Science.gov

Sample records for afw wind-tunnel model

  1. Flutter suppression digital control law design and testing for the AFW wind tunnel model

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1994-01-01

    The design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a sting mounted fixed-in-roll aeroelastic wind-tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory, and it also involved control law order reduction, a gain root-locus study, and use of previous experimental results. A 23 percent increase in the open-loop flutter dynamic pressure was demonstrated during the wind-tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.

  2. Flutter suppression digital control law design and testing for the AFW wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1992-01-01

    Design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a string mounted fixed-in-roll aeroelastic wind tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory and involved control law order reduction, a gain root-locus study, and the use of previous experimental results. A 23 percent increase in open-loop flutter dynamic pressure was demonstrated during the wind tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.

  3. Flutter suppression digital control law design and testing for the AFW wind tunnel model

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1992-01-01

    Design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a sting mounted fixed-in-roll aeroelastic wind tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory, and involved control law order reduction, a gain root-locus study and use of previous experimental results. A 23 percent increase in the open-loop flutter dynamic pressure was demonstrated during the wind tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.

  4. The multiple-function multi-input/multi-output digital controller system for the AFW wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Hoadley, Sherwood T.; Mcgraw, Sandra M.

    1992-01-01

    A real time multiple-function digital controller system was developed for the Active Flexible Wing (AFW) Program. The digital controller system (DCS) allowed simultaneous execution of two control laws: flutter suppression and either roll trim or a rolling maneuver load control. The DCS operated within, but independently of, a slower host operating system environment, at regulated speeds up to 200 Hz. It also coordinated the acquisition, storage, and transfer of data for near real time controller performance evaluation and both open- and closed-loop plant estimation. It synchronized the operation of four different processing units, allowing flexibility in the number, form, functionality, and order of control laws, and variability in the selection of the sensors and actuators employed. Most importantly, the DCS allowed for the successful demonstration of active flutter suppression to conditions approximately 26 percent (in dynamic pressure) above the open-loop boundary in cases when the model was fixed in roll and up to 23 percent when it was free to roll. Aggressive roll maneuvers with load control were achieved above the flutter boundary. The purpose here is to present the development, validation, and wind tunnel testing of this multiple-function digital controller system.

  5. Further investigations of the aeroelastic behavior of the AFW wind-tunnel model using transonic small disturbance theory

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bennett, Robert M.

    1992-01-01

    The Computational Aeroelasticity Program-Transonic Small Disturbance (CAP-TSD) code, developed at LaRC, is applied to the active flexible wing wind-tunnel model for prediction of transonic aeroelastic behavior. A semi-span computational model is used for evaluation of symmetric motions, and a full-span model is used for evaluation of antisymmetric motions, and a full-span model is used for evaluation of antisymmetric motions. Static aeroelastic solutions using CAP-TSD are computed. Dynamic deformations are presented as flutter boundaries in terms of Mach number and dynamic pressure. Flutter boundaries that take into account modal refinements, vorticity and entropy corrections, antisymmetric motion, and sensitivity to the modeling of the wing tip ballast stores are also presented with experimental flutter results.

  6. Further investigations of the aeroelastic behavior of the AFW wind-tunnel model using transonic small disturbance theory

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bennett, Robert M.

    1992-01-01

    The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA Langley Research Center, is applied to the Active Flexible Wing wind-tunnel model for prediction of transonic aeroelastic behavior. A semi-span computational model is used for evaluation of symmetric motions, and a full-span model is used for evaluation of antisymmetric motions. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses then are performed as perturbations about the static aeroelastic deformations and presented as flutter boundaries in terms of Mach number and dynamic pressure. Flutter boundaries that take into account modal refinements, vorticity and entropy corrections, antisymmetric motions and sensitivity to the modeling of the wing tip ballast stores also are presented and compared with experimental flutter results.

  7. On-line analysis capabilities developed to support the AFW wind-tunnel tests

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.; Hoadley, Sherwood T.; Mcgraw, Sandra M.

    1992-01-01

    A variety of on-line analysis tools were developed to support two active flexible wing (AFW) wind-tunnel tests. These tools were developed to verify control law execution, to satisfy analysis requirements of the control law designers, to provide measures of system stability in a real-time environment, and to provide project managers with a quantitative measure of controller performance. Descriptions and purposes of the developed capabilities are presented along with examples. Procedures for saving and transferring data for near real-time analysis, and descriptions of the corresponding data interface programs are also presented. The on-line analysis tools worked well before, during, and after the wind tunnel test and proved to be a vital and important part of the entire test effort.

  8. Aeroelastic modeling of the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Heeg, Jennifer; Bennett, Robert M.

    1991-01-01

    The primary issues involved in the generation of linear, state-space equations of motion of a flexible wind tunnel model, the Active Flexible Wing (AFW), are discussed. The codes that were used and their inherent assumptions and limitations are also briefly discussed. The application of the CAP-TSD code to the AFW for determination of the model's transonic flutter boundary is included as well.

  9. Predicting the aeroelastic behavior of a wind-tunnel model using transonic small disturbance theory

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bennett, Robert M.

    1990-01-01

    The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA-Langley Research Center, is applied to the Active Flexible Wing (AFW) wind-tunnel model for prediction of the model's transonic aeroelastic behavior. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses are then performed as perturbations about the static aeroelastic deformations of the AFW. The accuracy of the static aeroelastic procedure is investigated by comparing analytical results to those from AFW wind-tunnel experiments. Dynamic results are presented in the form of root loci at different Mach numbers for a heavy gas and for air test mediums. The resultant flutter boundaries for both gases, and the effects of viscous damping and angle of attack on the flutter boundary in air, are also presented.

  10. F-16XL Wind Tunnel Models

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a multiple exposure image of the F-16XL Supersonic Laminar Flow Control (SLFC) model in the Unitary Plan Wind Tunnel. This wind tunnel test was conducted to verify design pressure distributions for the SLFC flight experiment (see modified port wing) and to obtain simulator coefficients for stability and control investigations.

  11. Models for cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1989-01-01

    Model requirements, types of model construction methods, and research in new ways to build models are discussed. The 0.3-m Transonic Cryogenic Tunnel was in operation for 16 years and many 2-D airfoil pressure models were tested. In addition there were airfoil models dedicated to transition detection techniques and other specialized research. There were also a number of small 3-D models tested. A chronological development in model building technique is described which led to the construction of many successful models. The difficulties of construction are illustrated by discussing several unsuccessful model fabrication attempts. The National Transonic Facility, a newer and much larger tunnel, was used to test a variety of models including a submarine, transport and fighter configurations, and the Shuttle Orbiter. A new method of building pressure models was developed and is described. The method is centered on the concept of bonding together plates with pressure channels etched into the bond planes, which provides high density pressure instrumentation with minimum demand on parent model material. With care in the choice of materials and technique, vacuum brazing can be used to produce strong bonds without blocking pressure channels and with no bonding voids between channels. Using multiple plates, a 5 percent wing with 96 orifices was constructed and tested in a transonic cryogenic wind tunnel. Samples of test data are presented and future applications of the technology are suggested.

  12. Models for cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1989-01-01

    Model requirements, types of model construction methods, and research in new ways to build models are discussed. The 0.3-m Transonic Cryogenic Tunnel was in operation for 16 years and many 2-D airfoil pressure models were tested. In addition there were airfoil models dedicated to transition detection techniques and other specialized research. There were also a number of small 3-D models tested. A chronological development in model building technique is described which led to the construction of many successful models. The difficulties of construction are illustrated by discussing several unsuccessful model fabrication attempts. The National Transonic Facility, a newer and much larger tunnel, was used to test a variety of models including a submarine, transport and fighter configurations, and the Shuttle Orbiter. A new method of building pressure models was developed and is described. The method is centered on the concept of bonding together plates with pressure channels etched into the bond planes, which provides high density pressure instrumentation with minimum demand on parent model material. With care in the choice of materials and technique, vacuum brazing can be used to produce strong bonds without blocking pressure channels and with no bonding voids between channels. Using multiple plates, a 5 percent wing with 96 orifices was constructed and tested in a transonic cryogenic wind tunnel. Samples of test data are presented and future applications of the technology are suggested.

  13. A construction technique for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Sandefur, P. G., Jr.; Wood, W. H.

    1981-01-01

    High strength, good surface finish, and corrosion resistance are imparted to miniature wind tunnel models by machining pressure channels as integral part of model. Pattern for pressure channels is scribed, machined, or photoetched before channels are drilled. Mating surfaces for channels are flashed and then diffusion brazed together.

  14. A construction technique for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Sandefur, P. G., Jr.; Wood, W. H.

    1981-01-01

    High strength, good surface finish, and corrosion resistance are imparted to miniature wind tunnel models by machining pressure channels as integral part of model. Pattern for pressure channels is scribed, machined, or photoetched before channels are drilled. Mating surfaces for channels are flashed and then diffusion brazed together.

  15. Propfan model wind tunnel aeroelastic research results

    NASA Technical Reports Server (NTRS)

    Mehmed, Oral

    1988-01-01

    Some of the single rotation propfan model wind tunnel aeroelastic findings from the experimental part of this research program are described. These findings include results for unstalled or classical flutter, blade response from separated flow excitations, and blade response from aerodynamic excitations at angled inflow conditions.

  16. Cryogenic Wind Tunnel Models. Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Young, C. P., Jr. (Compiler); Gloss, B. B. (Compiler)

    1983-01-01

    The principal motivating factor was the National Transonic Facility (NTF). Since the NTF can achieve significantly higher Reynolds numbers at transonic speeds than other wind tunnels in the world, and will therefore occupy a unique position among ground test facilities, every effort is being made to ensure that model design and fabrication technology exists to allow researchers to take advantage of this high Reynolds number capability. Since a great deal of experience in designing and fabricating cryogenic wind tunnel models does not exist, and since the experience that does exist is scattered over a number of organizations, there is a need to bring existing experience in these areas together and share it among all interested parties. Representatives from government, the airframe industry, and universities are included.

  17. Glide back booster wind tunnel model testing

    NASA Astrophysics Data System (ADS)

    Pricop, M. V.; Cojocaru, M. G.; Stoica, C. I.; Niculescu, M. L.; Neculaescu, A. M.; Persinaru, A. G.; Boscoianu, M.

    2017-07-01

    Affordable space access requires partial or ideally full launch vehicle reuse, which is in line with clean environment requirement. Although the idea is old, the practical use is difficult, requiring very large technology investment for qualification. Rocket gliders like Space Shuttle have been successfullyoperated but the price and correspondingly the energy footprint were found not sustainable. For medium launchers, finally there is a very promising platform as Falcon 9. For very small launchers the situation is more complex, because the performance index (payload to start mass) is already small, versus medium and heavy launchers. For partial reusable micro launchers this index is even smaller. However the challenge has to be taken because it is likely that in a multiyear effort, technology is going to enable the performance recovery to make such a system economically and environmentally feasible. The current paper is devoted to a small unitary glide back booster which is foreseen to be assembled in a number of possible configurations. Although the level of analysis is not deep, the solution is analyzed from the aerodynamic point of view. A wind tunnel model is designed, with an active canard, to enablea more efficient wind tunnel campaign, as a national level premiere.

  18. NASA Glenn Wind Tunnel Model Systems Criteria

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.; Roeder, James W.; Stark, David E.; Linne, Alan A.

    2004-01-01

    This report describes criteria for the design, analysis, quality assurance, and documentation of models that are to be tested in the wind tunnel facilities at the NASA Glenn Research Center. This report presents two methods for computing model allowable stresses on the basis of the yield stress or ultimate stress, and it defines project procedures to test models in the NASA Glenn aeropropulsion facilities. Both customer-furnished and in-house model systems are discussed. The functions of the facility personnel and customers are defined. The format for the pretest meetings, safety permit process, and model reviews are outlined. The format for the model systems report (a requirement for each model that is to be tested at NASA Glenn) is described, the engineers responsible for developing the model systems report are listed, and the timetable for its delivery to the project engineer is given.

  19. Numerically Controlled Machining Of Wind-Tunnel Models

    NASA Technical Reports Server (NTRS)

    Kovtun, John B.

    1990-01-01

    New procedure for dynamic models and parts for wind-tunnel tests or radio-controlled flight tests constructed. Involves use of single-phase numerical control (NC) technique to produce highly-accurate, symmetrical models in less time.

  20. Aeroservoelastic Wind-Tunnel Test of the SUGAR Truss Braced Wing Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Allen, Timothy J.; Funk, Christie J.; Castelluccio, Mark A.; Sexton, Bradley W.; Claggett, Scott; Dykman, John; Coulson, David A.; Bartels, Robert E.

    2015-01-01

    The Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) aeroservoelastic (ASE) wind-tunnel test was conducted in the NASA Langley Transonic Dynamics Tunnel (TDT) and was completed in April, 2014. The primary goals of the test were to identify the open-loop flutter boundary and then demonstrate flutter suppression. A secondary goal was to demonstrate gust load alleviation (GLA). Open-loop flutter and limit cycle oscillation onset boundaries were identified for a range of Mach numbers and various angles of attack. Two sets of control laws were designed for the model and both sets of control laws were successful in suppressing flutter. Control laws optimized for GLA were not designed; however, the flutter suppression control laws were assessed using the TDT Airstream Oscillation System. This paper describes the experimental apparatus, procedures, and results of the TBW wind-tunnel test. Acquired system ID data used to generate ASE models is also discussed.2 study.

  1. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    NASA Technical Reports Server (NTRS)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the

  2. Initial investigation of cryogenic wind tunnel model filler materials

    NASA Technical Reports Server (NTRS)

    Rush, H. F.; Firth, G. C.

    1985-01-01

    Various filler materials are being investigated for applicability to cryogenic wind tunnel models. The filler materials will be used to fill surface grooves, holes and flaws. The severe test environment of cryogenic models precludes usage of filler materials used on conventional wind tunnel models. Coefficients of thermal expansion, finishing characteristics, adhesion and stability of several candidate filler materials were examined. Promising filler materials are identified.

  3. Oil-smeared models aid wind tunnel measurements

    NASA Technical Reports Server (NTRS)

    Katzoff, S.; Loving, D. K.

    1964-01-01

    For visualizing flow characteristics in wind tunnel tests, model surfaces are smeared with any common petroleum-base oils. These fluoresce under ultraviolet light and the flow patterns are readily visualized.

  4. Method for Standardizing Sonic-Boom Model Pressure Signatures Measured at Several Wind-Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2007-01-01

    Low-boom model pressure signatures are often measured at two or more wind-tunnel facilities. Preliminary measurements are made at small separation distances in a wind tunnel close at hand, and a second set of pressure signatures is measured at larger separation distances in a wind-tunnel facility with a larger test section. In this report, a method for correcting and standardizing the wind-tunnel-measured pressure signatures obtained in different wind tunnel facilities is presented and discussed.

  5. Initial Investigation of Cryogenic Wind Tunnel Model Filler Materials

    NASA Technical Reports Server (NTRS)

    Firth, G. C.

    1985-01-01

    Filler materials are used for surface flaws, instrumentation grooves, and fastener holes in wind tunnel models. More stringent surface quality requirements and the more demanding test environment encountered by cryogenic wind tunnels eliminate filler materials such as polyester resins, plaster, and waxes used on conventional wind tunnel models. To provide a material data base for cryogenic models, various filler materials are investigated. Surface quality requirements and test temperature extremes require matching of coefficients of thermal expansion or interfacing materials. Microstrain versus temperature curves are generated for several candidate filler materials for comparison with cryogenically acceptable materials. Matches have been achieved for aluminum alloys and austenitic steels. Simulated model surfaces are filled with candidate filler materials to determine finishing characteristics, adhesion and stability when subjected to cryogenic cycling. Filler material systems are identified which meet requirements for usage with aluminum model components.

  6. Videogrammetric Model Deformation Measurement Technique for Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.

    2006-01-01

    Videogrammetric measurement technique developments at NASA Langley were driven largely by the need to quantify model deformation at the National Transonic Facility (NTF). This paper summarizes recent wind tunnel applications and issues at the NTF and other NASA Langley facilities including the Transonic Dynamics Tunnel, 31-Inch Mach 10 Tunnel, 8-Ft high Temperature Tunnel, and the 20-Ft Vertical Spin Tunnel. In addition, several adaptations of wind tunnel techniques to non-wind tunnel applications are summarized. These applications include wing deformation measurements on vehicles in flight, determining aerodynamic loads based on optical elastic deformation measurements, measurements on ultra-lightweight and inflatable space structures, and the use of an object-to-image plane scaling technique to support NASA s Space Exploration program.

  7. A voice-actuated wind tunnel model leak checking system

    NASA Technical Reports Server (NTRS)

    Larson, W. E.

    1985-01-01

    A voice-actuated wind tunnel model leak checking system was developed. The system uses a voice recognition and response unit to interact with the technician along with a graphics terminal to provide the technician with visual feedback while checking a model for leaks.

  8. An experimental study of several wind tunnel wall configurations using two V/STOL model configurations. [low speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Binion, T. W., Jr.

    1975-01-01

    Experiments were conducted in the low speed wind tunnel using two V/STOL models, a jet-flap and a jet-in-fuselage configuration, to search for a wind tunnel wall configuration to minimize wall interference on V/STOL models. Data were also obtained on the jet-flap model with a uniform slotted wall configuration to provide comparisons between theoretical and experimental wall interference. A test section configuration was found which provided some data in reasonable agreement with interference-free results over a wide range of momentum coefficients.

  9. Wind Tunnel Modeling Of Wind Flow Over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Banks, D.; Cochran, B.

    2010-12-01

    This presentation will describe the finding of an atmospheric boundary layer (ABL) wind tunnel study conducted as part of the Bolund Experiment. This experiment was sponsored by Risø DTU (National Laboratory for Sustainable Energy, Technical University of Denmark) during the fall of 2009 to enable a blind comparison of various air flow models in an attempt to validate their performance in predicting airflow over complex terrain. Bohlund hill sits 12 m above the water level at the end of a narrow isthmus. The island features a steep escarpment on one side, over which the airflow can be expected to separate. The island was equipped with several anemometer towers, and the approach flow over the water was well characterized. This study was one of only two only physical model studies included in the blind model comparison, the other being a water plume study. The remainder were computational fluid dynamics (CFD) simulations, including both RANS and LES. Physical modeling of air flow over topographical features has been used since the middle of the 20th century, and the methods required are well understood and well documented. Several books have been written describing how to properly perform ABL wind tunnel studies, including ASCE manual of engineering practice 67. Boundary layer wind tunnel tests are the only modelling method deemed acceptable in ASCE 7-10, the most recent edition of the American Society of Civil Engineers standard that provides wind loads for buildings and other structures for buildings codes across the US. Since the 1970’s, most tall structures undergo testing in a boundary layer wind tunnel to accurately determine the wind induced loading. When compared to CFD, the US EPA considers a properly executed wind tunnel study to be equivalent to a CFD model with infinitesimal grid resolution and near infinite memory. One key reason for this widespread acceptance is that properly executed ABL wind tunnel studies will accurately simulate flow separation

  10. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lafleur, S.

    1985-01-01

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  11. Propulsion simulation for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Beerman, Henry P.; Chen, James; Krech, Robert H.; Lintz, Andrew L.; Rosen, David I.

    1990-01-01

    The feasibility of simulating propulsion-induced aerodynamic effects on scaled aircraft models in wind tunnels employing Magnetic Suspension and Balance Systems. The investigation concerned itself with techniques of generating exhaust jets of appropriate characteristics. The objectives were to: (1) define thrust and mass flow requirements of jets; (2) evaluate techniques for generating propulsive gas within volume limitations imposed by magnetically-suspended models; (3) conduct simple diagnostic experiments for techniques involving new concepts; and (4) recommend experiments for demonstration of propulsion simulation techniques. Various techniques of generating exhaust jets of appropriate characteristics were evaluated on scaled aircraft models in wind tunnels with MSBS. Four concepts of remotely-operated propulsion simulators were examined. Three conceptual designs involving innovative adaptation of convenient technologies (compressed gas cylinders, liquid, and solid propellants) were developed. The fourth innovative concept, namely, the laser-assisted thruster, which can potentially simulate both inlet and exhaust flows, was found to require very high power levels for small thrust levels.

  12. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lafleur, S.

    1985-01-01

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  13. Wind tunnel model surface gauge for measuring roughness

    NASA Technical Reports Server (NTRS)

    Vorburger, T. V.; Gilsinn, D. E.; Teague, E. C.; Giauque, C. H. W.; Scire, F. E.; Cao, L. X.

    1987-01-01

    The optical inspection of surface roughness research has proceeded along two different lines. First, research into a quantitative understanding of light scattering from metal surfaces and into the appropriate models to describe the surfaces themselves. Second, the development of a practical instrument for the measurement of rms roughness of high performance wind tunnel models with smooth finishes. The research is summarized, with emphasis on the second avenue of research.

  14. Variable Stiffness Spar Wind-Tunnel Model Development and Testing

    NASA Technical Reports Server (NTRS)

    Florance, James R.; Heeg, Jennifer; Spain, Charles V.; Ivanco, Thomas G.; Wieseman, Carol D.; Lively, Peter S.

    2004-01-01

    The concept of exploiting wing flexibility to improve aerodynamic performance was investigated in the wind tunnel by employing multiple control surfaces and by varying wing structural stiffness via a Variable Stiffness Spar (VSS) mechanism. High design loads compromised the VSS effectiveness because the aerodynamic wind-tunnel model was much stiffer than desired in order to meet the strength requirements. Results from tests of the model include stiffness and modal data, model deformation data, aerodynamic loads, static control surface derivatives, and fuselage standoff pressure data. Effects of the VSS on the stiffness and modal characteristics, lift curve slope, and control surface effectiveness are discussed. The VSS had the most effect on the rolling moment generated by the leading-edge outboard flap at subsonic speeds. The effects of the VSS for the other control surfaces and speed regimes were less. The difficulties encountered and the ability of the VSS to alter the aeroelastic characteristics of the wing emphasize the need for the development of improved design and construction methods for static aeroelastic models. The data collected and presented is valuable in terms of understanding static aeroelastic wind-tunnel model development.

  15. 1/50 Scale Model Of The 80x120 Foot Wind Tunnel Model (NFAC) In The Test Section Of The 40x80 Wind Tunnel.

    NASA Image and Video Library

    1996-06-27

    (03/12/1976) 1/50 scale model of the 80x120 foot wind tunnel model (NFAC) in the test section of the 40x80 wind tunnel. Model viewed from the west, mounted on a rotating ground board designed for this test. Ramp leading to ground board includes a generic building placed in front of the 80x120 inlet.

  16. Airship Model Tests in the Variable Density Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Abbott, Ira H

    1932-01-01

    This report presents the results of wind tunnel tests conducted to determine the aerodynamic characteristics of airship models. Eight Goodyear-Zeppelin airship models were tested in the original closed-throat tunnel. After the tunnel was rebuilt with an open throat a new model was tested, and one of the Goodyear-Zeppelin models was retested. The results indicate that much may be done to determine the drag of airships from evaluations of the pressure and skin-frictional drags on models tested at large Reynolds number.

  17. NASA Lewis Wind Tunnel Model Systems Criteria

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.; Haller, Henry C.

    1994-01-01

    This report describes criteria for the design, analysis, quality assurance, and documentation of models or test articles that are to be tested in the aeropropulsion facilities at the NASA Lewis Research Center. The report presents three methods for computing model allowable stresses on the basis of the yield stress or ultimate stress, and it gives quality assurance criteria for models tested in Lewis' aeropropulsion facilities. Both customer-furnished model systems and in-house model systems are discussed. The functions of the facility manager, project engineer, operations engineer, research engineer, and facility electrical engineer are defined. The format for pretest meetings, prerun safety meetings, and the model criteria review are outlined Then, the format for the model systems report (a requirement for each model that is to be tested at NASA Lewis) is described, the engineers that are responsible for developing the model systems report are listed, and the time table for its delivery to the facility manager is given.

  18. Analytical and Experimental Investigation of Ejector-Powered Engine Simulators for Wind Tunnel Models

    DTIC Science & Technology

    1977-01-01

    installed in a wind tunnel model and will generate inlet and exhaust stream conditions which simulate conditions produced by turbine engines does not exist...requirements, have substantially reduced the emphasis for small-scale turbine engine development for wind tunnel models, at least in the forseeable...investigations of ejector-powered engine simulators (EPES) applicable to wind tunnel models of turbine engine aircraft are being conducted at the

  19. Tests of a protective shell passive release mechanism for hypersonic wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Puster, R. L.; Dunn, J. E.

    1979-01-01

    A protective shell mechanism for wind tunnel models was developed and tested. The mechanism is passive in operation, reliable, and imposes no new structural design changes for wind tunnel models. Methods of predicting the release time and the measured loads associated with the release of the shell are given. The mechanism was tested in a series of wind tunnel tests to validate the removal process and measure the pressure loads on the model. The protective shell can be used for wind tunnel models that require a step input of heating and loading such as a thin skin heat transfer model. The mechanism may have other potential applications.

  20. Infrared radiometer for measuring thermophysical properties of wind tunnel models

    NASA Technical Reports Server (NTRS)

    Corwin, R. R.; Moorman, S. L.; Becker, E. C.

    1978-01-01

    An infrared radiometer is described which was developed to measure temperature rises of wind tunnel models undergoing transient heating over a temperature range of -17.8 C to 260 C. This radiometer interfaces directly with a system which measures the effective thermophysical property square root of rho ck. It has an output temperature fluctuation of 0.26 C at low temperatures and 0.07 C at high temperatures, and the output frequency response of the radiometer is from dc to 400 hertz.

  1. Wind tunnel measurements for dispersion modelling of vehicle wakes

    NASA Astrophysics Data System (ADS)

    Carpentieri, Matteo; Kumar, Prashant; Robins, Alan

    2012-12-01

    Wind tunnel measurements downwind of reduced scale car models have been made to study the wake regions in detail, test the usefulness of existing vehicle wake models, and draw key information needed for dispersion modelling in vehicle wakes. The experiments simulated a car moving in still air. This is achieved by (i) the experimental characterisation of the flow, turbulence and concentration fields in both the near and far wake regions, (ii) the preliminary assessment of existing wake models using the experimental database, and (iii) the comparison of previous field measurements in the wake of a real diesel car with the wind tunnel measurements. The experiments highlighted very large gradients of velocities and concentrations existing, in particular, in the near-wake. Of course, the measured fields are strongly dependent on the geometry of the modelled vehicle and a generalisation for other vehicles may prove to be difficult. The methodology applied in the present study, although improvable, could constitute a first step towards the development of mathematical parameterisations. Experimental results were also compared with the estimates from two wake models. It was found that they can adequately describe the far-wake of a vehicle in terms of velocities, but a better characterisation in terms of turbulence and pollutant dispersion is needed. Parameterised models able to predict velocity and concentrations with fine enough details at the near-wake scale do not exist.

  2. Engineering and fabrication cost considerations for cryogenic wind tunnel models

    NASA Technical Reports Server (NTRS)

    Boykin, R. M., Jr.; Davenport, J. B., Jr.

    1983-01-01

    Design and fabrication cost drivers for cryogenic transonic wind tunnel models are defined. The major cost factors for wind tunnel models are model complexity, tolerances, surface finishes, materials, material validation, and model inspection. The cryogenic temperatures require the use of materials with relatively high fracture toughness but at the same time high strength. Some of these materials are very difficult to machine, requiring extensive machine hours which can add significantly to the manufacturing costs. Some additional engineering costs are incurred to certify the materials through mechanical tests and nondestructive evaluation techniques, which are not normally required with conventional models. When instrumentation such as accelerometers and electronically scanned pressure modules is required, temperature control of these devices needs to be incorporated into the design, which requires added effort. Additional thermal analyses and subsystem tests may be necessary, which also adds to the design costs. The largest driver to the design costs is potentially the additional static and dynamic analyses required to insure structural integrity of the model and support system.

  3. Propulsion simulator for magnetically-suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, P. B.; Malonson, M. R.; Sacco, G. P.; Goldey, C. L.; Garbutt, Keith; Goodyer, M.

    1992-01-01

    In order to demonstrate the measurement of aerodynamic forces/moments, including the effects of exhaust jets in Magnetic Suspension and Balance System (MSBS) wind tunnels, two propulsion simulator models were developed at Physical Sciences Inc. (PSI). Both the small-scale model (1 in. diameter X 8 in. long) and the large-scale model (2.5 in. diameter X 15 in. long) employed compressed, liquefied carbon dioxide as a propellant. The small-scale simulator, made from a highly magnetizable iron alloy, was demonstrated in the 7 in. MSBS wind tunnel at the University of Southampton. It developed a maximum thrust of approximate 1.3 lbf with a 0.098 in. diameter nozzle and 0.7 lbf with a 0.295 in. diameter nozzle. The Southampton MSBS was able to control the simulator at angles-of attack up to 20 deg. The large-scale simulator was demonstrated to operate in both a steady-state and a pulse mode via a miniaturized solinoid valve. It developed a stable and repeatable thrust of 2.75 lbf over a period of 4s and a nozzle pressure ratio (NPR) of 5.

  4. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  5. Design Philosophy for Wind Tunnel Model Positioning Systems

    DTIC Science & Technology

    1992-04-01

    reasonable tolerance, closed-loop computer controlled systems have been developed for use in the wind tunnel facilities at the Arnold Engineering Development...methods, computer controlled systems have been developed to provide this function in the wind tunnel. The concept developed is a closed-loop position

  6. The role of wind tunnel models in helicopter noise research

    NASA Technical Reports Server (NTRS)

    Sternfeld, H., Jr.; Schaeffer, E. G.

    1986-01-01

    A study was conducted to determine the applicability of using small-scale powered helicopter models operating in nonanechoic wind tunnels to predict the sound pressure levels of full-scale rotor harmonic noise components. The investigation included noise generation due to high-tip-speed effects, tandem-rotor blade/vortex interactions, single rotors operating on test towers, and the interaction between main rotor vortices and tail rotors. In all cases it was found that the pressure time history waveforms characteristic of different noise-generating mechanisms were properly reproduced by the models. Corrections for microphone locations, acoustical reverberation, and tunnel wind velocity were developed. Application of these corrections to the model data were found to yield satisfactory correlation with full-scale sound pressure levels except for the isolated single rotor, where highly transient data, both model and full-scale, recluded good agreement of absolute values.

  7. Simulation and model reduction for the AFW program

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey; Bacon, Barton; Heeg, Jennifer; Houck, Jacob; Wood, David

    1992-01-01

    The simulation methodology used in the Active Flexible Wing wind-tunnel test program is described. An overview of the aeroservoelastic modeling used in building the required batch and hot-bench simulations is presented. Successful hot-bench implementation required that the full mathematical model be significantly reduced while assuring that accuracy be maintained for all combinations of 10 inputs and 56 outputs. The reduction was accomplished by using a method based on internally balanced realizations and focussing on the linear, aeroelastic portion of the full mathematical model. The error-bound properties of the internally balanced realization significantly contribute to its utility in the model reduction process. The reduction method and the results achieved are described.

  8. Atmospheric Probe Model: Construction and Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Vogel, Jerald M.

    1998-01-01

    The material contained in this document represents a summary of the results of a low speed wind tunnel test program to determine the performance of an atmospheric probe at low speed. The probe configuration tested consists of a 2/3 scale model constructed from a combination of hard maple wood and aluminum stock. The model design includes approximately 130 surface static pressure taps. Additional hardware incorporated in the baseline model provides a mechanism for simulating external and internal trailing edge split flaps for probe flow control. Test matrix parameters include probe side slip angle, external/internal split flap deflection angle, and trip strip applications. Test output database includes surface pressure distributions on both inner and outer annular wings and probe center line velocity distributions from forward probe to aft probe locations.

  9. A numerical study of the effects of wind tunnel wall proximity on an airfoil model

    NASA Technical Reports Server (NTRS)

    Potsdam, Mark; Roberts, Leonard

    1990-01-01

    A procedure was developed for modeling wind tunnel flows using computational fluid dynamics. Using this method, a numerical study was undertaken to explore the effects of solid wind tunnel wall proximity and Reynolds number on a two-dimensional airfoil model at low speed. Wind tunnel walls are located at varying wind tunnel height to airfoil chord ratios and the results are compared with freestream flow in the absence of wind tunnel walls. Discrepancies between the constrained and unconstrained flows can be attributed to the presence of the walls. Results are for a Mach Number of 0.25 at angles of attack through stall. A typical wind tunnel Reynolds number of 1,200,000 and full-scale flight Reynolds number of 6,000,000 were investigated. At this low Mach number, wind tunnel wall corrections to Mach number and angle of attack are supported. Reynolds number effects are seen to be a consideration in wind tunnel testing and wall interference correction methods. An unstructured grid Navier-Stokes code is used with a Baldwin-Lomax turbulence model. The numerical method is described since unstructured flow solvers present several difficulties and fundamental differences from structured grid codes, especially in the area of turbulence modeling and grid generation.

  10. Aspects of investigating STOL noise using large scale wind tunnel models

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Koenig, D. G.; Soderman, P. T.

    1972-01-01

    The applicability of the NASA Ames 40- by 80-ft wind tunnel for acoustic research on STOL concepts has been investigated. The acoustic characteristics of the wind tunnel test section has been studied with calibrated acoustic sources. Acoustic characteristics of several large-scale STOL models have been studied both in the free-field and wind tunnel acoustic environments. The results indicate that the acoustic characteristics of large-scale STOL models can be measured in the wind tunnel if the test section acoustic environment and model acoustic similitude are taken into consideration. The reverberant field of the test section must be determined with an acoustically similar noise source. Directional microphone and extrapolation of near-field data to far-field are some of the techniques being explored as possible solutions to the directivity loss in a reverberant field. The model sound pressure levels must be of sufficient magnitude to be discernable from the wind tunnel background noise.

  11. Transonic wind-tunnel tests of a lifting parachute model

    NASA Technical Reports Server (NTRS)

    Foughner, J. T., Jr.; Reed, J. F.; Wynne, E. C.

    1976-01-01

    Wind-tunnel tests have been made in the Langley transonic dynamics tunnel on a 0.25-scale model of Sandia Laboratories' 3.96-meter (13-foot), slanted ribbon design, lifting parachute. The lifting parachute is the first stage of a proposed two-stage payload delivery system. The lifting parachute model was attached to a forebody representing the payload. The forebody was designed and installed in the test section in a manner which allowed rotational freedom about the pitch and yaw axes. Values of parachute axial force coefficient, rolling moment coefficient, and payload trim angles in pitch and yaw are presented through the transonic speed range. Data are presented for the parachute in both the reefed and full open conditions. Time history records of lifting parachute deployment and disreefing tests are included.

  12. Propulsion simulator for magnetically-suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Goldey, C. L.; Sacco, G. P.; Lawing, Pierce L.

    1991-01-01

    The objective of phase two of a current investigation sponsored by NASA Langley Research Center is to demonstrate the measurement of aerodynamic forces/moments, including the effects of exhaust gases, in magnetic suspension and balance system (MSBS) wind tunnels. Two propulsion simulator models are being developed: a small-scale and a large-scale unit, both employing compressed, liquified carbon dioxide as propellant. The small-scale unit was designed, fabricated, and statically-tested at Physical Sciences Inc. (PSI). The large-scale simulator is currently in the preliminary design stage. The small-scale simulator design/development is presented, and the data from its static firing on a thrust stand are discussed. The analysis of this data provides important information for the design of the large-scale unit. A description of the preliminary design of the device is also presented.

  13. Near real time wind energy forecasting incorporating wind tunnel modeling

    NASA Astrophysics Data System (ADS)

    Lubitz, William David

    A series of experiments and investigations were carried out to inform the development of a day-ahead wind power forecasting system. An experimental near-real time wind power forecasting system was designed and constructed that operates on a desktop PC and forecasts 12--48 hours in advance. The system uses model output of the Eta regional scale forecast (RSF) to forecast the power production of a wind farm in the Altamont Pass, California, USA from 12 to 48 hours in advance. It is of modular construction and designed to also allow diagnostic forecasting using archived RSF data, thereby allowing different methods of completing each forecasting step to be tested and compared using the same input data. Wind-tunnel investigations of the effect of wind direction and hill geometry on wind speed-up above a hill were conducted. Field data from an Altamont Pass, California site was used to evaluate several speed-up prediction algorithms, both with and without wind direction adjustment. These algorithms were found to be of limited usefulness for the complex terrain case evaluated. Wind-tunnel and numerical simulation-based methods were developed for determining a wind farm power curve (the relation between meteorological conditions at a point in the wind farm and the power production of the wind farm). Both methods, as well as two methods based on fits to historical data, ultimately showed similar levels of accuracy: mean absolute errors predicting power production of 5 to 7 percent of the wind farm power capacity. The downscaling of RSF forecast data to the wind farm was found to be complicated by the presence of complex terrain. Poor results using the geostrophic drag law and regression methods motivated the development of a database search method that is capable of forecasting not only wind speeds but also power production with accuracy better than persistence.

  14. Estimation of Unsteady Aerodynamic Models from Dynamic Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick; Klein, Vladislav

    2011-01-01

    Demanding aerodynamic modelling requirements for military and civilian aircraft have motivated researchers to improve computational and experimental techniques and to pursue closer collaboration in these areas. Model identification and validation techniques are key components for this research. This paper presents mathematical model structures and identification techniques that have been used successfully to model more general aerodynamic behaviours in single-degree-of-freedom dynamic testing. Model parameters, characterizing aerodynamic properties, are estimated using linear and nonlinear regression methods in both time and frequency domains. Steps in identification including model structure determination, parameter estimation, and model validation, are addressed in this paper with examples using data from one-degree-of-freedom dynamic wind tunnel and water tunnel experiments. These techniques offer a methodology for expanding the utility of computational methods in application to flight dynamics, stability, and control problems. Since flight test is not always an option for early model validation, time history comparisons are commonly made between computational and experimental results and model adequacy is inferred by corroborating results. An extension is offered to this conventional approach where more general model parameter estimates and their standard errors are compared.

  15. Technique for the integral casting of pressure instrumentation in wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Jackson, C. M., Jr.; Summerfield, D. G.

    1971-01-01

    Wind tunnel models are cast around core consisting of array of tubing. Principal advantage of technique is that greater number of pressure orifices are easily installed, without compromising aerodynamic shape of model. Technique reduces construction cost by about 50 percent.

  16. Hot-bench simulation of the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S.; Houck, Jacob A.

    1990-01-01

    Two simulations, one batch and one real-time, of an aeroelastically-scaled wind-tunnel model were developed. The wind-tunnel model was a full-span, free-to-roll model of an advanced fighter concept. The batch simulation was used to generate and verify the real-time simulation and to test candidate control laws prior to implementation. The real-time simulation supported hot-bench testing of a digital controller, which was developed to actively control the elastic deformation of the wind-tunnel model. Time scaling was required for hot-bench testing. The wind-tunnel model, the mathematical models for the simulations, the techniques employed to reduce the hot-bench time-scale factors, and the verification procedures are described.

  17. A voice-actuated wind tunnel model leak checking system

    NASA Technical Reports Server (NTRS)

    Larson, William E.

    1989-01-01

    A computer program has been developed that improves the efficiency of wind tunnel model leak checking. The program uses a voice recognition unit to relay a technician's commands to the computer. The computer, after receiving a command, can respond to the technician via a voice response unit. Information about the model pressure orifice being checked is displayed on a gas-plasma terminal. On command, the program records up to 30 seconds of pressure data. After the recording is complete, the raw data and a straight line fit of the data are plotted on the terminal. This allows the technician to make a decision on the integrity of the orifice being checked. All results of the leak check program are stored in a database file that can be listed on the line printer for record keeping purposes or displayed on the terminal to help the technician find unchecked orifices. This program allows one technician to check a model for leaks instead of the two or three previously required.

  18. A voice-actuated wind tunnel model leak checking system

    NASA Technical Reports Server (NTRS)

    Larson, William E.

    1989-01-01

    A computer program has been developed that improves the efficiency of wind tunnel model leak checking. The program uses a voice recognition unit to relay a technician's commands to the computer. The computer, after receiving a command, can respond to the technician via a voice response unit. Information about the model pressure orifice being checked is displayed on a gas-plasma terminal. On command, the program records up to 30 seconds of pressure data. After the recording is complete, the raw data and a straight line fit of the data are plotted on the terminal. This allows the technician to make a decision on the integrity of the orifice being checked. All results of the leak check program are stored in a database file that can be listed on the line printer for record keeping purposes or displayed on the terminal to help the technician find unchecked orifices. This program allows one technician to check a model for leaks instead of the two or three previously required.

  19. An improved calibration technique for wind tunnel model attitude sensors

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Wong, Douglas T.; Finley, Tom D.; Tcheng, Ping

    1993-01-01

    Aerodynamic wind tunnel tests at NASA Langley Research Center (LaRC) require accurate measurement of model attitude. Inertial accelerometer packages have been the primary sensor used to measure model attitude to an accuracy of +/- 0.01 deg as required for aerodynamic research. The calibration parameters of the accelerometer package are currently obtained from a seven-point tumble test using a simplified empirical approximation. The inaccuracy due to the approximation exceeds the accuracy requirement as the misalignment angle between the package axis and the model body axis increases beyond 1.4 deg. This paper presents the exact solution derived from the coordinate transformation to eliminate inaccuracy caused by the approximation. In addition, a new calibration procedure is developed in which the data taken from the seven-point tumble test is fit to the exact solution by means of a least-squares estimation procedure. Validation tests indicate that the new calibration procedure provides +/- 0.005-deg accuracy over large package misalignments, which is not possible with the current procedure.

  20. Slotted-wall research with disk and parachute models in a low-speed wind tunnel

    SciTech Connect

    Macha, J.M.; Buffington, R.J.; Henfling, J.L. ); Every, D. Van; Harris, J.L. )

    1990-01-01

    An experimental investigation of slotted-wall blockage interference has been conducted using disk and parachute models in a low speed wind tunnel. Test section open area ratio, model geometric blockage ratio, and model location along the length of the test section were systematically varied. Resulting drag coefficients were compared to each other and to interference-free measurements obtained in a much larger wind tunnel where the geometric blockage ratio was less than 0.0025. 9 refs., 10 figs.

  1. Comparison of the Aerodynamic Characteristics of Similar Models in Two Size Wind Tunnels at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Springer, Anthony M.

    1998-01-01

    The aerodynamic characteristics of two similar models of a lifting body configuration were run in two transonic wind tunnels, one a 16 foot the other a 14-inch and are compared. The 16 foot test used a 2% model while the 14-inch test used a 0.7% scale model. The wind tunnel model configurations varied only in vertical tail size and an aft sting shroud. The results from these two tests compare the effect of tunnel size, Reynolds number, dynamic pressure and blockage on the longitudinal aerodynamic characteristics of the vehicle. The data accuracy and uncertainty are also presented. It was concluded from these tests that the data resultant from a small wind tunnel compares very well to that of a much larger wind tunnel in relation to total vehicle aerodynamic characteristics.

  2. Investigation of Low-temperature Solders for Cryogenic Wind Tunnel Models

    NASA Technical Reports Server (NTRS)

    Firth, G. C.; Watkins, V. E., Jr.

    1985-01-01

    The advent of high Reynolds number cryogenic wind tunnels has forced alteration of manufacturing and assembly techniques and eliminated usage of many materials associated with conventional wind tunnel models. One of the techniques affected is soldering. Solder alloys commonly used for wind tunnel models are susceptible to low-temperature embrittlement and phase transformation. The low-temperature performance of several solder alloys is being examined during research and development activities being conducted in support of design and fabrication of cryogenic wind tunnel models. Among the properties examined during these tests are shear strength, surface quality, joint stability, and durability when subjected to dynamic loading. Results of these tests and experiences with recent models are summarized.

  3. Numerical simulation of flows around deformed aircraft model in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Lysenkov, A. V.; Bosnyakov, S. M.; Glazkov, S. A.; Gorbushin, A. R.; Kuzmina, S. I.; Kursakov, I. A.; Matyash, S. V.; Ishmuratov, F. Z.

    2016-10-01

    To obtain accurate data of calculation method error requires detailed simulation of the experiment in wind tunnel with keeping all features of the model, installation and gas flow. Two examples of such detailed data comparison are described in this paper. The experimental characteristics of NASA CRM model obtained in the ETW wind tunnel (Cologne, Germany), and CFD characteristics of this model obtained with the use of EWT-TsAGI application package are compared. Following comparison is carried out for an airplane model in the T-128 wind tunnel (TsAGI, Russia). It is seen that deformation influence on integral characteristics grows with increasing Re number and, accordingly, the dynamic pressure. CFD methods application for problems of experimental research in the wind tunnel allows to separate viscosity and elasticity effects.

  4. Freon-14 as a working medium in wind tunnels for modeling hypersonic air flows

    NASA Astrophysics Data System (ADS)

    Komarov, V. N.; Polianskii, O. Iu.; Chirikhin, A. V.

    The thermodynamic and kinetic properties of Freon-14, a gas characterized by a low adiabat and well suited to the modelling of real gas effects in wind tunnels, are examined. It is shown that flows that are free from condensation and closely resemble equilibrium flows can be obtained over a sufficiently wide range of wind tunnel regimes and model sizes. Viscosity coefficients of Freon-14 are presented.

  5. Computation of wind tunnel wall effects for complex models using a low-order panel method

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.; Harris, Scott H.

    1994-01-01

    A technique for determining wind tunnel wall effects for complex models using the low-order, three dimensional panel method PMARC (Panel Method Ames Research Center) has been developed. Initial validation of the technique was performed using lift-coefficient data in the linear lift range from tests of a large-scale STOVL fighter model in the National Full-Scale Aerodynamics Complex (NFAC) facility. The data from these tests served as an ideal database for validating the technique because the same model was tested in two wind tunnel test sections with widely different dimensions. The lift-coefficient data obtained for the same model configuration in the two test sections were different, indicating a significant influence of the presence of the tunnel walls and mounting hardware on the lift coefficient in at least one of the two test sections. The wind tunnel wall effects were computed using PMARC and then subtracted from the measured data to yield corrected lift-coefficient versus angle-of-attack curves. The corrected lift-coefficient curves from the two wind tunnel test sections matched very well. Detailed pressure distributions computed by PMARC on the wing lower surface helped identify the source of large strut interference effects in one of the wind tunnel test sections. Extension of the technique to analysis of wind tunnel wall effects on the lift coefficient in the nonlinear lift range and on drag coefficient will require the addition of boundary-layer and separated-flow models to PMARC.

  6. Data Fusion in Wind Tunnel Testing; Combined Pressure Paint and Model Deformation Measurements (Invited)

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Burner, Alpheus W.

    2004-01-01

    As the benefit-to-cost ratio of advanced optical techniques for wind tunnel measurements such as Video Model Deformation (VMD), Pressure-Sensitive Paint (PSP), and others increases, these techniques are being used more and more often in large-scale production type facilities. Further benefits might be achieved if multiple optical techniques could be deployed in a wind tunnel test simultaneously. The present study discusses the problems and benefits of combining VMD and PSP systems. The desirable attributes of useful optical techniques for wind tunnels, including the ability to accommodate the myriad optical techniques available today, are discussed. The VMD and PSP techniques are briefly reviewed. Commonalties and differences between the two techniques are discussed. Recent wind tunnel experiences and problems when combining PSP and VMD are presented, as are suggestions for future developments in combined PSP and deformation measurements.

  7. Support interference of wind tunnel models: A selective annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.; Gloss, B. B.

    1981-01-01

    This bibliography, with abstracts, consists of 143 citations arranged in chronological order by dates of publication. Selection of the citations was made for their relevance to the problems involved in understanding or avoiding support interference in wind tunnel testing throughout the Mach number range. An author index is included.

  8. Support interference of wind tunnel models: A selective annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.; Lawing, P. L.

    1984-01-01

    This bibliography, with abstracts, consists of 143 citations arranged in chronological order by dates of publication. Selection of the citations was made for their relevance to the problems involved in understanding or avoiding support interference in wind tunnel testing throughout the Mach number range. An author index is included.

  9. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet with Shock Interactions

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Denison, Marie; Sozer, Emre; Moini-Yekta, Shayan

    2016-01-01

    NASA and Industry are performing vehicle studies of configurations with low sonic boom pressure signatures. The computational analyses of modern configuration designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty in the aft signatures with often greater boundary layer effects and nozzle jet pressures. Wind tunnel testing at significantly lower Reynolds numbers than in flight and without inlet and nozzle jet pressures make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel from Mach 1.6 to 2.0 will be used to assess the effects of shocks from components passing through nozzle jet plumes on the sonic boom pressure signature and provide datasets for comparison with CFD codes. A large number of high-fidelity numerical simulations of wind tunnel test models with a variety of shock generators that simulate horizontal tails and aft decks have been studied to provide suitable models for sonic boom pressure measurements using a minimally intrusive pressure rail in the wind tunnel. The computational results are presented and the evolution of candidate wind tunnel models is summarized and discussed in this paper.

  10. Wind-tunnel investigation of the thrust augmentor performance of a large-scale swept wing model. [in the Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.; Falarski, M. D.

    1979-01-01

    Tests were made in the Ames 40- by 80-foot wind tunnel to determine the forward speed effects on wing-mounted thrust augmentors. The large-scale model was powered by the compressor output of J-85 driven viper compressors. The flap settings used were 15 deg and 30 deg with 0 deg, 15 deg, and 30 deg aileron settings. The maximum duct pressure, and wind tunnel dynamic pressure were 66 cmHg (26 in Hg) and 1190 N/sq m (25 lb/sq ft), respectively. All tests were made at zero sideslip. Test results are presented without analysis.

  11. Effects of vibration on inertial wind-tunnel model attitude measurement devices

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Buehrle, Ralph D.; Balakrishna, S.; Kilgore, W. Allen

    1994-01-01

    Results of an experimental study of a wind tunnel model inertial angle-of-attack sensor response to a simulated dynamic environment are presented. The inertial device cannot distinguish between the gravity vector and the centrifugal accelerations associated with wind tunnel model vibration, this situation results in a model attitude measurement bias error. Significant bias error in model attitude measurement was found for the model system tested. The model attitude bias error was found to be vibration mode and amplitude dependent. A first order correction model was developed and used for estimating attitude measurement bias error due to dynamic motion. A method for correcting the output of the model attitude inertial sensor in the presence of model dynamics during on-line wind tunnel operation is proposed.

  12. Analytical aerodynamic model of a high alpha research vehicle wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Cao, Jichang; Garrett, Frederick, Jr.; Hoffman, Eric; Stalford, Harold

    1990-01-01

    A 6 DOF analytical aerodynamic model of a high alpha research vehicle is derived. The derivation is based on wind-tunnel model data valid in the altitude-Mach flight envelope centered at 15,000 ft altitude and 0.6 Mach number with Mach range between 0.3 and 0.9. The analytical models of the aerodynamics coefficients are nonlinear functions of alpha with all control variable and other states fixed. Interpolation is required between the parameterized nonlinear functions. The lift and pitching moment coefficients have unsteady flow parts due to the time range of change of angle-of-attack (alpha dot). The analytical models are plotted and compared with their corresponding wind-tunnel data. Piloted simulated maneuvers of the wind-tunnel model are used to evaluate the analytical model. The maneuvers considered are pitch-ups, 360 degree loaded and unloaded rolls, turn reversals, split S's, and level turns. The evaluation finds that (1) the analytical model is a good representation at Mach 0.6, (2) the longitudinal part is good for the Mach range 0.3 to 0.9, and (3) the lateral part is good for Mach numbers between 0.6 and 0.9. The computer simulations show that the storage requirement of the analytical model is about one tenth that of the wind-tunnel model and it runs twice as fast.

  13. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Active Control Design Applications

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1998-01-01

    This report describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind tunnel model for active control design and analysis applications. The model is formed by combining the equations of motion for the BACT wind tunnel model with actuator models and a model of wind tunnel turbulence. The primary focus of this report is the development of the equations of motion from first principles by using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated by making use of parameters obtained from both experiment and analysis. Comparisons between experimental and analytical data obtained from the numerical model show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind tunnel model. The equations of motion developed herein have been used to aid in the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  14. Plans and Status of Wind-Tunnel Testing Employing an Aeroservoelastic Semispan Model

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Silva, Walter A.; Florance, James R.; Wieseman, Carol D.; Pototzky, Anthony S.; Sanetrik, Mark D.; Scott, Robert C.; Keller, Donald F.; Cole, Stanley R.; Coulson, David A.

