Kokino actually are symbols of those three worlds in the ancient people's imagination, defining ritual activities. At the same time, they were used for organizing all agricultural and stock breeding activities of the early agricultural communities in the wider region surrounding the ancient observatory.

  10. Required technologies for lunar astronomical observatories

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Wetzel, John P.

    1992-01-01

    Each of the major new observatories proposed to take advantage of the characteristics of the lunar environment requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. Telescopes for the lunar surface need to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for lunar observatory operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.

  11. Radio frequency interference at QUASAR Network Observatories

    NASA Astrophysics Data System (ADS)

    Ilin, Gennadii

    2011-07-01

    Different sources of radio frequency interference (RFI) at Quasar-network observatories and their affect on VLBIsessions are discussed. For example, the stronger of them registered last time are UMTS mobile phone base stations which were built not far from Quasar-network observatories location. These stations emit signals near 2100MHz and produce RFI of critical level. To control RFI level regular spectral measurements of the intermediate frequency signals at the outputs of the receivers are conducted. As a result, real spread of RFI sources, including DORIS, have to be taken into account in planning of VLBI observation sessions and especially it is concerned VLBI 2010 project realization.

  12. The origin of the Hawaiian Volcano Observatory

    SciTech Connect

    Dvorak, John

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  13. SOFIA: The Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.; Davidson, Jacqueline A.

    1990-01-01

    SOFIA, an airborne observatory intended to be carried aboard a Boeing 747 high performance aircraft, is described. The observatory is predicted to provide a threefold greater aperture than that of the Kuiper telescope. The Boeing aircraft will carry the 2.5 diameter telescope and its observers to altitudes of 14,000 and above where the atmosphere is very nearly transparent at all wavelengths. Various aspects and specific missions of the SOFIA project, a cooperative venture of the U.S. and Germany, are described.

  14. Mission Planning for the CHANDRA X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Mullins, Larry D.; Stone, Russell, L.; Evans, Steven W.

    1999-01-01

    The CHANDRA x-ray observatory started life as the Advanced X-ray Facility (AXAF) but was renamed Chandra in December of 1998 at the of a nationwide contest by NASA to name the new observatory. The honors the Nobel Prize winning astrophysicist S. Chandrasekar who astrophysics at the University of Chicago for more than 50 years, following graduate studies at Cambridge University in England. The observatory has been under construction for a decade under the management of the Observatory observatory, Projects office at the Marshall Space Flight Center; the same office that oversaw the construction of the Hubble Space Telescope and the Compton Gamma Ray Observatory. This observatory is a member of NASA's great observatory series of missions of which Hubble and Compton are members. This paper describes the mission planning that was conducted at MSFC to design the orbit and launch window that would permit the new observatory to function properly.

  15. Quantifying Urban Groundwater in Environmental Field Observatories

    NASA Astrophysics Data System (ADS)

    Welty, C.; Miller, A. J.; Belt, K.; Smith, J. A.; Band, L. E.; Groffman, P.; Scanlon, T.; Warner, J.; Ryan, R. J.; Yeskis, D.; McGuire, M. P.

    2006-12-01

    Despite the growing footprint of urban landscapes and their impacts on hydrologic and biogeochemical cycles, comprehensive field studies of urban water budgets are few. The cumulative effects of urban infrastructure (buildings, roads, culverts, storm drains, detention ponds, leaking water supply and wastewater pipe networks) on temporal and spatial patterns of groundwater stores, fluxes, and flowpaths are poorly understood. The goal of this project is to develop expertise and analytical tools for urban groundwater systems that will inform future environmental observatory planning and that can be shared with research teams working in urban environments elsewhere. The work plan for this project draws on a robust set of information resources in Maryland provided by ongoing monitoring efforts of the Baltimore Ecosystem Study (BES), USGS, and the U.S. Forest Service working together with university scientists and engineers from multiple institutions. A key concern is to bridge the gap between small-scale intensive field studies and larger-scale and longer-term hydrologic patterns using synoptic field surveys, remote sensing, numerical modeling, data mining and visualization tools. Using the urban water budget as a unifying theme, we are working toward estimating the various elements of the budget in order to quantify the influence of urban infrastructure on groundwater. Efforts include: (1) comparison of base flow behavior from stream gauges in a nested set of watersheds at four different spatial scales from 0.8 to 171 km2, with diverse patterns of impervious cover and urban infrastructure; (2) synoptic survey of well water levels to characterize the regional water table; (3) use of airborne thermal infrared imagery to identify locations of groundwater seepage into streams across a range of urban development patterns; (4) use of seepage transects and tracer tests to quantify the spatial pattern of groundwater fluxes to the drainage network in selected subwatersheds; (5

  16. The Haystack Observatory REU Program: the First Decade

    NASA Astrophysics Data System (ADS)

    Phillips, R. B.; Salah, J. E.

    1996-05-01

    The MIT Haystack Observatory is a multidisciplinary research facility consisting of groups working actively in radio astronomy, atmospheric sciences, geodesy, and instrumentation development to support all three efforts. Its tradition of supporting undergraduate involvement in its research programs was formalized in 1987 under the Research Experience for Undergraduates Program (REU) of the National Science Foundation. Each summer 8 to 10 REU students, augmented by 4-6 students supported under research grants and contracts, are recruited nationally for our summer internship program. The students work with staff mentors whose project descriptions are exploded by paper and electronic mail to over 200 undergraduate institutions. The undergraduates also contribute to the Observatory's pre-college outreach activities by participating in the NSF Young Scholars Program held each summer at Haystack. A schedule of seminars and gatherings encourage communication between the REU participants and attempt to ensure each student is exposed to a representative view of other research areas besides their own. The format encourages the staff mentor to view the student as a junior collaborator, and the student works with, rather than for, the staff member. Many students have subsequently reported their work at meetings of professional societies, and in refereed publications. We will recount the strengths and weaknesses noted in the program's first decade, and some of the problems encountered in its implementation. Tracking data on the students will be presented where available: a large fraction of REU participants subsequently have chosen graduate study in scientific fields. In addition to providing the students with valuable research experiences, we believe that the Haystack REU alumni have benefitted from the program by acquiring important assets in critical thinking, communications skills, and the use of modern tools in analyzing problems. Benefits have also accrued to the

  17. Research at Appalachian State University's Dark Sky Observatory

    NASA Astrophysics Data System (ADS)

    Caton, D. B.

    2003-12-01

    Astronomical research at Appalachian State University centers around the interests of the three observational astronomers on the faculty, and primarily involves observational work at our Dark Sky Observatory (DSO). ASU is a member of the 16-campus University of North Carolina system, and is a comprehensive university with about 13,000 students. Besides the usual constraint found in such a setting (teaching loads of 9-12 hours/semester), we face the challenges of maintaining a significant observatory facility in an era of shrinking state budgets. The DSO facility is 20 miles from campus, adding additional problems. This scenario differs from those of the other panelists, who are at private institutions and/or use shared facilities. The character of students at ASU also adds constraints--many have to hold part-time jobs that limit their participation in the very research that could contribute significantly to their success. Particularly, their need to leave for the summer for gainful employment at the very time that faculty have the most time for research is a loss for all concerned. In spite of these challenges, we have a long record of maintaining research programs in eclipsing binary star photometry, stellar spectroscopy and QSO/AGN monitoring. Undergraduate students are involved in all aspects of the work, from becoming competent at solo observing to publication of the results and presentation of papers and posters at meetings. Graduate students in our Masters in Applied Physics program (emphasis on instrumentation), have constructed instruments and control systems for the observatory. Most of what we have achieved would have been impossible without the support of the National Science Foundation. We have been fortunate to acquire funds under the Division of Undergraduate Education's ILI program and the Research at Undergraduate Institutions program. Among other things, this support provided our main telescope, CCD cameras, and some student stipends.

  18. How To Cover NASA's Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    1999-07-01

    -0031 in advance of the mission to make arrangements for special support, such as telephone service, and uplink or remote truck parking. Covering from the Kennedy Space Center The Kennedy Space Center, Fla., news center is primarily responsible for disseminating information about the Shuttle countdown and launch. However, media relations officers knowledgeable about Chandra will be present at the Kennedy news center through launch. Additionally, some members of the Chandra management and science team will be at the Kennedy Space Center and available for interviews through launch. Media interested in covering the Chandra launch from the Kennedy Space Center should contact its Public Affairs Office at (407) 867-2468. Prior accreditation is required. Covering from the Johnson Space Center The Johnson Space Center, Houston, Texas, news center has responsibility for disseminating information about STS-93 flight operations. Media interested in covering the mission from the Johnson Space Center should contact its Public Affairs Office at (281) 483-5111. Prior accreditation is required. Status Reports During the STS-93 Space Shuttle mission to launch Chandra, NASA will issue twice-daily status reports from the Chandra Operations Control Center in Cambridge, Mass. Following the Shuttle mission, through Chandra's on-orbit checkout period, reports will be issued weekly. These reports are available via the Internet at: http://chandra.msfc.nasa.gov Press Briefings During the Space Shuttle mission to launch the observatory, NASA will conduct daily press briefings on the status of the observatory. These briefings will be conducted at the Chandra Operations Control Center in Cambridge, Mass. Media briefings will be broadcast on NASA Television (see below). Media without access to NASA Television may monitor the briefings by calling (256) 544-5300 and asking to be connected to the NASA Television audio feed. A briefing schedule will be released before launch and updated as appropriate

  19. A conceptual approach to a citizens' observatory--supporting community-based environmental governance.

    PubMed

    Liu, Hai-Ying; Kobernus, Mike; Broday, David; Bartonova, Alena

    2014-01-01

    In recent years there has been a trend to view the Citizens' Observatory as an increasingly essential tool that provides an approach for better observing, understanding, protecting and enhancing our environment. However, there is no consensus on how to develop such a system, nor is there any agreement on what a Citizens' Observatory is and what results it could produce. The increase in the prevalence of Citizens' Observatories globally has been mirrored by an increase in the number of variables that are monitored, the number of monitoring locations and the types of participating citizens. This calls for a more integrated approach to handle the emerging complexities involved in this field, but before this can be achieved, it is essential to establish a common foundation for Citizens' Observatories and their usage. There are many aspects to a Citizens' Observatory. One view is that its essence is a process that involves environmental monitoring, information gathering, data management and analysis, assessment and reporting systems. Hence, it requires the development of novel monitoring technologies and of advanced data management strategies to capture, analyse and survey the data, thus facilitating their exploitation for policy and society. Practically, there are many challenges in implementing the Citizens' Observatory approach, such as ensuring effective citizens' participation, dealing with data privacy, accounting for ethical and security requirements, and taking into account data standards, quality and reliability. These concerns all need to be addressed in a concerted way to provide a stable, reliable and scalable Citizens' Observatory programme. On the other hand, the Citizens' Observatory approach carries the promise of increasing the public's awareness to risks in their environment, which has a corollary economic value, and enhancing data acquisition at low or no cost. In this paper, we first propose a conceptual framework for a Citizens' Observatory

  20. Variable Star Discoveries for Research Education at the Phillips Academy Observatory

    NASA Astrophysics Data System (ADS)

    Odden, Caroline; Yoon, Seokjun; Zhu, Emily; Little, John; Taylor, Isabel; Kim, Ji Seok; Briggs, John W.

    2014-06-01

    The discovery and publication of unknown variable stars by high school students is a highly engaging activity in a new hands-on research course developed at Phillips Academy in Andover, Massachusetts. Students use MPO Canopus software to recognize candidate variable stars in image series typically recorded for asteroid rotation studies. Follow-up observations are made using the 16-inch DFM telescopes at the Phillips Academy Observatory and at the HUT Observatory near Eagle, Colorado, as well as with a remote-access 20-inch at New Mexico Skies Observatory near Mayhill, New Mexico. The Catalina Sky Survey can provide additional photometric measurements. Confirmed variables, with light curves and periods, are submitted to the International Variable Star Index and Journal of the American Association of Variable Star Observers. Asteroid rotation studies are published in Minor Planet Bulletin.

  1. Progressive Research and Outreach at the WestRock Observatory

    NASA Astrophysics Data System (ADS)

    Brown, Johnny Eugene; Lantz Caughey, Austin; O'Keeffe, Brendon; Johnson, Michael; Murphy Williams, Rosa Nina

    2016-01-01

    The WestRock Observatory (WRO), located in Columbus State University's Coca-Cola Space Science Center (CCSSC), is dedicated to education and research in astronomy through hands-on engagement and public participation. The WRO has recently received funding to upgrade the PlaneWave CDK 24-inch Corrected Dall-Kirkham Astrograph telescope. Recent additions to the telescope include an all-new Apogee Alta F16 CCD camera complete with a filter wheel (with narrowband and broadband filters) and a Minor Planet Center Observatory Code (W22). These new upgrades have allowed Astrophysics students to conduct unique research ranging from high precision minor planet astrometry, to broad- and narrow-band imaging of nebulae, to light curve analysis for variable star photometry. These new endeavours, in conjunction with an existing suite of Solar telescopes, gives the WRO the ability to live-stream solar and night-time observing. These streams are available both online and through interactive displays at the CCSSC making the WRO an educational outreach program for a worldwide public audience and a growing astronomical community.Current funding is allowing students to get even more research experience than previously attainable further enabling the expansion of our publicly available gallery of nebula and galaxy images. Support and funding for the acquirement,installation, and upgrading of the new PlaneWave CDK24 has been provided by the International Museum and Library Services via the Museums for America Award Additionally, individual NASA Space Grant Scholarships have helped to secure a number of student interns partially responsible for recent improvements.

  2. Broadening Access to Virtual Observatories

    NASA Astrophysics Data System (ADS)

    Bentley, R. D.; Brooke, J.; Fox, P. A.

    2011-12-01

    The HELIO project is developing infrastructure to support the study of heliophysics, a relatively new, cross-disciplinary science. The project is providing integrated access to data from a number of disciplines - solar and heliospheric physics, geophysics (magnetospheric and ionospheric) and planetary environments (in-situ data). There are still relatively few scientists that possess the knowledge to work comfortably in all the domains involved and we are investigating ways in which to improve this situation. If some of the ideas that we are looking at prove successfully, a bi-product could be that the technique can be tuned to the audience that you are trying to address, including the public. We will describe some of the ideas that we are working on and suggest how they may be useful in the wider community. Some of this work is being done in conjunction with the CASSIS project that is trying to encourage the adoption of standards to increase the interoperability between domains. The HELIO and CASSIS projects are funded under the European Commission's Seventh Framework Programme (FP7).

  3. Mobile applications and Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Schaaff, A.; Jagade, S.

    2015-06-01

    Within a few years, smartphones and Internet tablets have become the devices to access Web or standalone applications from everywhere, with a rapid development of the bandwidth of the mobile networks (e.g. 4G). Internet tablets are used to take notes during meetings or conferences, to read scientific papers in public transportation, etc. A smartphone is for example a way to have your data in the pocket or to control, from everywhere, the progress of a heavy workflow process. These mobile devices have enough powerful hardware to run more and more complex applications for many use cases. In the field of astronomy it is possible to use these tools to access data via a simple browser, but also to develop native applications reusing libraries (written in Java for Android or Objective-C/Swift for iOS) developed for desktops/laptops. We describe the experiments conducted in this domain, at CDS and IUCAA, considering a mobile application as a native application as well as a Web application.

  4. AUGO II: A Comprehensive Subauroral Zone Observatory

    NASA Astrophysics Data System (ADS)

    Schofield, I. S.; Connors, M. G.

    2012-12-01

    Athabasca University Geophysical Observatory II (AUGO II) is a comprehensive subauroral zone observatory designed for routine automated optical and magnetic observation of the aurora. Becoming operational in February 2012, AUGO II has six temperature/humidity controlled observation rooms, each equipped with a 1.5 meter diameter acrylic dome custom fabricated for wide spectral transparency. AUGO II is located approximately 25 km southwest of the town of Athabasca, in Alberta, Canada, on the southern edge of the auroral zone (Geodetic coordinates: latitude 54 36' 10", longitude 113 38' 40" west. CGM coordinates: latitude 61.7, longitude 306.8, L-value 4.5). AUGO II is sufficiently isolated from urban development that skies are dark enough during winter months to allow optical studies of faint phenomena, such as H-beta studies of proton precipitation aurora, currently underway. The observatory's modest residence can accommodate six persons, allowing groups to live and work with their instruments for the duration of their research campaign without leaving the site. AUGO II's inaugural guest research campaign was reported successful, and resulted in a permanent VLF/LF radio experiment being deployed at the observatory's expansive site. We are hopeful more research groups will take advantage of this unique facility and help realize its full potential.

  5. Assembled Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photograph shows TRW technicians preparing the assembled Chandra X-Ray Observatory (CXO) for an official unveiling at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  6. Assembled Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows a TRW technician inspecting the completely assembled Chandra X-ray Observatory (CXO) in the Thermal Vacuum Chamber at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  7. The Arecibo Observatory Visitor and Educational Facility

    NASA Astrophysics Data System (ADS)

    Altschuler, Daniel R.

    1994-12-01

    As the world's largest single-dish radio telescope, Arecibo Observatory in Puerto Rico attracts thousands of visitors each year of all ages and from many countries. Pride in the Observatory has caused local Puerto Rican organizations to contribute the funds necessary for the construction of the new Arecibo Observatory Visitor and Educational Facility (AOVEF). Funds to develop the exhibits were obtained through a grant from the National Science Foundation. The Observatory is the main facility of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation. The AOVEF consists of approximately 9,000 square feet of building and outdoor program space. It will house about 3500 square feet of exhibits, a 100 person multi-purpose theater, a science merchandise store and appropriate meeting rooms and workspace. We expect to be able to begin construction in early 1995. Based on current experience, we anticipate that half of the expected 100,000 visitors per year will be school children brought by buses from their schools and half will be families and individuals, coming for a visit on their own. Details about our project and a discussion of the contents of the exhibitions which are being prepared will be presented.

  8. Remote Control Southern Hemisphere SSA Observatory

    NASA Astrophysics Data System (ADS)

    Ritchie, I.; Pearson, M.; Sang, J.

    2013-09-01

    EOS Space Systems (EOSSS) is a research and development company which has developed custom observatories, camera and telescope systems for space surveillance since 1996, as well as creating several evolutions of systems control software for control of observatories and laser tracking systems. Our primary reserach observatory is the Space Reserach Centre (SRC) at Mount Stromlo Asutralia. The current SRC control systems are designed such that remote control can be offered for real time data collection, noise filtering and flexible session management. Several imaging fields of view are available simultaneously for tracking orbiting objects, with real time imaging to Mag 18. Orbiting objects can have the centroids post processed into orbital determination/ orbital projection (OD/OP) elements. With or without laser tracking of orbiting objects, they can be tracked in terminator conditions and their OD/OP data created, then enhanced by proprietary methods involving ballistic coefficient estimation and OD convergence pinning, using a priori radar elements. Sensors in development include a thermal imager for satellite thermal signature detection. Extending laser tracking range by use of adaptive optics beam control is also in development now. This Southern Hemisphere observatory is in a unique position to facilitate the study of space debris, either stand-alone or as part of a network such as Falcon. Current national and international contracts will enhance the remote control capabilities further, creating a resource ready to go for a wide variety of SSA missions.

