Science.gov

Sample records for ag ans arec

  1. Water quality assessment using the AREc32 reporter gene assay indicative of the oxidative stress response pathway.

    PubMed

    Escher, Beate I; Dutt, Mriga; Maylin, Erin; Tang, Janet Y M; Toze, Simon; Wolf, C Roland; Lang, Matti

    2012-11-01

    The reporter gene assay AREc32 is based on the induction of the Nrf2 mediated oxidative stress response pathway in the human breast cancer cell line MCF7, where eight copies of the antioxidant response element (ARE) are linked to a reporter gene encoding for luciferase. The Nrf2-ARE pathway is responsive to many chemicals that cause oxidative stress, among them a large number of pesticides and skin irritants. We adopted and validated the AREc32 bioassay for water quality testing. tert-Butylhydroquinone served as the positive control, phenol as the negative control and other reactive chemicals were assessed for their specificity. An environmentally relevant reference chemical, benzo(a)pyrene was the most potent inducer of all tested chemicals. The concentration causing an induction ratio (IR) of 1.5 (EC(IR1.5)) was chosen as the effect benchmark value. The assay was applied to 21 water samples ranging from sewage to drinking water, including secondary treatment and various tertiary treatment options (ozonation, biologically activated carbon filtration, membrane filtration, reverse osmosis, advanced oxidation, chlorination, chloramination). The samples were enriched by solid phase extraction. In most samples the oxidative stress response was far more sensitive than cytotoxicity. The primary and secondary treated effluent exceeded the effect threshold IR 1.5 at a relative enrichment factor (REF) of 1, i.e., the native samples were active. All tertiary treated samples were less potent and their EC(IR1.5) lay between REF 1 and 10. The Nrf2 pathway was induced at a REF of approximately 10 for surface waters and drinking water, and above this enrichment cytotoxicity took over in most samples and quenched the induction. The blank (ultrapure water run through the sample enrichment process) was cytotoxic at an REF of 100, which is the limit of concentrations range that can be evaluated. Treatment typically decreased both the cytotoxicity and oxidative stress response apart

  2. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite.

    PubMed

    Bai, Yu-Yang; Lu, Yi; Liu, Jin-Ku

    2016-04-15

    The Ag2MoO4-AgBr composite was prepared by a facile in-situ anion-exchange method, then the Ag nanoparticles were coated on this composite through photodeposition route to form a novel Ag@Ag2MoO4-AgBr composite. The in-situ Br(-) replacement in a crystal lattice node position of Ag2MoO4 crystal allows for overcoming the resistance of electron transition effectively. Meanwhile silver nano-particles on the surface of Ag@Ag2MoO4-AgBr composite could act as electron traps to intensify the photogeneration electron-hole separation and the subsequent transfer of the trapped electron to the adsorbed O2 as an electron acceptor. As an efficient visible light catalyst, the Ag@Ag2MoO4-AgBr composite exhibited superior photocatalytic activity for the degradation of various organic dyes. The experimental results demonstrated superior photocatalytic rate of Ag@Ag2MoO4-AgBr composite compared to pure AgBr and Ag2MoO4 crystals (37.6% and 348.4% enhancement respectively). The Ag@Ag2MoO4-AgBr composite cloud degraded Rhodamin B, bromophenol blue, and amino black 10b completed in 7min. PMID:26775100

  3. Development of an Artificial Gravity Sleeper (AGS)

    NASA Technical Reports Server (NTRS)

    Cardus, David; Mctaggart, Wesley G.; Diamandis, Peter; Campbell, Scott

    1990-01-01

    The design and construction of a 2-meter radius 'human compatible' centrifuge termed the Artificial Gravity Sleeper (AGS) is considered. The centrifuge will accommodate up to four subjects at a time, operate at a broad range of speeds, and have safety features. Experiments that will be conducted on the AGS will help to investigate the quality of sleep during 100 percent gradient centrifugation. A microgravity simulation also will be studied using bed rest to assess the ability of 100 percent gradient centrifugation to function as a countermeasure to cardiovascular deconditioning.

  4. Theoretical modeling of optical properties of Ag8 and Ag14 silver clusters embedded in an LTA sodalite zeolite cavity.

    PubMed

    Cuong, Ngo Tuan; Nguyen, Hue Minh Thi; Nguyen, Minh Tho

    2013-10-01

    Optical properties of silver Ag(n) nanoclusters are demonstrated to be dependent on their size, structure and charge state. It is found that when being contained in the sodalite cavity of LTA zeolite the tetradecanuclear hexacation silver cluster Ag14(6+) is stable. Its lower-lying states and optical spectrum are theoretically determined using the quantum chemical TD-DFT method. Its ground state possesses an outer-shell electron configuration of A1g(2)T2g(6) mimicking the s(2)p(6) valence of noble gas atoms. These frontier orbitals are constructed from 5s,5p(Ag)-AOs with contributions from framework oxygen atoms. Light absorption of Ag14(6+) embedded in the sodalite cage which is characterized by strong peaks centered at 331 and 476 nm (transitions 5s,p(Ag) → 5s,p(Ag)) leads to much longer wavelength emission. The sodalite cage, as a container, stabilizes the central Ag14(6+) cluster by electrostatic attraction. The absorption spectrum of the isovalent neutral Ag8 cluster embedded inside the same sodalite cavity is also simulated using TD-DFT and CASPT2 methods. This absorption spectrum which is similar to that of the Ag14(6+) cluster has two absorption bands in the near UV and visible regions. PMID:23936902

  5. Synthesis of Ag-coated polystyrene colloids by an improved surface seeding and shell growth technique

    SciTech Connect

    Tian Chungui; Wang Enbo . E-mail: wangenbo@public.cc.jl.cn; Kang Zhenhui; Mao Baodong; Zhang Chao; Lan Yang; Wang Chunlei; Song Yanli

    2006-11-15

    In this paper, an improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. Polyethyleneimine (PEI) could act as the linker between Ag ions (Ag nanoparticles) and polystyrene (PS) colloids and the reducing agent in the formation of Ag nanoparticles. Due to the multi-functional characteristic of PEI, Ag seeds formed in-situ and were immobilized on the surface of PEI-modified PS colloids and no free Ag clusters coexist with the Ag 'seeding' PS colloids in the system. Then, the additional agents could be added into the resulting dispersions straightly to produce a thick Ag nanoshell. The Ag nanoshell with controllable thickness was formed on the surface of PS by the 'one-pot' surface seeding and shell growth method. The Ag-coverage increased gradually with the increasing of mass ratio of AgNO{sub 3}/PS. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. - Graphical abstract: An improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. Display Omitted.

  6. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film.

    PubMed

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-22

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance. PMID:26939539

  7. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film

    NASA Astrophysics Data System (ADS)

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-01

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance.

  8. An Ab Initio Study of the Low-Lying Doublet States of AgO and AgS

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1990-01-01

    Spectroscopic constants (D(sub o), r(sub e), mu(sub e), T(sub e)) are determined for the doublet states of AgO and AgS below approx. = 30000/cm. Large valence basis sets are employed in conjunction with relativistic effective core potentials (RECPs). Electron correlation is included using the modified coupled-pair functional (MCPF) and multireference configuration interaction (MRCI) methods. The A(sup 2)Sigma(sup +) - X(sup 2)Pi band system is found to occur in the near infrared (approx. = 9000/cm) and to be relatively weak with a radiative lifetime of 900 microns for A(sup 2)Sigma(sup +) (upsilon = 0). The weakly bound C(sup 2)Pi state (our notation), the upper state of the blue system, is found to require high levels of theoretical treatment to determine a quantitatively accurate potential. The red system is assigned as a transition from the C(sup 2)Pi state to the previously unobserved A(sup 2)Sigma(sup +) state. Several additional transitions are identified that should be detectable experimentally. A more limited study is performed for the vertical excitation spectrum of AgS. In addition, a detailed all-electron study of the X(sup 2)Pi and A(sup 2)Sigma(sup +) states of AgO is carried out using large atomic natural orbital (ANO) basis sets. Our best calculated D(sub o) value for AgO is significantly less than the experimental value, which suggests that there may be some systematic error in the experimental determination.

  9. Switching of an Azobenzene-Tripod Molecule on Ag(111).

    PubMed

    Scheil, Katharina; Gopakumar, Thiruvancheril G; Bahrenburg, Julia; Temps, Friedrich; Maurer, Reinhard Johann; Reuter, Karsten; Berndt, Richard

    2016-06-01

    The trans-cis isomerization makes azobenzene (AB) a robust molecular switch. Once adsorbed to a metal, however, the switching is inefficient or absent due to rapid excited-state quenching or loss of the trans-cis bistability. We find that tris-[4-(phenylazo)-phenyl]-amine is a rather efficient switch on Ag(111). Using scanning tunneling and atomic force microscopy at submolecular resolution along with density functional theory calculations, we show that the switching process is no trans-cis isomerization but rather a reorientation of the N-N bond of an AB unit. It proceeds through a twisting motion of the azo-bridge that leads to a lateral shift of a phenyl ring. Thus, the role of the Ag substrate is ambivalent. While it suppresses the original bistability of the azobenzene units, it creates a new one by inducing a barrier for the rotation of the N-N bond. PMID:27193044

  10. Progress in the development of an artificial gravity simulator (AGS)

    NASA Technical Reports Server (NTRS)

    Cardus, David; Mctaggart, Wesley G.; Campbell, Scott

    1991-01-01

    The paper describes the short-arm centrifuge for studying the effects of acceleration on human subjects which was built at the Artificial Gravity Simulator (AGS) laboratory at Woodlands, Texas. The AGS centrifuge comprises a turntable, a traction system, a platform, four beds, and a data-communication system. Schematic diagrams are presented of the AGS laboratory layout, the centrifuge turntable, the tiltable (up to 6 deg) bed frame, and of the data collection multiplexer (master switch) for physiological data communications.

  11. Overcoming an intrinsic depolarizing resonance with a partial snake at the Brookhaven AGS.

    SciTech Connect

    Huang, H.; Ahrens, L.; Bai, M.; Brown, K. A.; Glenn, W.; Luccio, A. U.; MacKay, W. W.; Montag, C.; Ptitsyn, V.; Roser, T.; Tsoupas, N.; Zeno, K.; Ranjbar, V.; Cadman, R. V.; Spinka, H.; Underwood, D.; High Energy Physics; BNL; Indiana Univ.

    2004-06-01

    An 11.4% partial Siberian snake was used to successfully accelerate polarized protons through a strong intrinsic depolarizing spin resonance in the Alternating Gradient Synchrotron (AGS). No noticeable depolarization was observed. This opens up the possibility of using a 20% to 30% partial Siberian snake in the AGS or other medium energy proton synchrotrons to overcome all weak and strong depolarizing spin resonances.

  12. Sonosynthesis of an Ag/AgBr/Graphene-oxide nanocomposite as a solar photocatalyst for efficient degradation of methyl orange.

    PubMed

    Esmaeili, A; Entezari, M H

    2016-03-15

    In this study, a new method has developed for the synthesis of Ag/AgBr/Graphene-oxide (Ag/AgBr/GO) nanocomposite with high adsorption capacity and high photocatalytic activity in degradation of methyl orange (MO). In this method, ultrasound was applied in the synthesis and it was facilitated the process. The samples prepared under ultrasound were shown as Ag/AgBr/GO-U, and the samples under conventional method as Ag/AgBr/GO-C. The results of FT-IR, XRD, Raman, DRS and SEM confirmed the structure of the nanocomposites very well. Ultrasound played a key role in the formation of nanocomposite with smaller size of GO sheets and particles. Different amount of GO was used in the nanocomposite composition and their photocatalytic activities were compared. The MO in solution was completely degraded in 15 min, 30 min, and 45 min with Ag/AgBr/GO-U-1 that contained 1 mg mL(-1) GO, Ag/AgBr/GO-U-0.5 that contained 0.5 mg mL(-1) GO and Ag/AgBr/GO-C-0.5 that contained 0.5 mg mL(-1) GO, respectively. The chemical oxygen demand (COD) measurements displayed a complete mineralization in 30 min for Ag/AgBr/GO-U-0.5. The data obtained from the degradation experiments were fitted to the first-order kinetics and the adsorption obeyed the Langmuir model. The nanocatalyst did not exhibit significant loss of activity even after four cycles of successive uses. To determine the mechanism of photocatalytic degradation of MO, different scavengers were used. Based on the results, the superoxide radical, hydroxyl radical and hole had a key role in the degradation process. The Ag/AgBr/GO-U-1 nanocomposite exhibited the highest photocatalytic activity due to its high adsorption capacity and enhanced charge transfer. PMID:26724706

  13. High intensity proton acceleration at the Brookhaven AGS -- An update

    SciTech Connect

    Ahrens, L.; Alessi, J.; Blaskiewicz, M.

    1997-07-01

    The AGS accelerator complex is into its third year of 60+ {times} 10{sup 12} (teraproton = Tp) per cycle operation. The hardware making up the complex as configured in 1997 is briefly mentioned. The present level of accelerator performance is discussed. This includes beam transfer efficiencies at each step in the acceleration process, i.e. losses; which are a serious issue at this intensity level. Progress made in understanding beam behavior at the Linac-to-Booster (LtB) injection, at the Booster-to-AGS (BtA) transfer as well as across the 450 ms AGS accumulation porch is presented. The state of transition crossing, with the gamma-tr jump is described. Coherent effects including those driven by space charge are important at all of these steps.

  14. An overview of Booster and AGS polarized proton operation during Run 15

    SciTech Connect

    Zeno, K.

    2015-10-20

    This note is an overview of the Booster and AGS for the 2015 Polarized Proton RHIC run from an operations perspective. There are some notable differences between this and previous runs. In particular, the polarized source intensity was expected to be, and was, higher this year than in previous RHIC runs. The hope was to make use of this higher input intensity by allowing the beam to be scraped down more in the Booster to provide a brighter and smaller beam for the AGS and RHIC. The RHIC intensity requirements were also higher this run than in previous runs, which caused additional challenges because the AGS polarization and emittance are normally intensity dependent.

  15. An intramolecular charge transfer fluorescent probe: Synthesis and selective fluorescent sensing of Ag +

    NASA Astrophysics Data System (ADS)

    Mu, Honglei; Gong, Rui; Ren, Lin; Zhong, Cheng; Sun, Yimin; Fu, Enqin

    2008-09-01

    An intramolecular charge transfer (ICT) fluorescent probe, in which the thiourea derivative moiety is linked to the fluorescent 4-(dimethylamino) benzamide, has been designed and synthesized. The ions-selective signaling behaviors of the probe were investigated. Upon the addition of Ag +, an overall emission enhancement of 14-fold was observed. Compound 1 displayed highly selective chelation enhanced fluorescence (CHEF) effect with Ag + over alkali, alkali earth metal ions and some transition metal ions in aqueous methanol solutions. The prominent selective and efficient fluorescent enhancing behavior could be utilized as a new chemosensing probe for the analysis of Ag + ion in aqueous environment.

  16. An overwhelmingly selective colorimetric sensor for Ag(+) using a simple modified polyacrylonitrile fiber.

    PubMed

    Xing, Xiaoli; Yang, Huixiao; Tao, Minli; Zhang, Wenqin

    2015-10-30

    A carboxymethyl-dithiocarbamate immobilized polyacrylonitrile fiber colorimetric sensor has been synthesized. This fiber sensor exhibits excellent selectivity and sensitivity for Ag(+) in aqueous solution with a remarkable color change from light pink to red-brown over a wide pH range of 2-12. The sensor responds selectively to Ag(+) in the presence of other ions, including Mg(2+), Al(3+), Ca(2+), Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Pb(2+). The colorimetric sensor has an extremely fast response time (10s) and a low visual limit of detection (5.53×10(-12) mol/L). The fiber sensor also undergoes an obvious color change in the presence of Ag(+) solutions containing EDTA, NaCl or NaBr. Density functional theory optimization reveals that the sensor and Ag(+) interact via a seven-membered ring complexation mechanism. PMID:25967097

  17. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Ye, Feng; Yao, Qiaofeng; Cao, Hongbin; Xie, Jianping; Lee, Jim Yang; Yang, Jun

    2014-02-01

    The usefulness of Pt-based nanomaterials for catalysis can be greatly enhanced by coupling morphology engineering to the strategic presence of a second or even third metal. Here we demonstrate the design and preparation of stellated Ag-Pt bimetallic nanoparticles where significant activity difference between the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) may be realized by relegating Ag to the core or by hollowing out the core. In particular the stellated Pt surface, with an abundance of steps, edges, corner atoms, and {111} facets, is highly effective for the ORR but is ineffective for MOR. MOR activity is only observed in the presence of a Ag core through electronic coupling to the stellated Pt shell. The bimetallic Ag-Pt stellates therefore demonstrate the feasibility of tuning a Pt surface for two very different structure sensitive catalytic reactions. Stellated bimetallics may therefore be an effective platform for highly tunable catalyst designs.