    2007-01-01

    This paper presents the research objectives, summarizes the pre-wind-tunnel-test experimental results to date, summarizes the analytical predictions to date, and outlines the wind-tunnel-test plans for an aeroservoelastic semispan wind-tunnel model. The model is referred to as the Supersonic Semispan Transport (S4T) Active Controls Testbed (ACT) and is based on a supersonic cruise configuration. The model has three hydraulically-actuated surfaces (all-movable horizontal tail, all-movable ride control vane, and aileron) for active controls. The model is instrumented with accelerometers, unsteady pressure transducers, and strain gages and will be mounted on a 5-component sidewall balance. The model will be tested twice in the Langley Transonic Dynamics Tunnel (TDT). The first entry will be an "open-loop" model-characterization test; the second entry will be a "closed-loop" test during which active flutter suppression, gust load alleviation and ride quality control experiments will be conducted.

  15. 1/50 Scale Model Of The 80X120 Foot Wind Tunnel Model (NFAC) In The Test Section Of The 40X80 Wind Tunnel At Nasa Ames.

    NASA Image and Video Library

    1976-03-12

    (03/12/1976) Overhead view of 1/50 scale model of the 80x120 foot wind tunnel model (NFAC) in the test section of the 40x80 wind tunnel at NASA Ames. Model mounted on a rotating ground board designed for this test.

  16. A76-0634. 1/50 Scale Model Of The 80X120 Foot Wind Tunnel Model (Nfac) In The Test Section Of The 40X80 Foot Wind Tunnel.

    NASA Image and Video Library

    1996-06-27

    (03/12/1976) 1/50 scale model of the 80x120 foot wind tunnel model (NFAC) in the test section of the 40x80 foot wind tunnel. Model mounted on a rotating ground board designed for this test, viewed from the west, oriented for North wind.

  17. SR-71 wind tunnel scale model with LASRE pod

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This is a photo of the SR-71 scale wind tunnel model showing the Linear Aerospike SR Experiment (LASRE) pod attachment location. The model was on display for the LASRE fit-check at the Lockheed Martin Skunkworks on Feb. 15, 1996, in Palmdale, California. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The

  18. SR-71 wind tunnel scale model with LASRE pod

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This is a photo of the SR-71 scale wind tunnel model showing the Linear Aerospike SR Experiment (LASRE) pod attachment location. The model was on display for the LASRE fit-check at the Lockheed Martin Skunkworks on Feb. 15, 1996, in Palmdale, California. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The

  19. Static Aeroelastic Analysis of Transonic Wind Tunnel Models Using Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Hooker, John R.; Burner, Alpheus W.; Valla, Robert

    1997-01-01

    A computational method for accurately predicting the static aeroelastic deformations of typical transonic transport wind tunnel models is described. The method utilizes a finite element method (FEM) for predicting the deformations. Extensive calibration/validation of this method was carried out using a novel wind-off wind tunnel model static loading experiment and wind-on optical wing twist measurements obtained during a recent wind tunnel test in the National Transonic Facility (NTF) at NASA LaRC. Further validations were carried out using a Navier-Stokes computational fluid dynamics (CFD) flow solver to calculate wing pressure distributions about several aeroelastically deformed wings and comparing these predictions with NTF experimental data. Results from this aeroelastic deformation method are in good overall agreement with experimentally measured values. Including the predicted deformations significantly improves the correlation between CFD predicted and experimentally measured wing & pressures.

  20. Jet-boundary corrections for reflection-plane models in rectangular wind tunnel

    NASA Technical Reports Server (NTRS)

    Swanson, Robert S; Toll, Thomas A

    1943-01-01

    A detailed method for determining the jet-boundary corrections for reflection-plane models in rectangular wind tunnels is presented. The method includes the determination of the tunnel span local distribution and the derivation of equations for the corrections to the angle of attack, the lift and drag coefficients, and the pitching-, rolling-, yawing-, and hinge-moment coefficients. The principle effects of aerodynamic induction and of the boundary-induced curvature of the streamlines have been considered. An example is included to illustrate the method. Numerical values of the more important corrections for reflection-plane models in 7 by 10-foot closed wind tunnels are presented.

  1. Evaluation of Simultaneous Multisine Excitation of the Joined Wing SensorCraft Aeroelastic Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Morelli, Eugene A.

    2011-01-01

    Multiple mutually orthogonal signals comprise excitation data sets for aeroservoelastic system identification. A multisine signal is a sum of harmonic sinusoid components. A set of these signals is made orthogonal by distribution of the frequency content such that each signal contains unique frequencies. This research extends the range of application of an excitation method developed for stability and control flight testing to aeroservoelastic modeling from wind tunnel testing. Wind tunnel data for the Joined Wing SensorCraft model validates this method, demonstrating that these signals applied simultaneously reproduce the frequency response estimates achieved from one-at-a-time excitation.

  2. Development of an apparatus to measure thermophysical properties of wind tunnel heat transfer models

    NASA Technical Reports Server (NTRS)

    Romanowski, R. F.; Steinberg, I. H.

    1974-01-01

    The apparatus and technique for measuring the thermophysical properties of models used with the phase-change paint method for obtaining wind tunnel heat transfer data are described. The method allows rapid measurement of the combined properties in a transient manner similar to an actual wind tunnel test. An effective value of the thermophysical properties can be determined which accounts for changes in thermal properties with temperature or with depth into the model surface. The apparatus was successfully tested at various heating rates between 19,000 and 124,000 watts per square meter.

  3. Lockheed XFV-1 model in the 40x80 foot wind tunnel at NASA Ames Research Center

    NASA Image and Video Library

    1952-05-16

    Wide shot of 40x 80 wind tunnel settling chamber with Lockheed XFV-1 model. Project engineer Mark Kelly (not shown). Remote controlled model flown in the settling chamber of the 40x80 wind tunnel. Electric motors in the model, controlled the counter-rotating propellers to test vertical takeoff. Test no. 71

  4. Modeling the effects of wind tunnel wall absorption on the acoustic radiation characteristics of propellers

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.

    1986-01-01

    Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a 'Gutin' propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.

  5. Modeling the effects of wind tunnel wall absorption on the acoustic radiation characteristics of propellers

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.

    1986-01-01

    Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a "Gutin" propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.

  6. Analytical Models for Rotor Test Module, Strut, and Balance Frame Dynamics in the 40 by 80 Ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1976-01-01

    A mathematical model is developed for the dynamics of a wind tunnel support system consisting of a balance frame, struts, and an aircraft or test module. Data are given for several rotor test modules in the Ames 40 by 80 ft wind tunnel. A model for ground resonance calculations is also described.

  7. Modeling and control of a LN2-GN2 operated closed circuit cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Thibodeaux, J. J.

    1979-01-01

    An explicit but simple lumped parameter nonlinear multivariable model of a LN2-GN2-operated closed circuit cryogenic wind tunnel has been developed and its basic features have been experimentally validated. The model describes the mass-energy interaction involved in the cryogenic tunnel process and includes the real gas properties of nitrogen gas.

  8. Wind tunnel investigation of aerodynamic characteristics of scale models of three rectangular shaped cargo containers

    NASA Technical Reports Server (NTRS)

    Laub, G. H.; Kodani, H. M.

    1972-01-01

    Wind tunnel tests were conducted on scale models of three rectangular shaped cargo containers to determine the aerodynamic characteristics of these typical externally-suspended helicopter cargo configurations. Tests were made over a large range of pitch and yaw attitudes at a nominal Reynolds number per unit length of 1.8 x one million. The aerodynamic data obtained from the tests are presented.

  9. Thermochemical nonequilibrium modeling of a low-power argon arcjet wind tunnel

    NASA Astrophysics Data System (ADS)

    Katsurayama, Hiroshi; Abe, Takashi

    2013-02-01

    Non-transferred low-power arcjet wind tunnels with pure argon working gas are widely used as inexpensive laboratory plasma sources to simulate a weakly ionized supersonic flow around an atmospheric entry vehicle. Many experiments using argon arcjet wind tunnels have been conducted, but their numerical modeling is not yet complete. We develop an axisymmetric Navier-Stokes model with thermochemical nonequilibrium and arc discharge that simulates the entire flow field in a steady-operating argon arcjet wind tunnel, which consists of the inside of the arcjet and its arc plume entering a rarefied vacuum chamber. The computational method we develop makes it possible to reproduce the arc column behavior far from thermochemical equilibrium in the low-voltage discharge mode typical of argon arcjets. Furthermore, the results reveal that the plasma characteristic of being far from thermal equilibrium, which is particular to argon, causes the arcjet to operate in the low-voltage mode and its arc plume to be completely thermochemically frozen. Moreover, the arc plume has electroconductive non-uniformity with an electrically insulating boundary in the radial direction. Our computed values for the shock standoff distance in front of a blunt body and the drag exerted on it agree with measured values. As a result, the self-consistent computational model in this study is useful in investigating thermochemical nonequilibrium plasma flows in argon arcjet wind tunnels.

  10. Turboprop Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1976-08-21

    National Aeronautics and Space Administration (NASA) engineer Robert Jeracki prepares a Hamilton Standard SR-1 turboprop model in the test section of the 8- by 6-Foot Supersonic Wind Tunnel at the Lewis Research Center. Lewis researchers were analyzing a series of eight-bladed propellers in their wind tunnels to determine their operating characteristics at speeds up to Mach 0.8. The program, which became the Advanced Turboprop, was part of a NASA-wide Aircraft Energy Efficiency Program which was designed to reduce aircraft fuel costs by 50 percent. The ATP concept was different from the turboprops in use in the 1950s. The modern versions had at least eight blades and were swept back for better performance. After Lewis researchers developed the advanced turboprop theory and established its potential performance capabilities, they commenced an almost decade-long partnership with Hamilton Standard to develop, verify, and improve the concept. A series of 24-inch scale models of the SR-1 with different blade shapes and angles were tested in Lewis’ wind tunnels. A formal program was established in 1978 to examine associated noise levels, aerodynamics, and the drive system. The testing of the large-scale propfan was done on test rigs, in large wind tunnels, and, eventually, on aircraft.

  11. General Dynamics YF-16 Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1974-01-21

    A model of the General Dynamics YF-16 Fighting Falcon in the test section of the 8- by 6-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The YF-16 was General Dynamics response to the military’s 1972 request for proposals to design a new 20,000-pound fighter jet with exceptional acceleration, turn rate, and range. The aircraft included innovative design elements to help pilots survive turns up to 9Gs, a new frameless bubble canopy, and a Pratt and Whitney 24,000-pound thrust F-100 engine. The YF-16 made its initial flight in February 1974, just six weeks before this photograph, at Edwards Air Force Base. Less than a year later, the Air Force ordered 650 of the aircraft, designated as F-16 Fighting Falcons. The March and April 1974 tests in the 8- by 6-foot tunnel analyzed the aircraft’s fixed-shroud ejector nozzle. The fixed-nozzle area limited drag, but also limited the nozzle’s internal performance. NASA researchers identified and assessed aerodynamic and aerodynamic-propulsion interaction uncertainties associated the prototype concept. YF-16 models were also tested extensively in the 11- by 11-Foot Transonic Wind Tunnel and 9- by 7-Foot Supersonic Wind Tunnel at Ames Research Center and the 12-Foot Pressure Wind Tunnel at Langley Research Center.

  12. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet Flows with Shock Interactions

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Denison, Marie; Moini-Yekta, Shayan; Morr, Donald E.; Durston, Donald A.

    2016-01-01

    NASA and the U.S. aerospace industry are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The computational analyses of modern aircraft designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty remains in the aft signatures due to boundary layer and nozzle exhaust jet effects. Wind tunnel testing without inlet and nozzle exhaust jet effects at lower Reynolds numbers than in-flight make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel is planned for February 2016 to address the nozzle jet effects on sonic boom. The experiment will provide pressure signatures of test articles that replicate waveforms from aircraft wings, tails, and aft fuselage (deck) components after passing through cold nozzle jet plumes. The data will provide a variety of nozzle plume and shock interactions for comparison with computational results. A large number of high-fidelity numerical simulations of a variety of shock generators were evaluated to define a reduced collection of suitable test models. The computational results of the candidate wind tunnel test models as they evolved are summarized, and pre-test computations of the final designs are provided.

  13. Acoustical properties of a model rotor in nonaxial flight. [wind tunnel model noise measurements

    NASA Technical Reports Server (NTRS)

    Hinterkeuser, E. G.

    1973-01-01

    Wind tunnel measurements on model rotor blade loads and acoustical noise were correlated to a theoretical formulation of the rotational noise of a rotor in non-axial flight. Good correlation between theory and data was achieved using actual measured rotor blade pressure harmonic decay levels and lift, drag and radial force magnitudes. Both pressure and acoustic data exhibited considerable scatter in hover and low speed forward flight which resulted in a fairly wide latitude in the noise level prediction at higher harmonics.

  14. System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph David

    1997-01-01

    The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal

  15. Wind tunnel test of Teledyne Geotech model 1564B cup anemometer

    NASA Astrophysics Data System (ADS)

    Parker, M. J.; Addis, R. P.

    1991-04-01

    The Department of Energy (DOE) Environment, Safety, and Health Compliance Assessment (Tiger Team) of the Savannah River Site (SRS) questioned the method by which wind speed sensors (cup anemometers) are calibrated by the Environmental Technology Section (ETS). The Tiger Team member was concerned that calibration data was generated by running the wind tunnel to only 26 miles per hour (mph) when speeds exceeding 50 mph are readily obtainable. A wind tunnel experiment was conducted and confirmed the validity of the practice. Wind speeds common to SRS (6 mph) were predicted more accurately by 0-25 mph regression equations than 0-50 mph regression equations. Higher wind speeds were slightly overpredicted by the 0-25 mph regression equations when compared to 0-50 mph regression equations. However, the greater benefit of more accurate lower wind speed predictions accuracy outweigh the benefit of slightly better high (extreme) wind speed predictions. Therefore, it is concluded that 0-25 mph regression equations should continue to be utilized by ETS at SRS. During the Department of Energy Tiger Team audit, concerns were raised about the calibration of SRS cup anemometers. Wind speed is measured by ETS with Teledyne Geotech model 1564B cup anemometers, which are calibrated in the ETS wind tunnel. Linear regression lines are fitted to data points of tunnel speed versus anemometer output voltages up to 25 mph. The regression coefficients are then implemented into the data acquisition computer software when an instrument is installed in the field. The concern raised was that since the wind tunnel at SRS is able to generate a maximum wind speed higher than 25 mph, errors may be introduced in not using the full range of the wind tunnel.

  16. Wind tunnel test of Teledyne Geotech model 1564B cup anemometer

    SciTech Connect

    Parker, M.J.; Addis, R.P.

    1991-04-04

    The Department of Energy (DOE) Environment, Safety and Health Compliance Assessment (Tiger Team) of the Savannah River Site (SRS) questioned the method by which wind speed sensors (cup anemometers) are calibrated by the Environmental Technology Section (ETS). The Tiger Team member was concerned that calibration data was generated by running the wind tunnel to only 26 miles per hour (mph) when speeds exceeding 50 mph are readily obtainable. A wind tunnel experiment was conducted and confirmed the validity of the practice. Wind speeds common to SRS (6 mph) were predicted more accurately by 0--25 mph regression equations than 0--50 mph regression equations. Higher wind speeds were slightly overpredicted by the 0--25 mph regression equations when compared to 0--50 mph regression equations. However, the greater benefit of more accurate lower wind speed predictions accuracy outweight the benefit of slightly better high (extreme) wind speed predictions. Therefore, it is concluded that 0--25 mph regression equations should continue to be utilized by ETS at SRS. During the Department of Energy Tiger Team audit, concerns were raised about the calibration of SRS cup anemometers. Wind speed is measured by ETS with Teledyne Geotech model 1564B cup anemometers, which are calibrated in the ETS wind tunnel. Linear regression lines are fitted to data points of tunnel speed versus anemometer output voltages up to 25 mph. The regression coefficients are then implemented into the data acquisition computer software when an instrument is installed in the field. The concern raised was that since the wind tunnel at SRS is able to generate a maximum wind speed higher than 25 mph, errors may be introduced in not using the full range of the wind tunnel.

  17. A lumped parameter mathematical model for simulation of subsonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Krosel, S. M.; Cole, G. L.; Bruton, W. M.; Szuch, J. R.

    1986-01-01

    Equations for a lumped parameter mathematical model of a subsonic wind tunnel circuit are presented. The equation state variables are internal energy, density, and mass flow rate. The circuit model is structured to allow for integration and analysis of tunnel subsystem models which provide functions such as control of altitude pressure and temperature. Thus the model provides a useful tool for investigating the transient behavior of the tunnel and control requirements. The model was applied to the proposed NASA Lewis Altitude Wind Tunnel (AWT) circuit and included transfer function representations of the tunnel supply/exhaust air and refrigeration subsystems. Both steady state and frequency response data are presented for the circuit model indicating the type of results and accuracy that can be expected from the model. Transient data for closed loop control of the tunnel and its subsystems are also presented, demonstrating the model's use as a control analysis tool.

  18. Modal Correction Method For Dynamically Induced Errors In Wind-Tunnel Model Attitude Measurements

    NASA Technical Reports Server (NTRS)

    Buehrle, R. D.; Young, C. P., Jr.

    1995-01-01

    This paper describes a method for correcting the dynamically induced bias errors in wind tunnel model attitude measurements using measured modal properties of the model system. At NASA Langley Research Center, the predominant instrumentation used to measure model attitude is a servo-accelerometer device that senses the model attitude with respect to the local vertical. Under smooth wind tunnel operating conditions, this inertial device can measure the model attitude with an accuracy of 0.01 degree. During wind tunnel tests when the model is responding at high dynamic amplitudes, the inertial device also senses the centrifugal acceleration associated with model vibration. This centrifugal acceleration results in a bias error in the model attitude measurement. A study of the response of a cantilevered model system to a simulated dynamic environment shows significant bias error in the model attitude measurement can occur and is vibration mode and amplitude dependent. For each vibration mode contributing to the bias error, the error is estimated from the measured modal properties and tangential accelerations at the model attitude device. Linear superposition is used to combine the bias estimates for individual modes to determine the overall bias error as a function of time. The modal correction model predicts the bias error to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment.

  19. Dynamic response tests of inertial and optical wind-tunnel model attitude measurement devices

    NASA Technical Reports Server (NTRS)

    Buehrle, R. D.; Young, C. P., Jr.; Burner, A. W.; Tripp, J. S.; Tcheng, P.; Finley, T. D.; Popernack, T. G., Jr.

    1995-01-01

    Results are presented for an experimental study of the response of inertial and optical wind-tunnel model attitude measurement systems in a wind-off simulated dynamic environment. This study is part of an ongoing activity at the NASA Langley Research Center to develop high accuracy, advanced model attitude measurement systems that can be used in a dynamic wind-tunnel environment. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration which results in a model attitude measurement bias error. Significant bias errors in model attitude measurement were found for the measurement using the inertial device during wind-off dynamic testing of a model system. The amount of bias present during wind-tunnel tests will depend on the amplitudes of the model dynamic response and the modal characteristics of the model system. Correction models are presented that predict the vibration-induced bias errors to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment. The optical system results were uncorrupted by model vibration in the laboratory setup.

  20. Persistence Characteristics of Wind-Tunnel Pressure Signatures From Two Similar Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2004-01-01

    Pressure signatures generated by two sonic-boom wind-tunnel models and measured at Mach 2 are presented, analyzed, and discussed. The two wind-tunnel models differed in length and span by a factor of fourteen, but were similar in wing-body planform shape. The geometry of the larger model had been low-boom tailored to generate a flat top ground pressure signature, and the nacelles-off pressure signatures from this model became more flattop in shape as the model-probe separation distances increased from 0.94 to 4.4 span lengths. The geometry of the smaller model had not been low-boom tailored, yet its measured pressure signatures had non-N-wave shapes that persisted as model-probe separation distances increased from 26.0 to 104.2 span lengths. Since the overall planforms of the two wind-tunnel models were so similar, it was concluded that the shape-persistence trends in the pressure signatures of the smaller, non-low-boom tailored model would also be present at very large distances in the pressure signatures of the larger, low-boom-tailored model.

  1. A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.

    2014-01-01

    A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.

  2. Wind-Tunnel Investigation of a Full-Scale Model of the Hughes MX-904 Missile

    NASA Technical Reports Server (NTRS)

    1950-01-01

    A wind-tunnel investigation has been conducted to determine the stability and control characteristics of a full-size model of the Hughes MX-904 missile. Aerodynamic characteristics of the complete model through moderate ranges of angles of attack and yaw, with an additional test made through an angle of attack of 180 degrees, are presented. The effects of horizontal tail deflection are also included.

  3. A Photogrammetric System for Model Attitude Measurement in Hypersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Lunsford, Charles B.

    2007-01-01

    A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and photogrammetric principles for point tracking to compute model position including pitch, roll and yaw. A discussion of the constraints encountered during the design, and a review of the measurement results obtained from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.

  4. A Wind Tunnel Model to Explore Unsteady Circulation Control for General Aviation Applications

    NASA Technical Reports Server (NTRS)

    Cagle, Christopher M.; Jones, Gregory S.

    2002-01-01

    Circulation Control airfoils have been demonstrated to provide substantial improvements in lift over conventional airfoils. The General Aviation Circular Control model is an attempt to address some of the concerns of this technique. The primary focus is to substantially reduce the amount of air mass flow by implementing unsteady flow. This paper describes a wind tunnel model that implements unsteady circulation control by pulsing internal pneumatic valves and details some preliminary results from the first test entry.

  5. New methodologies for calculation of flight parameters on reduced scale wings models in wind tunnel =

    NASA Astrophysics Data System (ADS)

    Ben Mosbah, Abdallah

    In order to improve the qualities of wind tunnel tests, and the tools used to perform aerodynamic tests on aircraft wings in the wind tunnel, new methodologies were developed and tested on rigid and flexible wings models. A flexible wing concept is consists in replacing a portion (lower and/or upper) of the skin with another flexible portion whose shape can be changed using an actuation system installed inside of the wing. The main purpose of this concept is to improve the aerodynamic performance of the aircraft, and especially to reduce the fuel consumption of the airplane. Numerical and experimental analyses were conducted to develop and test the methodologies proposed in this thesis. To control the flow inside the test sections of the Price-Paidoussis wind tunnel of LARCASE, numerical and experimental analyses were performed. Computational fluid dynamics calculations have been made in order to obtain a database used to develop a new hybrid methodology for wind tunnel calibration. This approach allows controlling the flow in the test section of the Price-Paidoussis wind tunnel. For the fast determination of aerodynamic parameters, new hybrid methodologies were proposed. These methodologies were used to control flight parameters by the calculation of the drag, lift and pitching moment coefficients and by the calculation of the pressure distribution around an airfoil. These aerodynamic coefficients were calculated from the known airflow conditions such as angles of attack, the mach and the Reynolds numbers. In order to modify the shape of the wing skin, electric actuators were installed inside the wing to get the desired shape. These deformations provide optimal profiles according to different flight conditions in order to reduce the fuel consumption. A controller based on neural networks was implemented to obtain desired displacement actuators. A metaheuristic algorithm was used in hybridization with neural networks, and support vector machine approaches and their

  6. The problem of dimensional instability in airfoil models for cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1982-01-01

    The problem of dimensional instability in airfoil models for cryogenic wind tunnels is discussed in terms of the various mechanisms that can be responsible. The interrelationship between metallurgical structure and possible dimensional instability in cryogenic usage is discussed for those steel alloys of most interest for wind tunnel model construction at this time. Other basic mechanisms responsible for setting up residual stress systems are discussed, together with ways in which their magnitude may be reduced by various elevated or low temperature thermal cycles. A standard specimen configuration is proposed for use in experimental investigations into the effects of machining, heat treatment, and other variables that influence the dimensional stability of the materials of interest. A brief classification of various materials in terms of their metallurgical structure and susceptability to dimensional instability is presented.

  7. Development of a distributed-parameter mathematical model for simulation of cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Tripp, J. S.

    1983-01-01

    A one-dimensional distributed-parameter dynamic model of a cryogenic wind tunnel was developed which accounts for internal and external heat transfer, viscous momentum losses, and slotted-test-section dynamics. Boundary conditions imposed by liquid-nitrogen injection, gas venting, and the tunnel fan were included. A time-dependent numerical solution to the resultant set of partial differential equations was obtained on a CDC CYBER 203 vector-processing digital computer at a usable computational rate. Preliminary computational studies were performed by using parameters of the Langley 0.3-Meter Transonic Cryogenic Tunnel. Studies were performed by using parameters from the National Transonic Facility (NTF). The NTF wind-tunnel model was used in the design of control loops for Mach number, total temperature, and total pressure and for determining interactions between the control loops. It was employed in the application of optimal linear-regulator theory and eigenvalue-placement techniques to develop Mach number control laws.

  8. Progress in the Lewis Research Center Altitude Wind Tunnel (AWT) Modeling Program

    NASA Technical Reports Server (NTRS)

    Ciepluch, C. C.; Burley, R. R.; Groesbeck, D. E.; Marek, J. C.

    1986-01-01

    The rehabilitation of the Altitude Wind Tunnel (AWT) at the NASA Lewis Research Center is under study with the goal of providing a modern subsonic wind tunnel for conducting propulsion system/airframe integration, isolated propulsion system, propulsion acoustics and adverse weather tests. Because of the increased Mach number capability (from Mach 0.6 to 0.9 plus) and the incorporation of acoustic and adverse weather capabilities into an existing tunnel, the AWT rehabilitation represents a significant technical challenge. In order to reduce the risk associated with such an undertaking, and extensive AWT modeling program is being conducted to guide and verify the tunnel design. Significant findings and progress in this modeling program are the subject of this paper.

  9. Aeroservoelastic wind-tunnel investigations using the active flexible wing model - Status and recent accomplishments

    NASA Technical Reports Server (NTRS)

    Noll, Thomas; Perry, Boyd, III; Tiffany, Sherwood; Cole, Stanley; Buttrill, Carey; Adams, William, Jr.; Houck, Jacob; Srinathkumar, S.

    1989-01-01

    This paper describes the status of the joint NASA/Rockwell Active Flexible Wing Wind-Tunnel Test Program. The objectives of the program are to develop and validate the analysis, design and test methodologies required to apply multifunction active control technology for improving aircraft performance and stability. Major tasks of the program include designing digital multiinput/multioutput flutter-suppression and rolling-maneuver-load-alleviation concepts for a flexible full-span wind-tunnel model, obtaining an experimental data base for the basic model and each control concept, and providing comparisons between experimental and analytical results to validate the methodologies. This program is also providing the opportunity to improve real-time simulation techniques and to gain practical experience with digital control law implementation procedures.

  10. On Problems Associated with Modeling Wing-Tail Configurations from Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2007-01-01

    This paper considers factors that contribute to poor identification of unsteady aerodynamics from wind tunnel data for an airliner configuration. One approach to modeling a wing-tail configuration is considered and applied to both steady and large-amplitude forced pitch oscillation wind tunnel data taken over a wide range of angles of attack but a limited range of amplitude and frequencies. The identified models fit the measured data well but in some cases with inaccurate parameters. Only limited conclusions can be drawn from analysis of the current data set until further experiments can be performed to resolve the identification issues. The analysis of measured and simulated data provides some insights and guidance on how an effective experiment may be designed for wing-tail configurations with nonlinear unsteady aerodynamics.

  11. Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments

    NASA Technical Reports Server (NTRS)

    Noll, Thomas E.; Perry, Boyd, III; Tiffany, Sherwood H.; Cole, Stanley R.; Buttrill, Carey S.; Adams, William M., Jr.; Houck, Jacob A.; Srinathkumar, S.; Mukhopadhyay, Vivek; Pototzky, Anthony S.

    1989-01-01

    The status of the joint NASA/Rockwell Active Flexible Wing Wind-Tunnel Test Program is described. The objectives are to develop and validate the analysis, design, and test methodologies required to apply multifunction active control technology for improving aircraft performance and stability. Major tasks include designing digital multi-input/multi-output flutter-suppression and rolling-maneuver-load alleviation concepts for a flexible full-span wind-tunnel model, obtaining an experimental data base for the basic model and each control concept and providing comparisons between experimental and analytical results to validate the methodologies. The opportunity is provided to improve real-time simulation techniques and to gain practical experience with digital control law implementation procedures.

  12. An Evaluation of Measured Pressure Signatures From Wind-Tunnel Models of Three Low-Boom Concepts

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2005-01-01

    Revised 1990-1991 sonic-boom design and analysis methodology was assessed by applying it to the design of three low-boom concepts. Models of these concepts were built and used to measure pressure signatures in the wind tunnel. An analysis of wind-tunnel data showed unexpected nacelle-inlet and the nacelle-wing interference-lift shocks in the pressure signatures from the two engine-under-the-wing models, but not in the measured pressure signatures from the wind-tunnel model with the engine nacelles mounted on the aft fuselage. However, additional lift-induced shocks were found in the pressure signature data from all three wind-tunnel models indicating that other flow-field disturbance effects were present.

  13. Aeroservoelastic Testing of a Sidewall Mounted Free Flying Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer

    2008-01-01

    A team comprised of the Air Force Research Laboratory (AFRL), Northrop Grumman, Lockheed Martin, and the NASA Langley Research Center conducted three j wind-tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, exible vehicles. In the rst of these three tests, a semispan, aeroelastically scaled, wind-tunnel model of a ying wing SensorCraft vehi- cle was mounted to a force balance to demonstrate gust load alleviation. In the second and third tests, the same wing was mated to a new, multi-degree-of-freedom, sidewall mount. This mount allowed the half-span model to translate vertically and pitch at the wing root, allowing better simulation of the full span vehicle's rigid-body modes. Gust Load Alleviation (GLA) and Body Freedom Flutter (BFF) suppression were successfully demonstrated. The rigid body degrees-of-freedom required that the model be own in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort.

  14. Assessing Videogrammetry for Static Aeroelastic Testing of a Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Spain, Charles V.; Heeg, Jennifer; Ivanco, Thomas G.; Barrows, Danny A.; Florance, James R.; Burner, Alpheus W.; DeMoss, Joshua; Lively, Peter S.

    2004-01-01

    The Videogrammetric Model Deformation (VMD) technique, developed at NASA Langley Research Center, was recently used to measure displacements and local surface angle changes on a static aeroelastic wind-tunnel model. The results were assessed for consistency, accuracy and usefulness. Vertical displacement measurements and surface angular deflections (derived from vertical displacements) taken at no-wind/no-load conditions were analyzed. For accuracy assessment, angular measurements were compared to those from a highly accurate accelerometer. Shewhart's Variables Control Charts were used in the assessment of consistency and uncertainty. Some bad data points were discovered, and it is shown that the measurement results at certain targets were more consistent than at other targets. Physical explanations for this lack of consistency have not been determined. However, overall the measurements were sufficiently accurate to be very useful in monitoring wind-tunnel model aeroelastic deformation and determining flexible stability and control derivatives. After a structural model component failed during a highly loaded condition, analysis of VMD data clearly indicated progressive structural deterioration as the wind-tunnel condition where failure occurred was approached. As a result, subsequent testing successfully incorporated near- real-time monitoring of VMD data in order to ensure structural integrity. The potential for higher levels of consistency and accuracy through the use of statistical quality control practices are discussed and recommended for future applications.

  15. Surface roughness studies for wind tunnel models used in high Reynolds number testing

    NASA Technical Reports Server (NTRS)

    Vorburger, T. V.; Mclay, M. J.; Scire, F. E.; Gilsinn, D. E.; Giauque, C. H. W.

    1986-01-01

    This paper focuses on stylus and optical techniques for the measurement of surface roughness in wind tunnel models. The stylus instruments provide detailed information, such as surface profiles and area maps, that may then be used either to calculate statistical properties (i.e., the rms surface roughness) or to study individual surface peaks or other features. By contrast, certain optical techniques yield area-averaged statistical properties of the surface roughness directly. Two instruments that use the technique of optical angular scattering are compared. One is a research instrument that has been developed to study the basic scattering phenomena by testing the optical theories and surface models used in inverse calculations of statistical roughness parameters. The second instrument is more compact and is under development as a hand held, on-line device to be used during manufacture of wind tunnel models for the National Transonic Facility at NASA Langley Research Center. The scattering geometries for the two instruments are compared and results from these instruments and the stylus technique are shown for roughness specimens that are typical of the surface finish of wind tunnel models.

  16. Space Shuttle Pressure Data Model in the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1978-04-21

    Technicians examine a scale model of the space shuttle used to obtain pressure data during tests in the 10- by 10-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers used the 10- by 10 tunnel extensively in the 1970s to study shuttle configurations in order to forecast conditions during an actual flight. These tests included analysis of the solid rocket boosters’ aerodynamics, orbiter forebody angle -of -attack and air speed, base heating for entire shuttle, and engine-out loads. The test seen in this photograph used a 3.5- percent scale aluminum alloy model of the entire launch configuration. The program was designed to obtain aerodynamic pressure data. The tests were part of a larger program to study possible trouble areas for the shuttle’s new Advanced Flexible Reusable Surface Insulation. The researchers obtained aeroacoustic data and pressure distributions from five locations on the model. Over 100 high-temperature pressure transducers were attached to the model. Other portions of the test program were conducted at Lewis’ 8- by 6-Foot Supersonic Wind Tunnel and the 11- by 11-Foot Transonic Wind Tunnel at Ames Research Center.

  17. Wind Tunnel Magnetic Suspension and Balance Systems With Transversely Magnetized Model Cores

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1998-01-01

    This paper discusses the possibility of using vertically magnetized model cores for wind tunnel Magnetic Suspension and Balance Systems (MSBS) in an effort to resolve the traditional "roll control" problem. A theoretical framework is laid out, based on previous work related to generic technology development efforts at NASA Langley Research Center. The impact of the new roll control scheme on traditional wind tunnel MSBS configurations is addressed, and the possibility of demonstrating the new scheme with an existing electromagnet assembly is explored. The specific system considered is the ex- Massachusetts Institute of Technology (MIT), ex-NASA, 6-inch MSBS currently in the process of recommissioning at Old Dominion University. This system has a sufficiently versatile electromagnet configuration such that straightforward "conversion" to vertically magnetized cores appears possible.

  18. Wind Tunnel Magnetic Suspension and Balance Systems With Transversely Magnetized Model Cores

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1998-01-01

    This paper discusses the possibility of using vertically magnetized model cores for wind tunnel Magnetic Suspension and Balance Systems (MSBS) in an effort to resolve the traditional "roll control" problem. A theoretical framework is laid out, based on previous work related to generic technology development efforts at NASA Langley Research Center. The impact of the new roll control scheme on traditional wind tunnel MSBS configurations is addressed, and the possibility of demonstrating the new scheme with an existing electromagnet assembly is explored. The specific system considered is the ex- Massachusetts Institute of Technology (MIT), ex-NASA, 6-inch MSBS currently in the process of recommissioning at Old Dominion University. This system has a sufficiently versatile electromagnet configuration such that straightforward "conversion" to vertically magnetized cores appears possible.

  19. Pressure-Sensitive Paint and Video Model Deformation Systems at the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Burner, A. W.; DeLoach, R.

    1999-01-01

    Pressure-sensitive paint (PSP) and video model deformation (VMD) systems have been installed in the Unitary Plan Wind Tunnel at the NASA Langley Research Center to support the supersonic wind tunnel testing requirements of the High Speed Research (HSR) program. The PSP and VMD systems have been operational since early 1996 and provide the capabilities of measuring global surface static pressures and wing local twist angles and deflections (bending). These techniques have been successfully applied to several HSR wind tunnel models for wide ranges of the Mach number, Reynolds number, and angle of attack. A review of the UPWT PSP and VMD systems is provided, and representative results obtained on selected HSR models are shown. A promising technique to streamline the wind tunnel testing process, Modern Experimental Design, is also discussed in conjunction with recently-completed wing deformation measurements at UPWT.

  20. Pressure-Sensitive Paint and Video Model Deformation Systems at the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Burner, A. W.; DeLoach, R.

    1999-01-01

    Pressure-sensitive paint (PSP) and video model deformation (VMD) systems have been installed in the Unitary Plan Wind Tunnel at the NASA Langley Research Center to support the supersonic wind tunnel testing requirements of the High Speed Research (HSR) program. The PSP and VMD systems have been operational since early 1996 and provide the capabilities of measuring global surface static pressures and wing local twist angles and deflections (bending). These techniques have been successfully applied to several HSR wind tunnel models for wide ranges of the Mach number, Reynolds number, and angle of attack. A review of the UPWT PSP and VMD systems is provided, and representative results obtained on selected HSR models are shown. A promising technique to streamline the wind tunnel testing process, Modern Experimental Design, is also discussed in conjunction with recently-completed wing deformation measurements at UPWT.

  1. Investigation of a wind tunnel model high aspect ratio wing fracture

    SciTech Connect

    Gutierrez, W.T.; Tate, R.E.; Fell, H.P.

    1994-06-01

    A preliminary design and feasibility analysis on the aerodynamic performance characteristics of an experimental flight vehicle was conducted by Sandia National Laboratories. During a routine force and moment, static wind tunnel test in a blow down facility, one section of the high aspect ratio wing fractured outboard of the critical static stress location. Initially, a combination of material and aeroelastic analyses provided insight into the problem, but eventually proved inconclusive. After returning to the wind tunnel with a near identical model, instrumented with strain gages and accelerometers, and viewed with high speed video, the definitive mode of failure was discovered. It was determined that the first torsional mode of the wing was excited over a discrete angle of attack band, over the tested Mach number range of 0.5--0.9. Major flow separation on the airfoil occurred at the same time that flutter initiated, and was repeatable with a smaller scale model (geometrically similar, but 22% scale relative to the larger model) tested in a smaller test section wind tunnel. Data acquired during the stall flutter confirmed stress levels and numbers of cycles worked consistent with low cycle fatigue.

  2. Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Lynde, Michelle N.; Campbell, Richard L.

    2017-01-01

    A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.

  3. Simulating flow around scaled model of a hypersonic vehicle in wind tunnel

    NASA Astrophysics Data System (ADS)

    Markova, T. V.; Aksenov, A. A.; Zhluktov, S. V.; Savitsky, D. V.; Gavrilov, A. D.; Son, E. E.; Prokhorov, A. N.

    2016-11-01

    A prospective hypersonic HEXAFLY aircraft is considered in the given paper. In order to obtain the aerodynamic characteristics of a new construction design of the aircraft, experiments with a scaled model have been carried out in a wind tunnel under different conditions. The runs have been performed at different angles of attack with and without hydrogen combustion in the scaled propulsion engine. However, the measured physical quantities do not provide all the information about the flowfield. Numerical simulation can complete the experimental data as well as to reduce the number of wind tunnel experiments. Besides that, reliable CFD software can be used for calculations of the aerodynamic characteristics for any possible design of the full-scale aircraft under different operation conditions. The reliability of the numerical predictions must be confirmed in verification study of the software. The given work is aimed at numerical investigation of the flowfield around and inside the scaled model of the HEXAFLY-CIAM module under wind tunnel conditions. A cold run (without combustion) was selected for this study. The calculations are performed in the FlowVision CFD software. The flow characteristics are compared against the available experimental data. The carried out verification study confirms the capability of the FlowVision CFD software to calculate the flows discussed.

  4. The active flexible wing aeroservoelastic wind-tunnel test program

    NASA Technical Reports Server (NTRS)

    Noll, Thomas; Perry, Boyd

    1989-01-01

    For a specific application of aeroservoelastic technology, Rockwell International Corporation developed a concept known as the Active Flexible Wing (AFW). The concept incorporates multiple active leading-and trailing-edge control surfaces with a very flexible wing such that wing shape is varied in an optimum manner resulting in improved performance and reduced weight. As a result of a cooperative program between the AFWAL's Flight Dynamics Laboratory, Rockwell, and NASA LaRC, a scaled aeroelastic wind-tunnel model of an advanced fighter was designed, fabricated, and tested in the NASA LaRC Transonic Dynamics Tunnel (TDT) to validate the AFW concept. Besides conducting the wind-tunnel tests NASA provided a design of an Active Roll Control (ARC) System that was implemented and evaluated during the tests. The ARC system used a concept referred to as Control Law Parameterization which involves maintaining constant performance, robustness, and stability while using different combinations of multiple control surface displacements. Since the ARC system used measured control surface stability derivatives during the design, the predicted performance and stability results correlated very well with test measurements.

  5. Supersonic Wind Tunnel Test Section

    NASA Technical Reports Server (NTRS)

    1957-01-01

    8ft x 6ft Supersonic Wind Tunnel Test-Section showing changes made in Stainless Steel walls with 17 inch inlet model installation. The model is the ACN Nozzle model used for aircraft engines. The Supersonic Wind Tunnel is located in the Lewis Flight Propulsion Laboratory, now John H. Glenn Research Center

  6. Static and wind tunnel model tests for the development of externally blown flap noise reduction techniques

    NASA Technical Reports Server (NTRS)

    Pennock, A. P.; Swift, G.; Marbert, J. A.

    1975-01-01

    Externally blown flap models were tested for noise and performance at one-fifth scale in a static facility and at one-tenth scale in a large acoustically-treated wind tunnel. The static tests covered two flap designs, conical and ejector nozzles, third-flap noise-reduction treatments, internal blowing, and flap/nozzle geometry variations. The wind tunnel variables were triple-slotted or single-slotted flaps, sweep angle, and solid or perforated third flap. The static test program showed the following noise reductions at takeoff: 1.5 PNdB due to treating the third flap; 0.5 PNdB due to blowing from the third flap; 6 PNdB at flyover and 4.5 PNdB in the critical sideline plane (30 deg elevation) due to installation of the ejector nozzle. The wind tunnel program showed a reduction of 2 PNdB in the sideline plane due to a forward speed of 43.8 m/s (85 kn). The best combination of noise reduction concepts reduced the sideline noise of the reference aircraft at constant field length by 4 PNdB.

  7. Wind tunnel test of a variable-diameter tiltrotor (VDTR) model

    NASA Technical Reports Server (NTRS)

    Matuska, David; Dale, Allen; Lorber, Peter

    1994-01-01

    This report documents the results from a wind tunnel test of a 1/6th scale Variable Diameter Tiltrotor (VDTR). This test was a joint effort of NASA Ames and Sikorsky Aircraft. The objective was to evaluate the aeroelastic and performance characteristics of the VDTR in conversion, hover, and cruise. The rotor diameter and nacelle angle of the model were remotely changed to represent tiltrotor operating conditions. Data is presented showing the propulsive force required in conversion, blade loads, angle of attack stability and simulated gust response, and hover and cruise performance. This test represents the first wind tunnel test of a variable diameter rotor applied to a tiltrotor concept. The results confirm some of the potential advantages of the VDTR and establish the variable diameter rotor a viable candidate for an advanced tiltrotor. This wind tunnel test successfully demonstrated the feasibility of the Variable Diameter rotor for tilt rotor aircraft. A wide range of test points were taken in hover, conversion, and cruise modes. The concept was shown to have a number of advantages over conventional tiltrotors such as reduced hover downwash with lower disk loading and significantly reduced longitudinal gust response in cruise. In the conversion regime, a high propulsive force was demonstrated for sustained flight with acceptable blade loads. The VDTR demonstrated excellent gust response capabilities. The horizontal gust response correlated well with predictions revealing only half the response to turbulence of the conventional civil tiltrotor.

  8. Dynamic response of a hammerhead launch vehicle wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Henning, Thomas L.

    1991-01-01

    A wind-tunnel test of a 1/10th-scale Atlas-Centaur I large payload fairing launch vehicle model was conducted in the NASA Langley Transonic Dynamics Tunnel. The wind tunnel model was an aeroelastically-scaled version of the flight vehicle and was capable of simulating either of the first two bending vibration modes of the full-scale vehicle by a partial mode technique. The primary purpose of the test was to gather data concerning buffet response which could be used to clear the vehicle for flight. Additionally, angle-of-attack studies were conducted and several payload fairing configurations were tested to assess the buffet response and dynamic stability of off-design flight conditions and geometric parameters. No dynamic instabilities were found for any of the configurations tested. The buffet response data for the nominal flight configuration indicate that the unsteady buffet loads represent 5 to 10 percent of the total design load; therefore, the buffet loads are not a large factor affecting the overall vehicle design. Payload fairing length-to-diameter ratio variations were found to have small effects on the buffet response of the model, except in the case of the smallest length-to-diameter models for the second bending mode simulation. The effects of angle of attack on buffet response were found to be small. The model was more sensitive to Mach number changes than to angle of attack. The buffet response results from this wind tunnel test were influenced by the tunnel facility vibration levels. An attempt was made to experimentally reduce the effect of the facility mechanical vibration for the nominal flight configuration by testing with vertical rods used to stiffen the sting support. The first flight of the Atlas-Centaur I vehicle successfully occurred on July 25, 1990, and a comparison of flight measurements with wind tunnel data is presented. The flight data was found to be well within the 3 sigma level of the wind tunnel data.

  9. Measurement of Model Noise in a Hard-Wall Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    2006-01-01

    Identification, analysis, and control of fluid-mechanically-generated sound from models of aircraft and automobiles in special low-noise, semi-anechoic wind tunnels are an important research endeavor. Such studies can also be done in aerodynamic wind tunnels that have hard walls if phased microphone arrays are used to focus on the noise-source regions and reject unwanted reflections or background noise. Although it may be difficult to simulate the total flyover or drive-by noise in a closed wind tunnel, individual noise sources can be isolated and analyzed. An acoustic and aerodynamic study was made of a 7-percent-scale aircraft model in a NASA Ames 7-by-10-ft (about 2-by-3-m) wind tunnel for the purpose of identifying and attenuating airframe noise sources. Simulated landing, takeoff, and approach configurations were evaluated at Mach 0.26. Using a phased microphone array mounted in the ceiling over the inverted model, various noise sources in the high-lift system, landing gear, fins, and miscellaneous other components were located and compared for sound level and frequency at one flyover location. Numerous noise-alleviation devices and modifications of the model were evaluated. Simultaneously with acoustic measurements, aerodynamic forces were recorded to document aircraft conditions and any performance changes caused by geometric modifications. Most modern microphone-array systems function in the frequency domain in the sense that spectra of the microphone outputs are computed, then operations are performed on the matrices of microphone-signal cross-spectra. The entire acoustic field at one station in such a system is acquired quickly and interrogated during postprocessing. Beam-forming algorithms are employed to scan a plane near the model surface and locate noise sources while rejecting most background noise and spurious reflections. In the case of the system used in this study, previous studies in the wind tunnel have identified noise sources up to 19 d

  10. Some experiences using wind-tunnel models in active control studies. [minimization of aeroelastic response

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Abel, I.; Ruhlin, C. L.

    1976-01-01

    A status report and review of wind tunnel model experimental techniques that have been developed to study and validate the use of active control technology for the minimization of aeroelastic response are presented. Modeling techniques, test procedures, and data analysis methods used in three model studies are described. The studies include flutter mode suppression on a delta-wing model, flutter mode suppression and ride quality control on a 1/30-size model of the B-52 CCV airplane, and an active lift distribution control system on a 1/22 size C-5A model.

  11. Noise model for serrated trailing edges compared to wind tunnel measurements

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Bertagnolio, Franck; Shen, Wen Zhong; Madsen, Jesper

    2016-09-01

    A new CFD RANS based method to predict the far field sound pressure emitted from an aerofoil with serrated trailing edge has been developed. The model was validated by comparison to measurements conducted in the Virginia Tech Stability Wind Tunnel. The model predicted 3 dB lower sound pressure levels, but the tendencies for the different configurations were predicted correctly. Therefore the model can be used to optimise the serration geometry. A disadvantage of the new model is that the computational costs are significantly higher than for the Amiet model for a straight trailing edge. However, it is by decades faster than LES methods.

  12. Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 2: A Centerline Supported Fullspan Model Tested for Gust Load Alleviation

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer

    2014-01-01

    This is part 2 of a two part document. Part 1 is titled: "Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 1: A Sidewall Supported Semispan Model Tested for Gust Load Alleviation and Flutter Suppression." A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, flexible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind tunnel model of a joined wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind tunnel model was mated to a new, two degree of freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at10 percent static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be flown in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free flying wind tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed.

  13. Some aerodynamic considerations related to wind tunnel model surface definition

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.

    1980-01-01

    The aerodynamic considerations related to model surface definition are examined with particular emphasis in areas of fabrication tolerances, model surface finish, and orifice induced pressure errors. The effect of model surface roughness texture on skin friction is also discussed. It is shown that at a given Reynolds number, any roughness will produce no skin friction penalty.

  14. Analytical modeling of circuit aerodynamics in the new NASA Lewis wind tunnel

    NASA Technical Reports Server (NTRS)

    Towne, C. E.; Povinelli, L. A.; Kunik, W. G.; Muramoto, K. K.; Hughes, C. E.; Levy, R.

    1985-01-01

    Rehabilitation and extention of the capability of the altitude wind tunnel (AWT) was analyzed. The analytical modeling program involves the use of advanced axisymmetric and three dimensional viscous analyses to compute the flow through the various AWT components. Results for the analytical modeling of the high speed leg aerodynamics are presented; these include: an evaluation of the flow quality at the entrance to the test section, an investigation of the effects of test section bleed for different model blockages, and an examination of three dimensional effects in the diffuser due to reentry flow and due to the change in cross sectional shape of the exhaust scoop.

  15. Nonlinear Unsteady Aerodynamic Modeling Using Wind Tunnel and Computational Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.

    2016-01-01

    Extensions to conventional aircraft aerodynamic models are required to adequately predict responses when nonlinear unsteady flight regimes are encountered, especially at high incidence angles and under maneuvering conditions. For a number of reasons, such as loss of control, both military and civilian aircraft may extend beyond normal and benign aerodynamic flight conditions. In addition, military applications may require controlled flight beyond the normal envelope, and civilian flight may require adequate recovery or prevention methods from these adverse conditions. These requirements have led to the development of more general aerodynamic modeling methods and provided impetus for researchers to improve both techniques and the degree of collaboration between analytical and experimental research efforts. In addition to more general mathematical model structures, dynamic test methods have been designed to provide sufficient information to allow model identification. This paper summarizes research to develop a modeling methodology appropriate for modeling aircraft aerodynamics that include nonlinear unsteady behaviors using both experimental and computational test methods. This work was done at Langley Research Center, primarily under the NASA Aviation Safety Program, to address aircraft loss of control, prevention, and recovery aerodynamics.

  16. Unsteady Pressure Measurements on Oscillating Models in European Wind Tunnels.

    DTIC Science & Technology

    1980-03-01

    AO-AUB3 24B AIR FORCE WRIGHT AERONAUTICAL LABS WRIGHT-PATTERSON APR OH F/B 20/41 UNSTEADY PRESSURE MEASUREMENTS ON OSCILLATING MODELS IN EUROPEA -ETC...A. The Netherlands The state-of-the- art of unsteady aerodynamic testing has been accel- erated by the contributions from the Netherlands. An

  17. Wind Tunnel Corrections for High Angle of Attack Models,

    DTIC Science & Technology

    1981-02-01

    FROM A WALL PRESSURE SIGNATURE 1 In essence, the above analysis is an engineering solution of a set of algebraic equations involving five nonlinear...uncontrolled boundary layer on the tunnel floor, the litt’.’correlation between the four models is excellent over the lineal C|_ - a range. There was

  18. The simulation of a propulsive jet and force measurement using a magnetically suspended wind tunnel model

    NASA Technical Reports Server (NTRS)

    Garbutt, K. S.; Goodyer, M. J.

    1994-01-01

    Models featuring the simulation of exhaust jets were developed for magnetic levitation in a wind tunnel. The exhaust gas was stored internally producing a discharge of sufficient duration to allow nominal steady state to be reached. The gas was stored in the form of compressed gas or a solid rocket propellant. Testing was performed with the levitated models although deficiencies prevented the detection of jet-induced aerodynamic effects. Difficulties with data reduction led to the development of a new force calibration technique, used in conjunction with an exhaust simulator and also in separate high incidence aerodynamic tests.

  19. Digital-flutter-suppression-system investigations for the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Mukhopadhyay, Vivek; Hoadley, Sherwood T.; Cole, Stanley R.; Buttrill, Carey S.; Houck, Jacob A.

    1990-01-01

    Active flutter suppression control laws were designed, implemented, and tested on an aeroelastically-scaled wind tunnel model in the NASA Langley Transonic Dynamics Tunnel. One of the control laws was successful in stabilizing the model while the dynamic pressure was increased to 24 percent greater than the measured open-loop flutter boundary. Other accomplishments included the design, implementation, and successful operation of a one-of-a-kind digital controller, the design and use of two simulation methods to support the project, and the development and successful use of a methodology for on-line controller performance evaluation.