  9. MMS Observatory TV Results Contamination Summary

    NASA Technical Reports Server (NTRS)

    Rosecrans, Glenn; Brieda, Lubos; Errigo, Therese

    2014-01-01

    The Magnetospheric Multiscale (MMS) mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earth's magnetosphere. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. In this paper, we report on the extensive thermal vacuum testing campaign. The testing was performed at the Naval Research Laboratory utilizing the "Big Blue" vacuum chamber. A total of ten thermal vacuum tests were performed, including two chamber certifications, three dry runs, and five tests of the individual MMS observatories. During the test, the observatories were enclosed in a thermal enclosure known as the "hamster cage". The enclosure allowed for a detailed thermal control of various observatory zone, but at the same time, imposed additional contamination and system performance requirements. The environment inside the enclosure and the vacuum chamber was actively monitored by several QCMs, RGA, and up to 18 ion gauges. Each spacecraft underwent a bakeout phase, which was followed by 4 thermal cycles. Unique aspects of the TV campaign included slow pump downs with a partial represses, thruster firings, Helium identification, and monitoring pressure spikes with ion gauges. Selected data from these TV tests is presented along with lessons learned.

  10. The great observatories for space astrophysics

    NASA Technical Reports Server (NTRS)

    Harwit, M.; Neal, V.

    1986-01-01

    Motivated by the ancient urge to observe, measure, compute, and understand the nature of the Universe, the available advanced technology is used to place entire observatories into space for investigations across the spectrum. Stellar evolution, development and nature of the Universe, planetary exploration, technology, NASA's role, and careers in asronomy are displayed.

  11. Armenian Virtual Observatory: Services and Data Sharing

    NASA Astrophysics Data System (ADS)

    Knyazyan, A. V.; Astsatryan, H. V.; Mickaelian, A. M.

    2016-06-01

    The main aim of this article is to introduce the data management and services of the Armenian Virtual Observatory (ArVO), which consists of user friendly data management mechanisms, a new and productive cross-correlation service, and data sharing API based on international standards and protocols.

  12. The Cape Observatory: all Categories of Heritage

    NASA Astrophysics Data System (ADS)

    Glass, Ian S.

    2012-09-01

    In this presentation I will give an outline of the various types of heritage related to the Royal Observatory, Cape of Good Hope, established in 1820 and now the headquarters campus of the South African Astronomical Observatory, located quite close to downtown Cape Town. In terms of tangible, fixed heritage, the campus itself, the domes and the various other buildings are obviously relevant. This category includes the Classical Revival Main Building of 1828 and the McClean dome of 1895 by the leading colonial architect Herbert Baker as well as many other buildings and even the graves of two directors. Tangible movable items include, in principle, the telescopes, the accessory instruments and many pieces of apparatus that have been preserved. In addition, extensive collections of antique paintings, drawings, furniture and books add to the site's cultural significance. Many of the Observatory's archives are still kept locally. The intangible heritage of the Observatory consists for example of its history, its major discoveries, its interaction with the City, its central role in the history of science in South Africa and its appeal as a living cultural institution. Especially notable were the observations by Henderson (ca 1831) leading to the distance of a Cen and the early sky survey known as the Cape Photographic Durchmusterung.

  13. The High-Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    Mostafá, Miguel A.

    2014-10-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array.

  14. Reengineering observatory operations for the time domain

    NASA Astrophysics Data System (ADS)

    Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.

    2014-07-01

    Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.

  15. The new gamma-ray observatory: CTA

    NASA Astrophysics Data System (ADS)

    Carr, John

    2016-07-01

    CTA is the next generation gamma-ray observatory and will have a factor 10 better sensitivity compared to existing facilities, as well as many other superior parameters. Aspects of array layout, performance and sites are presented. The broad range of forefront science which will be studied is described.

  16. The Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2013-01-01

    The Chandra X-ray Observatory, the third of NASA's four Great Observatories and its flagship mission for X-ray astronomy, was launched by NASA's Space Shuttle Columbia on July 23, 1999. The first X-ray sources were observed on August 12, 1999. The brightest of these sources named Leon X-1 in honor of Chandra's Telescope Scientist who played the leading role in establishing the key to Chandra's great advance in angular resolution. Over the past years, the Observatory's ability to provide sub-arc second X-ray images and high resolution spectra has established it as one of the most versatile and powerful tools for astrophysical research in the 21st century. Chandra explores the high-energy regions of the universe, observing X-ray sources with fluxes ranging over more than 10 orders of magnitude. The longevity of Chandra also provides a long observing baseline enabling temporal studies over time-scales of years. I will discuss how the Observatory works, the current operational status, and scientific highlights covering a variety of objects from stars with nearby planets that impact the stellar activity to the deepest Chandra surveys.

  17. Advanced Solar Observatory (ASO) accommodations requirements study

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Results of an accommodations analysis for the Advanced Solar Observatory on Space Station Freedom are reported. Concepts for the High Resolution Telescope Cluster, Pinhole/Occulter Facility, and High Energy Cluster were developed which can be accommodated on Space Station Freedom. It is shown that workable accommodations concepts are possible. Areas of emphasis for the next stage of engineering development are identified.

  18. SOFIA: Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the great astronomical observatories both space and land based that are now operational. It shows the history of the development of SOFIA, from its conception in 1986 through the contract awards in 1996 and through the planned first flight in 2007. The major components of the observatory are shown and there is a comparison of the SOFIA with the Kuiper Airborne Observatory (KAO), which is the direct predecessor to SOFIA. The development of the aft ramp of the KAO was developed as a result of the wind tunnel tests performed for SOFIA development. Further slides show the airborne observatory layout and the telescope's optical layout. Included are also vies of the 2.5 Meter effective aperture, and the major telescope's components. The presentations reviews the technical challenges encountered during the development of SOFIA. There are also slides that review the wind tunnel tests, and CFD modeling performed during the development of SOFIA. Closing views show many views of the airplane, and views of SOFIA.

  19. Metsahovi Radio Observatory - IVS Network Station

    NASA Technical Reports Server (NTRS)

    Uunila, Minttu; Zubko, Nataliya; Poutanen, Markku; Kallunki, Juha; Kallio, Ulla

    2013-01-01

    In 2012, Metsahovi Radio Observatory together with Finnish Geodetic Institute officially became an IVS Network Station. Eight IVS sessions were observed during the year. Two spacecraft tracking and one EVN X-band experiment were also performed. In 2012, the Metsahovi VLBI equipment was upgraded with a Digital Base Band Converter, a Mark 5B+, a FILA10G, and a FlexBuff.

  20. NASA's Great Observatories Paper Model Kits.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Education Dept.

    The Hubble Space Telescope, the most complex and sensitive optical telescope ever made, was built to study the cosmos from low-Earth orbit for 10 to 15 years or more. The Compton Gamma Ray Observatory is a complex spacecraft fitted with four different gamma ray detectors, each of which concentrates on different but overlapping energy range and was…

  1. SOFIA - Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.

    1992-01-01

    The features and scientific aims of SOFIA (Stratospheric Observatory For Infrared Astronomy), a planned 2.5 m telescope to be installed in an aircraft and operated at altitudes from 41,000 to 46,000 ft, are discussed. A brief overview of the SOFIA program is given.

  2. The SMARTS Observatory: Rich Science Accessible for Everyone

    NASA Astrophysics Data System (ADS)

    Hasan, Imran; Misenti, V.; Henry, T. J.

    2014-01-01

    The SMARTS observatory announces opportunities for new members to use the SMARTS telescopes--the 1.5m, 1.3m, and 0.9m in at CTIO in Chile-- to carry out their science programs. We have entered a new era for the consortium, SMARTS3, with an agreement to continue operations through September 2016. In light of this, we are accepting both individual and institutional members on a first-come, first-served basis. The advantages of SMARTS include long-term science, queue scheduling with flexibility for targets of opportunity, daily data reduction and distribution, and assistance from the dedicated SMARTS and CTIO teams. SMARTS Observatory has been producing excellent science for over 10 years. With 23 members from 11 institutions, SMARTS provides observational data for a diverse number of projects. Our productivity and capability is evidenced by many publications in various fields, among them comprehensive novae observations, long-term AGN monitoring, and discoveries of planets via micro-lensing. In this poster, we show scientific highlights from SMARTS users as well as statistics on its productivity. We provide details about how the SMARTS Consortium currently functions, what it costs to participate, and how to become a member.

  3. The SMARTS Observatory: Rich Science Accessible to Everyone

    NASA Astrophysics Data System (ADS)

    Misenti, Victoria; Bailyn, C. D.; Henry, T. J.; Van Der Bliek, N. S.; Consortium, SMARTS

    2013-01-01

    The SMARTS Observatory has been producing excellent science for 10 years, as evidenced by many publications of gamma ray bursts, comprehensive novae observations, long-term AGN monitoring, and discoveries of nearby stars. Nonetheless, in these difficult economic times, SMARTS is experiencing funding limitations that are beginning to impact the services it is able to provide. SMARTS will be able to continue operations beyond FY2013 only if funding for 3 or more years is committed by March 1, 2013. Therefore, SMARTS is now seeking new members among scientists and institutions who would like to use SMARTS telescopes --- the 1.5m, 1.3m, 1.0m, and 0.9m at CTIO --- to carry out their science programs. In this poster we show scientific highlights from SMARTS users as well as statistics on its productivity. We describe the capabilities of SMARTS, both in the current reduced operational mode of three telescopes as well as in the full operational mode of four telescopes. We also provide details about how the SMARTS Consortium currently functions, what it costs to participate, and how to become a member. The advantages of SMARTS memberships include long-term science, flexible scheduling, and dedicated assistance from the SMARTS and CTIO teams that make it one of the smoothest operating observatories in the world.

  4. Hawaiian Volcano Observatory Seismic Data, January to December 2006

    USGS Publications Warehouse

    Nakata, Jennifer

    2007-01-01

    Introduction The Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year. The seismic summary is offered without interpretation as a source of preliminary data. It is complete in the sense that most data for events of M>1.5 routinely gathered by the Observatory are included. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data dictated an annual publication beginning with Summary 74 for the year 1974. Summary 86 (the introduction of CUSP at HVO) includes a description of the seismic instrumentation, calibration, and processing used in recent years. Beginning with 2004, summaries are simply identified by the year, rather than Summary number. The present summary includes background information on the seismic network and processing to allow use of the data and to provide an understanding of how they were gathered. A report by Klein and Koyanagi (1980) tabulates instrumentation, calibration, and recording history of each seismic station in the network. It is designed as a reference for users of seismograms and phase data and includes and augments the information in the station table in this summary.

  5. Lessons from the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1998-12-01

    Over the past several years, we have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. Each telescope can be pointed and focused remotely, and filters, field of view and exposure times can be changed easily. The MicroObservatory Net consists of five of these telescopes. They are being deployed around the world at widely distributed longitudes for access to distant night skies during local daytime. Remote access to the MicroObservatories over the Internet has been available to select schools since 1995. The telescopes can be controlled in real time or in delay mode, from any computer using Web-based software. Individuals have access to all of the telescope control functions without the need for an `on-site' operator. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. Images are archived at the Web site, along with sample challenges and a user bulletin board, all of which encourage collaboration between schools. The Internet address of the telescopes is http://mo-www.harvard.edu/MicroObservatory/. The telescopes were designed for classroom instruction by teachers, as well as for use by students and amateur astronomers for original scientific research projects. In this talk, we will review some of the experiences we, students and teachers have had in using the telescopes. Support for the MicroObservatory Net has been provided by the NSF, Apple Computer, Inc. and Kodak, Inc.

  6. International lunar observatory / power station: from Hawaii to the Moon

    NASA Astrophysics Data System (ADS)

    Durst, S.

    -like lava flow geology adds to Mauna Kea / Moon similarities. Operating amidst the extinct volcano's fine grain lava and dust particles offers experience for major challenges posed by silicon-edged, powdery, deep and abundant lunar regolith. Power stations for lunar observatories, both robotic and low cost at first, are an immediate enabling necessity and will serve as a commercial-industrial driver for a wide range of lunar base technologies. Both microwave rectenna-transmitters and radio-optical telescopes, maybe 1-meter diameter, can be designed using the same, new ultra-lightweight materials. Five of the world's six major spacefaring powers - America, Russia, Japan, China and India, are located around Hawaii in the Pacific / Asia area. With Europe, which has many resources in the Pacific hemisphere including Arianespace offices in Tokyo and Singapore, they have 55-60% of the global population. New international business partnerships such as Sea Launch in the mid-Pacific, and national ventures like China's Hainan spaceport, Japan's Kiribati shuttle landing site, Australia and Indonesia's emerging launch sites, and Russia's Ekranoplane sea launcher / lander - all combine with still more and advancing technologies to provide the central Pacific a globally representative, state-of-the-art and profitable access to space in this new century. The astronomer / engineers tasked with operation of the lunar observatory / power station will be the first to voyage from Hawaii to the Moon, before this decade is out. Their scientific and technical training at the world's leading astronomical complex on the lunar-like landscape of Mauna Kea may be enhanced with the learning and transmission of local cultures. Following the astronomer / engineers, tourism and travel in the commercially and technologically dynamic Pacific hemisphere will open the new ocean of space to public access in the 21st century like they opened the old ocean of sea and air to Hawaii in the 20th - with Hawaii

  7. Asteroid Lightcurve Analysis at the Oakley Southern Sky Observatory and Oakley Observatory: 2008 September and October

    NASA Astrophysics Data System (ADS)

    Carbo, Landy; Kragh, Katherine; Krotz, Jonathan; Meiers, Andrew; Shaffer, Nelson; Torno, Steven; Sauppe, Jason; Ditteon, Richard

    2009-07-01

    Photometric data for 22 asteroids were collected over 14 nights of observing during 2008 September and October at the Oakley Southern Sky Observatory and Oakley Observatory. The asteroids were: 618 Elfriede, 1032 Pafuri, 1041 Asta, 1129 Neujmina, 1428 Mombasa, 1595 Tanga, 1732 Heike, 1792 Reni, 2617 Jiangxi, 2829 Bobhope, 4058 Cecilgreen, 4959 Niinoama, 5385 Kamenka, 5855 Yukitsuna, 6247 Amanogawa, 6801 Strekov, 7131 Longtom, 7818 Muirhead, 16528 Terakado, (16556) 1991 VQ1, (16773) 1996 VO1, and (23255) 2000 YD17.

  8. DETAIL, LOOKING EAST, OF PORTICO OF STANDARDIZING MAGNETIC OBSERVATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL, LOOKING EAST, OF PORTICO OF STANDARDIZING MAGNETIC OBSERVATORY. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  9. VIEW OF WEST AND NORTH FACADES OF STANDARDIZING MAGNETIC OBSERVATORY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF WEST AND NORTH FACADES OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING SOUTHWEST. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  10. VIEW OF SOUTH FACADE OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTH FACADE OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTH. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  11. INTERIOR OF VESTIBULE OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF VESTIBULE OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTHWEST. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  12. VIEW, LOOKING EAST, OF PORTICO OF STANDARDIZING MAGNETIC OBSERVATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW, LOOKING EAST, OF PORTICO OF STANDARDIZING MAGNETIC OBSERVATORY. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  13. Receipt of the Observatory at the Orbital Processing Facility

    NASA Video Gallery

    These series of photos show the receipt of the observatory at the Orbital processing facility at VAFB. The observatory was received on April 16, 2013 and transferred to its handling fixture and the...

  14. Asteroid Lightcurve Analysis at the Danhenge Observatory Apr - Aug 2011

    NASA Astrophysics Data System (ADS)

    Coley, Daniel

    2012-01-01

    The lightcurves for three main-belt asteroids, 1413 Roucarie, 3385 Bronnina, and 39890 Bobstephens. All observations were taken from the DanHenge Observatory, one of 13 observatories at Goat Mountain Astronomical Research Station (GMARS - MPC G79).

  15. Brazil to Join the European Southern Observatory

    NASA Astrophysics Data System (ADS)

    2010-12-01

    The Federative Republic of Brazil has yesterday signed the formal accession agreement paving the way for it to become a Member State of the European Southern Observatory (ESO). Following government ratification Brazil will become the fifteenth Member State and the first from outside Europe. On 29 December 2010, at a ceremony in Brasilia, the Brazilian Minister of Science and Technology, Sergio Machado Rezende and the ESO Director General, Tim de Zeeuw signed the formal accession agreement aiming to make Brazil a Member State of the European Southern Observatory. Brazil will become the fifteen Member State and the first from outside Europe. Since the agreement means accession to an international convention, the agreement must now be submitted to the Brazilian Parliament for ratification [1]. The signing of the agreement followed the unanimous approval by the ESO Council during an extraordinary meeting on 21 December 2010. "Joining ESO will give new impetus to the development of science, technology and innovation in Brazil as part of the considerable efforts our government is making to keep the country advancing in these strategic areas," says Rezende. The European Southern Observatory has a long history of successful involvement with South America, ever since Chile was selected as the best site for its observatories in 1963. Until now, however, no non-European country has joined ESO as a Member State. "The membership of Brazil will give the vibrant Brazilian astronomical community full access to the most productive observatory in the world and open up opportunities for Brazilian high-tech industry to contribute to the European Extremely Large Telescope project. It will also bring new resources and skills to the organisation at the right time for them to make a major contribution to this exciting project," adds ESO Director General, Tim de Zeeuw. The European Extremely Large Telescope (E-ELT) telescope design phase was recently completed and a major review was

  16. LORAN-C data reduction at the US Naval Observatory

    NASA Technical Reports Server (NTRS)

    Chadsey, Harold

    1992-01-01

    As part of its mission and in cooperation with the U.S. Coast Guard, the U.S. Naval Observatory (USNO) monitors and reports the timing of the LORAN-C chains. The procedures for monitoring and processing the reported values have evolved with advances in monitoring equipment, computer interfaces and PCs. This paper discusses the current standardized procedures used by USNO to sort the raw data according to Group Repetition Interval (GRI) rate, to fit and smooth the data points, and, for chains remotely monitored, to tie the values to the USNO Master Clock. The results of these procedures are the LORAN time of transmission values, as references to UTC(USNO) (Universal Coordinated Time) for all LORAN chains. This information is available to users via USNO publications and the USNO Automated Data Service (ADS).

  17. Solar Dynamics Observatory Data Search using Metadata in the KDC

    NASA Astrophysics Data System (ADS)

    Hwang, E.; Choi, S.; Baek, J.-H.; Park, J.; Lee, J.; Cho, K.

    2015-09-01

    We have constructed the Korean Data Center (KDC) for the Solar Dynamics Observatory (SDO) in the Korea Astronomy and Space Science Institute (KASI). The SDO comprises three instruments; the Atmospheric Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment (EVE). We archive AIA and HMI FITS data. The size of data is about 1 TB of a day. The goal of KDC for SDO is to provide easy and fast access service to the data for researchers in Asia. In order to improve the data search rate, we designed the system to search data without going through a process of database query. The fields of instrument, wavelength, data path, date, and time are saved as a text file. This metadata file and SDO FITS data can be simply accessed via HTTP and are open to the public. We present a process of creating metadata and a way to access SDO FITS data in detail.