  18. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning

    PubMed Central

    Liu, Hui; Ye, Feng; Yao, Qiaofeng; Cao, Hongbin; Xie, Jianping; Lee, Jim Yang; Yang, Jun

    2014-01-01

    The usefulness of Pt-based nanomaterials for catalysis can be greatly enhanced by coupling morphology engineering to the strategic presence of a second or even third metal. Here we demonstrate the design and preparation of stellated Ag-Pt bimetallic nanoparticles where significant activity difference between the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) may be realized by relegating Ag to the core or by hollowing out the core. In particular the stellated Pt surface, with an abundance of steps, edges, corner atoms, and {111} facets, is highly effective for the ORR but is ineffective for MOR. MOR activity is only observed in the presence of a Ag core through electronic coupling to the stellated Pt shell. The bimetallic Ag-Pt stellates therefore demonstrate the feasibility of tuning a Pt surface for two very different structure sensitive catalytic reactions. Stellated bimetallics may therefore be an effective platform for highly tunable catalyst designs. PMID:24495979

  19. 1,10-Phenanthroline as an accelerator for Ag nanoparticle-catalysed electroless copper deposition

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Ru; Chou, Nan-Kuang; Li, Cheng-Hsing; Chen, Ho-Rei; Lee, Chien-Liang

    2014-10-01

    1,10-Phenanthroline (phen) can be successfully used as an accelerator for Ag-catalysed electroless copper deposition (ECD) processes. Electrochemical quartz crystal microbalance analyses indicate that the mass activity in terms of thickness of deposited Cu layer and average ECD rate within a deposition time of 110 s for Ag nanoparticles activated by phen are 7.86 × 10-3 μm μg-1 and 1.43 × 10-4 μm μg-1 s-1, respectively, whereas Ag nanoparticles without phen cannot catalyse the reaction. Furthermore, Tafel and cyclic voltammetric results show that the addition of phen to the ECD bath significantly enhances the ability of the Ag nanoparticles to catalyse the oxidation of HCHO and suppresses the formation of CuO.

  20. An asymmetric Zn//Ag doped polyaniline microparticle suspension flow battery with high discharge capacity

    NASA Astrophysics Data System (ADS)

    Wu, Sen; Zhao, Yongfu; Li, Degeng; Xia, Yang; Si, Shihui

    2015-02-01

    In this study, the effect of oxygen on the potential of reduced polyaniline (PANI) was investigated. In order to enhance the air oxidation of reduced PANI, several composites of PANI doped with co-catalysts were prepared, and a reasonable flow Zn//PANI suspension cell system was designed to investigate the discharge capacity of obtained PANI composite microparticle suspension cathodes. Compared with PANI doped with Cu2+, La+, Mn2+ and zinc protoporphyrin, Ag doped PANI composite at 0.90 weight percent doping of Ag gave the highest value of discharge capacity for the half-cell potential from the initial value to -0.20 V (vs. SCE). A comparison study on the electrochemical properties of both PANI and Ag doped PANI microparticle suspension was done by using cyclic voltammetry, AC Impedance. Due to partial utilization of Zn//air fuel cell, the discharge capacity for Ag doped PANI reached 470 mA h g-1 at the current density of 20 mA cm-2. At 15 mA cm-2, the discharge capacity even reached up to 1650 mA h g-1 after 220 h constant current discharge at the final discharge voltage of 0.65 V. This work demonstrates an effective and feasible approach toward obtaining high energy and power densities by a Zn//Ag-doped PANI suspension flow battery system combined with Zn//air fuel cell.

  1. An ultrasensitive, uniform and large-area surface-enhanced Raman scattering substrate based on Ag or Ag/Au nanoparticles decorated Si nanocone arrays

    NASA Astrophysics Data System (ADS)

    Zhang, P. P.; Gao, J.; Sun, X. H.

    2015-01-01

    Large-area and highly ordered Si nanocone arrays decorated with Ag or Au/Ag nanoparticles have been fabricated via a mask-free lithography with reaction ion etching, followed by metal deposition process. Ultrasensitive surface enhanced Raman scattering signals with an enhancement factor of 1012 were achieved even at the concentration of the Rhodamine 6G as low as 10-15 M. The surface-enhanced Raman spectroscopy (SERS) substrate was also applied on the detection of Sudan I dye and the Raman signals were substantially enhanced as well. The stability of the SERS substrate can be significantly improved by covering Ag nanoparticles with Au thin layer, which maintain a high SERS performance even after one month storage. This nanofabrication process appears to be a feasible approach to prepare uniform and reproducible SERS-active substrates with high sensitivity and stability for practical SERS applications.

  2. Electronic structure of crystalline phosphorus pentoxide and the effect of an Ag impurity

    NASA Astrophysics Data System (ADS)

    Abarenkov, I. V.; Tupitsyn, I. I.; Kuznetsov, V. G.; Payne, M. C.

    1999-09-01

    The phosphorus pentoxide crystal with Pnam symmetry containing four P2O5 molecules in the unit cell was calculated by ab initio density-functional theory in the local-density approximation with a plane-wave basis set using the CASTEP code. The calculated optimized geometry is in good agreement with experiment. The population analysis made in terms of Löwdin and Mulliken charges and Wiberg indexes showed that this crystal has a mixed chemical bonding, partly ionic, partly covalent. An Ag atom impurity in the phosphorus pentoxide crystal was investigated within the periodic model. The distortion of the lattice around the impurity was analyzed in terms of PO4 tetrahedra. The calculations showed that in spite of considerable deformation of the lattice, the Ag impurity does not break the P-O bonding network and changes the P-O bond order only a little. The Ag impurity atom is bound to the crystal with an almost pure ionic bond, the Ag atomic charge being 0.6 (Löwdin charge).

  3. Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach

    NASA Astrophysics Data System (ADS)

    Khan, M. Mansoob; Ansari, Sajid A.; Amal, M. Ikhlasul; Lee, Jintae; Cho, Moo Hwan

    2013-05-01

    Titanium dioxide (TiO2) nanoparticles were decorated with different amounts of silver nanoparticles (AgNPs) using an electrochemically active biofilm (EAB), which is a biogenic approach that leads to the formation of Ag@TiO2 nanocomposites. UV-vis spectroscopy, photoluminescence, X-ray diffraction and electron microscopy showed AgNPs, 2-5 nm in size, well-dispersed and anchored to the TiO2 surface and overall synthesis of Ag@TiO2 nanocomposites. The photocatalytic performance of the as-synthesized Ag@TiO2 nanocomposites was evaluated in terms of their efficiency for the photodecomposition of methylene blue (MB) in an aqueous solution under visible light irradiation. The nanocomposites showed exceptionally high photodecomposition efficiency (>7 times) compared to commercial TiO2 (Sigma). The enhanced photocatalytic activity was attributed to the synergistic contribution of both a delayed charge recombination rate caused by the high electronic mobility of the AgNPs and the increased surface area originating from the nanometer sized AgNPs on TiO2. The nanocomposites also showed exceptionally high stability and reusability under similar experimental conditions.Titanium dioxide (TiO2) nanoparticles were decorated with different amounts of silver nanoparticles (AgNPs) using an electrochemically active biofilm (EAB), which is a biogenic approach that leads to the formation of Ag@TiO2 nanocomposites. UV-vis spectroscopy, photoluminescence, X-ray diffraction and electron microscopy showed AgNPs, 2-5 nm in size, well-dispersed and anchored to the TiO2 surface and overall synthesis of Ag@TiO2 nanocomposites. The photocatalytic performance of the as-synthesized Ag@TiO2 nanocomposites was evaluated in terms of their efficiency for the photodecomposition of methylene blue (MB) in an aqueous solution under visible light irradiation. The nanocomposites showed exceptionally high photodecomposition efficiency (>7 times) compared to commercial TiO2 (Sigma). The enhanced

  4. An unprecedented 3D POM-Ag architecture with intertwined and homological helical structures.

    PubMed

    Sha, Jing-Quan; Li, Meng-Ting; Sun, Jing-Wen; Zhang, Yu-Nan; Yan, Peng-Fei; Li, Guang-Ming

    2013-06-01

    A new hybrid compound, Na[Ag6(pyttz)2(H2O)][PMo12O40] (pyttz = 3-(pyrid-3-yl)-5-(1H-1,2,4-triazol-3-yl)-1,2,4-triazolyl), has been hydrothermally synthesized and structurally characterized by routine techniques. X-ray diffraction analysis reveals that the title compound is constructed by the 2D Ag-pyttz coordination polymer and 3D Ag-POM architecture with helix. A fascinating structural feature is the assembling fashion of the right- and left-helical chain, namely, the helical chains with different orientations are intertwined with each other forming intertwined double helical layers along the c-axis, and the identical left- or right-handed helical chains are fused together in a hand-by-hand mode generating another homological helical layer along the a-axis. As a result, these helical layers intersect each other obtaining an unprecedented 3D POM-Ag inorganic architecture. Note that the 3D framework with a helix constructed by POMs and metal ions has never been observed up to date. Additionally, its photocatalytic degradation of RhB was also investigated. PMID:23558903

  5. An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters

    NASA Astrophysics Data System (ADS)

    Kang, Junmo; Jang, Yonghee; Kim, Youngsoo; Cho, Seung-Hyun; Suhr, Jonghwan; Hong, Byung Hee; Choi, Jae-Boong; Byun, Doyoung

    2015-04-01

    Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid. Electrohydrodynamic (EHD) jet printing was used to produce a micro-scale grid consisting of Ag lines less than 10 μm wide. We were able to directly write the Ag-grid on a large-area graphene/flexible substrate due to the high conductivity of graphene. The hybrid electrode could be fabricated using hot pressing transfer and EHD jet printing in a non-vacuum, maskless, and low-temperature environment. The hybrid electrode offers an effective and simple route for achieving a sheet resistance as low as ~4 Ω per square with ~78% optical transmittance. Finally, we demonstrate that transparent flexible heaters based on the hybrid conductive films could be used in a vehicle or a smart window system.Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid. Electrohydrodynamic (EHD) jet printing was used to produce a micro-scale grid consisting of Ag lines less than 10 μm wide. We were able to directly write the Ag-grid on a large-area graphene/flexible substrate due to the high conductivity of graphene. The hybrid electrode could be fabricated using hot pressing transfer and EHD jet printing in a non

  6. The Characteristics of an Antibacterial TiAgN Thin Film Coated by Physical Vapor Deposition Technique.

    PubMed

    Kang, Byeong-Mo; Jeong, Woon-Jo; Park, Gye-Choon; Yoon, Dong-Joo; Ahn, Ho-Geun; Lim, Yeong-Seog

    2015-08-01

    In this work, we found the characteristics of an antibacterial TiAgN thin film coated on the pure titanium specimen via the physical vapor deposition process (PVD). TiAgN thin films were coated using TiAg alloy targets by arc ion plating method. Changing the process parameters, the surface analysis of TiAgN thin film was observed by FE-SEM and the force of adhesion was measured with Scratch Tester. The proliferation of human gingival fibroblast (HGF) cells was examined by XTT test assay and the antibacterial properties were investigated by culturing Streptococus Mutans (KCTC 3065) using paper disk techniques. At the result of experiment, cytotoxic effects were not found and the antibacterial effects against Streptococus Mutans were appeared over 5 wt% TiAgN specimens. PMID:26369190

  7. Fabrication of an organic field effect transistor using nano imprinting of Ag inks and semiconducting polymers

    NASA Astrophysics Data System (ADS)

    Hu, PingAn; Li, Kun; Chen, Weilin; Peng, Li; Chu, Daping; O'Neill, William

    2010-07-01

    A simple and cheap procedure for flexible electronics fabrication was demonstrated by imprinting metallic nanoparticles (NPs) on flexible substrates. Silver NPs with an average diameter of 10 nm were prepared via an improved chemical approach and Ag Np ink was produced in α-terpineol with a concentration up to 15%. Silver micro/nanostructures with a dimension varying from nanometres to microns were produced on a flexible substrate (polyimide) by imprinting the as-prepared silver ink. The fine fluidic properties of an Ag NP/α-terpineol solution and low melting temperatures of silver nanoparticles render a low pressure and low temperature procedure, which is well suited for flexible electronics fabrication. The effects of sintering and mechanical bending on the conductivity of imprinted silver contacts were also investigated. Large area organic field effect transistors (OFET) on flexible substrates were fabricated using an imprinted silver electrode and semiconducting polymer. The OFET with silver electrodes imprinted from our prepared oleic acid stabilized Ag nanoparticle ink show an ideal ohmic contact; therefore, the OFET exhibit high performance (Ion/Ioff ratio: 1 × 103; mobility: 0.071 cm2 V-1 s-1).

  8. The spectroscopic constants and anharmonic force field of AgSH: An ab initio study.

    PubMed

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Zhu, Ziliang

    2016-07-01

    The equilibrium structure, spectroscopy constants, and anharmonic force field of silver hydrosulfide (AgSH) have been calculated at B3P86, B3PW91 and MP2 methods employing two basis sets, TZP and QZP, respectively. The calculated geometries, ground state rotational constants, harmonic vibrational wave numbers, and quartic and sextic centrifugal distortion constants are compared with the available experimental and theoretical data. The equilibrium rotational constants, fundamental frequencies, anharmonic constants, and vibration-rotation interaction constants, Coriolis coupling constants, cubic and quartic force constants are predicted. The calculated results show that the MP2/TZP results are in good agreement with experiment observation and are also an advisable choice to study the anharmonic force field of AgSH. PMID:27085293

  9. The spectroscopic constants and anharmonic force field of AgSH: An ab initio study

    NASA Astrophysics Data System (ADS)

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Zhu, Ziliang

    2016-07-01

    The equilibrium structure, spectroscopy constants, and anharmonic force field of silver hydrosulfide (AgSH) have been calculated at B3P86, B3PW91 and MP2 methods employing two basis sets, TZP and QZP, respectively. The calculated geometries, ground state rotational constants, harmonic vibrational wave numbers, and quartic and sextic centrifugal distortion constants are compared with the available experimental and theoretical data. The equilibrium rotational constants, fundamental frequencies, anharmonic constants, and vibration-rotation interaction constants, Coriolis coupling constants, cubic and quartic force constants are predicted. The calculated results show that the MP2/TZP results are in good agreement with experiment observation and are also an advisable choice to study the anharmonic force field of AgSH.

  10. An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters.

    PubMed

    Kang, Junmo; Jang, Yonghee; Kim, Youngsoo; Cho, Seung-Hyun; Suhr, Jonghwan; Hong, Byung Hee; Choi, Jae-Boong; Byun, Doyoung

    2015-04-21

    Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid. Electrohydrodynamic (EHD) jet printing was used to produce a micro-scale grid consisting of Ag lines less than 10 μm wide. We were able to directly write the Ag-grid on a large-area graphene/flexible substrate due to the high conductivity of graphene. The hybrid electrode could be fabricated using hot pressing transfer and EHD jet printing in a non-vacuum, maskless, and low-temperature environment. The hybrid electrode offers an effective and simple route for achieving a sheet resistance as low as ∼4 Ω per square with ∼78% optical transmittance. Finally, we demonstrate that transparent flexible heaters based on the hybrid conductive films could be used in a vehicle or a smart window system. PMID:25790123

  11. Immunotherapeutic role of Ag85B as an adjunct to antituberculous chemotherapy

    PubMed Central

    2011-01-01

    Background Immunotherapy to enhance the efficiency of the immune response in tuberculosis patients and to eliminate the persisters could be an additional valuable strategy to complement anti-mycobacterial chemotherapy. This study was designed to assess the immunotherapeutic potential of Ag85B as an adjunct to chemotherapy and its effect against active and persister bacteria left after therapy in mouse model of tuberculosis. Methods 6-8 week old female Balb/c mice were infected with Mycobacterium tuberculosis and treated with chemotherapy or immunotherapy. Protective efficacy was measured in terms of bacterial counts in lungs and spleen. Immune correlates of protection in terms of Th1 and Th2 cytokines were measured by ELISA. Results Therapeutic effect of Ag85B was found to be comparable to that of short term dosage of antituberculous drugs (ATDs). The therapeutic effect of ATDs was augmented by the simultaneous treatment with rAg85B and moreover therapy with this protein allowed us to reduce ATD dosage. This therapy was found to be effective even in case of drug persisters. The levels of antigen specific IFNγ and IL-12 were significantly increased after immunotherapy as compared to the basal levels; moreover antigen specific IL-4 levels were depressed on immunotherapy with Ag85B. Conclusion We demonstrated in this study that the new combination approach using immunotherapy and concurrent chemotherapy should offer several improvements over the existing regimens to treat tuberculosis. The therapeutic effect is associated not only with initiating a Th1 response but also with switching the insufficient Th2 immune status to the more protective Th1 response. PMID:21703025

  12. An Electroless-Ag Reflector Developed for High-Brightness White LEDs

    NASA Astrophysics Data System (ADS)

    Liu, W. C.; Chung, T. Y.; Chen, Y. H.; Hsiao, C. Y.; Lin, C. P.; Liu, C. Y.