  20. Computational Modeling of the Ames 11-Ft Transonic Wind Tunnel in Conjunction with IofNEWT

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Buning, Pieter G.; Erickson, Larry L.; George, Michael W. (Technical Monitor)

    1995-01-01

    Technical advances in Computational Fluid Dynamics have now made it possible to simulate complex three-dimensional internal flows about models of various size placed in a Transonic Wind Tunnel. TWT wall interference effects have been a source of error in predicting flight data from actual wind tunnel measured data. An advantage of such internal CFD calculations is to directly compare numerical results with the actual tunnel data for code assessment and tunnel flow analysis. A CFD capability has recently been devised for flow analysis of the NASA/Ames 11-Ft TWT facility. The primary objectives of this work are to provide a CFD tool to study the NASA/Ames 11-Ft TWT flow characteristics, to understand the slotted wall interference effects, and to validate CFD codes. A secondary objective is to integrate the internal flowfield calculations with the Pressure Sensitive Paint data, a surface pressure distribution capability in Ames' production wind tunnels. The effort has been part of the Ames IofNEWT, Integration of Numerical and Experimental Wind Tunnels project, which is aimed at providing further analytical tools for industrial application. We used the NASA/Ames OVERFLOW code to solve the thin-layer Navier-Stokes equations. Viscosity effects near the model are captured by Baldwin-Lomax or Baldwin-Barth turbulence models. The solver was modified to model the flow behavior in the vicinity of the tunnel longitudinal slotted walls. A suitable porous type wall boundary condition was coded to account for the cross-flow through the test section. Viscous flow equations were solved in generalized coordinates with a three-factor implicit central difference scheme in conjunction with the Chimera grid procedure. The internal flow field about the model and the tunnel walls were descretized by the Chimera overset grid system. This approach allows the application of efficient grid generation codes about individual components of the configuration; separate minor grids were developed

  1. Digital-flutter-suppression-system investigations for the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Mukhopadhyay, Vivek; Hoadley, Sherwood Tiffany; Cole, Stanley R.; Buttrill, Carey S.

    1990-01-01

    Active flutter suppression control laws were designed, implemented, and tested on an aeroelastically-scaled wind-tunnel model in the NASA Langley Transonic Dynamics Tunnel. One of the control laws was successful in stabilizing the model while the dynamic pressure was increased to 24 percent greater than the measured open-loop flutter boundary. Other accomplishments included the design, implementation, and successful operation of a one-of-a-kind digital controller, the design and use of two simulation methods to support the project, and the development and successful use of a methodology for online controller performance evaluation.

  2. Structural dynamic testing of composite propfan blades for a cruise missile wind tunnel model

    NASA Astrophysics Data System (ADS)

    Elgin, Stephen D.; Sutliff, Thomas J.

    1993-02-01

    The Naval Weapons Center at China Lake, California is currently evaluating a counter rotating propfan system as a means of propulsion for the next generation of cruise missiles. The details and results of a structural dynamic test program are presented for scale model graphite-epoxy composite propfan blades. These blades are intended for use on a cruise missile wind tunnel model. Both dynamic characteristics and strain operating limits of the blades are presented. Complications associated with high strain level fatigue testing methods are also discussed.

  3. Model Deformation Measurements at a Cryogenic Wind Tunnel Using Photogrammetry

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1982-01-01

    A photogrammetric closed circuit television system to measure model deformation at the National Transonic Facility (NTF) is described. The photogrammetric approach was chosen because of its inherent rapid data recording of the entire object field. Video cameras are used to acquire data instead of film cameras due to the inaccessibility of cameras which must be housed within the cryogenic, high pressure plenum of this facility. Data reduction procedures and the results of tunnel tests at the NTF are presented.

  4. Evaluation of an I-box wind tunnel model for assessment of behavioral responses of blow flies.

    PubMed

    Moophayak, Kittikhun; Sukontason, Kabkaew L; Kurahashi, Hiromu; Vogtsberger, Roy C; Sukontason, Kom

    2013-11-01

    The behavioral response of flies to olfactory cues remains the focus of many investigations, and wind tunnels have sometimes been employed for assessment of this variable in the laboratory. In this study, our aim was to design, construct, and operate a new model of I-box wind tunnel with improved efficacy, highlighting the use of a new wind tunnel model to investigate the behavioral response of the medically important blow fly, Chrysomya megacephala (Fabricius). The I-box dual-choice wind tunnel designed for this study consists of seven conjoined compartments that resulted in a linear apparatus with clear glass tunnel of 30 × 30 × 190 cm ended both sides with wooden "fan compartments" which are equipped with adjustable fans as wind source. The clear glass tunnel consisted of two "stimulus compartments" with either presence or absence (control) of bait; two "trap compartments" where flies were attracted and allowed to reside; and one central "release compartment" where flies were introduced. Wind tunnel experiments were carried out in a temperature-controlled room, with a room light as a light source and a room-ventilated fan as odor-remover from tunnel out. Evaluation of testing parameters revealed that the highest attractive index was achieved with the use of 300 g of 1-day tainted pork scrap (pork meat mixed with offal) as bait in wind tunnel settings wind speed of 0.58 m/s, during 1.00-5.00 PM with light intensity of 341.33 lux from vertical light and 135.93 lux from horizontal light for testing a group of 60 flies. In addition, no significant response of well-fed and 24 h staved flies to this bait under these conditions was found. Results of this study supported this new wind tunnel model as a suitable apparatus for investigation of behavioral response of blow flies to bait chemical cues in the laboratory.

  5. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  6. Phase 2 and 3 wind tunnel tests of the J-97 powered, external augmentor V/STOL model. [at Ames 40 by 80 wind tunnel

    NASA Technical Reports Server (NTRS)

    Garland, D. B.; Harris, J. L.

    1980-01-01

    Static and forward speed tests were made in a 40 multiplied by 80 foot wind tunnel of a large-scale, ejector-powered V/STOL aircraft model. Modifications were made to the model following earlier tests primarily to improve longitudinal acceleration capability during transition from hovering to wingborne flight. A rearward deflection of the fuselage augmentor thrust vector was shown to be beneficial in this regard. Other augmentor modifications were tested, notably the removal of both endplates, which improved acceleration performance at the higher transition speeds. The model tests again demonstrated minimal interference of the fuselage augmentor on aerodynamic lift. A flapped canard surface also showed negligible influence on the performance of the wing and of the fuselage augmentor.

  7. Probabilistic Design of a Wind Tunnel Model to Match the Response of a Full-Scale Aircraft

    NASA Technical Reports Server (NTRS)

    Mason, Brian H.; Stroud, W. Jefferson; Krishnamurthy, T.; Spain, Charles V.; Naser, Ahmad S.

    2005-01-01

    approach is presented for carrying out the reliability-based design of a plate-like wing that is part of a wind tunnel model. The goal is to design the wind tunnel model to match the stiffness characteristics of the wing box of a flight vehicle while satisfying strength-based risk/reliability requirements that prevents damage to the wind tunnel model and fixtures. The flight vehicle is a modified F/A-18 aircraft. The design problem is solved using reliability-based optimization techniques. The objective function to be minimized is the difference between the displacements of the wind tunnel model and the corresponding displacements of the flight vehicle. The design variables control the thickness distribution of the wind tunnel model. Displacements of the wind tunnel model change with the thickness distribution, while displacements of the flight vehicle are a set of fixed data. The only constraint imposed is that the probability of failure is less than a specified value. Failure is assumed to occur if the stress caused by aerodynamic pressure loading is greater than the specified strength allowable. Two uncertain quantities are considered: the allowable stress and the thickness distribution of the wind tunnel model. Reliability is calculated using Monte Carlo simulation with response surfaces that provide approximate values of stresses. The response surface equations are, in turn, computed from finite element analyses of the wind tunnel model at specified design points. Because the response surface approximations were fit over a small region centered about the current design, the response surfaces were refit periodically as the design variables changed. Coarse-grained parallelism was used to simultaneously perform multiple finite element analyses. Studies carried out in this paper demonstrate that this scheme of using moving response surfaces and coarse-grained computational parallelism reduce the execution time of the Monte Carlo simulation enough to make the

  8. Summary report of the second wind tunnel test of the Boeing LFC model

    NASA Technical Reports Server (NTRS)

    George-Falvy, D.

    1978-01-01

    An 8-ft span, 20-ft chord, 30 deg swept wing section having provisions for laminar boundary control over the first 30% of the upper surface and the first 15% of the lower surface was tested in a 5-ft by 8-ft wind tunnel to explore the sensitivity of laminar flow to various forms of disturbances such as surface imperfections, contamination, off-design pressure distribution (increased crossflow), and imposed noise. The test equipment used and instrumentation of the model are described. Typical results obtained from configurations with spanwise ridges and spanwise rows of disks are discussed as well as suction flow characteristics at reduced incidence.

  9. Supersonic dynamic stability characteristics of a space shuttle orbiter. [wind tunnel tests of scale models

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Boyden, R. P.; Davenport, E. E.

    1976-01-01

    Supersonic forced-oscillation tests of a 0.0165-scale model of a modified 089B Rockwell International shuttle orbiter were conducted in a wind tunnel for several configurations over a Mach range from 1.6 to 4.63. The tests covered angles of attack up to 30 deg. The period and damping of the basic unaugmented vehicle were calculated along the entry trajectory using the measured damping results. Some parameter analysis was made with the measured dynamic derivatives. Photographs of the test configurations and test equipment are shown.

  10. A position and attitude vision measurement system for wind tunnel slender model

    NASA Astrophysics Data System (ADS)

    Cheng, Lei; Yang, Yinong; Xue, Bindang; Zhou, Fugen; Bai, Xiangzhi

    2014-11-01

    A position and attitude vision measurement system for drop test slender model in wind tunnel is designed and developed. The system used two high speed cameras, one is put to the side of the model and another is put to the position where the camera can look up the model. Simple symbols are set on the model. The main idea of the system is based on image matching technique between the 3D-digital model projection image and the image captured by the camera. At first, we evaluate the pitch angles, the roll angles and the position of the centroid of a model through recognizing symbols in the images captured by the side camera. And then, based on the evaluated attitude info, giving a series of yaw angles, a series of projection images of the 3D-digital model are obtained. Finally, these projection images are matched with the image which captured by the looking up camera, and the best match's projection images corresponds to the yaw angle is the very yaw angle of the model. Simulation experiments are conducted and the results show that the maximal error of attitude measurement is less than 0.05°, which can meet the demand of test in wind tunnel.

  11. An Overview of the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model Program

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Perry, Boyd, III; Florance, James R.; Sanetrik, Mark D.; Wieseman, Carol D.; Stevens, William L.; Funk, Christie J.; Christhilf, David M.; Coulson, David A.

    2012-01-01

    A summary of computational and experimental aeroelastic (AE) and aeroservoelastic (ASE) results for the Semi-Span Super-Sonic Transport (S4T) wind-tunnel model is presented. A broad range of analyses and multiple AE and ASE wind-tunnel tests of the S4T wind-tunnel model have been performed in support of the ASE element in the Supersonics Program, part of the NASA Fundamental Aeronautics Program. This paper is intended to be an overview of multiple papers that comprise a special S4T technical session. Along those lines, a brief description of the design and hardware of the S4T wind-tunnel model will be presented. Computational results presented include linear and nonlinear aeroelastic analyses, and rapid aeroelastic analyses using CFD-based reduced-order models (ROMs). A brief survey of some of the experimental results from two open-loop and two closed-loop wind-tunnel tests performed at the NASA Langley Transonic Dynamics Tunnel (TDT) will be presented as well.

  12. Wind tunnel blockage tests at Mach 5 of vacuum duct models for two sound radiation shields

    NASA Technical Reports Server (NTRS)

    Beckwith, I. E.; Harvey, W. D.

    1975-01-01

    Two sound shield models with dummy vacuum exhaust ducts were tested in a Mach 5 pilot quiet tunnel. The first model simulates a new sound shield of 3 in. (7.62 cm) inside diameter and the second model is a shield of 4 in. (10.16 cm) inside diameter. The dummy vacuum exhaust ducts were attached to the external housing of the models. The flow in the first model, which had a by pass mass flow ratio of about 0.6, could not be started except at the two highest test Reynolds numbers where only the central core flow region was started. The flow in the second model with a mass ratio of approximately 0.3 was fully started except at the lowest unit Reynolds number where some unsteadiness and partial flow separation at the wall was observed. Since the external housing and dummy vacuum ducts were the same for both models, these results indicate that the ratio of by pass mass flow to total mass flow for a wind tunnel sound shield of this particular design must be less than about 0.3. Hence, a lower limit is imposed on the inlet diameter of the sound shield in relation to the exit diameter of the wind tunnel nozzle. This lower limit on the inlet diameter may possibly be reduced by improvements in streamlining of the external housing and ducts, by reductions in blockage area, or by the use of external ducting shrouds.

  13. A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies.

    PubMed

    Gromke, Christof

    2011-01-01

    A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case.

  14. Study of the average heat transfer coefficient at different distances between wind tunnel models

    NASA Astrophysics Data System (ADS)

    Gnyrya, A.; Korobkov, S.; Mokshin, D.; Koshin, A.

    2015-01-01

    The paper presents investigations of physical and climatic factors with regard to design and process variables having effect on heat transfer in the building model system at different distances between them in the airflow direction. The aim of this work is to improve energy efficiency of exterior walls of buildings. A method of physical simulation was used in experiments. Experimental results on the average values of the heat transfer coefficient in the building model system are presented herein. A series of experiments was carried out on a specific aerodynamic test bench including a subsonic wind tunnel, heat models and devices for giving thermal boundary conditions, transducers, and the record system equipment. The paper contains diagrams of the average heat transfer distribution at fixed Reynolds number and the airflow angle of attack; the average values of the heat transfer coefficient for each face and wind tunnel models as a whole at maximum, medium, and large distances between them. Intensification of the average heat transfer was observed on the downstream model faces depending on the distance between models.

  15. Surface flow visualization of separated flows on the forebody of an F-18 aircraft and wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Richwine, David M.; Banks, Daniel W.

    1988-01-01

    A method of in-flight surface flow visualization similar to wind-tunnel-model oil flows is described for cases where photo-chase planes or onboard photography are not practical. This method, used on an F-18 aircraft in flight at high angles of attack, clearly showed surface flow streamlines in the fuselage forebody. Vortex separation and reattachment lines were identified with this method and documented using postflight photography. Surface flow angles measured at the 90 and 270 degrees meridians show excellent agreement with the wind tunnel data for a pointed tangent ogive with an aspect ratio of 3.5. The separation and reattachment line locations were qualitatively similar to the F-18 wind-tunnel-model oil flows but neither the laminar separation bubble nor the boundary-layer transition on the wind tunnel model were evident in the flight surface flows. The separation and reattachment line locations were in fair agreement with the wind tunnel data for the 3.5 ogive. The elliptical forebody shape of the F-18 caused the primary separation lines to move toward the leeward meridian. Little effect of angle of attack on the separation locations was noted for the range reported.

  16. Wind tunnel noise reduction at Mach 5 with a rod-wall sound shield. [for prevention of premature boundary layer transition on wind tunnel models

    NASA Technical Reports Server (NTRS)

    Creel, T. R.; Beckwith, I. E.

    1983-01-01

    A method of shielding a wind-tunnel model from noise radiated by the tunnel-wall boundary layer has been developed and tested at the Langley Research Center. The shield consists of a rectangular array of longitudinal rods with boundary-layer suction through gaps between the rods. Tests were conducted at Mach 5 over a unit Reynolds number range of 1.0-3.5 x 10 to the 7th/m. Hot-wire measurements indicated the freestream noise, expressed in terms of the rms pressure fluctuations normalized by the mean pressure, was reduced from about 1.4 percent just upstream of the shielded region of a minimum level of about 0.4 percent in the forward portion of the shielded flow.

  17. Wind tunnel noise reduction at Mach 5 with a rod-wall sound shield. [for prevention of premature boundary layer transition on wind tunnel models

    NASA Technical Reports Server (NTRS)

    Creel, T. R.; Beckwith, I. E.

    1983-01-01

    A method of shielding a wind-tunnel model from noise radiated by the tunnel-wall boundary layer has been developed and tested at the Langley Research Center. The shield consists of a rectangular array of longitudinal rods with boundary-layer suction through gaps between the rods. Tests were conducted at Mach 5 over a unit Reynolds number range of 1.0-3.5 x 10 to the 7th/m. Hot-wire measurements indicated the freestream noise, expressed in terms of the rms pressure fluctuations normalized by the mean pressure, was reduced from about 1.4 percent just upstream of the shielded region of a minimum level of about 0.4 percent in the forward portion of the shielded flow.

  18. Optimized aerodynamic design process for subsonic transport wing fitted with winglets. [wind tunnel model

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1979-01-01

    The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.

  19. Comparison of Tests on Air Propellers in Flight with Wind Tunnel Model Tests on Similar Forms

    NASA Technical Reports Server (NTRS)

    Durand, W F; Lesley, E P

    1926-01-01

    The purpose of this investigation was to determine the performance, characteristics, and coefficients of full-sized air propellers in flight and to compare these results with those derived from wind-tunnel tests on reduced scale models of similar geometrical form. The full-scale equipment comprised five propellers in combination with a VE-7 airplane and Wright E-4 engine. This part of the work was carried out at the Langley Memorial Aeronautical Laboratory, between May 1 and August 24, 1924, and was under the immediate charge of Mr. Lesley. The model or wind-tunnel part of the investigation was carried out at the Aerodynamic Laboratory of Stanford University and was under the immediate charge of Doctor Durand. A comparison of the curves for full-scale results with those derived from the model tests shows that while the efficiencies realized in flight are close to those derived from model tests, both thrust developed and power absorbed in flight are from 6 to 10 per cent greater than would be expected from the results of model tests.

  20. Anomalous Shocks on the Measured Near-Field Pressure Signatures of Low-Boom Wind-Tunnel Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2006-01-01

    Unexpected shocks on wind-tunnel-measured pressure signatures prompted questions about design methods, pressure signature measurement techniques, and the quality of measurements in the flow fields near lifting models. Some of these unexpected shocks were the result of component integration methods. Others were attributed to the three-dimension nature of the flow around a lifting model, to inaccuracies in the prediction of the area-ruled lift, or to wing-tip stall effects. This report discusses the low-boom model wind-tunnel data where these unexpected shocks were initially observed, the physics of the lifting wing/body model's flow field, the wind-tunnel data used to evaluate the applicability of methods for calculating equivalent areas due to lift, the performance of lift prediction codes, and tip stall effects so that the cause of these shocks could be determined.

  1. RSRA sixth scale wind tunnel test. [of scale model of Sikorsky Whirlwind Helicopter

    NASA Technical Reports Server (NTRS)

    Flemming, R.; Ruddell, A.

    1974-01-01

    The sixth scale model of the Sikorsky/NASA/Army rotor systems research aircraft was tested in an 18-foot section of a large subsonic wind tunnel for the purpose of obtaining basic data in the areas of performance, stability, and body surface loads. The model was mounted in the tunnel on the struts arranged in tandem. Basic testing was limited to forward flight with angles of yaw from -20 to +20 degrees and angles of attack from -20 to +25 degrees. Tunnel test speeds were varied up to 172 knots (q = 96 psf). Test data were monitored through a high speed static data acquisition system, linked to a PDP-6 computer. This system provided immediate records of angle of attack, angle of yaw, six component force and moment data, and static and total pressure information. The wind tunnel model was constructed of aluminum structural members with aluminum, fiberglass, and wood skins. Tabulated force and moment data, flow visualization photographs, tabulated surface pressure data are presented for the basic helicopter and compound configurations. Limited discussions of the results of the test are included.

  2. Metallurgical studies of NITRONIC 40 with reference to its use for cryogenic wind tunnel models

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1983-01-01

    The characterstics of NITRONIC 40 were investigated in connection with its use in cryogenic wind tunnel models. In particular, the effects of carbide and sigma-phase precipitation resulting from heat treatment and the presence of delta ferrite were evaluated in relation to their effects on mechanical properties and the potential consequences of such degradation. Methods were examined for desensitizing the material and for possible removal of delta ferrite as a means of restoring the material to its advertised properties. It was found that heat treatment followed by cryogenic quenching is a technique capable of desensitizing NITRONIC 40. However, it was concluded that it is extremely difficult, if not impossible, to remove the delta ferrite from the existing stock of material. Furthermore, heat treatments for removing delta ferrite have to take place at temperatures that cause very large grain growth. The implications of using the degraded NITRONIC 40 material for cryogenic model testing were reviewed, and recommendations were submitted with regard to the acceptability of the material. The experience gained from the study of NITRONIC 40 clearly identifies the need to implement a policy for purchasing top-quality materials for cryogenic wind tunnel model applications.

  3. The steady-state flow quality in a model of a non-return wind tunnel

    NASA Technical Reports Server (NTRS)

    Mort, K. W.; Eckert, W. T.; Kelly, M. W.

    1972-01-01

    The structural cost of non-return wind tunnels is significantly less than that of the more conventional closed-circuit wind tunnels. However, because of the effects of external winds, the flow quality of non-return wind tunnels is an area of concern at the low test speeds required for V/STOL testing. The flow quality required at these low speeds is discussed and alternatives to the traditional manner of specifying the flow quality requirements in terms of dynamic pressure and angularity are suggested. The development of a non-return wind tunnel configuration which has good flow quality at low as well as at high test speeds is described.

  4. Wind Tunnel Testing of Powered Lift, All-Wing STOL Model

    NASA Technical Reports Server (NTRS)

    Collins, Scott W.; Westra, Bryan W.; Lin, John C.; Jones, Gregory S.; Zeune, Cal H.

    2008-01-01

    Short take-off and landing (STOL) systems can offer significant capabilities to warfighters and, for civil operators thriving on maximizing efficiencies they can improve airspace use while containing noise within airport environments. In order to provide data for next generation systems, a wind tunnel test of an all-wing cruise efficient, short take-off and landing (CE STOL) configuration was conducted in the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) 14- by 22-foot Subsonic Wind Tunnel. The test s purpose was to mature the aerodynamic aspects of an integrated powered lift system within an advanced mobility configuration capable of CE STOL. The full-span model made use of steady flap blowing and a lifting centerbody to achieve high lift coefficients. The test occurred during April through June of 2007 and included objectives for advancing the state-of-the-art of powered lift testing through gathering force and moment data, on-body pressure data, and off-body flow field measurements during automatically controlled blowing conditions. Data were obtained for variations in model configuration, angles of attack and sideslip, blowing coefficient, and height above ground. The database produced by this effort is being used to advance design techniques and computational tools for developing systems with integrated powered lift technologies.

  5. Application of Pressure-Sensitive Paint to Ice-Accreted Wind Tunnel Models

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    2000-01-01

    Pressure-sensitive paint (PSP) has been successfully used to measure global surface pressures on an ice-accreted model in an icing wind tunnel at NASA Glenn Research Center. Until now, the PSP technique has been limited to use in normal wind tunnels and clear flight environments. This is the first known application of PSP directly to ice in subfreezing conditions. Several major objectives were achieved in these tests. The procedure for applying the coating in the subfreezing tunnel environment was verified. Inspection of the painted ice surface revealed that the paint did not alter the original ice shape and adhered well over the entire coated area. Several procedures were used to show that the paint responded to changes in air pressure and that a repeatable pressure-dependent calibration could be achieved on the PSP-coated surfaces. Differences in pressure measurements made simultaneously on the ice and the metal test model are not yet fully understood, and techniques to minimize or correct them are being investigated.

  6. Convair XF-102 Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1953-08-21

    A .10-scale model of Convair’s XF-102 in the 8- by 6-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory for jet exit studies. The XF-102 was a prototype of the F-102 Delta Dagger. The F-102 served as an interceptor against long range bombers from the Soviet Union. The aircraft was powered by a Pratt and Whitney J57 turbojet. The first prototype crashed two weeks after is first flight on October 24, 1953, just months after this photograph. Engineers then incorporated the fixed-wing design to reduce drag at supersonic speeds. The production model F-102 became the first delta-wing supersonic aircraft in operation. The 8- by 6-Foot Supersonic Wind Tunnel is used to study propulsion systems, including inlets and exit nozzles, combustion fuel injectors, flame holders, exit nozzles, and controls on ramjet and turbojet engines. Flexible sidewalls alter the tunnel’s nozzle shape to vary the Mach number during operation. A seven-stage axial compressor, driven by three electric motors that yield a total of 87,000 horsepower, generates air speeds from Mach 0.36 to 2.0.

  7. Evaluation of electrolytic tilt sensors for measuring model angle of attack in wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    1992-01-01

    The results of a laboratory evaluation of electrolytic tilt sensors as potential candidates for measuring model attitude or angle of attack in wind tunnel tests are presented. The performance of eight electrolytic tilt sensors was compared with that of typical servo accelerometers used for angle-of-attack measurements. The areas evaluated included linearity, hysteresis, repeatability, temperature characteristics, roll-on-pitch interaction, sensitivity to lead-wire resistance, step response time, and rectification. Among the sensors being evaluated, the Spectron model RG-37 electrolytic tilt sensors have the highest overall accuracy in terms of linearity, hysteresis, repeatability, temperature sensitivity, and roll sensitivity. A comparison of the sensors with the servo accelerometers revealed that the accuracy of the RG-37 sensors was on the average about one order of magnitude worse. Even though a comparison indicates that the cost of each tilt sensor is about one-third the cost of each servo accelerometer, the sensors are considered unsuitable for angle-of-attack measurements. However, the potential exists for other applications such as wind tunnel wall-attitude measurements where the errors resulting from roll interaction, vibration, and response time are less and sensor temperature can be controlled.

  8. Computational Results for the KTH-NASA Wind-Tunnel Model Used for Acquisition of Transonic Nonlinear Aeroelastic Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Chwalowski, Pawel; Wieseman, Carol D.; Eller, David; Ringertz, Ulf

    2017-01-01

    A status report is provided on the collaboration between the Royal Institute of Technology (KTH) in Sweden and the NASA Langley Research Center regarding the aeroelastic analyses of a full-span fighter configuration wind-tunnel model. This wind-tunnel model was tested in the Transonic Dynamics Tunnel (TDT) in the summer of 2016. Large amounts of data were acquired including steady/unsteady pressures, accelerations, strains, and measured dynamic deformations. The aeroelastic analyses presented include linear aeroelastic analyses, CFD steady analyses, and analyses using CFD-based reduced-order models (ROMs).

  9. Control Surface Interaction Effects of the Active Aeroelastic Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    2006-01-01

    This paper presents results from testing the Active Aeroelastic Wing wind tunnel model in NASA Langley s Transonic Dynamics Tunnel. The wind tunnel test provided an opportunity to study aeroelastic system behavior under combined control surface deflections, testing for control surface interaction effects. Control surface interactions were observed in both static control surface actuation testing and dynamic control surface oscillation testing. The primary method of evaluating interactions was examination of the goodness of the linear superposition assumptions. Responses produced by independently actuating single control surfaces were combined and compared with those produced by simultaneously actuating and oscillating multiple control surfaces. Adjustments to the data were required to isolate the control surface influences. Using dynamic data, the task increases, as both the amplitude and phase have to be considered in the data corrections. The goodness of static linear superposition was examined and analysis of variance was used to evaluate significant factors influencing that goodness. The dynamic data showed interaction effects in both the aerodynamic measurements and the structural measurements.

  10. Ramjet Model and Technicians in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1952-02-21

    A researcher at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory checks the setup of a RJM-2 ramjet model in the test section of the 8- by 6-Foot Supersonic Wind Tunnel. The 8- by 6 was not only the laboratory’s first large supersonic wind tunnel, but it was also the NACA’s first facility capable of testing an operating engine at supersonic speeds. The 8- by 6-foot tunnel has been used to study engine inlets, fuel injectors, flameholders, exit nozzles, and controls on ramjet and turbojet propulsion systems. The 8-foot wide and 6-foot tall test section consisted of 1-inch thick steel plates with hatches on the floor and ceiling to facilitate the installation of the test article. The two windows seen on the right wall allowed photographic equipment to be set up. The test section was modified in 1956 to accommodate transonic research. NACA engineers drilled 4,700 holes into the test section walls to reduce transonic pressure disturbances and shock waves. NACA Lewis undertook an extensive research program on ramjets in the 1940s using several of its facilities. Ramjets provide a very simple source of propulsion. They are basically a tube which ingests high speed air, ignites it, and then expels the heated air at a significantly higher velocity. Ramjets are extremely efficient and powerful but can only operate at high speeds. Therefore, they require a booster rocket or aircraft drop to accelerate them to high speeds before they can operate.

  11. Cone-Probe Rake Design and Calibration for Supersonic Wind Tunnel Models

    NASA Technical Reports Server (NTRS)

    Won, Mark J.

    1999-01-01

    A series of experimental investigations were conducted at the NASA Langley Unitary Plan Wind Tunnel (UPWT) to calibrate cone-probe rakes designed to measure the flow field on 1-2% scale, high-speed wind tunnel models from Mach 2.15 to 2.4. The rakes were developed from a previous design that exhibited unfavorable measurement characteristics caused by a high probe spatial density and flow blockage from the rake body. Calibration parameters included Mach number, total pressure recovery, and flow angularity. Reference conditions were determined from a localized UPWT test section flow survey using a 10deg supersonic wedge probe. Test section Mach number and total pressure were determined using a novel iterative technique that accounted for boundary layer effects on the wedge surface. Cone-probe measurements were correlated to the surveyed flow conditions using analytical functions and recursive algorithms that resolved Mach number, pressure recovery, and flow angle to within +/-0.01, +/-1% and +/-0.1deg , respectively, for angles of attack and sideslip between +/-8deg. Uncertainty estimates indicated the overall cone-probe calibration accuracy was strongly influenced by the propagation of measurement error into the calculated results.

  12. Scale effects in wind tunnel modeling of an urban atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kozmar, Hrvoje

    2010-03-01

    Precise urban atmospheric boundary layer (ABL) wind tunnel simulations are essential for a wide variety of atmospheric studies in built-up environments including wind loading of structures and air pollutant dispersion. One of key issues in addressing these problems is a proper choice of simulation length scale. In this study, an urban ABL was reproduced in a boundary layer wind tunnel at different scales to study possible scale effects. Two full-depth simulations and one part-depth simulation were carried out using castellated barrier wall, vortex generators, and a fetch of roughness elements. Redesigned “Counihan” vortex generators were employed in the part-depth ABL simulation. A hot-wire anemometry system was used to measure mean velocity and velocity fluctuations. Experimental results are presented as mean velocity, turbulence intensity, Reynolds stress, integral length scale of turbulence, and power spectral density of velocity fluctuations. Results suggest that variations in length-scale factor do not influence the generated ABL models when using similarity criteria applied in this study. Part-depth ABL simulation compares well with two full-depth ABL simulations indicating the truncated vortex generators developed for this study can be successfully employed in urban ABL part-depth simulations.

  13. Lockheed YF-12 Blackbird Model in the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1977-12-21

    Robert Cubbison examines a model of the Lockheed YF-12 Blackbird in the test section of the 10- by 10-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The YF-12 was an experimental fighter version of Lockheed’s A-12 reconnaissance aircraft which had been developed into the renowned SR-71 Blackbird. NASA possessed two YF-12s at its Dryden Flight Research Center which could be used by researchers at all the NASA centers. During its nine-year life, the Dryden’s YF-12 research program logged 297 flights with approximately 450 flight hours. Lewis researchers were studying the YF-12’s inlet airflow in the 10- by 10-foot wind tunnel in late 1977. The advanced supersonic cruise aircraft of the time used mixed-compression inlets. These types of inlets were prone to flameout during atmospheric disturbances. Researchers at Lewis and Dryden developed a program to study these flameouts by artificially introducing flow disturbances. Testing at Dryden with a specially-equipped YF-12 aircraft yielded limited results. Lewis’ tests in the 10- by 10 were unsuccessful at inducing upstream disturbances. The researchers used two methods—a falling plate and a servo-driven wing.

  14. Advanced Turboprop Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1979-08-21

    NASA Lewis Research Center researcher, John S. Sarafini, uses a laser doppler velocimeter to analyze a Hamilton Standard SR-2 turboprop design in the 8- by 6-Foot foot Supersonic Wind Tunnel. Lewis researchers were analyzing a series of eight-bladed propellers in their wind tunnels to determine their operating characteristics at speeds up to Mach 0.8. The program, which became the Advanced Turboprop (ATP), was part of a NASA-wide Aircraft Energy Efficiency Program undertaken to reduce aircraft fuel costs by 50 percent. The ATP concept was different from the turboprops in use in the 1950s. The modern versions had at least eight blades and were swept back for better performance. Bell Laboratories developed the laser doppler velocimeter technology in the 1960s to measure velocity of transparent fluid flows or vibration motion on reflective surfaces. Lewis researchers modified the device to measure the flow field of turboprop configurations in the transonic speed region. The modifications were necessary to overcome the turboprop’s vibration and noise levels. The laser beam was split into two beams which were crossed at a specific point. This permits researchers to measure two velocity components simultaneously. This data measures speeds both ahead and behind the propeller blades. Researchers could use this information as they sought to advance flow fields and to verify computer modeling codes.

  15. A parametric sensitivity and optimization study for the active flexible wing wind-tunnel model flutter characteristics

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    1991-01-01

    In this paper an effort is made to improve the analytical open-loop flutter predictions for the Active Flexible Wing wind-tunnel model using a sensitivity based optimization approach. The sensitivity derivatives of the flutter frequency and dynamic pressure of the model with respect to the lag terms appearing in the Roger's unsteady aerodynamics approximations are evaluated both analytical and by finite differences. Then, the Levenberg-Marquardt method is used to find the optimum values for these lag-terms. The results obtained here agree much better with the experimental (wind tunnel) results than those found in the previous studies.

  16. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Quest, Jurgen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment, surface pressure and wing bending and twist data are presented herein.

  17. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa; Quest, Juergen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment and surface pressure data are presented herein.

  18. Wind-tunnel free-flight investigation of a model of a forward-swept-wing fighter configuration

    NASA Technical Reports Server (NTRS)

    Murri, D. G.; Nguyen, L. T.; Grafton, S. B.

    1984-01-01

    A wind-tunnel free-flight investigation was conducted to study the dynamic stability characteristics of a model of a forward-swept-wing fighter-airplane configuration at high angles of attack. Various other wind-tunnel techniques employed in the study included static- and dynamic- (forced-oscillation) force tests, free-to-roll tests, and flow-visualization tests. A unique facet of the study was the extreme level of static pitch instability (in excess of negative 32-percent static margin) inherent in the airframe design which precluded free-flight testing without stability augmentation in pitch. Results are presented which emphasize the high-angle-of-attack aerodynamics and the vehicle-component contributions to these characteristics. The effects of these aerodynamic characteristics on the high-angle-of-attack flying qualities of the configuration are discussed in terms of results of the wind-tunnel free-flight tests.

  19. A model to relate wind tunnel measurements to open field odorant emissions from liquid area sources

    NASA Astrophysics Data System (ADS)

    Lucernoni, F.; Capelli, L.; Busini, V.; Sironi, S.

    2017-05-01

    Waste Water Treatment Plants are known to have significant emissions of several pollutants and odorants causing nuisance to the near-living population. One of the purposes of the present work is to study a suitable model to evaluate odour emissions from liquid passive area sources. First, the models describing volatilization under a forced convection regime inside a wind tunnel device, which is the sampling device that typically used for sampling on liquid area sources, were investigated. In order to relate the fluid dynamic conditions inside the hood to the open field and inside the hood a thorough study of the models capable of describing the volatilization phenomena of the odorous compounds from liquid pools was performed and several different models were evaluated for the open field emission. By means of experimental tests involving pure liquid acetone and pure liquid butanone, it was verified that the model more suitable to describe precisely the volatilization inside the sampling hood is the model for the emission from a single flat plate in forced convection and laminar regime, with a fluid dynamic boundary layer fully developed and a mass transfer boundary layer not fully developed. The proportionality coefficient for the model was re-evaluated in order to account for the specific characteristics of the adopted wind tunnel device, and then the model was related with the selected model for the open field thereby computing the wind speed at 10 m that would cause the same emission that is estimated from the wind tunnel measurement furthermore, the field of application of the proposed model was clearly defined for the considered models during the project, discussing the two different kinds of compounds commonly found in emissive liquid pools or liquid spills, i.e. gas phase controlled and liquid phase controlled compounds. Lastly, a discussion is presented comparing the presented approach for emission rates recalculation in the field, with other approaches

  20. The Role of Hierarchy in Response Surface Modeling of Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2010-01-01

    This paper is intended as a tutorial introduction to certain aspects of response surface modeling, for the experimentalist who has started to explore these methods as a means of improving productivity and quality in wind tunnel testing and other aerospace applications. A brief review of the productivity advantages of response surface modeling in aerospace research is followed by a description of the advantages of a common coding scheme that scales and centers independent variables. The benefits of model term reduction are reviewed. A constraint on model term reduction with coded factors is described in some detail, which requires such models to be well-formulated, or hierarchical. Examples illustrate the consequences of ignoring this constraint. The implication for automated regression model reduction procedures is discussed, and some opinions formed from the author s experience are offered on coding, model reduction, and hierarchy.

  1. Lockheed XFV-1 model in the 40x80 foot Wind Tunnel at NASA Ames Research Center.

    NASA Image and Video Library

    1952-05-16

    Lockheed XFV-1 model. Project engineer Mark Kelly (not shown). Remote controlled model flown in the settling chamber of the 40x80 wind tunnel. Electric motors in the model, controlled the counter-rotating propellers to test vertical takeoff. Test no. 71

  2. Modeling of aircraft unsteady aerodynamic characteristics. Part 2: Parameters estimated from wind tunnel data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1995-01-01

    Aerodynamic equations with unsteady effects were formulated for an aircraft in one-degree-of-freedom, small-amplitude, harmonic motion. These equations were used as a model for aerodynamic parameter estimation from wind tunnel oscillatory data. The estimation algorithm was based on nonlinear least squares and was applied in three examples to the oscillatory data in pitch and roll of 70 deg triangular wing and an X-31 model, and in-sideslip oscillatory data of the High Incidence Research Model 2 (HIRM 2). All three examples indicated that a model using a simple indicial function can explain unsteady effects observed in measured data. The accuracy of the estimated parameters and model verification were strongly influenced by the number of data points with respect to the number of unknown parameters.

  3. Verification and Calibration of a Reduced Order Wind Farm Model by Wind Tunnel Experiments

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Nanos, E. M.; Campagnolo, F.; Bottasso, C. L.

    2017-05-01

    In this paper an adaptation of the FLORIS approach is considered that models the wind flow and power production within a wind farm. In preparation to the use of this model for wind farm control, this paper considers the problem of its calibration and validation with the use of experimental observations. The model parameters are first identified based on measurements performed on an isolated scaled wind turbine operated in a boundary layer wind tunnel in various wind-misalignment conditions. Next, the wind farm model is verified with results of experimental tests conducted on three interacting scaled wind turbines. Although some differences in the estimated absolute power are observed, the model appears to be capable of identifying with good accuracy the wind turbine misalignment angles that, by deflecting the wake, lead to maximum power for the investigated layouts.

  4. An Integrated Fuselage-Sting Balance for a Sonic-Boom Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2004-01-01

    Measured and predicted pressure signatures from a lifting wind-tunnel model can be compared when the lift on the model is accurately known. The model's lift can be set by bending the support sting to a desired angle of attack. This method is simple in practice, but difficult to accurately apply. A second method is to build a normal force/pitching moment balance into the aft end of the sting, and use an angle-of-attack mechanism to set model attitude. In this report, a method for designing a sting/balance into the aft fuselage/sting of a sonic-boom model is described. A computer code is given, and a sample sting design is outlined to demonstrate the method.

  5. Wind tunnel tests of a free-wing/free-trimmer model

    NASA Technical Reports Server (NTRS)

    Sandlin, D. R.

    1982-01-01

    The riding qualities of an aircraft with low wing loading can be improved by freeing the wing to rotate about its spanwise axis. A trimming surface also free to rotate about its spanwise axis can be added at the wing tips to permit the use of high lift devices. Wind tunnel tests of the free wing/free trimmer model with the trimmer attached to the wing tips aft of the wing chord were conducted to validate a mathematical model developed to predict the dynamic characteristics of a free wing/free trimmer aircraft. A model consisting of a semispan wing with the trimmer mounted on with the wing on an air bearing and the trimmer on a ball bearing was displaced to various angles of attack and released. The damped oscillations of the wing and trimmer were recorded. Real and imaginary parts of the characteristic equations of motion were determined and compared to values predicted using the mathematical model.

  6. New Model Exhaust System Supports Testing in NASA Lewis' 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Roeder, James W., Jr.

    1998-01-01

    In early 1996, the ability to run NASA Lewis Research Center's Abe Silverstein 10- by 10- Foot Supersonic Wind Tunnel (10x10) at subsonic test section speeds was reestablished. Taking advantage of this new speed range, a subsonic research test program was scheduled for the 10x10 in the fall of 1996. However, many subsonic aircraft test models require an exhaust source to simulate main engine flow, engine bleed flows, and other phenomena. This was also true of the proposed test model, but at the time the 10x10 did not have a model exhaust capability. So, through an in-house effort over a period of only 5 months, a new model exhaust system was designed, installed, checked out, and made ready in time to support the scheduled test program.

  7. The design of a wind tunnel VSTOL fighter model incorporating turbine powered engine simulators

    NASA Technical Reports Server (NTRS)

    Bailey, R. O.; Maraz, M. R.; Hiley, P. E.

    1981-01-01

    A wind-tunnel model of a supersonic VSTOL fighter aircraft configuration has been developed for use in the evaluation of airframe-propulsion system aerodynamic interactions. The model may be employed with conventional test techniques, where configuration aerodynamics are measured in a flow-through mode and incremental nozzle-airframe interactions are measured in a jet-effects mode, and with the Compact Multimission Aircraft Propulsion Simulator which is capable of the simultaneous simulation of inlet and exhaust nozzle flow fields so as to allow the evaluation of the extent of inlet and nozzle flow field coupling. The basic configuration of the twin-engine model has a geometrically close-coupled canard and wing, and a moderately short nacelle with nonaxisymmetric vectorable exhaust nozzles near the wing trailing edge, and may be converted to a canardless configuration with an extremely short nacelle. Testing is planned to begin in the summer of 1982.

  8. Experimental evaluation of compliant surfaces at low speeds. [aerodynamic drag of subsonic wind tunnel model

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.; Wynn, T. M.

    1974-01-01

    An experimental study was devised to determine the profile drag on a subsonic wind tunnel model partially covered with various compliant surface materials. The model consisted of a large section of constant thickness bounded fore and aft by symmetric airfoil fairings. A flat rigid plate, the control surface, could be exchanged for four contiguous complaint panels. The flexible media generally consisted of thin polyvinylchloride membranes stretched to various tensions over trapped fluid cavities of air, water, or polyethelene oxide solution, or over dry or flooded open-celled polyurethane foams. On the basis of very accurate direct-force cell measurements, all configurations were found to yield profile drags equal to or slightly higher than that obtained for the conventional rigid surface case. The results indicate that the potential for practical drag-reducing applications will be limited to either high-density or high-speed flows where more sensible pressure perturbations occur.

  9. Wind-Tunnel Calibration and Correction Procedures for Three-Dimensional Models

    NASA Technical Reports Server (NTRS)

    Swanson, Robert S; Gillis, Clarence L

    1944-01-01

    Detailed methods are presented for determining the corrections to results from wind-tunnel tests of three-dimensional models for the effects of the model-support system, the nonuniform air flow in the tunnel, and the tunnel walls or jet boundaries. The procedures for determining the corrections are illustrated by equations and the required tests are discussed. Particular attention is given to the parts of the procedures dealing with drag measurements. Two general methods that are used for determining and applying the corrections to force tests are discussed. Some discussion is also included of the correction procedures to be used for wake survey tests. The methods described in this report apply only to tests at subcritical speeds. (author)

  10. Cruise noise of the SR-2 propeller model in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    1989-01-01

    Noise data on the SR-2 model propeller were taken in the NASA Lewis Research Center 8- by 6-Foot Wind Tunnel. The maximum blade passing tone rises with increasing helical tip Mach number to a peak level at a helical tip Mach number of about 1.05; then it remains the same or decreases at higher helical tip Mach numbers. This behavior, which has been observed with other propeller models, points to the possibility of using higher propeller tip speeds to limit airplane cabin noise while maintaining high flight speed and efficiency. Noise comparisons of the straight-blade SR-2 propeller and the swept-blade SR-7A propeller showed that the tailored sweep of the SR-7A appears to be the cause of both lower peak noise levels and a slower noise increase with increasing helical tip Mach number.

  11. Analytical and physical modeling program for the NASA Lewis Research Center's Altitude Wind Tunnel (AWT)

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.; Deidrich, J. H.; Groeneweg, J. F.; Povinelli, L. A.; Reid, L.; Reinmann, J. J.; Szuch, J. R.

    1985-01-01

    An effort is currently underway at the NASA Lewis Research Center to rehabilitate and extend the capabilities of the Altitude Wind Tunnel (AWT). This extended capability will include a maximum test section Mach number of about 0.9 at an altitude of 55,000 ft and a -20 F stagnation temperature (octagonal test section, 20 ft across the flats). In addition, the AWT will include an icing and acoustic research capability. In order to insure a technically sound design, an AWT modeling program (both analytical and physical) was initiated to provide essential input to the AWT final design process. This paper describes the modeling program, including the rationale and criteria used in program definition, and presents some early program results.

  12. Active Control of Wind-Tunnel Model Aeroelastic Response Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.

    2000-01-01

    NASA Langley Research Center, Hampton, VA 23681 Under a joint research and development effort conducted by the National Aeronautics and Space Administration and The Boeing Company (formerly McDonnell Douglas) three neural-network based control systems were developed and tested. The control systems were experimentally evaluated using a transonic wind-tunnel model in the Langley Transonic Dynamics Tunnel. One system used a neural network to schedule flutter suppression control laws, another employed a neural network in a predictive control scheme, and the third employed a neural network in an inverse model control scheme. All three of these control schemes successfully suppressed flutter to or near the limits of the testing apparatus, and represent the first experimental applications of neural networks to flutter suppression. This paper will summarize the findings of this project.

  13. Cruise noise of the SR-2 propeller model in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Dittmar, James H.

    1989-04-01

    Noise data on the SR-2 model propeller were taken in the NASA Lewis Research Center 8- by 6-Foot Wind Tunnel. The maximum blade passing tone rises with increasing helical tip Mach number to a peak level at a helical tip Mach number of about 1.05; then it remains the same or decreases at higher helical tip Mach numbers. This behavior, which has been observed with other propeller models, points to the possibility of using higher propeller tip speeds to limit airplane cabin noise while maintaining high flight speed and efficiency. Noise comparisons of the straight-blade SR-2 propeller and the swept-blade SR-7A propeller showed that the tailored sweep of the SR-7A appears to be the cause of both lower peak noise levels and a slower noise increase with increasing helical tip Mach number.

  14. Evaluation of electrolytic tilt sensors for wind tunnel model angle-of-attack (AOA) measurements

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    1991-01-01

    The results of a laboratory evaluation of three types of electrolytic tilt sensors as potential candidates for model attitude or angle of attack (AOA) measurements in wind tunnel tests are presented. Their performance was also compared with that from typical servo accelerometers used for AOA measurements. Model RG-37 electrolytic tilt sensors were found to have the highest overall accuracy among the three types. Compared with the servo accelerometer, their accuracies are about one order of magnitude worse and each of them cost about two-thirds less. Therefore, the sensors are unsuitable for AOA measurements although they are less expensive. However, the potential for other applications exists where the errors resulting from roll interaction, vibration, and response time are less, and sensor temperature can be controlled.

  15. Computer aided design and manufacturing of composite propfan blades for a cruise missile wind tunnel model

    NASA Technical Reports Server (NTRS)

    Thorp, Scott A.; Downey, Kevin M.

    1992-01-01

    One of the propulsion concepts being investigated for future cruise missiles is advanced unducted propfans. To support the evaluation of this technology applied to the cruise missile, a joint DOD and NASA test project was conducted to design and then test the characteristics of the propfans on a 0.55-scale, cruise missile model in a NASA wind tunnel. The configuration selected for study is a counterrotating rearward swept propfan. The forward blade row, having six blades, rotates in a counterclockwise direction, and the aft blade row, having six blades, rotates in a clockwise direction, as viewed from aft of the test model. Figures show the overall cruise missile and propfan blade configurations. The objective of this test was to evaluate propfan performance and suitability as a viable propulsion option for next generation of cruise missiles. This paper details the concurrent computer aided design, engineering, and manufacturing of the carbon fiber/epoxy propfan blades as the NASA Lewis Research Center.

  16. Analysis of the wind tunnel test of a tilt rotor power force model

    NASA Technical Reports Server (NTRS)

    Marr, R. L.; Ford, D. G.; Ferguson, S. W.

    1974-01-01

    Two series of wind tunnel tests were made to determine performance, stability and control, and rotor wake interaction on the airframe, using a one-tenth scale powered force model of a tilt rotor aircraft. Testing covered hover (IGE/OCE), helicopter, conversion, and airplane flight configurations. Forces and moments were recorded for the model from predetermined trim attitudes. Control positions were adjusted to trim flight (one-g lift, pitching moment and drag zero) within the uncorrected test data balance accuracy. Pitch and yaw sweeps were made about the trim attitudes with the control held at the trimmed settings to determine the static stability characteristics. Tail on, tail off, rotors on, and rotors off configurations were testes to determine the rotor wake effects on the empennage. Results are presented and discussed.

  17. Flatback airfoil wind tunnel experiment.

    SciTech Connect

    Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-04-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  18. Free-to-Roll Testing of Airplane Models in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Owens, D. Bruce; Hall, Robert M.

    2007-01-01

    A free-to-roll (FTR) test technique and test rig make it possible to evaluate both the transonic performance and the wingdrop/ rock behavior of a high-strength airplane model in a single wind-tunnel entry. The free-to-roll test technique is a single degree-of-motion method in which the model is free to roll about the longitudinal axis. The rolling motion is observed, recorded, and analyzed to gain insight into wing-drop/rock behavior. Wing-drop/rock is one of several phenomena symptomatic of abrupt wing stall. FTR testing was developed as part of the NASA/Navy Abrupt Wing Stall Program, which was established for the purposes of understanding and preventing significant unexpected and uncommanded (thus, highly undesirable) lateral-directional motions associated with wing-drop/rock, which have been observed mostly in fighter airplanes under high-subsonic and transonic maneuvering conditions. Before FTR testing became available, wingrock/ drop behavior of high-performance airplanes undergoing development was not recognized until flight testing. FTR testing is a reliable means of detecting, and evaluating design modifications for reducing or preventing, very complex abrupt wing stall phenomena in a ground facility prior to flight testing. The FTR test rig was designed to replace an older sting attachment butt, such that a model with its force balance and support sting could freely rotate about the longitudinal axis. The rig (see figure) includes a rotary head supported in a stationary head with a forward spherical roller bearing and an aft needle bearing. Rotation is amplified by a set of gears and measured by a shaft-angle resolver; the roll angle can be resolved to within 0.067 degrees at a rotational speed up to 1,000 degrees/s. An assembly of electrically actuated brakes between the rotary and stationary heads can be used to hold the model against a rolling torque at a commanded roll angle. When static testing is required, a locking bar is used to fix the rotating

  19. Model order reduction applied to a hot-bench simulation of an aeroelastic wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S.; Bacon, Barton J.

    1991-01-01

    Simulations of an aeroelastically scaled wind-tunnel model were developed for hot-bench testing of a digital controller. The digital controller provided active flutter-suppression, rolling-maneuver-load alleviation, and plant estimation. To achieve an acceptable time scale for the hot-bench application, the mathematical model of the wind-tunnel model was reduced from 220 states to approximately 130 states while assuring that the required accuracy was preserved for all combinations of 10 inputs and 56 outputs. The reduction was achieved by focussing on a linear, aeroelastic submodel of the full mathematical model and by applying a method based on the internally balanced realization of a dynamic system. The error-bound properties of the internally balanced realization significantly contribute to its utility in the model reduction process. The reduction method and the results achieved are described.

  20. Transonic wind tunnel tests of a .015 scale space shuttle orbiter model, volume 2

    NASA Technical Reports Server (NTRS)

    Struzynski, N. A.

    1975-01-01

    Transonic wind tunnel tests were run on a 0.015 scale model of the Space Shuttle Orbiter Vehicle in an eight-foot tunnel during August 1975. The purpose of the program was to obtain basic shuttle aerodynamic data through a full range of elevon and aileron deflections, verification of data obtained at other facilities, and effects of Reynolds numbers. The second part of a discussion of test procedures and results in both tabular and graphical form were presented. Tests were performed at Mach numbers from 0.35 to 1.20, and at Reynolds numbers from 3.5 million to 8.2 million per foot. The angle of attack was varied from -2 to +20 degrees at sideslip angles of -2, 0, +2 degrees. Sideslip was varied from -6 to +8 degrees at constant angles of attack from 0 to +20 degrees. Various aileron and ailevon settings were tested for various angles of attack.