  18. AVOCADO: A Virtual Observatory Census to Address Dwarfs Origins

    NASA Astrophysics Data System (ADS)

    Sánchez-Janssen, Rubén; Sánchez-Janssen

    2011-12-01

    Dwarf galaxies are by far the most abundant of all galaxy types, yet their properties are still poorly understood-especially due to the observational challenge that their intrinsic faintness represents. AVOCADO aims at establishing firm conclusions on their formation and evolution by constructing a homogeneous, multiwavelength dataset for a statistically significant sample of several thousand nearby dwarfs (-18 < Mi < -14). Using public data and Virtual Observatory tools, we have built GALEX+SDSS+2MASS spectral energy distributions that are fitted by a library of single stellar population models. Star formation rates, stellar masses, ages and metallicities are further complemented with structural parameters that can be used to classify them morphologically. This unique dataset, coupled with a detailed characterization of each dwarf's environment, allows for a fully comprehensive investigation of their origins and to track the (potential) evolutionary paths between the different dwarf types.

  19. Bucharest-Nikolaev Astronomical Observatories' Collaboration in Astronomy

    NASA Astrophysics Data System (ADS)

    Pinigin, Gennadiy; Stavinschi, Magda

    2008-09-01

    Scientific collaboration between Bucharest Observatory of the Astronomical Institute (Romania) and Nikolaev Astronomical Observatory (Ukraine), based on the similar research directions and scientific traditions from the beginning of 1990s. The main research field was positional astronomy with compilation of catalogues of star positions in the fields around selected ERS from the CCD observations in Nikolaev and photographical observations in the Bucharest Observatory. Many conferences and workshops, mutual visits of astronomers from both observatories were organized and held in Nikolaev and Bucharest.

  20. Local Observations, Global Connections: An Educational Program Using Ocean Networks Canada's Community-Based Observatories

    NASA Astrophysics Data System (ADS)

    Pelz, M.; Hoeberechts, M.; Ewing, N.; Davidson, E.; Riddell, D. J.

    2014-12-01

    Schools on Canada's west coast and in the Canadian Arctic are participating in the pilot year of a novel educational program based on analyzing, understanding and sharing ocean data collected by cabled observatories. The core of the program is "local observations, global connections." First, students develop an understanding of ocean conditions at their doorstep through the analysis of community-based observatory data. Then, they connect that knowledge with the health of the global ocean by engaging with students at other schools participating in the educational program and through supplemental educational resources. Ocean Networks Canada (ONC), an initiative of the University of Victoria, operates cabled ocean observatories which supply continuous power and Internet connectivity to a broad suite of subsea instruments from the coast to the deep sea. This Internet connectivity permits researchers, students and members of the public to download freely available data on their computers anywhere around the globe, in near real-time. In addition to the large NEPTUNE and VENUS cabled observatories off the coast of Vancouver Island, British Columbia, ONC has been installing smaller, community-based cabled observatories. Currently two are installed: one in Cambridge Bay, Nunavut and one at Brentwood College School, on Mill Bay in Saanich Inlet, BC. Several more community-based observatories are scheduled for installation within the next year. The observatories support a variety of subsea instruments, such as a video camera, hydrophone and water quality monitor and shore-based equipment including a weather station and a video camera. Schools in communities hosting an observatory are invited to participate in the program, alongside schools located in other coastal and inland communities. Students and teachers access educational material and data through a web portal, and use video conferencing and social media tools to communicate their findings. A series of lesson plans

  1. Challenges and Opportunities to Developing Synergies Among Diverse Environmental Observatories: FSML, NEON, and GLEON

    NASA Astrophysics Data System (ADS)

    Williamson, C. E.; Weathers, K. C.; Knoll, L. B.; Brentrup, J.

    2012-12-01

    Recent rapid advances in sensor technology and cyberinfrastructure have enabled the development of numerous environmental observatories ranging from local networks at field stations and marine laboratories (FSML) to continental scale observatories such as the National Ecological Observatory Network (NEON) to global scale observatories such as the Global Lake Ecological Observatory Network (GLEON). While divergent goals underlie the initial development of these observatories, and they are often designed to serve different communities, many opportunities for synergies exist. In addition, the use of existing infrastructure may enhance the cost-effectiveness of building and maintaining large scale observatories. For example, FSMLs are established facilities with the staff and infrastructure to host sensor nodes of larger networks. Many field stations have existing staff and long-term databases as well as smaller sensor networks that are the product of a single or small group of investigators with a unique data management system embedded in a local or regional community. These field station based facilities and data are a potentially untapped gold mine for larger continental and global scale observatories; common ecological and environmental challenges centered on understanding the impacts of changing climate, land use, and invasive species often underlie these efforts. The purpose of this talk is to stimulate a dialog on the challenges of merging efforts across these different spatial and temporal scales, as well as addressing how to develop synergies among observatory networks with divergent roots and philosophical approaches. For example, FSMLs have existing long-term databases and facilities, while NEON has sparse past data but a well-developed template and closely coordinated team working in a coherent format across a continental scale. GLEON on the other hand is a grass-roots network of experts in science, information technology, and engineering with a common goal

  2. Challenges to Integrating Geographically-Dispersed Data and Expertise at U.S. Volcano Observatories

    NASA Astrophysics Data System (ADS)

    Murray, T. L.; Ewert, J. W.

    2010-12-01

    During the past 10 years the data and information available to volcano observatories to assess hazards and forecast activity has grown dramatically, a trend that will likely continue. Similarly, the ability of observatories to draw upon external specialists who can provide needed expertise is also increasing. Though technology easily provides the ability to move large amounts of information to the observatory, the challenge remains to efficiently and quickly integrate useful information and expertise into the decision-making process. The problem is further exacerbated by the use of new research techniques during times of heightened activity. Eruptive periods typically accelerate research into volcanic processes as scientists use the opportunity to test new hypotheses and develop new tools. Such experimental methods can be extremely insightful, but may be less easily integrated into the normal data streams that inform decisions. Similarly, there is an increased need for collaborative tools that allow efficient and effective communication between the observatory and external experts. Observatories will continue to be the central focus for integrating information, assessing hazards, and communicating with the public, but will increasingly draw on experts at other observatories, government agencies, academia and even the private sector, both foreign and domestic, to provide analysis and assistance. Fostering efficient communication among such a diverse and geographically dispersed group is a challenge. Addressing these challenges is one of the goals of the U.S. National Volcano Early Warning System, falling under the effort to improve interoperability among the five U.S. volcano observatories and their collaborators. In addition to providing the mechanisms to handle the flow of data, efforts will be directed at simplifying - though retaining the required nuance - information and merging data streams while developing tools that enable observatory staff to quickly

  3. Orbiting Astronomical Observatory-C (OAO-C): Press kit

    NASA Technical Reports Server (NTRS)

    Allaway, H. G.

    1972-01-01

    Mission planning for the Orbiting Astronomical Observatory-C (OAO-C) is presented. The characteristics of the observatory and its capabilities are described. The following experiments are discussed: (1) Princeton Experiment Package, (2) X-ray experiment, and (3) guest investigator program. Results of the OAO-2 observatory are presented. A tabulation of flight events is included.

  4. NASA's Earth Observatory: 16 Years of Communicating with and for Scientists

    NASA Astrophysics Data System (ADS)

    Ward, K.; Carlowicz, M. J.; Allen, J.; Voiland, A.; Przyborski, P.; Hansen, K.; Stevens, J.

    2015-12-01

    For the past 16 years NASA's Earth Observatory website has featured stories that are driven by strong visualization and in-depth reporting and storytelling. The Earth Observatory Image of the Day is published 365 days a year and is a syndication staple for major news outlets, science-related publications, blogs and social media outlets. The daily publication pace requires that we cover a wide range of topics within NASA's portfolio of Earth science research. To meet our deadlines, and to do so competently and with the authority that a NASA-branded publication warrants, we have developed relationships with scientists from throughout the agency who both provide us with ideas for stories and review our content for accuracy. This symbiotic relationship insures that the Earth Observatory has a quality product that is syndicated, repurposed and sourced throughout popular media, resulting in science content reaching the public that might not otherwise be reported. We will discuss how we have developed our relationships and processes over the years, how we work with scientists to see the potential stories in their data, and how we package and promote these stories and visualizations for maximum exposure and reuse.

  5. Infrastructure of the Gemini Observatory control system

    NASA Astrophysics Data System (ADS)

    Gillies, Kim K.; Walker, Shane

    1998-07-01

    Construction of the first Gemini 8-m telescope is well underway. The software that provides the user interface and high-level control of the observatory, the observatory control system (OCS), is also proceeding on track. The OCS provides tools that assist the astronomer from the proposal submission phase through planning, observation execution, and data review. A capable and flexible software infrastructure is required to support this comprehensive approach. New software technologies and industry standards have played a large part in the implementation of this infrastructure. For instance, the use of CORBA has provided many benefits in the software including object distribution, an interface definition language, and implementation language independence. In this paper, we describe the infrastructure of the OCS that supports observation planning and execution. Important software decisions and interfaces that allow Internet access and the ability to substitute alternate implementations easily are discussed as a model for other similar projects.

  6. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Gehrz, R. D.; Roellig, T. L.

    2012-10-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA), a program to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747SP, has obtained first science with the FORCAST camera in the 5 to 40 micron spectral region and the GREAT heterodyne spectrometer in the 130 to 240 micron spectral region. We briefly review the characteristics and status of the observatory. Spectacular science results on regions of star formation will be discussed. The FORCAST images show several discoveries and the potential for determining how massive stars form in our Galaxy. The GREAT heterodyne spectrometer has made mapping observations of the [C II] line at 158 microns, high J CO lines, and other molecular lines including SH. The HIPO high speed photometer and the high speed camera FDC were used to observe the 2011 June 23 UT stellar occultation by Pluto.

  7. Latest results from the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Dembinski, Hans P.; Pierre Auger Collaboration

    2012-02-01

    The Pierre Auger Observatory, located in the Province of Mendoza, Argentina, is the World's largest detector for cosmic rays at ultra-high energies. In its seven years of operation it has collected an exposure of more than 20000 km2 sr yr, larger than all previous experiments combined. Its original design, optimized for the energy range 1018 eV to 1020 eV, is currently enhanced to cover energies down to almost 1017 eV. We give an overview of the latest results with a focus on the prospect to study nuclear interactions with cosmic rays and conclude with a brief outlook on developments and extensions of the observatory. Full author list

  8. The International X-ray Observatory

    SciTech Connect

    White, Nicholas E.; Parmar, Arvind; Kunieda, Hideyo; Nandra, Kirpal; Ohashi, Takaya; Bookbinder, Jay

    2010-07-15

    The International X-ray Observatory (IXO) is a joint ESA-JAXA-NASA effort to address fundamental and timely questions in astrophysics: What happens close to a black hole? How did supermassive black holes grow? How does large scale structure form? What is the connection between these processes? To address these questions IXO will employ optics with 3 sq m collecting area and 5 arc sec angular resolution--20 times more collecting area at 1 keV than any previous X-ray observatory. Focal plane instruments will deliver a 100-fold increase in effective area for high-resolution spectroscopy, deep spectral imaging over a wide field of view, unprecedented polarimetric sensitivity, microsecond spectroscopic timing, and high count rate capability. The mission is being planned for launch in 2021 to an L2 orbit, with a five-year lifetime and consumables for 10 years.

  9. Stephanion Observatory. Greek-Ukranian astrolink

    NASA Astrophysics Data System (ADS)

    Contadakis, M. E.; Avgoloupis, S.; Mavridis, L. N.

    2000-09-01

    The Astronomical research developed during the 35 years of action of the Stephanion Observatory is reviewed in this report. During these years scientists from all the Astronomical Institutes of Greece as well as from many other countries conduct astronomical research programs realized in the Stephanion Observatory. The research on the red dwarfs is a dominant part of the scientific work done. The international cooperation of the Greek scientific teams was developed in the frame of this research. The Greek -- Ukrainian scientific cooperation during the last decade in the frame of broader international cooperation as well as the bilateral ones were very prosperous and set the basis of a promising scientific cooperation in the future in the field of Astronomy.

  10. SOFIA: The Next Generation Airborne Observatory

    NASA Astrophysics Data System (ADS)

    Erickson, E. F.

    1995-10-01

    The United States and German Space Agencies (NASA and DARA) are collaborating in plans for SOFIA — The Stratospheric Observatory for Infrared Astronomy. It is a 2.5 meter telescope to be installed in a Boeing 747 aircraft and operated at altitudes from 41,000 to 45,000 feet. It will permit routine measurement of infrared radiation absorbed by the atmosphere at lower altitudes, and observation of astronomical objects and transient events from anywhere in the world. The concept is based on 20 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA would replace. SOFIA will complement the capabilities of other future space missions, and will enable scientists to make observations which would otherwise be made from space.

  11. Strasbourg Observatory in World War II

    NASA Astrophysics Data System (ADS)

    Duerbeck, H. W.

    During World War II, the Reichsuniversitat Strassburg was installed by the German authorities and Johannes Hellerich (1888-1963) was appointed director of the Observatory. A review of his life and his astro- nomical career as an assistant and professor in Kiel, Hamburg, Strasbourg, and Muenster is given. His activity in Strasbourg from mid-1941 to mid-1943 was focussed on bringing the Observatory into working operations, and on carrying out the monitoring of solar radiation and atmospheric extinction. After being drafted to the army and spending some time as a prisoner of war, he returned to Hamburg to complete a review on variable-star research in wartime Germany. He was called to Muenster University in 1947 to teach astronomy, and, from 1949 onward, to serve as director of the small Astronomical Institute till his retirement in 1954.

  12. Building a Galactic Scale Gravitational Wave Observatory

    NASA Astrophysics Data System (ADS)

    McLaughlin, Maura

    2016-03-01

    Pulsars are rapidly rotating neutron stars with phenomenal rotational stability that can be used as celestial clocks in a variety of fundamental physics experiences. One of these experiments involves using a pulsar timing array of precisely timed millisecond pulsars to detect perturbations due to gravitational waves. The low frequency gravitational waves detectable through pulsar timing will most likely result from an ensemble of supermassive black hole binaries. I will introduce the efforts of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), a collaboration that monitors over 50 millisecond pulsars with the Green Bank Telescope and the Arecibo Observatory, with a focus on our observation and data analysis methods. I will also describe how NANOGrav has joined international partners through the International Pulsar Timing Array to form a low-frequency gravitational wave detector of unprecedented sensitivity.

  13. Data modeling for the virtual observatory

    NASA Astrophysics Data System (ADS)

    Louys, Mireille

    2015-06-01

    The data modeling effort has played a key role in the Virtual Observatory project, and contributed to the effort to build a common reference framework to describe the necessary information attached to astronomical data: the metadata. Such metadata describe the observing parameters and characterize and qualify the observed measurements. These pieces of information are produced and stored in project archives. Standardizing a homogeneous representation of metadata allows uniform discovery and use of the data in the Virtual Observatory infrastructure. This paper describes the context of data modeling in the VO architecture and shows how data models support requirements on the data access layer and for applications development. How the modeling process has been undertaken is explained with a short overview of the different data models. We also discuss in some detail the lessons learned in this modeling and standardization effort.

  14. The Compton Gamma Ray Observatory: mission status.

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    The Arthur Holly Compton Gamma Ray Observatory (Compton) is the second in NASA's series of Great Observatories. Compton has now been operating for over two and a half years, and has given a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made and continue to be made. The authors describe the capabilities of the four scientific instruments and the observing programs for the first three years of the mission. During Phases 2 and 3 of the mission a Guest Investigator program has been in progress with the Guest Observers' time share increasing from 30% to over 50% for the later mission phases.

  15. Surface ozone variability at Kislovodsk Observatory

    NASA Technical Reports Server (NTRS)

    Elansky, Nikolay F.; Makarov, Oleg V.; Senik, Irina A.

    1994-01-01

    The results of the surface ozone observations at the Observatory 'Kislovodsk', situated in the North Caucasus at the altitude 2070 m a.s.l., are given. The observatory is in the background conditions and the variations of the surface ozone are determined by the natural dynamic and photochemical processes. The mean value of the concentration and its seasonal variations are very near to those obtained at the high-mountain stations in Alps. The daily variations have the features, which remain stable during all warm period of the year (April-October). These features, including the minimum of the surface ozone at noon, are formed by the mountain-valley circulation. The significant variations of the surface ozone are connected with the unstationary lee waves.

  16. The Lowell Observatory Predoctoral Student Program

    NASA Astrophysics Data System (ADS)

    Prato, Lisa A.

    2010-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its fourth year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Several projects are available in collaboration with Lowell staff astronomers; we anticipate the availability of an increasing variety of projects over the next years as completion of our new 4.2 meter Discovery Channel Telescope and corresponding instrumentation progresses. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. Currently, three students are enrolled in our program; our first graduate completed the program in August, 2009. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www.lowell.edu/rsch/predoc.php and links therein. Applications for Spring 2010 are due by December 1, 2009.

  17. External field contributions in observatory monthly means

    NASA Astrophysics Data System (ADS)

    Olsen, N.

    2009-04-01

    Monthly means of the magnetic field measurements taken by ground observatories are a useful data source for studying temporal changes of the core magnetic field. However, the usual way of calculating monthly means as the arithmetic mean of all days (geomagnetic quiet as well as disturbed) and all local times (day and night) may result in contributions of external (magnetospheric and ionospheric) origin in the monthly means. Such a contamination makes monthly means less favorable for core field studies. We investigate this problem by calculating modified monthly means from observatory hourly means using different statistical approaches (arithmetic mean, median, robust mean, ...) and data selection criteria (all days, quiet days only, local night data only, ...). An assessment of the different approaches is done by means of generalized cross-validation.

  18. Future Astronomical Observatories on the Moon

    NASA Technical Reports Server (NTRS)

    Burns, Jack O. (Editor); Mendell, Wendell W. (Editor)

    1988-01-01

    Papers at a workshop which consider the topic astronomical observations from a lunar base are presented. In part 1, the rationale for performing astronomy on the Moon is established and economic factors are considered. Part 2 includes concepts for individual lunar based telescopes at the shortest X-ray and gamma ray wavelengths, for high energy cosmic rays, and at optical and infrared wavelengths. Lunar radio frequency telescopes are considered in part 3, and engineering considerations for lunar base observatories are discussed in part 4. Throughout, advantages and disadvantages of lunar basing compared to terrestrial and orbital basing of observatories are weighted. The participants concluded that the Moon is very possibly the best location within the inner solar system from which to perform front-line astronomical research.

  19. Report from the Gravitational Observatory Advisory Team

    NASA Astrophysics Data System (ADS)

    Mueller, Guido; Gravitational Observatory Advisory Team

    2016-03-01

    As a response to the selection of the Gravitational Universe as the science theme for ESA's L3 mission, ESA formed the Gravitational-Wave Observatory Advisory Team (GOAT) to advise ESA on the scientific and technological approach for a gravitational wave observatory. NASA is participating with three US scientists and one NASA observer; JAXA was also invited and participates with one observer. The GOAT looked at a range of mission technologies and designs, discussed their technical readiness with respect to the ESA schedule, recommended technology development activities for selected technologies, and worked with the wider gravitational-wave community to analyze the impact on the science of the various mission designs. The final report is expected to be submitted to ESA early March and I plan to summarize its content.