    2014-12-01

    This study was conducted to investigate the reflectivity and the reflectivity stability of the electroless (Ag) metallization of reflectors used in high-brightness white GaN light-emitting diode packages. Two main reflector metallization schemes were studied: (1) electroless-Ag/electroless-pure-Pd/electroless-Ni plating and (2) electroless-Ag/electroless-Pd(P)/electroless-Ni plating. The reflectivity achieved using all reflector-metallization schemes was >85% in the visible range. However, in the electroless-Ag/electroless-pure-Pd/electroless-Ni reflector, reflectivity exhibited substantial thermal degradation; this was because of two principal factors: (1) the change in the surface morphology of the electroless-Ag surface grains; and (2) the alloying effect on the Ag layer exerted by the interdiffusion occurring with the underlying Pd layer. In this study, P was added to the Pd layer, and the thermal degradation of the annealed electroless-Ag/electroless-Pd(P)/electroless-Ni reflector was measured to be less than that of the electroless-Ag/electroless-pure-Pd/electroless-Ni reflector. The P content retarded the interdiffusion between the Ag and Pd(P) layers and preserved the faceted surface of the electroless-Ag layer, which enhanced the stability of the reflectivity of the electroless-Ag reflector. Furthermore, increasing the thickness of the electroless-Ag layer reduced the amount of Pd diffusing through the Ag layer, which helped retain the reflectivity of the Ag surface.

  13. An analytical electron microscopic investigation of precipitation in an Al-Cu-Zn-Mg-Ag alloy.

    PubMed

    Hasan, F; Lorimer, G W

    1993-03-01

    The distribution, morphology, chemistry, and crystallography of the precipitates formed during aging of an Al-Cu-Zn-Mg-Ag alloy have been studied using analytical transmission electron microscopy. The first precipitates to appear during aging at 150 degrees C were thin hexagonal-shaped plate-like precipitates which formed on the (111)Al planes. These precipitates had a face-centred orthorhombic crystal structure and their composition was essentially CuAl2 although they contained a trace of silver. At peak hardness the microstructure consisted of the plate-like precipitates on (111)Al planes and theta' precipitates on (100)Al planes. Overaging resulted in the precipitation of equilibrium theta, CuAl2, which exhibited a lath morphology and an orientation-relationship with the matrix (210)Al magnitude of (110)gamma; (001)Al misoriented from (001)gamma by approximately 6 degrees. Prolonged overaging at 250 degrees C resulted in the formation of cuboid-shaped Al5(Cu,Zn)6Mg2 precipitates which had a cubic crystal structure and a cube:cube orientation-relationship with the matrix. PMID:8513176

  14. The γ-polymorph of AgZnPO4 with an ABW zeolite-type framework topology

    PubMed Central

    Assani, Abderrazzak; Saadi, Mohamed; El Ammari, Lahcen

    2010-01-01

    The γ-polymorph of the title compound, silver zinc orthophos­phate, was synthesized under hydro­thermal conditions. The structure consists of ZnO4, PO4 and AgO4 units. The coord­ination spheres of ZnII and PV are tetra­hedral, whereas the AgI atom is considerably distorted from a tetra­hedral coordination. Each O atom is linked to each of the three cations. An elliptic eight-membered ring system is formed by corner-sharing of alternating PO4 and ZnO4 tetra­hedra, leading to a framework with an ABW-type zeolite structure. The framework encloses channels running parallel to [100] in which the Ag cations are located, with Ag⋯Ag contacts of 3.099 (3) Å. This short distance results from d 10⋯d 10 inter­actions, which play a substantial role in the crystal packing. The structure of γ-AgZnPO4 is distinct from the two other polymorphs α-AgZnPO4 and β-AgZnPO4, but is isotypic with NaZnPO4-ABW, NaCoPO4-ABW and NH4CoPO4-ABW. PMID:21588789

  15. Synthesis and photocatalytic performance of an efficient Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9} composite photocatalyst under visible light

    SciTech Connect

    Liang, Yinghua; Lin, Shuanglong; Liu, Li; Hu, Jinshan; Cui, Wenquan

    2014-08-15

    Highlights: • The plasmatic Ag@AgBr sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts. • Ag@AgBr greatly increased visible light absorption for K{sub 2}Ti{sub 4}O{sub 9}. • The plamonic photocatalysts exhibited enhanced activity for the degradation of RhB. - Abstract: Ag@AgBr nanoparticle-sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts (Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9}) were prepared by a facile precipitation–photoreduction method. The photocatalytic activities of the Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9} nanocomposites were evaluated for photocatalytic degradation of (RhB) under visible light irradiation. The composites exhibited excellent visible light absorption, which was attributable to the surface plasmon effect of Ag nanoparticles. The Ag@AgBr was uniformly scattered on the surface of K{sub 2}Ti{sub 4}O{sub 9} and possessed sizes in the range of 20–50 nm. The loading amount of Ag@AgBr was also studied, and was found to influence the absorption spectra of the resulting composites. Approximately 95.9% of RhB was degraded by Ag@AgBr (20 wt.%)/K{sub 2}Ti{sub 4}O{sub 9} after irradiation for 1 h. The stability of the material was also investigated by performing consecutive runs. Additionally, studies performed using radical scavengers indicated that ·O{sub 2}{sup −} and Br{sup 0} acted as the main reactive species. Based on the experimental results, a photocatalytic mechanism for organics degradation over Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9} photocatalysts was proposed.

  16. Unusual N-H activation of 2-aminopyrimidine: supramolecular assembly into an Ag(I) metal-organic framework.

    PubMed

    Liu, Fu-Ling; Xu, Zheng-Hu; Zhang, Xi-Ying; Wang, Xing-Po; Sun, Di

    2014-02-01

    A rare example of coordination at the amino group of NH2 pym (2-aminopyrimidine) relevant to N-H activation is described that leads to a novel Ag(I) -imide 3D metal-organic framework (MOF). The coordination of Ag(I) to NH2 pym produced an electron-withdrawing effect and thus increased its acidity, which facilitated the N-H activation and the subsequent formation of the Ag-imide bond. A cooperative metalation/deprotonation process for the N-H activation of NH2 pym is suggested. Interestingly, photoluminescence of 1 is switched on at the low temperature of 77 K. PMID:24227790

  17. Nanostructured AgBr loaded TiO2: An efficient sunlight active photocatalyst for degradation of Reactive Red 120.

    PubMed

    Velmurugan, Rengasamy; Sreedhar, Bojja; Swaminathan, Meenakshisundaram

    2011-01-01

    The AgBr loaded TiO2 catalyst was prepared by a feasible approach with AgBr and tetraisopropyl orthotitanate and characterized by BET surface area measurement, diffuse reflectance spectra (DRS), scanning electron microscope (SEM), energy dispersive spectra (EDS), X-ray diffraction (XRD), transmission electron microscope (TEM) and atomic force microscope (AFM) analysis. The results of characterization reveal that AgBr loaded TiO2 has a nanostructure. Formation of the nanostructure in AgBr loaded TiO2 results in substantial shifting of the absorption edge of TiO2 to red and enhancement of visible light absorption. Electrochemical impedance spectroscopy measurements reveal that AgBr loaded TiO2 has a higher photoconductivity than prepared TiO2 due to higher separation efficiency of electron-hole pairs. Cyclic voltammetric studies reveal enhanced conductivity in AgBr loaded TiO2, which causes an increase in its photocatalytic activity. AgBr loaded TiO2 exhibited a higher photocatalytic activity than TiO2-P25 and prepared TiO2 in the photodegradation of Reactive Red 120 (RR 120). PMID:21801445

  18. Nanostructured AgBr loaded TiO2: An efficient sunlight active photocatalyst for degradation of Reactive Red 120

    PubMed Central

    2011-01-01

    The AgBr loaded TiO2 catalyst was prepared by a feasible approach with AgBr and tetraisopropyl orthotitanate and characterized by BET surface area measurement, diffuse reflectance spectra (DRS), scanning electron microscope (SEM), energy dispersive spectra (EDS), X-ray diffraction (XRD), transmission electron microscope (TEM) and atomic force microscope (AFM) analysis. The results of characterization reveal that AgBr loaded TiO2 has a nanostructure. Formation of the nanostructure in AgBr loaded TiO2 results in substantial shifting of the absorption edge of TiO2 to red and enhancement of visible light absorption. Electrochemical impedance spectroscopy measurements reveal that AgBr loaded TiO2 has a higher photoconductivity than prepared TiO2 due to higher separation efficiency of electron-hole pairs. Cyclic voltammetric studies reveal enhanced conductivity in AgBr loaded TiO2, which causes an increase in its photocatalytic activity. AgBr loaded TiO2 exhibited a higher photocatalytic activity than TiO2-P25 and prepared TiO2 in the photodegradation of Reactive Red 120 (RR 120). PMID:21801445

  19. AGS II

    SciTech Connect

    Palmer, R.B.

    1984-01-01

    Interest in rare K decays, neutrino oscillations and other fields have generated an increasing demand for running, and improved intensity and duty cycle, at the AGS. Current projects include acceleration of polarized protons and light ions (up to mass 32). Future plans are for a booster to increase intensity and allow heavy ions (up to mass 200), and a stretcher to give 100% duty cycle. A later upgrade could yield an average current of 32 ..mu.. amps. 6 figures, 2 tables.

  20. Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits.

    PubMed

    Gudadhe, Janhavi A; Yadav, Alka; Gade, Aniket; Marcato, Priscyla D; Durán, Nelson; Rai, Mahendra

    2014-12-01

    Preparation of protective coating possessing antimicrobial properties is present day need as they increase the shelf life of fruits and vegetables. In the present study, preparation of agar-silver nanoparticle film for increasing the shelf life of fruits is reported. Silver nanoparticles (Ag-NPs) biosynthesised using an extract of Ocimum sanctum leaves, were mixed with agar-agar to prepare an agar-silver nanoparticles (A-AgNp) film. This film was surface-coated over the fruits, Citrus aurantifolium (Thornless lime) and Pyrus malus (Apple), and evaluated for the determination of antimicrobial activity of A-AgNp films using disc diffusion method, weight loss and shelf life of fruits. This study demonstrates that these A-AgNp films possess antimicrobial activity and also increase the shelf life of fruits. PMID:25429496

  1. Ag K- and L3-edge XAFS study on Ag species in Ag/Ga2O3 photocatalysts

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Yoshida, T.; Yamamoto, N.; Nomoto, T.; Yamamoto, A.; Yoshida, H.; Yagi, S.

    2016-05-01

    Ag loaded Ga2O3 (Ag/Ga2O3) shows photocatalytic activity for reduction of CO2 with water. Ag L3-edge XANES and K-edge EXAFS spectra were measured for various Ag/Ga2O3 samples, which suggested that structural and chemical states of Ag species varied with the loading amount of Ag and the preparation method. The Ag species were metallic Ag particles with an AgGaO2-like interface structure in the sample with high loading amount of Ag while predominantly Ag metal clusters in the sample with low loading amount of Ag. The XANES feature just above the edge represented the interaction between the Ag species and the Ga2O3 surface, showing that the Ag metal clusters had more electrons in the d-orbitals by interacting with the Ga2O3 surface, which would contribute the high photocatalytic activity.

  2. Ag out-surface diffusion in crystalline SiC with an effective SiO2 diffusion barrier

    DOE PAGESBeta

    Xue, H; Xiao, H Y; Zhu, Z; Shutthanandan, V; Snead, L; Boatner, Lynn A; Weber, William J.; Zhang, Yanwen

    2015-01-01

    For applications of tristructural isotropic (TRISO) fuel particles in high temperature reactors, release of radioactive Ag isotope (110mAg) through the SiC coating layer is a safety concern. To understand the diffusion mechanism, Ag ion implantations near the surface and in the bulk were performed by utilizing different ion energies and energy-degrader foils. High temperature annealing was carried out on the as-irradiated samples to study the possible out-surface diffusion. Before and after annealing, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) measurements were employed to obtain the elemental profiles of the implanted samples. The results suggest little migration ofmore » buried Ag in the bulk, and an out-diffusion of the implanted Ag in the near-surface region of single crystal SiC. It is also found that a SiO2 layer, which was formed during annealing, may serve as an effective barrier to reduce or prevent Ag out diffusion through the SiC coating layer.« less

  3. Ag Out-surface Diffusion In Crystalline SiC With An Effective SiO2 Diffusion Barrier

    SciTech Connect

    Xue, H.; Xiao, Haiyan Y.; Zhu, Zihua; Shutthanandan, V.; Snead, Lance L.; Boatner, Lynn A.; Weber, William J.; Zhang, Y.

    2015-09-01

    For applications of tristructural isotropic (TRISO) fuel particles in high temperature reactors, release of radioactive Ag isotope (110mAg) through the SiC coating layer is a safety concern. To understand the diffusion mechanism, Ag ion implantations near the surface and in the bulk were performed by utilizing different ion energies and energy-degrader foils. High temperature annealing was carried out on the as-irradiated samples to study the possible out-surface diffusion. Before and after annealing, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) measurements were employed to obtain the elemental profiles of the implanted samples. The results suggest little migration of buried Ag in the bulk, and an out-diffusion of the implanted Ag in the near-surface region of single crystal SiC. It is also found that a SiO2 layer, which was formed during annealing, may serve as an effective barrier to reduce or prevent Ag out diffusion through the SiC coating layer.

  4. An Epithelial Serine Protease, AgESP, Is Required for Plasmodium Invasion in the Mosquito Anopheles gambiae

    PubMed Central

    Rodrigues, Janneth; Oliveira, Giselle A.; Kotsyfakis, Michalis; Dixit, Rajnikant; Molina-Cruz, Alvaro; Jochim, Ryan; Barillas-Mury, Carolina

    2012-01-01

    Background Plasmodium parasites need to cross the midgut and salivary gland epithelia to complete their life cycle in the mosquito. However, our understanding of the molecular mechanism and the mosquito genes that participate in this process is still very limited. Methodology/Principal Findings We identified an Anopheles gambiae epithelial serine protease (AgESP) that is constitutively expressed in the submicrovillar region of mosquito midgut epithelial cells and in the basal side of the salivary glands that is critical for Plasmodium parasites to cross these two epithelial barriers. AgESP silencing greatly reduces Plasmodium berghei and Plasmodium falciparum midgut invasion and prevents the transcriptional activation of gelsolin, a key regulator of actin remodeling and a reported Plasmodium agonist. AgESP expression is highly induced in midgut cells invaded by Plasmodium, suggesting that this protease also participates in the apoptotic response to invasion. In salivary gland epithelial cells, AgESP is localized on the basal side–the surface with which sporozoites interact. AgESP expression in the salivary gland is also induced in response to P. berghei and P. falciparum sporozoite invasion, and AgESP silencing significantly reduces the number of sporozoites that invade this organ. Conclusion Our findings indicate that AgESP is required for Plasmodium parasites to effectively traverse the midgut and salivary gland epithelial barriers. Plasmodium parasites need to modify the actin cytoskeleton of mosquito epithelial cells to successfully complete their life cycle in the mosquito and AgESP appears to be a major player in the regulation of this process. PMID:22509400

  5. An ordered mesoporous Ag superstructure synthesized via a template strategy for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tian, Cuifeng; Li, Jiang; Ma, Chunsheng; Wang, Ping; Sun, Xiaohong; Fang, Jixiang

    2015-07-01

    Surface-enhanced Raman scattering (SERS) substrates with high density and uniformity of nanogaps are proven to enhance the reproducibility and sensitivity of the Raman signal. Up to now, the syntheses of a highly ordered gold or silver superstructure with a controllable nanoparticle size and a well-defined particle gap have been quite limited. Here, we reported an ordered mesoporous silver superstructure replicated by using ordered mesoporous KIT-6 and SAB-15 as templates. By means of a nanocasting process, the ordered mesoporous Ag superstructure was successfully synthesized, which shows uniform distribution of the nanowire diameter (10 nm) and nanogap size (~2 nm), thus exhibiting a high Raman enhancement of ~109. The finite difference time-domain (FDTD) results indicate that the ordered mesoporous Ag superstructure has a uniform distribution of hot spots. Therefore, the mesoporous silica template strategy presented here could lead to a new class of high quality SERS substrates providing extraordinary potential for diverse applications.Surface-enhanced Raman scattering (SERS) substrates with high density and uniformity of nanogaps are proven to enhance the reproducibility and sensitivity of the Raman signal. Up to now, the syntheses of a highly ordered gold or silver superstructure with a controllable nanoparticle size and a well-defined particle gap have been quite limited. Here, we reported an ordered mesoporous silver superstructure replicated by using ordered mesoporous KIT-6 and SAB-15 as templates. By means of a nanocasting process, the ordered mesoporous Ag superstructure was successfully synthesized, which shows uniform distribution of the nanowire diameter (10 nm) and nanogap size (~2 nm), thus exhibiting a high Raman enhancement of ~109. The finite difference time-domain (FDTD) results indicate that the ordered mesoporous Ag superstructure has a uniform distribution of hot spots. Therefore, the mesoporous silica template strategy presented here could

  6. An example of a digital synthesis approach to DSP design: The AGS transverse damper

    SciTech Connect

    Brown, K.A.; Smith, G.; Wong, V.