  1. Transonic wind tunnel tests of A.015 scale space shuttle orbiter model, volume 1

    NASA Technical Reports Server (NTRS)

    Struzynski, N. A.

    1975-01-01

    Transonic wind tunnel tests were run on a 0.015 scale model of the Space Shuttle Orbiter Vehicle in an eight-foot tunnel during August 1975. The purpose of the program was to obtain basic shuttle aerodynamic data through a full range of elevon and aileron deflections, verification of data obtained at other facilities, and effects of Reynolds numbers. The first part of a discussion of test procedures and results in both tabular and graphical form were presented. Tests were performed at Mach numbers from 0.35 to 1.20, and at Reynolds numbers for 3.5 million to 8.2 million per foot. The angle of attack was varied from -1 to +20 degrees at sideslip angles of -2, 0, +2 degrees. Sideslip was varied from -6 to +8 degrees at constant angles of attack from 0 to +20 degrees. Various aileron and ailevon settings were tested for various angles of attack.

  2. McDonnell Model XV-1 Convertiplane in the Ames 40x80 Foot Wind Tunnel.

    NASA Image and Video Library

    1954-05-17

    Foreword, front view of McDonnell Model XV-1 Convertiplane in the Ames 40x80 Foot Wind Tunnel. The McDonnell XV-1 was an experimental compound gyroplane developed for a joint research program between the United States Air Force and the United States Army to explore technologies to develop an aircraft that could take off and land like a helicopter but fly at faster airspeeds, similar to a conventional airplane. The XV-1 would reach a speed of 200 mph (322 km/h), faster than any previous rotorcraft, but the program was terminated due to the tip-jet noise and complexity of the technology which gave only a modest gain in performance.

  3. Transonic wind tunnel tests of a .015 scale space shuttle orbiter model, volume 2

    NASA Technical Reports Server (NTRS)

    Struzynski, N. A.

    1975-01-01

    Transonic wind tunnel tests were run on a 0.015 scale model of the Space Shuttle Orbiter Vehicle in an eight-foot tunnel during August 1975. The purpose of the program was to obtain basic shuttle aerodynamic data through a full range of elevon and aileron deflections, verification of data obtained at other facilities, and effects of Reynolds numbers. The second part of a discussion of test procedures and results in both tabular and graphical form were presented. Tests were performed at Mach numbers from 0.35 to 1.20, and at Reynolds numbers from 3.5 million to 8.2 million per foot. The angle of attack was varied from -2 to +20 degrees at sideslip angles of -2, 0, +2 degrees. Sideslip was varied from -6 to +8 degrees at constant angles of attack from 0 to +20 degrees. Various aileron and ailevon settings were tested for various angles of attack.

  4. Dynamic response of a hammerhead launch vehicle wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Henning, Thomas L.

    1991-01-01

    NASA-Langley has wind tunnel-tested an aeroelastically-scaled (1/10th-scale) Atlas-Centaur I Large Payload Fairing launch-vehicle model capable of simulating either of the first two bending vibration modes of the full-scale vehicle, on the basis of a partial-mode technique. While the primary emphasis was on the vehicle's buffet response, angle-of-attack studies were conducted for several payload fairing configurations with a view to both the buffet response and the dynamic stability of off-design conditions. No dynamic instabilities were discovered among the range of configurations, and payload fairing L/D variations were found to have only small buffet effects except for the smallest such value, in the second bending mode configuration.

  5. Holographic testing of composite propfans for a cruise missile wind tunnel model

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    1994-01-01

    Each of the approximately 90 composite propfan blades constructed for a 55 percent scale cruise missile wind tunnel model were holographically tested to obtain natural frequencies and mode shapes. These data were used not only for quality assurance, but also to select sets of similar blades for each blade row. Presented along with the natural frequency data is a description of a computer-based image processing system developed to supplement the photographic based system for holographic image analysis and storage. The new system is quicker and cheaper, the holograms are indexed better, and several engineers can access the data simultaneously. The only negative effect is a slight reduction in image resolution, which does not influence the end use.

  6. Multi-Nozzle Base Flow Model in the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1964-02-21

    Researchers check the setup of a multi-nozzle base flow model in the 10- by 10-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. NASA researchers were struggling to understand the complex flow phenomena resulting from the use of multiple rocket engines. Robert Wasko and Theodore Cover of the Advanced Development and Evaluation Division’s analysis and operations sections conducted a set of tests in the 10- by 10 tunnel to further understand the flow issues. The Lewis researchers studied four and five-nozzle configurations in the 10- by 10 at simulated altitudes from 60,000 to 200,000 feet. The nozzles were gimbaled during some of the test runs to simulate steering. The flow field for the four-nozzle clusters was surveyed in the center and the lateral areas between the nozzles, whereas the five-nozzle cluster was surveyed in the lateral area only.

  7. Scale Model of Agena/Mariner-C in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1964-02-21

    Researcher Bobby Sanders examines a 0.10-scale model of the Mariner-C shroud and Agena rocket in the 8- by 6-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Mariner-C and Mariner-D were identical spacecraft designed by the Jet Propulsion Laboratory to flyby Mars and photograph the Martian surface. The two Mariner spacecraft were launched by Atlas-Agena-D rockets. Lewis had taken over management of the Agena Program in October 1962. Lewis researchers investigated two different types of shrouds for the Mariner missions—an over-the-nose design and a backup pyrotechnic design. The new shroud was wider in diameter than the Agena rocket, so there was concern that this disparity might create air flow instability that could damage the shroud or destroy the vehicle. The tests in the 8- by 6 tunnel simulated launch speeds from Mach 0.56 to 1.96. Afterwards the Agena-Mariner-C model was studied in the 10- by 10-Foot Supersonic Wind Tunnel at speeds of Mach 2.0 to 3.5. Mariner-C was launched on November 4, 1964, but the payload shroud did not jettison properly and the spacecraft’s battery power did not function. The mission ended unsuccessfully two days later. Mariner-D was launched on November 28, 1964 and became the first successful mission to Mars. It was the first time a planet was photographed from space. Mariner-D’s 21 photographs revealed an inhospitable and barren landscape.

  8. Wind Tunnel Model Design for the Study of Plume Effects on Sonic Boom for Isolated Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Castner, Raynold S.

    2010-01-01

    A low cost test capability was developed at the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT), with a goal to reduce the disturbance caused by supersonic aircraft flight over populated areas. This work focused on the shock wave structure caused by the exhaust nozzle plume. Analysis and design was performed on a new rig to test exhaust nozzle plume effects on sonic boom signature. Test capability included a baseline nozzle test article and a wind tunnel model consisting of a strut, a nosecone and an upper plenum. Analysis was performed on the external and internal aerodynamic configuration, including the shock reflections from the wind tunnel walls caused by the presence of the model nosecone. This wind tunnel model was designed to operate from Mach 1.4 to Mach 3.0 with nozzle pressure ratios from 6 to 12 and altitudes from 30,000 ft (4.36 psia) to 50,000 ft (1.68 psia). The model design was based on a 1 in. outer diameter, was 9 in. in overall length, and was mounted in the wind tunnel on a 3/8 in. wide support strut. For test conditions at 50,000 ft the strut was built to supply 90 psia of pressure, and to achieve 20 psia at the nozzle inlet with a maximum nozzle pressure of 52 psia. Instrumentation was developed to measure nozzle pressure ratio, and an external static pressure probe was designed to survey near field static pressure profiles at one nozzle diameter above the rig centerline. Model layout placed test nozzles between two transparent sidewalls in the 1 1 SWT for Schlieren photography and comparison to CFD analysis.

  9. Wind Tunnel Model Design for the Study of Plume Effects on Sonic Boom for Isolated Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    2009-01-01

    A low cost test capability was developed at the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT), with a goal to reduce the disturbance caused by supersonic aircraft flight over populated areas. This work focused on the shock wave structure caused by the exhaust nozzle plume. Analysis and design was performed on a new rig to test exhaust nozzle plume effects on sonic boom signature. Test capability included a baseline nozzle test article and a wind tunnel model consisting of a strut, a nose cone and an upper plenum. Analysis was performed on the external and internal aerodynamic configuration, including the shock reflections from the wind tunnel walls caused by the presence of the model nosecone. This wind tunnel model was designed to operate from Mach 1.4 to Mach 3.0 with nozzle pressure ratios from 6 to 12 and altitudes from 30,000 ft (4.36 psia) to 50,000 ft (1.68 psia). The model design was based on a 1 in. outer diameter, was 9 in. in overall length, and was mounted in the wind tunnel on a 3/8 in. wide support strut. For test conditions at 50,000 ft the strut was built to supply 90 psia of pressure, and to achieve 20 psia at the nozzle inlet with a maximum nozzle pressure of 52 psia. Instrumentation was developed to measure nozzle pressure ratio, and an external static pressure probe was designed to survey near field static pressure profiles at one nozzle diameter above the rig centerline. Model layout placed test nozzles between two transparent sidewalls in the 1x1 SWT for Schlieren photography and comparison to CFD analysis.

  10. Computed and Experimental Flutter/LCO Onset for the Boeing Truss-Braced Wing Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Scott, Robert C.; Funk, Christie J.; Allen, Timothy J.; Sexton, Bradley W.

    2014-01-01

    This paper presents high fidelity Navier-Stokes simulations of the Boeing Subsonic Ultra Green Aircraft Research truss-braced wing wind-tunnel model and compares the results to linear MSC. Nastran flutter analysis and preliminary data from a recent wind-tunnel test of that model at the NASA Langley Research Center Transonic Dynamics Tunnel. The simulated conditions under consideration are zero angle of attack, so that structural nonlinearity can be neglected. It is found that, for Mach number greater than 0.78, the linear flutter analysis predicts flutter onset dynamic pressure below the wind-tunnel test and that predicted by the Navier-Stokes analysis. Furthermore, the wind-tunnel test revealed that the majority of the high structural dynamics cases were wing limit cycle oscillation (LCO) rather than flutter. Most Navier-Stokes simulated cases were also LCO rather than hard flutter. There is dip in the wind-tunnel test flutter/LCO onset in the Mach 0.76-0.80 range. Conditions tested above that Mach number exhibited no aeroelastic instability at the dynamic pressures reached in the tunnel. The linear flutter analyses do not show a flutter/LCO dip. The Navier-Stokes simulations also do not reveal a dip; however, the flutter/LCO onset is at a significantly higher dynamic pressure at Mach 0.90 than at lower Mach numbers. The Navier-Stokes simulations indicate a mild LCO onset at Mach 0.82, then a more rapidly growing instability at Mach 0.86 and 0.90. Finally, the modeling issues and their solution related to the use of a beam and pod finite element model to generate the Navier-Stokes structure mode shapes are discussed.

  11. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  12. Airloads and Wake Geometry Calculations for an Isolated Tiltrotor Model in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2003-01-01

    Th tiltrotor aircraft configuration has the potential to revolutionize air transportation by providing an economical combination of vertical take-off and landing capability with efficient, high-speed cruise flight. To achieve this potential it is necessary to have validated analytical tools that will support future tiltrotor aircraft development. These analytical tools must calculate tiltrotor aeromechanical behavior, including performance, structural loads, vibration, and aeroelastic stability, with an accuracy established by correlation with measured tiltrotor data. For many years such correlation has been performed for helicopter rotors (rotors designed for edgewise flight), but correlation activities for tiltrotors have been limited, in part by the absence of appropriate measured data. The recent test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, U4-scale V-22 rotor in the German-Dutch Wind Tunnel (DNW) now provides an extensive set of aeroacoustic, performance, and structural loads data. This paper will present calculations of airloads, wake geometry, and performance, including correlation with TRAM DNW measurements. The calculations were obtained using CAMRAD II, which is a modern rotorcraft comprehensive analysis, with advanced models intended for application to tiltrotor aircraft as well as helicopters. Comprehensive analyses have received extensive correlation with performance and loads measurements on helicopter rotors. The proposed paper is part of an initial effort to perform an equally extensive correlation with tiltrotor data. The correlation will establish the level of predictive capability achievable with current technology; identify the limitations of the current aerodynamic, wake, and structural models of tiltrotors; and lead to recommendations for research to extend tiltrotor aeromechanics analysis capability. The purpose of the Tilt Rotor Aeroacoustic Model (TRAM) experimental project is to provide data necessary to validate

  13. Fluorescence Imaging and Streamline Visualization of Hypersonic Flow over Rapid Prototype Wind-Tunnel Models

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Alderfer, David W.; Inman, Jennifer A.; Berger, Karen T.; Buck, Gregory M.; Schwartz, Richard J.

    2008-01-01

    Reentry models for use in hypersonic wind tunnel tests were fabricated using a stereolithography apparatus. These models were produced in one day or less, which is a significant time savings compared to the manufacture of ceramic or metal models. The models were tested in the NASA Langley Research Center 31-Inch Mach 10 Air Tunnel. Only a few of the models survived repeated tests in the tunnel, and several failure modes of the models were identified. Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize the flowfields in the wakes of these models. Pure NO was either seeded through tubes plumbed into the model or via a tube attached to the strut holding the model, which provided localized addition of NO into the model s wake through a porous metal cylinder attached to the end of the tube. Models included several 2- inch diameter Inflatable Reentry Vehicle Experiment (IRVE) models and 5-inch diameter Crew Exploration Vehicle (CEV) models. Various model configurations and NO seeding methods were used, including a new streamwise visualization method based on PLIF. Virtual Diagnostics Interface (ViDI) technology, developed at NASA Langley Research Center, was used to visualize the data sets in post processing. The use of calibration "dotcards" was investigated to correct for camera perspective and lens distortions in the PLIF images.

  14. Test technique development in interference free testing, flow visualization, and remote control model technology at Langley's Unitary Plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Corlett, W. A.

    1979-01-01

    A metric half-span model is considered as a means of mechanical support for a wind-tunnel model which allows measurement of aerodynamic forces and moments without support interference or model distortion. This technique can be applied to interference-free propulsion models. The vapor screen method of flow visualization at supersonic Mach numbers is discussed. The use of smoke instead of water vapor as a medium to produce the screen is outlined. Vapor screen data are being used in the development of analytical vortex tracking programs. Test results for a remote control model system are evaluated. Detailed control effectiveness and cross-coupling data were obtained with a single run. For the afterbody tail configuration, tested control boundaries at several roll orientations were established utilizing the facility's on-line capability to 'fly' the model in the wind tunnel.

  15. Airloads and Wake Geometry Calculations for an Isolated Tiltrotor Model in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2001-01-01

    Comparisons of measured and calculated aerodynamic behavior of a tiltrotor model are presented. The test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, 0.25-scale V-22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. The calculations were performed using the rotorcraft comprehensive analysis CAMRAD II. Presented are comparisons of measured and calculated performance for hover and helicopter mode operation, and airloads for helicopter mode. Calculated induced power, profile power, and wake geometry provide additional information about the aerodynamic behavior. An aerodynamic and wake model and calculation procedure that reflects the unique geometry and phenomena of tiltrotors has been developed. There are major differences between this model and the corresponding aerodynamic and wake model that has been established for helicopter rotors. In general, good correlation between measured and calculated performance and airloads behavior has been shown. Two aspects of the analysis that clearly need improvement are the stall delay model and the trailed vortex formation model.

  16. Computer programs for calculation of sting pitch and roll angles required to obtain angles of attack and sideslip on wind tunnel models

    NASA Technical Reports Server (NTRS)

    Peterson, John B., Jr.

    1988-01-01

    Two programs have been developed to calculate the pitch and roll angles of a wind-tunnel sting drive system that will position a model at the desired angle of attack and and angle of sideslip in the wind tunnel. These programs account for the effects of sting offset angles, sting bending angles and wind-tunnel stream flow angles. In addition, the second program incorporates inputs from on-board accelerometers that measure model pitch and roll with respect to gravity. The programs are presented in the report and a description of the numerical operation of the programs with a definition of the variables used in the programs is given.

  17. Volatilization modeling of two herbicides from soil in a wind tunnel experiment under varying humidity conditions.

    PubMed

    Schneider, Martina; Goss, Kai-Uwe

    2012-11-20

    Volatilization of pesticides from the bare soil surface is drastically reduced when the soil is under dry conditions (i.e., water content lower than the permanent wilting point). This effect is caused by the hydrated mineral surfaces that become available as additional sorption sites under dry conditions. However, established volatilization models do not explicitly consider the hydrated mineral surfaces as an independent sorption compartment and cannot correctly cover the moisture effect on volatilization. Here we integrated the existing mechanistic understanding of sorption of organic compounds to mineral surfaces and its dependence on the hydration status into a simple volatilization model. The resulting model was tested with reported experimental data for two herbicides from a wind tunnel experiment under various well-defined humidity conditions. The required equilibrium sorption coefficients of triallate and trifluralin to the mineral surfaces, K(min/air), at 60% relative humidity were fitted to experimental data and extrapolated to other humidity conditions. The model captures the general trend of the volatilization in different humidity scenarios. The results reveal that it is essential to have high quality input data for K(min/air), the available specific surface area (SSA), the penetration depth of the applied pesticide solution, and the humidity conditions in the soil. The model approach presented here in combination with an improved description of the humidity conditions under dry conditions can be integrated into existing volatilization models that already work well for humid conditions but still lack the mechanistically based description of the volatilization process under dry conditions.

  18. Wind Tunnel Testing of a 6%-Scale Large Civil Tilt Rotor Model in Airplane and Helicopter Modes

    DTIC Science & Technology

    2014-01-01

    were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography ... build -up and model reconfiguration time, and ultimately reduced the cost of the test entry. In particular, the HETR wing and nacelle geometries were...shared between the two models, which reduced fabrication, build -up and model reconfiguration time, and ultimately reduced the cost of the test entry

  19. Space shuttle plume simulation application. Results and math model. [Ames unitary plan wind tunnel test

    NASA Technical Reports Server (NTRS)

    Boyle, W.; Conine, B.

    1978-01-01

    Pressure and gauge wind tunnel data from a transonic test of a 0.02 scale model of the space shuttle launch vehicle was analyzed to define the aerodynamic influence of the main propulsion system and solid rocket booster plumes during the transonic portion of ascent flight. Air was used as a simulant gas to develop the model exhaust plumes. A math model of the plume induced aerodynamic characteristics was developed for a range of Mach numbers to match the forebody aerodynamic math model. The base aerodynamic characteristics are presented in terms of forces and moments versus attitude. Total vehicle base and forebody aerodynamic characteristics are presented in terms of aerodynamic coefficients for Mach number from 0.6 to 1.4 Element and component base and forebody aerodynamic characteristics are presented for Mach numbers of 0.6, 1.05, 1.1, 1.25 and 1.4. The forebody data is available at Mach 1.55. Tolerances for all plume induced aerodynamic characteristics are developed in terms of a math model.

  20. Simulation of the atmospheric boundary layer in the wind tunnel for modeling of wind loads on low-rise structures

    NASA Technical Reports Server (NTRS)

    Tieleman, H. W.; Reinhold, T. A.; Marshall, R. D.

    1976-01-01

    The lower part of the atmospheric boundary layer (strong wind conditions) was simulated in low speed wind tunnel for the modeling of wind loads on low-rise structures. The turbulence characteristics of the turbulent boundary layer in the wind tunnel are compared with full scale measurements and with measurements made at NASA Wallops Flight Center. Wind pressures measured on roofs of a 1:70 scale model of a small single family dwelling were compared with results obtained from full scale measurements. The results indicate a favorable comparison between full scale and model pressure data as far as mean, r.m.s. and peak pressures are concerned. In addition, results also indicate that proper modeling of the turbulence is essential for proper simulation of the wind pressures.

  1. Simulation of the atmospheric boundary layer in the wind tunnel for modeling of wind loads on low-rise structures

    NASA Technical Reports Server (NTRS)

    Tieleman, H. W.; Reinhold, T. A.; Marshall, R. D.

    1976-01-01

    The lower part of the atmospheric boundary layer (strong wind conditions) was simulated in low speed wind tunnel for the modeling of wind loads on low-rise structures. The turbulence characteristics of the turbulent boundary layer in the wind tunnel are compared with full scale measurements and with measurements made at NASA Wallops Flight Center. Wind pressures measured on roofs of a 1:70 scale model of a small single family dwelling were compared with results obtained from full scale measurements. The results indicate a favorable comparison between full scale and model pressure data as far as mean, r.m.s. and peak pressures are concerned. In addition, results also indicate that proper modeling of the turbulence is essential for proper simulation of the wind pressures.

  2. Aeroelastic characteristics of a rapid prototype multi-material wind tunnel model of a mechanically deployable aerodynamic decelerator

    NASA Astrophysics Data System (ADS)

    Raskin, Boris

    Scaled wind tunnel models are necessary for the development of aircraft and spacecraft to simulate aerodynamic behavior. This allows for testing multiple iterations of a design before more expensive full-scale aircraft and spacecraft are built. However, the cost of building wind tunnel models can still be high because they normally require costly subtractive manufacturing processes, such as machining, which can be time consuming and laborious due to the complex surfaces of aerodynamic models. Rapid prototyping, commonly known as 3D printing, can be utilized to save on wind tunnel model manufacturing costs. A rapid prototype multi-material wind tunnel model was manufactured for this thesis to investigate the possibility of using PolyJet 3D printing to create a model that exhibits aeroelastic behavior. The model is of NASA's Adaptable Deployable entry and Placement (ADEPT) aerodynamic decelerator, used to decelerate a spacecraft during reentry into a planet's atmosphere. It is a 60° cone with a spherically blunted nose that consists of a 12 flexible panels supported by a rigid structure of nose, ribs, and rim. The novel rapid prototype multi-material model was instrumented and tested in two flow conditions. Quantitative comparisons were made of the average forces and dynamic forces on the model, demonstrating that the model matched expected behavior for average drag, but not Strouhal number, indicating that there was no aeroelastic behavior in this particular case. It was also noted that the dynamic properties (e.g., resonant frequency) associated with the mounting scheme are very important and may dominate the measured dynamic response.

  3. Wind tunnel measurements of a large wind farm model approaching the infinite wind farm regime

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2016-11-01

    A scaled wind farm, with 100 porous disk models of wind turbines, is used to study the effect of wind farm layout on the wind farm power output and its variability, in a wind tunnel study. The wind farm consists of 20 rows and 5 columns. The porous disk models have a diameter of 0 . 03 m and are instrumented with strain gages to measure the thrust force, as a surrogate for wind turbine power output. The frequency response of the measurements goes up to the natural frequency of the models and allows studying the spatio-temporal characteristics of the power output for different layouts. A variety of layouts are considered by shifting the individual rows in the spanwise direction. The reference layout has a regular streamwise spacing of Sx / D = 7 and a spanwise spacing of Sy / D = 5 . The parameter space is further expanded by considering layouts with an uneven streamwise spacing: Sx / D = 3 . 5 & 10 . 5 and Sx / D = 1 . 5 & 12 . 5 . We study how the mean row power changes as a function of wind farm layout and investigate the appearance of an asymptotic limiting behavior as previously described in the literature by application of the top-down model for the spatially averaged wind farm - boundary layer interaction. Work supported by ERC (Grant No. 306471, the ActiveWindFarms project) and by NSF (OISE-1243482, the WINDINSPIRE project).

  4. Phase 1 wind tunnel tests of the J-97 powered, external augmentor V/STOL model

    NASA Technical Reports Server (NTRS)

    Garland, D. B.

    1980-01-01

    Test results are presented for a large scale, external augmentor V/STOL model in a 40 ft by 80 ft wind tunnel. The model was powered by a GE J97 engine and featured longitudinal ejectors alongside and external to the fuselage together with an augmentor flap on the low aspect ratio, double-delta wing. A static thrust augmentation ratio of 1.60 was measured for the fuselage augmentor at a nozzle pressure ratio of 3.0 and a nozzle exhaust gas temperature of 700 C. At forward speed the model showed a strong positive lift interference due to the augmentor flap, and a marked absence of negative lift interference due to the fuselage augmentor jet system. The nose-up moment of the fuselage augmentor inlet flow was approximately cancelled by a 60 deg deflection of the augmentor flap. An assessment of the thrust and drag components to allow the prediction of transition performance of aircraft designs based on the present conceptual model was made. Lateral tests showed strong but well ordered effects of power.

  5. Design of the Wind Tunnel Model Communication Controller Board. Degree awarded by Christopher Newport Univ. on Dec. 1998

    NASA Technical Reports Server (NTRS)

    Wilson, William C.

    1999-01-01

    The NASA Langley Research Center's Wind Tunnel Reinvestment project plans to shrink the existing data acquisition electronics to fit inside a wind tunnel model. Space limitations within a model necessitate a distributed system of Application Specific Integrated Circuits (ASICs) rather than a centralized system based on PC boards. This thesis will focus on the design of the prototype of the communication Controller board. A portion of the communication Controller board is to be used as the basis of an ASIC design. The communication Controller board will communicate between the internal model modules and the external data acquisition computer. This board is based around an Field Programmable Gate Array (FPGA), to allow for reconfigurability. In addition to the FPGA, this board contains buffer Random Access Memory (RAM), configuration memory (EEPROM), drivers for the communications ports, and passive components.

  6. Braze alloy process and strength characterization studies for 18 nickel grade 200 maraging steel with application to wind tunnel models

    NASA Technical Reports Server (NTRS)

    Bradshaw, James F.; Sandefur, Paul G., Jr.; Young, Clarence P., Jr.

    1991-01-01

    A comprehensive study of braze alloy selection process and strength characterization with application to wind tunnel models is presented. The applications for this study include the installation of stainless steel pressure tubing in model airfoil sections make of 18 Ni 200 grade maraging steel and the joining of wing structural components by brazing. Acceptable braze alloys for these applications are identified along with process, thermal braze cycle data, and thermal management procedures. Shear specimens are used to evaluate comparative shear strength properties for the various alloys at both room and cryogenic (-300 F) temperatures and include the effects of electroless nickel plating. Nickel plating was found to significantly enhance both the wetability and strength properties for the various braze alloys studied. The data are provided for use in selecting braze alloys for use with 18 Ni grade 200 steel in the design of wind tunnel models to be tested in an ambient or cryogenic environment.

  7. Experimental studies of hypersonic boundary-layer transition and effects of wind tunnel disturbances. [using different conical models

    NASA Technical Reports Server (NTRS)

    Stainback, P. C.; Wagner, R. D.; Owen, F. K.; Horstman, C. C.

    1974-01-01

    Boundary layer transition data on cones and free stream disturbance levels were measured in a hypersonic wind tunnel and Mach 8 variable density hypersonic tunnel. Transition data were obtained by using different conical models and techniques for detecting the location of transition. The disturbance levels were measured by using hot wire anemometry and pressure transducers. The transition Reynolds numbers obtained from the tests correlated well when the fluctuating pressures measured at the surface of conical models were used as a correlating parameter.

  8. An Analytic Investigation of Accuracy Requirements for Onboard Instrumentation and Film Data for Dynamically Scaled Wind Tunnel Drop Models

    DTIC Science & Technology

    1997-03-01

    Faget , M . A. "Similitude Relations for Free-Model Wind tunnel Stud- ies of...PHYSICAL PROPERTIES g ’ = g t ’ = t &Tj Vm1 = v,* 4-1 M ,’ = M , (model coords)’ = A *(full-scale coords) m ’ = m *(Q,’/Q,)*A2 IYY’ = IYY *(Qco...linear accelerations (or velocity derivatives): DUBBI’ = DUBBI [udot’=udot] angles: THABF’ = THABF [@’=@I angular rates: QBBI’ = QBBY a) [ql=s/ m

  9. A smart model of a long-span suspended bridge for wind tunnel tests

    NASA Astrophysics Data System (ADS)

    Cinquemani, S.; Diana, G.; Fossati, L.; Ripamonti, F.

    2015-04-01

    Traditional aeroelastic models rely only on good mechanical design and accurate crafting in order to match the required structural properties. This paper proposes an active regulation of their structural parameters in order to improve accuracy and reliability of wind tunnel tests. Following the design process steps typical of a smart structure, a damping tuning technique allowing to control a specific set of vibration modes is developed and applied on the aeroelastic model of a long-span suspended bridge. Depending on the testing conditions, the structural damping value can be adjusted in a fast, precise and repeatable way in order to highlight the effects of the aerodynamic phenomena of interest. In particular, vortex-induced vibration are taken into consideration, and the response of a bridge section to vortex shedding is assessed. The active parameter regulation allows to widen the pattern of operating conditions in which the model can be tested. The paper discusses the choice of both sensors and actuators to be embedded in the structure and their positioning, as the control algorithm to obtain the desired damping. Experimental results are shown and results are discussed to evaluate the performance of the smart structure in wind dunnel tests.

  10. Repeatability Modeling for Wind-Tunnel Measurements: Results for Three Langley Facilities

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.; Houlden, Heather P.

    2014-01-01

    Data from extensive check standard tests of seven measurement processes in three NASA Langley Research Center wind tunnels are statistically analyzed to test a simple model previously presented in 2000 for characterizing short-term, within-test and across-test repeatability. The analysis is intended to support process improvement and development of uncertainty models for the measurements. The analysis suggests that the repeatability can be estimated adequately as a function of only the test section dynamic pressure over a two-orders- of-magnitude dynamic pressure range. As expected for low instrument loading, short-term coefficient repeatability is determined by the resolution of the instrument alone (air off). However, as previously pointed out, for the highest dynamic pressure range the coefficient repeatability appears to be independent of dynamic pressure, thus presenting a lower floor for the standard deviation for all three time frames. The simple repeatability model is shown to be adequate for all of the cases presented and for all three time frames.

  11. Estimation of Uncertainties for a Supersonic Retro-Propulsion Model Validation Experiment in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Rhode, Matthew N.; Oberkampf, William L.

    2012-01-01

    A high-quality model validation experiment was performed in the NASA Langley Research Center Unitary Plan Wind Tunnel to assess the predictive accuracy of computational fluid dynamics (CFD) models for a blunt-body supersonic retro-propulsion configuration at Mach numbers from 2.4 to 4.6. Static and fluctuating surface pressure data were acquired on a 5-inch-diameter test article with a forebody composed of a spherically-blunted, 70-degree half-angle cone and a cylindrical aft body. One non-powered configuration with a smooth outer mold line was tested as well as three different powered, forward-firing nozzle configurations: a centerline nozzle, three nozzles equally spaced around the forebody, and a combination with all four nozzles. A key objective of the experiment was the determination of experimental uncertainties from a range of sources such as random measurement error, flowfield non-uniformity, and model/instrumentation asymmetries. This paper discusses the design of the experiment towards capturing these uncertainties for the baseline non-powered configuration, the methodology utilized in quantifying the various sources of uncertainty, and examples of the uncertainties applied to non-powered and powered experimental results. The analysis showed that flowfield nonuniformity was the dominant contributor to the overall uncertainty a finding in agreement with other experiments that have quantified various sources of uncertainty.

  12. Wind tunnel study of wake downwash behind A 6% scale model B1-B aircraft

    SciTech Connect

    Strickland, J.H.; Tadios, E.L.; Powers, D.A.

    1990-05-01

    Parachute system performance issues such a turnover and wake recontact may be strongly influenced by velocities induced by the wake of the delivering aircraft, especially if the aircraft is maneuvering at the time of parachute deployment. The effect of the aircraft on the parachute system is a function of the aircraft size, weight, and flight path. In order to provide experimental data for validation of a computer code to predict aircraft wake velocities, a test was conducted in the NASA 14 {times} 22 ft wind tunnel using a 5.78% model of the B-1B strategic bomber. The model was strut mounted through the top of its fuselage by a mechanism which was capable of pitching the model at moderate rates. In this series of tests, the aircraft was pitched at 10{degree}/sec from a cruise angle of attack of 5.3{degree} to an angle of attack of 11{degree} in order to simulate a 2.2g pullup. Data were also taken for the subsequent pitch down sequence back to the cruise angle of attack. Instantaneous streamwise and vertical velocities were measured in the wake at a number of points using a hot wire anemometer. These data have been reduced to the form of downwash coefficients which are a function of the aircraft angle of attack time-history. Unsteady effects are accounted for by use of a wake convection lag-time correlation. 12 refs., 59 figs., 4 tabs.

  13. Computational Aeroelastic Analysis of the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Sanetrik, Mark D.; Silva, Walter A.; Hur, Jiyoung

    2012-01-01

    A summary of the computational aeroelastic analysis for the Semi-Span Super-Sonic Transport (S4T) wind-tunnel model is presented. A broad range of analysis techniques, including linear, nonlinear and Reduced Order Models (ROMs) were employed in support of a series of aeroelastic (AE) and aeroservoelastic (ASE) wind-tunnel tests conducted in the Transonic Dynamics Tunnel (TDT) at NASA Langley Research Center. This research was performed in support of the ASE element in the Supersonics Program, part of NASA's Fundamental Aeronautics Program. The analysis concentrated on open-loop flutter predictions, which were in good agreement with experimental results. This paper is one in a series that comprise a special S4T technical session, which summarizes the S4T project.

  14. The steady-state flow quality of an open return wind tunnel model.

    NASA Technical Reports Server (NTRS)

    Mort, K. W.; Kelly, M. W.; Eckert, W. T.

    1972-01-01

    The structural cost of open return wind tunnels is significantly less than that of the more conventional closed return wind tunnels. However, because of the effects of external winds, the flow quality of open return wind tunnels is an area of concern at the low speeds required for V/STOL testing. The development of a configuration which has good flow quality at low as well as at high test speeds is described. The flow quality required at the low test speeds of interest for V/STOL aircraft is discussed and alternatives to the traditional manner of specifying the flow quality requirements in terms of dynamic pressure and angle of attack are suggested.

  15. Advanced Technology Transport Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1973-06-21

    A researcher examines an Advanced Technology Transport model installed in the 8- by 6-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Advanced Technology Transport concept was a 200-person supersonic transport aircraft that could cruise at Mach 0.9 to 0.98 with low noise and pollution outputs. General Electric and Pratt and Whitney responded to NASA Lewis’ call to design a propulsion system for the aircraft. The integration of the propulsion system with the airframe was one of the greatest challenges facing the designers of supersonic aircraft. The aircraft’s flow patterns and engine nacelles could significantly affect the performance of the engines. NASA Lewis researchers undertook a study of this 0.30-scale model of the Advanced Technology Transport in the 8- by 6-foot tunnel. The flow-through nacelles were located near the rear of the fuselage during the initial tests, seen here, and then moved under the wings for ensuing runs. Different engine cowl shapes were also analyzed. The researchers determined that nacelles mounted at the rear of the aircraft produced more efficient airflow patterns during cruising conditions at the desired velocities. The concept of the Advanced Technology Transport, nor any other US supersonic transport, has ever come to fruition. The energy crisis, environmental concerns, and inadequate turbofan technology of the 1970s were among the most significant reasons.

  16. Gemini Model in the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1962-09-21

    A researcher at the National Aeronautics and Space Administration (NASA) Lewis Research Center examines a small-scale model of the Gemini capsule in the 10- by 10-Foot Supersonic Wind Tunnel test section. Gemini was added to NASA’s manned space program after its predecessor, Mercury, and its antecedent, Apollo, were already established. Gemini was a transitional mission designed provide the astronauts with practice docking with other spacecraft and withstanding durations in space up to two weeks. The program was officially announced on December 7, 1961, but planning began in mid-1959. It was named Gemini after the zodiac twins because of the spacecraft’s two passenger capacity. The Gemini Program was the first program to start at the new Manned Spacecraft Center in Houston, now the Johnson Space Center. Unlike Mercury and Apollo, Lewis had very little involvement with the Gemini Program. This model was tested in the 10- by 10 tunnel for several weeks in September 1962. Lewis began managing the Agena second-stage rocket program shortly after this photograph was taken. Agenas were used to launch a variety of spacecraft and satellites in the 1960s. They were also used on several Gemini missions to provide targets for the astronauts to practice their rendezvous maneuvers. Gemini had two unmanned and ten manned flights in 1965 and 1966. These yielded the first spacewalks, long-duration space missions, first onboard computer, docking with a second spacecraft, and rendezvous maneuvers.

  17. Aeroelastic Uncertainty Quantification Studies Using the S4T Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Nikbay, Melike; Heeg, Jennifer

    2017-01-01

    This paper originates from the joint efforts of an aeroelastic study team in the Applied Vehicle Technology Panel from NATO Science and Technology Organization, with the Task Group number AVT-191, titled "Application of Sensitivity Analysis and Uncertainty Quantification to Military Vehicle Design." We present aeroelastic uncertainty quantification studies using the SemiSpan Supersonic Transport wind tunnel model at the NASA Langley Research Center. The aeroelastic study team decided treat both structural and aerodynamic input parameters as uncertain and represent them as samples drawn from statistical distributions, propagating them through aeroelastic analysis frameworks. Uncertainty quantification processes require many function evaluations to asses the impact of variations in numerous parameters on the vehicle characteristics, rapidly increasing the computational time requirement relative to that required to assess a system deterministically. The increased computational time is particularly prohibitive if high-fidelity analyses are employed. As a remedy, the Istanbul Technical University team employed an Euler solver in an aeroelastic analysis framework, and implemented reduced order modeling with Polynomial Chaos Expansion and Proper Orthogonal Decomposition to perform the uncertainty propagation. The NASA team chose to reduce the prohibitive computational time by employing linear solution processes. The NASA team also focused on determining input sample distributions.

  18. Transonic flutter study of a wind-tunnel model of an arrow-wing supersonic transport

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Pratt-Barlow, C. R.

    1981-01-01

    A 1/20-size, low-speed flutter model of the SCAT-15F complete airplane was tested in a wind-tunnel on cables to simulate a near free-flying condition. Only the model wing and fuselage were flexible. Flutter boundaries were measured for a nominal configuration and a configuration with wing fins removed at Mach numbers M from 0.76 to 1.2. For both configurations, the transonic dip in the wing flutter dynamic pressure q boundary was relatively small and the minimum flutter q occurred near M = 0.92. Removing the wing fins increased the flutter q about 14 percent and changed the flutter mode from symmetric to antisymmetric. Vibration and flutter analyses were made using a finite-element structural representation and subsonic kernel-function aerodynamics. For the nominal configuration, the analysis (using calculated modal data) predicted the experimental flutter q levels within 10 percent but did not predict the correct flutter mode at the higher M. For the configuration without wing fins, the analysis predicted 16 to 36 percent unconservative (higher than experimental) flutter q levels and showed extreme sensitivity to mass shapes.

  19. High Lift Common Research Model for Wind Tunnel Testing: An Active Flow Control Perspective

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Melton, Latunia P.; Viken, Sally A.; Andino, Marlyn Y.; Koklu, Mehti; Hannon, Judith A.; Vatsa, Veer N.

    2017-01-01

    This paper provides an overview of a research and development effort sponsored by the NASA Advanced Air Transport Technology Project to achieve the required high-lift performance using active flow control (AFC) on simple hinged flaps while reducing the cruise drag associated with the external mechanisms on slotted flaps of a generic modern transport aircraft. The removal of the external fairings for the Fowler flap mechanism could help to reduce drag by 3.3 counts. The main challenge is to develop an AFC system that can provide the necessary lift recovery on a simple hinged flap high-lift system while using the limited pneumatic power available on the aircraft. Innovative low-power AFC concepts will be investigated in the flap shoulder region. The AFC concepts being explored include steady blowing and unsteady blowing operating in the spatial and/or temporal domain. Both conventional and AFC-enabled high-lift configurations were designed for the current effort. The high-lift configurations share the cruise geometry that is based on the NASA Common Research Model, and therefore, are also open geometries. A 10%-scale High Lift Common Research Model (HL-CRM) is being designed for testing at the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel during fiscal year 2018. The overall project plan, status, HL-CRM configurations, and AFC objectives for the wind tunnel test are described.

  20. Space Shuttle Model in the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1975-07-21

    Ken Baskin, an engineer from the Facilities and Engineering Branch at the National Aeronautics and Space Administration’s (NASA) Lewis Research Center checks a complete 2.25-scale model of the shuttle in the 10- by 10-Foot Supersonic Wind Tunnel. Baskin’s space shuttle project began in July 1976 during the run-up to the shuttle’s first lift-off scheduled for 1979. The space shuttle was expected to experience multifaceted heating and pressure distributions during the first and second stages of its launch. Rockwell International engineers needed to understand these issues in order to design proper thermal protection. The 10- by 10 tests evaluated the base heating and pressure. The test’s specific objectives were to measure heat transfer and pressure distributions around the orbiter’s external tank and solid rocket booster afterbody caused by rocket exhaust recirculation and impingement, to measure the heat transfer and pressure distributions due to rocket exhaust-induced flow separation, and determine gas recovery temperatures using gas temperature probes and heated model base components. The shuttle model’s main engines and solid rockets were fired during the tests, then just the main engines in an effort to simulate a launch. The researchers conducted 163 runs in the 10- by 10 during the test program.

  1. Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution

    NASA Astrophysics Data System (ADS)

    Stein, Victor P.; Kaltenbach, Hans-Jakob

    2016-09-01

    Wind-tunnel measurements on the near-wake evolution of a three bladed horizontal axis wind turbine model (HAWT) in the scale 1:O(350) operating in uniform flow conditions and within a turbulent boundary layer at different tip speed ratios are presented. Operational conditions are chosen to exclude Reynolds number effects regarding the turbulent boundary layer as well as the rotor performance. Triple-wire anemometry is used to measure all three velocity components in the mid-vertical and mid-horizontal plane, covering the range from the near- to the far-wake region. In order to analyse wake properties systematically, power and thrust coefficients of the turbine were measured additionally. It is confirmed that realistic modelling of the wake evolution is not possible in a low-turbulence uniform approach flow. Profiles of mean velocity and turbulence intensity exhibit large deviations between the low-turbulence uniform flow and the turbulent boundary layer, especially in the far-wake region. For nearly constant thrust coefficients differences in the evolution of the near-wake can be identified for tip speed ratios in the range from 6.5 to 10.5. It is shown that with increasing downstream distances mean velocity profiles become indistinguishable whereas for turbulence statistics a subtle dependency on the tip speed ratio is still noticeable in the far-wake region.

  2. Wind-tunnel blockage and actuation systems test of a two-dimensional scramjet inlet unstart model at Mach 6

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1994-01-01

    The present study examines the wind-tunnel blockage and actuation systems effectiveness in starting and forcibly unstarting a two-dimensional scramjet inlet in the NASA Langley 20-Inch Mach 6 Tunnel. The intent of the overall test program is to study (both experimentally and computationally) the dynamics of the inlet unstart; however, prior to the design and fabrication of an expensive, instrumented wind-tunnel model, it was deemed necessary first to examine potential wind-tunnel blockage issues related to model sizing and to examine the adequacy of the actuation systems in accomplishing the start and unstart. The model is equipped with both a moveable cowl and aft plug. Windows in the inlet sidewalls allow limited optical access to the internal shock structure; schlieren video was used to identify inlet start and unstart. A chronology of each actuation sequence is provided in tabular form along with still frames from the schlieren video. A pitot probe monitored the freestream conditions throughout the start/unstart process to determine if there was a blockage effect due to the model start or unstart. Because the purpose of this report is to make the phase I (blockage and actuation systems) data rapidly available to the community, the data is presented largely without analysis of the internal shock interactions or the unstart process. This series of tests indicated that the model was appropriately sized for this facility and identified operability limits required first to allow the inlet to start and second to force the unstart.

  3. Fluorescence Visualization of Hypersonic Flow over Rapid Prototype Wind-Tunnel Models

    NASA Technical Reports Server (NTRS)

    Alderfer, D. W.; Danehy, P. M.; Inma, J. A.; Berger, K. T.; Buck, G. M.; Schwartz, R J.

    2007-01-01

    Reentry models for use in hypersonic wind tunnel tests were fabricated using a stereolithography apparatus. These models were produced in one day or less, which is a significant time savings compared to the manufacture of ceramic or metal models. The models were tested in the NASA Langley Research Center 31-Inch Mach 10 Air Tunnel. Most of the models did not survive repeated tests in the tunnel, and several failure modes of the models were identified. Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize the flowfields in the wakes of these models. Pure NO was either seeded through tubes plumbed into the model or via a tube attached to the strut holding the model, which provided localized addition of NO into the model s wake through a porous metal cylinder attached to the end of the tube. Models included several 2-inch diameter Inflatable Reentry Vehicle Experiment (IRVE) models and 5-inch diameter Crew Exploration Vehicle (CEV) models. Various configurations were studied including different sting placements relative to the models, different model orientations and attachment angles, and different NO seeding methods. The angle of attack of the models was also varied and the location of the laser sheet was scanned to provide three-dimensional flowfield information. Virtual Diagnostics Interface technology, developed at NASA Langley, was used to visualize the data sets in post processing. The use of calibration "dotcards" was investigated to correct for camera perspective and lens distortions in the PLIF images. Lessons learned and recommendations for future experiments are discussed.

  4. Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 1: Study overview. [aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Lummus, J. R.; Joyce, G. T.; Omalley, C. D.

    1980-01-01

    The ability of current methodologies to accurately predict the aerodynamic characteristics identified as uncertainties was evaluated for two aircraft configurations. The two wind tunnel models studied horizontal altitude takeoff and landing V/STOL fighter aircraft derivatives.

  5. Performance measurements of a pilot superconducting solenoid model core for a wind tunnel magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.; Britcher, C. P.

    1983-01-01

    The results of experimental demonstrations of a superconducting solenoid model core in the Southampton University Magnetic Suspension and Balance System are detailed. Technology and techniques relevant to large-scale wind tunnel MSBSs comprise the long term goals. The magnetic moment of solenoids, difficulties peculiar to superconducting solenoid cores, lift force and pitching moment, dynamic lift calibration, and helium boil-off measurements are discussed.

  6. Wind tunnel performance results of an aeroelastically scaled 2/9 model of the PTA flight test prop-fan

    NASA Technical Reports Server (NTRS)

    Stefko, George L.; Rose, Gayle E.; Podboy, Gary G.

    1987-01-01

    High speed wind tunnel aerodynamic performance tests of the SR-7A advanced prop-fan have been completed in support of the Prop-Fan Test Assessment (PTA) flight test program. The test showed that the SR-7A model performed aerodynamically very well. At the cruise design condition, the SR-7A prop fan had a high measured net efficiency of 79.3 percent.

  7. Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.

    2014-01-01

    In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.

  8. Testing of the Trim Tab Parametric Model in NASA Langley's Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Watkins, Anthony N.; Korzun, Ashley M.; Edquist, Karl T.

    2013-01-01

    In support of NASA's Entry, Descent, and Landing technology development efforts, testing of Langley's Trim Tab Parametric Models was conducted in Test Section 2 of NASA Langley's Unitary Plan Wind Tunnel. The objectives of these tests were to generate quantitative aerodynamic data and qualitative surface pressure data for experimental and computational validation and aerodynamic database development. Six component force-and-moment data were measured on 38 unique, blunt body trim tab configurations at Mach numbers of 2.5, 3.5, and 4.5, angles of attack from -4deg to +20deg, and angles of sideslip from 0deg to +8deg. Configuration parameters investigated in this study were forebody shape, tab area, tab cant angle, and tab aspect ratio. Pressure Sensitive Paint was used to provide qualitative surface pressure mapping for a subset of these flow and configuration variables. Over the range of parameters tested, the effects of varying tab area and tab cant angle were found to be much more significant than varying tab aspect ratio relative to key aerodynamic performance requirements. Qualitative surface pressure data supported the integrated aerodynamic data and provided information to aid in future analyses of localized phenomena for trim tab configurations.

  9. HIMAT Inlet Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1979-02-21

    A Highly Maneuverable Aircraft Technology (HiMAT) inlet model installed in the test section of the 8- by 6-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Engineers at the Ames Research Center, Dryden Flight Research Center, and Rockwell International designed two pilotless subscale HiMAT vehicles in the mid-1970s to study new design concepts for fighter aircraft in the transonic realm without risking the lives of test pilots. The aircraft used sophisticated technologies such as advanced aerodynamics, composite materials, digital integrated propulsion control, and digital fly-by-wire control systems. In late 1977 NASA Lewis studied the HiMAT’s General Electric J85-21 jet engine in the Propulsion Systems Laboratory. The researchers charted the inlet quality with various combinations anti-distortion screens. HiMAT employed a relatively short and curved inlet compared to actual fighter jets. In the spring of 1979, Larry Smith led an in-depth analysis of the HiMAT inlet in the 8- by 6 tunnel. The researchers installed vortex generators to battle flow separation in the diffuser. The two HiMAT aircraft performed 11 hours of flying over the course of 26 missions from mid-1979 to January 1983 at Dryden and Ames. Although the HiMAT vehicles were considered to be overly complex and expensive, the program yielded a wealth of data that would validate computer-based design tools.

  10. Further comparison of wind tunnel and airplane acoustic data for advanced design high speed propeller models

    NASA Astrophysics Data System (ADS)

    Dittmar, J. H.

    Comparisons were made between the SR-2 and SR-3 model propeller noise data taken in the NASA 8-by-6 wind tunnel, in the United Technologies Research Center (UTRC) anechoic tunnel, and with boom and fuselage microphones on the NASA Jetstar airplane. Plots of peak blade passage tone noise versus helical tip Mach number generally showed good agreement. The levels of the airplane fuselage data were somewhat lower than the boom data by an approximately uniform value. The curve shapes were similar except for the UTRC data which was flatter than the other sets. This was attributed to the UTRC data being taken at constant power while the other data were taken at constant advance ratio. General curves of the peak blade passage tone versus helical tip Mach number fit through all the data are also presented. Directivity shape comparisons at the cruise condition were similar for the airplane and 8-by-6 tunnel data. The UTRC data peaked farther forward but, when an angle correction was made for the different axial Mach number used in the UTRC tests, the shape was similar to the others. The general agreement of the data from the four configurations enables the formation of a good consensus of the noise from these propellers.

  11. Further comparison of wind tunnel and airplane acoustic data for advanced design high speed propeller models

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1985-01-01

    Comparisons were made between the SR-2 and SR-3 model propeller noise data taken in the NASA 8-by-6 wind tunnel, in the United Technologies Research Center (UTRC) anechoic tunnel, and with boom and fuselage microphones on the NASA Jetstar airplane. Plots of peak blade passage tone noise versus helical tip Mach number generally showed good agreement. The levels of the airplane fuselage data were somewhat lower than the boom data by an approximately uniform value. The curve shapes were similar except for the UTRC data which was flatter than the other sets. This was attributed to the UTRC data being taken at constant power while the other data were taken at constant advance ratio. General curves of the peak blade passage tone versus helical tip Mach number fit through all the data are also presented. Directivity shape comparisons at the cruise condition were similar for the airplane and 8-by-6 tunnel data. The UTRC data peaked farther forward but, when an angle correction was made for the different axial Mach number used in the UTRC tests, the shape was similar to the others. The general agreement of the data from the four configurations enables the formation of a good consensus of the noise from these propellers.

  12. Technician Works on a Shuttle Model in the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1977-02-21

    A technician prepares a 2.25 percent scale model of the space shuttle for a base heat study in the 10- by 10-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. This space shuttle project, begun here in July 1976, was aimed at evaluating base heating and pressure prior to the Shuttle’s first lift-off scheduled for 1979. The space shuttle was expected to experience multifaceted heating and pressure distributions during the first and second stages of its launch. Engineers needed to understand these issues in order to design proper thermal protection. The test’s specific objectives were to measure the heat transfer and pressure distributions around the orbiter’s external tank and solid rocket afterbody caused by rocket exhaust recirculation and impingement, to measure the heat transfer and pressure distributions caused by rocket exhaust-induced separation, and determine gas recovery temperatures using gas temperature probes and heated base components. The shuttle model’s main engines and solid rockets were first fired and then just the main engines to simulate a launch during the testing. Lewis researchers conducted 163 runs in the 10- by 10 during the test program.

  13. A Hydrogen Peroxide Hot-Jet Simulator for Wind-Tunnel Tests of Turbojet-Exit Models

    NASA Technical Reports Server (NTRS)

    Runckel, Jack F.; Swihart, John M.

    1959-01-01

    A turbojet-engine-exhaust simulator which utilizes a hydrogen peroxide gas generator has been developed for powered-model testing in wind tunnels with air exchange. Catalytic decomposition of concentrated hydrogen peroxide provides a convenient and easily controlled method of providing a hot jet with characteristics that correspond closely to the jet of a gas turbine engine. The problems associated with simulation of jet exhausts in a transonic wind tunnel which led to the selection of a liquid monopropellant are discussed. The operation of the jet simulator consisting of a thrust balance, gas generator, exit nozzle, and auxiliary control system is described. Static-test data obtained with convergent nozzles are presented and shown to be in good agreement with ideal calculated values.