  20. High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This artist's concept depicts the High Energy Astronomy Observatory (HEAO)-2 in orbit. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  1. Running a distributed virtual observatory: U.S. Virtual Astronomical Observatory operations

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; Hanisch, Robert J.; Berriman, G. Bruce; Thakar, Aniruddha R.

    2012-09-01

    Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the community, monitoring of user requests to optimize access, caching for large datasets, and providing distributed storage services that allow user to collect results near large data repositories. Some elements are now fully implemented, while others are planned for subsequent years. The distributed nature of the VAO requires careful attention to what can be a straightforward operation at a conventional observatory, e.g., the organization of the web site or the collection and combined analysis of logs. Many of these strategies use and extend protocols developed by the international virtual observatory community. Our long-term challenge is working with the underlying data providers to ensure high quality implementation of VO data access protocols (new and better 'telescopes'), assisting astronomical developers to build robust integrating tools (new 'instruments'), and coordinating with the research community to maximize the science enabled.

  2. 400 years astronomical observatory in Jena

    NASA Astrophysics Data System (ADS)

    Schielicke, Reinhard E.

    ``Nam cum aliquod observatorium mihi comparaverim, ... '': ``As I have equiped my observatory now'', Georg Limnaeus, professor of mathematics in Jena from 1588 to 1611, wrote on 24 April 1598, ``I have decided to make friends with some experts by letter; I know from your Prodromus that you are one of them''. The letter was addressed to Johannes Kepler and was related to his first work about the ``Mysterium cosmographicum''. Kepler sent some copies of his paper to Galileo Galilei, Tycho Brahe, Reimar Ursus and also to Limnaeus in Jena from the Frankfurt Book Fair in 1597. Limnaeus gave him - apart from the words expressing praise but which actually were meaningless concerning Kepler's ideas - the information about Brahe Kepler had asked for and which may have promoted his move to Prague. The above mentioned observatory is considered to be the first one in Jena. Astronomy had already been established as a subject since the establishment of the ``Hohe Schule'' in 1548 and since the foundation of the university ten years later. Nothing is known about the instruments and the location of the observatory. Limnaeus did not belong to the taxpaying house-owners of which there exists an index; he obviously rented a flat. To all appearances the correspondence announced was not continued either. For the following centuries the professors Heinrich Hoffmann, Erhard Weigel, Georg Albrecht and Georg Erhard Hamberger are named in the literature running the observatory in Jena. The ``Herzogliche Sternwarte'' fitted out under Goethe's overall supervision in 1813 eventually developed into the university institute of today.

  3. Some Applications of Microcomputers in Observatory Automation

    NASA Astrophysics Data System (ADS)

    Honeycutt, R. K.; Kephart, J. E.

    1982-06-01

    We present here some of the techniques used to automate many of the observing tasks on the 0.91-meter telescope of the Goethe Link Observatory. A description of the method used to calculate the dome position for a telescope which is mounted asymmetrically is included. We also give details of a novel autoguider. This autoguider uses a digitized television image of the star field to enable the microcomputer to generate error signals from a centroid calculation.

  4. Chandra X-Ray Observatory Concept

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  5. Chandra X-Ray Observatory Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  6. Solar Dynamics Observatory (SDO) HGAS Induced Jitter

    NASA Technical Reports Server (NTRS)

    Liu, Alice; Blaurock, Carl; Liu, Kuo-Chia; Mule, Peter

    2008-01-01

    This paper presents the results of a comprehensive assessment of High Gain Antenna System induced jitter on the Solar Dynamics Observatory. The jitter prediction is created using a coupled model of the structural dynamics, optical response, control systems, and stepper motor actuator electromechanical dynamics. The paper gives an overview of the model components, presents the verification processes used to evaluate the models, describes validation and calibration tests and model-to-measurement comparison results, and presents the jitter analysis methodology and results.

  7. The Virtual Observatory: Retrospective and Prospectus

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2010-12-01

    At the ADASS XV in San Lorenzo de El Escorial, Spain, in October 2005, I gave an overview of the accomplishments of the Virtual Observatory initiatives and discussed the imminent transition from development to operations. That transition remains on the horizon for the US Virtual Observatory, and VO projects worldwide have encountered various programmatic challenges. The successes of the Virtual Observatory are many, but thus far are primarily of a technical nature. We have developed a data discovery and data access infrastructure that has been taken up by data centers and observatories around the world. We have web-based interfaces, downloadable toolkits and applications, a security and restricted access capability, standard vocabularies, a sophisticated messaging and alert system for transient events, and the ability for applications to exchange messages and work together seamlessly. This has been accomplished through a strong collaboration between astronomers and information technology specialists. We have been less successful engaging the astronomical researcher. Relatively few papers have been published based on VO-enabled research, and many astronomers remain unfamiliar with the capabilities of the VO despite active training and tutorial programs hosted by several of the major VO projects. As we (finally!) enter the operational phase of the VO, we need to focus on areas that have contributed to the limited take-up of the VO amongst active scientists, such as ease of use, reliability, and consistency. We need to routinely test VO services for aliveness and adherence to standards, working with data providers to fix errors and otherwise removing non-compliant services from those seen by end-users. Technical developments will need to be motivated and prioritized based on scientific utility. We need to continue to embrace new technology and employ it in a context that focuses on research productivity.

  8. Solar Terrestrial Observatory Space Station Workshop Report

    NASA Technical Reports Server (NTRS)

    Roberts, W. T. (Editor)

    1986-01-01

    In response to a need to develop and document requirements of the Solar Terrestrial Observatory at an early time, a mini-workshop was organized and held on June 6, 1985. The participants at this workshop set as their goal the preliminary definition of the following areas: (1) instrument descriptions; (2) placement of instrumentation on the IOC Space Station; (3) servicing and repair assessment; and (4) operational scenarios. This report provides a synopsis of the results of that workshop.

  9. Chandra X-Ray Observatory Computer Rendering

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  10. Utilizing Internet Technologies in Observatory Control Systems

    NASA Astrophysics Data System (ADS)

    Cording, Dean

    2002-12-01

    The 'Internet boom' of the past few years has spurred the development of a number of technologies to provide services such as secure communications, reliable messaging, information publishing and application distribution for commercial applications. Over the same period, a new generation of computer languages have also developed to provide object oriented design and development, improved reliability, and cross platform compatibility. Whilst the business models of the 'dot.com' era proved to be largely unviable, the technologies that they were based upon have survived and have matured to the point were they can now be utilized to build secure, robust and complete observatory control control systems. This paper will describe how Electro Optic Systems has utilized these technologies in the development of its third generation Robotic Observatory Control System (ROCS). ROCS provides an extremely flexible configuration capability within a control system structure to provide truly autonomous robotic observatory operation including observation scheduling. ROCS was built using Internet technologies such as Java, Java Messaging Service (JMS), Lightweight Directory Access Protocol (LDAP), Secure Sockets Layer (SSL), eXtendible Markup Language (XML), Hypertext Transport Protocol (HTTP) and Java WebStart. ROCS was designed to be capable of controlling all aspects of an observatory and be able to be reconfigured to handle changing equipment configurations or user requirements without the need for an expert computer programmer. ROCS consists of many small components, each designed to perform a specific task, with the configuration of the system specified using a simple meta language. The use of small components facilitates testing and makes it possible to prove that the system is correct.

  11. CCD photometry at Observatory Úpice

    NASA Astrophysics Data System (ADS)

    Mrllák, R.; Bélík, M.; Novák, R.; Dvořáček, A.

    2016-03-01

    This paper informs about the results of photometric observations made with CCD technology and new remotely controlled telescope on Observatory Úpice and about activities related to the robotics of existing equipment. We describe the technical solution, its weaknesses and plans for the future, as well as present way of data acquisition. Finally we present statistical summary and some planned additional enhancements and modifications of the observing program as well as of technical facility.

  12. Variable Star Photometry at West Challow Observatory

    NASA Astrophysics Data System (ADS)

    Boyd, D.

    2007-05-01

    This paper describes the facilities and observing programme of a small personal observatory set up in the UK for CCD photometry of variable stars. Its development has been driven by the belief that committed amateurs can make a valuable scientific contribution to the study of variable stars. Observing projects carried out at WCO are described including examples of Pro-Am collaboration and contributions to the observing programmes of the BAAVSS, AAVSO and CBA.

  13. Toward a Space based Gravitational Wave Observatory

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2015-01-01

    A space-based GW observatory will produce spectacular science. The LISA mission concept: (a) Long history, (b) Very well-studied, including de-scopes, (c) NASAs Astrophysics Strategic Plan calls for a minority role in ESAs L3 mission opportunity. To that end, NASA is Participating in LPF and ST7 Developing appropriate technology for a LISA-like mission Preparing to seek an endorsement for L3 participation from the 2020 decadal review.

  14. Conceiving and Marketing NASA's Great Observatories

    NASA Astrophysics Data System (ADS)

    Harwit, Martin

    2009-01-01

    In late 1984, Dr. Charles P. (Charlie) Pellerin Jr., director of the Astrophysics Division of NASA's Office of Space Science and Applications (OSSA) faced a dilemma. Congress and the White House had given approval to work that would lead to the launch of the Gamma Ray Observatory and the Hubble Space Telescope, but competing segments of the astronomical community were clamoring for two additional missions, the Space Infrared Telescope Facility (SIRTF) and the Advanced X-ray Astrophysics Facility (AXAF). Pellerin knew that Congress would not countenance a request for another costly astronomical space observatory so soon after approving GRO and HST. He also foresaw that if he arbitrarily assigned priority to either AXAF or SIRTF he would split the astronomical community. The losing faction would be up on Capitol Hill, lobbying Congress to reverse the decision; and Congress would do what it always does with split communities --- nothing. Pellerin called a meeting of leading astrophysicists to see how a persuasive argument could be made for both these new observatories and to market them as vital to a first comprehensive inventory of the universe conducted across all wavelength ranges. The group provided Pellerin a rotating membership of astrophysicists, who could debate and resolve issues so that decisions he reached would have solid community support. It also helped him to market his ideas in Congress. Ultimately, the concept of the Great Observatories came to be accepted; but its implementation faced myriad difficulties. False starts, political alliances that never worked out, and dramatic changes of direction necessitated by the Challenger disaster of early 1986 continually kept progress off balance. My paper follows these twists and turns from late 1984 to the announcement, on February 1, 1988, that President Reagan's FY89 budget proposal to Congress had designated AXAF for a new start.

  15. From AISR to the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Szalay, Alexander S.

    2014-01-01

    The talk will provide a retrospective on important results enabled by the NASA AISR program. The program had a unique approach to funding research at the intersection of astrophysics, applied computer science and statistics. It had an interdisciplinary angle, encouraged high risk, high return projects. Without this program the Virtual Observatory would have never been started. During its existence the program has funded some of the most innovative applied computer science projects in astrophysics.

  16. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  17. VESO: Virtual Earth-Sun Observatory

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; Cifuentes-Nava, G.; Hernandez-Quintero, E.; Lara-Sanchez, A.; Valdes-Galicia, J. F.

    2007-12-01

    We present the Virtual Earth-Sun Observatory (VESO) at the web site http://www.veso.unam.mx. This site shows a real time integrated database obtained from four instruments of the Instituto de Geofisica-UNAM studying Sun- Earth connection phenomena. (1) The Solar Radio Interferometer (RIS, Radio Interferómetro Solar) measures the lower solar atmosphere radiation at 7.5 GHz, revealing microwave bursts associated with solar activity. (2) The Mexican Array Radio Telescope (MEXART, Observatorio de Centelleo Interplanetario de Coeneo) will detect solar wind large-scale disturbances between Sun and Earth(e.g., Interplanetary counterparts of Coronal Mass Ejections (ICMES)and Stream Interaction Regions (SIR)) employing the interplanetary scintillation technique (IPS) operating at 140 MHz. (3) The Cosmic Ray Observatory (RC) detects high energy galactic and solar particles, whose flow is affected by magnetic disturbances in the solar wind, and (4) the Teoloyucan Geomagnetic Observatory (TEO) measures the variations in the Earth´s magnetic field. The VESO instruments provide data from four different points of the complex chain of the solar terrestrial relations and allow the study of intense solar events and in possible consequences in causing geomagnetic activity. The VESO project is part of the celebration of the International Heliophysical Year (IHY) and the Electronic Geophysical Year (EGY) in Mexico.

  18. The Spanish contribution to the CTA Observatory

    NASA Astrophysics Data System (ADS)

    Barrio, J. A.; CTA Consortium

    2015-05-01

    The Cherenkov Telescope Array (CTA) project is an initiative to build the next generation ground- based Very High Energy gamma-ray instrument. It will serve as an open observatory to a wide astrophysics community and will provide a deep insight into the non-thermal high-energy universe. To achieve such goals, it will offer full-sky coverage (with Northern and Southern hemisphere sites), an improvement in sensitivity by about an order of magnitude, an enlarged span in energy (from a few tens of GeV to above 100 TeV), and enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1100 members from 28 countries all over the world. The Spanish High Energy Astrophysics community is deeply committed to CTA, with more than 70 scientists and technicians from 9 research groups currently involved in building prototypes for several CTA subsystems. This participation covers a wide list of items, both hardware- and software-related. The former includes telescope-level (camera electronics and mechanics and telescope undercarriage) and observatory- level (array optical calibration and atmospheric monitoring) elements. And the latter includes the design of the data pipelines and the scheduling for observational proposals. In this report, the status of the CTA project and the contribution of the Spanish community will be presented.

  19. The Virtual Solar Observatory - Status and Plans

    NASA Astrophysics Data System (ADS)

    Hill, F.

    2001-05-01

    The Virtual Solar Observatory (VSO) is a software environment for searching, obtaining and analyzing data from archives of solar data that are distributed at many different observatories around the world. This "observatory" is virtual since it exists only on the Internet, not as a physical structure. As a research tool, the VSO would enable a new field of correlative statistical solar physics in which large-scale comparative studies spanning many dimensions and data sources could be carried out. Several groups with solar archives have indicated their willingness to particpate as a VSO component. These include NSO (KPVT GONG, and SOLIS); NASA/GSFC SDAC; SOHO; Stanford (SOI/MDI, TON, WSO); Lockheed (TRACE); MSU (Yohkoh); UCLA (Mt. Wilson 150-ft Tower); USC (Mt. Wilson 60-ft Tower); BBSO/NJIT; Arcetri (ARTHEMIS); Meudon; HAO; and CSUN/SFO. The VSO will be implemented so that additional systems can be easily incorporated. The VSO technical concept includes the federation of distributed solar archives, an adaptive metadata thesaurus, a single unified intuitive GUI, context-based searches, and distributed computing. The underlying structure would most likely be constructed using platform-independent tools such as XML and JavaScript. There are several technical challenges facing the VSO development. Issues of security, bandwidth, metadata, and load balancing must be faced. While the VSO is currently in the concept phase, a number of funding opportunities are bing pursued. The status of these proposals and plans for the future will be updated at the meeting.

  20. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Gehrz, R. D.

    2009-12-01

    The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5 m infrared telescope in a Boeing 747SP. Flying at altitudes as high as 45,000 feet, it will enable 0.3 μm- 1.6 mm observations with an average transmission of ≥ 80%. We describe the key role that Tom Phillips played in the early days of airborne astronomy that culminated in the development of SOFIA. The facility design and status are described. Nine first generation instruments that will fly on SOFIA include broadband imaging cameras, moderate resolution spectrographs capable of resolving emission features due to dust and large molecules, and high resolution spectrometers suitable for kinematical studies of molecular and atomic gas lines at km s-1 resolution. World-wide deployments will provide access to the entire sky and enable timely observations of transient events. SOFIA's sensitivity for imaging and spectroscopy is similar to that of the space observatory ISO. Its telescope is diffraction-limited beyond 25μm, making its images 3 times sharper than those obtained by the Spitzer Space Telescope at these wavelengths. We describe the characteristics of the observatory and give several examples of science opportunities with SOFIA.

  1. Vision for a Virtual Radiation Belt Observatory

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Baker, D. N.; Kroehl, H. W.; Kihn, E. A.; Fennell, J. F.; Blake, J. B.; Reeves, G. D.; Friedel, R. H.; McGuire, R. E.; Fung, S. F.; Kanekal, S. G.; Mason, G. M.; Rigler, E. J.; Weigel, R. S.; Elkington, , S. R.

    2004-05-01

    Satellite engineers, operators, and scientists now share a common desire to understand the structure and variability of the earth's radiation belts. Continuing upsets to space operations demonstrate a need for improved scientific understanding of the radiation belts, more accurate models, and better transfer of scientific understanding to space technology and operations. Currently, the resources necessary for such advancements are beyond the scope of an individual researcher. Thus, we discuss plans to advance our understanding of the radiation belts and mitigate the hazards they pose to society by creating a Virtual Radiation Belt Observatory (ViRBO). The observatory will be an open access near real time and long term archive of observed and simulated radiation belt model data. It will enable scientists to test theoretical mechanisms proposed to explain how particles are accelerated and removed from the radiation belts and it will provide improved tools for engineers designing satellites and operators assessing satellite malfunctions. The observatory will capitalize on radiation belt modeling efforts currently underway at institutions throughout the country and support the goals of the electronic Geophysical Year (eGY) endorsed by the world wide community.

  2. Open Technologies at Athabasca University's Geospace Observatories

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; Schofield, I. S.

    2012-12-01

    Athabasca University Geophysical Observatories feature two auroral observation sites situated in the subauroral zone of western Canada, separated by approximately 25 km. These sites are both on high-speed internet and ideal for observing phenomena detectable from this latitude, which include noctilucent clouds, meteors, and magnetic and optical aspects of the aurora. General aspects of use of Linux in observatory management are described, with emphasis on recent imaging projects involving control of high resolution digital SLR cameras at low cadence, and inexpensive white light analog video cameras at 30 Hz. Linux shell scripts are extensively used, with image capture controlled by gphoto2, the ivtv-utils package, x264 video coding library, and ffmpeg. Imagemagick allows processing of images in an automated fashion. Image archives and movies are created and can be correlated with magnetic data. Much of the magnetic data stream also uses GMT (Generic Mapping Tools) within shell scripts for display. Additionally, SPASE metadata are generated for most of the magnetic data, thus allowing users of our AUTUMN magnetic data repository to perform SPASE queries on the dataset. Visualization products from our twin observatories will be presented.

  3. Modern Views of Ancient Solar Observatories

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Cornucopia, G. B.