    1997-07-01

    Using Verilog HDL and Synopsys, the digital signal processing of the AGS Transverse Damper was designed and fitted to an Altera Flex l0k FPGA. Using a control point specification style in the high level description greatly simplified the design by placing the burden of specifying the controller on the digital synthesizer. The basic design and low level simulation are presented as well as the design methodology. The purpose of the AGS Transverse Damper is to control instabilities and injection errors that may arise in high intensity proton beams being accelerated in the AGS. The system block diagram for the DSP is shown in Figure 1. The inputs to the system come from a normalization unit. This normalization unit takes two signals as input, a sum of beam position signal plates, and a difference from the plates. The output of the normalization unit is the difference divided by the sum. This Quotient is sent to the first ALU (as Qin[11..0]). Taking differences between position measurements the system acts as a notch filter. The Second ALU computes a running sum of the output of the first ALU. This then acts to remove any offsets in the Quotient (and thus this part acts as a high pass filter - removing any baseline components to the signal). The depth of the first FIFO (between adder and subtract units) basically determines the low pass behaviour. The multiplier serves the purpose of overall loop gain for the system (the complete system is a real-time feedback system). The FIFO on the output is used to provide the correct amount of delay for the system.

  7. Lithogeochemistry and fluid inclusions of an Au-Ag vein deposit in a granodiorite intrusive

    SciTech Connect

    Hahn, R.; Ikramuddin, M.

    1985-01-01

    Forty-eight samples of altered and unaltered rocks and quartz veins from the Acme mine in northeast Washington, an Au-Ag vein deposit in a granodiorite intrusive, have been analyzed for SiO/sub 2/, Al/sub 2/O/sub 3/, Fe/sub 2/O/sub 3/, Feo, MgO, CaO, Na/sub 2/O, K/sub 2/O, TiO/sub 2/, MnO, P/sub 2/O/sub 5/, H/sub 2/O, CO/sub 2/, Ag, Au, Ba, Cu, Pb, Rb, Sr, Tl, and Zn. A comparison of major and trace elements shows that the altered granodiorite is enriched in SiO/sub 2/, Fe/sub 2/O/sub 3/, K/sub 2/O, Ag, Au, Ba, Cu, Pb, Rb, Tl, and Zn and depleted in Al/sub 2/O/sub 3/, FeO, MgO, CaO, Na/sub 2/O, TiO/sub 2/, MnO, P/sub 2/O/sub 5/, and Sr. The average contents of Au in unaltered and altered granodiorite and quartz veins are 9 ppb. 270 ppb and 1020 ppb respectively. The average Ba/Tl ratio in the altered samples decrease and average Rb/Sr and Tl/Sr ratios increase. K, Rb, and Tl are enriched in the altered granodiorite by factors of 1.5, 1.6, and 1.4 respectively. Tl is not enriched relative to Rb and K in the altered samples due to the high temperature of the deposit. The Ba/Tl, K/Tl and K/Rb ratios do not show complete separation of altered from unaltered samples. However, the Ba/Tl and K/Tl ratios in the quartz vein are significantly lower than the unaltered and altered granodiorite. This is due to the enrichment of Tl over K and Rb in the quartz veins. The Rb/Sr and Tl/Sr ratios are higher in the altered granodiorite and quartz veins compared to unaltered samples. The enrichment of Tl and presence of low Ba/Tl and high Rb/Sr and Tl/Sr ratios in a granodiorite indicate that the rocks are hydrothermally altered and represent a possible Au-Ag target.

  8. Performance evaluation of 70 hepatitis B virus (HBV) surface antigen (HBsAg) assays from around the world by a geographically diverse panel with an array of HBV genotypes and HBsAg subtypes

    PubMed Central

    Scheiblauer, H; El-Nageh, M; Diaz, S; Nick, S; Zeichhardt, H; Grunert, H-P; Prince, A

    2010-01-01

    Background and Objectives This study was conducted by the International Consortium for Blood Safety (ICBS) to identify high-quality test kits for detection of hepatitis B virus (HBV) surface antigen (HBsAg) for the benefit of developing countries. Materials and Methods The 70 HBsAg test kits from around the world were evaluated comparatively for their clinical sensitivity, analytical sensitivity, sensitivity to HBV genotypes and HBsAg subtypes, and specificity using 394 (146 clinical, 48 analytical and 200 negative) ICBS Master Panel members of diverse geographical origin comprising the major HBV genotypes A-F and the HBsAg subtypes adw2,4, adr and ayw1-4. Results Seventeen HBsAg enzyme immunoassay (EIA) kits had high analytical sensitivity <0·13 IU/ml, showed 100% diagnostic sensitivity, and were even sensitive for the various HBV variants tested. An additional six test kits had high sensitivity (<0·13 IU/ml) but missed HBsAg mutants and/or showed reduced sensitivity to certain HBV genotypes. Twenty HBsAg EIA kits were in the sensitivity range of 0·13–1 IU/ml. The other eight EIAs and the 19 rapid assays had analytical sensitivities of 1 to >4 IU/ml. These assays were falsely negative for 1–4 clinical samples and 17 of these test kits showed genotype dependent sensitivity reduction. Analytical sensitivities for HBsAg of >1 IU/ml significantly reduce the length of the HBsAg positive period which renders them less reliable for detecting HBsAg in asymptomatic HBV infections. Reduced sensitivity for HBsAg with genetic diversity of HBV occurred with genotypes/subtypes D/ayw3, E/ayw4, F/adw4 and by S gene mutants. Specificity of the HBsAg assays was ≥99·5% in 57 test kits and 96·4–99·0% in the remaining test kits. Conclusion Diagnostic efficacy of the evaluated HBsAg test kits differed substantially. Laboratories should therefore be aware of the analytical sensitivity for HBsAg and check for the relevant HBV variants circulating in the relevant population

  9. Aggregation of Congo red with surfactants and Ag-nanoparticles in an aqueous solution

    NASA Astrophysics Data System (ADS)

    AL-Thabaiti, Shaeel Ahmed; Aazam, Elham Shafik; Khan, Zaheer; Bashir, Ommer

    2016-03-01

    Self aggregation, sorption, and interaction of Congo red, with cetyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS), Ag+ ions and silver nanoparticles have been determined spectrophotometrically. Congo red self-aggregation was identified from UV-visible spectra due to the shrinkage in an absorption band at 495 nm. The shape of the absorbance spectrum changed entirely with increasing [Congo red] but wavelength maxima remain unchanged. The molar absorptivity was found to be 9804 mol- 1 dm3 cm- 1 at 495 nm. Absorption spectra of Congo red with Ag+ ions show an isosbestic point. The complex formation constant and difference in absorption coefficients were found to be 8.5 × 104 mol- 1 dm3 and 11,764 mol- 1 dm3 cm- 1, respectively. Silver nano-particles could not be used for the catalytic degradation of Congo red because it results in the formation of a strong complex with them. Sodium dodecylsulfate did not show any significant interaction with this dye. Congo red was also used as a probe to determine the critical micellar concentration of CTAB.

  10. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands.

    PubMed

    Wang, Yu; Su, Haifeng; Xu, Chaofa; Li, Gang; Gell, Lars; Lin, Shuichao; Tang, Zichao; Häkkinen, Hannu; Zheng, Nanfeng

    2015-04-01

    An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.e., phenylalkynyl, 2-pyridylthiolate, and chloride) was revealed on the surface of metal nanoclusters. Similar to thiolates, alkynyls bind linearly to surface Au atoms using their σ-bonds, leading to the formation of two types of surface staple units (PhC≡C-Au-L, L = PhC≡C(-) or 2-pyridylthiolate) on the cluster. The co-presence of three different surface ligands allows the site-specific surface and functional modification of the cluster. The lability of PhC≡C(-) ligands on the cluster was demonstrated, making it possible to keep the metal core intact while removing partial surface capping. Moreover, it was found that ligand exchange on the cluster occurs easily to offer various derivatives with the same metal core but different surface functionality and thus different solubility. PMID:25803406

  11. Fabrication and Characterisation of the Graphene Ring Micro Electrode (GRiME) with an Integrated, Concentric Ag/AgCl Reference Electrode

    PubMed Central

    Dickinson, James W.; Bromley, Michael; Andrieux, Fabrice P. L.; Boxall, Colin

    2013-01-01

    We report the fabrication and characterisation of the first graphene ring micro electrodes with the addition of a miniature concentric Ag/AgCl reference electrode. The graphene ring electrode is formed by dip coating fibre optics with graphene produced by a modified Hummers method. The reference electrode is formed using an established photocatalytically initiated electroless deposition (PIED) plating method. The performance of the so-formed graphene ring micro electrodes (GRiMEs) and associated reference electrode is studied using the probe redox system ferricyanide and electrode thicknesses assessed using established electrochemical methods. Using 220 μm diameter fibre optics, a ∼15 nm thick graphene ring electrode is obtained corresponding to an inner to outer radius ratio of >0.999, so allowing for use of extant analytical descriptions of very thin ring microelectrodes in data analysis. GRiMEs are highly reliable (current response invariant over >3,000 scans), with the concentric reference electrode showing comparable stability (current response invariant over >300 scans). Furthermore the micro-ring design allows for efficient use of electrochemically active graphene edge sites and the associated nA scale currents obtained neatly obviate issues relating to the high resistivity of undoped graphene. Thus, the use of graphene in ring microelectrodes improves the reliability of existing micro-electrode designs and expands the range of use of graphene-based electrochemical devices. PMID:23493126

  12. Fabrication and characterisation of the graphene ring micro electrode (GRiME) with an integrated, concentric Ag/AgCl reference electrode.

    PubMed

    Dickinson, James W; Bromley, Michael; Andrieux, Fabrice P L; Boxall, Colin

    2013-01-01

    We report the fabrication and characterisation of the first graphene ring micro electrodes with the addition of a miniature concentric Ag/AgCl reference electrode. The graphene ring electrode is formed by dip coating fibre optics with graphene produced by a modified Hummers method. The reference electrode is formed using an established photocatalytically initiated electroless deposition (PIED) plating method. The performance of the so-formed graphene ring micro electrodes (GRiMEs) and associated reference electrode is studied using the probe redox system ferricyanide and electrode thicknesses assessed using established electrochemical methods. Using 220 µm diameter fibre optics, a ~15 nm thick graphene ring electrode is obtained corresponding to an inner to outer radius ratio of >0.999, so allowing for use of extant analytical descriptions of very thin ring microelectrodes in data analysis. GRiMEs are highly reliable (current response invariant over >3,000 scans), with the concentric reference electrode showing comparable stability (current response invariant over >300 scans). Furthermore the micro-ring design allows for efficient use of electrochemically active graphene edge sites and the associated nA scale currents obtained neatly obviate issues relating to the high resistivity of undoped graphene. Thus, the use of graphene in ring microelectrodes improves the reliability of existing micro-electrode designs and expands the range of use of graphene-based electrochemical devices. PMID:23493126

  13. Adsorption Behavior of Cellulose and Its Derivatives toward Ag(I) in Aqueous Medium: An AFM, Spectroscopic, and DFT Study.

    PubMed

    Zhu, Chuantao; Dobryden, Illia; Rydén, Jens; Öberg, Sven; Holmgren, Allan; Mathew, Aji P

    2015-11-17

    The aim of this study was to develop a fundamental understanding of the adsorption behavior of metal ions on cellulose surfaces using experimental techniques supported by computational modeling, taking Ag(I) as an example. Force interactions among three types of cellulose microspheres (native cellulose and its derivatives with sulfate and phosphate groups) and the silica surface in AgNO3 solution were studied with atomic force microscopy (AFM) using the colloidal probe technique. The adhesion force between phosphate cellulose microspheres (PCM) and the silica surface in the aqueous AgNO3 medium increased significantly with increasing pH while the adhesion force slightly decreased for sulfate cellulose microspheres (SCM), and no clear adhesion force was observed for native cellulose microspheres (CM). The stronger adhesion enhancement for the PCM system is mainly attributed to the electrostatic attraction between Ag(I) and the negative silica surface. The observed force trends were in good agreement with the measured zeta potentials. The scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) analyses confirmed the presence of silver on the surface of cellulose microspheres after adsorption. This study showed that PCM with a high content of phosphate groups exhibited a larger amount of adsorbed Ag(I) than CM and SCM and possible clustering of Ag(I) to nanoparticles. The presence of the phosphate group and a wavenumber shift of the P-OH vibration caused by the adsorption of silver ions on the phosphate groups were further confirmed with computational studies using density functional theory (DFT), which gives support to the above findings regarding the adsorption and clustering of Ag(I) on the cellulose surface decorated with phosphate groups as well as IR spectra. PMID:26501836

  14. An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells

    NASA Astrophysics Data System (ADS)

    Kiebach, Ragnar; Engelbrecht, Kurt; Grahl-Madsen, Laila; Sieborg, Bertil; Chen, Ming; Hjelm, Johan; Norrman, Kion; Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2016-05-01

    An Ag-Al2TiO5 composite braze was developed and successfully tested as seal for solid oxide cells. The thermo-mechanical properties of the Ag-Al2TiO5 system and the chemical compatibility between this composite braze and relevant materials used in stacks were characterized and the leak rates as a function of the operation temperature were measured. The thermal expansion coefficient in the Ag-Al2TiO5 system can be tailored by varying the amount of the ceramic filler. The brazing process can be carried out in air, the joining partners showed a good chemical stability and sufficient low leak rates were demonstrated. Furthermore, the long-term stability of the Ag-Al2TiO5 composite braze was studied under relevant SOFC and SOEC conditions. The stability of brazed Crofer/Ag-Al2TiO5/NiO-YSZ assemblies in reducing atmosphere and in pure oxygen was investigated over 500 h at 850 °C. Additionally, a cell component test was performed to investigate the durability of the Ag-Al2TiO5 seal when exposed to dual atmosphere. The seals performed well over 900 h under electrolysis operation conditions (-0.5 A cm2, 850 °C), and no cell degradation related to the Ag-Al2TiO5 sealing was found, indicating that the developed braze system is applicable for the use in SOFC/SOEC stacks.

  15. Preliminary design studies for an iridium rod target at the BNL-AGS

    SciTech Connect

    Ludewig, H.; Hastings, J.; Montanez, P.; Todosow, M.

    1998-12-31

    The BNL-AGS is an intense source of 24 GeV protons. It is proposed to explore the potential to use these protons as the driver for a Pulsed Spallation Neutron Source target. The proposed target design is based on an edge cooled iridium rod concept--similar to the anti-proton production target which operated reliably at CERN under similar conditions. Lead, lead fluoride, and beryllium are investigated as possible reflector materials, and ambient temperature light water and 80 K light water ice are proposed as initial moderator materials. Both moderators are decoupled by cadmium containing moderator chamber walls. The small size of the target has the advantage that the moderators can be placed close to the target (resulting in a bright source), and since a large fraction of the radioactive inventory is contained in the iridium rod, removal and disposition of this inventory should be relatively simple and inexpensive.