  14. A Hydrogen Peroxide Hot-Jet Simulator for Wind-Tunnel Tests of Turbojet-Exit Models

    NASA Technical Reports Server (NTRS)

    Runckel, Jack F.; Swihart, John M.

    1959-01-01

    A turbojet-engine-exhaust simulator which utilizes a hydrogen peroxide gas generator has been developed for powered-model testing in wind tunnels with air exchange. Catalytic decomposition of concentrated hydrogen peroxide provides a convenient and easily controlled method of providing a hot jet with characteristics that correspond closely to the jet of a gas turbine engine. The problems associated with simulation of jet exhausts in a transonic wind tunnel which led to the selection of a liquid monopropellant are discussed. The operation of the jet simulator consisting of a thrust balance, gas generator, exit nozzle, and auxiliary control system is described. Static-test data obtained with convergent nozzles are presented and shown to be in good agreement with ideal calculated values.

  15. Revalidation of the NASA Ames 11-by 11-Foot Transonic Wind Tunnel with a Commercial Airplane Model

    NASA Technical Reports Server (NTRS)

    Kmak, Frank J.; Hudgins, M.; Hergert, D.; George, Michael W. (Technical Monitor)

    2001-01-01

    The 11-By 11-Foot Transonic leg of the Unitary Plan Wind Tunnel (UPWT) was modernized to improve tunnel performance, capability, productivity, and reliability. Wind tunnel tests to demonstrate the readiness of the tunnel for a return to production operations included an Integrated Systems Test (IST), calibration tests, and airplane validation tests. One of the two validation tests was a 0.037-scale Boeing 777 model that was previously tested in the 11-By 11-Foot tunnel in 1991. The objective of the validation tests was to compare pre-modernization and post-modernization results from the same airplane model in order to substantiate the operational readiness of the facility. Evaluation of within-test, test-to-test, and tunnel-to-tunnel data repeatability were made to study the effects of the tunnel modifications. Tunnel productivity was also evaluated to determine the readiness of the facility for production operations. The operation of the facility, including model installation, tunnel operations, and the performance of tunnel systems, was observed and facility deficiency findings generated. The data repeatability studies and tunnel-to-tunnel comparisons demonstrated outstanding data repeatability and a high overall level of data quality. Despite some operational and facility problems, the validation test was successful in demonstrating the readiness of the facility to perform production airplane wind tunnel%, tests.

  16. A common geometric data-base approach for computer-aided manufacturing of wind-tunnel models and theoretical aerodynamic analysis

    NASA Technical Reports Server (NTRS)

    See, M. J.; Cozzolongo, J. V.

    1983-01-01

    A more automated process to produce wind tunnel models using existing facilities is discussed. A process was sought to more rapidly determine the aerodynamic characteristics of advanced aircraft configurations. Such aerodynamic characteristics are determined from theoretical analyses and wind tunnel tests of the configurations. Computers are used to perform the theoretical analyses, and a computer aided manufacturing system is used to fabricate the wind tunnel models. In the past a separate set of input data describing the aircraft geometry had to be generated for each process. This process establishes a common data base by enabling the computer aided manufacturing system to use, via a software interface, the geometric input data generated for the theoretical analysis. Thus, only one set of geometric data needs to be generated. Tests reveal that the process can reduce by several weeks the time needed to produce a wind tunnel model component. In addition, this process increases the similarity of the wind tunnel model to the mathematical model used by the theoretical aerodynamic analysis programs. Specifically, the wind tunnel model can be machined to within 0.008 in. of the original mathematical model. However, the software interface is highly complex and cumbersome to operate, making it unsuitable for routine use. The procurement of an independent computer aided design/computer aided manufacturing system with the capability to support both the theoretical analysis and the manufacturing tasks was recommended.

  17. Cryogenic Wind Tunnels.

    DTIC Science & Technology

    1980-07-01

    CRYOGENIC WIND TUNNEL by J.D.CadweD 18 A CRYOGENIC TRANSONIC INTERMITTENT TUNNEL PROJECT: THE INDUCED -FLOW CRYOGENIC WIND-TUNNEL T2 AT ONERA/CERT by...CRYOGENIC TUNNELS The types of tunnel drive and test gas currently exploited in cryogenic wind tunnels include: Drive Test Gas fan nitrogen induced flow...reduce other heat fluxes. Other sources can arise from thermally induced oscillations under both storage and transfer con- ditions. 1.3 (c) Reduction

  18. 7. VIEW WEST OF SCALE ROOM IN FULLSCALE WIND TUNNEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW WEST OF SCALE ROOM IN FULL-SCALE WIND TUNNEL; SCALES ARE USED TO MEASURE FORCES ACTING ON MODEL AIRCRAFT SUSPENDED ABOVE. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  19. Space shuttle phase B wind tunnel model and test information. Volume 3: Launch configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel data acquired in the Phase B development have been compiled into a data base and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include booster, orbiter and launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbital configuration types include straight and delta wings, lifting body, drop tanks and double delta wings. This is Volume 3 (Part 2) of the report -- Launch Configuration -- which includes booster and orbiter components in various stacked and tandem combinations.

  20. Evaluation of spray drift using low speed wind tunnel measurements and dispersion modeling

    USDA-ARS?s Scientific Manuscript database

    The objective of this work was to evaluate the EPA’s proposed Test Plan for the validation testing of pesticide spray drift reduction technologies (DRTs) for row and field crops, focusing on the evaluation of ground application systems using the low-speed wind tunnel protocols and processing the dat...

  1. Wind-tunnel tests and modeling indicate that aerial dispersant delivery operations are highly accurate

    USDA-ARS?s Scientific Manuscript database

    The United States Department of Agriculture’s high-speed wind tunnel facility in College Station, Texas, USA was used to determine droplet size distributions generated by dispersant delivery nozzles at wind speeds comparable to those used in aerial dispersant application. A laser particle size anal...

  2. Space shuttle phase B wind tunnel model and test information. Volume 1: Booster configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. This is Volume 1 (Part 2) of the report -- Booster Configuration.

  3. Space shuttle phase B wind tunnel model and test information. Volume 2: Orbiter configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a data base and are available for applying to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Data Base is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retro-glide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configuration types include booster and orbiter components in various stacked and tandem combinations.

  4. Space shuttle phase B wind tunnel model and test information. Volume 1: Booster configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. This is Volume 1 (Part 1) of the report -- Booster Configuration.

  5. Space shuttle phase B wind tunnel model and test information. Volume 2: Orbiter configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternate recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquiredin the Phase B development have been compiled into a database and are available for applying to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide, and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configration types include booster and orbiter components in various stacked and tandom combinations. The digital database consists of 220 files of data containing basic tunnel recorded data.

  6. A method for the modelling of porous and solid wind tunnel walls in computational fluid dynamics codes

    NASA Technical Reports Server (NTRS)

    Beutner, Thomas John

    1993-01-01

    Porous wall wind tunnels have been used for several decades and have proven effective in reducing wall interference effects in both low speed and transonic testing. They allow for testing through Mach 1, reduce blockage effects and reduce shock wave reflections in the test section. Their usefulness in developing computational fluid dynamics (CFD) codes has been limited, however, by the difficulties associated with modelling the effect of a porous wall in CFD codes. Previous approaches to modelling porous wall effects have depended either upon a simplified linear boundary condition, which has proven inadequate, or upon detailed measurements of the normal velocity near the wall, which require extensive wind tunnel time. The current work was initiated in an effort to find a simple, accurate method of modelling a porous wall boundary condition in CFD codes. The development of such a method would allow data from porous wall wind tunnels to be used more readily in validating CFD codes. This would be beneficial when transonic validations are desired, or when large models are used to achieve high Reynolds numbers in testing. A computational and experimental study was undertaken to investigate a new method of modelling solid and porous wall boundary conditions in CFD codes. The method utilized experimental measurements at the walls to develop a flow field solution based on the method of singularities. This flow field solution was then imposed as a pressure boundary condition in a CFD simulation of the internal flow field. The effectiveness of this method in describing the effect of porosity changes on the wall was investigated. Also, the effectiveness of this method when only sparse experimental measurements were available has been investigated. The current work demonstrated this approach for low speed flows and compared the results with experimental data obtained from a heavily instrumented variable porosity test section. The approach developed was simple, computationally

  7. Two-Dimensional Scramjet Inlet Unstart Model: Wind-Tunnel Blockage and Actuation Systems Test

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1994-01-01

    This supplement to NASA TM 109152 shows the Schlieren video (10 min. 52 sec., color, Beta and VHS) of the external flow field and a portion of the internal flow field of a two-dimensional scramjet inlet model in the NASA Langley 20-Inch Mach 6 Tunnel. The intent of the overall test program is to study (both experimentally and computationally) the dynamics of the inlet unstart; this (phase I) effort examines potential wind-tunnel blockage issues related to model sizing and the adequacy of the actuation systems in accomplishing the start and unstart. The model is equipped with both a moveable cowl and aft plug. Windows in the inlet sidewalls allow limited optical access to the internal shock structure. In the video, flow is from right to left, and the inlet is oriented inverted with respect to flight, i.e., with the cowl on top. The plug motion is obvious because the plug is visible in the aft window. The cowl motion, however, is not as obvious because the cowl is hidden from view by the inlet sidewall. The end of the cowl actuator arm, however, becomes visible above the inlet sidewalls between the windows when the cowl is up (see figure 1b of the primary document). The model is injected into the tunnel and observed though several actuation sequences with two plug configurations over a range of unit freestream Reynolds number at a nominal freestream Mach number of 6. The framing rate and shutter speed of the camera were too slow to fully capture the dynamics of the unstart but did prove sufficient to identify inlet start and unstart. This series of tests indicated that the model was appropriately sized for this facility and identified operability limits required first to allow the inlet to start and second to force the unstart.

  8. Two-Dimensional Scramjet Inlet Unstart Model: Wind-Tunnel Blockage and Actuation Systems Test

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1994-01-01

    This supplement to NASA TM 109152 shows the Schlieren video (10 min. 52 sec., color, Beta and VHS) of the external flow field and a portion of the internal flow field of a two-dimensional scramjet inlet model in the NASA Langley 20-Inch Mach 6 Tunnel. The intent of the overall test program is to study (both experimentally and computationally) the dynamics of the inlet unstart; this (phase I) effort examines potential wind-tunnel blockage issues related to model sizing and the adequacy of the actuation systems in accomplishing the start and unstart. The model is equipped with both a moveable cowl and aft plug. Windows in the inlet sidewalls allow limited optical access to the internal shock structure. In the video, flow is from right to left, and the inlet is oriented inverted with respect to flight, i.e., with the cowl on top. The plug motion is obvious because the plug is visible in the aft window. The cowl motion, however, is not as obvious because the cowl is hidden from view by the inlet sidewall. The end of the cowl actuator arm, however, becomes visible above the inlet sidewalls between the windows when the cowl is up (see figure 1b of the primary document). The model is injected into the tunnel and observed though several actuation sequences with two plug configurations over a range of unit freestream Reynolds number at a nominal freestream Mach number of 6. The framing rate and shutter speed of the camera were too slow to fully capture the dynamics of the unstart but did prove sufficient to identify inlet start and unstart. This series of tests indicated that the model was appropriately sized for this facility and identified operability limits required first to allow the inlet to start and second to force the unstart.

  9. Vertical/Short Takeoff and Landing Model in the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1979-05-21

    A technician checks a 0.25-scale engine model of a Vought Corporation V-530 engine in the test section of the 10- by 10-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Vought created a low-drag tandem-fan Vertical/Short and Takeoff and Landing (V/STOL) engine in the mid-1970s, designated as the V-530. The first fan on the tandem-fan engine was supplied with air through a traditional subsonic inlet, seen on the lower front of the engine. The air was exhausted through the nacelle during normal flight and directed down during takeoffs. The rear fan was supplied by the oval-shaped top inlet during all phases of the flight. The second fan exhausted its air through a rear vectorable nozzle. NASA Lewis and Vought partnered in the late 1970s to collect an array of inlet and nozzle design information on the tandem fan engines for the Navy. Vought created this .25-scale model of the V-530 for extensive testing in Lewis' 10- by 10-foot tunnel. During an early series of tests, the front fan was covered, and a turbofan simulator was used to supply air to the rear fan. The researchers then analyzed the performance of only the front fan inlet. During the final series of tests, the flow from the front fan was used to supply airflow to the rear fan. The researchers studied the inlet's recovery, distortion, and angle-of-attack limits over various flight conditions.

  10. High-Lift OVERFLOW Analysis of the DLR-F11 Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.; Sclafani, Anthony J.

    2014-01-01

    In response to the 2nd AIAA CFD High Lift Prediction Workshop, the DLR-F11 wind tunnel model is analyzed using the Reynolds-averaged Navier-Stokes flow solver OVERFLOW. A series of overset grids for a bracket-off landing configuration is constructed and analyzed as part of a general grid refinement study. This high Reynolds number (15.1 million) analysis is done at multiple angles-of-attack to evaluate grid resolution effects at operational lift levels as well as near stall. A quadratic constitutive relation recently added to OVERFLOW for improved solution accuracy is utilized for side-of-body separation issues at low angles-of-attack and outboard wing separation at stall angles. The outboard wing separation occurs when the slat brackets are added to the landing configuration and is a source of discrepancy between the predictions and experimental data. A detailed flow field analysis is performed at low Reynolds number (1.35 million) after pressure tube bundles are added to the bracket-on medium grid system with the intent of better understanding bracket/bundle wake interaction with the wing's boundary layer. Localized grid refinement behind each slat bracket and pressure tube bundle coupled with a time accurate analysis are exercised in an attempt to improve stall prediction capability. The results are inconclusive and suggest the simulation is missing a key element such as boundary layer transition. The computed lift curve is under-predicted through the linear range and over-predicted near stall, and the solution from the most complete configuration analyzed shows outboard wing separation occurring behind slat bracket 6 where the experiment shows it behind bracket 5. These results are consistent with most other participants of this workshop.

  11. Full-Span Tiltrotor Aeroacoustic Model (TRAM) Overview and 40- by 80-Foot Wind Tunnel Test. [conducted in the 40- by 80-Foot Wind Tunnel at Ames Research Center

    NASA Technical Reports Server (NTRS)

    McCluer, Megan S.; Johnson, Jeffrey L.; Rutkowski, Michael (Technical Monitor)

    2001-01-01

    Most helicopter data trends cannot be extrapolated to tiltrotors because blade geometry and aerodynamic behavior, as well as rotor and fuselage interactions, are significantly different for tiltrotors. A tiltrotor model has been developed to investigate the aeromechanics of tiltrotors, to develop a comprehensive database for validating tiltrotor analyses, and to provide a research platform for supporting future tiltrotor designs. The Full-Span Tiltrotor Aeroacoustic Model (FS TRAM) is a dual-rotor, powered aircraft model with extensive instrumentation for measurement of structural and aerodynamic loads. This paper will present the Full-Span TRAM test capabilities and the first set of data obtained during a 40- by 80-Foot Wind Tunnel test conducted in late 2000 at NASA Ames Research Center. The Full-Span TRAM is a quarter-scale representation of the V-22 Osprey aircraft, and a heavily instrumented NASA and U.S. Army wind tunnel test stand. Rotor structural loads are monitored and recorded for safety-of-flight and for information on blade loads and dynamics. Left and right rotor balance and fuselage balance loads are monitored for safety-of-flight and for measurement of vehicle and rotor aerodynamic performance. Static pressure taps on the left wing are used to determine rotor/wing interactional effects and rotor blade dynamic pressures measure blade airloads. All of these measurement capabilities make the FS TRAM test stand a unique and valuable asset for validation of computational codes and to aid in future tiltrotor designs. The Full-Span TRAM was tested in the NASA Ames Research Center 40- by 80-Foot Wind Tunnel from October through December 2000. Rotor and vehicle performance measurements were acquired in addition to wing pressures, rotor acoustics, and Laser Light Sheet (LLS) flow visualization data. Hover, forward flight, and airframe (rotors off) aerodynamic runs were performed. Helicopter-mode data were acquired during angle of attack and thrust sweeps for

  12. Videometric Applications in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Radeztsky, R. H.; Liu, Tian-Shu

    1997-01-01

    Videometric measurements in wind tunnels can be very challenging due to the limited optical access, model dynamics, optical path variability during testing, large range of temperature and pressure, hostile environment, and the requirements for high productivity and large amounts of data on a daily basis. Other complications for wind tunnel testing include the model support mechanism and stringent surface finish requirements for the models in order to maintain aerodynamic fidelity. For these reasons nontraditional photogrammetric techniques and procedures sometimes must be employed. In this paper several such applications are discussed for wind tunnels which include test conditions with Mach number from low speed to hypersonic, pressures from less than an atmosphere to nearly seven atmospheres, and temperatures from cryogenic to above room temperature. Several of the wind tunnel facilities are continuous flow while one is a short duration blowdown facility. Videometric techniques and calibration procedures developed to measure angle of attack, the change in wing twist and bending induced by aerodynamic load, and the effects of varying model injection rates are described. Some advantages and disadvantages of these techniques are given and comparisons are made with non-optical and more traditional video photogrammetric techniques.

  13. Videometric applications in wind tunnels

    NASA Astrophysics Data System (ADS)

    Burner, Alpheus W.; Radeztsky, Ron H.; Liu, Tianshu

    1997-07-01

    Videometric measurements in wind tunnels can be very challenging due to the limited optical access, model dynamics, optical path variability during testing, large range of temperature and pressure, hostile environment, and the requirements for high productivity and large amounts of data on a daily basis. Other complications for wind tunnel testing include the model support mechanism and stringent surface finish requirements for the models in order to maintain aerodynamic fidelity. For these reasons nontraditional photogrammetric techniques and procedures sometimes must be employed. In this paper several such applications are discussed for wind tunnels which include test conditions with Mach numbers from low speed to hypersonic, pressures from less than an atmosphere to nearly seven atmospheres, and temperatures from cryogenic to above room temperature. Several of the wind tunnel facilities are continuous flow while one is a short duration blow-down facility. Videometric techniques and calibration procedures developed to measure angle of attack, the change in wing twist and bending induced by aerodynamic load, and the effects of varying model injection rates are described. Some advantages and disadvantages of these techniques are given and comparisons are made with non-optical and more traditional video photogrammetric techniques.

  14. The results of a wind tunnel investigation of a model rotor with a free tip

    NASA Technical Reports Server (NTRS)

    Stroub, Robert H.; Young, Larry A.

    1985-01-01

    The results of a wind-tunnel test of the free tip rotor are presented. The free tip extended over the outer 10% of the rotor blade and included a simple, passive controller mechanism. Wind-tunnel test hardware is described. The free-tip assembly, which includes the controller, functioned flawlessly throughout the test. The tip pitched freely and responded to airflow perturbation in a sharp, quick, and stable manner. Tip pitch-angle responses are presented for an advance ratio range of 0.1 to 0.397 and for a thrust coefficient range of 0.038 to 0.092. The free tip reduced power requirements, loads going into the control system, and some flatwise blade-bending moments. Chordwise loads were not reduced by the free tip.

  15. Development and Evaluation of a Dynamic, 3-Degree-of-Freedom (DOF) Wind Tunnel Model

    DTIC Science & Technology

    2016-11-01

    5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Bryant P Nelson 5d. PROJECT NUMBER 622618H80RK16 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...mechanism are highlighted as well as a few representative data sets. 15. SUBJECT TERMS dynamic wind tunnel, finite element analysis, projectile control...velocity of M 0.6 in the transonic tunnel (Table 1). Section 4 contains a detailed finite element analysis (FEA) study of the various sting designs

  16. Effects of Window Configuration on Model Pressure Distribution in Wind Tunnels with Perforated Walls

    DTIC Science & Technology

    1981-01-01

    any patented invention that may in any way be related thereto. Qualified users may obtain copies of this report from the Defense Technical Information... experiments described herein were performed in the AEDC Tunnel1T (Ref. 5). The facility can provide continuous flow at Mach numbers from 0.2 through 1.5. The...investigation of lift and blockage interference caused by wind tunnel walls. The cone/cylinder (Fig. 7a) was used in early experiments to evaluate perforated

  17. Small scale wind tunnel model investigation of hybrid high lift systems combining upper surface blowing with the internally blown flap

    NASA Technical Reports Server (NTRS)

    Waites, W. L.; Chin, Y. T.

    1974-01-01

    A small-scale wind tunnel test of a two engine hybrid model with upper surface blowing on a simulated expandable duct internally blown flap was accomplished in a two phase program. The low wing Phase I model utilized 0.126c radius Jacobs/Hurkamp flaps and 0.337c radius Coanda flaps. The high wing Phase II model was utilized for continued studies on the Jacobs/Hurkamp flap. Principal study areas included: basic data both engines operative and with an engine out, control flap utilization, horizontal tail effectiveness, spoiler effectiveness, USB nacelle deflector study and USB/IBF pressure ratio effects.

  18. Pressure distribution on the roof of a model low-rise building tested in a boundary layer wind tunnel

    NASA Astrophysics Data System (ADS)

    Goliber, Matthew Robert

    With three of the largest metropolitan areas in the United States along the Gulf coast (Houston, Tampa, and New Orleans), residential populations ever increasing due to the subtropical climate, and insured land value along the coast from Texas to the Florida panhandle greater than $500 billion, hurricane related knowledge is as important now as ever before. This thesis focuses on model low-rise building wind tunnel tests done in connection with full-scale low-rise building tests. Mainly, pressure data collection equipment and methods used in the wind tunnel are compared to pressure data collection equipment and methods used in the field. Although the focus of this report is on the testing of models in the wind tunnel, the low-rise building in the field is located in Pensacola, Florida. It has a wall length of 48 feet, a width of 32 feet, a height of 10 feet, and a gable roof with a pitch of 1:3 and 68 pressure ports strategically placed on the surface of the roof. Built by Forest Products Laboratory (FPL) in 2002, the importance of the test structure has been realized as it has been subjected to numerous hurricanes. In fact, the validity of the field data is so important that the following thesis was necessary. The first model tested in the Bill James Wind Tunnel for this research was a rectangular box. It was through the testing of this box that much of the basic wind tunnel and pressure data collection knowledge was gathered. Knowledge gained from Model 1 tests was as basic as how to: mount pressure tubes on a model, use a pressure transducer, operate the wind tunnel, utilize the pitot tube and reference pressure, and measure wind velocity. Model 1 tests also showed the importance of precise construction to produce precise pressure coefficients. Model 2 was tested in the AABL Wind Tunnel at Iowa State University. This second model was a 22 inch cube which contained a total of 11 rows of pressure ports on its front and top faces. The purpose of Model 2 was to

  19. Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope

  20. High angle of attack control law development for a free-flight wind tunnel model using direct eigenstructure assignment

    NASA Technical Reports Server (NTRS)

    Wendel, Thomas R.; Boland, Joseph R.; Hahne, David E.

    1991-01-01

    Flight-control laws are developed for a wind-tunnel aircraft model flying at a high angle of attack by using a synthesis technique called direct eigenstructure assignment. The method employs flight guidelines and control-power constraints to develop the control laws, and gain schedules and nonlinear feedback compensation provide a framework for considering the nonlinear nature of the attack angle. Linear and nonlinear evaluations show that the control laws are effective, a conclusion that is further confirmed by a scale model used for free-flight testing.

  1. Design, implementation, simulation, and testing of digital flutter suppression systems for the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Mukhopadhyay, Vivek; Hoadley, Sherwood Tiffany; Cole, Stanley R.; Buttrill, Carey S.; Houck, Jacob A.

    1990-01-01

    Active flutter suppression control laws were designed, implemented, and tested on an aeroelastically-scaled wind-tunnel model in the NASA Langley Transonic Dynamics Tunnel. One of the control laws was successful in stabilizing the model while the dynamic pressure was increased to 24 percent greater than the measured open-loop flutter boundary. Other accomplishments included the design, implementation, and successful operation of a one-of-a-kind digital controller, the design and use of two simulation methods to support the projet, and the development and successful use of a methodology for online controller performance evaluation.

  2. High angle of attack control law development for a free-flight wind tunnel model using direct eigenstructure assignment

    NASA Technical Reports Server (NTRS)

    Wendel, Thomas R.; Boland, Joseph R.; Hahne, David E.

    1991-01-01

    Flight-control laws are developed for a wind-tunnel aircraft model flying at a high angle of attack by using a synthesis technique called direct eigenstructure assignment. The method employs flight guidelines and control-power constraints to develop the control laws, and gain schedules and nonlinear feedback compensation provide a framework for considering the nonlinear nature of the attack angle. Linear and nonlinear evaluations show that the control laws are effective, a conclusion that is further confirmed by a scale model used for free-flight testing.

  3. The Aerodynamic Drag of Flying-boat Hull Model as Measured in the NACA 20-foot Wind Tunnel I.

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P

    1935-01-01

    Measurements of aerodynamic drag were made in the 20-foot wind tunnel on a representative group of 11 flying-boat hull models. Four of the models were modified to investigate the effect of variations in over-all height, contours of deck, depth of step, angle of afterbody keel, and the addition of spray strips and windshields. The results of these tests, which cover a pitch-angle range from -5 to 10 degrees, are presented in a form suitable for use in performance calculations and for design purposes.

  4. Droplet evaporation from porous surfaces; model validation from field and wind tunnel experiments for sand and concrete

    NASA Astrophysics Data System (ADS)

    Griffiths, R. F.; Roberts, I. D.

    The evaporation model of Roberts and Griffiths (1995 Atmospheric Environment 29, 1307-1317) has been subjected to an extensive validation exercise based on a major campaign of field experiments on evaporation from surfaces composed of sand and of concrete. This complements the previous validation which was limited to wind tunnel experiments on sand surfaces. Additionally, the validation using wind tunnel data has been extended to include concrete surfaces. The model describes the constant-rate and falling-rate periods that characterise evaporation from porous media. During the constant-rate period, the evaporation is solely determined by the vapour transport rate into the air. During the falling-rate period, the process in the porous medium is modelled as a receding evaporation front, the overall evaporation rate being determined by the combined effects of vapour transport through the pore network and subsequently into the air. The field trials programme was conducted at sites in the USA and the UK, and examined the evaporation of diethyl malonate droplets from sand and concrete surfaces. Vapour concentrations at several heights in the plume were measured at the centre of a 1 m radius annular source (of width 10 cm) contaminated by uniformly sized droplets (2.4 or 4.1 mm in diameter), key meteorological data being measured at the same time. The evaporation was quantified by coupling concentration and wind speed data. In all, 22 trials were performed on sand and concrete; a further 8 were performed on non-porous surfaces (aluminium foil and slate) as references. The model performance was evaluated against the experimental data in terms of two quantities, the initial evaporation rate of the embedded droplets, and the mass-fraction remaining in the substrate at intervals over the evaporation episode. Overall, the model performance was best in the case of the field experiments for concrete, and the wind tunnel experiments for sand; the performance for wind tunnel

  5. Turbofan Noise Studied in Unique Model Research Program in NASA Glenn's 9- by 15-Foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2001-01-01

    A comprehensive aeroacoustic research program called the Source Diagnostic Test was recently concluded in NASA Glenn Research Center's 9- by 15-Foot Low Speed Wind Tunnel. The testing involved representatives from Glenn, NASA Langley Research Center, GE Aircraft Engines, and the Boeing Company. The technical objectives of this research were to identify the different source mechanisms of noise in a modern, high-bypass turbofan aircraft engine through scale-model testing and to make detailed acoustic and aerodynamic measurements to more fully understand the physics of how turbofan noise is generated.

  6. Evaluation of the Revised Lagrangian Particle Model GRAL Against Wind-Tunnel and Field Observations in the Presence of Obstacles

    NASA Astrophysics Data System (ADS)

    Oettl, Dietmar

    2015-05-01

    A revised microscale flow field model has been implemented in the Lagrangian particle model Graz Lagrangian Model (GRAL) for computing flows around obstacles. It is based on the Reynolds-averaged Navier-Stokes equations in three dimensions and the widely used standard turbulence model. Here we focus on evaluating the model regarding computed concentrations by use of a comprehensive wind-tunnel experiment with numerous combinations of building geometries, stack positions, and locations. In addition, two field experiments carried out in Denmark and in the U.S were used to evaluate the model. Further, two different formulations of the standard deviation of wind component fluctuations have also been investigated, but no clear picture could be drawn in this respect. Overall the model is able to capture several of the main features of pollutant dispersion around obstacles, but at least one future model improvement was identified for stack releases within the recirculation zone of buildings. Regulatory applications are the bread-and-butter of most GRAL users nowadays, requiring fast and robust modelling algorithms. Thus, a few simplifications have been introduced to decrease the computational time required. Although predicted concentrations for the two field experiments were found to be in good agreement with observations, shortcomings were identified regarding the extent of computed recirculation zones for the idealized wind-tunnel building geometries, with approaching flows perpendicular to building faces.

  7. Aeroservoelastic Wind-Tunnel Tests of a Free-Flying, Joined-Wing SensorCraft Model for Gust Load Alleviation

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Castelluccio, Mark A.; Coulson, David A.; Heeg, Jennifer

    2011-01-01

    A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind-tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, exible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind-tunnel model of a joined-wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind-tunnel model was mated to a new, two-degree-of-freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at -10% static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be own in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free ying wind-tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed.

  8. Aeroelastic Analyses of the SemiSpan SuperSonic Transport (S4T) Wind Tunnel Model at Mach 0.95

    NASA Technical Reports Server (NTRS)

    Hur, Jiyoung

    2014-01-01

    Detailed aeroelastic analyses of the SemiSpan SuperSonic Transport (S4T) wind tunnel model at Mach 0.95 with a 1.75deg fixed angle of attack are presented. First, a numerical procedure using the Computational Fluids Laboratory 3-Dimensional (CFL3D) Version 6.4 flow solver is investigated. The mesh update method for structured multi-block grids was successfully applied to the Navier-Stokes simulations. Second, the steady aerodynamic analyses with a rigid structure of the S4T wind tunnel model are reviewed in transonic flow. Third, the static analyses were performed for both the Euler and Navier-Stokes equations. Both the Euler and Navier-Stokes equations predicted a significant increase of lift forces, compared to the results from the rigid structure of the S4T wind-tunnel model, over various dynamic pressures. Finally, dynamic aeroelastic analyses were performed to investigate the flutter condition of the S4T wind tunnel model at the transonic Mach number. The condition of flutter was observed at a dynamic pressure of approximately 75.0-psf for the Navier-Stokes simulations. However, it was observed that the flutter condition occurred a dynamic pressure of approximately 47.27-psf for the Euler simulations. Also, the computational efficiency of the aeroelastic analyses for the S4T wind tunnel model has been assessed.

  9. Wind tunnel measurements of the power output variability and unsteady loading in a micro wind farm model

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2015-11-01

    To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).

  10. AMELIA Tests in NASA Wind Tunnel

    NASA Image and Video Library

    This report from "This Week @ NASA" describes recent aerodynamic tests of a subscale model of the Advanced Model for Extreme Lift and Improved Aeroacoustics, or "AMELIA," in a NASA wind tunnel. The...

  11. Fabrication of composite propfan blades for a cruise missile wind tunnel model

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian

    1993-01-01

    This report outlines the procedures that were employed in fabricating prototype graphite-epoxy composite prop fan blades. These blades were used in wind tunnel tests that investigated prop fan propulsion system interactions with a missile airframe in order to study the feasibility of an advanced-technology-propfan-propelled missile. Major phases of the blade fabrication presented include machining of the master blade, mold fabrication, ply cutting and assembly, blade curing, and quality assurance. Specifically, four separate designs were fabricated, 18 blades of each geometry, using the same fabrication technique for each design.

  12. Measurement of model propulsion system noise in a low-speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Diedrich, J. H.; Luidens, R. W.

    1976-01-01

    Methods are presented for making overall and directional acoustic measurements with forward velocity in the Lewis 9 x 15 V/STOL wind tunnel. Overall acoustic measurements are discussed; the acoustic calibration methods, instrumentation features, and types of experiments are presented. Selected data are presented as examples of the various types of overall measurements that are possible. The method of making directional acoustic measurements is presented, and the necessary alterations to the tunnel, specialized acoustic instrumentation, and calibration details are described. The results indicate that relative overall acoustic measurements can be made successfully and that directional acoustic measurements are feasible.

  13. Pressure distributions obtained on a 0.10-scale model of the space shuttle Orbiter's forebody in the AEDC 16T propulsion wind tunnel

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Henry, M. W.

    1986-01-01

    Pressure distribution test data obtained on a 0.10-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the AEDC 16T Propulsion Wind Tunnel. The 0.10-scale model was tested at angles of attack from -2 deg to 18 deg and angles of side slip from -6 to 6 deg at Mach numbers from 0.25 to 1/5 deg. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations that existed on the Space Shuttle Orbiter Columbia (OV-102) during the Orbiter Flight Test program. This DFI simulation has provided a means of comparisons between reentry flight pressure data and wind-tunnel and computational data.

  14. Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 1: A Sidewall Supported Semispan Model Tested for Gust Load Alleviation and Flutter Suppression

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer.

    2013-01-01

    of a two part document. Part 2 is titled: "Aeroservoelastic Testing of Free Flying Wind Tunnel Models, Part 2: A Centerline Supported Fullspan Model Tested for Gust Load Alleviation." A team comprised of the Air Force Research Laboratory (AFRL), Northrop Grumman, Lockheed Martin, and the NASA Langley Research Center conducted three aeroservoelastic wind tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, flexible vehicles. In the first of these three tests, a semispan, aeroelastically scaled, wind tunnel model of a flying wing SensorCraft vehicle was mounted to a force balance to demonstrate gust load alleviation. In the second and third tests, the same wing was mated to a new, multi-degree of freedom, sidewall mount. This mount allowed the half-span model to translate vertically and pitch at the wing root, allowing better simulation of the full span vehicle's rigid body modes. Gust load alleviation (GLA) and Body freedom flutter (BFF) suppression were successfully demonstrated. The rigid body degrees-of-freedom required that the model be flown in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort.

  15. V/STOL wind-tunnel testing

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.

    1984-01-01

    Factors influencing effective program planning for V/STOL wind-tunnel testing are discussed. The planning sequence itself, which includes a short checklist of considerations that could enhance the value of the tests, is also described. Each of the considerations, choice of wind tunnel, type of model installation, model development and test operations, is discussed, and examples of appropriate past and current V/STOL test programs are provided. A short survey of the moderate to large subsonic wind tunnels is followed by a review of several model installations, from two-dimensional to large-scale models of complete aircraft configurations. Model sizing, power simulation, and planning are treated, including three areas is test operations: data-acquisition systems, acoustic measurements in wind tunnels, and flow surveying.

  16. Assessment of a flow-through balance for hypersonic wind tunnel models with scramjet exhaust flow simulation

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Kniskern, Marc W.; Monta, William J.

    1993-01-01

    The purpose of this investigation were twofold: first, to determine whether accurate force and moment data could be obtained during hypersonic wind tunnel tests of a model with a scramjet exhaust flow simulation that uses a representative nonwatercooled, flow-through balance; second, to analyze temperature time histories on various parts of the balance to address thermal effects on force and moment data. The tests were conducted in the NASA Langley Research Center 20-Inch Mach 6 Wind Tunnel at free-stream Reynolds numbers ranging from 0.5 to 7.4 x 10(exp 6)/ft and nominal angles of attack of -3.5 deg, 0 deg, and 5 deg. The simulant exhaust gases were cold air, hot air, and a mixture of 50 percent Argon and 50 percent Freon by volume, which reached stagnation temperatures within the balance of 111, 214, and 283 F, respectively. All force and moment values were unaffected by the balance thermal response from exhaust gas simulation and external aerodynamic heating except for axial-force measurements, which were significantly affected by balance heating. This investigation showed that for this model at the conditions tested, a nonwatercooled, flow-through balance is not suitable for axial-force measurements during scramjet exhaust flow simulation tests at hypersonic speeds. In general, heated exhaust gas may produce unacceptable force and moment uncertainties when used with thermally sensitive balances.

  17. Space shuttle phase B wind tunnel model and test information. Volume 3: Launch configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternate recoverable configuration as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle, including contractor data for an extensive variety of configurations with an array of wing and body planforms. The test data have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration. Basic components include booster, orbiter, and launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configurations include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. The digital database consists of 220 files containing basic tunnel data. Database structure is documented in a series of reports which include configuration sketches for the various planforms tested. This is Volume 3 -- launch configurations.

  18. An Overview of Preliminary Computational and Experimental Results for the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Perry, Boyd, III; Florance, James R.; Sanetrik, Mark D.; Wieseman, Carol D.; Stevens, William L.; Funk, Christie J.; Hur, Jiyoung; Christhilf, David M.; Coulson, David A.

    2011-01-01

    A summary of computational and experimental aeroelastic and aeroservoelastic (ASE) results for the Semi-Span Super-Sonic Transport (S4T) wind-tunnel model is presented. A broad range of analyses and multiple ASE wind-tunnel tests of the S4T have been performed in support of the ASE element in the Supersonics Program, part of NASA's Fundamental Aeronautics Program. The computational results to be presented include linear aeroelastic and ASE analyses, nonlinear aeroelastic analyses using an aeroelastic CFD code, and rapid aeroelastic analyses using CFD-based reduced-order models (ROMs). Experimental results from two closed-loop wind-tunnel tests performed at NASA Langley's Transonic Dynamics Tunnel (TDT) will be presented as well.

  19. Visualizing Flutter Mechanism as Traveling Wave Through Animation of Simulation Results for the Semi-Span Super-Sonic Transport Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.

    2014-01-01

    It has long been recognized that frequency and phasing of structural modes in the presence of airflow play a fundamental role in the occurrence of flutter. Animation of simulation results for the long, slender Semi-Span Super-Sonic Transport (S4T) wind-tunnel model demonstrates that, for the case of mass-ballasted nacelles, the flutter mode can be described as a traveling wave propagating downstream. Such a characterization provides certain insights, such as (1) describing the means by which energy is transferred from the airflow to the structure, (2) identifying airspeed as an upper limit for speed of wave propagation, (3) providing an interpretation for a companion mode that coalesces in frequency with the flutter mode but becomes very well damped, (4) providing an explanation for bursts of response to uniform turbulence, and (5) providing an explanation for loss of low frequency (lead) phase margin with increases in dynamic pressure (at constant Mach number) for feedback systems that use sensors located upstream from active control surfaces. Results from simulation animation, simplified modeling, and wind-tunnel testing are presented for comparison. The simulation animation was generated using double time-integration in Simulink of vertical accelerometer signals distributed over wing and fuselage, along with time histories for actuated control surfaces. Crossing points for a zero-elevation reference plane were tracked along a network of lines connecting the accelerometer locations. Accelerometer signals were used in preference to modal displacement state variables in anticipation that the technique could be used to animate motion of the actual wind-tunnel model using data acquired during testing. Double integration of wind-tunnel accelerometer signals introduced severe drift even with removal of both position and rate biases such that the technique does not currently work. Using wind-tunnel data to drive a Kalman filter based upon fitting coefficients to

  20. Control law parameterization for an aeroelastic wind-tunnel model equipped with an active roll control system and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Dunn, H. J.; Sandford, Maynard C.

    1988-01-01

    Nominal roll control laws were designed, implemented, and tested on an aeroelastically-scaled free-to-roll wind-tunnel model of an advanced fighter configuration. The tests were performed in the NASA Langley Transonic Dynamics Tunnel. A parametric study of the nominal roll control system was conducted. This parametric study determined possible control system gain variations which yielded identical closed-loop stability (roll mode pole location) and identical roll response but different maximum control-surface deflections. Comparison of analytical predictions with wind-tunnel results was generally very good.

  1. Measurements of control stability characteristics of a wind-tunnel model using a transfer function method

    NASA Technical Reports Server (NTRS)

    Chopra, I.; Ballard, J. D.

    1980-01-01

    Recent state-of-the-art techniques in rotor systems include the use of active feedback to augment the dynamic control characteristics of an aircraft system. A recent test of a stoppable rotor with blade circulation blowing was conducted in the Ames Research Center's 40by 80-ft wind tunnel. A major part of the test schedule was dedicated to the acquisition of data to determine the stability of a closed-loop hub-moment feedback control system. Therefore, the open-loop control response was measured at several flight conditions to ascertain the stability of the system prior to the final closed-loop feedback control test. Measurements were made during both the stopped and rotating rotor modes, and open-loop Bode plots were obtained for the control loops associated with the moments about the longitudinal and lateral axis.

  2. Developing, mechanizing and testing of a digital active flutter suppression system for a modified B-52 wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Matthew, J. R.

    1980-01-01

    A digital flutter suppression system was developed and mechanized for a significantly modified version of the 1/30-scale B-52E aeroelastic wind tunnel model. A model configuration was identified that produced symmetric and antisymmetric flutter modes that occur at 2873N/sq m (60 psf) dynamic pressure with violent onset. The flutter suppression system, using one trailing edge control surface and the accelerometers on each wing, extended the flutter dynamic pressure of the model beyond the design limit of 4788N/sq m (100 psf). The hardware and software required to implement the flutter suppression system were designed and mechanized using digital computers in a fail-operate configuration. The model equipped with the system was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center and results showed the flutter dynamic pressure of the model was extended beyond 4884N/sq m (102 psf).

  3. Wind Tunnel Test of a Risk-Reduction Wing/Fuselage Model to Examine Juncture-Flow Phenomena

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; Neuhart, Dan H.

    2016-01-01

    A wing/fuselage wind-tunnel model was tested in the Langley 14- by 22-foot Subsonic Wind Tunnel in preparation for a highly-instrumented Juncture Flow Experiment to be conducted in the same facility. This test, which was sponsored by the NASA Transformational Tool and Technologies Project, is part of a comprehensive set of experimental and computational research activities to develop revolutionary, physics-based aeronautics analysis and design capability. The objectives of this particular test were to examine the surface and off-body flow on a generic wing/body combination to: 1) choose a final wing for a future, highly instrumented model, 2) use the results to facilitate unsteady pressure sensor placement on the model, 3) determine the area to be surveyed with an embedded laser-doppler velocimetry (LDV) system, 4) investigate the primary juncture corner- flow separation region using particle image velocimetry (PIV) to see if the particle seeding is adequately entrained and to examine the structure in the separated region, and 5) to determine the similarity of observed flow features with those predicted by computational fluid dynamics (CFD). This report documents the results of the above experiment that specifically address the first three goals. Multiple wing configurations were tested at a chord Reynolds number of 2.4 million. Flow patterns on the surface of the wings and in the region of the wing/fuselage juncture were examined using oil- flow visualization and infrared thermography. A limited number of unsteady pressure sensors on the fuselage around the wing leading and trailing edges were used to identify any dynamic effects of the horseshoe vortex on the flow field. The area of separated flow in the wing/fuselage juncture near the wing trailing edge was observed for all wing configurations at various angles of attack. All of the test objectives were met. The staff of the 14- by 22-foot Subsonic Wind Tunnel provided outstanding support and delivered

  4. Slotted-wall research with disk and parachute models in the DSMA low-speed wind tunnel

    SciTech Connect

    Van Every, D.; Harris, J.L. )

    1990-06-01

    A test program investigated the effects of wall open area ratio (OAR) and model axial position on the measured drag of disk and parachute models in a low-speed wind tunnel. The data and discussion presented in this report provide new insight into the nature of slotted-wall interference for bluff bodies in steady flow and give the first quantitative information on nonsteady wall interference and airflow response during the inflation of a parachute. The report concludes that a fixed OAR of between 5% and 15% should eliminate wall interference during inflation and greatly reduce steady-flow interference for geometric blockages up to 15%. Preliminary arguments suggest that an optimum OAR may be found that alleviates wall interference for large models at low speeds while providing for acceptable testing of smaller models in the transonic speed range. 10 refs., 36 figs., 14 tabs.

  5. Icing testing in the large Modane wind-tunnel on full-scale and reduced scale models

    NASA Technical Reports Server (NTRS)

    Charpin, F.; Fasso, G.

    1979-01-01

    Icing tests on full scale models of parts of aircraft (wings, tailplanes, radome) equipped with actual de-icing systems were carried out in the large Modane wind tunnel of ONERA. For studying icing on the Concorde, it was necessary to use a 1/6 scale half model. The equations governing the relevant parameter ratios to obtain reasonably good similitude water catching and ice accretion are recalled. Despite the inherent limitations of this particular kind of testing, i.e., the impossibility of duplicating both the Mach and Reynolds conditions for the main flow pattern, it is possible to obtain on a reduced scale model a reasonably good representation of icing cloud catching and of the shape of resulting ice accretion.

  6. A theoretical study of non-adiabatic surface effects for a model in the NTF cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Macha, J. M.; Pare, L. A.; Landrum, D. B.

    1985-01-01

    A theoretical analysis was made of the severity and effect of nonadiabatic surface conditions for a model in the NTF cryogenic wind tunnel. The nonadiabatic condition arises from heaters that are used to maintain a constant thermal environment for instrumentation internal to the model. The analysis was made for several axi-symmetric representations of a fuselage cavity, using a finite element heat conduction code. Potential flow and boundary layer codes were used to calculate the convection condition for the exterior surface of the model. The results of the steady state analysis show that it is possible to maintain the surface temperature very near the adiabatic value, with the judicious use of insulating material. Even for the most severe nonadiabatic condition studied, the effects on skin friction drag and displacement thickness were only marginally significant. The thermal analysis also provided an estimate of the power required to maintain a specified cavity temperature.

  7. Wind tunnel balance system for determination of wind-induced vibrations of a rigid shuttle model in the launch configuration

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A wind tunnel balance system was designed to determine the wind-induced vibrations of a space shuttle model. The balance utilizes a flexible sting mounting in conjunction with a geometrically scaled rigid model. Bending and torsional displacements are determined through strain-gauge-instrumented spring bar mechanisms. The natural frequency of the string-model system can be varied continuously throughout the expected scaled frequency range of the shuttle vehicle while a test is in progress by the use of moveable riders on the spring bar mechanism. Through the use of a frequency analyzer, the output can be used to determine troublesome vibrational frequencies. A dimensional analysis of the wind-induced vibration problem is also presented which suggests a test procedure. In addition a computer program for analytical studies of the forced vibration problem is presented.

  8. Acoustical modeling study of the open test section of the NASA Langley V/STOL wind tunnel

    NASA Technical Reports Server (NTRS)

    Ver, I. L.; Andersen, D. W.; Bliss, D. B.

    1975-01-01

    An acoustic model study was carried out to identify effective sound absorbing treatment of strategically located surfaces in an open wind tunnel test section. Also an aerodynamic study done concurrently, sought to find measures to control low frequency jet pulsations which occur when the tunnel is operated in its open test section configuration. The acoustical modeling study indicated that lining of the raised ceiling and the test section floor immediately below it, results in a substantial improvement. The aerodynamic model study indicated that: (1) the low frequency jet pulsations are most likely caused or maintained by coupling of aerodynamic and aeroacoustic phenomena in the closed tunnel circuit, (2) replacing the hard collector cowl with a geometrically identical but porous fiber metal surface of 100 mks rayls flow resistance does not result in any noticable reduction of the test section noise caused by the impingement of the turbulent flow on the cowl.

  9. Capabilities of wind tunnels with two-adaptive walls to minimize boundary interference in 3-D model testing

    NASA Technical Reports Server (NTRS)

    Rebstock, Rainer; Lee, Edwin E., Jr.

    1989-01-01

    An initial wind tunnel test was made to validate a new wall adaptation method for 3-D models in test sections with two adaptive walls. First part of the adaptation strategy is an on-line assessment of wall interference at the model position. The wall induced blockage was very small at all test conditions. Lift interference occurred at higher angles of attack with the walls set aerodynamically straight. The adaptation of the top and bottom tunnel walls is aimed at achieving a correctable flow condition. The blockage was virtually zero throughout the wing planform after the wall adjustment. The lift curve measured with the walls adapted agreed very well with interference free data for Mach 0.7, regardless of the vertical position of the wing in the test section. The 2-D wall adaptation can significantly improve the correctability of 3-D model data. Nevertheless, residual spanwise variations of wall interference are inevitable.

  10. The optimum hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Trimmer, L. L.; Cary, A., Jr.; Voisinet, R. L. P.

    1986-01-01

    The capabilities of existing hypersonic wind tunnels in the U.S. are assessed to form a basis for recommendations for a new, costly facility which would provide data for modeling the hypervelocity aerodynamics envisioned for the new generation of aerospace vehicles now undergoing early studies. Attention is given to the regimes, both entry and aerodynamic, which the new vehicles will encounter, and the shortcomings of data generated for the Orbiter before flight are discussed. The features of foreign-gas, impulse, aeroballistic range, arc-heated and combustion-heated facilities are examined, noting that in any hypersonic wind tunnel the flow must be preheated to prevent liquefaction upon expansion in the test channel. The limitations of the existing facilities and the identification of the regimes which must be studied lead to a description of the characteristics of an optimum hypersonic wind tunnel, including the operations and productivity, the instrumentation, the nozzle design and the flow quality. Three different design approaches are described, each costing at least $100 million to achieve workability.

  11. The optimum hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Trimmer, L. L.; Cary, A., Jr.; Voisinet, R. L. P.

    1986-01-01

    The capabilities of existing hypersonic wind tunnels in the U.S. are assessed to form a basis for recommendations for a new, costly facility which would provide data for modeling the hypervelocity aerodynamics envisioned for the new generation of aerospace vehicles now undergoing early studies. Attention is given to the regimes, both entry and aerodynamic, which the new vehicles will encounter, and the shortcomings of data generated for the Orbiter before flight are discussed. The features of foreign-gas, impulse, aeroballistic range, arc-heated and combustion-heated facilities are examined, noting that in any hypersonic wind tunnel the flow must be preheated to prevent liquefaction upon expansion in the test channel. The limitations of the existing facilities and the identification of the regimes which must be studied lead to a description of the characteristics of an optimum hypersonic wind tunnel, including the operations and productivity, the instrumentation, the nozzle design and the flow quality. Three different design approaches are described, each costing at least $100 million to achieve workability.

  12. Low-speed wind-tunnel investigation of a large-scale VTOL lift-fan transport model

    NASA Technical Reports Server (NTRS)

    Aoyagi, K.

    1979-01-01

    An investigation was conducted in the NASA-Ames 40 by 80 Foot Wind Tunnel to determine the aerodynamic characteristics of a large scale, VTOL, lift fan, jet transport model. The model had two lift fans at the forward portion of the fuselage, a lift fan at each wing tip, and two lift/cruise fans at the aft portion of the fuselage. All fans were driven by tip turbines using T-58 gas generators. Results were obtained for several lift fan, exit vane deflections and lift/cruise fan thrust deflections are zero sideslip. Three component longitudinal data are presented at several fan tip speed ratios. A limited amount of six component data were obtained with asymmetric vane settings. All of the data were obtained without a horizontal tail. Downwash angles at a typical tail location are also presented.

  13. Application of system identification to analytic rotor modeling from simulated and wind tunnel dynamic test data, part 2

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Banerjee, D.

    1977-01-01

    An introduction to aircraft state and parameter identification methods is presented. A simplified form of the maximum likelihood method is selected to extract analytical aeroelastic rotor models from simulated and dynamic wind tunnel test results for accelerated cyclic pitch stirring excitation. The dynamic inflow characteristics for forward flight conditions from the blade flapping responses without direct inflow measurements were examined. The rotor blades are essentially rigid for inplane bending and for torsion within the frequency range of study, but flexible in out-of-plane bending. Reverse flow effects are considered for high rotor advance ratios. Two inflow models are studied; the first is based on an equivalent blade Lock number, the second is based on a time delayed momentum inflow. In addition to the inflow parameters, basic rotor parameters like the blade natural frequency and the actual blade Lock number are identified together with measurement bias values. The effect of the theoretical dynamic inflow on the rotor eigenvalues is evaluated.

  14. Wind tunnel investigation of an oblique wing transport model at mach numbers between 0.6 and 1.4

    NASA Technical Reports Server (NTRS)

    Black, R. L.; Beamish, J. K.; Alexander, W. K.