    2004-05-01

    The NASA Sun-Earth Connection Education Forum (SECEF) annually promotes an event called Sun-Earth Day. The event emphasizes the study of the Sun and its effects on the Earth and the rest of the Solar System. Sun-Earth Day 2004 will emphasize the June 8th Transit of Venus as a theme. For 2005 the highlight will be the study of the Sun by ancient cultures and how that relates to contemporary solar knowledge. There are many examples of ancient solar observatories around the world, but some of the best are found in National Parks. SECEF has been working with Chaco Culture National Historical Park in New Mexico to do a webcast showing knowledge about the Sun by the Chacoan people that is evident in the park. The Sun Dagger and other pictographs as well as Chaco building alignments indicate the influence of the Sun in the lives of this people. The cooperative planning for this event by NASA and the National Park Service (NPS) will be discussed. Other events emphasizing ancient observatories in other locations are also planned for the future. The partnership between SECEF and NPS is not limited to ancient observatories, however. The influence of the Sun on our daily lives is an appropriate topic for many parks and the possibilities for solar exhibits, daytime astronomy sessions, scientist lectures, etc. will be discussed as well.

  4. The Solid Earth Research Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Rundle, J. B.; Fox, G.; Pierce, M.; McLeod, D.; Parker, J. W.; Tullis, T.; Grant, L.

    2003-12-01

    Under the auspices of NASA we are developing the Solid Earth Research Virtual Observatory (SERVO). The initial focus of the observatory is spaced-based observational data, ground-based sensor data (GPS, seismicity), simulation data, and published/historical fault measurements, coupled with earthquake fault and tectonic modeling and pattern recognition software. This observatory will enable investigators to seamlessly merge multiple data sets and models, and create new queries. In the SERVO framework, simulation data will be archived together with analysis/animation tools and the original simulation code. Observational data, which is heterogeneous and distributed in nature, will be accessible through cooperative federated databases. SERVO will include tools for visualization, datamining and pattern recognition, with data fusion into a web services (portal) based Problem Solving Environment (PSE). SERVO couples distributed data sources, applications, and hardware resources through an XML-based Web Services framework. Users access the services (and thus distributed resources) through Web browser-based Problem Solving Environment clients. The Web services approach defines standard, programming language-independent application programming interfaces, so non-browser client applications may also be built. Initial application codes in SERVO are GeoFEST, a parallel 3D finite element code, Virtual California, a boundary element code to simulate fault interactions, PARK, a boundary element code for studying unstable slip on faults, and two pattern recognizers RDAHMM, which uses a modification of Hidden Markov Models to analyze time series data, and PDPC, which looks for anomalies in seismicity data.

  5. The Lowell Observatory Predoctoral Scholar Program

    NASA Astrophysics Data System (ADS)

    Prato, Lisa A.

    2011-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its fourth year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, to exoplanet science, to stellar populations and dwarf irregular galaxies. First light with the observatory's new 4.2 meter Discovery Channel Telescope is expected in 2011, making this a particularly exciting time in our history. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. Currently, five students are enrolled in our program; our first graduate completed the program in August, 2009. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2011 are due by May 1, 2011.

  6. The Lowell Observatory Predoctoral Scholar Program

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey C.; Prato, L. A.

    2012-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its fifth year, this program provides unique research opportunities to graduate students in good standing and currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics from astronomical instrumentation to icy bodies in our solar system, exoplanet science, and stellar populations and dwarf irregular galaxies. The Observatory's new 4.3-meter Discovery Channel Telescope is on track for first light by mid-2012, making this a particularly exciting time in our history. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. Currently, three students are enrolled and three have successfully completed their thesis work at Lowell and moved on to postdocs and astronomy jobs elsewhere. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2012 are due by May 1, 2012.

  7. The Lowell Observatory Predoctoral Scholar Program

    NASA Astrophysics Data System (ADS)

    Prato, Lisa A.

    2015-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its seventh year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. The Observatory's new 4.2 meter Discovery Channel Telescope has successfully begun science operations and we anticipate the commissioning of several new instruments in 2015, making this a particularly exciting time in our history. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2015 are due by May 1, 2015.

  8. The Lowell Observatory Predoctoral Scholar Program

    NASA Astrophysics Data System (ADS)

    Prato, Lisa A.

    2013-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its sixth year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. The Observatory's new 4.3 meter Discovery Channel Telescope has successfully seen first light in May, 2012, and is on track to commence science operations in 2013, making this a particularly exciting time in our history. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2013 are due by May 1, 2013.

  9. The Lowell Observatory Predoctoral Fellowship Program

    NASA Astrophysics Data System (ADS)

    Prato, Lisa A.; Shkolnik, E.

    2014-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Fellowship Program. Now beginning its seventh year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. The Observatory's new 4.3 meter Discovery Channel Telescope has successfully begun science operations and we anticipate the commissioning of several new instruments in 2014, making this a particularly exciting time to do research at Lowell. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2014 are due by May 1, 2014.

  10. The brazilian indigenous planetary-observatory

    NASA Astrophysics Data System (ADS)

    Afonso, G. B.

    2003-08-01

    We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.

  11. Demetrios Eginitis: Restorer of the Athens Observatory

    NASA Astrophysics Data System (ADS)

    Theodossiou, E. Th.; Manimanis, V. N.; Mantarakis, P.

    2007-07-01

    Demetrios Eginitis (1862-1934), one of the most eminent modern Greek astronomers, directed the National Observatory of Athens for 44 years (1890-1933). He was the fourth director since its founding, and was responsible for the restoration and modernization of the Observatory, which was in a state of inactivity after the death of Julius Schmidt in 1884. Eginitis ordered the purchase of modern instruments, educated the personnel, enriched the library with necessary and up-to-date books and arranged for new buildings to be built to house new telescopes and accommodate the personnel. Moreover, he divided the National Observatory of Athens into three separate Departments: the Astronomical, the Meteorological and the Geodynamic. D. Eginitis' contribution to Greek society went beyond his astronomical accomplishments. He was instrumental in the adoption of the Eastern European time zone for local time in Greece, and he succeeded in changing the official calendar from the Julian to the Gregorian. Having served twice as Minister of Education, he created many schools, founded the Academy of Athens and the Experimental School of the University of Athens. Eginitis was fluent in French, German and English, and therefore was the official representative of his country in numerous international conferences and councils.

  12. Camille Flammarion's observatory: towards a revival

    NASA Astrophysics Data System (ADS)

    Morel, P.; Pecker, J. C.; Flammarion, A.; Fuentes, P.; Stépanoff, C. A.; Sol, R.; Dufour, G.; Chaufour, R.; Goury-Laffont, J.

    2011-06-01

    Camille Flammarion's observatory, located in Juvisy-sur-Orge in the suburbs of Paris, has been idle since 1962. Property of the Société Astronomique de France (SAF), it was made available to the city of Juvisy-sur-Orge since 1971, and contains a unique collection of objects and books currently being sorted out. The observatory is being restored by the SAF, thanks to the support of the city of Juvisy-sur-Orge, the French Académie des Sciences and the ``Amis de Camille Flammarion'' association. In 2006, the Maxime Goury Laffont foundation funded the refurbishment of the 240 mm refractor and in 2007 funds were obtained to restore the dome and central building. The main aim of the project is to make this historical place a popular observatory dedicated to astronomy and the sciences which Camille Flammarion enjoyed and contributed to. It constitutes a unique example in France of synergies linking associations, municipality, regional- and national-level institutions.

  13. The International X-ray Observatory

    NASA Technical Reports Server (NTRS)

    Hornschemeier, A.

    2009-01-01

    The International X-Ray Observatory, a joint NASA-ESA-JAXA effort, is a next generation X-ray telescope that will answer many fundamental questions in contemporary astrophysics such as how do supermassive black holes influence galaxy evolution and how do galaxy clusters evolve (and how does this constrain dark energy and dark matter)? As a powerful astronomical observatory, IXO will also address questions ranging from the neutron star equation of state to the distribution and dynamical state of intergalactic material. X-ray spectroscopy, polarimetry, and timing studies provided by IXO's instruments will give detailed measures of abundances, temperatures, densities, magnetic fields and gravitational potentials. These measurements will be complementary to the next generation of observatories such as ALMA, JWST, and future ground-based optical-NIR telescopes. This mission will be ready for launch in the 2020-2021 timeframe and will launch on an Atlas V or Ariane V launch vehicle to L2. It employs a deployable optical bench to achieve the 20 meter focal length and a suite of five instruments. This talk will describe the motivating science for this mission as well as the spacecraft, instruments and optics

  14. Exploring remote operation for ALMA Observatory

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Ovando, Nicolás.; Velez, Gaston; Fuica, Soledad; Schemrl, Anton; Robles, Andres; Ibsen, Jorge; Filippi, Giorgio; Pietriga, Emmanuel

    2014-08-01

    The Atacama Large Millimeter /submillimeter Array (ALMA) will be a unique research instrument composed of at least 66 reconfigurable high-precision antennas, located at the Chajnantor plain in the Chilean Andes at an elevation of 5000 m. The observatory has another office located in Santiago of Chile, 1600 km from the Chajnantor plain. In the Atacama desert, the wonderful observing conditions imply precarious living conditions and extremely high operation costs: i.e: flight tickets, hospitality, infrastructure, water, electricity, etc. It is clear that a purely remote operational model is impossible, but we believe that a mixture of remote and local operation scheme would be beneficial to the observatory, not only in reducing the cost but also in increasing the observatory overall efficiency. This paper describes the challenges and experience gained in such experimental proof of the concept. The experiment was performed over the existing 100 Mbps bandwidth, which connects both sites through a third party telecommunication infrastructure. During the experiment, all of the existent capacities of the observing software were validated successfully, although room for improvement was clearly detected. Network virtualization, MPLS configuration, L2TPv3 tunneling, NFS adjustment, operational workstations design are part of the experiment.

  15. The International X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Smith, Randall; Ixo Team

    2009-09-01

    The International X-ray Observatory (IXO), a joint ESA-JAXA-NASA effort, will address fundamental and timely questions in astrophysics: What happens close to a black hole? How did supermassive black holes grow? How does large scale structure form? What is the connection between these processes? To address these questions IXO will trace orbits close to the event horizon of black holes, measure black hole spin for several hundred active galactic nuclei (AGN), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, search for super-massive black holes out to redshift z = 10, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes inject energy on galactic and intergalactic scales. IXO will employ optics with 3 sq m collecting area and 5 arc sec angular resolution - 20 times more collecting area at 1 keV than any previous X-ray observatory. Focal plane instruments will deliver a 100-fold increase in effective area for high-resolution spectroscopy, deep spectral imaging over a wide field of view, deep polarimetric sensitivity, microsecond spectroscopic timing, and high count rate capability. The mission is being planned for launch in 2021 to an L2 orbit, with a five-year lifetime and consumables for 10 years. Previous experience assures us that unexpected discoveries will abound - a key feature of great observatories.

  16. High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This illustration is a schematic of the High Energy Astronomy Observatory (HEAO)-2 and its experiments. It shows the focal plane instruments (at the right) plus the associated electronics for operating the telescope as it transmitted its observations to the ground. A fifth instrument, the Monitor Proportional Counter, is located near the front of the telescope. Four separate astronomical instruments are located at the focus of this telescope and they could be interchanged for different types of observations as the observatory pointed at interesting areas of the Sky. Two of these instruments produced images; a High Resolution Imaging Detector and an Imaging Proportional Counter. The other two instruments, the Solid State Spectrometer and the Crystal Spectrometer, measured the spectra of x-ray objects. A fifth instrument, the Monitor Proportional Counter, continuously viewed space independently to study a wider band of x-ray wavelengths and to examine the rapid time variations in the sources. The HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  17. Recent progress with the JWST Observatory

    NASA Astrophysics Data System (ADS)

    Clampin, Mark

    2014-08-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 μm - 28 μm. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. JWST is a segmented mirror telescope operating at ~40K, a temperature achieved by passive cooling of the observatory, via a large, 5-layer membrane-based sunshield. We present an overview of the observatory systems design, the science instruments and the mission science objectives. With the completion of the Spacecraft Critical Design Review, the spacecraft has also fully transitioned to fabrication. We will discuss recent highlights associated with the Observatory, including completion and delivery of the primary mirror segments, delivery of the primary mirror backplane and its wings, and the delivery of five template membrane layers. We will also summarize the current predicted performance of the telescope, including stray light, pointing and image quality following the completion of the final design review. Finally, the current schedule through to launch will be presented with a summary of integration and test activities planned when the science payload is delivered to Northrop Grumman following cryo-optical testing at the Johns Space Flight Center.

  18. Performance of adaptive optics at Lick Observatory

    SciTech Connect

    Olivier, S.S.; An, J.; Avicola, K.

    1994-03-01

    A prototype adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use at Lick Observatory. This system is based on an ITEX 69-actuator continuous-surface deformable mirror, a Kodak fast-framing intensified CCD camera, and a Mercury VME board containing four Intel i860 processors. The system has been tested using natural reference stars on the 40-inch Nickel telescope at Lick Observatory yielding up to a factor of 10 increase in image peak intensity and a factor of 6 reduction in image full width at half maximum (FWHM). These results are consistent with theoretical expectations. In order to improve performance, the intensified CCD camera will be replaced by a high-quantum-efficiency low-noise fast CCD camera built for LLNL by Adaptive Optics Associates using a chip developed by Lincoln Laboratory, and the 69-actuator deformable mirror will be replaced by a 127-actuator deformable mirror developed at LLNL. With these upgrades, the system should perform well in median seeing conditions on the 120-inch Shane telescope for observing wavelengths longer than {approximately}1 {mu}m and using natural reference stars brighter than m{sub R} {approximately} 10 or using the laser currently being developed at LLNL for use at Lick Observatory to generate a sodium-layer reference star.

  19. Great Observatories Present Rainbow of a Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's Spitzer, Hubble and Chandra space observatories teamed up to create this multi-wavelength, false-colored view of the M82 galaxy. The lively portrait celebrates Hubble's 'sweet sixteen' birthday.

    X-ray data recorded by Chandra appears in blue; infrared light recorded by Spitzer appears in red; Hubble's observations of hydrogen emission appear in orange, and the bluest visible light appears in yellow-green.

    About the Movie M82 is shown in all its wavelength glory. Dissolving from Chandra X-ray Observatory images of three X-ray energy bands to images in three bands of the infrared spectrum taken by the Spitzer Space Telescope, and ending with the Hubble Space Telescope's visible- and near-infrared-light image. The three observatories' images were composited to reveal the galaxy's stars, as well as gas and dust features.

    Note: The size of the Full-Res TIFF for the still image is 4299 samples x 3490 lines.

  20. Global TIE: Developing a Virtual Network of Robotic Observatories for K-12 Education

    NASA Astrophysics Data System (ADS)

    Mayo, L. A.; Clark, G.

    2001-11-01

    Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible to schools all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA-sponsored Telescopes In Education (TIE, http://tie.jpl.nasa.gov) project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. Global TIE integrates these telescopes seamlessly into one virtual observatory and provides the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community. Global TIE provides unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns essentially unused observatory facilities into valuable, state-of-the-art teaching centers. This presentation describes the Global TIE Observatory data and organizational systems and details the

  1. Commissioner Potočnik at Paranal Observatory

    NASA Astrophysics Data System (ADS)

    2007-10-01

    As part of his first official trip to Brazil and Chile, the European Science and Research Commissioner, Janez Potočnik, visited Europe's flagship for ground-based astronomy, the ESO Paranal Observatory. ESO PR Photo 48a/07 ESO PR Photo 48a/07 Commissioner Potočnik at the Control-Console of the VLT The major facility atop the 2600m high Paranal mountain in the Chilean Atacama Desert is the Very Large Telescope (VLT), whose design, instrument complement and operating principles set the standard for ground-based optical and infrared astronomy. The VLT Interferometer (VLTI) enhances the capabilities of this unique facility even further as do the survey telescopes VST (optical) and VISTA (infrared). Publication statistics show that the VLT provides data for a scientific paper every day, all year round. The Commissioner was accompanied, among others, by Jaime Pérez Vidal, Head of Delegation of the European Commission (EC) to Chile, Mary Minch and Cornelia Nauen, respectively Director and Principal Administrator of International Scientific Cooperation for the EC, and Hervé Peró, Head of EC Unit Research Infrastructures. The visitors were able to acquaint themselves with the VLT during an overnight stay at this remote site. The guests were welcomed by the ESO Director General, Tim de Zeeuw, the ESO Representative in Chile, Felix Mirabel, and the Director of the Paranal Observatory, Andreas Kaufer, as well as ESO staff members of many nationalities. The visitors were shown the various frontline installations at the observatory, including many of the distinctive VLT astronomical instruments that have been built in collaboration between ESO and European research institutes. The Commissioner was provided with a good impression of the wide range of exciting research programmes that are carried out with the VLT. ESO PR Photo 48b/07 ESO PR Photo 48b/07 Commissioner Potočnik Visiting the ESO Observatory at Paranal Having enjoyed the spectacular sunset over the Pacific Ocean

  2. Gotha - the instruments of the observatory

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    Around 1800 the Gotha observatory was an international center of astronomy and was the most modern astronomical institute with respect to its instruments 1. Duke Ernst II of Sachsen-Gotha-Altenburg (1745-1804) used the following instruments in his private observatory at castle Friedenstein in Gotha; it should be emphasized that all instruments were coming from London - England was the center of instrument making in the 18th century 2: A 18-inch quadrant made by Sisson, London; a small 2-ft transit instrument made by Ramsden, London [DM 67751]; three Hadley sextants; an achromat heliometer made by Dollond, London [DM 67750]; a 2-ft achromat refractor made by Ramsden, London [DM 67754]; a Gregory reflector made by Short, London [Gotha] and several clocks. In 1787, Franz Xaver von Zach (1754-1832) planned a new observatory outside of Gotha on the top of hill Seeberg, financed by the Duke (building 36000 Taler, instruments 20000 Taler; for comparison: the director got several hundreds Taler/year). The focus of research was astrometry, time keeping, geodetic and meteorological observations. Most of the instruments came from the leading instrument makers of that time: A southern and a northern quadrant; a 8-ft transit instrument made by Ramsden, London, 1788 [DM 67743 a-c]; a 7-ft Herschel reflector [DM 67483]; a 2-ft vertical circle made by Cary, London, 1796; a 8-ft circle made by Ramsden, London, 1800; a 3-ft vertical circle made by Trougthon, London, 1800; a 3-ft equatorial refractor made by Dollond, London, 1796 [DM 67745 a, b]; a 3-ft equatorial refractor made by Schroeder, Gotha [DM 67746 a, b]; a 3-ft double refractor made by Dollond, London [DM 67747]; a 10-ft refractor mady by Dollond, London, 1796; a 2-ft comet seeker made by Baumann & Kinzelbach, Stuttgart [DM 67755]. By analyzing the instrumentation, we can see around 1800 a change in the kind of the instruments on one hand from quadrants and sextants to the vertical circle and on the other hand from the

  3. Astronomical Education in the Nicholas Copernicus Observatory and Planetarium in Brno

    NASA Astrophysics Data System (ADS)

    Ledvinka, S.; Pisala, J.

    The astronomy can be an ideal vehicle for extending the informal education. The planetariums can be the appropriate choice for an extended education. The science of astronomy has a great advantage over other disciplines and all those attributes can be fully utilised in creation of an educational programs for students and general public. The following article will describe how The Nicholas Copernicus Observatory and Planetarium in Brno dealt with some aspects of the astronomical education.