  16. A platonic solid templating Archimedean solid: an unprecedented nanometre-sized Ag37 cluster

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Yu; Su, Hai-Feng; Yu, Kai; Tan, Yuan-Zhi; Wang, Xing-Po; Zhao, Ya-Qin; Sun, Di; Zheng, Lan-Sun

    2015-04-01

    The spontaneous formation of discrete spherical nanosized molecules is prevalent in nature, but the authentic structural mimicry of such highly symmetric polyhedra from edge sharing of regular polygons has remained elusive. Here we present a novel ball-shaped {(HNEt3)[Ag37S4(SC6H4tBu)24(CF3COO)6(H2O)12]} cluster (1) that is assembled via a one-pot process from polymeric {(HNEt3)2[Ag10(SC6H4tBu)12]}n and CF3COOAg. Single crystal X-ray analysis confirmed that 1 is a Td symmetric spherical molecule with a [Ag36(SC6H4tBu)24] anion shell enwrapping a AgS4 tetrahedron. The shell topology of 1 belongs to one of 13 Archimedean solids, a truncated tetrahedron with four edge-shared hexagons and trigons, which are supported by a AgS4 Platonic solid in the core. Interestingly, the cluster emits green luminescence centered at 515 nm at room temperature. Our investigations have provided a promising synthetic protocol for a high-nuclearity silver cluster based on underlying geometrical principles.The spontaneous formation of discrete spherical nanosized molecules is prevalent in nature, but the authentic structural mimicry of such highly symmetric polyhedra from edge sharing of regular polygons has remained elusive. Here we present a novel ball-shaped {(HNEt3)[Ag37S4(SC6H4tBu)24(CF3COO)6(H2O)12]} cluster (1) that is assembled via a one-pot process from polymeric {(HNEt3)2[Ag10(SC6H4tBu)12]}n and CF3COOAg. Single crystal X-ray analysis confirmed that 1 is a Td symmetric spherical molecule with a [Ag36(SC6H4tBu)24] anion shell enwrapping a AgS4 tetrahedron. The shell topology of 1 belongs to one of 13 Archimedean solids, a truncated tetrahedron with four edge-shared hexagons and trigons, which are supported by a AgS4 Platonic solid in the core. Interestingly, the cluster emits green luminescence centered at 515 nm at room temperature. Our investigations have provided a promising synthetic protocol for a high-nuclearity silver cluster based on underlying geometrical principles

  17. Ag-nanoparticles on UF-microsphere as an ultrasensitive SERS substrate with unique features for rhodamine 6G detection.

    PubMed

    Hao, Zhixian; Mansuer, Mulati; Guo, Yuqing; Zhu, Zhirong; Wang, Xiaogang

    2016-01-01

    Urea and formaldehyde (UF) microsphere (MS) adsorbing Ag nanoparticles (NPs) was employed as a surface enhanced Raman scattering (SERS) substrate for rhodamine 6G (R6G) detection. The UF MSs and citrate-reduced Ag colloid supplying Ag NPs are synthesized separately and all the subsequent fabrication procedure is then implemented within 2 mL centrifuge tube. Influences of the composition and drying temperature of the UF MSs and the drying method and modification of AgNP/UFMS on the final SERS performance have first been reported. Excess formaldehyde useful in the formation of UF MSs again plays an important role in the SERS detection. Some interesting phenomena in the approach, such as swelling/deswelling of UF MSs and R6G diffusion within hydrophilic environment of UF MSs, are found to be of variable factors affecting the SERS performance. The substrate AgNP/UFMS confidently achieves a detection limit of 10(-13) M R6G and can be used as a simple and effective platform in the SERS spectroscopy. PMID:26695301

  18. AgRISTARS

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An introduction to the overall AgRISTARS program, a general statement on progress, and separate summaries of the activities of each project, with emphasis on the technical highlights are presented. Organizational and management information on AgRISTARS is included in the appendices, as is a complete bibliography of publication and reports.

  19. A platonic solid templating Archimedean solid: an unprecedented nanometre-sized Ag37 cluster.

    PubMed

    Li, Xiao-Yu; Su, Hai-Feng; Yu, Kai; Tan, Yuan-Zhi; Wang, Xing-Po; Zhao, Ya-Qin; Sun, Di; Zheng, Lan-Sun

    2015-05-14

    The spontaneous formation of discrete spherical nanosized molecules is prevalent in nature, but the authentic structural mimicry of such highly symmetric polyhedra from edge sharing of regular polygons has remained elusive. Here we present a novel ball-shaped {(HNEt3)[Ag37S4(SC6H4(t)Bu)24(CF3COO)6(H2O)12]} cluster () that is assembled via a one-pot process from polymeric {(HNEt3)2[Ag10(SC6H4(t)Bu)12]}n and CF3COOAg. Single crystal X-ray analysis confirmed that is a Td symmetric spherical molecule with a [Ag36(SC6H4(t)Bu)24] anion shell enwrapping a AgS4 tetrahedron. The shell topology of belongs to one of 13 Archimedean solids, a truncated tetrahedron with four edge-shared hexagons and trigons, which are supported by a AgS4 Platonic solid in the core. Interestingly, the cluster emits green luminescence centered at 515 nm at room temperature. Our investigations have provided a promising synthetic protocol for a high-nuclearity silver cluster based on underlying geometrical principles. PMID:25882899

  20. Intermetallic compounds formed at the interface between Cu substrate and an Sn-9Zn-0.5Ag lead-free solder

    SciTech Connect

    Chang, T.-C.; Hon, M.-H.; Wang, M.-C

    2003-04-30

    The intermetallic compounds (IMCs) formed at the interface between Cu substrate and an Sn-9Zn-0.5Ag lead-free solder alloy have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron diffraction (ED). The XRD patterns show that the main IMCs formed at the interface of Sn-9Zn-0.5Ag/Cu are {gamma}-Cu{sub 5}Zn{sub 8} and {eta}'-Cu{sub 6}Sn{sub 5}. The Ag{sub 3}Sn IMC with orthorhombic structure was also observed at the Sn-9Zn-0.5Ag/Cu interface by TEM and ED analyses. The interfacial adhesion strength between the Cu substrate and Sn-9Zn-0.5Ag lead-free solder alloy is higher than that of the Sn-9Zn alloy due to the formation of Ag{sub 3}Sn IMC at the interface.

  1. Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: An interlaboratory case study.

    PubMed

    Heinlaan, Margit; Muna, Marge; Knöbel, Melanie; Kistler, David; Odzak, Niksa; Kühnel, Dana; Müller, Josefine; Gupta, Govind Sharan; Kumar, Ashutosh; Shanker, Rishi; Sigg, Laura

    2016-09-01

    Engineered nanoparticles (NPs) have realistic potential of reaching natural waterbodies and of exerting toxicity to freshwater organisms. The toxicity may be influenced by the composition of natural waters as crucial NP properties are influenced by water constituents. To tackle this issue, a case study was set up in the framework of EU FP7 NanoValid project, performing an interlaboratory hazard evaluation of NPs in natural freshwater. Ag and CuO NPs were selected as model NPs because of their potentially high toxicity in the freshwater. Daphnia magna (OECD202) and Danio rerio embryo (OECD236) assays were used to evaluate NP toxicity in natural water, sampled from Lake Greifen and Lake Lucerne (Switzerland). Dissolution of the NPs was evaluated by ultrafiltration, ultracentrifugation and metal specific sensor bacteria. Ag NP size was stable in natural water while CuO NPs agglomerated and settled rapidly. Ag NP suspensions contained a large fraction of Ag(+) ions and CuO NP suspensions had low concentration of Cu(2+) ions. Ag NPs were very toxic (48 h EC50 1-5.5 μg Ag/L) to D. magna as well as to D. rerio embryos (96 h EC50 8.8-61 μg Ag/L) in both standard media and natural waters with results in good agreement between laboratories. CuO NP toxicity to D. magna differed significantly between the laboratories with 48 h EC50 0.9-11 mg Cu/L in standard media, 5.7-75 mg Cu/L in Lake Greifen and 5.5-26 mg Cu/L in Lake Lucerne. No toxicity of CuO NP to zebrafish embryos was detected up to 100 mg/L independent of the medium used. The results show that Ag and CuO NP toxicity may be higher in natural water than in the standard media due to differences in composition. NP environmental hazard evaluation can and should be carried out in natural water to obtain more realistic estimates on the toxicity. PMID:27357482

  2. An Atomically Precise Au10 Ag2 Nanocluster with Red-Near-IR Dual Emission.

    PubMed

    Lei, Zhen; Guan, Zong-Jie; Pei, Xiao-Li; Yuan, Shang-Fu; Wan, Xian-Kai; Zhang, Jin-Yuan; Wang, Quan-Ming

    2016-08-01

    A red-near-IR dual-emissive nanocluster with the composition [Au10 Ag2 (2-py-C≡C)3 (dppy)6 ](BF4 )5 (1; 2-py-C≡C is 2-pyridylethynyl, dppy=2-pyridyldiphenylphosphine) has been synthesized. Single-crystal X-ray structural analysis reveals that 1 has a trigonal bipyramidal Au10 Ag2 core that contains a planar Au4 (2-py-C≡C)3 unit sandwiched by two Au3 Ag(dppy)3 motifs. Cluster 1 shows intense red-NIR dual emission in solution. The visible emission originates from metal-to-ligand charge transfer (MLCT) from silver atoms to phosphine ligands in the Au3 Ag(dppy)3 motifs, and the intense NIR emission is associated with the participation of 2-pyridylethynyl in the frontier orbitals of the cluster, which is confirmed by a time-dependent density functional theory (TD-DFT) calculation. PMID:27305386

  3. Synthesis and antimicrobial activities of silver(I) sulfanylcarboxylates. Structural isomers with identically or unequally coordinated Ag centers in an Ag4S4 ring.

    PubMed

    Barreiro, Elena; Casas, José S; Couce, María D; Sánchez, Agustín; Seoane, Rafael; Sordo, José; Varela, José M; Vázquez-López, Ezequiel M

    2007-07-28

    We have investigated the reactions of silver nitrate and 3-(aryl)-2-sulfanylpropenoic acids [H(2)xspa, x: p = 3-phenyl-, f = 3-(2-furyl)-, t = 3-(2-thienyl)-, py = 3-(2-pyridyl)-] and 2-cyclopentylidene-2-sulfanylacetic acid (H(2)L) in 1 : 1 and 2 : 1 molar ratios. The 1 : 1 molar ratio gave compounds of type [Ag(HL)]; reaction of these compounds with diisopropylamine and NaOH gave [HQ][Ag(L)] (HQ = diisopropylammonium) and Na[Ag(L)] x H(2)O, respectively. These compounds, as well as those of type [Ag(2)(L)] obtained with the 1 : 2 molar ratio, were isolated and characterized by IR and NMR ((1)H and (13)C) spectroscopy. (109)Ag NMR spectroscopy and ESI-MS spectrometry were also used in some cases. The crystal structures of [HQ][Ag(pspa)] (11), in which the presence of structural isomers was detected, and [HQ][Ag(cpa)] (15) were determined by X-ray diffractometry. The antimicrobial activity of the complexes against E. coli, S. aureus, B. subtilis, P. aeruginosa/Resistant P. aeruginosa, and C. albicans was tested. PMID:17622425

  4. An in-situ synthesis of Ag/AgCl/TiO2/hierarchical porous magnesian material and its photocatalytic performance

    PubMed Central

    Yang, Lu; Wang, Fazhou; Shu, Chang; Liu, Peng; Zhang, Wenqin; Hu, Shuguang

    2016-01-01

    The absorption ability and photocatalytic activity of photocatalytic materials play important roles in improving the pollutants removal effects. Herein, we reported a new kind of photocatalytic material, which was synthesized by simultaneously designing hierarchical porous magnesian (PM) substrate and TiO2 catalyst modification. Particularly, PM substrate could be facilely prepared by controlling its crystal phase (Phase 5, Mg3Cl(OH)5·4H2O), while Ag/AgCl particles modification of TiO2 could be achieved by in situ ion exchange between Ag+ and above crystal Phase. Physiochemical analysis shows that Ag/AgCl/TiO2/PM material has higher visible and ultraviolet light absorption response, and excellent gas absorption performance compared to other controls. These suggested that Ag/AgCl/TiO2/PM material could produce more efficient photocatalytic effects. Its photocatalytic reaction rate was 5.21 and 30.57 times higher than that of TiO2/PM and TiO2/imporous magnesian substrate, respectively. Thus, this material and its intergration synthesis method could provide a novel strategy for high-efficiency application and modification of TiO2 photocatalyst in engineering filed. PMID:26883972

  5. An in-situ synthesis of Ag/AgCl/TiO2/hierarchical porous magnesian material and its photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Wang, Fazhou; Shu, Chang; Liu, Peng; Zhang, Wenqin; Hu, Shuguang

    2016-02-01

    The absorption ability and photocatalytic activity of photocatalytic materials play important roles in improving the pollutants removal effects. Herein, we reported a new kind of photocatalytic material, which was synthesized by simultaneously designing hierarchical porous magnesian (PM) substrate and TiO2 catalyst modification. Particularly, PM substrate could be facilely prepared by controlling its crystal phase (Phase 5, Mg3Cl(OH)5·4H2O), while Ag/AgCl particles modification of TiO2 could be achieved by in situ ion exchange between Ag+ and above crystal Phase. Physiochemical analysis shows that Ag/AgCl/TiO2/PM material has higher visible and ultraviolet light absorption response, and excellent gas absorption performance compared to other controls. These suggested that Ag/AgCl/TiO2/PM material could produce more efficient photocatalytic effects. Its photocatalytic reaction rate was 5.21 and 30.57 times higher than that of TiO2/PM and TiO2/imporous magnesian substrate, respectively. Thus, this material and its intergration synthesis method could provide a novel strategy for high-efficiency application and modification of TiO2 photocatalyst in engineering filed.

  6. The AgNORs.

    PubMed

    Derenzini, M

    2000-04-01

    The structure and the function of interphase AgNORs and the importance of the "AgNOR" parameter in tumor pathology have been reviewed. Interphase AgNORs are structural-functional units of the nucleolus in which all the components necessary for ribosomal RNA synthesis are located. Two argyrophilic proteins involved in rRNA transcription and processing, nucleolin and nucleophosmin, are associated with interphase AgNORs and are responsible for their stainability with silver methods, thus allowing interphase AgNORs to be visulaized at light microscopic level, also in routine cyto-histopathological preparations. The number of interphase AgNORs is strictly related to rRNA transcriptional activity and, in continuously proliferating cells, to the rapidity of cell proliferation. Evaluation of the quantitative distribution of interphase AgNORs has been applied in tumor pathology both for diagnostic and prognostic purposes. The "AgNOR" parameter has been proved to represent a reliable tool for defining the clinical outcome of cancer disease, being an independent prognostic factor in many types of tumors. PMID:10588056

  7. Biochemical and biophysical characterization of maize-derived HBsAg for the development of an oral vaccine.

    PubMed

    Shah, Shweta; Hayden, Celine A; Fischer, Maria E; Rao, A Gururaj; Howard, John A

    2015-12-15

    Although a vaccine against hepatitis B virus (HBV) has been available since 1982, it is estimated that 600,000 people die every year due to HBV. An affordable oral vaccine could help alleviate the disease burden and to this end the hepatitis B surface antigen (HBsAg) was expressed in maize. Orally delivered maize material induced the strongest immune response in mice when lipid was extracted by CO2 supercritical fluid extraction (SFE), compared to full fat and hexane-extracted material. The present study provides a biochemical and biophysical basis for these immunological differences by comparing the active ingredient in the differently treated maize material. Purified maize-derived HBsAg underwent biophysical characterization by gel filtration, transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-CD, and fluorescence. Gel filtration showed that HBsAg forms higher-order oligomers and TEM demonstrated virus-like particle (VLP) formation. The VLPs obtained from SFE were more regular in shape and size compared to hexane or full fat material. In addition, SFE-derived HBsAg showed the greatest extent of α-helical structure by far UV-CD spectrum. Fluorescence experiments also revealed differences in protein conformation. This work establishes SFE-treated maize material as a viable oral vaccine candidate and advances the development of the first oral subunit vaccine. PMID:26519888

  8. Characterization of silver-kaolinite (AgK): an adsorbent for long-lived (129)I species.

    PubMed

    Sadasivam, Sivachidambaram; Rao, Sudhakar M

    2016-01-01

    Bentonite is a preferred buffer and backfill material for deep geological disposal of high-level nuclear waste (HLW). Bentonite does not retain anions by virtue of its negatively charged basal surface. Imparting anion retention ability to bentonite is important to enable the expansive clay to retain long-lived (129)I (iodine-129; half-life = 16 million years) species that may escape from the HLW geological repository. Silver-kaolinite (AgK) material is prepared as an additive to improve the iodide retention capacity of bentonite. The AgK is prepared by heating kaolinite-silver nitrate mix at 400 °C to study the kaolinite influence on the transition metal ion when reacting at its dehydroxylation temperature. Thermo gravimetric-Evolved Gas Detection analysis, X-ray diffraction analysis, X-ray photo electron spectroscopy and electron probe micro analysis indicated that silver occurs as AgO/Ag2O surface coating on thermally reacting kaolinite with silver nitrate at 400 °C. PMID:27026839

  9. Spontaneous Formation of A Nanotube From A Square Ag Nanowire: An Atomistic View

    NASA Astrophysics Data System (ADS)

    Konuk Onat, Mine; Durukanoglu, Sondan

    2012-02-01

    We have performed molecular static calculations to investigate the recently observed phenomenon of the spontaneous formation of a nanotube from a regular, square Ag nanowire[1]. In the simulations, atoms are allowed to interact via the model potential obtained from the modified embedded atom method. Our simulations predict that this particular type of structural phase transformation is controlled by the nature of applied strain, length of the wire and initial cross-sectional shape. For such a perfect structural transformation, the <100> axially oriented fcc nanowire needs (1) to be formed by stacking A and B layers of an fcc crystal, both possessing the geometry of two interpenetrating one-lattice-parameter-wide squares, containing four atoms each, (2) to have an optimum length of eight layers, and (3) to be exposed to a combination of low and high stress along the length direction. The results further offer insights into atomistic nature of this specific structural transformation into a nanotube with the smallest possible cross-section. [1] M.J. Lagos et al., Nature Nanotech. 4, 149 (2009).