    1975-01-01

    Models of three practical oblique-wing transport configurations were tested in the NASA Ames 11 foot wind tunnel. The three configurations used a common forward fuselage, wing, and support system but employed different aft fuselage sections simulating alternate propulsion system installations. These included an integrated propulsion system, pylon-mounted nacelles, and clean (no propulsion system) configuration. The tests were conducted over a Mach number range from 0.6 to 1.4 and at sweep angles from 0 to 60 degrees. The nominal unit Reynolds number was 1.83 million per meter and the angle of attack range was -3 to +6 degrees. The models were mounted in the tunnel by means of a lower blade support system. The interference effects of this lower blade and the flow inclination were determined by using an image blade system and testing the configuration in both the upright and inverted positions.

  15. Pressure-Sensitive Paint Measurements on the NASA Common Research Model in the NASA 11-ft Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Bell, James H.

    2011-01-01

    The luminescence lifetime technique was used to make pressure-sensitive paint (PSP) measurements on a 2.7% Common Research Model in the NASA Ames 11ft Transonic Wind Tunnel. PSP data were obtained on the upper and lower surfaces of the wing and horizontal tail, as well as one side of the fuselage. Data were taken for several model attitudes of interest at Mach numbers between 0.70 and 0.87. Image data were mapped onto a three-dimensional surface grid suitable both for comparison with CFD and for integration of pressures to determine loads. Luminescence lifetime measurements were made using strobed LED (light-emitting diode) lamps to illuminate the PSP and fast-framing interline transfer cameras to acquire the PSP emission.

  16. Wind-Tunnel Investigation of the Effect of Porous Spoilers on the Wake of a Subsonic Transport Model

    NASA Technical Reports Server (NTRS)

    Corsiglia, V. R.; Rossow, V. J.

    1976-01-01

    Tests were conducted in the Ames Research Center 40- by 80-Foot Wind Tunnel to determine how porosity of wing spoilers on a B-747 airplane would affect the rolling moments imposed on an aircraft following in the wake. It was found that spoilers with 40 percent porosity and hole diameter to thickness ratio of 1.1 were just as effective in reducing the rolling moment imposed on the follower as solid spoilers, for the case of two spoilers per wing panel (6.4 percent semispan each) with a following model whose span was 20 percent of the span of the generator. When a larger following model was tested, whose span was 50 percent of that of the generator, the effectiveness of the two spoilers per wing was substantially reduced.

  17. Evaluation of the source area of rooftop scalar measurements in London, UK using wind tunnel and modelling approaches.

    NASA Astrophysics Data System (ADS)

    Brocklehurst, Aidan; Boon, Alex; Barlow, Janet; Hayden, Paul; Robins, Alan

    2014-05-01

    The source area of an instrument is an estimate of the area of ground over which the measurement is generated. Quantification of the source area of a measurement site provides crucial context for analysis and interpretation of the data. A range of computational models exists to calculate the source area of an instrument, but these are usually based on assumptions which do not hold for instruments positioned very close to the surface, particularly those surrounded by heterogeneous terrain i.e. urban areas. Although positioning instrumentation at higher elevation (i.e. on masts) is ideal in urban areas, this can be costly in terms of installation and maintenance costs and logistically difficult to position instruments in the ideal geographical location. Therefore, in many studies, experimentalists turn to rooftops to position instrumentation. Experimental validations of source area models for these situations are very limited. In this study, a controlled tracer gas experiment was conducted in a wind tunnel based on a 1:200 scale model of a measurement site used in previous experimental work in central London. The detector was set at the location of the rooftop site as the tracer was released at a range of locations within the surrounding streets and rooftops. Concentration measurements are presented for a range of wind angles, with the spread of concentration measurements indicative of the source area distribution. Clear evidence of wind channeling by streets is seen with the shape of the source area strongly influenced by buildings upwind of the measurement point. The results of the wind tunnel study are compared to scalar concentration source areas generated by modelling approaches based on meteorological data from the central London experimental site and used in the interpretation of continuous carbon dioxide (CO2) concentration data. Initial conclusions will be drawn as to how to apply scalar concentration source area models to rooftop measurement sites and

  18. Instrumentation in wind tunnels

    NASA Technical Reports Server (NTRS)

    Takashima, K.

    1986-01-01

    Requirements in designing instrumentation systems and measurements of various physical quantities in wind tunnels are surveyed. Emphasis is given to sensors used for measuring pressure, temperature, and angle, and the measurements of air turbulence and boundary layers. Instrumentation in wind tunnels require accuracy, fast response, diversity and operational simplicity. Measurements of force, pressure, attitude angle, free flow, pressure distribution, and temperature are illustrated by a table, and a block diagram. The LDV (laser Doppler velocimeter) method for measuring air turbulence and flow velocity and measurement of skin friction and flow fields using laser holograms are discussed. The future potential of these techniques is studied.

  19. Pre-Test Assessment of the Upper Bound of the Drag Coefficient Repeatability of a Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; L'Esperance, A.

    2017-01-01

    A new method is presented that computes a pre{test estimate of the upper bound of the drag coefficient repeatability of a wind tunnel model. This upper bound is a conservative estimate of the precision error of the drag coefficient. For clarity, precision error contributions associated with the measurement of the dynamic pressure are analyzed separately from those that are associated with the measurement of the aerodynamic loads. The upper bound is computed by using information about the model, the tunnel conditions, and the balance in combination with an estimate of the expected output variations as input. The model information consists of the reference area and an assumed angle of attack. The tunnel conditions are described by the Mach number and the total pressure or unit Reynolds number. The balance inputs are the partial derivatives of the axial and normal force with respect to all balance outputs. Finally, an empirical output variation of 1.0 microV/V is used to relate both random instrumentation and angle measurement errors to the precision error of the drag coefficient. Results of the analysis are reported by plotting the upper bound of the precision error versus the tunnel conditions. The analysis shows that the influence of the dynamic pressure measurement error on the precision error of the drag coefficient is often small when compared with the influence of errors that are associated with the load measurements. Consequently, the sensitivities of the axial and normal force gages of the balance have a significant influence on the overall magnitude of the drag coefficient's precision error. Therefore, results of the error analysis can be used for balance selection purposes as the drag prediction characteristics of balances of similar size and capacities can objectively be compared. Data from two wind tunnel models and three balances are used to illustrate the assessment of the precision error of the drag coefficient.

  20. An Investigation of a Full-Scale Model of the Republic XF-91 Airplane in the Ames 40- By 80-Foot Wind Tunnel: Pressure Data

    NASA Technical Reports Server (NTRS)

    Hunton, Lynn W.; Dew, Joseph K.

    1949-01-01

    Wind-tunnel tests of a full-scale model of the Republic XF-91 airplane were conducted to determine the distribution of pressure over the external wing fuel tank installation and over the vee tail and ventral fin. The data were obtained for a range of angles of attack and sideslip and elerudder deflection angles; the presentation is in tabular form.

  1. Wind tunnel investigations of forebody strakes for yaw control on F/A-18 model at subsonic and transonic speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Murri, Daniel G.

    1993-01-01

    Wind tunnel investigations have been conducted of forebody strakes for yaw control on 0.06-scale models of the F/A-18 aircraft at free-stream Mach numbers of 0.20 to 0.90. The testing was conducted in the 7- by 10-Foot Transonic Tunnel at the David Taylor Research Center and the Langley 7- by 10-Foot High-Speed Tunnel. The principal objectives of the testing were to determine the effects of the Mach number and the strake plan form on the strake yaw control effectiveness and the corresponding strake vortex induced flow field. The wind tunnel model configurations simulated an actuated conformal strake deployed for maximum yaw control at high angles of attack. The test data included six-component forces and moments on the complete model, surface static pressure distributions on the forebody and wing leading-edge extensions, and on-surface and off-surface flow visualizations. The results from these studies show that the strake produces large yaw control increments at high angles of attack that exceed the effect of conventional rudders at low angles of attack. The strake yaw control increments diminish with increasing Mach number but continue to exceed the effect of rudder deflection at angles of attack greater than 30 degrees. The character of the strake vortex induced flow field is similar at subsonic and transonic speeds. Cropping the strake planform to account for geometric and structural constraints on the F-18 aircraft has a small effect on the yaw control increments at subsonic speeds and no effect at transonic speeds.

  2. Pressure coefficient evaluation on the surface of the SONDA III model tested in the TTP Pilot Transonic Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Reis, M. L. C. C.; Falcao Filho, J. B. P.; Basso, E.; Caldas, V. R.

    2015-02-01

    A test campaign of the Brazilian sounding rocket Sonda III was carried out at the Pilot Transonic Wind Tunnel, TTP. The aim of the campaign was to investigate aerodynamic phenomena taking place at the connection region of the first and second stages. Shock and expansion waves are expected at this location causing high gradients in airflow properties around the vehicle. Pressure taps located on the surface of a Sonda III half model measure local static pressures. Other measured parameters were freestream static and total pressures of the airflow. Estimated parameters were pressure coefficients and Mach numbers. Uncertainties associated with the estimated parameters were calculated by employing the Law of Propagation of Uncertainty and the Monte Carlo method. It was found that both uncertainty evaluation methods resulted in similar values. A Computational Fluid Dynamics simulation code was elaborated to help understand the changes in the flow field properties caused by the disturbances.

  3. RITD – Wind tunnel testing

    NASA Astrophysics Data System (ADS)

    Haukka, Harri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Schmidt, Walter; Heilimo, Jyri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Arruego, Ignazio

    2015-04-01

    An atmospheric re-entry and descent and landing system (EDLS) concept based on inflatable hypersonic decelerator techniques is highly promising for the Earth re-entry missions. We developed such EDLS for the Earth re-entry utilizing a concept that was originally developed for Mars. This EU-funded project is called RITD - Re-entry: Inflatable Technology Development - and it was to assess the bene¬fits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develope a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. The RITD entry and descent system utilizes an inflatable hypersonic decelerator. Development of such system requires a combination of wind tunnel tests and numerical simulations. This included wind tunnel tests both in transsonic and subsonic regimes. The principal aim of the wind tunnel tests was the determination of the RITD damping factors in the Earth atmosphere and recalculation of the results for the case of the vehicle descent in the Mars atmosphere. The RITD mock-up model used in the tests was in scale of 1:15 of the real-size vehicle as the dimensions were (midsection) diameter of 74.2 mm and length of 42 mm. For wind tunnel testing purposes the frontal part of the mock-up model body was manufactured by using a PolyJet 3D printing technology based on the light curing of liquid resin. The tail part of the mock-up model body was manufactured of M1 grade copper. The structure of the mock-up model placed th center of gravity in the same position as that of the real-size RITD. The wind tunnel test program included the defining of the damping factor at seven values of Mach numbers 0.85; 0.95; 1.10; 1.20; 1.25; 1.30 and 1.55 with the angle of attack ranging from 0 degree to 40 degrees with the step of 5 degrees. The damping characteristics of

  4. Wind Tunnel Balances

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Norton, F H

    1920-01-01

    Report embodies a description of the balance designed and constructed for the use of the National Advisory Committee for Aeronautics at Langley Field, and also deals with the theory of sensitivity of balances and with the errors to which wind tunnel balances of various types are subject.

  5. Wind-tunnel investigation of the flow correction for a model-mounted angle of attack sensor at angles of attack from -10 deg to 110 deg. [Langley 12-foot low speed wind tunnel test

    NASA Technical Reports Server (NTRS)

    Moul, T. M.

    1979-01-01

    A preliminary wind tunnel investigation was undertaken to determine the flow correction for a vane angle of attack sensor over an angle of attack range from -10 deg to 110 deg. The sensor was mounted ahead of the wing on a 1/5 scale model of a general aviation airplane. It was shown that the flow correction was substantial, reaching about 15 deg at an angle of attack of 90 deg. The flow correction was found to increase as the sensor was moved closer to the wing or closer to the fuselage. The experimentally determined slope of the flow correction versus the measured angle of attack below the stall angle of attack agreed closely with the slope of flight data from a similar full scale airplane.

  6. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot transonic wind tunnel, volume 2

    NASA Technical Reports Server (NTRS)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e., top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  7. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot transonic wind tunnel, volume 2

    NASA Astrophysics Data System (ADS)

    Marroquin, J.; Lemoine, P.

    1992-10-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e., top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  8. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot Transonic wind tunnel (IA613A), volume 1

    NASA Astrophysics Data System (ADS)

    Marroquin, J.; Lemoine, P.

    1992-10-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e. top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  9. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot Transonic wind tunnel (IA613A), volume 1

    NASA Technical Reports Server (NTRS)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e. top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  10. Multi-Body Analysis of the 1/5 Scale Wind Tunnel Model of the V-22 Tiltrotor

    NASA Technical Reports Server (NTRS)

    Ghiringhelli, G. L.; Masarati, P.; Mantegazza, P.; Nixon, M. W.

    1999-01-01

    The paper presents a multi-body analysis of the 1/5 scale wind tunnel model of the V-22 tiltrotor, the Wing and Rotor Aeroelastic Testing System (WRATS), currently tested at NASA Langley Research Center. An original multi-body formulation has been developed at the Dipartimento di Ingegneria Aerospaziale of the Politecnico di Milano, Italy. It is based on the direct writing of the equilibrium equations of independent rigid bodies, connected by kinematic constraints that result in the addition of algebraic constraint equations, and by dynamic constraints, that directly contribute to the equilibrium equations. The formulation has been extended to the simultaneous solution of interdisciplinary problems by modeling electric and hydraulic networks, for aeroservoelastic problems. The code has been tailored to the modeling of rotorcrafts while preserving a complete generality. A family of aerodynamic elements has been introduced to model high aspect aerodynamic surfaces, based on the strip theory, with quasi-steady aerodynamic coefficients, compressibility, post-stall interpolation of experimental data, dynamic stall modeling, and radial flow drag. Different models for the induced velocity of the rotor can be used, from uniform velocity to dynamic in flow. A complete dynamic and aeroelastic analysis of the model of the V-22 tiltrotor has been performed, to assess the validity of the formulation and to exploit the unique features of multi-body analysis with respect to conventional comprehensive rotorcraft codes; These are the ability to model the exact kinematics of mechanical systems, and the possibility to simulate unusual maneuvers and unusual flight conditions, that are particular to the tiltrotor, e.g. the conversion maneuver. A complete modal validation of the analytical model has been performed, to assess the ability to reproduce the correct dynamics of the system with a relatively coarse beam model of the semispan wing, pylon and rotor. Particular care has been used

  11. Rocket Plume Scaling for Orion Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.; Greathouse, James S.; White, Molly E.

    2011-01-01

    A wind tunnel test program was undertaken to assess the jet interaction effects caused by the various solid rocket motors used on the Orion Launch Abort Vehicle (LAV). These interactions of the external flowfield and the various rocket plumes can cause localized aerodynamic disturbances yielding significant and highly non-linear control amplifications and attenuations. This paper discusses the scaling methodologies used to model the flight plumes in the wind tunnel using cold air as the simulant gas. Comparisons of predicted flight, predicted wind tunnel, and measured wind tunnel forces-and-moments and plume flowfields are made to assess the effectiveness of the selected scaling methodologies.

  12. 5-foot Vertical Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1932-01-01

    The researcher is sitting above the exit cone of the 5-foot Vertical Wind Tunnel and is examining the new 6-component spinning balance. This balance was developed between 1930 and 1933. It was an important advance in the technology of rotating or rolling balances. As M.J. Bamber and C.H. Zimmerman wrote in NACA TR 456: 'Data upon the aerodynamic characteristics of a spinning airplane may be obtained in several ways; namely, flight tests with full-scale airplanes, flight tests with balanced models, strip-method analysis of wind-tunnel force and moment tests, and wind-tunnel tests of rotating models.' Further, they note: 'Rolling-balance data have been of limited value because it has not been possible to measure all six force and moment components or to reproduce a true spinning condition. The spinning balance used in this investigation is a 6-component rotating balance from which it is possible to obtain wind-tunnel data for any of a wide range of possible spinning conditions.' Bamber and Zimmerman described the balance as follows: 'The spinning balance consists of a balance head that supports the model and contains the force-measuring units, a horizontal turntable supported by streamline struts in the center of the jet and, outside the tunnel, a direct-current driving motor, a liquid tachometer, an air compressor, a mercury manometer, a pair of indicating lamps, and the necessary controls. The balance head is mounted on the turntable and it may be set to give any radius of spin between 0 and 8 inches.' In an earlier report, NACA TR 387, Carl Wenzinger and Thomas Harris supply this description of the tunnel: 'The vertical open-throat wind tunnel of the National Advisory Committee for Aeronautics ... was built mainly for studying the spinning characteristics of airplane models, but may be used as well for the usual types of wind-tunnel tests. A special spinning balance is being developed to measure the desired forces and moments with the model simulating the actual

  13. Full Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Construction of motor fairing for the fan motors of the Full-Scale Tunnel (FST). The motors and their supporting structures were enclosed in aerodynamically smooth fairings to minimize resistance to the air flow. Close examination of this photograph reveals the complicated nature of constructing a wind tunnel. This motor fairing, like almost every other structure in the FST, represents a one-of-a-kind installation.

  14. Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan

    2017-01-01

    Unsteady loading and spatiotemporal characteristics of power output are measured in a wind tunnel experiment of a microscale wind farm model with 100 porous disk models. The model wind farm is placed in a scaled turbulent boundary layer, and six different layouts, varied from aligned to staggered, are considered. The measurements are done by making use of a specially designed small-scale porous disk model, instrumented with strain gages. The frequency response of the measurements goes up to the natural frequency of the model, which corresponds to a reduced frequency of 0.6 when normalized by the diameter and the mean hub height velocity. The equivalent range of timescales, scaled to field-scale values, is 15 s and longer. The accuracy and limitations of the acquisition technique are documented and verified with hot-wire measurements. The spatiotemporal measurement capabilities of the experimental setup are used to study the cross-correlation in the power output of various porous disk models of wind turbines. A significant correlation is confirmed between streamwise aligned models, while staggered models show an anti-correlation.

  15. Investigation of correlation between full-scale and fifth-scale wind tunnel tests of a Bell helicopter Textron Model 222

    NASA Technical Reports Server (NTRS)

    Squires, P. K.

    1982-01-01

    Reasons for lack of correlation between data from a fifth-scale wind tunnel test of the Bell Helicopter Textron Model 222 and a full-scale test of the model 222 prototype in the NASA Ames 40-by 80-foot tunnel were investigated. This investigation centered around a carefully designed fifth-scale wind tunnel test of an accurately contoured model of the Model 222 prototype mounted on a replica of the full-scale mounting system. The improvement in correlation for drag characteristics in pitch and yaw with the fifth-scale model mounted on the replica system is shown. Interference between the model and mounting system was identified as a significant effect and was concluded to be a primary cause of the lack of correlation in the earlier tests.

  16. Wind-tunnel investigation of an externally blown flap STOL transport model including and investigation of wall effects

    NASA Technical Reports Server (NTRS)

    Gentry, G. L., Jr.

    1974-01-01

    A wind-tunnel investigation was conducted in the Langley V/STOL tunnel and in a scaled version of the Ames 40- by 80-foot tunnel test section installed as a liner in the Langley V/STOL tunnel to determine the effect of test-section size on aerodynamic characteristics of the model. The model investigated was a swept-wing, jet-powered, externally blown flap (EBF) STOL transport configuration with a leading-edge slat and triple-slotted flaps. The model was an 0.1645-scale model of a 11.58-meter (38.0-ft) span model designed for tests in a 40- by 80-foot tunnel. The data compare the aerodynamic characteristics of the model with and without the tunnel liner installed. Data are presented as a function of thrust coefficient over an angle-of-attack range of 0 deg to 25 deg. A thrust-coefficient range up to approximately 4.0 was simulated, most ot the tests being conducted at a free-stream dynamic pressure of 814 Newtons/sq m (17 lb sq ft). The data are presented with a minimum of analysis.

  17. Roll plus maneuver load alleviation control system designs for the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Moore, Douglas B.; Miller, Gerald D.; Klepl, Martin J.

    1991-01-01

    Three designs for controlling loads while rolling for the Active Flexible Wing (AFW) are discussed. The goal is to provide good roll control while simultaneously limiting the torsion and bending loads experienced by the wing. The first design uses Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) modern control methods to control roll rate and torsional loads at four different wing locations. The second design uses a nonlinear surface command function to produce surface position commands as a function of current roll rate and commanded roll rate. The final design is a flutter suppression control system. This system stabilizes both symmetric and axisymmetric flutter modes of the AFW.

  18. Low Speed Wind Tunnel Tests on a One-Seventh Scale Model of the H.126 Jet Flap Aircraft

    NASA Technical Reports Server (NTRS)

    Laub, G. H.

    1975-01-01

    Low speed wind tunnel tests were performed on a one-seventh scale model of the British H.126 jet flap research aircraft over a range of jet momentum coefficients. The primary objective was to compare model aerodynamic characteristics with those of the aircraft, with the intent to provide preliminary data needed towards establishing small-to-full scale correlating techniques on jet flap V/STOL aircraft configurations. Lift and drag coefficients from the model and aircraft tests were found to be in reasonable agreement. The pitching moment coefficient and trim condition correlation was poor. A secondary objective was to evaluate a modified thrust nozzle having thrust reversal capability. The results showed there was a considerable loss of lift in the reverse thrust operational mode because of increased nozzle-wing flow interference. A comparison between the model simulated H.126 wing jet efflux and the model uniform pressure distribution wing jet efflux indicated no more than 5% loss in weight flow rate.

  19. An Experimental Study of the Ground Transportation System (GTS) Model in the NASA Ames 7- by 10-Ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L.; Ross, James C.; Heineck, James T.; Walker, Stephen M.; Driver, David M.; Zilliac, Gregory G.; Bencze, Daniel P. (Technical Monitor)

    2001-01-01

    The 1/8-scale Ground Transportation System (GTS) model was studied experimentally in the NASA Ames 7- by 10-Ft Wind Tunnel. Designed for validation of computational fluid dynamics (CFD), the GTS model has a simplified geometry with a cab-over-engine design and no tractor-trailer gap. As a further simplification, all measurements of the GTS model were made without wheels. Aerodynamic boattail plates were also tested on the rear of the trailer to provide a simple geometry modification for computation. The experimental measurements include body-axis drag, surface pressures, surface hot-film anemometry, oil-film interferometry, and 3-D particle image velocimetry (PIV). The wind-averaged drag coefficient with and without boattail plates was 0.225 and 0.277, respectively. PIV measurements behind the model reveal a significant reduction in the wake size due to the flow turning provided by the boattail plates. Hot-film measurements on the side of the cab indicate laminar separation with turbulent reattachment within 0.08 trailer width for zero and +/- 10 degrees yaw. Oil film interferometry provided quantitative measurements of skin friction and qualitative oil flow images. A complete set of the experimental data and the surface definition of the model are included on a CD-ROM for further analysis and comparison.

  20. Thermal design and analysis of a hydrogen-burning wind tunnel model of an airframe-integrated scramjet

    NASA Technical Reports Server (NTRS)

    Guy, R. W.; Mueller, J. N.; Pinckney, S. Z.; Lee, L. P.

    1976-01-01

    An aerodynamic model of a hydrogen burning, airframe integrated scramjet engine has been designed, fabricated, and instrumented. This model is to be tested in an electric arc heated wind tunnel at an altitude of 35.39 km (116,094 ft.) but with an inlet Mach number of 6 simulating precompression on an aircraft undersurface. The scramjet model is constructed from oxygen free, high conductivity copper and is a heat sink design except for water cooling in some critical locations. The model is instrumented for pressure, surface temperature, heat transfer rate, and thrust measurements. Calculated flow properties, heat transfer rates, and surface temperature distributions along the various engine components are included for the conditions stated above. For some components, estimates of thermal strain are presented which indicate significant reductions in plastic strain by selective cooling of the model. These results show that the 100 thermal cycle life of the engine was met with minimum distortion while staying within the 2669 N (600 lbf) engine weight limitation and while cooling the engine only in critical locations.

  1. The self streamlining wind tunnel. [wind tunnel walls

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1975-01-01

    A two dimensional test section in a low speed wind tunnel capable of producing flow conditions free from wall interference is presented. Flexible top and bottom walls, and rigid sidewalls from which models were mounted spanning the tunnel are shown. All walls were unperforated, and the flexible walls were positioned by screw jacks. To eliminate wall interference, the wind tunnel itself supplied the information required in the streamlining process, when run with the model present. Measurements taken at the flexible walls were used by the tunnels computer check wall contours. Suitable adjustments based on streamlining criteria were then suggested by the computer. The streamlining criterion adopted when generating infinite flowfield conditions was a matching of static pressures in the test section at a wall with pressures computed for an imaginary inviscid flowfield passing over the outside of the same wall. Aerodynamic data taken on a cylindrical model operating under high blockage conditions are presented to illustrate the operation of the tunnel in its various modes.

  2. Parameter Estimation of Actuators for Benchmark Active Control Technology (BACT) Wind Tunnel Model with Analysis of Wear and Aerodynamic Loading Effects

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Fung, Jimmy

    1998-01-01

    This report describes the development of transfer function models for the trailing-edge and upper and lower spoiler actuators of the Benchmark Active Control Technology (BACT) wind tunnel model for application to control system analysis and design. A simple nonlinear least-squares parameter estimation approach is applied to determine transfer function parameters from frequency response data. Unconstrained quasi-Newton minimization of weighted frequency response error was employed to estimate the transfer function parameters. An analysis of the behavior of the actuators over time to assess the effects of wear and aerodynamic load by using the transfer function models is also presented. The frequency responses indicate consistent actuator behavior throughout the wind tunnel test and only slight degradation in effectiveness due to aerodynamic hinge loading. The resulting actuator models have been used in design, analysis, and simulation of controllers for the BACT to successfully suppress flutter over a wide range of conditions.

  3. Wind tunnel measurements of wake structure and wind farm power for actuator disk model wind turbines in yaw

    NASA Astrophysics Data System (ADS)

    Howland, Michael; Bossuyt, Juliaan; Kang, Justin; Meyers, Johan; Meneveau, Charles

    2016-11-01

    Reducing wake losses in wind farms by deflecting the wakes through turbine yawing has been shown to be a feasible wind farm control approach. In this work, the deflection and morphology of wakes behind a wind turbine operating in yawed conditions are studied using wind tunnel experiments of a wind turbine modeled as a porous disk in a uniform inflow. First, by measuring velocity distributions at various downstream positions and comparing with prior studies, we confirm that the nonrotating wind turbine model in yaw generates realistic wake deflections. Second, we characterize the wake shape and make observations of what is termed a "curled wake," displaying significant spanwise asymmetry. Through the use of a 100 porous disk micro-wind farm, total wind farm power output is studied for a variety of yaw configurations. Strain gages on the tower of the porous disk models are used to measure the thrust force as a substitute for turbine power. The frequency response of these measurements goes up to the natural frequency of the model and allows studying the spatiotemporal characteristics of the power output under the effects of yawing. This work has been funded by the National Science Foundation (Grants CBET-113380 and IIA-1243482, the WINDINSPIRE project). JB and JM are supported by ERC (ActiveWindFarms, Grant No. 306471).

  4. Wind tunnel investigation of a large-scale upper surface blown-flap model having four engines

    NASA Technical Reports Server (NTRS)

    Aoyagi, K.; Falarski, M. D.; Koenig, D. G.

    1975-01-01

    Investigations were conducted in the Ames 40- by 80-Foot Wind Tunnel to determine the aerodynamic characteristics of a large-scale subsonic jet transport model with an upper surface blown flap system. The model had a 25 deg swept wing of aspect ratio 7.28 and four turbofan engines. The lift of the flap system was augmented by turning the turbofan exhaust over the Coanda surface. Results were obtained for several flap deflections with several wing leading-edge configurations at jet momentum coefficients from 0 to 4.0. Three-component longitudinal data are presented with four engines operating. In addition, longitudinal and lateral data are presented with an engine out. The maximum lift and stall angle of the four engine model were lower than those obtained with a two engine model that was previously investigated. The addition of the outboard nacelles had an adverse effect on these values. Efforts to improve these values were successful. A maximum lift of 8.8 at an angle-of-attack of 27 deg was obtained with a jet thrust coefficient of 2 for the landing flap configuration.

  5. User's manual for a parameter identification technique. [with options for model simulation for fixed input forcing functions and identification from wind tunnel and flight measurements

    NASA Technical Reports Server (NTRS)

    Kanning, G.

    1975-01-01

    A digital computer program written in FORTRAN is presented that implements the system identification theory for deterministic systems using input-output measurements. The user supplies programs simulating the mathematical model of the physical plant whose parameters are to be identified. The user may choose any one of three options. The first option allows for a complete model simulation for fixed input forcing functions. The second option identifies up to 36 parameters of the model from wind tunnel or flight measurements. The third option performs a sensitivity analysis for up to 36 parameters. The use of each option is illustrated with an example using input-output measurements for a helicopter rotor tested in a wind tunnel.

  6. Space Shuttle wind tunnel testing program

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Hillje, E. R.

    1984-01-01

    A major phase of the Space Shuttle Vehicle (SSV) Development Program was the acquisition of data through the space shuttle wind tunnel testing program. It became obvious that the large number of configuration/environment combinations would necessitate an extremely large wind tunnel testing program. To make the most efficient use of available test facilities and to assist the prime contractor for orbiter design and space shuttle vehicle integration, a unique management plan was devised for the design and development phase. The space shuttle program is reviewed together with the evolutional development of the shuttle configuration. The wind tunnel testing rationale and the associated test program management plan and its overall results is reviewed. Information is given for the various facilities and models used within this program. A unique posttest documentation procedure and a summary of the types of test per disciplines, per facility, and per model are presented with detailed listing of the posttest documentation.

  7. V/STOL Tandem Fan transition section model test. [in the Lewis Research Center 10-by-10 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Simpkin, W. E.

    1982-01-01

    An approximately 0.25 scale model of the transition section of a tandem fan variable cycle engine nacelle was tested in the NASA Lewis Research Center 10-by-10 foot wind tunnel. Two 12-inch, tip-turbine driven fans were used to simulate a tandem fan engine. Three testing modes simulated a V/STOL tandem fan airplane. Parallel mode has two separate propulsion streams for maximum low speed performance. A front inlet, fan, and downward vectorable nozzle forms one stream. An auxilliary top inlet provides air to the aft fan - supplying the core engine and aft vectorable nozzle. Front nozzle and top inlet closure, and removal of a blocker door separating the two streams configures the tandem fan for series mode operations as a typical aircraft propulsion system. Transition mode operation is formed by intermediate settings of the front nozzle, blocker door, and top inlet. Emphasis was on the total pressure recovery and flow distortion at the aft fan face. A range of fan flow rates were tested at tunnel airspeeds from 0 to 240 knots, and angles-of-attack from -10 to 40 deg for all three modes. In addition to the model variables for the three modes, model variants of the top inlet were tested in the parallel mode only. These lip variables were: aft lip boundary layer bleed holes, and Three position turning vane. Also a bellmouth extension of the top inlet side lips was tested in parallel mode.

  8. The effect of wind tunnel wall interference on the performance of a fan-in-wing VTOL model

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.

    1974-01-01

    A fan-in-wing model with a 1.07-meter span was tested in seven different test sections with cross-sectional areas ranging from 2.2 sq meters to 265 sq meters. The data from the different test sections are compared both with and without correction for wall interference. The results demonstrate that extreme care must be used in interpreting uncorrected VTOL data since the wall interference may be so large as to invalidate even trends in the data. The wall interference is particularly large at the tail, a result which is in agreement with recently published comparisons of flight and large scale wind tunnel data for a propeller-driven deflected-slipstream configuration. The data verify the wall-interference theory even under conditions of extreme interference. A method yields reasonable estimates for the onset of Rae's minimum-speed limit. The rules for choosing model sizes to produce negligible wall effects are considerably in error and permit the use of excessively large models.

  9. Preliminary wing model tests in the variable density wind tunnel of the National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    Munk, Max M

    1926-01-01

    This report contains the results of a series of tests with three wing models. By changing the section of one of the models and painting the surface of another, the number of models tested was increased to five. The tests were made in order to obtain some general information on the air forces on wing sections at a high Reynolds number and in particular to make sure that the Reynolds number is really the important factor, and not other things like the roughness of the surface and the sharpness of the trailing edge. The few tests described in this report seem to indicate that the air forces at a high Reynolds number are not equivalent to respective air forces at a low Reynolds number (as in an ordinary atmospheric wind tunnel). The drag appears smaller at a high Reynolds number and the maximum lift is increased in some cases. The roughness of the surface and the sharpness of the trailing edge do not materially change the results, so that we feel confident that tests with systematic series of different wing sections will bring consistent results, important and highly useful to the designer.

  10. Wind Tunnel Application of a Pressure-Sensitive Paint Technique to a Faceted Missile Model at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2004-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the vortex-induced surface static pressures on a slender, faceted missile model at subsonic and transonic speeds. Satisfactory global calibrations of the PSP were obtained at =0.70, 0.90, and 1.20, angles of attack from 10 degrees to 20 degrees, and angles of sideslip of 0 and 2.5 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at 57 discrete locations on the model. Both techniques clearly revealed the significant influence on the surface pressure distributions of the vortices shed from the sharp, chine-like leading edges. The mean error in the PSP measurements relative to the ESP data was approximately 0.6 percent at M infinity =0.70 and 2.6 percent at M infinity =0.90 and 1.20. The vortex surface pressure signatures obtained from the PSP and ESP techniques were correlated with the off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The on-surface and off-surface techniques were complementary, since each provided details of the vortex-dominated flow that were not clear or apparent in the other.

  11. Evaluation of pressure and thermal data from a wind tunnel test of a large-scale, powered, STOL fighter model

    NASA Technical Reports Server (NTRS)

    Howell, G. A.; Crosthwait, E. L.; Witte, M. C.

    1981-01-01

    A STOL fighter model employing the vectored-engine-over wing concept was tested at low speeds in the NASA/Ames 40 by 80-foot wind tunnel. The model, approximately 0.75 scale of an operational fighter, was powered by two General Electric J-97 turbojet engines. Limited pressure and thermal instrumentation were provided to measure power effects (chordwise and spanwise blowing) and control-surface-deflection effects. An indepth study of the pressure and temperature data revealed many flow field features - the foremost being wing and canard leading-edge vortices. These vortices delineated regions of attached and separated flow, and their movements were often keys to an understanding of flow field changes caused by power and control-surface variations. Chordwise blowing increased wing lift and caused a modest aft shift in the center of pressure. The induced effects of chordwise blowing extended forward to the canard and significantly increased the canard lift when the surface was stalled. Spanwise blowing effectively enhanced the wing leading-edge vortex, thereby increasing lift and causing a forward shift in the center of pressure.

  12. Wind-tunnel evaluation of a 21-percent-scale powered model of a prototype advanced scout helicopter

    NASA Technical Reports Server (NTRS)

    Phelps, A. E., III; Berry, J. D.

    1985-01-01

    An exploratory wind tunnel investigation of a 21 percent scale powered model of a prototype advanced scout helicopter was conducted in the Langley 4 by 7 Meter Tunnel. The investigation was conducted to define the overall aerodynamic characteristics of the Army Helicopter Improvement Program (AHIP), to determine the effects of the rotor on the aerodynamic characteristics and to evaluate the effect of a mast mounted sight on the aircraft stability characteristics. Tests covered a range of thrust coefficients, advance ratios, angles of attack and angles of sideslip and were run for both rotor on and rotor off configurations. Results of the investigation showed that the prototype configuration was longitudinally unstable with angle of attack for all configurations tested. The instability was due to unfavorable interference effects between the horizontal tail and the wake shed from the engine pylon and rotor hub, which caused a loss of horizontal tail effectiveness. The addition of the mast mounted sight had little effect on the stability of the model, but it caused an alteration in the rotor lift distribution that resulted in substantial interference drag for the sight.

  13. 0.4 Percent Scale Space Launch System Wind Tunnel Test

    NASA Image and Video Library

    2011-11-15

    0.4 Percent Scale Space Launch System Wind Tunnel Test 0.4 Percent Scale SLS model installed in the NASA Langley Research Center Unitary Plan Wind Tunnel Test Section 1 for aerodynamic force and movement testing.

  14. Model Deformation Measurements of Sonic Boom Models in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Kushner, Laura K.; Garbeff, Theodore J.; Heineck, James T.

    2015-01-01

    The deformations of two sonic-boom models were measured by stereo photogrammetry during tests in the 9- by 7-Ft Supersonic Wind Tunnel at NASA Ames Research Center. The models were geometrically similar but one was 2.75 times as large as the other. Deformation measurements were made by simultaneously imaging the upper surfaces of the models from two directions by calibrated cameras that were mounted behind windows of the test section. Bending and twist were measured at discrete points using conventional circular targets that had been marked along the leading and trailing edges of the wings and tails. In addition, continuous distributions of bending and twist were measured from ink speckles that had been applied to the upper surfaces of the model. Measurements were made at wind-on (M = 1.6) and wind-off conditions over a range of angles of attack between 2.5 deg. and 5.0 deg. At each condition, model deformation was determined by comparing the wind-off and wind-on coordinates of each measurement point after transforming the coordinates to reference coordinates tied to the model. The necessary transformations were determined by measuring the positions of a set of targets on the rigid center-body of the models whose model-axes coordinates were known. Smoothly varying bending and twist measurements were obtained at all conditions. Bending displacements increased in proportion to the square of the distance to the centerline. Maximum deflection of the wingtip of the larger model was about 5 mm (2% of the semispan) and that of the smaller model was 0.9 mm (1% of the semispan). The change in wing twist due to bending increased in direct proportion to distance from the centerline and reached a (absolute) maximum of about -1? at the highest angle of attack for both models. The measurements easily resolved bending displacements as small as 0.05 mm and bending-induced changes in twist as small as 0.05 deg.

  15. Phase 2 and 3 wind tunnel tests of the J-97 powered, external augmentor V/STOL model. [conducted in Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Garland, D. B.

    1980-01-01

    Modifications were made to the model to improve longitudinal acceleration capability during transition from hovering to wing borne flight. A rearward deflection of the fuselage augmentor thrust vector is shown to be beneficial in this regard. Other agmentor modifications were tested, notably the removal of both endplates, which improved acceleration performance at the higher transition speeds. The model tests again demonstrated minimal interference of the fuselage augmentor on aerodynamic lift. A flapped canard surface also shows negligible influence on the performance of the wing and of the fuselage augmentor.

  16. Wind-tunnel investigation of the aerodynamic characteristics of the Standard Dynamics Model in coning motion at Mach 0.6

    NASA Technical Reports Server (NTRS)

    Jermey, C.; Schiff, L. B.

    1985-01-01

    A series of wind-tunnel tests have been conducted on the Standard Dynamics Model (a simplified generic fighter-aircraft shape) undergoing coning motion at Mach 0.6. Six-component force and moment data are presented for a range of angles of attack, sideslip and coning rates. At the relatively low nondimensional coning rates employed, the lateral aerodynamic charactersitics generally show a linear variation with coning rate.

  17. Wind tunnel investigation of aerodynamic characteristics of a scale model of a D5 bulldozer and an M109 self-propelled 155 mm Howitzer

    NASA Technical Reports Server (NTRS)

    Laub, G. H.; Kodani, H. M.

    1974-01-01

    Wind tunnel tests were conducted on a scale model of a D5 bulldozer and an M109 self-propelled 155 MM howitzer to determine the aerodynamic characteristics of these typical externally-suspended heavy lift helicopter cargo configurations. Tests were made over a large range of pitch and yaw attitudes at a nominal Reynolds number per unit length of 1.5 x 10 to the 6th power.

  18. Pressure distributions on a 0.04-scale model of the Space Shuttle Orbiter's forward fuselage in the Langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Bradley, P. F.; Siemers, P. M., III; Flanagan, P. F.; Henry, M. W.

    1983-01-01

    Pressure distribution tests on a 0.04-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Langley Unitary Plan Wind Tunnel (UPWT). The UPWT has two different test sections operating in the continuous mode. Each test section has its own Mach number range. The model was tested at angles of attack from -2.5 deg to 30 deg and angles of sideslip from -5 deg to 5 deg in both test sections. The test Reynolds number was 6.6 x 10 to the 6th power per meter. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS pressure orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations currently existing on the Space Shuttle Orbiter Columbia (OV-102). This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel data.

  19. 5. VIEW NORTH OF TEST SECTION IN FULLSCALE WIND TUNNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTH OF TEST SECTION IN FULL-SCALE WIND TUNNEL WITH FREE-FLIGHT MODEL OF A BOEING 737 SUSPENDED FROM A SAFETY CABLE. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  20. Screens Would Protect Wind-Tunnel Fan Blades

    NASA Technical Reports Server (NTRS)

    Farmer, Moses G.

    1992-01-01

    Butterfly screen installed in wind tunnel between test section and fan blades to prevent debris from reaching fan blades if model structure fails. Protective screens deployed manually or automatically. Concept beneficial anywhere wind tunnels employed. Also useful in areas outside of aerospace industry, such as in airflow design of automobiles and other vehicles.

  1. Screens Would Protect Wind-Tunnel Fan Blades

    NASA Technical Reports Server (NTRS)

    Farmer, Moses G.

    1992-01-01

    Butterfly screen installed in wind tunnel between test section and fan blades to prevent debris from reaching fan blades if model structure fails. Protective screens deployed manually or automatically. Concept beneficial anywhere wind tunnels employed. Also useful in areas outside of aerospace industry, such as in airflow design of automobiles and other vehicles.

  2. Wind Tunnel Application of a Pressure-Sensitive Paint Technique to a Faceted Missile Model at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2004-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the vortex-induced surface static pressures on a slender, faceted missile model at subsonic and transonic speeds. Global PSP calibrations were obtained using an in-situ method featuring the simultaneous electronically-scanned pressures (ESP) measurements. Both techniques revealed the significant influence leading-edge vortices on the surface pressure distributions. The mean error in the PSP measurements relative to the ESP data was approximately 0.6 percent at M(sub infinity)=0.70 and 2.6 percent at M(sub infinity)=0.90 and 1.20. The vortex surface pressure signatures obtained from the PSP and ESP techniques were correlated with the off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The on-surface and off-surface techniques were complementary, since each provided details of the vortex-dominated flow that were not clear or apparent in the other.

  3. Wind-Tunnel Tests of a 1/5-Scale Semispan Model of the Republic XF-12 Horizontal Tail Surface

    NASA Technical Reports Server (NTRS)

    Denaci, H. G.

    1945-01-01

    Wind-tunnel tests of a 1/5-scale semispan model of the Republic XF-12 horizontal tail surface equipped with an internally balanced elevator were conducted in the 6- by 6-foot test section of the Langley stability tunnel. The tests included measurements of the aerodynamic characteristics of the horizontal tail with and without a beveled trailing edge and also included measurements of the tab characteristics. The variation of the aerodynamic characteristics with boundary-layer conditions and leakage in the internal-balance chambers, measurements of the boundary-layer displacement thickness near the elevator hinge axis, and pressure distributions at the mean geometric chord were also obtained. The results showed that the hinge-moment characteristics of the elevator were critical to boundary-layer conditions and internal-balance leakage. Increasing the boundary-layer displacement thickness by use of roughness strips reduced the rate of change of elevator hinge moments with tab deflection by about 20 percent. The present horizontal tail appears to be unsatisfactory for longitudinal stability with power on, however, an increase in horizontal-tail lift effectiveness should correct this difficulty. The maneuvering stick force per unit acceleration will be extremely critical to minor variations of the elevator hinge moments if the elevator is linked directly to the stick.

  4. Evaporation suppression from reservoirs using floating covers: Lab scale wind-tunnel observations and mechanistic model predictions

    NASA Astrophysics Data System (ADS)

    Or, Dani; Lehmann, Peter; Aminzadeh, Milad; Sommer, Martina; Wey, Hannah; Krentscher, Christiane; Wunderli, Hans; Breitenstein, Daniel

    2017-04-01

    The competition over dwindling fresh water resources is expected to intensify with projected increase in human population in arid regions, expansion of irrigated land and changes in climate and drought patterns. The volume of water stored in reservoirs would also increase to mitigate seasonal shortages due to rainfall variability and to meet irrigation water needs. By some estimates up to half of the stored water is lost to evaporation, thereby exacerbating the water scarcity problem. Recently, there is an upsurge in the use of self-assembling floating covers to suppress evaporation, yet the design and implementation remain largely empirical. We report a systematic experimental evaluation of different cover types and external drivers (radiation, wind, wind plus radiation) on evaporation suppression and energy balance of a 1.4 m2 basin placed in a wind-tunnel. Surprisingly, evaporation suppression by black and white floating covers (balls and plates) were similar despite significantly different energy balance regimes over the cover surfaces. Moreover, the evaporation suppression efficiency was a simple function of the uncovered area (square root of the uncovered fraction) with linear relations with the covered area in some cases. The thermally decoupled floating covers offer an efficient solution to the evaporation suppression with limited influence of the surface energy balance (water temperature for black and white covers was similar and remained nearly constant). The results will be linked with a predictive evaporation-energy balance model and issues of spatial scales and long exposure times will be studied.

  5. The entrainment, pressure and flow process of a jet fan modeled in a square section wind tunnel

    SciTech Connect

    Mutama, K.R.; Hall, A.E.

    1995-12-31

    Jet fan (ductless fan) ventilation in underground mines and tunnels is a subject requiring further attention. At present there are no accepted procedures or guidelines for this type of ventilation. The main reason has been the absence of sufficient general data, which has hampered the development of rules. There is great potential for using jet fans in terms of both effectiveness and economics because they eliminate the need for ventilation tubing. In the present studies a procedure is described and results are presented from a jet fan modeled in a square section wind tunnel. The major purpose of the studies was to provide fundamental data on jet fan performance after it was realized that previous work had been limited and too site specific. The jet fan position in relation to the tunnel walls was varied in order to study the influence of confining walls on entrainment rates and the resulting aerodynamics. A clearer understanding of the fundamental principles of jet fan applications was obtained.

  6. Model-Scale Aerodynamic Performance Testing of Proposed Modifications to the NASA Langley Low Speed Aeroacoustic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Coston, Calvin W., Jr.

    2005-01-01

    Tests were performed on a 1/20th-scale model of the Low Speed Aeroacoustic Wind Tunnel to determine the performance effects of insertion of acoustic baffles in the tunnel inlet, replacement of the existing collector with a new collector design in the open jet test section, and addition of flow splitters to the acoustic baffle section downstream of the test section. As expected, the inlet baffles caused a reduction in facility performance. About half of the performance loss was recovered by addition the flow splitters to the downstream baffles. All collectors tested reduced facility performance. However, test chamber recirculation flow was reduced by the new collector designs and shielding of some of the microphones was reduced owing to the smaller size of the new collector. Overall performance loss in the facility is expected to be a 5 percent top flow speed reduction, but the facility will meet OSHA limits for external noise levels and recirculation in the test section will be reduced.

  7. Wind-tunnel tests on model wing with Fowler flap and specially developed leading-edge slot

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Platt, Robert C

    1933-01-01

    An investigation was made in the NACA 7 by 10 foot wind tunnel to find the increase in maximum lift coefficient which could be obtained by providing a model wing with both a Fowler trailing-edge extension flap and a Handley Page type leading-edge slot. A conventional Handley page slot proportioned to operate on the plain wing without a flap gave but a slight increase with the flap; so a special form of slot was developed to work more effectively with the flap. With the best combined arrangement the maximum lift coefficient based on the original area was increased from 3.17, for the Fowler wing, to 3.62. The minimum drag coefficient with both devices retracted was increased in approximately the same proportion. Tests were also made with the special-type slot on the plain wing without the flap. The special slot, used either with or without the Fowler flap, gave definitely higher values of the maximum lift coefficient than the slots of conventional form, with an increase of the same order in the minimum drag coefficient.

  8. Pressure distributions obtained on a 0.10-scale model of the Space Shuttle Orbiter's forebody in the Ames Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Henry, M. W.

    1986-01-01

    Pressure distribution test data obtained on a 0.10-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Ames Unitary Wind Tunnel (UPWT). The UPWT tests were conducted in two different test sections operating in the continuous mode, the 8 x 7 feet and 9 x 7 feet test sections. Each test section has its own Mach number range, 1.6 to 2.5 and 2.5 to 3.5 for the 9 x 7 feet and 8 x 7 feet test section, respectively. The test Reynolds number ranged from 1.6 to 2.5 x 10 to the 6th power ft and 0.6 to 2.0 x 10 to the 6th power ft, respectively. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations that existed on the Space Shuttle Columbia (OV-102) during the Orbiter Flight test program. This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel and computational data.

  9. Static and wind tunnel near-field/far field jet noise measurements from model scale single-flow baseline and suppressor nozzles. Volume 2: Forward speed effects

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1976-01-01

    A model scale flight effects test was conducted in the 40 by 80 foot wind tunnel to investigate the effect of aircraft forward speed on single flow jet noise characteristics. The models tested included a 15.24 cm baseline round convergent nozzle, a 20-lobe and annular nozzle with and without lined ejector shroud, and a 57-tube nozzle with a lined ejector shroud. Nozzle operating conditions covered jet velocities from 412 to 640 m/s at a total temperature of 844 K. Wind tunnel speeds were varied from near zero to 91.5 m/s. Measurements were analyzed to (1) determine apparent jet noise source location including effects of ambient velocity; (2) verify a technique for extrapolating near field jet noise measurements into the far field; (3) determine flight effects in the near and far field for baseline and suppressor nozzles; and (4) establish the wind tunnel as a means of accurately defining flight effects for model nozzles and full scale engines.

  10. Analytical and Experimental Evaluation of Digital Control Systems for the Semi-Span Super-Sonic Transport (S4T) Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.; Christhilf, David; Perry, Boyd, III

    2012-01-01

    An important objective of the Semi-Span Super-Sonic Transport (S4T) wind tunnel model program was the demonstration of Flutter Suppression (FS), Gust Load Alleviation (GLA), and Ride Quality Enhancement (RQE). It was critical to evaluate the stability and robustness of these control laws analytically before testing them and experimentally while testing them to ensure safety of the model and the wind tunnel. MATLAB based software was applied to evaluate the performance of closed-loop systems in terms of stability and robustness. Existing software tools were extended to use analytical representations of the S4T and the control laws to analyze and evaluate the control laws prior to testing. Lessons were learned about the complex windtunnel model and experimental testing. The open-loop flutter boundary was determined from the closed-loop systems. A MATLAB/Simulink Simulation developed under the program is available for future work to improve the CPE process. This paper is one of a series of that comprise a special session, which summarizes the S4T wind-tunnel program.

  11. Quiet Supersonic Wind Tunnel Development

    NASA Technical Reports Server (NTRS)

    King, Lyndell S.; Kutler, Paul (Technical Monitor)

    1994-01-01

    The ability to control the extent of laminar flow on swept wings at supersonic speeds may be a critical element in developing the enabling technology for a High Speed Civil Transport (HSCT). Laminar boundary layers are less resistive to forward flight than their turbulent counterparts, thus the farther downstream that transition from laminar to turbulent flow in the wing boundary layer is extended can be of significant economic impact. Due to the complex processes involved experimental studies of boundary layer stability and transition are needed, and these are performed in "quiet" wind tunnels capable of simulating the low-disturbance environment of free flight. At Ames, a wind tunnel has been built to operate at flow conditions which match those of the HSCT laminar flow flight demonstration 'aircraft, the F-16XL, i.e. at a Mach number of 1.6 and a Reynolds number range of 1 to 3 million per foot. This will allow detailed studies of the attachment line and crossflow on the leading edge area of the highly swept wing. Also, use of suction as a means of control of transition due to crossflow and attachment line instabilities can be studied. Topics covered include: test operating conditions required; design requirements to efficiently make use of the existing infrastructure; development of an injector drive system using a small pilot facility; plenum chamber design; use of computational tools for tunnel and model design; and early operational results.

  12. On the aero-elastic design of the DTU 10MW wind turbine blade for the LIFES50+ wind tunnel scale model

    NASA Astrophysics Data System (ADS)

    Bayati, I.; Belloli, M.; Bernini, L.; Mikkelsen, R.; Zasso, A.

    2016-09-01

    This paper illustrates the aero-elastic optimal design, the realization and the verification of the wind tunnel scale model blades for the DTU 10 MW wind turbine model, within LIFES50+ project. The aerodynamic design was focused on the minimization of the difference, in terms of thrust coefficient, with respect to the full scale reference. From the Selig low Reynolds database airfoils, the SD7032 was chosen for this purpose and a proper constant section wing was tested at DTU red wind tunnel, providing force and distributed pressure coefficients for the design, in the Reynolds range 30-250 E3 and for different angles of attack. The aero-elastic design algorithm was set to define the optimal spanwise thickness over chord ratio (t/c), the chord length and the twist to match the first flapwise scaled natural frequency. An aluminium mould for the carbon fibre was CNC manufactured based on B-Splines CAD definition of the external geometry. Then the wind tunnel tests at Politecnico di Milano confirmed successful design and manufacturing approaches.