  4. An Integrated Cyberenvironment for Event-Driven Environmental Observatory Research and Education

    NASA Astrophysics Data System (ADS)

    Myers, J.; Minsker, B.; Butler, R.

    2006-12-01

    National environmental observatories will soon provide large-scale data from diverse sensor networks and community models. While much attention is focused on piping data from sensors to archives and users, truly integrating these resources into the everyday research activities of scientists and engineers across the community, and enabling their results and innovations to be brought back into the observatory, also critical to long-term success of the observatories, is often neglected. This talk will give an overview of the Environmental Cyberinfrastructure Demonstrator (ECID) Cyberenvironment for observatory-centric environmental research and education, under development at the National Center for Supercomputing Applications (NCSA), which is designed to address these issues. Cyberenvironments incorporate collaboratory and grid technologies, web services, and other cyberinfrastructure into an overall framework that balances needs for efficient coordination and the ability to innovate. They are designed to support the full scientific lifecycle both in terms of individual experiments moving from data to workflows to publication and at the macro level where new discoveries lead to additional data, models, tools, and conceptual frameworks that augment and evolve community-scale systems such as observatories. The ECID cyberenvironment currently integrates five major components a collaborative portal, workflow engine, event manager, metadata repository, and social network personalization capabilities - that have novel features inspired by the Cyberenvironment concept and enabling powerful environmental research scenarios. A summary of these components and the overall cyberenvironment will be given in this talk, while other posters will give details on several of the components. The summary will be presented within the context of environmental use case scenarios created in collaboration with researchers from the WATERS (WATer and Environmental Research Systems) Network, a

  5. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph B.

    2007-01-01

    The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."

  6. New Observatory Outreach Programs for Students in Grades 3-12

    NASA Astrophysics Data System (ADS)

    Moorthy, Bhasker K.; Kabbes, J.; Page, K. A.; Cole, K.

    2013-06-01

    The Henize Observatory at Harper College, a community college in suburban Chicago, has conducted biweekly public viewing sessions from March to November for over ten years. Recently, we developed two complementary public education programs for primary and secondary school students. The Cosmic Explorers program allows students in Grades 3-6 to observe and identify night sky objects and receive small rewards for completing four “seasons” of observing in their Night Sky Passport. The Henize Docent program gives students in Grades 7-12 the opportunity to assist with observatory operations, including the Cosmic Explorers program, and learn about astronomy and nature interpretation methods. Together, these two programs have rejuvenated our public viewing sessions and generated a real excitement in the community. The success of these programs has presented new challenges for the observatory. Innovative solutions for crowd control and expanded training for volunteer staff were necessary to support the increased visitor load. Students in the docent program have been highly motivated and require training and challenges to keep them engaged. One unexpected benefit was increased interest in Harper College's Astronomy Club as students, particularly those in education, participate in these informal education opportunities. Both programs can be adapted to any venue with night time observing and access to telescopes. We will discuss the programs, their costs, program materials and marketing, challenges and solutions, and future plans. This work is supported by a Harper College Resource for Excellence Grant.

  7. Lessons Learned From 104 Years of Mobile Observatories

    NASA Astrophysics Data System (ADS)

    Miller, S. P.; Clark, P. D.; Neiswender, C.; Raymond, L.; Rioux, M.; Norton, C.; Detrick, R.; Helly, J.; Sutton, D.; Weatherford, J.

    2007-12-01

    As the oceanographic community ventures into a new era of integrated observatories, it may be helpful to look back on the era of "mobile observatories" to see what Cyberinfrastructure lessons might be learned. For example, SIO has been operating research vessels for 104 years, supporting a wide range of disciplines: marine geology and geophysics, physical oceanography, geochemistry, biology, seismology, ecology, fisheries, and acoustics. In the last 6 years progress has been made with diverse data types, formats and media, resulting in a fully-searchable online SIOExplorer Digital Library of more than 800 cruises (http://SIOExplorer.ucsd.edu). Public access to SIOExplorer is considerable, with 795,351 files (206 GB) downloaded last year. During the last 3 years the efforts have been extended to WHOI, with a "Multi-Institution Testbed for Scalable Digital Archiving" funded by the Library of Congress and NSF (IIS 0455998). The project has created a prototype digital library of data from both institutions, including cruises, Alvin submersible dives, and ROVs. In the process, the team encountered technical and cultural issues that will be facing the observatory community in the near future. Technological Lessons Learned: Shipboard data from multiple institutions are extraordinarily diverse, and provide a good training ground for observatories. Data are gathered from a wide range of authorities, laboratories, servers and media, with little documentation. Conflicting versions exist, generated by alternative processes. Domain- and institution-specific issues were addressed during initial staging. Data files were categorized and metadata harvested with automated procedures. With our second-generation approach to staging, we achieve higher levels of automation with greater use of controlled vocabularies. Database and XML- based procedures deal with the diversity of raw metadata values and map them to agreed-upon standard values, in collaboration with the Marine Metadata

  8. NASA Extends Chandra X-ray Observatory Contract with the Smithsonian Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    2002-07-01

    NASA NASA has extended its contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass. to August 2003 to provide science and operational support for the Chandra X- ray Observatory, one of the world's most powerful tools to better understand the structure and evolution of the universe. The contract is an 11-month period of performance extension to the Chandra X-ray Center contract, with an estimated value of 50.75 million. Total contract value is now 298.2 million. The contract extension resulted from the delay of the launch of the Chandra X-ray Observatory from August 1998 to July 1999. The revised period of performance will continue the contract through Aug. 31, 2003, which is 48 months beyond operational checkout of the observatory. The contract type is cost reimbursement with no fee. The contract covers mission operations and data analysis, which includes both the observatory operations and the science data processing and general observer (astronomer) support. The observatory operations tasks include monitoring the health and status of the observatory and developing and distributing by satellite the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning, and coordination of science observations with the general observers and the processing and delivery of the resulting scientific data. Each year, there are on the order of 200 to 250 observing proposals selected out of about 800 submitted, with a total amount of observing time about 20 million seconds. X-ray astronomy can only be performed from space because Earth's atmosphere blocks X-rays from reaching the surface. The Chandra Observatory travels one-third of the way to the Moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg-shaped, orbit is 200 times higher than that of its visible-light- gathering sister, the Hubble Space Telescope. NASA

  9. Edward Singleton Holden (1846-1914): His career at the U. S. Naval Observatory from 1873 to 1881

    NASA Astrophysics Data System (ADS)

    Corbin, Brenda G.

    2010-01-01

    Edward Singleton Holden (1846-1914) held many positions during his career, including: astronomer at the U. S. Naval Observatory, Director of Washburn Observatory, President of the University of California, Director of Lick Observatory, and finally, Librarian at West Point. This presentation covers his tenure at the Naval Observatory. Educated at Washington University under Chauvenet, he went on to further study at West Point, graduating 3rd in his class in 1870. He resigned his commission in the Army in 1873 to become an astronomer at the Naval Observatory. He first assisted William Harkness on the transit circle and then Simon Newcomb took an interest in him and became an early mentor. When the 26-inch Clark refractor was completed in 1873, Holden was assigned to assist Newcomb. In 1875 Asaph Hall took over the 26-inch and Holden continued in this position. One of Holden's major accomplishments at the Observatory was the publication of the Monograph of the central parts of the nebula of Orion in 1882. He meticulously gathered all images of the central part of the nebula known at that time, beginning with a drawing by Huygens in 1656. These images, which were later used in the published volume, are mounted in a manuscript book held in the Observatory Library. Holden thought the relative brightness of certain parts of the nebula changed over time and tried to verify this theory. However, in 1882, his friend Henry Draper took a photographic image of the nebula with an exposure of 137 minutes which Holden readily accepted and included in the monograph. He immediately realized that photography was the tool of the future and would give a reliable, permanent record that later did indeed prove his theory was incorrect. Holden's work in the libraries of the Naval Observatory and West Point will also be discussed.

  10. Communicating Solar Astronomy to the public

    NASA Astrophysics Data System (ADS)

    Yaji, Kentaro; Solar Observatory NAOJ, The

    2015-08-01

    The Sun is the nearest star to us, so that the public is greatly interested in the Sun itself and in solar activity. The Solar Observatory, National Astronomical Observatory of Japan is one of the solar research divisions. Various data of the Sun obtained with our instruments, systematically accumulated more than one hundred years since 1910s, are open to not only researchers but also the public as online database. So, we have many chances that the public request solar images for the education and the media. In addition, we release daily solar observation informations on the web and with social media and guide visitors to our observation facilities. It is reviewed about the public relations and outreach activities of the Solar Observatory, including recent solar observation topics.

  11. Global TIE Observatories: Real Time Observational Astronomy Through a Robotic Telescope Network

    NASA Astrophysics Data System (ADS)

    Clark, G.; Mayo, L. A.

    2001-12-01

    Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. Teachers are generally not trained in observational astronomy techniques and are unfamiliar with the most basic astronomical concepts. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The problem becomes even more challenging in inner cities, remote rural areas and low socioeconomic communities where educational emphasis on topics in astronomy as well as access to observing facilities is limited or non existent. Access to most optical telescope facilities is limited to monthly observing nights that cater to a small percentage of the general public living near the observatory. Even here, the observing experience is a one-time event detached from the process of scientific enquiry and sustained educational application. Additionally, a number of large, "research grade" observatory facilities are largely unused, partially due to the slow creep of light pollution around the facilities as well as the development of newer, more capable telescopes. Though cutting edge science is often no longer possible at these sights, real research opportunities in astronomy remain numerous for these facilities as educational tools. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible through classrooms, after school, and community based programs all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA sponsored Telescopes In Education project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy

  12. The Great Geospace Observatory and Simultaneous Missions of Opportunity

    NASA Technical Reports Server (NTRS)

    Donovan, Eric; Brandt, Pontus; Siebeck, David; Spann, James; Lester, Mark

    2011-01-01

    A predictive understanding of the sun to geospace environment is one of the main goals of ILWS. This can only be achieved through a "system-level" approach, meaning long-term, simultaneous, continuous observations across the relevant scales of the magnetosphere and ionosphere/thermosphere (IT). To date such an approach, which must involve simultaneous, multi-scale, global imaging of different geospace regions, has not been carried out for a complete geomagnetic storm. Such imagery, now routine for the Solar community, is of critical scientific importance and captures public imagination. Its absence in geospace studies has limited the growth and impact of geospace science. In this presentation, we discuss a concept called the Great Geospace Observatory, which would involve coordinated geospace imaging through an international effort of multiple, simultaneous Missions of Opportunity. In this way, the cost would be spread among different agencies as well as putting remote sensors in vantage points optimized for each type of imaging. 24/7 auroral imaging from weather satellites on Molniya (or similar) orbits, EUV imaging of the plasmasphere from high-inclination orbits, continuous and global ENA imaging from geosynchronous commercial satellites, and continuous X-ray imaging of the cusp and magnetosheath from a high-altitude dedicated probe would quantitatively track system-level dynamics at through substorms, sawtooth events, steady magnetospheric convection, and storms; studying energy and mass coupling between the solar wind, magnetosphere, and the upper atmosphere. In our minds, The Great Geospace Observatory represents the next strategic step for ILWS and needs to be seriously considered.

  13. The Research Tools of the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, T. J.; Project, VAO

    2013-01-01

    Astronomy is being transformed by the vast quantities of data, models, and simulations that are becoming available to astronomers at an ever-accelerating rate. The U.S. Virtual Astronomical Observatory (VAO) has been funded to provide an operational facility that is intended to be a resource for discovery and access of data, and to provide science services that use these data. Over the course of the past year, the VAO has been developing and releasing for community use five science tools: 1) "Iris", for dynamically building and analyzing spectral energy distributions, 2) a web-based data discovery tool that allows astronomers to identify and retrieve catalog, image, and spectral data on sources of interest, 3) a scalable cross-comparison service that allows astronomers to conduct pair-wise positional matches between very large catalogs stored remotely as well as between remote and local catalogs, 4) time series tools that allow astronomers to compute periodograms of the public data held at the NASA Star and Exoplanet Database (NStED) and the Harvard Time Series Center, and 5) A VO-aware release of the Image Reduction and Analysis Facility (IRAF) that provides transparent access to VO-available data collections and is SAMP-enabled, so that IRAF users can easily use tools such as Aladin and Topcat in conjuction with IRAF tasks. Additional VAO services will be built to make it easy for researchers to provide access to their data in VO-compliant ways, to build VO-enabled custom applications in Python, and to respond generally to the growing size and complexity of astronomy data. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  14. CUAHSI Hydrologic Information System and its role in hydrologic observatories

    NASA Astrophysics Data System (ADS)

    Maidment, D.; Helly, J. J.; Graham, W.; Kruger, A.; Kumar, P.; Lakshmi, V.; Lettenmaier, D.; Zheng, C.; Lall, U.; Piasecki, M.; Duffy, C.

    2003-12-01

    The Hydrologic Information System component of CUAHSI focuses on building a hydrologic information system to support the advancement of hydrologic science. This system is intended to help with rapidly acquiring diverse geospatial and temporal hydrologic datasets, integrating them into a hydrologic data model or framework describing a region, and supporting analysis, modeling and visualization of the movement of water and the transport of constituents through that region. In addition, the system will feature interfaces for advanced technologies like knowledge discovery in databases (KDD) and also provide a comprehensive metadata description including a hydrologic ontology (HOW) for integration with the Semantic Web. The prototype region is the Neuse river basin in North Carolina. A "digital watershed" is to be built for this basin to help formulate and test the hydrologic data model at a range of spatial scales, from the scale of the whole basin down to the scale of individual experimental sites. This data model will be further developed and refined as additional hydrologic observatories are selected by CUAHSI. This will result in a consistent means for the characterization and comparison of processes in different geographic regions of the nation using a common data framework. The HIS will also provide a generalized digital library capability to manage collections of thematically-organized data from primary sources as well as derived analytical results in the form of data publications. The HIS will be designed from the beginning as an open federation of observatory-based collections that are interoperable with other data and digital library systems. The CUAHSI Hydrologic Information System project involves collaboration among several CUAHSI member institutions, with the San Diego Supercomputer Center serving as the technology partner to facilitate the development of a prototype system.

  15. Geochemical Arrays at Woolsey Mound Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Sleeper, K.; Wilson, R. M.; Chanton, J.; Lapham, L.; Farr, N.; Camilli, R.; Martens, C. S.; Pontbriand, C.

    2011-12-01

    A suite of geochemical monitoring arrays has been developed for the Woolsey Mound Seafloor Observatory in the northern Gulf of Mexico to evaluate the oceanographic and tectonic forcing factors on the formation and stability of gas hydrates. These arrays are designed to collect sustained, time-series data of chemical concentrations, gradients and fluxes from the subsurface to the seafloor and into the near bottom water column. A Pore Fluid Array provides time-series measurements of methane, sulfate and salinity in subsurface pore waters to evaluate microbial activity, hydrate formation and/or hydrate dissociation. A Chimney Sampler Array collects in situ chemical and physical readings at the benthic boundary. The array is designed around a vertical cylinder with a known volume and washout rate for measuring chemical gradients and flux at the seafloor. The Benthic Boundary Layer Array extends into the water column with a package of sensors in a node close to the seafloor and a similar node 20 m above the seafloor to evaluate upward, downward and transversely advecting fluids. The three arrays can be used in concert to evaluate a release of methane by the dissociation of gas hydrates: the Pore Fluid Array identifies the breakdown of gas hydrates in the subsurface, the Chimney Array determines the rate of flux at the seafloor and the Benthic Boundary Layer Array evaluates the fate of the release in the water column. Combining the data from the geochemical arrays with output from the geophysical arrays provides key information to evaluate the specific and relative importance of tectonic and oceanographic triggers for hydrate dissociation. New probes and deployment platforms have been developed for the installation and maintenance of the arrays and new systems are in place and under development for the recovery of the data. Generally, the complete array or its components have to be recovered to download the data. However, this summer 2011, a new optic modem system was

  16. Implementing an Education and Outreach Program for the Gemini Observatory in Chile.

    NASA Astrophysics Data System (ADS)

    Garcia, M. A.

    2006-08-01

    Beginning in 2001, the Gemini Observatory began the development of an innovative and aggressive education and outreach program at its Southern Hemisphere site in northern Chile. A principal focus of this effort is centered on local education and outreach to communities surrounding the observatory and its base facility in La Serena Chile. Programs are now established with local schools using two portable StarLab planetaria, an internet-based teacher exchange called StarTeachers and multiple partnerships with local educational institutions. Other elements include a CD-ROM-based virtual tour that allows students, teachers and the public to experience the observatory's sites in Chile and Hawaii. This virtual environment allows interaction using a variety of immersive scenarios such as a simulated observation using real data from Gemini. Pilot projects like "Live from Gemini" are currently being developed which use internet videoconferencing technologies to bring the observatory's facilities into classrooms at universities and remote institutions. Lessons learned from the implementation of these and other programs will be introduced and the challenges of developing educational programming in a developing country will be shared.

  17. Digital Data Preservation and Curation: A Collaboration Among Libraries, Publishers, and the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.; Steffen, J.; Choudhury, S.; Dilauro, T.; Szalay, A.; Vishniac, E.; Ehling, T.; Milkey, R.; Plante, R.

    2007-10-01

    Astronomers are producing and analyzing data at ever more prodigious rates. NASA's Great Observatories, ground-based national observatories, and major survey projects have archive and data distribution systems in place to manage their standard data products, and these are now interlinked through the protocols and metadata standards agreed upon in the Virtual Observatory. However, the digital data associated with peer-reviewed publications is only rarely archived. Most often, astronomers publish graphical representations of their data but not the data themselves. Other astronomers cannot readily inspect the data to either confirm the interpretation presented in a paper or extend the analysis. Highly processed data sets reside on departmental servers and the personal computers of astronomers, and may or may not be available a few years hence. We are investigating ways to preserve and curate the digital data associated with peer-reviewed journals in astronomy. The technology and standards of the VO provide one component of the necessary technology. A variety of underlying systems can be used to physically host a data repository, and indeed this repository need not be centralized. The repository, however, must be managed and data must be documented through high quality, curated metadata. Multiple access portals must be available: the original journal, the host data center, the Virtual Observatory, or any number of topically-oriented data services utilizing VO-standard access mechanisms.

  18. Yosemite National Park: Hydroclimate Observatory and Educational Opportunity

    NASA Astrophysics Data System (ADS)

    Lundquist, J. D.; Cayan, D. R.

    2004-12-01

    In Summer 2001, a network of sensors measuring stream depth, stream temperature, water conductivity, air temperature, and relative humidity were deployed throughout the Merced and Tuolumne River watersheds in Yosemite National Park. The goal of the network has been to increase our understanding of high-altitude meteorology and hydrology in order to link short-term physical processes with long-term changes and to improve water supply forecasts in a changing climate. Because of the link between short-term and long-term processes and because of the location's public appeal, the observatory has proved to be an excellent vehicle for educating the public about the changing climate and potential impacts on water resources in the Western United States. The educational component of the project has taken many forms, including: 1) talks to the public within the Yosemite Forum Series and the Parson's Lodge Series, 2) discussions with the park interpretive staff, 3) communication with park visitors while field work is being carried out, 4) online articles at Sierra Nature Notes, 5) discussions with news reporters, and 6) visits and talks to interested student and corporate groups. In order to understand climatic change, the general public needs to be able to relate personal experiences, such as visiting Yosemite's waterfalls and wildlife, to possible future scenarios, such as "Yosemite Falls will stop flowing earlier in future summers" and "Golden-mantled ground squirrels are no longer found near Crane Flat but only at higher elevations." Once they have a personal connection, people ask intelligent questions, including asking what they can do to help.