  10. An Evaluation of Prototype Circuit Boards Assembled with a Sn-Ag Bi Solder

    SciTech Connect

    ARTAKI,I.; RAY,U.; REJENT,JEROME A.; VIANCO,PAUL T.

    1999-09-01

    An evaluation was performed which examined the aging of surface mount solder joints assembled with 91.84Sn-3.33Ag-4.83Bi solder. Defect analysis of the as-fabricated test vehicles revealed excellent solderability, good package alignment, and a minimum number of voids. Continuous DC electrical monitoring of the solder joints did not reveal opens during as many as 10,000 thermal cycles (0 C, 100 C). The solder joints exhibited no significant degradation through 2500 cycles, based upon an absence of microstructural damage and sustained shear and pull strengths of chip capacitors and J-leaded solder joints, respectively. Thermal cycles of 5000 and 10,000 resulted in some surface cracking of the solder fillets and coatings. In a few cases, deeper cracks were observed in the thinner reaches of several solder fillets. There was no deformation or cracking in the solder located in the gap between the package I/O and the circuit board pad nor in the interior of the fillets, both locations that would raise concerns of joint mechanical integrity. A drop in the chip capacitor shear strength was attributed to crack growth near the top of the fillet.

  11. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison

    SciTech Connect

    Lotze-Campen, Hermann; von Lampe, Martin; Kyle, G. Page; Fujimori, Shinichiro; Havlik, Petr; van Meijl, Hans; Hasegawa, Tomoko; Popp, Alexander; Schmitz, Christoph; Tabeau, Andrzej; Valin, Hugo; Willenbockel, Dirk; Wise, Marshall A.

    2014-01-01

    Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Comparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, e.g. from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an RCP2.6-type scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in an RCP8.5-type scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.

  12. Synthesis, kinetics and photocatalytic study of "ultra-small" Ag-NPs obtained by a green chemistry method using an extract of Rosa 'Andeli' double delight petals.

    PubMed

    Suárez-Cerda, Javier; Alonso-Nuñez, Gabriel; Espinoza-Gómez, Heriberto; Flores-López, Lucía Z

    2015-11-15

    This paper reports the effect of different concentrations of Rosa 'Andeli' double delight petals aqueous extract (PERA) in the synthesis of silver nanoparticles (Ag-NPs), using an easy green chemistry method. Its kinetics study and photocatalytic activity were also evaluated. The Ag-NPs were obtained using an aqueous silver nitrate solution (AgNO3) with 9.66% w/v, 7.25% w/v, and 4.20% w/v PERA as both reducing-stabilizing agent. The formation of the Ag-NPs was demonstrated by analysis of UV-vis spectroscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). TEM analysis shows spherical nanoparticles in shape and size between ∼0.5 and 1.4nm. A comparative study was done to determine which concentration was the best reducing-stabilizing agent, and we found out that "ultra-small" nanoparticles (0.5-1.1nm) were obtained with 9.66% w/v of PERA. The size of the Ag-NPs depends on the concentration of PERA and Ag(I). The reaction of formation of "ultra-small" Ag-NPs, proved to be first order for metallic precursor (silver) and second order for reducing-stabilizing agent (PERA). The Ag-NPs showed photocatalytic activity, in degradation of commercial dye with an efficiency of 95%. PMID:26218196

  13. Colorimetric Detection of an Airborne Remote Photocatalytic Reaction Using a Stratified Ag Nanoparticle Sheet.

    PubMed

    Degawa, Ryo; Wang, Pangpang; Tanaka, Daisuke; Park, Susie; Sakai, Nobuyuki; Tatsuma, Tetsu; Okamoto, Koichi; Tamada, Kaoru

    2016-08-16

    Photocatalysts are practically used for decomposition of harmful and fouling organic compounds. Among the photocatalytic reactions, remote oxidation via airborne species is a relatively slow process, so that a sensitive technique for its detection has been awaiting. Here, we investigated an airborne remote photocatalytic reaction of a TiO2 photocatalyst modified with Pt nanoparticles as co-catalysts via the color change caused by a decomposition of a multilayered silver nanoparticle sheet. The silver nanoparticle sheet fabricated by the Langmuir-Schaefer method on a gold substrate exhibits a unique multicolor depending upon the number of layers. The color originates from multiple light trapping in the stratified sheets that has a metamaterial characteristic along with an intra- and interlayer coupling of localized surface plasmon resonance (LSPR). The stepwise decomposition of the sheets was confirmed by the colorimetric data, which exhibited not only a monotonic decrease but also a maximized absorption of light when the film thickness reached the optimal thickness for light trapping or when the oxidation of the Ag core started. Scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and surface plasmon resonance (SPR) spectroscopy data provided a complete view of the decomposition process of this inorganic-organic nanocomposite film, and simulation by the transfer-matrix method explained a simultaneous plasmonic response rationally. The influence of the humidity and gas flow rate on the airborne remote photocatalytic reaction kinetics was examined by this colorimetric detection method, and it suggests that H2O in air plays an essential role in the reaction. PMID:27445001

  14. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger.

    PubMed

    Krashes, Michael J; Shah, Bhavik P; Madara, Joseph C; Olson, David P; Strochlic, David E; Garfield, Alastair S; Vong, Linh; Pei, Hongjuan; Watabe-Uchida, Mitsuko; Uchida, Naoshige; Liberles, Stephen D; Lowell, Bradford B

    2014-03-13

    Hunger is a hard-wired motivational state essential for survival. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus (ARC) at the base of the hypothalamus are crucial to the control of hunger. They are activated by caloric deficiency and, when naturally or artificially stimulated, they potently induce intense hunger and subsequent food intake. Consistent with their obligatory role in regulating appetite, genetic ablation or chemogenetic inhibition of AgRP neurons decreases feeding. Excitatory input to AgRP neurons is important in caloric-deficiency-induced activation, and is notable for its remarkable degree of caloric-state-dependent synaptic plasticity. Despite the important role of excitatory input, its source(s) has been unknown. Here, through the use of Cre-recombinase-enabled, cell-specific neuron mapping techniques in mice, we have discovered strong excitatory drive that, unexpectedly, emanates from the hypothalamic paraventricular nucleus, specifically from subsets of neurons expressing thyrotropin-releasing hormone (TRH) and pituitary adenylate cyclase-activating polypeptide (PACAP, also known as ADCYAP1). Chemogenetic stimulation of these afferent neurons in sated mice markedly activates AgRP neurons and induces intense feeding. Conversely, acute inhibition in mice with caloric-deficiency-induced hunger decreases feeding. Discovery of these afferent neurons capable of triggering hunger advances understanding of how this intense motivational state is regulated. PMID:24487620

  15. Formation of core-shell Au@Ag nanorods induced by catecholamines: A comparative study and an analytical application.

    PubMed

    Gorbunova, M V; Apyari, V V; Dmitrienko, S G; Garshev, A V

    2016-09-14

    Gold nanorods (AuNRs) stabilized by cetyltrimethylammonium bromide (CTAB) were synthesized and an interaction of catecholamines (CAs) with silver ions in the presence of the obtained AuNRs was studied. The reaction results into formation of core-shell Au@Ag nanorods (Au@AgNRs) and leads to a hypsochromic shift of the long-wave surface plasmon resonance (SPR) band in the absorption spectrum of AuNRs. The influence of a CA structure, excess of CTAB, interaction time, pH, concentration of AuNRs, silver ions and CAs on this interaction was studied. Based on correlation of the NRs spectral characteristics with the concentration of CAs, a method for spectrophotometric determination of dobutamine, epinephrine, norepinephrine and dopamine with detection limits 27, 18, 16 and 13 μg L(-1), respectively, has been developed. The method can be applied to the analysis of medicines. PMID:27566354

  16. Investigation of the surface passivation mechanism through an Ag-doped Al-rich film using a solution process.

    PubMed

    Khan, Firoz; Baek, Seong-Ho; Kim, Jae Hyun

    2016-01-14

    Electronic recombination loss is an important issue for photovoltaic (PV) devices. While it can be reduced by using a passivating layer, most of the techniques used to prepare passivating layers are either not cost effective or not applicable for device applications. Previously, it was reported that a low cost sol-gel derived Al-rich zinc oxide (ZnO:Al) film serves as an effective passivating layer for p-type silicon but is not effective for n-type silicon. Herein, we studied the elemental composition of the film and the interfacial structure of ZnO:Al:Ag/n-Si using TEM, XPS, FTIR, and SIMS analyses. The XPS analysis revealed that Ag-rich zones randomly formed in the film near the ZnO:Al:Ag//n-Si interface, which induced a positive charge at the interface. The maximal value of the effective minority carrier lifetime (τeff ≈ 1581 μs) is obtained for a wafer using the ZnO:Al:Ag passivating layer with RAg/Zn = 2%. The corresponding limiting surface recombination velocity is ∼16 cm s(-1). The FTIR absorption area of Si-H bonds is used to calculate the hydrogen content in the film. The hydrogen content is increased with increasing Ag content up to RAg/Zn = 2% to a maximal value of 3.89 × 10(22) atoms per cm(3) from 3.03 × 10(22) atoms per cm(3) for RAg/Zn = 0%. The positive charge induced at the interface may cause band bending, which would produce an electric field that repels the minority charge carriers from the interface to the bulk of n-Si. Two basic phenomena, chemical passivation due to Si-H bonding and field effect passivation due to the charge induced at the interface, have been observed for effective passivation of the n-Si surface. An implied Voc of 688.1 mV is obtained at an illumination intensity of 1 sun. PMID:26661502

  17. HBsAg loss is not an ideal indicator for discontinuing treatment of HBeAg-negative chronic hepatitis B: a case report.

    PubMed

    Dong, Pei-Ling; Zhang, Xin; Zhao, Wen-Min; Ding, Hui-Guo

    2013-12-01

    We experienced a case of a 36-year-old married man who was found to be hepatitis B virus (HBV) positive at 23 years of age. His liver function was repeatedly abnormal in the past 13 years. In November 2007 he presented with fatigue. Laboratory tests showed serum alanine aminotransferase concentration 255.3 U/l, positive for hepatitis B surface antigen (HBsAg) and hepatitis B e antibody, HBV DNA 3.01 × 10(7) copies/ml; liver biopsy showed necroinflammatory scores 11 and fibrosis scores 4. After 20 weeks of treatment with Peg-IFN α-2b, laboratory tests showed HBV DNA <500 copies/ml and normal liver function. By week 52 of the treatment, HBsAg became negative. By week 92 of continuing treatment, HBsAb became weakly positive and Peg-IFN α-2b treatment was stopped. On follow-up, both HBsAg and HBsAb were negative 28 weeks after discontinuation of Peg-IFN α-2b. We then performed a second liver biopsy and histological examination revealed necroinflammtary scores 2 and fibrosis scores 2. We administered hepatitis B vaccine intramuscularly every 4 weeks combined with IFN α-1b 30 μg intramuscularly every other day. HBsAb was 244.8 IU/l at week 32 of this combined treatment. Follow-up showed that after discontinuation of the combined treatment HBsAb concentration declined rapidly but could be maintained above 100 IU/l by intermittent injections of hepatitis B vaccine. Findings from this case reveal that HBsAg loss may be not sufficient; however, HBsAg seroconversion together with maintenance of certain concentrations of HBsAb may be a better endpoint to HBV treatment. PMID:23783395

  18. High Temperature Long-Term Stability of an (Al-Ag-Cu) Three-in-One Multicell

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Gyoo; Yang, Inseok; Joung, Wukchul

    2016-01-01

    In order to investigate the long-term stability of an (Al-Ag-Cu) three-in-one multicell, it was heat-treated at 1100° C, in which all metal samples were in molten state, for 1000 h. Its thermal behavior was tested using a Pt/Pd thermocouple by inducing freezes during the heat treatment. The amount by which the plateau temperature dropped after the 1000 h heat treatment were 1.62° C, 2.07° C, and 0.66° C for Al, Ag, and Cu, respectively. These degradations were suspected to be caused by self-contaminations, and to prove this, impurity concentrations in each sample of the multicell were examined. The amount of temperature dropped after the 1000 h heat treatment showed similar values to the prediction based on the impurity-induced temperature changes, and it was concluded that each cell was self-contaminated by the metallic elements from the other cells. Ag and Cu were found to be main species causing the observed degradations.

  19. Irreversibility line of an Ag-doped Hg-based superconductor

    NASA Astrophysics Data System (ADS)

    Mostafa, M. F.; Hassen, A.; Kunkel, H. P.

    2010-08-01

    The effect of doping with Ag of the bulk superconducting Hg0.3La0.7Ba2Ca3(Cu1 - xAgx)4O10 + δ, 0.1 <= x <= 0.3 phase (Hg-1234) is presented. The lattice parameter a = 3.824 Å remains constant, while parameter c was found to increase from c = 19.0225 Å (x = 0.0) to 19.08 Å (x = 0.3) with the addition of Ag. The variation of Tc versus the c-parameter exhibits a cupola-shaped behavior. The irreversibility line is thermally activated. The logarithmic plot of Hirr versus (1 - Tirr/Tc(0)) shows a crossover temperature reflecting a transition from two- to three-dimensional behavior with increasing temperature. Fitting of the results to different models is discussed. Thermally activated de-pinning according to Matsushita's formula gives the best fit.

  20. Ag(I)-catalyzed tandem [6+3] annulation/isomerization of isocyanoacetates with fulvenes: an expedient approach to synthesize fused dihydropyridines.

    PubMed

    He, Zhao-Lin; Wang, Chun-Jiang

    2015-01-11

    An unprecedented Ag(i)-catalyzed tandem [6+3] cycloaddition/isomerization of isocyanoacetates with fulvenes has been developed, affording the fused dihydropyridine derivatives in good yields with exclusive regioselectivities. PMID:25412446

  1. Contribution to the description of the absorber rod behavior in severe accident conditions: An experimental investigation of the Ag-Zr phase diagram

    NASA Astrophysics Data System (ADS)

    Decreton, A.; Benigni, P.; Rogez, J.; Mikaelian, G.; Barrachin, M.; Lomello-Tafin, M.; Antion, C.; Janghorban, A.; Fischer, E.