  13. Landing pressure loads of the 140A/B space shuttle orbiter (model 43-0) determined in the Rockwell International low speed wind tunnel (OA69), volume 1. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Soard, T. L.

    1975-01-01

    Wind tunnel tests of a 0.0405 scale model of the -1404A/B configuration of the Space Shuttle Vehicle Orbiter are presented. Pressure loads data were obtained from the orbiter in the landing configuration in the presence of the ground for structural strength analysis. This was accomplished by locating as many as 30 static pressure bugs at various locations on external model surfaces as each configuration was tested. A complete pressure loads survey was generated for each configuration by combining data from all bug locations, and these loads are described for the fuselage, wing, vertical tail, and landing gear doors. Aerodynamic force data was measured by a six component internal strain gage balance. This data was recorded to correct model angles of attack and sideslip for sting and balance deflections and to determine the aerodynamic effects of landing gear extension. All testing was conducted at a Mach number of 0.165 and a Reynolds number of 1.2 million per foot. Photographs of test configurations are shown.

  14. Results of flow visualization studies in the NASA/MSFC 14 x 14 inch trisonic wind tunnel on a .004 scale model (34-0) space shuttle orbiter and integrated vehicle

    NASA Technical Reports Server (NTRS)

    Garton, W. P.

    1974-01-01

    Details are presented of flow visualization techniques developed during wind tunnel test IA-52 conducted in a 14 x 14 inch trisonic wind tunnel. Testing was conducted from Mach = 0.9 to 5.0 on the orbiter alone and integrated vehicle configurations. Thin film oil paint and ultraviolet light sensitive oil applications were used on a .004 scale model vehicle. Test results presented are in the form of black and white photographs taken after the completion of a test run.

  15. Experimental Investigations of the NASA Common Research Model in the NASA Langley National Transonic Facility and NASA Ames 11-Ft Transonic Wind Tunnel (Invited)

    NASA Technical Reports Server (NTRS)

    Rivers, S. M.; Dittberner, Ashley

    2011-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility and the NASA Ames 11-ft wind tunnel. Data have been obtained at chord Reynolds numbers of 5 million for five different configurations at both wind tunnels. Force and moment, surface pressure and surface flow visualization data were obtained in both facilities but only the force and moment data are presented herein. Nacelle/pylon, tail effects and tunnel to tunnel variations have been assessed. The data from both wind tunnels show that an addition of a nacelle/pylon gave an increase in drag, decrease in lift and a less nose down pitching moment around the design lift condition of 0.5 and that the tail effects also follow the expected trends. Also, all of the data shown fall within the 2-sigma limits for repeatability. The tunnel to tunnel differences are negligible for lift and pitching moment, while the drag shows a difference of less than ten counts for all of the configurations. These differences in drag may be due to the variation in the sting mounting systems at the two tunnels.

  16. Wind tunnel tests of the 0.010-scale space shuttle integrated vehicle (model 52-QT) in the NASA/Ames 3.5-foot hypersonic wind tunnel (IA18)

    NASA Technical Reports Server (NTRS)

    Esparza, V.; Chee, E.; Stone, J.; Mellenthin, J. A.

    1975-01-01

    Experimental aerodynamic investigations were conducted in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel on an 0.010-scale model of the space shuttle integrated vehicle consisting of an orbiter and external tank. The basic hypersonic stability characteristics of the orbiter attached rigidly to the external tank and the basic hypersonic stability characteristics of external tank alone simulating RTLS abort conditions were evaluated. The integrated vehicle was tested at angles of attack from- 8 deg through +30 deg and angles of sideslip of- 8 deg through +8 deg at fixed angles of attack of -4 deg, 0 deg, and +4 deg. A maximum angle of attack range of +15 deg through +40 deg was obtained for this configuration, at Mach number 7.3, for one run only. External tank alone testing was conducted at angles of attack from +8 deg through -30 deg and angles of sideslip of -8 deg at fixed angles of attack of -4 deg, 0 deg and +4 deg. Six-component force data and static base pressures were recorded during the test.

  17. The Langley Wind Tunnel Enterprise

    NASA Technical Reports Server (NTRS)

    Paulson, John W., Jr.; Kumar, Ajay; Kegelman, Jerome T.

    1998-01-01

    After 4 years of existence, the Langley WTE is alive and growing. Significant improvements in the operation of wind tunnels have been demonstrated and substantial further improvements are expected when we are able to truly address and integrate all the processes affecting the wind tunnel testing cycle.

  18. IRBM in Unitary Plan Wind Tunnel

    NASA Image and Video Library

    1957-09-07

    L57-700 In the reentry flight path of this nose cone model of a Jupiter Intermediate range ballistic missile (IRBM) was tested in the Unitary Plan Wind Tunnel. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 475.

  19. Development of Aeroservoelastic Analytical Models and Gust Load Alleviation Control Laws of a SensorCraft Wind-Tunnel Model Using Measured Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott, Robert C.

    2006-01-01

    Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.

  20. Development of Aeroservoelastic Analytical Models and Gust Load Alleviation Control Laws of a SensorCraft Wind-Tunnel Model Using Measured Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Vartio, Eric; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott,Robert C.

    2007-01-01

    Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.

  1. Langley Field wind tunnel apparatus

    NASA Technical Reports Server (NTRS)

    Bacon, D L

    1921-01-01

    The difficulties experienced in properly holding thin tipped or tapered airfoils while testing on an N.P.L. type aerodynamic balance even at low air speeds, and the impossibility of holding even solid metal models at the high speeds attainable at the National Advisory Committee's wind tunnel, necessitated the design of a balance which would hold model airfoils of any thickness and at speeds up to 150 m.p.h. In addition to mechanical strength and rigidity, it was highly desirable that the balance readings should require a minimum amount of correction and mathematical manipulation in order to obtain the lift and drag coefficients and the center of pressure. The balance described herein is similar to one in use at the University of Gottingen, the main difference lying in the addition of a device for reading the center of pressure directly, without the necessity of any correction whatsoever. Details of the design and operation of the device are given.

  2. The cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1976-01-01

    Based on theoretical studies and experience with a low speed cryogenic tunnel and with a 1/3-meter transonic cryogenic tunnel, the cryogenic wind tunnel concept was shown to offer many advantages with respect to the attainment of full scale Reynolds number at reasonable levels of dynamic pressure in a ground based facility. The unique modes of operation available in a pressurized cryogenic tunnel make possible for the first time the separation of Mach number, Reynolds number, and aeroelastic effects. By reducing the drive-power requirements to a level where a conventional fan drive system may be used, the cryogenic concept makes possible a tunnel with high productivity and run times sufficiently long to allow for all types of tests at reduced capital costs and, for equal amounts of testing, reduced total energy consumption in comparison with other tunnel concepts.

  3. Cryogenic wind tunnels. II

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    The application of the cryogenic concept to various types of tunnels including Ludwieg tube tunnel, Evans clean tunnel, blowdown, induced-flow, and continuous-flow fan-driven tunnels is discussed. Benefits related to construction and operating costs are covered, along with benefits related to new testing capabilities. It is noted that cooling the test gas to very low temperatures increases Reynolds number by more than a factor of seven. From the energy standpoint, ambient-temperature fan-driven closed-return tunnels are considered to be the most efficient type of tunnel, while a large reduction in the required tunnel stagnation pressure can be achieved through cryogenic operation. Operating envelopes for three modes of operation for a cryogenic transonic pressure tunnel with a 2.5 by 2.5 test section are outlined. A computer program for calculating flow parameters and power requirements for wind tunnels with operating temperatures from saturation to above ambient is highlighted.

  4. Field verification of the wind tunnel coefficients

    NASA Technical Reports Server (NTRS)

    Gawronski, W. K.; Mellstrom, J. A.

    1994-01-01

    Accurate information about wind action on antennas is required for reliable prediction of antenna pointing errors in windy weather and for the design of an antenna controller with wind disturbance rejection properties. The wind tunnel data obtained 3 years ago using a scaled antenna model serves as an antenna industry standard, frequently used for the first purpose. The accuracy of the wind tunnel data has often been challenged, since they have not yet been tested in a field environment (full-aized antenna, real wind, actual terrain, etc.). The purpose of this investigation was to obtain selected field measurements and compare them with the available wind tunnel data. For this purpose, wind steady-state torques of the DSS-13 antenna were measured, and dimensionless wind torque coefficients were obtained for a variety of yaw and elevation angles. The results showed that the differences between the wind tunnel torque coefficients and the field torque coefficients were less than 10 percent of their values. The wind-gusting action on the antenna was characterized by the power spectra of the antenna encoder and the antenna torques. The spectra showed that wind gusting primarily affects the antenna principal modes.

  5. Wind Tunnel Model Support Cart with Telescoping Mast and Cable Yaw Drive

    NASA Technical Reports Server (NTRS)

    Gregory, Peyton B.; Monroe, Charles A.

    1999-01-01

    The 14-by-22 Foot Subsonic Tunnel at NASA Langley Research Center uses model carts to support and position models in the test section. The carts are portable through the use of air bearings and can be moved from the test to the Model Prep Area (MPA) to change models in preparation for a new test. This paper describes the design of a new model cart that is three feet shorter than existing carts. This will eliminate clearance problems when moving the model and cart from the MPA to the test section.

  6. Large-scale wind tunnel tests of a sting-supported V/STOL fighter model at high angles of attack

    NASA Technical Reports Server (NTRS)

    Stoll, F.; Minter, E. A.

    1981-01-01

    A new sting model support has been developed for the NASA/Ames 40- by 80-Foot Wind Tunnel. This addition to the facility permits testing of relatively large models to large angles of attack or angles of yaw depending on model orientation. An initial test on the sting is described. This test used a 0.4-scale powered V/STOL model designed for testing at angles of attack to 90 deg and greater. A method for correcting wake blockage was developed and applied to the force and moment data. Samples of this data and results of surface-pressure measurements are presented.

  7. Analytical Study of Ventilated Wind Tunnel Boundary Interference on V/ STOL Models Including Wake Curvature and Decay Effects

    DTIC Science & Technology

    1974-11-01

    inverse Fourier transforms on x and y yields u,(x, y, z) = -= 1 j/ iqij —\\—- [(A, + iA») sinh (£0 cosh (zf) / 421 \\i2rr m=o —00 Jo i...Wind Tunnel Testing Techniques. " AGARD Rpt. 601, April 1973. 7. Heyson, Harry H. "Wind Tunnel Wall Effects at Extreme Force Coefficients...G.OD+0)/l2.0D*0*R3)+2.0D+0*(U*S/SR-U*ftSUAl/ 1 (3.00*0*T*T)-8N*(1.0D+0*U/T)/112.0*A32I CC= CP (I I IF (ICASE.EQ.2) GU TQ 20 ANS=PN-3.00i-0*ZN

  8. Construction, wind tunnel testing and data analysis for a 1/5 scale ultra-light wing model

    NASA Technical Reports Server (NTRS)

    James, Michael D.; Smith, Howard W.

    1993-01-01

    This report documents the construction, wind tunnel testing, and data analysis of a 1/5 scale ultra-light wing section. Wind tunnel testing provided accurate and meaningful lift, drag, and pitching moment data. This data was processed and graphically presented as follows: C(sub L) vs. gamma; C(sub D) vs. gamma; C(sub M) vs. gamma; and C(sub L) vs. C(sub D). The wing fabric flexure was found to be significant and its possible effects on aerodynamic data was discussed. The fabric flexure is directly related to wing angle of attack and airspeed. Different wing section shapes created by fabric flexure are presented with explanations of the types of pressures that act upon the wing surface. This report provides conclusive aerodynamic data for ultra-light wings.

  9. Using a commercial CAD system for simultaneous input to theoretical aerodynamic programs and wind-tunnel model construction

    NASA Technical Reports Server (NTRS)

    Enomoto, F.; Keller, P.

    1984-01-01

    The Computer Aided Design (CAD) system's common geometry database was used to generate input for theoretical programs and numerically controlled (NC) tool paths for wind tunnel part fabrication. This eliminates the duplication of work in generating separate geometry databases for each type of analysis. Another advantage is that it reduces the uncertainty due to geometric differences when comparing theoretical aerodynamic data with wind tunnel data. The system was adapted to aerodynamic research by developing programs written in Design Analysis Language (DAL). These programs reduced the amount of time required to construct complex geometries and to generate input for theoretical programs. Certain shortcomings of the Design, Drafting, and Manufacturing (DDM) software limited the effectiveness of these programs and some of the Calma NC software. The complexity of aircraft configurations suggests that more types of surface and curve geometry should be added to the system. Some of these shortcomings may be eliminated as improved versions of DDM are made available.

  10. Using a commercial CAD system for simultaneous input to theoretical aerodynamic programs and wind-tunnel model construction

    NASA Technical Reports Server (NTRS)

    Enomoto, F.; Keller, P.

    1984-01-01

    The Computer Aided Design (CAD) system's common geometry database was used to generate input for theoretical programs and numerically controlled (NC) tool paths for wind tunnel part fabrication. This eliminates the duplication of work in generating separate geometry databases for each type of analysis. Another advantage is that it reduces the uncertainty due to geometric differences when comparing theoretical aerodynamic data with wind tunnel data. The system was adapted to aerodynamic research by developing programs written in Design Analysis Language (DAL). These programs reduced the amount of time required to construct complex geometries and to generate input for theoretical programs. Certain shortcomings of the Design, Drafting, and Manufacturing (DDM) software limited the effectiveness of these programs and some of the Calma NC software. The complexity of aircraft configurations suggests that more types of surface and curve geometry should be added to the system. Some of these shortcomings may be eliminated as improved versions of DDM are made available.

  11. Instrumentation applications to Space Shuttle models and thermal protection system tiles tested in NASA-AMES wind tunnels

    NASA Technical Reports Server (NTRS)

    Coe, C. F.; Brownson, J. J.

    1981-01-01

    The highlights of the many wind-tunnel tests conducted in the course of the Space Shuttle development program are presented with emphasis on instrumentation applications. The examples of tests discussed include airframe aerodynamics, aerodynamic heating, aerodynamic noise, tile dynamic response, and tile loads. Many of the tests were conducted with standard wind-tunnel instrumentation. Most of the more unusual instrumentation requirements were related to the thermal protection system, where some pressure-sensor concepts were adapted to measure airloads on tiles. These measurements provided the only quantitative data that could be used to confirm the airload analysis procedure. Limited applications of computers to experimental control, in conjunction with data taken during Shuttle tests, have resulted in substantial benefits in overall test efficiency.

  12. Qualification of the T2 wind tunnel in cryogenic operation. A: Thermal field, preliminary study of a schematic model

    NASA Technical Reports Server (NTRS)

    Dor, J. B.; Mignosi, A.; Plazanet, M.

    1984-01-01

    The T2 wind tunnel is described. The process of generating a cyrogenic gust using the example of a test made at very low temperature is presented. Detailed results of tests on temperatures for flow in the settling chamber, the interior walls of the system, and the metal casing are given. The transverse temperature distribution in the settling chamber and working section, and of the thermal gradients in the walls, are given as a function of the temperature level of the test.

  13. Models of Lift and Drag Coefficients of Stalled and Unstalled Airfoils in Wind Turbines and Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    2008-01-01

    Equations are developed with which to calculate lift and drag coefficients along the spans of torsionally-stiff rotating airfoils of the type used in wind turbine rotors and wind tunnel fans, at angles of attack in both the unstalled and stalled aerodynamic regimes. Explicit adjustments are made for the effects of aspect ratio (length to chord width) and airfoil thickness ratio. Calculated lift and drag parameters are compared to measured parameters for 55 airfoil data sets including 585 test points. Mean deviation was found to be -0.4 percent and standard deviation was 4.8 percent. When the proposed equations were applied to the calculation of power from a stall-controlled wind turbine tested in a NASA wind tunnel, mean deviation from 54 data points was -1.3 percent and standard deviation was 4.0 percent. Pressure-rise calculations for a large wind tunnel fan deviated by 2.7 percent (mean) and 4.4 percent (standard). The assumption that a single set of lift and drag coefficient equations can represent the stalled aerodynamic behavior of a wide variety of airfoils was found to be satisfactory.

  14. Experimental Testing of a Generic Submarine Model in the DSTO Low Speed Wind Tunnel. Phase 2

    DTIC Science & Technology

    2014-03-01

    axis, z-axis (Nm) l Model reference length (1.35 m) L Lift force (N) MRP Moment Reference Point q Dynamic pressure       2 2 1 Uρ (Pa...moment reference point ( MRP ). The moment reference point was defined as the mid-length position on the centre-line of the model. Figure 5 presents the

  15. Bell X-1 Research Model on Single Support Strut in 7 x 10 Foot Wind Tunnel

    NASA Image and Video Library

    1947-06-14

    Modified Bell X-1 model pioneered variable-sweep studies in 1947. Photograph published in Sixty Years of Aeronautical Research 1917-1977 By David A. Anderton. A NASA publication, page 52.Modified Bell X-1 model pioneered variable-sweep studies in 1947. Photograph published in Sixty Years of Aeronautical Research 1917-1977 By David A. Anderton. A NASA publication, page 52.

  16. Model supports and their effects on the results of wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Bacon, David L

    1923-01-01

    The airflow about a model while being tested is often sufficiently affected by the model support to lead to erroneous conclusions unless appropriate corrections are used. In this paper some new material on the subject is presented, together with a review of the airfoil support corrections used in several other laboratories.

  17. A wind-tunnel investigation of a B-52 model flutter suppression system

    NASA Technical Reports Server (NTRS)

    Redd, L. T.; Gilman, J., Jr.; Cooley, D. E.; Sevart, F. D.

    1974-01-01

    Flutter modeling techniques have been successfully extended to the difficult case of the active suppression of flutter. The demonstration was conducted in a transonic dynamics tunnel using a 1/30 scale, elastic, dynamic model of a Boeing B-52 control configured vehicle. The results from the study show that with the flutter suppression system operating there is a substantial increase in the damping associated with the critical flutter mode. The results also show good correlation between the damping characteristics of the model and the aircraft.

  18. Study of optical techniques for the Ames unitary wind tunnels. Part 4: Model deformation

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    A survey of systems capable of model deformation measurements was conducted. The survey included stereo-cameras, scanners, and digitizers. Moire, holographic, and heterodyne interferometry techniques were also looked at. Stereo-cameras with passive or active targets are currently being deployed for model deformation measurements at NASA Ames and LaRC, Boeing, and ONERA. Scanners and digitizers are widely used in robotics, motion analysis, medicine, etc., and some of the scanner and digitizers can meet the model deformation requirements. Commercial stereo-cameras, scanners, and digitizers are being improved in accuracy, reliability, and ease of operation. A number of new systems are coming onto the market.

  19. Phase I Experimental Testing of a Generic Submarine Model in the DSTO Low Speed Wind Tunnel

    DTIC Science & Technology

    2012-07-01

    a possible wake effect from the model support and fairing. In contrast, the Z force coefficient in the body-axis (CZ) is relatively symmetric about...of the flow around the aerodynamic fairing, and the turbulent wake structures downstream of the vertical support pylon-model body junction. Figure 8...of the results gathered using this flow visualisation technique. Unsteady Wake Region Figure 9 - A typical tufting flow visualisation

  20. Wind tunnel test results of a 1/8-scale fan-in-wing model

    NASA Technical Reports Server (NTRS)

    Wilson, John C.; Gentry, Garl L.; Gorton, Susan A.

    1996-01-01

    A 1/8-scale model of a fan-in-wing concept considered for development by Grumman Aerospace Corporation for the U.S. Army was tested in the Langley 14- by 22-Foot Subsonic Tunnel. Hover testing, which included height above a pressure-instrumented ground plane, angle of pitch, and angle of roll for a range of fan thrust, was conducted in a model preparation area near the tunnel. The air loads and surface pressures on the model were measured for several configurations in the model preparation area and in the tunnel. The major hover configuration change was varying the angles of the vanes attached to the exit of the fans for producing propulsive force. As the model height above the ground was decreased, there was a significant variation of thrust-removed normal force with constant fan speed. The greatest variation was generally for the height-to-fan exit diameter ratio of less than 2.5; the variation was reduced by deflecting fan exit flow outboard with the vanes. In the tunnel angles of pitch and sideslip, height above the tunnel floor, and wind speed were varied for a range of fan thrust and different vane angle configurations. Other configuration features such as flap deflections and tail incidence were evaluated as well. Though the V-tail empennage provided an increase in static longitudinal stability, the total model configuration remained unstable.

  1. WT - WIND TUNNEL PERFORMANCE ANALYSIS

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    WT was developed to calculate fan rotor power requirements and output thrust for a closed loop wind tunnel. The program uses blade element theory to calculate aerodynamic forces along the blade using airfoil lift and drag characteristics at an appropriate blade aspect ratio. A tip loss model is also used which reduces the lift coefficient to zero for the outer three percent of the blade radius. The application of momentum theory is not used to determine the axial velocity at the rotor plane. Unlike a propeller, the wind tunnel rotor is prevented from producing an increase in velocity in the slipstream. Instead, velocities at the rotor plane are used as input. Other input for WT includes rotational speed, rotor geometry, and airfoil characteristics. Inputs for rotor blade geometry include blade radius, hub radius, number of blades, and pitch angle. Airfoil aerodynamic inputs include angle at zero lift coefficient, positive stall angle, drag coefficient at zero lift coefficient, and drag coefficient at stall. WT is written in APL2 using IBM's APL2 interpreter for IBM PC series and compatible computers running MS-DOS. WT requires a CGA or better color monitor for display. It also requires 640K of RAM and MS-DOS v3.1 or later for execution. Both an MS-DOS executable and the source code are provided on the distribution medium. The standard distribution medium for WT is a 5.25 inch 360K MS-DOS format diskette in PKZIP format. The utility to unarchive the files, PKUNZIP, is also included. WT was developed in 1991. APL2 and IBM PC are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation. PKUNZIP is a registered trademark of PKWare, Inc.

  2. Evaluation of methods for characterizing surface topography of models for high Reynolds number wind-tunnels

    NASA Technical Reports Server (NTRS)

    Teague, E. C.; Vorburger, T. V.; Scire, F. E.; Baker, S. M.; Jensen, S. W.; Gloss, B. B.; Trahan, C.

    1982-01-01

    Current work by the National Bureau of Standards at the NASA National Transonic Facility (NTF) to evaluate the performance of stylus instruments for determining the topography of models under investigation is described along with instrumentation for characterization of the surface microtopography. Potential areas of surface effects are reviewed, and the need for finer surfaced models for the NTF high Reynolds number flows is stressed. Current stylus instruments have a radii as large as 25 microns, and three models with surface finishes of 4-6, 8-10, and 12-15 micro-in. rms surface finishes were fabricated for tests with a stylus with a tip radius of 1 micron and a 50 mg force. Work involving three-dimensional stylus profilometry is discussed in terms of stylus displacement being converted to digital signals, and the design of a light scattering instrument capable of measuring the surface finish on curved objects is presented.

  3. Wind tunnel investigation of helicopter rotor wake effects on three helicopter fuselage models

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Mineck, R. E.

    1974-01-01

    The effects of rotor downwash on helicopter fuselage aerodynamic characteristics were investigated. A rotor model for generating the downwash was mounted close to each of three fuselage models. The main report presents the force and moment data in both graphical and tabular form and the pressure data in graphical form. This supplement presents the pressure data in tabular form. Each run or parameter sweep is identified by a unique run number. The data points in each run are identified by a point number. The pressure data can be matched to the force data by matching the run and point number.

  4. Study of Multipiece, Flow-Through Wind Tunnel Models for HIRT

    DTIC Science & Technology

    1975-11-01

    used for model pa r t s is PH13 - 8 Mo in the H1000 condition. PH13 - 8 Mo H1000 and 18Ni-300 grade s ta in less steel are used for the support sy s...For example: PH13 - 8 Mo Steel Coefficient of Thermal Expansion 6061 Aluminum Coefficient of Thermal Expansion For a A T of 130°: Change in...ted f rom PH13 - 8 Mo H1000 s t a in less s tee l . d. The model sting is fabr ica ted from 18 Ni-300 grade s tee l . e. The exis t ing balance

  5. Evaluation of Spray Drift Using Low-Speed Wind Tunnel Measurements and Dispersion Modeling

    DTIC Science & Technology

    2010-01-01

    ricultural Engineers, St. Joseph, MI. 9 Teske , M. E., Thistle, H. W., and Ice, G. G., “Technical Advances in Modeling Aerially Applied Sprays...Int., Vol. 5, No. 1, 2008, paper ID JAI101493. 13 Teske , M., personal communication, 2009. 14 ISO 22369-1:2006E, 2006, “Crop Protection

  6. McDonnell F4H Model in Ames 40X80 foot Wind Tunnel.

    NASA Image and Video Library

    1956-10-19

    Application of blowing type boundry-layer control to the leading and trailing edge flaps of a 52 deg swept wing. 3/4 view of Aspect Ratio 2.8, taper ratio .17, 45 deg swept back wing model -3/4 front view

  7. DC-9 V/STOL Transport Model in the 40x80 Foot Wind Tunnel.

    NASA Image and Video Library

    1971-04-28

    3/4 front view of McDonnell-Douglas Large-Scale lift fan, vertical and/or short take-off and landing (V/STOL), transport model. Francis Malerick in photograph. The McDonnell Douglas DC-9 (initially known as the Douglas DC-9) is a twin-engine, single-aisle jet airliner.

  8. The metallurgical structure and mechanical properties at low temperature of Nitronic 40 with particular reference to its use in the construction of models for cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1982-01-01

    Nitronic 40 was chosen for the construction of Pathfinder I, an R & D model for use in the National Transonic Facility, because of its good mechanical properties at cryogenic temperatures. Nitronic 40 contains delta ferrite and is in a sensitized condition. Heat treatments carried out to remove residual stresses also caused further sensitization. Experiments showed that heat treatment followed by cryoquenching removed the sensitization without creating residual stresses. Heat treatment at temperatures of 2200 F was used to remove the delta ferrite but with little success and at the cost of massive grain growth. The implications of using degraded Nitronic 40 for cryogenic wind tunnel models are discussed, together with possible acceptance criteria.

  9. Aerodynamic characteristics of a powered tilt-proprotor wind tunnel model

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Mineck, R. E.; Freeman, C. E.

    1976-01-01

    An investigation was conducted in the Langley V/STOL tunnel to determine the performance, stability and control, and rotor-wake interaction effects of a powered tilt-proprotor aircraft model with gimbal-hub rotors. Tests were conducted at representative flight conditions for hover, helicopter, transition, and airplane flight. Force and moment data were obtained for the complete model and for each of the two rotors. In addition to wind-speed variation, the angle of attack, angle of sideslip, rotor speed, rotor collective pitch, longitudinal cyclic pitch, rotor pylon angle, and configuration geometry were varied. The results, presented in graphical form, are available in tabular form to facilitate the validation of analytical methods of defining the aerodynamic characteristics of tilt-proprotor configurations.

  10. Design and fabrication of instrumented composite airfoils for a cryogenic wind tunnel model

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Firth, George C.; Hollingsworth, William H., Jr.; Adderholdt, Bruce M.; Gibbens, Barry V.

    1990-01-01

    Two instrumented horizontal stabilizers and one instrumented vertical stabilizer were designed and fabricated for testing on the Pathfinder 1 (PF-1) Transport Model in the NASA Langley Research Center's National Transonic Facility (NTF). Two different designs were employed: the horizontal stabilizer utilized a metal spar and fiberglass overwrap and the vertical stabilizer was made of all fiberglass. All design requirements were met in terms of design loads, airfoil tolerances, surface finish, orifice hole quality, and proof-of-concept tests. Pressure tubing installation was found to be easier for these concepts as compared to methods used in conventional metallic models. Ease of repair was found to be a principal advantage in that some fabrication problems were overcome by reapplying fiberglass cloth and/or epoxy to damaged areas. Also, fabrication costs were judged to be lower when compared to the more conventional design fabrication costs.

  11. An investigation of rotor harmonic noise by the use of small scale wind tunnel models

    NASA Technical Reports Server (NTRS)

    Sternfeld, H., Jr.; Schaffer, E. G.

    1982-01-01

    Noise measurements of small scale helicopter rotor models were compared with noise measurements of full scale helicopters to determine what information about the full scale helicopters could be derived from noise measurements of small scale helicopter models. Comparisons were made of the discrete frequency (rotational) noise for 4 pairs of tests. Areas covered were tip speed effects, isolated rotor, tandem rotor, and main rotor/tail rotor interaction. Results show good comparison of noise trends with configuration and test condition changes, and good comparison of absolute noise measurements with the corrections used except for the isolated rotor case. Noise measurements of the isolated rotor show a great deal of scatter reflecting the fact that the rotor in hover is basically unstable.

  12. Nonlinearity of mechanical damping and stiffness of a spring-suspended sectional model system for wind tunnel tests

    NASA Astrophysics Data System (ADS)

    Gao, Guangzhong; Zhu, Ledong

    2015-10-01

    The wind tunnel test of spring-suspended sectional models (SSSM) is an important means in the research of wind engineering, which is very frequently employed to check the performances of flutter and vortex-induced resonance of bridges as well as to identify the various aerodynamic and aeroelastic parameters of bridge components, such as aerodynamic derivatives of self-excited forces. However, in practice, the mechanical damping ratios and natural frequencies of SSSM system are prevailingly supposed to be constant in the whole procedure of a test. This assumption often leads to notable errors of the test results or dispersion of the identified aerodynamic parameters because the mechanical damping ratios and natural frequencies of SSSM system are proved to vary in fact to some extent with the change of oscillating amplitude. On that account, the mechanical nonlinearity of SSSM system is investigated and discussed in this paper by taking a flat-closed box section as a research background. The conventional linear model is firstly proved to fail to predict precisely the long-duration free decay responses of the SSSM system. The formulae of equivalent linearization approximation (ELA) are then derived by using a multiple-scale method to model the mechanical nonlinearities in the first-order approximate sense, and a time-domain system identification method is proposed on this basis to identify equivalent amplitude-dependent (EAD) damping ratio and frequency. The proposed ELA and nonlinear system identification methods are then found to be precise enough to model the mechanical nonlinearities of SSSM system. The characteristics of EAD damping ratio and frequency of both the bending and torsional modes are then discussed in detail. It is then found that the major energy dissipation of SSSM vibrations at both the bending and torsional modes generally comes from the combined effect of viscous damping and quadratic damping. However, for the vibration at the bending mode with

  13. Wind tunnel investigation of helicopter-rotor wake effects on three helicopter fuselage models

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Mineck, R. E.

    1975-01-01

    The effects of rotor wake on helicopter fuselage aerodynamic characteristics were investigated in the Langley V/STOL tunnel. Force, moment, and pressure data were obtained on three fuselage models at various combinations of windspeed, sideslip angle, and pitch angle. The data show that the influence of rotor wake on the helicopter fuselage yawing moment imposes a significant additional thrust requirement on the tail rotor of a single-rotor helicopter at high sideslip angles.

  14. Rigid Body Stability Augmentation Studies for a Wind Tunnel Flutter Model.

    DTIC Science & Technology

    1985-11-01

    evident in the root locus diagrams, Figs 3 and 4. Therefore, the stability augmentation system (SAS) was required to - provide basic stability and if... augmentation system (SAS) control law for it. The RAE designed control system simulation and analysis computer package ’TSIM’ (Refs. 3, 4) was used to program...One of my activities in preparation for the Phase 2 trials was to investigate the rigid-body response of the model and to develop a stability

  15. Study of optical techniques for the Ames unitary wind tunnel, part 7

    NASA Technical Reports Server (NTRS)

    Lee, George

    1993-01-01

    A summary of optical techniques for the Ames Unitary Plan wind tunnels are discussed. Six optical techniques were studied: Schlieren, light sheet and laser vapor screen, angle of attack, model deformation, infrared imagery, and digital image processing. The study includes surveys and reviews of wind tunnel optical techniques, some conceptual designs, and recommendations for use of optical methods in the Ames Unitary Plan wind tunnels. Particular emphasis was placed on searching for systems developed for wind tunnel use and on commercial systems which could be readily adapted for wind tunnels. This final report is to summarize the major results and recommendations.

  16. The drag of magnetically suspended wind-tunnel models with nose-cones of various shapes

    NASA Technical Reports Server (NTRS)

    Dubois, G.

    1983-01-01

    This article concerns the experimental determination of optimum nose-cones (minimum drag) of a body of revolution at supersonic and hypersonic speeds by means of ONERA magnetic suspension. The study concerns two groups of models, specifically: a group whose nose-cone has a profile in the shape of X(n); the AGARD B group whose nose-cone is plotted in accordance with a given law. The results obtained for the first group are comparable to those calculated with the approximations of Cole and Newton and the experiments carried out by Kubota.

  17. An electronic system for measuring thermophysical properties of wind tunnel models

    NASA Technical Reports Server (NTRS)

    Corwin, R. R.; Kramer, J. S.

    1975-01-01

    An electronic system is described which measures the surface temperature of a small portion of the surface of the model or sample at high speeds using an infrared radiometer. This data is processed along with heating rate data from the reference heat gauge in a small computer and prints out the desired thermophysical properties, time, surface temperature, and reference heat rate. This system allows fast and accurate property measurements over thirty temperature increments. The technique, the details of the apparatus, the procedure for making these measurements, and the results of some preliminary tests are presented.

  18. Vibratory Loads Data from a Wind-Tunnel Test of Structurally Tailored Model Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Hamouda, M-Nabil H.; Idol, Robert F.; Mirick, Paul H.; Singleton, Jeffrey D.; Wilbur, Matthew L.

    1991-01-01

    An experimental study was conducted in the Langley Transonic Dynamics Tunnel to investigate the use of a Bell Helicopter Textron (BHT) rotor structural tailoring concept, known as rotor nodalization, in conjunction with advanced blade aerodynamics as well as to evaluate rotor blade aerodynamic design methodologies. A 1/5-size, four-bladed bearingless hub, three sets of Mach-scaled model rotor blades were tested in forward flight from transition up to an advance ratio of 0.35. The data presented pertain only to the evaluation of the structural tailoring concept and consist of fixed-system and rotating system vibratory loads. These data will be useful for evaluating the effects of tailoring blade structural properties on fixed-system vibratory loads, as well as validating analyses used in the design of advanced rotor systems.

  19. Loads and Performance Data from a Wind-Tunnel Test of Generic Model Helicopter Rotor Blades

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Wilbur, Matthew L.

    2005-01-01

    An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to acquire data for use in assessing the ability of current and future comprehensive analyses to predict helicopter rotating-system and fixed-system vibratory loads. The investigation was conducted with a generic model helicopter rotor system using blades with rectangular planform, no built-in twist, uniform radial distribution of mass and stiffnesses, and a NACA 0012 airfoil section. Rotor performance data, as well as mean and vibratory components of blade bending and torsion moments, fixed-system forces and moments, and pitch link loads were obtained at advance ratios up to 0.35 for various combinations of rotor shaft angle-of-attack and collective pitch. The data are presented without analysis.

  20. Preliminary results on the development of vacuum brazed joints for cryogenic wind tunnel aerofoil models

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.; Sandefur, P. G., Jr.; Lawing, P. L.

    1981-01-01

    The results of initial experiments show that high-strength void-free bonds can be formed by vacuum brazing of stainless steels using copper and nickel-based filler metals. In Nitronic 40, brazed joints have been formed with strengths in excess of the yield strength of the parent metal, and even at liquid nitrogen temperatures the excellent mechanical properties of the parent metal are only slightly degraded. The poor toughness of 15-5 P.H. stainless steel at cryogenic temperatures is lowered even further by the presence of the brazed bonds investigated. It is highly unlikely that the technique would be used for any critical areas of aerofoil models intended for low-temperature service. Nevertheless, the potential advantages of this simplified method of construction still have attractions for use at ambient temperatures.

  1. Development of a six-axis force/moment sensor for wind tunnel model test

    NASA Astrophysics Data System (ADS)

    Wang, Wenjun

    2013-11-01

    A novel structure for a six-axis force/moment sensor is proposed in this paper. Parallel plate structures are combined in the one-block structure of the sensor. A method for estimating the sensitivity and stiffness is developed by comparing the results of numeric estimations with those of finite element method (FEM) analyses. A detailed FEM model was used to analyse the surface strain in the area where the strain gauge was attached. Tests carried out on the characteristics revealed a sensitivity design error of less than 8.5%, a relative measurement error of less than 2.13%, and an interference error of less than 9.51%. A performance enhancement method is also proposed.

  2. Wind-tunnel acoustic results of two rotor models with several tip designs

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Connor, A. B.

    1986-01-01

    A three-phase research program has been undertaken to study the acoustic signals due to the aerodynamic interaction of rotorcraft main rotors and tail rotors. During the first phase, two different rotor models with several interchangeable tips were tested in the Langley 4- by 7-Meter Tunnel on the U.S. Army rotor model system. An extensive acoustic data base was acquired, with special emphasis on blade-vortex interaction (BVI) noise. The details of the experimental procedure, acoustic data acquisition, and reduction are documented. The overall sound pressure level (OASPL) of the high-twist rotor systems is relatively insensitive to flight speed but generally increases with rotor tip-path-plane angle. The OASPL of the high-twist rotors is dominated by acoustic energy in the low-frequency harmonics. The OASPL of the low-twist rotor systems shows more dependence on flight speed than the high-twist rotors, in addition to being quite sensitive to tip-path-plane angle. An integrated band-limited sound pressure level, limited by 500 to 3000 Hz, is a useful metric to quantify the occurrence of BVI noise. The OASPL of the low-twist rotors is strongly influenced by the band-limited sound levels, indicating that the blade-vortex impulsive noise is a dominant noise source for this rotor design. The midfrequency acoustic levels for both rotors show a very strong dependence on rotor tip-path-plane angle. The tip-path-plane angle at which the maximum midfrequency sound level occurs consistently decreases with increasing flight speed. The maximum midfrequency sound level measured at a given location is constant regardless of the flight speed.

  3. Acoustic characteristics of a large scale wind-tunnel model of a jet flap aircraft

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Aiken, T. N.; Aoyagi, K.

    1975-01-01

    The expanding-duct jet flap (EJF) concept is studied to determine STOL performance in turbofan-powered aircraft. The EJF is used to solve the problem of ducting the required volume of air into the wing by providing an expanding cavity between the upper and lower surfaces of the flap. The results are presented of an investigation of the acoustic characteristics of the EJF concept on a large-scale aircraft model powered by JT15D engines. The noise of the EJF is generated by acoustic dipoles as shown by the sixth power dependence of the noise on jet velocity. These sources result from the interaction of the flow turbulence with flap of internal and external surfaces and the trailing edges. Increasing the trailing edge jet from 70 percent span to 100 percent span increased the noise 2 db for the equivalent nozzle area. Blowing at the knee of the flap rather than the trailing edge reduced the noise 5 to 10 db by displacing the jet from the trailing edge and providing shielding from high-frequency noise. Deflecting the flap and varying the angle of attack modified the directivity of the underwing noise but did not affect the peak noise. A forward speed of 33.5 m/sec (110 ft/sec) reduced the dipole noise less than 1 db.

  4. High-speed Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1936-01-01

    Wind tunnel construction and design is discussed especially in relation to subsonic and supersonic speeds. Reynolds Numbers and the theory of compressible flows are also taken into consideration in designing new tunnels.

  5. Aerodynamic results of wind tunnel tests on a 0.010-scale model (32-QTS) space shuttle integrated vehicle in the AEDC VKF-40-inch supersonic wind tunnel (IA61)

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.

    1976-01-01

    Plotted and tabulated aerodynamic coefficient data from a wind tunnel test of the integrated space shuttle vehicle are presented. The primary test objective was to determine proximity force and moment data for the orbiter/external tank and solid rocket booster (SRB) with and without separation rockets firing for both single and dual booster runs. Data were obtained at three points (t = 0, 1.25, and 2.0 seconds) on the nominal SRB separation trajectory.

  6. A wind tunnel flight correlation of Apollo 16 sonic boom

    NASA Technical Reports Server (NTRS)

    Garcia, F., Jr.; Hicks, R. M.; Mendoza, J. P.

    1973-01-01

    A correlation of sonic boom pressure signatures recorded during reentry of the Apollo 16 command module with wind-tunnel signatures extrapolated to flight distances was made for Mach numbers of 1.83 and 9.71. The flight pressure signatures were recorded by microphones located onboard ships positioned near the ground track, whereas the wind tunnel signatures were measured during a test of a 0.016-scale model of the command module. The agreement between estimates based on wind tunnel data and flight measurements was good at the tested Mach numbers.

  7. Hypersonic Wind Tunnel Test Techniques

    DTIC Science & Technology

    1994-08-01

    AEDC TR-94-6 Hypersonic Wind Tunnel Test Techniques R. K. Matthcws and R. W. Rhudy Calspan CorporatioWAF_,DC Operations 4 August 1994 Final...REPORT TYPE ANn DATES COVERED I AuCluSt 1994 | Final --July 992 - May 1993 4. TITLE AND SUBTITLE Hypersonic Wind Tunnel Test Techniques 5 FUNDING... techniques because of the importance of defining the thermal environment of hypersonic vehicles. An overview of the materials/structures test

  8. A proposed configuration for a stepped specimen to be used in the systematic evaluation of factors influencing warpage in metallic alloys being used for cryogenic wind tunnel models

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1982-01-01

    A proposed configuration for a stepped specimen to be used in the system evaluation of mechanisms that can introduce warpage or dimensional changes in metallic alloys used for cryogenic wind tunnel models is described. Considerations for selecting a standard specimen are presented along with results obtained from an investigation carried out for VASCOMAX 200 maraging steel. Details of the machining and measurement techniques utilized in the investigation are presented. Initial results from the sample of VASCOMAX 200 show that the configuration and measuring techniques are capable of giving quantitative results.

  9. Full Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Installation of propeller and motor fairing for east exit cone. Smith DeFrance described the propellers and motors in NACA TR No. 459. ' The propellers are located side by side and 48 feet aft of the throat of the exit-cone bell. The propellers are 35 feet 5 inches in diameter and each consists of four cast aluminum alloy blades screwed into a cast steel hub.' 'The most commonly used power plant for operating a wind tunnel is a direct-current motor and motor-generator set with Ward Leonard control system. For the FST it was found that alternating current slip-ring induction motors, together with satisfactory control equipment, could be purchased for approximately 30 percent less than the direct-current equipment. Two 4,000-horsepower slip-ring induction motors with 24 steps of speed between 75 and 300 r.p.m. were therefore installed. In order to obtain the range of speed one pole change was provided and the other variations are obtained by the introduction of resistance in the rotor circuit. This control permits a variation in air speed from 25 to 118 miles per hour. The two motors are connected through an automatic switchboard to one drum-type controller located in the test chamber. All the control equipment is interlocked and connected through time-limit relays, so that regardless of how fast the controller handle is moved the motors will increase in speed at regular intervals.' (p. 294-295)

  10. Simulation of the flow past a model in the closed test section of a low-speed wind tunnel and in the free stream

    NASA Astrophysics Data System (ADS)

    Bui, V. T.; Lapygin, V. I.

    2015-05-01

    The flow around a model in the closed test section of a low-speed wind tunnel has been analyzed in 2D approximation. As the contour of the nozzle, test section, and diffuser, the contour of the T-324 wind tunnel, of the Khristianovich Institute of Theoretical and Applied Mechanics (ITAM SB RAS, Novosibirsk), in its symmetry plane was adopted. A comparison of experimental with calculated data on the distribution of velocities and dynamic pressures in the test section is given. The effect due to the sizes of a model installed in the test section on the values of the aerodynamic coefficients of the model is analyzed. As the aerodynamic model, the NASA0012 airfoil and the circular cylinder were considered. For the airfoil chord length b = 20 % of nozzle height, the values of the aerodynamic coefficients of the airfoil in the free stream and in the test section proved to be close to each other up to the angle of attack a = 7°, which configuration corresponds to blockage-factor value ξ ≈ 7 %. The obtained data are indicative of the expedience of taking into account, in choosing the model scale, not only the degree of flow passage area blockage by the model but, also, the length of the well-streamlined model. In the case of a strongly blunted body with a high drag-coefficient value, the admissible blockage factor ξ may reach a value of 10 %.

  11. Exploratory wind tunnel investigation of the stability and control characteristics of a three-surface, forward-swept wing advanced turboprop model

    NASA Technical Reports Server (NTRS)

    Coe, Paul L., Jr.; Perkins, John N.; Owens, D. Bruce

    1990-01-01

    The purpose of the present investigation was to parametrically study the stability and control characteristics of a forward-swept wing three-surface turboprop model through an extended angle of attack range, including the deep-stall region. As part of a joint research program between North Carolina State University and NASA Langley Research Center, a low-speed wind tunnel investigation was conducted with a three-surface, forward-swept wing, aft-mounted, twin-pusher propeller, model, representative of an advanced turboprop configuration. The tests were conducted in the NASA Langley 12-Foot Low-Speed Wind Tunnel. The model parameters varied in the test were horizontal tail location, canard size, sweep and location, and wing position. The model was equipped with air turbines, housed within the nacelles and driven by compressed air, to model turboprop power effects. A three-surface, forward-swept wing configuration that provided satisfactory static longitudinal and lateral/directional stability was identified. The three-surface configuration was found to have greater longitudinal control and increased center of gravity range relative to a conventional (two-surface) design. The test showed that power had a large favorable effect on stability and control about all three axis in the post-stall regime.

  12. Testing of the QUIC-plume model with wind-tunnel measurements for a high-rise building

    SciTech Connect

    Williams, M. D.; Brown, M. J.; Boswell, D.; Singh, B.; Pardyjak, E. M.

    2004-01-01

    ), QUICPLUME, a model that describes dispersion near buildings (Williams et al., 2003), and a graphical user interface QUIC-GUI (Boswell et al., 2004). The QUIC dispersion code is currently being used for building scale to neighborhood scale transport and diffusion problems with domains on the order of several kilometers. Figure 1 illustrates the modeled dispersion for a release in downtown Salt Lake City. This paper describes the QUIC-PLUME randomwalk dispersion model formulation, the turbulence parameterization assumptions, and shows comparisons of model-computed concentration fields with measurements from a single-building wind-tunnel experiment. It is shown that the traditional three-term random walk model with a turbulence scheme based on gradients of the mean wind performs poorly for dispersion in the cavity of the single-building, and that model-experiment comparisons are improved significantly when additional drift terms are added and a non-local mixing scheme is implemented.

  13. Triple balance test of the PRR baseline space shuttle configuration on a .004 scale model of the MCR 0074 orbiter configuration in the MSFC 14 x 14 inch Trisonic Wind Tunnel (TWT 570) IA31F(B), volume 1

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.; Davis, T. C.

    1974-01-01

    A wind tunnel force and moment test of the space shuttle launch vehicle was conducted. The wind tunnel model utilized a triple balance such that component aerodynamics of the orbiter, external tank, and solid rocket booster was obtained. The test was conducted at an angle of attack range from -10 deg to 10 deg, and angle of sideslip range from -10 deg to 10 deg, and a Mach number range from 0.6 to 4.96. Simulation parameters to be used in future launch vehicle wind tunnel tests were investigated. The following were included: (1) effect of orbiter -ET attach hardware; (2) model attachment (spacer) effects; (3) effects of grit on model leading surfaces; and (4) model misalignment effects. The effects of external tank nose shape was studied by investigating five different nose configurations. Plotted and tabulated data is reported.

  14. Condensation in hypersonic nitrogen wind tunnels

    NASA Technical Reports Server (NTRS)

    Lederer, Melissa A.; Yanta, William J.; Ragsdale, William C.; Hudson, Susan T.; Griffith, Wayland C.

    1990-01-01

    Experimental observations and a theoretical model for the onset and disappearance of condensation are given for hypersonic flows of pure nitrogen at M = 10, 14 and 18. Measurements include Pitot pressures, static pressures and laser light scattering experiments. These measurements coupled with a theoretical model indicate a substantial non-equilibrium supercooling of the vapor phase beyond the saturation line. Typical results are presented with implications for the design of hypersonic wind tunnel nozzles.

  15. Characteristics of Control Laws Tested on the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.; Moulin, Boris; Ritz, Erich; Chen, P. C.; Roughen, Kevin M.; Perry, Boyd

    2012-01-01

    The Semi-Span Supersonic Transport (S4T) is an aeroelastically scaled wind-tunnel model built to test active controls concepts for large flexible supersonic aircraft in the transonic flight regime. It is one of several models constructed in the 1990's as part of the High Speed Research (HSR) Program. Control laws were developed for the S4T by M4 Engineering, Inc. and by Zona Technologies, Inc. under NASA Research Announcement (NRA) contracts. The model was tested in the NASA-Langley Transonic Dynamics Tunnel (TDT) four times from 2007 to 2010. The first two tests were primarily for plant identification. The third entry was used for testing control laws for Ride Quality Enhancement, Gust Load Alleviation, and Flutter Suppression. Whereas the third entry only tested FS subcritically, the fourth test demonstrated closed-loop operation above the open-loop flutter boundary. The results of the third entry are reported elsewhere. This paper reports on flutter suppression results from the fourth wind-tunnel test. Flutter suppression is seen as a way to provide stability margins while flying at transonic flight conditions without penalizing the primary supersonic cruise design condition. An account is given for how Controller Performance Evaluation (CPE) singular value plots were interpreted with regard to progressing open- or closed-loop to higher dynamic pressures during testing.

  16. Acoustic Modifications of the Ames 40x80 Foot Wind Tunnel and Test Techniques for High-Speed Research Model Testing

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Olson, Larry (Technical Monitor)

    1995-01-01

    The NFAC 40- by 80- Foot Wind Tunnel at Ames is being refurbished with a new, deep acoustic lining in the test section which will make the facility nearly anechoic over a large frequency range. The modification history, key elements, and schedule will be discussed. Design features and expected performance gains will be described. Background noise reductions will be summarized. Improvements in aeroacoustic research techniques have been developed and used recently at NFAC on several wind tunnel tests of High Speed Research models. Research on quiet inflow microphones and struts will be described. The Acoustic Survey Apparatus in the 40x80 will be illustrated. A special intensity probe was tested for source localization. Multi-channel, high speed digital data acquisition is now used for acoustics. And most important, phased microphone arrays have been developed and tested which have proven to be very powerful for source identification and increased signal-to-noise ratio. Use of these tools for the HEAT model will be illustrated. In addition, an acoustically absorbent symmetry plane was built to satisfy the HEAT semispan aerodynamic and acoustic requirements. Acoustic performance of that symmetry plane will be shown.

  17. Acoustic Modifications of the Ames 40x80 Foot Wind Tunnel and Test Techniques for High-Speed Research Model Testing

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Olson, Larry (Technical Monitor)

    1995-01-01

    The NFAC 40- by 80- Foot Wind Tunnel at Ames is being refurbished with a new, deep acoustic lining in the test section which will make the facility nearly anechoic over a large frequency range. The modification history, key elements, and schedule will be discussed. Design features and expected performance gains will be described. Background noise reductions will be summarized. Improvements in aeroacoustic research techniques have been developed and used recently at NFAC on several wind tunnel tests of High Speed Research models. Research on quiet inflow microphones and struts will be described. The Acoustic Survey Apparatus in the 40x80 will be illustrated. A special intensity probe was tested for source localization. Multi-channel, high speed digital data acquisition is now used for acoustics. And most important, phased microphone arrays have been developed and tested which have proven to be very powerful for source identification and increased signal-to-noise ratio. Use of these tools for the HEAT model will be illustrated. In addition, an acoustically absorbent symmetry plane was built to satisfy the HEAT semispan aerodynamic and acoustic requirements. Acoustic performance of that symmetry plane will be shown.

  18. Photogrammetry Applied to Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Cattafesta, L. N., III; Radeztsky, R. H.; Burner, A. W.

    2000-01-01

    In image-based measurements, quantitative image data must be mapped to three-dimensional object space. Analytical photogrammetric methods, which may be used to accomplish this task, are discussed from the viewpoint of experimental fluid dynamicists. The Direct Linear Transformation (DLT) for camera calibration, used in pressure sensitive paint, is summarized. An optimization method for camera calibration is developed that can be used to determine the camera calibration parameters, including those describing lens distortion, from a single image. Combined with the DLT method, this method allows a rapid and comprehensive in-situ camera calibration and therefore is particularly useful for quantitative flow visualization and other measurements such as model attitude and deformation in production wind tunnels. The paper also includes a brief description of typical photogrammetric applications to temperature- and pressure-sensitive paint measurements and model deformation measurements in wind tunnels.

  19. Effect of transient winds on the flow quality of an open-circuit wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Breunlin, D. C.; Sargent, N. B.