  19. 110th Anniversary of the Engelhardt Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.

    2012-09-01

    The Engelhardt Astronomical Observatory (EAO) was founded in September 21, 1901. The history of creation of the Engelhard Astronomical Observatory was begun in 1897 with transfer a complimentary to the Kazan University of the unique astronomical equipment of the private observatory in Dresden by known astronomer Vasily Pavlovichem Engelgardt. Having stopped astronomical activity owing to advanced years and illnesses Engelgardt has decided to offer all tools and library of the Astronomical observatory of the Kazan University. Vasily Pavlovich has put the first condition of the donation that his tools have been established as soon as possible and on them supervision are started. In 1898 the decree of Emperor had been allocated means and the ground for construction of the Astronomical observatory is allocated. There is the main historical telescope of the Engelhard Astronomical Observatory the 12-inch refractor which was constructed by English master Grubbom in 1875. The unique tool of the Engelhard Astronomical Observatory is unique in the world now a working telescope heliometer. It's one of the first heliometers, left workshops Repsolda. It has been made in 1874 and established in Engelgardt observatory in 1908 in especially for him the constructed round pavilion in diameter of 3.6 m. Today the Engelhard Astronomical Observatory is the only thing scientifically - educational and cultural - the cognitive astronomical center, located on territory from Moscow up to the most east border of Russia. Currently, the observatory is preparing to enter the protected UNESCO World Heritage List.

  20. Enhancing the International X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Danner, Rolf; Dailey, D.; Lillie, C.

    2010-03-01

    We present results of systems studies expected to significantly enhance the science utility and reduce technical as well as cost risks for the International X-ray Observatory (IXO). Our Northrop Grumman team draws on the experience of building and operating Chandra and others of NASA's premier astrophysical observatories (Compton Gamma Ray Observatory, James Webb Space Telescope) as well as our experience as a leading developer of deployable space structures. For IXO, we have developed (a) an optical bench concept that has the potential to increase the focal length from 20 to 25 m within the current mass and stability requirements; (b) an instrument and system layout that increases the accessible field of regard; and (c) a number of design choices based on flight proven concepts that reduce cost risk. Our concept for the IXO deployable bench is a Tensegrity structure formed by two telescoping booms (compression) and a hexapod cable (tension) truss. This arrangement achieves the required stiffness for the optical bench at minimal mass while employing only high TRL components and flight proven elements. While the overall concept is innovative and will require further evaluation, it is based on existing elements, can be fully tested on the ground and does not require any new technology. We have also explored the options opened by using hinged, articulating solar panels, and found that when used along with a fully enclosed MLI tent surrounding the optical bench, and an instrument module utilizing radially facing radiator panels, the enhanced configuration will enable us to greatly increase IXO's field of regard without distorting the optical bench beyond acceptable tolerances, making more of the sky accessible for observation at any given time.

  1. Enhancing the International X-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Dailey, Dean; Danner, Rolf; Lillie, Chuck

    2009-09-01

    We present preliminary results of systems studies expected to significantly enhance the science utility and reduce technical as well as cost risks for the International X-ray Observatory (IXO). Our Northrop Grumman team draws on the experience of building and operating Chandra and others of NASA's premier astrophysical observatories (Compton Gamma Ray Observatory, James Webb Space Telescope) as well as our experience as a leading developer of deployable space structures. For IXO, we have developed (a) an optical bench concept that increases the focal length from 20 to 25 m within the current mass and stability requirements; (b) an instrument and system layout that increases the accessible field of regard; and (c) a number of design choices based on flight proven concepts that reduce cost risk. Our concept for the IXO deployable bench is a tensegrity structure formed by two telescoping booms (compression) and a hexapod cable (tension) truss. This arrangement achieves the required stiffness for the optical bench at minimal mass while employing only high TRL components and flight proven elements. While the overall concept is innovative and will require further evaluation, it is based on existing elements, can be fully tested on the ground and does not require any new technology. We have also explored the options opened by using hinged, articulating solar panels, and found that when used along with a fully enclosed MLI tent surrounding the optical bench, and an instrument module utilizing radially facing radiator panels, the enhanced configuration will enable us to greatly increase IXO's field of regard without distorting the optical bench beyond acceptable tolerances, making more of the sky accessible for observation at any given time.

  2. Enhancing the International X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Danner, Rolf; Dailey, D.; Lillie, C.

    2010-01-01

    We present preliminary results of systems studies expected to significantly enhance the science utility and reduce technical as well as cost risks for the International X-ray Observatory (IXO). Our Northrop Grumman team draws on the experience of building and operating Chandra and others of NASA's premier astrophysical observatories (Compton Gamma Ray Observatory, James Webb Space Telescope) as well as our experience as a leading developer of deployable space structures. For IXO, we have developed (a) an optical bench concept that increases the focal length from 20 to 25 m within the current mass and stability requirements; (b) an instrument and system layout that increases the accessible field of regard; and (c) a number of design choices based on flight proven concepts that reduce cost risk. Our concept for the IXO deployable bench is a Tensegrity structure formed by two telescoping booms (compression) and a hexapod cable (tension) truss. This arrangement achieves the required stiffness for the optical bench at minimal mass while employing only high TRL components and flight proven elements. While the overall concept is innovative and will require further evaluation, it is based on existing elements, can be fully tested on the ground and does not require any new technology. We have also explored the options opened by using hinged, articulating solar panels, and found that when used along with a fully enclosed MLI tent surrounding the optical bench, and an instrument module utilizing radially facing radiator panels, the enhanced configuration will enable us to greatly increase IXO's field of regard without distorting the optical bench beyond acceptable tolerances, making more of the sky accessible for observation at any given time.

  3. Enhancing the International X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Danner, Rolf; Dailey, D.; Lillie, C.

    2010-02-01

    We present results of systems studies expected to significantly enhance the science utility and reduce technical as well as cost risks for the International X-ray Observatory (IXO). Our Northrop Grumman team draws on the experience of building and operating Chandra and others of NASA's premier astrophysical observatories (Compton Gamma Ray Observatory, James Webb Space Telescope) as well as our experience as a leading developer of deployable space structures. For IXO, we have developed (a) an optical bench concept that has the potential to increase the focal length from 20 to 25 m within the current mass and stability requirements; (b) an instrument and system layout that increases the accessible field of regard; and (c) a number of design choices based on flight proven concepts that reduce cost risk. Our concept for the IXO deployable bench is a Tensegrity structure formed by two telescoping booms (compression) and a hexapod cable (tension) truss. This arrangement achieves the required stiffness for the optical bench at minimal mass while employing only high TRL components and flight proven elements. While the overall concept is innovative and will require further evaluation, it is based on existing elements, can be fully tested on the ground and does not require any new technology. We have also explored the options opened by using hinged, articulating solar panels, and found that when used along with a fully enclosed MLI tent surrounding the optical bench, and an instrument module utilizing radially facing radiator panels, the enhanced configuration will enable us to greatly increase IXO's field of regard without distorting the optical bench beyond acceptable tolerances, making more of the sky accessible for observation at any given time.

  4. The First 50 Years of Konkoly Observatory

    NASA Astrophysics Data System (ADS)

    Balazs, Lajos G.; Vargha, Magda; Zsoldos, Endre

    The second half of the 19th century experienced a revolution in astronomy. It coincided with a new start of professional astronomy in Hungary through the work of Miklós Konkoly Thege (1842-1916) who is considered as a pioneer of current astrophysical activity in our country. He played an outstanding role in organizing scientific life and institutions, too. He started observations in his newly founded Observatory at Ógyalla in 1871. Sunspots were regularly observed in the observatory from 1872. In 1874 Konkoly began regular spectroscopic observations of comets and emphasized the importance of parallel laboratory works. An important field of Konkoly's astronomical activity was the observation of surface patterns of planets, particularly that of Jupiter and Mars. Spectroscopic observations of stars were also a significant part of the activity of Ógyalla Observatory. In the last period of the Konkoly era (starting in 1899) stellar photometry became the main field of research. At the end of WW I the institute was moved to Budapest Ógyalla and started a new life based on a completely new infrastructure: “... all era are followed by a new one, with its new tasks, in which the scope of activity changes correspondingly, in which enthusiasm is mostly manifested. It was different in the forties when our nation found itself following the word of the founder of our Academy, it was different in the fifties and sixties when we have to defend our nation against foreign aggression, and it became different since the sixties when, our existence being guarantied, we also have to make an effort, beside strengthening it, to get as distinguished a position among the civilized nations as possible.”

  5. GAIA virtual observatory - development and practices

    NASA Astrophysics Data System (ADS)

    Syrjäsuo, Mikko; Marple, Steve

    2010-05-01

    The Global Auroral Imaging Access, or GAIA, is a virtual observatory providing quick access to summary data from satellite and ground-based instruments that remote sense auroral precipitation (http://gaia-vxo.org). This web-based service facilitates locating data relevant to particular events by simultaneously displaying summary images from various data sets around the world. At the moment, there are GAIA server nodes in Canada, Finland, Norway and the UK. The development is an international effort and the software and metadata are freely available. The GAIA system is based on a relational database which is queried by a dedicated software suite that also creates the graphical end-user interface if such is needed. Most commonly, the virtual observatory is used interactively by using a web browser: the user provides the date and the type of data of interest. As the summary data from multiple instruments are displayed simultaneously, the user can conveniently explore the recorded data. The virtual observatory provides essentially instant access to the images originating from all major auroral instrument networks including THEMIS, NORSTAR, GLORIA and MIRACLE. The scientific, educational and outreach use is limited by creativity rather than access. The first version of the GAIA was developed at the University of Calgary (Alberta, Canada) in 2004-2005. This proof-of-concept included mainly THEMIS and MIRACLE data, which comprised of millions of summary plots and thumbnail images. However, it was soon realised that a complete re-design was necessary to increase flexibility. In the presentation, we will discuss the early history and motivation of GAIA as well as how the development continued towards the current version. The emphasis will be on practical problems and their solutions. Relevant design choices will also be highlighted.

  6. Formaldehyde and hydroperoxides at Mauna Loa Observatory

    SciTech Connect

    Heikes, B.G. )

    1992-11-20

    Hydrogen peroxide, formaldehyde, and a measure of organic hydroperoxides are presented from the Mauna Loa Observatory Photochemistry Experiment (MLOPEX). MLOPEX was conducted from May 1 to June 4, 1988, at the Mauna Loa Observatory on the island of Hawaii. A modified dual-enzyme serial-coil H[sub 2]O[sub 2]/ROOH method was used to quantify these species. A second enzyme method was used to measure CH[sub 2]O. The location and meteorology at the Mauna Loa Observatory site permitted 35 days of measurements to be made in free tropospheric air and in modified marine boundary layer air. Average concentrations of H[sub 2]O[sub 2], ROOH, and CH[sub 2]O were 1050, 140, and 100 pptv in free tropospheric, or down-slope air. In upslope air, or modified marine boundary layer air, average concentrations were 900, 150, and 190 pptv. Maximum concentrations for all three species were experienced during a two day photochemical haze episode and were 3230, 440, and 450 pptv for H[sub 2]O[sub 2], ROOH, and CH[sub 2]O. H[sub 2]O[sub 2] was depleted in air which had recently been processed by cloud or precipitation. The measured concentrations of these three species were comparable to prior measurements in well- aged air, but were lower than previous models have predicted. Part of this discrepancy may be due to the treatment of heterogeneous removal processes, dry and wet deposition, in these models. The measured ratio of ROOH to H[sub 2]O[sub 2] is significantly different than present theory predicts, with ROOH as measured being approximately a factor of 5 too low. 61 refs., 13 figs., 2 tabs.

  7. Decision Analysis Tools for Volcano Observatories

    NASA Astrophysics Data System (ADS)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  8. The European Cancer Observatory: A new data resource.

    PubMed

    Steliarova-Foucher, Eva; O'Callaghan, Mark; Ferlay, Jacques; Masuyer, Eric; Rosso, Stefano; Forman, David; Bray, Freddie; Comber, Harry

    2015-06-01

    Population-based cancer registries provide indispensable information on cancer incidence and survival, which cannot be obtained by any other means. It is clear that complete and effective use of these data is essential for cancer control, but sharing this information in a uniform, timely and user-friendly manner has been somewhat limited up to now. The European Cancer Observatory (ECO, http://eco.iarc.fr) has been developed in the framework of the EUROCOURSE project (EUROpe against Cancer: Optimisation of Use of Registries for Scientific Excellence in Research) as a comprehensive resource combining all the information currently available in Europe on cancer incidence, mortality, survival and prevalence. The website provides analytical and presentation tools to examine national estimates for 2012 in 40 European countries (EUCAN), data for 130 national or sub-national areas covered by cancer registries for up to 60 years, until 2011 (EUREG) and a planned mechanism for data download (European Cancer Incidence and Mortality (EUROCIM)). The generated statistics outline the considerable variability across Europe in the rates of all major cancer types and help identify key concerns that need to be addressed by public health policies e.g. the unprecedented rise of lung cancer incidence in women with its full impact expected within a decade or so. The support, maintenance and further development of the ECO website should be a high priority for European cancer policymakers, to continue providing this unique information to health professionals, researchers and the general public in Europe and beyond. PMID:24569102

  9. Semantically-enabled Knowledge Discovery in the Deep Carbon Observatory

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, Y.; Ma, X.; Erickson, J. S.; West, P.; Fox, P. A.

    2013-12-01

    The Deep Carbon Observatory (DCO) is a decadal effort aimed at transforming scientific and public understanding of carbon in the complex deep earth system from the perspectives of Deep Energy, Deep Life, Extreme Physics and Chemistry, and Reservoirs and Fluxes. Over the course of the decade DCO scientific activities will generate a massive volume of data across a variety of disciplines, presenting significant challenges in terms of data integration, management, analysis and visualization, and ultimately limiting the ability of scientists across disciplines to make insights and unlock new knowledge. The DCO Data Science Team (DCO-DS) is applying Semantic Web methodologies to construct a knowledge representation focused on the DCO Earth science disciplines, and use it together with other technologies (e.g. natural language processing and data mining) to create a more expressive representation of the distributed corpus of DCO artifacts including datasets, metadata, instruments, sensors, platforms, deployments, researchers, organizations, funding agencies, grants and various awards. The embodiment of this knowledge representation is the DCO Data Science Infrastructure, in which unique entities within the DCO domain and the relations between them are recognized and explicitly identified. The DCO-DS Infrastructure will serve as a platform for more efficient and reliable searching, discovery, access, and publication of information and knowledge for the DCO scientific community and beyond.

  10. Conceiving and marketing NASA's Great Observatories

    NASA Astrophysics Data System (ADS)

    Harwit, Martin

    2009-08-01

    In early 1984, the astronomical community’s plans to launch a series of powerful telescopes able to study celestial sources at almost any wavelength were in trouble. The President of the United States had just declared his priority for a Space Station that was bound to be expensive, and Congress could not understand why yet another set of space observatories was needed when others were already being funded. To realize their aims, astronomers would have to advocate their needs much more effectively than in the past.

  11. Photographic Leonids 1998 Observed at Modra Observatory

    NASA Astrophysics Data System (ADS)

    Tóth, Juraj; Kornoš, Leonard; Porubčan, Vladimir

    Results of photographic observations of the 1998 Leonids performed at Modra Observatory (Slovakia) are presented and discussed. During an exposure time of 7 hr 14 min on November 16/17 a total of 168 meteors were recorded. Photographic rates of bright Leonid meteors as well as their magnitude distribution are presented and compared with the results obtained by other techniques. The photographic 1998 Leonids exhibit a maximum at the solar longitude 234.52°, Equinox 2000.0 (Nov. 17, 01:40 UT).

  12. Citizen Observatories: A Standards Based Architecture

    NASA Astrophysics Data System (ADS)

    Simonis, Ingo

    2015-04-01

    A number of large-scale research projects are currently under way exploring the various components of citizen observatories, e.g. CITI-SENSE (http://www.citi-sense.eu), Citclops (http://citclops.eu), COBWEB (http://cobwebproject.eu), OMNISCIENTIS (http://www.omniscientis.eu), and WeSenseIt (http://www.wesenseit.eu). Common to all projects is the motivation to develop a platform enabling effective participation by citizens in environmental projects, while considering important aspects such as security, privacy, long-term storage and availability, accessibility of raw and processed data and its proper integration into catalogues and international exchange and collaboration systems such as GEOSS or INSPIRE. This paper describes the software architecture implemented for setting up crowdsourcing campaigns using standardized components, interfaces, security features, and distribution capabilities. It illustrates the Citizen Observatory Toolkit, a software suite that allows defining crowdsourcing campaigns, to invite registered and unregistered participants to participate in crowdsourcing campaigns, and to analyze, process, and visualize raw and quality enhanced crowd sourcing data and derived products. The Citizen Observatory Toolkit is not a single software product. Instead, it is a framework of components that are built using internationally adopted standards wherever possible (e.g. OGC standards from Sensor Web Enablement, GeoPackage, and Web Mapping and Processing Services, as well as security and metadata/cataloguing standards), defines profiles of those standards where necessary (e.g. SWE O&M profile, SensorML profile), and implements design decisions based on the motivation to maximize interoperability and reusability of all components. The toolkit contains tools to set up, manage and maintain crowdsourcing campaigns, allows building on-demand apps optimized for the specific sampling focus, supports offline and online sampling modes using modern cell phones with

  13. Spitzer Space Telescope : observatory desciption and performance

    NASA Technical Reports Server (NTRS)

    Patel, Keyur C.; Spath, Stuart R.

    2004-01-01

    The Spitzer Space Telescope, the last of the four Great Observatories commissioned by the National Aeronautics and Space Administration, was successfully launched on August 25, 2003 from Kennedy Space Center. The engineering systems for Spitzer were developed by the Jet Propulsion Laboratory, Lockheed Martin Space Systems Company, and Ball Aerospace & Technology Corp. This paper provides an overview of Spitzer, a technical description of all the engineering subsystems, and the associated challenges involved in developing them to satisfy the mission requirements. In addition, this paper describes the performance of the engineering subsystems during the In-Orbit Checkout phase, the Science Verification phase, and the early portions of the Nominal Mission.

  14. Astronomical analysis of the taosi observatory site

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.

    2009-01-01

    An ancient observatory was unearthed recently at Taosi site. This paper discussed the figure of the relic, analyzed the relationship between the 12 backsights and calendar date using astronomical method, and compared the simulated observation with theoretic computation. The investigation shows that backsight E2---E12 indicated the directions of sunrise in the whole year, which were roughly equally distributed and offered an unequal calendar system. The backsight E1 indicated the south-end of the moonrise, giving a time symbol of 18---19 years. This building must be a complex of solar observation, time service, solar worship, and sacrificial ritual

  15. Hawaiian Volcano Observatory 1956 Quarterly Administrative Reports

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. This report consists of four parts.