    2015-10-01

    Most pressurized water reactor (PWR) absorber rods are composed of an Ag-In-Cd (SIC) alloy inside a stainless steel (SS) cladding, themselves inserted into a Zircaloy tube. During a severe accident, the SIC alloy which melts at 800 °C does not practically interact with SS. However, the cladding failure results from its internal pressurization and its eutectic interaction with Zircaloy and occurs at temperatures greater than 1200 °C. The subsequent interaction between the SIC melt and the Zircaloy has a strong impact on the quantities of aerosols released into the primary circuit and finally on the iodine chemistry. Accurate knowledge of the Ag-Zr system is a prerequisite to address this issue. Within this concern, our experimental work is focused both on the investigation of the Ag-Zr phase diagram and on the determination of the thermodynamic properties of the intermetallic compounds in the system. Two intermetallic compounds (AgZr and AgZr2) were identified. Ag-Zr cast alloys with a Ag/Zr ratio of 1:1 elaborated using an arc-melting furnace, once annealed, contained only a single phase AgZr. From metallographic observations, it appears that AgZr2 likely forms by the peritectic reaction from liquid and the bcc (βZr) phase. The partial enthalpies of solution of silver and zirconium in aluminum were experimentally determined at 723 °C in order to determine the enthalpies of formation of the intermetallic compounds. For silver solution calorimetry in aluminum bath, our measurements were successful and in agreement with the previous data. Yet, this study shows that liquid aluminum should not be used as a solvent for zirconium below 1000 °C.

  2. Pharmacokinetics of hederacoside C, an active ingredient in AG NPP709, in rats.

    PubMed

    Kim, Ju Myung; Yoon, Ji Na; Jung, Ji Won; Choi, Hye Duck; Shin, Young June; Han, Chang Kyun; Lee, Hye Suk; Kang, Hee Eun

    2013-11-01

    1. Hederacoside C (HDC) is one of the active ingredients in Hedera helix leaf extract (Ivy Ex.) and AG NPP709, a new botanical drug to treat acute respiratory infection and chronic inflammatory bronchitis. However, information regarding its pharmacokinetic properties remains limited. 2. Here, we report the pharmacokinetics of HDC in rats after intravenous administration of HDC (3, 12.5, and 25 mg/kg) and after oral administration of HDC, Ivy Ex., and AG NPP709 (equivalent to 12.5, 25, and 50 mg/kg HDC). 3. Linear pharmacokinetics of HDC were identified upon its intravenous administration at doses of 3-25 mg/kg. Intravenous administration of HDC results in relatively slow clearance (1.46-2.08 mL/min/kg) and a small volume of distribution at steady state (138-222 mL/kg), while oral administration results in a low absolute oral bioavailability (F) of 0.118-0.250%. The extremely low F of HDC may be due to poor absorption of HDC from the gastrointestinal (GI) tract and/or its decomposition therein. 4. The oral pharmacokinetics of HDC did not differ significantly among pure HDC, Ivy Ex., and AG NPP709. PMID:23607546

  3. Oxidation of ethyl acetate by a high performance nanostructure (Ni, Mn)-Ag/ZSM-5 bimetallic catalysts and development of an artificial neural networks predictive modeling.

    PubMed

    Jodaei, Azadeh; Salari, Darush; Niaei, Ali; Khatamian, Masumeh; Hosseini, Seyed Ali

    2011-01-01

    The catalytic oxidation of ethyl acetate in low concentration was investigated over mono-metallic Ag/ZSM5 and bimetallic (Ni, Mn)-Ag/ZSM-5 catalysts. Catalytic studies were carried out in a catalytic fixed bed reactor under atmospheric pressure. The sequence of catalytic activity was as follows: Ni-Ag-ZSM-5 > Mn-Ag-ZSM-5 > Ag-ZSM-5 > H-ZSM-5. The catalysts were characterized by ICP-AES, X-ray diffraction (XRD), low temperature nitrogen adsorption, NH(3)-TPD, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and diffuse reflectance UV-vis spectra (UV-vis). An artificial neural networks (ANN) model was developed to predict the performance of catalytic oxidation process over bimetallic Ni-Ag/ZSM-5 catalyst based on experimental data. For this purpose the standard feed forward back propagation algorithm was employed to train the model by using laboratory experimental data. A good agreement was resulted between experimental results and those obtained by ANN. Following order for variables effects on conversion yield of ethyl acetate was predicted by ANN model: reaction temperature (32.99%) > Ag loading (27.38%) > initial ethyl acetate concentration (23.58%) > Ni loading (16.05%). PMID:21104495

  4. Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures

    NASA Astrophysics Data System (ADS)

    Tsai, Chi-Hang; Chen, Shih-Yun; Song, Jenn-Ming; Haruta, Mitsutaka; Kurata, Hiroki

    2015-11-01

    Au-Ag alloy nanostructures with various shapes were synthesized using a successive reduction method in this study. By means of galvanic replacement, twined Ag nanoparticles (NPs) and single-crystalline Ag nanowires (NWs) were adopted as templates, respectively, and alloyed with the same amount of Au+ ions. High angle annular dark field-scanning TEM (HAADF-STEM) images observed from different rotation angles confirm that Ag NPs turned into AuAg alloy rings with an Au/Ag ratio of 1. The shifts of surface plasmon resonance and chemical composition reveal the evolution of the alloy ring formation. On the other hand, single-crystalline Ag NWs became Ag@AuAg core-shell wires instead of hollow nanostructure through a process of galvanic replacement. It is proposed that in addition to the ratio of Ag templates and Au ion additives, the twin boundaries of the Ag templates were the dominating factor causing hollow alloy nanostructures.

  5. Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures.

    PubMed

    Tsai, Chi-Hang; Chen, Shih-Yun; Song, Jenn-Ming; Haruta, Mitsutaka; Kurata, Hiroki

    2015-12-01

    Au-Ag alloy nanostructures with various shapes were synthesized using a successive reduction method in this study. By means of galvanic replacement, twined Ag nanoparticles (NPs) and single-crystalline Ag nanowires (NWs) were adopted as templates, respectively, and alloyed with the same amount of Au(+) ions. High angle annular dark field-scanning TEM (HAADF-STEM) images observed from different rotation angles confirm that Ag NPs turned into AuAg alloy rings with an Au/Ag ratio of 1. The shifts of surface plasmon resonance and chemical composition reveal the evolution of the alloy ring formation. On the other hand, single-crystalline Ag NWs became Ag@AuAg core-shell wires instead of hollow nanostructure through a process of galvanic replacement. It is proposed that in addition to the ratio of Ag templates and Au ion additives, the twin boundaries of the Ag templates were the dominating factor causing hollow alloy nanostructures. PMID:26563266

  6. Investigation of the surface passivation mechanism through an Ag-doped Al-rich film using a solution process

    NASA Astrophysics Data System (ADS)

    Khan, Firoz; Baek, Seong-Ho; Kim, Jae Hyun

    2015-12-01

    Electronic recombination loss is an important issue for photovoltaic (PV) devices. While it can be reduced by using a passivating layer, most of the techniques used to prepare passivating layers are either not cost effective or not applicable for device applications. Previously, it was reported that a low cost sol-gel derived Al-rich zinc oxide (ZnO:Al) film serves as an effective passivating layer for p-type silicon but is not effective for n-type silicon. Herein, we studied the elemental composition of the film and the interfacial structure of ZnO:Al:Ag/n-Si using TEM, XPS, FTIR, and SIMS analyses. The XPS analysis revealed that Ag-rich zones randomly formed in the film near the ZnO:Al:Ag//n-Si interface, which induced a positive charge at the interface. The maximal value of the effective minority carrier lifetime (τeff ~ 1581 μs) is obtained for a wafer using the ZnO:Al:Ag passivating layer with RAg/Zn = 2%. The corresponding limiting surface recombination velocity is ~16 cm s-1. The FTIR absorption area of Si-H bonds is used to calculate the hydrogen content in the film. The hydrogen content is increased with increasing Ag content up to RAg/Zn = 2% to a maximal value of 3.89 × 1022 atoms per cm3 from 3.03 × 1022 atoms per cm3 for RAg/Zn = 0%. The positive charge induced at the interface may cause band bending, which would produce an electric field that repels the minority charge carriers from the interface to the bulk of n-Si. Two basic phenomena, chemical passivation due to Si-H bonding and field effect passivation due to the charge induced at the interface, have been observed for effective passivation of the n-Si surface. An implied Voc of 688.1 mV is obtained at an illumination intensity of 1 sun.Electronic recombination loss is an important issue for photovoltaic (PV) devices. While it can be reduced by using a passivating layer, most of the techniques used to prepare passivating layers are either not cost effective or not applicable for device

  7. An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics.

    PubMed

    Zhang, Cheng; Zhao, Dewei; Gu, Deen; Kim, Hyunsoo; Ling, Tao; Wu, Yi-Kuei Ryan; Guo, L Jay

    2014-08-27

    An ultrathin, smooth, and low-loss Ag film without a wetting layer is achieved by co-depositing a small amount of Al into Ag. The film can be as thin as 6 nm, with a roughness below 1 nm and excellent mechanical flexibility. Organic photovoltaics that use these thin films as transparent electrode show superior efficiency to their indium tin oxide (ITO) counterparts because of improved photon management. PMID:24943876

  8. Baryon distributions in heavy ion collisions at AGS energies: An experimental overview

    SciTech Connect

    Videbaek, F.

    1993-06-01

    Data on rapidity distributions of protons from the three AGS experiments E-814, E-810 and E-802 are compared on a common base to enlarge the rapidity coverage. Together they provide a unique opportunity to study the proton distributions in relativistic heavy ion reactions over the full rapidity range. Systematics of the rapidity density distributions are presented as function of centrality and mass of colliding system. Considerable stopping is achieved for the heaviest system studied, Au+Au, thus giving the means to study high-density effects in nuclear matter.

  9. Baryon distributions in heavy ion collisions at AGS energies: An experimental overview

    SciTech Connect

    Videbaek, F.

    1993-01-01

    Data on rapidity distributions of protons from the three AGS experiments E-814, E-810 and E-802 are compared on a common base to enlarge the rapidity coverage. Together they provide a unique opportunity to study the proton distributions in relativistic heavy ion reactions over the full rapidity range. Systematics of the rapidity density distributions are presented as function of centrality and mass of colliding system. Considerable stopping is achieved for the heaviest system studied, Au+Au, thus giving the means to study high-density effects in nuclear matter.

  10. An AGS experiment to test bunching for the proton driver of the muon collider.

    SciTech Connect

    Norem, J.

    1998-04-27

    The proton driver for the muon collider must produce short pulses of protons in order to facilitate muon cooling and operation with polarized beams. In order to test methods of producing these bunches they have operated the AGS near transition and studied procedures which involved moving the transition energy {gamma} to the beam energy. They were able to produce stable bunches with RMS widths of {sigma} = 2.2-2.7 ns for longitudinal bunch areas of {minus}1.5 V-s, in addition to making measurements of the lowest two orders of the momentum compaction factor.

  11. AgI/Ag{sub 3}PO{sub 4} hybrids with highly efficient visible-light driven photocatalytic activity

    SciTech Connect

    Katsumata, Hideyuki; Hayashi, Takahiro; Taniguchi, Masanao; Suzuki, Tohru; Kaneco, Satoshi

    2015-03-15

    Highlights: • AgI/Ag{sub 3}PO{sub 4} hybrid was prepared via an in situ anion-exchange method. • AgI/Ag{sub 3}PO{sub 4} displays the excellent photocatalytic activity under visible light. • AgI/Ag{sub 3}PO{sub 4} readily transforms to be Ag@AgI/Ag{sub 3}PO{sub 4} system. • h{sup +} and O{sub 2}{sup ·−} play the major role in the AO 7 decolorization over AgI/Ag{sub 3}PO{sub 4}. • The activity enhancement is ascribed to a Z-scheme system composed of Ag{sub 3}PO{sub 4}, Ag and AgI. - Abstract: Highly efficient visible-light-driven AgI/Ag{sub 3}PO{sub 4} hybrid photocatalysts with different mole ratios of AgI were prepared via an in situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgI/Ag{sub 3}PO{sub 4} photocatalysts displayed the higher photocatalytic activity than pure Ag{sub 3}PO{sub 4} and AgI for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgI/Ag{sub 3}PO{sub 4} with 80% of AgI exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgI/Ag{sub 3}PO{sub 4} readily transformed to be Ag@AgI/Ag{sub 3}PO{sub 4} system while the photocatalytic activity of AgI/Ag{sub 3}PO{sub 4} remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h{sup +} and O{sub 2}{sup ·−} play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgI/Ag{sub 3}PO{sub 4} hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag{sub 3}PO{sub 4}, Ag and AgI, in which Ag nanoparticles act as the charge separation center.

  12. Structure and properties during aging of an ultra-high strength Al-Cu-Li-Ag-Mg alloy

    NASA Technical Reports Server (NTRS)

    Gayle, Frank W.; Heubaum, Frank H.; Pickens, Joseph R.

    1990-01-01

    The structure and properties of the strengthening phases formed during aging in an Al-Cu-Li-Ag-Mg alloy (Weldalite 049) were elulcidated, by following the development of the microstructure by means of TEM. The results of observations showed that the Weldalite 049 alloy has a series of unusual and technologically useful combinations of mechanical properties in different aging conditions, such as natural aging without prior cold work to produce high strengths, a reversion temper of lower yield strength and unusually high ductility, a room temperature reaging of the reversion temper eventually leading to the original T4 hardness, and ultrahigh-strength T6 properties.

  13. The nanocrystalline coordination polymer of AMT-Ag for an effective detection of ciprofloxacin hydrochloride in pharmaceutical formulation and biological fluid.

    PubMed

    Tiwari, Madhu; Kumar, Ashish; Shankar, Uma; Prakash, Rajiv

    2016-11-15

    The present report highlights a cost effective and portable AMT-Ag nanocrystalline coordination polymer (NCCP) based electrochemical sensor for an efficient sensing of biologically active drug molecule ciprofloxacin hydrochloride (CFX). The AMT-Ag NCCP, is synthesized using an easily accessible organic ligand 2-amino-5-mercapto-1,3,4-thiadiazole (AMT) with silver nitrate. In the infinite polymer array of AMT-Ag, silver (I) centers are bridged by tecton AMT through the exocyclic thiol and amino linkage. A successful ultra‒trace detection of CFX has been achieved due to the prominent electron channeling through the pores of polymeric nano-crystallites. The efficient charge transfer arises at the interface of electrolyte and AMT-Ag nano-crystals anchored electrode through hydrophobic interaction and π-π electron coupling. The voltammogram reveals the critical redox features of CFX and provides a clear representation about the steps involved in the AMT-Ag assisted oxidation of CFX. This specific signature further applied in the voltammetric assay of CFX in pharmaceutical formulation (eye drops) and biological fluid (urine) by a significantly high sensitivity (0.002µA/µM and 0.007µA/µM) and detection limit (22nM and 60nM) respectively without any interference. Therefore, the developed AMT-Ag NCCP could serve as a highly valuable platform for the fabrication of high-performance electrochemical sensors for the detection of biologically important drug molecules. PMID:27236138

  14. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate

    PubMed Central

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-01-01

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the “V”-shaped or “U”-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications. PMID:27586562

  15. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate.

    PubMed

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-01-01

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the "V"-shaped or "U"-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications. PMID:27586562

  16. Half sandwich structures of MCF6- (M = Ag and Au): An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Sun, Zhang; Tang, Zichao; Gao, Zhen

    2013-01-01

    The metal-hexafluorobenzene anionic complexes of [MC6F6]- (M = Ag and Au) were produced from the reactions between metal cluster generated by laser ablation and the hexafluorobenzene seeded in argon carrier gas, and were studied by photoelectron spectroscopy (PES) and density functional theory (DFT). The adiabatic electron affinities (EAs) of these corresponding complexes are measured from the experimental PE spectra at 193 nm photon energy. Also, the calculated EAs and the calculated density of states (DOS) spectra of these complexes in the ground state are conducted, which are in good agreement with their experimental PE spectra. The most possible structures of the anions [AgC6F6]- and [AuC6F6]- are the half-sandwich structures with C6v symmetry, in which the metal atom is above the center of the C6F6 plane. Furthermore, the molecular orbital (MO) analysis of these species indicates that the additional electron of the anions binds on the metal.

  17. What Is Ag-Ed?

    ERIC Educational Resources Information Center

    Lindley, Judy

    Ag-Ed is an agricultural education project aimed at upper primary students, held in conjunction with the Toowoomba Show (similar to a county fair) in Queensland, Australia. The program achieves its purpose of helping children understand the impact and relevance that agriculture has on their everyday lives through two components, an Ag-Ed day and a…

  18. Establishment of an inducible HBV stable cell line that expresses cccDNA-dependent epitope-tagged HBeAg for screening of cccDNA modulators.