    1972-01-01

    The effect of a transient wind on the test-section flow quality of an open-circuit wind tunnel was investigated experimentally. The investigation was restricted to transient wind effects associated with the inlet. A small open-circuit wind tunnel was placed outside in the real wind environment. Test-section speed and angularity as well as wind speed and direction was measured by high-response instrumentation. The inlet configuration was varied with a set of screens, a removable honeycomb, and a removable inlet lip. Acceptable flow was obtained at all wind angles and for wind- to test-section-velocity ratios up to 0.4 with an inlet configuration having five screens, a honeycomb, and a lip. With inlet configurations sensitive to winds, a transient wind parallel to the tunnel axis produced local fluctuations in test-section speed and angularity; however, oscillation of the average test-section speed was not evident. The effect of wind direction was negligible up to wind angles of 45 deg relative to the tunnel axis. At larger wind angles, flow distortions occurred primarily on the windward side of the test section.

  20. Aeroelastic Analysis of SUGAR Truss-Braced Wing Wind-Tunnel Model Using FUN3D and a Nonlinear Structural Model

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Scott, Robert C.; Allen, Timothy J.; Sexton, Bradley W.

    2015-01-01

    Considerable attention has been given in recent years to the design of highly flexible aircraft. The results of numerous studies demonstrate the significant performance benefits of strut-braced wing (SBW) and trussbraced wing (TBW) configurations. Critical aspects of the TBW configuration are its larger aspect ratio, wing span and thinner wings. These aspects increase the importance of considering fluid/structure and control system coupling. This paper presents high-fidelity Navier-Stokes simulations of the dynamic response of the flexible Boeing Subsonic Ultra Green Aircraft Research (SUGAR) truss-braced wing wind-tunnel model. The latest version of the SUGAR TBW finite element model (FEM), v.20, is used in the present simulations. Limit cycle oscillations (LCOs) of the TBW wing/strut/nacelle are simulated at angle-of-attack (AoA) values of -1, 0 and +1 degree. The modal data derived from nonlinear static aeroelastic MSC.Nastran solutions are used at AoAs of -1 and +1 degrees. The LCO amplitude is observed to be dependent on AoA. LCO amplitudes at -1 degree are larger than those at +1 degree. The LCO amplitude at zero degrees is larger than either -1 or +1 degrees. These results correlate well with both wind-tunnel data and the behavior observed in previous studies using linear aerodynamics. The LCO onset at zero degrees AoA has also been computed using unloaded v.20 FEM modes. While the v.20 model increases the dynamic pressure at which LCO onset is observed, it is found that the LCO onset at and above Mach 0.82 is much different than that produced by an earlier version of the FEM, v. 19.

  1. Avrocar Test in Ames 40x80 Foot Wind Tunnel.

    NASA Image and Video Library

    1961-04-03

    Rear view of the Avrocar with tail, mounted on variable height struts. Overhead doors of the wind tunnel test section open. The first Avrocar, S/N 58-7055 (marked AV-7055), after tethered testing, became the "wind tunnel" test model at NASA Ames, where it remained in storage from 1961 until 1966, when it was donated to the National Air and Space Museum, in Suitland, Maryland.

  2. Computational design and analysis of flatback airfoil wind tunnel experiment.

    SciTech Connect

    Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-03-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  3. Laser Incident in the NASA Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    George, Michael W.; Heineck, James T.; Nickison, Donald J.

    2005-01-01

    A viewgraph presentation describing the laser incident in the NASA Unitary Plan Wind Tunnel (UPWT) is shown. The topics include: 1) Unitary Plan Wind Tunnel (UPWT); 2) UPWT 11' x 11' Transonic Wind Tunnel; 3) UPWT 9' x 7' Supersonic Wind Tunnel; 4) 3D Particle Image Velocimetry (PIV); 5) PIV System in 11' x 11' Transonic Test Section; 6) PIV installation in 11' x 11' TWT; 7) 3% Space Shuttle Ascent Configuration Test in UPWT 9' x 7' Test Section; 8) PIV installation in 9' x 7' SWT; 9) PIV Laser System in 9' x 7' SWT; 10) PIV Laser System Access Window; 11) Cooling Water Leak at Rear of Power Supply; 12) PIV Laser Safety Interlock System; 13) Safety Interlock Cable; 14) Q-Switch located on top of 9' x 7' Test Section; 15) Investigation Findings and Recommendations; and 16) PIV Results for 3% Space Shuttle Model in UPWT 9' x 7'.

  4. Transition heating rates determined on a 0.006 scale space shuttle orbiter model (no. 50-0) in the NASA/LaRC Mach 8 variable density wind tunnel test (OH14)

    NASA Technical Reports Server (NTRS)

    Cummings, J.

    1976-01-01

    Data obtained from wind tunnel tests of an .006-scale space shuttle orbiter model in the 18 in. Variable Density Wind Tunnel are presented. The tests, denoted as OH14, were performed to determine transition heating rates using thin skin thermocouples located at various locations on the space shuttle orbiter. The model was tested at M = 8.0 for a range of Reynolds numbers per foot varying from 1.0 to 10.0 million with angles-of-attack from 20 to 35 degrees incremented by 5 degrees.

  5. Residual interference and wind tunnel wall adaption

    NASA Technical Reports Server (NTRS)

    Mokry, Miroslav

    1989-01-01

    Measured flow variables near the test section boundaries, used to guide adjustments of the walls in adaptive wind tunnels, can also be used to quantify the residual interference. Because of a finite number of wall control devices (jacks, plenum compartments), the finite test section length, and the approximation character of adaptation algorithms, the unconfined flow conditions are not expected to be precisely attained even in the fully adapted stage. The procedures for the evaluation of residual wall interference are essentially the same as those used for assessing the correction in conventional, non-adaptive wind tunnels. Depending upon the number of flow variables utilized, one can speak of one- or two-variable methods; in two dimensions also of Schwarz- or Cauchy-type methods. The one-variable methods use the measured static pressure and normal velocity at the test section boundary, but do not require any model representation. This is clearly of an advantage for adaptive wall test section, which are often relatively small with respect to the test model, and for the variety of complex flows commonly encountered in wind tunnel testing. For test sections with flexible walls the normal component of velocity is given by the shape of the wall, adjusted for the displacement effect of its boundary layer. For ventilated test section walls it has to be measured by the Calspan pipes, laser Doppler velocimetry, or other appropriate techniques. The interface discontinuity method, also described, is a genuine residual interference assessment technique. It is specific to adaptive wall wind tunnels, where the computation results for the fictitious flow in the exterior of the test section are provided.

  6. Wind Tunnel to Atmospheric Mapping for Static Aeroelastic Scaling

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Spain, Charles V.; Rivera, J. A.

    2004-01-01

    Wind tunnel to Atmospheric Mapping (WAM) is a methodology for scaling and testing a static aeroelastic wind tunnel model. The WAM procedure employs scaling laws to define a wind tunnel model and wind tunnel test points such that the static aeroelastic flight test data and wind tunnel data will be correlated throughout the test envelopes. This methodology extends the notion that a single test condition - combination of Mach number and dynamic pressure - can be matched by wind tunnel data. The primary requirements for affecting this extension are matching flight Mach numbers, maintaining a constant dynamic pressure scale factor and setting the dynamic pressure scale factor in accordance with the stiffness scale factor. The scaling is enabled by capabilities of the NASA Langley Transonic Dynamics Tunnel (TDT) and by relaxation of scaling requirements present in the dynamic problem that are not critical to the static aeroelastic problem. The methodology is exercised in two example scaling problems: an arbitrarily scaled wing and a practical application to the scaling of the Active Aeroelastic Wing flight vehicle for testing in the TDT.

  7. Initial results of a model rotor higher harmonic control (HHC) wind tunnel experiment on BVI impulsive noise reduction

    NASA Astrophysics Data System (ADS)

    Splettstoesser, W. R.; Lehmann, G.; van der Wall, B.

    1989-09-01

    Initial acoustic results are presented from a higher harmonic control (HHC) wind tunnel pilot experiment on helicopter rotor blade-vortex interaction (BVI) impulsive noise reduction, making use of the DFVLR 40-percent-scaled BO-105 research rotor in the DNW 6m by 8m closed test section. Considerable noise reduction (of several decibels) has been measured for particular HHC control settings, however, at the cost of increased vibration levels and vice versa. The apparently adverse results for noise and vibration reduction by HHC are explained. At optimum pitch control settings for BVI noise reduction, rotor simulation results demonstrate that blade loading at the outer tip region is decreased, vortex strength and blade vortex miss-distance are increased, resulting altogether in reduced BVI noise generation. At optimum pitch control settings for vibration reduction adverse effects on blade loading, vortex strength and blade vortex miss-distance are found.

  8. Wind tunnel technology for the development of future commercial aircraft

    NASA Technical Reports Server (NTRS)

    Szodruch, J.

    1986-01-01

    Requirements for new technologies in the area of civil aircraft design are mainly related to the high cost involved in the purchase of modern, fuel saving aircraft. A second important factor is the long term rise in the price of fuel. The demonstration of the benefits of new technologies, as far as these are related to aerodynamics, will,for the foreseeable future, still be based on wind tunnel measurements. Theoretical computation methods are very successfully used in design work, wing optimization, and an estimation of the Reynolds number effect. However, wind tunnel tests are still needed to verify the feasibility of the considered concepts. Along with other costs, the cost for the wind tunnel tests needed for the development of an aircraft is steadily increasing. The present investigation is concerned with the effect of numerical aerodynamics and civil aircraft technology on the development of wind tunnels. Attention is given to the requirements for the wind tunnel, investigative methods, measurement technology, models, and the relation between wind tunnel experiments and theoretical methods.

  9. Altitude Wind Tunnel Control Room

    NASA Image and Video Library

    1945-05-21

    Researchers at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory monitor a ramjet's performance in the Altitude Wind Tunnel from the control room. The soundproof control room was just a few feet from the tunnel’s 20-foot-diameter test section. In the control room, the operators could control all aspects of the tunnel’s operation, including the air density, temperature, and speed. They also operated the engine or test article in the test section by controlling the angle-of-attack, speed, power, and other parameters. The men in this photograph are monitoring the engine’s thrust and lift. A NACA-designed 20-inch-diameter ramjet was installed in the tunnel in May 1945. Thrust figures from these runs were compared with drag data from tests of scale models in small supersonic tunnels to verify the ramjet’s feasibility. The tunnel was used to analyze the ramjet’s overall performance up to altitudes of 47,000 feet and speeds to Mach 1.84. The researchers found that an increase in altitude caused a reduction in the engine’s horsepower and identified optimal flameholder configurations.

  10. Wind tunnel and ground static tests of a .094 scale powered model of a modified T-39 lift/cruise fan V/STOL research airplane

    NASA Technical Reports Server (NTRS)

    Hunt, D.; Clinglan, J.; Salemann, V.; Omar, E.

    1977-01-01

    Ground static and wind tunnel test of a scale model modified T-39 airplane are reported. The configuration in the nose and replacement of the existing nacelles with tilting lift/cruise fans. The model was powered with three 14 cm diameter tip driven turbopowered simulators. Forces and moments were measured by an internal strain guage balance. Engine simulator thrust and mass flow were measured by calibrated pressure and temperature instrumentation mounted downstream of the fans. The low speed handling qualities and general aerodynamic characteristics of the modified T-39 were defined. Test variables include thrust level and thrust balance, forward speed, model pitch and sideslip angle at forward speeds, model pitch, roll, and ground height during static tests, lift/cruise fan tilt angle, flap and aileron deflection angle, and horizonal stabilizer angle. The effects of removing the landing gear, the lift/cruise fans, and the tail surfaces were also investigated.

  11. Wind-tunnel investigation of a large-scale model of a lift-cruise fan V/STOL aircraft with extended lift-cruise nacelles

    NASA Technical Reports Server (NTRS)

    Gambucci, B. J.; Aoyagi, K.; Rolls, S. L.

    1976-01-01

    The aerodynamic characteristics of a large-scale model of a lift/cruise fan V/STOL aircraft were determined. The model was equipped with three fans, one mounted in the forward section of the fuselage in a lift mode, and two mounted on top of the wing adjacent to the fuselage in a lift/cruise mode. The data that were obtained include longitudinal and lateral-directional characteristics of the model, with the horizontal tail on and off, for both the powered-lift and cruise configurations. Lateral-directional characteristics were obtained with the horizontal and vertical tail sections removed. Powered-lift data were obtained at several wind-tunnel velocities and at several lift-cruise fan thrust vector angles by varying the position of the hooded deflectors from 0 deg (the cruise condition) to 90 deg.

  12. Results of a wind tunnel/flight test program to compare afterbody/nozzle pressures on a 1/12 scale model and an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Pendergraft, O. C., Jr.; Nugent, J.

    1984-01-01

    In 1975 NASA Dryden Flight Research Facility received the No. 2 prototype F-15 aircraft from the USAF to conduct the F-15 Propulsion/Airframe Interactions Program. About the same time, NASA Langley Research Center acquired a 1/12 scale F-15 propulsion model, whose size made it suitable for detailed afterbody/nozzle static pressure distribution studies. Close coordination between Langley and Dryden assured identical orifice locations and nozzle geometries on the model and aircraft. This paper discusses the sequence of the test programs and how retesting the model after completion of the flight tests greatly increased the ability to match hardware and test conditions. The experience gained over the past decade from involvement in the program should prove valuable to any future programs attempting to match wind tunnel and flight test conditions and hardware.

  13. Techniques for extreme attitude suspension of a wind tunnel model in a magnetic suspension and balance system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Parker, David Huw

    1989-01-01

    Although small scale magnetic suspension and balance systems (MSBSs) for wind tunnel use have been in existence for many years, they have not found general application in the production testing of flight vehicles. One reason for this is thought to lie in the relatively limited range of attitudes over which a wind tunnel model may be suspended. Modifications to a small MSBS to permit the suspension and control of axisymmetric models over angles of attack from less than zero to over ninety degrees are reported. Previous work has shown that existing arrangement of ten electromagnets was unable to generate one of the force components needed for control at extreme attitudes. Examination of possible solutions resulted in a simple alteration to rectify this deficiency. To generate the feedback signals to control the suspended model, an optical position sensing system using collimated laser beams and photodiode arrays was installed and tested. An analytical basis was developed for distributing the demands for force and moment needed for model stabilization amonge the electromagnets over the full attitude range. This was implemented by an MSBS control program able to continually adjust the distribution for the instantaneous incidence in accordance with prescheduled data. Results presented demonstrate rotations of models from zero to ninety degrees at rates up to ninety degrees per second, with pitching rates rising to several hundred degrees per second in response to step-change demands. A study of a design for a large MSBS suggests that such a system could be given the capability to control a model in six degrees of freedom over an unlimited angle of attack range.

  14. A Wind Tunnel Captive Aircraft Testing Technique

    DTIC Science & Technology

    1976-04-01

    Flight/Wind Tunnel Correlation of Aircraft Longitudinal Motion ....................................... 14 10. Fright/Wind Tunnel Correlation of...I 2 3 4 5 6 T IME, s e c Figure 9. Flight/wind tunnel correla- tion of aircraft longitudinal motion. ’ D A n ~ v i i i | ~ 0 0 - 4 0

  15. Results of investigations on a 0.0405 scale model PRR version of the NR-SSV orbiter in the North American Aeronautical Laboratory low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.; Vaughn, J. E.; Singellton, R.

    1973-01-01

    Experimental aerodynamic investigations were conducted in a low speed wind tunnel on a scale model space shuttle vehicle (SSV) orbiter. The purpose of the test was to investigate the longitudinal and lateral-directional aerodynamic characteristics of the space shuttle orbiter. Emphasis was placed on model component, wing-glove, and wing-body fairing effects, as well as elevon, aileron, and rudder control effectiveness. Angles of attack from - 5 deg to + 30 deg and angles of sideslip of - 5 deg, 0 deg, and + 5 deg were tested. Static pressures were recorded on base, fuselage, and wing surfaces. Tufts and talc-kerosene flow visualization techniques were also utilized. The aerodynamic force balance results are presented in plotted and tabular form.

  16. Wind-Tunnel Tests on a Series of Wing Models Through a Large Angle of Attack Range. Part I : Force Tests

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Wenzinger, Carl J

    1930-01-01

    This investigation covers force tests through a large range of angle of attack on a series of monoplane and biplane wing models. The tests were conducted in the atmospheric wind tunnel of the National Advisory Committee for Aeronautics. The models were arranged in such a manner as to make possible a determination of the effects of variations in tip shape, aspect ratio, flap setting, stagger, gap, decalage, sweep back, and airfoil profile. The arrangements represented most of the types of wing systems in use on modern airplanes. The effect of each variable is illustrated by means of groups of curves. In addition, there are included approximate autorotational characteristics in the form of calculated ranges of "rotary instability." a correction for blocking in this tunnel which applies to monoplanes at large angles of attack has been developed, and is given in an appendix. (author)

  17. Low-speed wind-tunnel investigation of the longitudinal characteristics of a large-scale variable wing-sweep fighter model in the high-lift configuration

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Maki, R. L.

    1973-01-01

    The low-speed characteristics of a large-scale model of the U. S. Navy/Grumman F-14A aircraft were studied in tests conducted in the Ames Research Center 40- by 80-Foot Wind Tunnel. The primary purpose of the program was the determination of lift and stability levels and landing approach attitude of the aircraft in its high-lift configuration. Tests were conducted at wing angles of attack between minus 2 deg and 30 deg with zero yaw. Data were taken at Reynolds numbers ranging from 3.48 million to 9.64 million based on a wing mean aerodynamic chord of 7.36 ft. The model configuration was changed as required to show the effects of glove slat, wing slat leading-edge radius, cold flow ducting, flap deflection, direct lift control (spoilers), horizontal tail, speed brake, landing gear and missiles.

  18. Statistical model to perform error analysis of curve fits of wind tunnel test data using the techniques of analysis of variance and regression analysis

    NASA Technical Reports Server (NTRS)

    Alston, D. W.

    1981-01-01

    The considered research had the objective to design a statistical model that could perform an error analysis of curve fits of wind tunnel test data using analysis of variance and regression analysis techniques. Four related subproblems were defined, and by solving each of these a solution to the general research problem was obtained. The capabilities of the evolved true statistical model are considered. The least squares fit is used to determine the nature of the force, moment, and pressure data. The order of the curve fit is increased in order to delete the quadratic effect in the residuals. The analysis of variance is used to determine the magnitude and effect of the error factor associated with the experimental data.

  19. Initial Investigation of the Acoustics of a Counter-Rotating Open Rotor Model with Historical Baseline Blades in a Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Elliott, David M.

    2012-01-01

    A counter-rotating open rotor scale model was tested in the NASA Glenn Research Center 9- by 15-Foot Low-Speed Wind Tunnel (LSWT). This model used a historical baseline blade set with which modern blade designs will be compared against on an acoustic and aerodynamic performance basis. Different blade pitch angles simulating approach and takeoff conditions were tested, along with angle-of-attack configurations. A configuration was also tested in order to determine the acoustic effects of a pylon. The shaft speed was varied for each configuration in order to get data over a range of operability. The freestream Mach number was also varied for some configurations. Sideline acoustic data were taken for each of these test configurations.

  20. A remote millivolt multiplexer and amplifier module for wind tunnel data acquisition

    NASA Technical Reports Server (NTRS)

    Juanarena, D. B.; Blumenthal, P. Z.

    1982-01-01

    A 30-channel remotely located multiplexer and amplifier module is developed for the measurement of wind tunnel models, which substantially reduces the amount of wiring necessary and thus provides higher accuracy. The module provides for a wide variety of transducer voltage outputs to be multiplexed and amplified within the model, and all signals are able to exit the module on two wires. The module is self-calibrating, and when coupled with the electronically scanned pressure instrumentation widely used in wind tunnels, it allows the modular wind tunnel models to be fabricated and checked before installation into the wind tunnel.

  1. A remote millivolt multiplexer and amplifier module for wind tunnel data acquisition

    NASA Technical Reports Server (NTRS)

    Juanarena, D. B.; Blumenthal, P. Z.

    1982-01-01

    A 30-channel remotely located multiplexer and amplifier module is developed for the measurement of wind tunnel models, which substantially reduces the amount of wiring necessary and thus provides higher accuracy. The module provides for a wide variety of transducer voltage outputs to be multiplexed and amplified within the model, and all signals are able to exit the module on two wires. The module is self-calibrating, and when coupled with the electronically scanned pressure instrumentation widely used in wind tunnels, it allows the modular wind tunnel models to be fabricated and checked before installation into the wind tunnel.

  2. The preliminary checkout, evaluation and calibration of a 3-component force measurement system for calibrating propulsion simulators for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Scott, W. A.

    1984-01-01

    The propulsion simulator calibration laboratory (PSCL) in which calibrations can be performed to determine the gross thrust and airflow of propulsion simulators installed in wind tunnel models is described. The preliminary checkout, evaluation and calibration of the PSCL's 3 component force measurement system is reported. Methods and equipment were developed for the alignment and calibration of the force measurement system. The initial alignment of the system demonstrated the need for more efficient means of aligning system's components. The use of precision alignment jigs increases both the speed and accuracy with which the system is aligned. The calibration of the force measurement system shows that the methods and equipment for this procedure can be successful.

  3. V/STOL tilt rotor aircraft study: Wind tunnel tests of a full scale hingeless prop/rotor designed for the Boeing Model 222 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Alexander, H. R.

    1973-01-01

    The rotor system designed for the Boeing Model 222 tilt rotor aircraft is a soft-in-plane hingeless rotor design, 26 feet in diameter. This rotor has completed two test programs in the NASA Ames 40' X 80' wind tunnel. The first test was a windmilling rotor test on two dynamic wing test stands. The rotor was tested up to an advance ratio equivalence of 400 knots. The second test used the NASA powered propeller test rig and data were obtained in hover, transition and low speed cruise flight. Test data were obtained in the areas of wing-rotor dynamics, rotor loads, stability and control, feedback controls, and performance to meet the test objectives. These data are presented.

  4. Detailed flow surveys of turning vanes designed for a 0.1-scale model of NASA Lewis Research Center's proposed altitude wind tunnel

    NASA Technical Reports Server (NTRS)

    Moore, Royce D.; Shyne, Rickey J.; Boldman, Donald R.; Gelder, Thomas F.

    1987-01-01

    Detailed flow surveys downstream of the corner turning vanes and downstream of the fan inlet guide vanes have been obtained in a 0.1-scale model of the NASA Lewis Research Center's proposed Altitude Wind Tunnel. Two turning vane designs were evaluated in both corners 1 and 2 (the corners between the test section and the drive fan). Vane A was a controlled-diffusion airfoil and vane B was a circular-arc airfoil. At given flows the turning vane wakes were surveyed to determine the vane pressure losses. For both corners the vane A turning vane configuration gave lower losses than the vane B configuration in the regions where the flow regime should be representative of two-dimensional flow. For both vane sets the vane loss coefficient increased rapidly near the walls.

  5. Fan and wing force data from wind tunnel investigation of a 0.38 meter (15 inch) diameter VTOL model lift fan installed in a two dimensional wing

    NASA Technical Reports Server (NTRS)

    Yuska, J. A.; Diedrich, J. H.

    1972-01-01

    Test data are presented for a 38-cm (15-in.) diameter, 1.28 pressure ratio model VTOL lift fan installed in a two-dimensional wing and tested in a 2.74-by 4.58-meter (9-by 15-ft)V/STOL wind tunnel. Tests were run with and without exit louvers over a wide range of crossflow velocities and wing angle of attack. Tests were also performed with annular-inlet vanes, inlet bell-mouth surface disconuities, and fences to induce fan windmilling. Data are presented on the axial force of the fan assembly and overall wing forces and moments as measured on force balances for various static and crossflow test conditions. Midspan wing surface pressure coefficient data are also given.

  6. Wind-tunnel static and free-flight investigation of high-angle-of-attack stability and control characteristics of a model of the EA-6B airplane

    NASA Technical Reports Server (NTRS)

    Jordan, Frank L., Jr.; Hahne, David E.

    1992-01-01

    An investigation was conducted in the Langley 30- by 60-Foot Tunnel and the Langley 12-Foot Low-Speed Tunnel to identify factors contributing to a directional divergence at high angles of attack for the EA-6B airplane. The study consisted of static wind-tunnel tests, smoke and tuft flow-visualization tests, and free-flight tests of a 1/8.5-scale model of the airplane. The results of the investigation indicate that the directional divergence of the airplane is brought about by a loss of directional stability and effective dihedral at high angles of attack. Several modifications were tested that significantly alleviate the stability problem. The results of the free-flight study show that the modified configuration exhibits good dynamic stability characteristics and could be flown at angles of attack significantly higher than those of the unmodified configuration.

  7. Effects of spanwise blowing on the pressure field and vortex-lift characteristics of a 44 deg swept trapezoidal wing. [wind tunnel stability tests - aircraft models

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.

    1975-01-01

    Wind-tunnel data were obtained at a free-stream Mach number of 0.26 for a range of model angle of attack, jet thrust coefficient, and jet location. Results of this study show that the sectional effects to spanwise blowing are strongly dependent on angle of attack, jet thrust coefficient, and span location; the largest effects occur at the highest angles of attack and thrust coefficients and on the inboard portion of the wing. Full vortex lift was achieved at the inboard span station with a small blowing rate, but successively higher blowing rates were necessary to achieve full vortex lift at increased span distances. It is shown that spanwise blowing increases lift throughout the angle-of-attack range, delays wing stall to higher angles of attack, and improves the induced-drag polars. The leading-edge suction analogy can be used to estimate the section and total lifts resulting from spanwise blowing.

  8. Investigations of detail design issues for the high speed acoustic wind tunnel using a 60th scale model tunnel. Part 1: Tests with open circuits

    NASA Technical Reports Server (NTRS)

    Barna, P. Stephen

    1991-01-01

    This report summarizes the tests on the 1:60 scale model of the High Speed Acoustic Wind Tunnel (HSAWT) performed during the period of November 1989 to December 1990. Throughout the testing the tunnel was operated in the 'open circuit mode', that is when the airflow was induced by a powerful exhaust fan located outside the tunnel circuit. The tests were first performed with the closed test section and were subsequently repeated with the open test section. While operating with the open test section, a novel device, called the 'nozzle-diffuser,' was also tested in order to establish its usefulness of increasing pressure recovery in the first diffuser. The tests established the viability of the tunnel design. The flow distribution in each tunnel component was found acceptable and pressure recovery in the diffusers were found satisfactory. The diffusers appeared to operate without flow separation. All tests were performed at NASA LaRC.

  9. On the use of freon-12 for increasing Reynolds number in wind-tunnel testing of three dimensional aircraft models at subcritical and supercritical Mach numbers

    NASA Technical Reports Server (NTRS)

    Treon, S. L.; Hofstetter, W. R.; Abbott, F. T.

    1971-01-01

    The aerodynamic suitability of Freon-12 for general wind-tunnel testing was investigated at low and high subsonic speeds. Static aerodynamic characteristics of two transport airplane models were determined from strain gage balance measurements in both air and Freon-12 at several Reynolds numbers. A low-speed high-lift configuration was evaluated at Mach number 0.25, and a high-speed cruise wing-fuselage combination was tested at Mach numbers up to 0.825. The data obtained in air and in Freon-12 agree well, even in stalled flow, until compressibility effects evidently become significant in air and in Freon-12 agree well, even in stalled flow, until compressibility effects evidently become significant in air.

  10. Low-speed wind-tunnel tests of a large scale blended arrow advanced supersonic transport model having variable cycle engines and vectoring exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Parlett, L. P.; Shivers, J. P.

    1976-01-01

    A low-speed wind-tunnel investigation was conducted in a full-scale tunnel to determine the performance and static stability and control characteristics of a large-scale model of a blended-arrow advanced supersonic transport configuration incorporating variable-cycle engines and vectoring exhaust nozzles. Configuration variables tested included: (1) engine mode (cruise or low-speed), (2) engine exit nozzle deflection, (3) leading-edge flap geometry, and (4) trailing-edge flap deflection. Test variables included values of C sub micron from 0 to 0.38, values of angle of attack from -10 degrees to 30 degrees, values of angle of sideslip, from -5 degrees to 5 degrees, and values of Reynolds number, from 3.5 million to 6.8 million.

  11. Hypersonic aeroheating test of space shuttle vehicle configuration 3 (model 22-OTS) in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH20), volume 1

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.; Lockman, W. K.

    1975-01-01

    The results of hypersonic wind tunnel testing of an 0.0175 scale version of the vehicle 3 space shuttle configuration are presented. Temperature measurements were made on the launch configuration, orbiter plus tank, orbiter alone, tank alone, and solid rocket booster alone to provide heat transfer data. The test was conducted at free-stream Mach numbers of 5.3 and 7.3 and at free-stream Reynolds numbers of 1.5 million, 3.7 million, 5.0 million, and 7.0 million per foot. The model was tested at angles of attack from -5 deg to 20 deg and side slip angles of -5 deg and 0 deg.

  12. A survey of the three-dimensional high Reynolds number transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Takashima, K.; Sawada, H.; Aoki, T.

    1982-01-01

    The facilities for aerodynamic testing of airplane models at transonic speeds and high Reynolds numbers are surveyed. The need for high Reynolds number testing is reviewed, using some experimental results. Some approaches to high Reynolds number testing such as the cryogenic wind tunnel, the induction driven wind tunnel, the Ludwieg tube, the Evans clean tunnel and the hydraulic driven wind tunnel are described. The level of development of high Reynolds number testing facilities in Japan is discussed.

  13. Contribution of coherent structures to momentum and concentration fluxes over a flat vegetation canopy modelled in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Conan, Boris; Aubrun, Sandrine; Coudour, Bruno; Chetehouna, Khaled; Garo, Jean-Pierre

    2015-04-01

    Coherent structures dominate the shear flow in and above the vegetation canopy, affecting the transport of passive scalars. Their detailed understanding is therefore of great interest for a number of environmental studies such as organic gas exchange, pollution dispersion, or forest fire propagation. In the present study, a forest embedded in an atmospheric boundary layer was reproduced in a wind tunnel. An area source was installed to mimic the volatile organic compounds emission coming from the vegetation. A fast gas analyser combined to a triple hot-wire anemometer were used to measure simultaneously and at the same point the momentum and the concentration fluxes above the canopy. This particular set-up enabled the complex scalar exchange mechanism to be studied in the well defined and stationary boundary conditions of a laboratory experiment simulating neutral atmospheric conditions. Measurements showed that the contribution of coherent structures to the momentum and the concentration flux was 80% and 60% respectively. Contributions were found to be nearly constant with height. The combination of velocity and concentration measurements enabled the determination of the mean concentration of the coherent structures. Results highlights the preponderant role of ejections in releasing highly concentrated gas pockets above the forest canopy. These releases were measured to be, in average, 40% more concentrated than the average gas concentration at the same height. It is shown that 70% of the extreme events observed are linked to an ejection process.

  14. Development, simulation validation, and wind tunnel testing of a digital controller system for flutter suppression

    NASA Technical Reports Server (NTRS)

    Hoadley, Sherwood Tiffany; Buttrill, Carey S.; Mcgraw, Sandra M.; Houck, Jacob A.

    1991-01-01

    Flutter suppression (FS) is one of the active control concepts being investigated by the AFW program. The design goal for FS control laws was to increase the passive flutter dynamic pressure by 30 percent. In order to meet this goal, the FS control laws had to be capable of suppressing both symmetric and antisymmetric flutter instabilities simultaneously. In addition, the FS control laws had to be practical and low-order, robust and capable of real time execution within the 200 hz. sampling time. The purpose here is to present an overview of the development, simulation validation, and wind tunnel testing of a digital controller system for flutter suppression.

  15. Heat Transfer Measurements in Cold Wind Tunnels

    DTIC Science & Technology

    1982-09-01

    cost, four sensors were selected for cold wind tunnel applications. These sensors include the 2-D foil ( Gardon ) and wafer thermopile calo...D Thin Skin 9 3.2 2-0 Foil ( Gardon Gage) 22 3.3 Semi-Infinite Model, Conventional T/C 30 3.4 Wafer Thermopile 35 3.5 Thin Film Resistor/Semi...COMPUTER MODEL 157 APPENDIX C - SENSOR DESIGN DRAWINGS 161 ; UMMMBaiiMliiMuaft < ■ MHMMkk^ - i — -’■ r --.:.TBm™-™:» -;■ - LIST OF

  16. Introduction to cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    The background to the evolution of the cryogenic wind tunnel is outlined, with particular reference to the late 60's/early 70's when efforts were begun to re-equip with larger wind tunnels. The problems of providing full scale Reynolds numbers in transonic testing were proving particularly intractible, when the notion of satisfying the needs with the cryogenic tunnel was proposed, and then adopted. The principles and advantages of the cryogenic tunnel are outlined, along with guidance on the coolant needs when this is liquid nitrogen, and with a note on energy recovery. Operational features of the tunnels are introduced with reference to a small low speed tunnel. Finally the outstanding contributions are highlighted of the 0.3-Meter Transonic Cryogenic Tunnel (TCT) at NASA Langley Research Center, and its personnel, to the furtherance of knowledge and confidence in the concept.

  17. Other cryogenic wind tunnel projects

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1989-01-01

    The first cryogenic tunnel was built in 1972. Since then, many cryogenic wind-tunnel projects were started at aeronautical research centers around the world. Some of the more significant of these projects are described which are not covered by other lecturers at this Special Course. Described are cryogenic wind-tunnel projects in five countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Royal Aerospace Establishment-Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign and NASA Langley); and U.S.S.R. (Central Aero-Hydronamics Institute (TsAGI), Institute of Theoretical and Applied Mechanics (ITAM), and Physical-Mechanical Institute at Kharkov (PMI-K).

  18. Other cryogenic wind tunnel projects

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1989-01-01

    The first cryogenic tunnel was built in 1972. Since then, many cryogenic wind-tunnel projects were started at aeronautical research centers around the world. Some of the more significant of these projects are described which are not covered by other lecturers at this Special Course. Described are cryogenic wind-tunnel projects in five countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Royal Aerospace Establishment-Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign and NASA Langley); and U.S.S.R. (Central Aero-Hydronamics Institute (TsAGI), Institute of Theoretical and Applied Mechanics (ITAM), and Physical-Mechanical Institute at Kharkov (PMI-K).

  19. Other Cryogenic Wind Tunnel Projects

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1997-01-01

    The first cryogenic tunnel was built at the NASA Langley Research Center in 1972. Since then, many cryogenic wind-tunnels have been built at aeronautical research centers around the world. In this lecture some of the more interesting and significant of these projects that have not been covered by other lecturers at this Special Course are described. In this lecture authors describe cryogenic wind-tunnel projects at research centers in four countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Defence Research Agency - Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); and United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign, and NASA Langley).

  20. Subsonic Wind Tunnel Testing Handbook

    DTIC Science & Technology

    1991-05-01

    1532 For the wing, 17 - 4PH stainless steel screws... f= 120000 psi S.F. - 120000 = 78.4 1532 Screw head pullout in wing tip missile attachment... shear...Handbook, Subsonic, Wind Tunnel Testing 16. PRICE CODE 17 . SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF...XI- 16 XI-4 Raw Balance Data ........ .......................... XI- 17 A-1 Dynamic Pressure Determination

  1. Wind tunnel tests for a flapping wing model with a changeable camber using macro-fiber composite actuators

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Kwan; Han, Jae-Hung; Kwon, Ki-Jung

    2009-02-01

    In the present study, a biomimetic flexible flapping wing was developed on a real ornithopter scale by using macro-fiber composite (MFC) actuators. With the actuators, the maximum camber of the wing can be linearly changed from -2.6% to +4.4% of the maximum chord length. Aerodynamic tests were carried out in a low-speed wind tunnel to investigate the aerodynamic characteristics, particularly the camber effect, the chordwise flexibility effect and the unsteady effect. Although the chordwise wing flexibility reduces the effective angle of attack, the maximum lift coefficient can be increased by the MFC actuators up to 24.4% in a static condition. Note also that the mean values of the perpendicular force coefficient rise to a value of considerably more than 3 in an unsteady aerodynamic flow region. Additionally, particle image velocimetry (PIV) tests were performed in static and dynamic test conditions to validate the flexibility and unsteady effects. The static PIV results confirm that the effective angle of attack is reduced by the coupling of the chordwise flexibility and the aerodynamic force, resulting in a delay in the stall phenomena. In contrast to the quasi-steady flow condition of a relatively high advance ratio, the unsteady aerodynamic effect due to a leading edge vortex can be found along the wing span in a low advance ratio region. The overall results show that the chordwise wing flexibility can produce a positive effect on flapping aerodynamic characteristics in quasi-steady and unsteady flow regions; thus, wing flexibility should be considered in the design of efficient flapping wings.

  2. National Wind Tunnel Complex (NWTC)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Wind Tunnel Complex (NWTC) Final Report summarizes the work carried out by a unique Government/Industry partnership during the period of June 1994 through May 1996. The objective of this partnership was to plan, design, build and activate 'world class' wind tunnel facilities for the development of future-generation commercial and military aircraft. The basis of this effort was a set of performance goals defined by the National Facilities Study (NFS) Task Group on Aeronautical Research and Development Facilities which established two critical measures of improved wind tunnel performance; namely, higher Reynolds number capability and greater productivity. Initial activities focused upon two high-performance tunnels (low-speed and transonic). This effort was later descoped to a single multipurpose tunnel. Beginning in June 1994, the NWTC Project Office defined specific performance requirements, planned site evaluation activities, performed a series of technical/cost trade studies, and completed preliminary engineering to support a proposed conceptual design. Due to budget uncertainties within the Federal government, the NWTC project office was directed to conduct an orderly closure following the Systems Design Review in March 1996. This report provides a top-level status of the project at that time. Additional details of all work performed have been archived and are available for future reference.

  3. Italian and French Experiments on Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Knight, WM

    1920-01-01

    Given here are the results of experiments conducted by Colonel Costanzi of the Italian Army to determine the influence of the surrounding building in which a wind tunnel was installed on the efficiency of the installation, and how the efficiency of the installation was affected by the design of the tunnel. Also given are the results of a series of experiments by Eiffel on 34 models of tunnels of different dimensions. This series of experiments was started in order to find out if, by changing the shape of the nozzle or of the diffuser of the large tunnel at Auteuil, the efficiency of the installation could be improved.

  4. Wind tunnel turning vanes of modern design

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.; Moore, R. D.; Sanz, J. M.; Mcfarland, E. R.

    1985-01-01

    Rehabilitation of the Altitude Wind Tunnel includes the need for new corner turning vanes to match its upgraded performance. The design and experimental performance results from a 0.1-full scale model of the highest speed corner (M = 0.35) are presented and discussed along with some two dimensional inviscid analyses of two vaned corners. With a vane designed by an inverse two dimensional technique, the overall corner loss was about 12% of the inlet dynamic pressure of which about 4% was caused by vane skin friction. Comparable values with a conventionally designed circular arc vane were about 14% overall with about 7% due to skin friction.

  5. Reducing Wind Tunnel Data Requirements Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Ross, James C.; Jorgenson, Charles C.; Norgaard, Magnus

    1997-01-01

    The use of neural networks to minimize the amount of data required to completely define the aerodynamic performance of a wind tunnel model is examined. The accuracy requirements for commercial wind tunnel test data are very severe and are difficult to reproduce using neural networks. For the current work, multiple input, single output networks were trained using a Levenberg-Marquardt algorithm for each of the aerodynamic coefficients. When applied to the aerodynamics of a 55% scale model of a U.S. Air Force/ NASA generic fighter configuration, this scheme provided accurate models of the lift, drag, and pitching-moment coefficients. Using only 50% of the data acquired during, the wind tunnel test, the trained neural network had a predictive accuracy equal to or better than the accuracy of the experimental measurements.

  6. Four-Nozzle Benchmark Wind Tunnel Model USA Code Solutions for Simulation of Multiple Rocket Base Flow Recirculation at 145,000 Feet Altitude

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S.; Johnson, S. L.

    1993-01-01

    Multiple rocket exhaust plume interactions at high altitudes can produce base flow recirculation with attendant alteration of the base pressure coefficient and increased base heating. A search for a good wind tunnel benchmark problem to check grid clustering technique and turbulence modeling turned up the experiment done at AEDC in 1961 by Goethert and Matz on a 4.25-in. diameter domed missile base model with four rocket nozzles. This wind tunnel model with varied external bleed air flow for the base flow wake produced measured p/p(sub ref) at the center of the base as high as 3.3 due to plume flow recirculation back onto the base. At that time in 1961, relatively inexpensive experimentation with air at gamma = 1.4 and nozzle A(sub e)/A of 10.6 and theta(sub n) = 7.55 deg with P(sub c) = 155 psia simulated a LO2/LH2 rocket exhaust plume with gamma = 1.20, A(sub e)/A of 78 and P(sub c) about 1,000 psia. An array of base pressure taps on the aft dome gave a clear measurement of the plume recirculation effects at p(infinity) = 4.76 psfa corresponding to 145,000 ft altitude. Our CFD computations of the flow field with direct comparison of computed-versus-measured base pressure distribution (across the dome) provide detailed information on velocities and particle traces as well eddy viscosity in the base and nozzle region. The solution was obtained using a six-zone mesh with 284,000 grid points for one quadrant taking advantage of symmetry. Results are compared using a zero-equation algebraic and a one-equation pointwise R(sub t) turbulence model (work in progress). Good agreement with the experimental pressure data was obtained with both; and this benchmark showed the importance of: (1) proper grid clustering and (2) proper choice of turbulence modeling for rocket plume problems/recirculation at high altitude.

  7. Four-nozzle benchmark wind tunnel model USA code solutions for simulation of multiple rocket base flow recirculation at 145,000 feet altitude

    NASA Astrophysics Data System (ADS)

    Dougherty, N. S.; Johnson, S. L.

    1993-07-01

    Multiple rocket exhaust plume interactions at high altitudes can produce base flow recirculation with attendant alteration of the base pressure coefficient and increased base heating. A search for a good wind tunnel benchmark problem to check grid clustering technique and turbulence modeling turned up the experiment done at AEDC in 1961 by Goethert and Matz on a 4.25-in. diameter domed missile base model with four rocket nozzles. This wind tunnel model with varied external bleed air flow for the base flow wake produced measured p/p(sub ref) at the center of the base as high as 3.3 due to plume flow recirculation back onto the base. At that time in 1961, relatively inexpensive experimentation with air at gamma = 1.4 and nozzle A(sub e)/A of 10.6 and theta(sub n) = 7.55 deg with P(sub c) = 155 psia simulated a LO2/LH2 rocket exhaust plume with gamma = 1.20, A(sub e)/A of 78 and P(sub c) about 1,000 psia. An array of base pressure taps on the aft dome gave a clear measurement of the plume recirculation effects at p(infinity) = 4.76 psfa corresponding to 145,000 ft altitude. Our CFD computations of the flow field with direct comparison of computed-versus-measured base pressure distribution (across the dome) provide detailed information on velocities and particle traces as well eddy viscosity in the base and nozzle region. The solution was obtained using a six-zone mesh with 284,000 grid points for one quadrant taking advantage of symmetry. Results are compared using a zero-equation algebraic and a one-equation pointwise R(sub t) turbulence model (work in progress). Good agreement with the experimental pressure data was obtained with both; and this benchmark showed the importance of: (1) proper grid clustering and (2) proper choice of turbulence modeling for rocket plume problems/recirculation at high altitude.

  8. Aeronautical Wind Tunnels, Europe and Asia

    DTIC Science & Technology

    2006-02-01

    AERONAUTICAL WIND TUNNELS EUROPE AND ASIA Researchers: Katarina David Jenele Gorham Sarah Kim Patrick Miller... Wind Tunnels Europe and Asia 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...18 Library of Congress – Federal Research Division Aeronautical Wind Tunnels Europe and Asia PREFACE 1 This catalog is a compilation of data on

  9. Wind tunnel test of model target thrust reversers for the Pratt and Whitney aircraft JT8D-100 series engines installed on a 727-200 airplane

    NASA Technical Reports Server (NTRS)

    Hambly, D.

    1974-01-01

    The results of a low speed wind tunnel test of 0.046 scale model target thrust reversers installed on a 727-200 model airplane are presented. The full airplane model was mounted on a force balance, except for the nacelles and thrust reversers, which were independently mounted and isolated from it. The installation had the capability of simulating the inlet airflows and of supplying the correct proportions of primary and secondary air to the nozzles. The objectives of the test were to assess the compatibility of the thrust reversers target door design with the engine and airplane. The following measurements were made: hot gas ingestion at the nacelle inlets; model lift, drag, and pitching moment; hot gas impingement on the airplane structure; and qualitative assessment of the rudder effectiveness. The major parameters controlling hot gas ingestion were found to be thrust reverser orientation, engine power setting, and the lip height of the bottom thrust reverser doors on the side nacelles. The thrust reversers tended to increase the model lift, decrease the drag, and decrease the pitching moment.

  10. Application of Neural Networks to Wind tunnel Data Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Zhao, J. L.; DeLoach, Richard

    2000-01-01

    The integration of nonlinear neural network methods with conventional linear regression techniques is demonstrated for representative wind tunnel force balance data modeling. This work was motivated by a desire to formulate precision intervals for response surfaces produced by neural networks. Applications are demonstrated for representative wind tunnel data acquired at NASA Langley Research Center and the Arnold Engineering Development Center in Tullahoma, TN.

  11. Comparison of flight and wind tunnel measurements of jet noise for the XV-5B aircraft

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Kirk, J. V.; Soderman, P. T.; Hall, L. P.

    1972-01-01

    Wind tunnel tests to determine noise data from scale model research aircraft are discussed. Comparisons are made between data obtained in wind tunnels and results of full scale flight tests. The acoustic measurements for the XV-5B V/STOL fan research aircraft are presented.

  12. Wind-tunnel Tests of a 2-engine Airplane Model as a Preliminary Study of Flight Conditions Arising on the Failure of the Engine

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P

    1938-01-01

    Wind tunnel tests of a 15-foot-span model of a two-engine low wing transport airplane were made as a preliminary study of the emergency arising from the failure of one engine in flight. Two methods of reducing the initial yawing moment resulting from the failure of one engine were investigated and the equilibrium conditions were explored for two basic modes on one engine, one with zero angle of sideslip and the other with several degrees of sideslip. The added drag resulting from the unsymmetrical attitudes required for flight on one engine was determined for the model airplane. The effects of the application of power upon the stability, controllability, lift, and drag of the model airplane were measured. A dynamic pressure survey of the propeller slipstream was made in the neighborhood of the tail surfaces at three angles of attack. The added parasite drag of the model airplane resulting from the unfavorable conditions of flight on one engine was estimated. From 35 to 50 percent of this added drag was due to the drag of the dead engine propeller and the other 50 to 65 percent was due to the unsymmetrical attitude of the airplane. The mode of flight on one engine in which the angle of sideslip was zero was found to require less power than the mode in which the angle of sideslip was several degrees.

  13. Empirical Relation Between Induced Velocity, Thrust, and Rate of Descent of a Helicopter Rotor as Determined by Wind-tunnel Tests on Four Model Rotors

    NASA Technical Reports Server (NTRS)

    Castles, Walter, Jr; Gray, Robin B

    1951-01-01

    The empirical relation between the induced velocity, thrust, and rate of vertical descent of a helicopter rotor was calculated from wind tunnel force tests on four model rotors by the application of blade-element theory to the measured values of the thrust, torque, blade angle, and equivalent free-stream rate of descent. The model tests covered the useful range of C(sub t)/sigma(sub e) (where C(sub t) is the thrust coefficient and sigma(sub e) is the effective solidity) and the range of vertical descent from hovering to descent velocities slightly greater than those for autorotation. The three bladed models, each of which had an effective solidity of 0.05 and NACA 0015 blade airfoil sections, were as follows: (1) constant-chord, untwisted blades of 3-ft radius; (2) untwisted blades of 3-ft radius having a 3/1 taper; (3) constant-chord blades of 3-ft radius having a linear twist of 12 degrees (washout) from axis of rotation to tip; and (4) constant-chord, untwisted blades of 2-ft radius. Because of the incorporation of a correction for blade dynamic twist and the use of a method of measuring the approximate equivalent free-stream velocity, it is believed that the data obtained from this program are more applicable to free-flight calculations than the data from previous model tests.

  14. Empirical relation between induced velocity, thrust, and rate of descent of a helicopter rotor as determined by wind-tunnel tests on four model rotors

    NASA Technical Reports Server (NTRS)

    Castles, Walter, Jr.; Gray, Robin B.

    1951-01-01

    The empirical relation between the induced velocity, thrust, and rate of vertical descent of a helicopter rotor was calculated from wind tunnel force tests on four model rotors by the application of blade-element theory to the measured values of the thrust, torque, blade angle, and equivalent free-stream rate of descent. The model tests covered the useful range of C(sub t)/sigma(sub e) (where C(sub t) is the thrust coefficient and sigma(sub e) is the effective solidity) and the range of vertical descent from hovering to descent velocities slightly greater than those for autorotation. The three bladed models, each of which had an effective solidity of 0.05 and NACA 0015 blade airfoil sections, were as follows: (1) constant-chord, untwisted blades of 3-ft radius; (2) untwisted blades of 3-ft radius having a 3/1 taper; (3) constant-chord blades of 3-ft radius having a linear twist of 12 degrees (washout) from axis of rotation to tip; and (4) constant-chord, untwisted blades of 2-ft radius. Because of the incorporation of a correction for blade dynamic twist and the use of a method of measuring the approximate equivalent free-stream velocity, it is believed that the data obtained from this program are more applicable to free-flight calculations than the data from previous model tests.

  15. 9x15 Low Speed Wind Tunnel Improvements Update

    NASA Technical Reports Server (NTRS)

    Stephens, David

    2017-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 9x15 LSWT was designed for performance testing of VSTOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2018.

  16. Magnetic Leviation System Design and Implementation for Wind Tunnel Application

    NASA Technical Reports Server (NTRS)

    Lin, Chin E.; Sheu, Yih-Ran; Jou, Hui-Long

    1996-01-01

    This paper presents recent work in magnetic suspension wind tunnel development in National Cheng Kung University. In this phase of research, a control-based study is emphasized to implement a robust control system into the experimental system under study. A ten-coil 10 cm x 10 cm magnetic suspension wind tunnel is built using a set of quadrant detectors for six degree of freedom control. To achieve the attitude control of suspended model with different attitudes, a spacial electromagnetic field simulation using OPERA 3D is studied. A successful test for six degree of freedom control is demonstrated in this paper.

  17. Computer programs for the calculation of dual sting pitch and roll angles required for an articulated sting to obtain angles of attack and sideslip on wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Peterson, John B., Jr.

    1991-01-01

    Two programs were developed to calculate the pitch and roll position of the conventional sting drive and the pitch of a high angle articulated sting to position a wind tunnel model at the desired angle of attack and sideslip and position the model as near as possible to the centerline of the tunnel. These programs account for the effects of sting offset angles, sting bending angles, and wind-tunnel stream flow angles. In addition, the second program incorporates inputs form on-board accelerometers that measure model pitch and roll with respect to gravity. The programs are presented and a description of the numerical operation of the programs with a definition of the variables used in the programs is given.

  18. Investigations of the 0.020-scale 88-OTS Integrated Space Shuttle Vehicle Jet-Plume Model in the NASA/Ames Research Center 11 by11-Foot Unitary Plan Wind Tunnel (IA80). Volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.

  19. Results of flutter test OS7 obtained using the 0.14-scale space shuttle orbiter fin/rudder model number 55-0 in the NASA LaRC 16-foot transonic dynamics wind tunnel

    NASA Technical Reports Server (NTRS)

    Berthold, C. L.

    1977-01-01

    A 0.14-scale dynamically scaled model of the space shuttle orbiter vertical tail was tested in a 16-foot transonic dynamic wind tunnel to determine flutter, buffet, and rudder buzz boundaries. Mach numbers between .5 and 1.11 were investigated. Rockwell shuttle model 55-0 was used for this investigation. A description of the test procedure, hardware, and results of this test is presented.

  20. Results of flutter test OS6 obtained using the 0.14-scale wing/elevon model (54-0) in the NASA LaRC 16-foot transonic dynamics wind tunnel

    NASA Technical Reports Server (NTRS)

    Berthold, C. L.

    1977-01-01

    A 0.14-scale dynamically scaled model of the space shuttle orbiter wing was tested in the Langley Research Center 16-Foot Transonic Dynamics Wind Tunnel to determine flutter, buffet, and elevon buzz boundaries. Mach numbers between 0.3 and 1.1 were investigated. Rockwell shuttle model 54-0 was utilized for this investigation. A description of the test procedure, hardware, and results of this test is presented.