  16. Site Selection for the Southern Utah Observatory

    NASA Astrophysics Data System (ADS)

    Kieda, David; Springer, R. Wayne; Gondolo, Paolo; Lebohec, Stephan; Ricketts, Paul; Zimmer, Chris

    2008-10-01

    During 2007-2008, the University of Utah performed a survey of various high-altitude sites in southern Utah to select the site for the new 32" Southern Utah Observatory telescope. The site survey process consisted of evaluation of weather and climate databases as well as characterization of atmospheric seeing at each site over several months using several automated SBIG Polaris monitors that were deployed at selected sites. In this talk, I will describe the results of the site survey, including atmospheric seeing measurement histories at several potential sites. I will also describe the final selected site and the timeline for construction and operation of the telescope.

  17. Compton Gamma Ray Observatory Guest Investigator Program

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1997-01-01

    This paper presents a final report for the Compton Gamma Ray Observatory Guest Investigator Program from 06/01/91-07/31/97. The topics include: 1) Solar Flare Neutron Spectra and Accelerated Ions; 2) Gamma Ray Lines From The Orion Complex; 3) Implications of Nuclear Line Emission From The Orion Complex; 4) Possible Sites of Nuclear Line Emission From Massive OB Associations; 5) Gamma-Ray Burst Repitition and BATSE Position Uncertainties; 6) Effects of Compton Scattering on BATSE Gamma-Ray Burst Spectra; and 7) Selection Biases on the Spectral and Temporal Distribution of Gamma Ray Bursts.

  18. Synoptic Observing at Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Denker, C.; Naqvi, M.; Deng, N.; Tritschler, A.; Marquette, W. H.

    2007-05-01

    Synoptic solar observations in the chromospheric absorption lines Ca II K and Hα have a long tradition at Big Bear Solar Observatory (BBSO). The advent of the New Solar Telescope (NST) will shift the focus of BBSO's synoptic observing program toward high-resolution observations. We present an overview of the telescopes and instrumentation and show some of the most recent results. This includes Ca II K data to track solar irradiance variations, Hα full-disk data to monitor eruptive events, Dopplergrams from two-dimensional spectroscopy, as well as image restorations of diffraction-limited quality.

  19. Characterization of Adaptive Optics at Keck Observatory

    SciTech Connect

    van Dam, M A; Macintosh, B A

    2003-07-24

    In this paper, the adaptive optics (AO) system at Keck Observatory is characterized. The AO system is described in detail. The physical parameters of the lenslets, CCD and deformable mirror, the calibration procedures and the signal processing algorithms are explained. Results of sky performance tests are presented: the AO system is shown to deliver images with an average Strehl ratio of up to 0.37 at 1.59 {micro}m using a bright guide star. An error budget that is consistent with the observed image quality is presented.

  20. Artist's Concept of the Orbiting Carbon Observatory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Artist's concept of the Orbiting Carbon Observatory. The mission, scheduled to launch in early 2009, will be the first spacecraft dedicated to studying atmospheric carbon dioxide, the principal human-produced driver of climate change. It will provide the first global picture of the human and natural sources of carbon dioxide and the places where this important greenhouse gas is stored. Such information will improve global carbon cycle models as well as forecasts of atmospheric carbon dioxide levels and of how our climate may change in the future.

  1. Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    1997-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP began earlier this year. Universities Space Research Association (USRA), teamed with Raytheon E systems and United Airlines, was selected by NASA to develop and operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies lead by MAN-GHH. Work on the aircraft and the primary mirror has started. First science flights will begin in 2001, and the observatory is expected to operate for over 20 years. The specifications, instruments and science potential of SOFIA are discussed.

  2. European X-ray observatory satellite (Exosat)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Initially planned to be launched on the Ariane L6, the 510 kilogram European X-Ray Observatory Satellite (EXOSAT) is to be placed into orbit from Space Launch Complex 2 West by NASA's Delta 3914 launch vehicle. Objectives of the mission are to study the precise position, structure, and temporal and spectral characteristics of known X-ray sources as well as search for new sources. The spacecraft is described as well as its payload, principal subsystems, and the stages of the Delta 3914. The flight sequence of events, land launch operations are discussed. The ESA management structure for EXOSAT, the NASA/industry team, and contractors are listed.

  3. Introduction to the Infrared Space Observatory (ISO)

    NASA Technical Reports Server (NTRS)

    Kessler, M. F.; Sibille, F.

    1989-01-01

    The Infrared Space Observatory (ISO) is an astronomical satellite, which will operate at infrared wavelengths (2.5 to 200 microns) for a period of at least 18 months. Imaging, spectroscopic, photometric and polarimetric observations will be obtained by four scientific instruments in the focal plane of its 60-cm diameter, cryogenically-cooled telescope. Two-thirds of ISO's observing time will be available to the astronomical community. ISO is a fully approved and funded project of the European Space Agency (ESA) with a foreseen launch date of May 1993.

  4. India-Based Neutrino Observatory:. Status Report

    NASA Astrophysics Data System (ADS)

    Indumathi, D.

    We briefly review neutrino properties, with emphasis on neutrino oscillations. We then present a status report on the proposed India-based Neutrino Observatory (INO). We focus on the physics studies possible with an iron calorimeter detector (ICAL) and the logistics of constructing this detector at INO. Such a detector would study atmospheric neutrinos in the first phase with the possibility of acting as a far-end detector of a future neutrino factory or beta beam. This talk was given at the Cosmology and Particle Astrophysics (CosPA) conference at Taipei, in Nov 2006.

  5. Calibration of the AXAF Observatory: Overview

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; ODell, S. L.

    1997-01-01

    The Advanced X-ray Astrophysics Facility (AXAF) will soon begin its exploration of the x-ray universe, providing unprecedented angular and spectral resolution. Also unprecedented is the ambitious goal of calibrating the AXAF observatory to an accuracy of a few percent. Toward this end, AXAF science and engineering teams undertook an extensive calibration program at component, subsystem, and system levels. This paper is an overview of the system-level calibration activities, conducted over the past year at the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF).

  6. Publicity and public relations

    NASA Technical Reports Server (NTRS)

    Fosha, Charles E.

    1990-01-01

    This paper addresses approaches to using publicity and public relations to meet the goals of the NASA Space Grant College. Methods universities and colleges can use to publicize space activities are presented.

  7. Mechanical Overview of the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Robinson, David W.; McClelland, Ryan S.

    2009-01-01

    The International X-ray Observatory (IXO) is a new collaboration between NASA, ESA, and JAXA which is under study for launch in 2020. IXO will be a large 6600 kilogram Great Observatory-class mission which will build upon the legacies of the Chandra and XMM-Newton X-ray observatories. It combines elements from NASA's Constellation-X program and ESA's XEUS program. The observatory will have a 20-25 meter focal length, which necessitates the use of a deployable instrument module. Currently the project is actively trading configurations and layouts of the various instruments and spacecraft components. This paper will provide a snapshot of the latest observatory configuration under consideration and summarize the observatory from the mechanical engineering perspective.

  8. Donald Menzel: His Founding and Funding of Solar Observatories.

    NASA Astrophysics Data System (ADS)

    Welther, B. L.

    2002-12-01

    In January 1961 Donald Menzel wrote to his cousin, M. H. Bruckman, "I am proudest of the observatories that I have built in the West." The first of those facilities, a solar observatory, was founded in 1940 in Colorado and later came to be known as the High Altitude Observatory. The second one, also a solar observatory, was founded a dozen years later at Sacramento Peak in New Mexico. The third facility, however, established at Fort Davis, Texas, was the Harvard Radio Astronomy Observatory. Although Menzel was primarily a theoretical astrophysicist, renowned for his studies of the solar chromosphere, he was also an entrepreneur who had a talent for developing observatories and coping with numerous setbacks in funding and staffing. Where many others would have failed, Menzel succeeded in mentoring colleagues and finding sources of financial support. This paper will draw primarily on letters and other materials in the Harvard University Archives.

  9. The Chandra X-Ray Observatory: An overview

    NASA Astrophysics Data System (ADS)

    Weisskopf, M. C.

    The Chandra X-Ray Observatory, one of NASA's Great Observatories, was successfully launched on July 23, 1999 by the Space Shuttle Columbia. After release from Columbia, an Inertial Upper Stage was used to further boost the observatory. After five subsequent firings over 15 days of an internal propulsion system, the Observatory was placed in a highly elliptical orbit. The first x-rays focussed by the telescope were observed on August 12, 1999. Despite an initial surprise that the x-ray telescope was far more efficient for concentrating low-energy protons than had been anticipated, the observatory is performing well and is returning superb scientific data. Operating together with other space observatories, most notably the recently activated XMM-Newton, it is clear that with Chandra we are entering a new era of discovery in high-energy astrophysics.

  10. Influences of German science and scientists on Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Clark, Barry A. J.

    The multidisciplinary approach of Alexander von Humboldt in scientific studies of the natural world in the first half of the nineteenth century gained early and lasting acclaim. Later, given the broad scientific interests of colonial Victoria's first Government Astronomer Robert Ellery, one could expect to find some evidence of the Humboldtian approach in the operations of Williamstown Observatory and its successor, Melbourne Observatory. On examination, and without discounting the importance of other international scientific contributions, it appears that Melbourne Observatory was indeed substantially influenced from afar by Humboldt and other German scientists, and in person by Georg Neumayer in particular. Some of the ways in which these influences acted are obvious but others are less so. Like the other Australian state observatories, in its later years Melbourne Observatory had to concentrate its diminishing resources on positional astronomy and timekeeping. Along with Sydney Observatory, it has survived almost intact to become a heritage treasure, perpetuating appreciation of its formative influences.

  11. AUGO II: a comprehensive subauroral zone observatory

    NASA Astrophysics Data System (ADS)

    Schofield, I. S.; Connors, M. G.

    2010-12-01

    A new geophysical observatory dedicated to the study of the aurora borealis will be built 25 km southwest of the town of Athabasca, Alberta, Canada. It is anticipated to see first light in the winter of 2010/2011 and be fully operational in the fall of 2011. Based on the highly successful Athabasca University Geophysical Observatory (AUGO), opened in 2002 at the Athabasca University campus in Athabasca, Alberta, AUGO II will have expanded observational capacity featuring up to eight climate-controlled domed optical observation suites for instrumentation, on-site accommodation for up to six researchers, and most importantly, dark skies free of light pollution from urban development. AUGO II will share the same advantages as its predecessor, one being its location in central Alberta, allowing routine study of the subauroral zone, auroral oval studies during active times, and very rarely of the polar cap. Like the original AUGO, AUGO II will be in close proximity to major highways, be connected to a high bandwidth network, and be within two hour driving distance to the city of Edmonton and its international airport. Opportunities are open for guest researchers in space physics to conduct auroral studies at this new, state-of-the-art research facility through the installation of remotely controlled instruments and/or campaigns. An innovative program of instrument development will accompany the new observatory’s enhanced infrastructure with a focus on magnetics and H-beta meridian scanning photometry.

  12. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, Robert; Becklin, Eric; Young, Erick; Krabbe, Alfred; Marcum, Pamela; Roellig, Thomas

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint U.S./German Project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP that flies in the stratosphere at altitudes as high as 45,000 and is capable of observations from 0.3 microns to 1.6 mm with an average transmission greater than 80 percent. SOFIA will be staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations Center (SSMOC) will be located at NASA Ames Research Center, Moffett Field, CA. First science flights will begin in 2010, and the number of flights will ramp up annually with a flight rate of over 100 8 to 10 hour flights per year expected by 2014. The observatory is expected to operate until the mid 2030's. SOFIA will initially fly with eight focal plane instruments that include broadband imagers, moderate resolution spectrographs that will resolve broad features due to dust and large molecules, and high resolution spectrometers capable of studying the kinematics of molecular and atomic gas lines at km/s resolution. We describe the SOFIA facility and outline the opportunities for observations by the general scientific community and future instrumentation developments. The operational characteristics of the SOFIA first-generation instruments are summarized and we give several specific examples of the types of scientific studies to which these instruments are expected to make fundamental scientific contributions.

  13. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2011-06-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5- meter infrared airborne telescope in a Boeing 747-SP that began science flights in 2010. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA can conduct photometric, spectroscopic, and imaging observations at wavelengths from 0.3 microns to 1.6 millimeters with an average transmission of greater than 80 percent. SOFIA is staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations Center (SSMOC) is located at NASA Ames Research Center, Moffett Field, CA. SOFIA's first-generation instrument complement includes high speed photometers, broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. About 100 eight to ten hour flights per year are expected by 2014, and the observatory will operate until the mid 2030's. We will review the status of the SOFIA facility, its initial complement of science instruments, and the opportunities for advanced instrumentation.

  14. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, Robert

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) Project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is in its final stages of development. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA enables observations throughout the infrared and submillimeter region with an average transmission of greater than 80 percent. SOFIA has a wide instrument complement including broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The first generation and future instruments will enable SOFIA to make unique contributions to a broad array of science topics. SOFIA began its post-modification test flight series on April 26, 2007 in Waco, Texas. The test flight series continues at NASA Dryden Flight Research Center, California. SOFIA will be staged out of Dryden's new aircraft operations facility at Palmdale, CA starting in December, 2007. First science flights will begin in 2009, the next instrument call and the first General Observer science call will be in 2010, and a full operations schedule of about 120 flights per year will be reached by 2014. The observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities and examples of first light science will be discussed.

  15. High Altitude Observatory YBJ and ARGO Project

    NASA Astrophysics Data System (ADS)

    Tan, Y.; ARGO Collaboration

    A 5800 m2 RPC (Resistive Plate Chamber) full coverage air shower array is under construction in the YangBaJing Cosmic Ray Observatory, Tibet of China, by the ChinaItaly ARGO Collaboration. YBJ is a large flat grassland with an area 10 × 70 km2 at 4300m altitude, about 90 north west from Lhasa. Its nearby power station, asphalt road to Lhasa, passing railway (will be constructed during the coming 5 years), optical fiber link to the INTERNET, rare snow and other favourable weather conditions are well suitable for setting an Astrophysical Observatory here. The installation of a large area carpet-like detector in this peculiar site will allow one to perform an all-sky and high duty cycle study of high energy gamma rays from 100GeV to 50 TeV as well as accurate measurements on UHE cosmic rays. To insure the stable and uniform working condition of RPCs, a 104 M2 carpet hall was constructed, the RPC installation have be started in it since last November. The natural distribution and daily variation of temperature in the hall, the data concerning the performances of the installed RPCs, have been measured, the results are presented. ce

  16. Orbiting astronomical observatory-Copernicus. [scientific results

    NASA Technical Reports Server (NTRS)

    York, D. G.

    1973-01-01

    Of the three observatories planned in NASA's OAO program, one, OAO-3, is still in orbit and producing scientifically useful data. The prime experiment is the Princeton telescope spectrometer. Following a brief history of the OAO program, a description is given of the Princeton telescope with its 80-cm primary mirror, and of the spectrometer, which yields a resolution of up to 0.05 A. The spacecraft guidance system is also described. This system initially points the observatory to within a few arc minutes of the target, places the 0.3-arc sec slit on the star in less than 3 minutes, and holds on the star for up to 50 minutes with errors less than 0.05 arc sec. The main scientific results are described under the following categories: (1) the widespread presence of molecular hydrogen; (2) the search for other molecules, including detection of CO; (3) the nature of the interstellar medium as inferred from the detection of various atomic lines; (4) the study of chromospheres in late type stars; and (5) the study of mass loss in binaries and single stars.

  17. Preventive maintenance optimization at Paranal Observatory

    NASA Astrophysics Data System (ADS)

    Bugueno, Erich Fernando

    2010-07-01

    Observatories are important for the evolution of astronomical research. Equally important is their maintainability. Of course, the management of our fixed budget as well as assuring reliability, availability and system efficiency is directly related to the maintainability of this center of observation. Can we manage this situation and maintain reliability, availability and efficiency? The answer is, yes. There are new maintenance techniques that allow us to deal with these requirements. PMO, Preventive Maintenance Optimization is one of the new techniques that has recently grown in popularity and it is structured as follows: - Prepare PMO - Define System or Equipment according to Reliability Requirements - Review Existing PM - Screen Task for Removal - Optimize Remaining Tasks - Fill Gaps on PM - Review Manufacture Recommendations - Optimize PM Work Order - Implement Change - Evaluate Improvement. The implementation of PMO is a process that will allow the Observatory to increase the efficiency of the Maintenance plans. The results of this new process will not be evident immediately and will be evaluated in the future.

  18. SPASE, Metadata, and the Heliophysics Virtual Observatories

    NASA Technical Reports Server (NTRS)

    Thieman, James; King, Todd; Roberts, Aaron

    2010-01-01

    To provide data search and access capability in the field of Heliophysics (the study of the Sun and its effects on the Solar System, especially the Earth) a number of Virtual Observatories (VO) have been established both via direct funding from the U.S. National Aeronautics and Space Administration (NASA) and through other funding agencies in the U.S. and worldwide. At least 15 systems can be labeled as Virtual Observatories in the Heliophysics community, 9 of them funded by NASA. The problem is that different metadata and data search approaches are used by these VO's and a search for data relevant to a particular research question can involve consulting with multiple VO's - needing to learn a different approach for finding and acquiring data for each. The Space Physics Archive Search and Extract (SPASE) project is intended to provide a common data model for Heliophysics data and therefore a common set of metadata for searches of the VO's. The SPASE Data Model has been developed through the common efforts of the Heliophysics Data and Model Consortium (HDMC) representatives over a number of years. We currently have released Version 2.1 of the Data Model. The advantages and disadvantages of the Data Model will be discussed along with the plans for the future. Recent changes requested by new members of the SPASE community indicate some of the directions for further development.

  19. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  20. Fine Guidance Sensing for Coronagraphic Observatories

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Alexander, James W.; Trauger, John T.; Moody, Dwight C.

    2011-01-01

    Three options have been developed for Fine Guidance Sensing (FGS) for coronagraphic observatories using a Fine Guidance Camera within a coronagraphic instrument. Coronagraphic observatories require very fine precision pointing in order to image faint objects at very small distances from a target star. The Fine Guidance Camera measures the direction to the target star. The first option, referred to as Spot, was to collect all of the light reflected from a coronagraph occulter onto a focal plane, producing an Airy-type point spread function (PSF). This would allow almost all of the starlight from the central star to be used for centroiding. The second approach, referred to as Punctured Disk, collects the light that bypasses a central obscuration, producing a PSF with a punctured central disk. The final approach, referred to as Lyot, collects light after passing through the occulter at the Lyot stop. The study includes generation of representative images for each option by the science team, followed by an engineering evaluation of a centroiding or a photometric algorithm for each option. After the alignment of the coronagraph to the fine guidance system, a "nulling" point on the FGS focal point is determined by calibration. This alignment is implemented by a fine alignment mechanism that is part of the fine guidance camera selection mirror. If the star images meet the modeling assumptions, and the star "centroid" can be driven to that nulling point, the contrast for the coronagraph will be maximized.