    PubMed

    Cai, Dawei; Wang, Xiaohe; Yan, Ran; Mao, Richeng; Liu, Yuanjie; Ji, Changhua; Cuconati, Andrea; Guo, Haitao

    2016-08-01

    Hepatitis B virus (HBV) covalently closed circular (ccc) DNA is essential to the virus life cycle, its elimination during chronic infection is considered critical to a durable therapy but has not been achieved by current antivirals. Despite being essential, cccDNA has not been the major target of high throughput screening (HTS), largely because of the limitations of current HBV tissue culture systems, including the impracticality of detecting cccDNA itself. In response to this need, we have previously developed a proof-of-concept HepDE19 cell line in which the production of wildtype e antigen (HBeAg) is dependent upon cccDNA. However, the existing assay system is not ideal for HTS because the HBeAg ELISA cross reacts with a viral HBeAg homologue, which is the core antigen (HBcAg) expressed largely in a cccDNA-independent fashion in HepDE19 cells. To further improve the assay specificity, we report herein a "second-generation" cccDNA reporter cell line, termed HepBHAe82. In the similar principle of HepDE19 line, an in-frame HA epitope tag was introduced into the precore domain of HBeAg open reading frame in the transgene of HepBHAe82 cells without disrupting any cis-element critical for HBV replication and HBeAg secretion. A chemiluminescence ELISA assay (CLIA) for the detection of HA-tagged HBeAg with HA antibody serving as capture antibody and HBeAb serving as detection antibody has been developed to eliminate the confounding signal from HBcAg. The miniaturized HepBHAe82 cell based assay system exhibits high level of cccDNA-dependent HA-HBeAg production and high specific readout signals with low background. We have also established a HepHA-HBe4 cell line expressing transgene-dependent HA-HBeAg as a counter screen to identify HBeAg inhibitors. The HepBHAe82 system is amenable to antiviral HTS development, and can be used to identify host factors that regulate cccDNA metabolism and transcription. PMID:27185623

  19. Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury

    NASA Astrophysics Data System (ADS)

    Jarujamrus, Purim; Amatatongchai, Maliwan; Thima, Araya; Khongrangdee, Thatsanee; Mongkontong, Chakrit

    2015-05-01

    In this work, selective colorimetric sensors for simple and rapid detection of Hg(II) ions based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction were developed. The average diameter of synthesized AgNPs was 8.3 ± 1.4 nm which was characterized by transmission electron microscopy (TEM). The abrupt change in absorbance of the unmodified AgNPs was observed which progressively decreased and slightly shifted to the blue wavelength as the concentration of Hg(II) increased, indicating the oxidation of Ag(0) to Ag(I) occurred. It appears that the AgNPs were oxidized by Hg(II), resulting in disintegration of the AgNPs into smaller particles as well as mediating the reduction of Hg(II) to Hg(0) adsorbed onto the surface of AgNPs. The adsorption of Hg(0) resulted in the lack of sufficient charges on AgNPs surfaces due to the decrease in the surface coverage of negatively charged citrate molecules, which then leaded to enlargement of AgNPs. The calibration curve of this technique was demonstrated from 0.5 to 7 ppm (r2 = 0.995), the limit of detection (LOD) was 0.06 ppm (SDblank/slope of calibration curve) with the precision (RSD, n = 4) of 3.24-4.53. Interestingly, the results show a significant enhance in the Hg(II) analytical sensitivity when Cu(II) is doped onto the unmodified AgNPs, which improves the quantitative detection limit to 0.008 ppm. In addition, greater selectivity toward Hg(II) compared with the other metal ions tested was observed. Furthermore, the percentage recoveries of spiked drinking water, tap water and SRM1641d (mercury in water) were in acceptable range with a good precision (RSD) which were in agreement with the values obtained from graphite furnace atomic absorption spectrometer (GFAAS). The technique proposed in this study provides a rapid, simple, sensitive and selective detection method for Hg(II) in water samples.

  20. Ordered silicon nanowire arrays prepared by an improved nanospheres self-assembly in combination with Ag-assisted wet chemical etching

    NASA Astrophysics Data System (ADS)

    Jia, Guobin; Westphalen, Jasper; Drexler, Jan; Plentz, Jonathan; Dellith, Jan; Dellith, Andrea; Andrä, Gudrun; Falk, Fritz

    2016-04-01

    An improved Langmuir-Blodgett self-assembly process combined with Ag-assisted wet chemical etching for the preparation of ordered silicon nanowire arrays is presented in this paper. The new process is independent of the surface conditions (hydrophilic or hydrophobic) of the substrate, allowing for depositing a monolayer of closely packed polystyrene nanospheres onto any flat surface. A full control of the morphology of the silicon nanowire is achieved. Furthermore, it is observed that the formation of porous-Si at the tips of the nanowires is closely related to the release of Ag nanoparticles from the Ag mask during the etching, which subsequently redeposit on the surface initially free of Ag, and these Ag nanoparticles catalyze the etching of the tips and lead to the porous-Si formation. This finding will help to improve the resulting nano- and microstructures to get them free of pores, and renders it a promising technology for low-cost high throughput fabrication of specific optical devices, photonic crystals, sensors, MEMS, and NEMS by substituting the costly BOSCH process. It is shown that ordered nanowire arrays free of porous structures can be produced if all sources of Ag nanoparticles are excluded, and structures with aspect ratio more than 100 can be produced.

  1. Association between CTLA-4 exon-1 +49A/G polymorphism and asthma: an updated meta-analysis.

    PubMed

    Yao, Ying-Shui; Wang, Lin-Hong; Chang, Wei-Wei; He, Lian-Ping; Li, Jie; Jin, Yue-Long; Li, Chao-Pin

    2015-01-01

    The results of studies on association between CTLA-4 exon-1 +49A/G (rs231775) polymorphism and susceptibility to asthma are controversial. To derive a more precise estimation of the relationship between the CTLA-4 exon-1 +49A/G polymorphism and asthma, a meta-analysis of 15 published case-control studies was performed. 15 studies meeting our inclusion criteria comprising 4006 asthma cases and 3729 controls were included. The effect summary odds ratio (OR) and 95% confidence intervals were obtained. Publication bias was tested by funnel plot, Egger's test and heterogeneity was assessed. The combined results showed that there were significant differences in genotype distribution between asthma cases and control on the basis of all studies, GG + GA versus AA (OR = 0.76, 95% CI: 0.62-0.93; P = 0.008). When stratifying for the race, the phenomenon was found that asthma cases had a significantly higher frequency of GG/GA versus AA (OR = 0.71; 95% CI: 0.51-0.99; P = 0.04) than control in Caucasian. Stratifying subjects by age indicated an association between CTLA-4 +49 GG + GA genotype and asthma in children (OR = 0.75; 95% CI: 0.62-0.90; P = 0.002), but no association in adults (OR = 0.93; 95% CI: 0.76-1.14; P = 0.48). Furthermore, significant association was observed in atopic asthma under the fixed-effects model (GG + GA vs. AA: P = 0.03, OR = 0.81, 95% CI = 0.67-0.98, P heterogeneity = 0.22). Our meta-analysis results suggest that CTLA-4 exon-1 +49A/G polymorphism might be a risk factor for asthma susceptibility, at least in Caucasian, children, and patients with atopy status. PMID:26064199

  2. Sea-urchin-like Fe3O4@C@Ag particles: an efficient SERS substrate for detection of organic pollutants

    NASA Astrophysics Data System (ADS)

    Ye, Yingjie; Chen, Jin; Ding, Qianqian; Lin, Dongyue; Dong, Ronglu; Yang, Liangbao; Liu, Jinhuai

    2013-06-01

    Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization.Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization. Electronic supplementary information (ESI) available: Additional XRD patterns and SEM images of Fe3O4@C particles, SERS spectra of 4-ATP and 4-MPY using Fe3O4@C@Ag particles as the active substrates, magnetic behaviour of Fe3O4@C and Fe3O4@C@Ag particles. See DOI: 10.1039/c3nr01273e

  3. An investigation of the microstructure and mechanical properties of electrochemically coated Ag(4)Sn dental alloy particles condensed in vitro

    NASA Astrophysics Data System (ADS)

    Marquez, Jose Antonio

    As part of the ongoing scientific effort to develop a new amalgam-like material without mercury, a team of metallurgists and electrochemists at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, announced in 1993 the development of a new Ag-Sn dental alloy system without mercury that sought to replace conventional dental amalgams. They used spherical Ag3Sn and Ag4Sn intermetallic dental alloy particles, commonly used in conventional dental alloys, and coated them with electrodeposited silver with newly-developed electrolytic and immersion techniques. The particles had relatively pure silver coatings that were closely adherent to the intermetalfic cores. These silver-coated particles, due to silver's plasticity at room temperature, were condensed into PlexiglasRTM molds with the aid of an acidic surface activating solution (HBF4) and a mechanical condensing device, producing a metal-matrix composite with Ag3,4Sn filler particles surrounded by a cold-welded silver matrix. Since silver strain hardens rather easily, the layers had to be condensed in less than 0.5 mm increments to obtain a dense structure. Mechanical testing at NIST produced compressive strength values equal to or greater than those of conventional dental amalgams. Because of its potential for eliminating mercury as a constituent in dental amalgam, this material created a stir in dental circles when first developed and conceivably could prove to be a major breakthrough in the field of dental restoratives. To date, the chief impediments to its approval for human clinical applications by the Food and Drug Administration are the potentially-toxic surface activating solution used for oxide reduction, and the high condensation pressures needed for cold welding because of the tendency for silver to strain harden. In this related study, the author, who has practiced general dentistry for 25 years, evaluates some of the mechanical and microstructural properties of these

  4. Photoproduced fluorescent Au(I)@(Ag2/Ag3)-thiolate giant cluster: an intriguing sensing platform for DMSO and Pb(II).

    PubMed

    Ganguly, Mainak; Mondal, Chanchal; Jana, Jayasmita; Pal, Anjali; Pal, Tarasankar

    2014-01-14

    Synergistic evolution of fluorescent Au(I)@(Ag2/Ag3)-thiolate core-shell particles has been made possible under the Sun in presence of the respective precursor coinage metal compounds and glutathione (GSH). The green chemically synthesized fluorescent clusters are giant (∼600 nm) in size and robust. Among all the common water miscible solvents, exclusively DMSO exhibits selective fluorescence quenching (Turn Off) because of the removal of GSH from the giant cluster. Again, only Pb(II) ion brings back the lost fluorescence (Turn On) leaving aside all other metal ions. This happens owing to the strong affinity of the sulfur donor of DMSO for Pb(II). Thus, employing the aqueous solution containing the giant cluster, we can detect DMSO contamination in water bodies at trace level. Besides, a selective sensing platform has emerged out for Pb(II) ion with a detection limit of 14 × 10(-8) M. Pb(II) induced fluorescence recovery is again vanished by I(-) implying a promising route to sense I(-) ion. PMID:24359547

  5. Effect of a prior stretch on the aging response of an Al-Cu-Li-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Pickens, Joseph R.

    1991-01-01

    Recently, a family of Al-Cu-Li alloys containing minor amounts of Ag, Mg, and Zr and having desirable combinations of strength and toughness were developed. The Weldalite (trademark) alloys exhibit a unique characteristic in that with or without a prior stretch, they obtain significant strength-ductility combinations upon natural and artificial aging. The ultra-high strength (approximately 690 MPa yield strength) in the peak-aged tempers (T6 and T8) were primarily attributed to the extremely fine T(sub 1) (Al2CuLi) or T(sub 1)-type precipitates that occur in these alloys during artificial aging, whereas the significant natural aging response observed is attributed to strengthening from delta prime (Al3Li) and GP zones. In recent work, the aging behavior of an Al-Cu-Li-Ag-Mg alloy without a prior stretch was followed microstructurally from the T4 to the T6 condition. Commercial extrusions, rolled plates, and sheets of Al-Cu-Li alloys are typically subjected to a stretching operation before artificial aging to straighten the extrusions and, more importantly, introduce dislocations to simulate precipitation of strengthening phases such as T(sub 1) by providing relatively low-energy nucleation sites. The goals of this study are to examine the microstructure that evolves during aging of an alloy that was stretch after solution treatment and to compare the observations with those for the unstretched alloy.

  6. Facile synthesis of S–Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S–Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70–160 nm and lengths of 200–360 nm. X-ray diffraction of the S–Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag+ plays an important role in controlling the size and morphology of the S–Ag nanocomposites. When the molar ratio of PVP to Ag+ was 10:1, smaller sizes, better dispersibility and narrower distribution of S–Ag nanocomposites with diameters of 10–40 nm were obtained. The formation mechanism of the S–Ag nanocomposites was studied by designing a series of experiments using ultraviolet–visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag+ becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S–Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S–Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles.

  7. Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Han, Jia-Jun; Li, Ning; Zhang, Tian-Yun

    The cyclic voltammetry indicated that the oxygen reduction reaction (ORR) proceeded by the four-electron pathway mechanism on larger Ag particles (174 nm), and that the ORR proceeded by the four-electron pathway and the two-electron pathway mechanisms on finer Ag particles (4.1 nm), simultaneously. The kinetics towards ORR was measured at a rotating disk electrode (RDE) with Ag/C electrode. The number of exchanged electrons for the ORR was found to be close to four on larger Ag particles (174 nm) and close to three on finer Ag particles (4.1 nm). The zinc-air battery with Ag/C catalysts (25.9 nm) was fabricated and examined.

  8. An oil-in-water self-assembly synthesis, characterization and photocatalytic properties of nano Ag@AgCl surface-sensitized K{sub 2}Ti{sub 4}O{sub 9}

    SciTech Connect

    Liang, Yinghua; Lin, Shuanglong; Liu, Li Hu, Jinshan; Cui, Wenquan

    2014-12-15

    Highlights: • The plasmatic Ag@AgCl surface-sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts. • Ag@AgCl greatly increased visible light absorption for K{sub 2}Ti{sub 4}O{sub 9}. • The photocatalysts exhibited enhanced photocatalytic dye degradation. - Abstract: Nano-sized plasmonic Ag@AgCl surface-sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts (hereafter designated as Ag@AgCl/K{sub 2}Ti{sub 4}O{sub 9}) was synthesized via a facile oil-in-water self-assembly method. The photocatalytic activity of the prepared materials for RhB (Rhodamine B) degradation was examined under visible light irradiation. The results reveal that the size of Ag@AgCl, which evenly dispersed on the surface of K{sub 2}Ti{sub 4}O{sub 9}, distributes about 20–50 nm. The UV–vis diffuse reflectance spectra indicate that Ag@AgCl/K{sub 2}Ti{sub 4}O{sub 9} samples have a significantly enhanced optical absorption in 380–700 nm. The photocatalytic activities of the Ag@AgCl/K{sub 2}Ti{sub 4}O{sub 9} samples increase first and then decrease with increasing amount of loading Ag@AgCl and the Ag@AgCl(20 wt.%)/K{sub 2}Ti{sub 4}O{sub 9} sample exhibits the best photocatalytic activity and 94.47% RhB was degraded after irradiation for 2 h. Additionally, studies performed using radical scavengers indicated that O{sub 2}·{sup −} and Cl{sup 0} acted as the main reactive species. The electronic interaction was systematically studied and confirmed by the photo-electrochemical measurements.

  9. Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol

    NASA Astrophysics Data System (ADS)

    An, Changhua; Wang, Jizhuang; Jiang, Wen; Zhang, Meiyu; Ming, Xijuan; Wang, Shutao; Zhang, Qinhui

    2012-08-01

    Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO2. For example, reduction of CO2 under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO2 into useful organic compounds.Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO2. For example, reduction of CO2 under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO2

  10. Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNO₃ via soil and food.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Morgan, A John; Kille, Peter; Svendsen, Claus; Jurkschat, Kerstin; Mosselmans, J Fred W; Soares, Amadeu M V M; Loureiro, Susana

    2016-03-01

    Silver nanoparticles (Ag NPs) have been used in numerous consumer products and may enter the soil through the land application of biosolids. However, little is known about the relationship between Ag NP exposure and their bioavailability for soil organisms. This study aims at comparing the uptake and elimination kinetics of Ag upon exposures to different Ag forms (NPs and ionic Ag (as AgNO3)) in the isopod Porcellionides pruinosus. Isopods were exposed to contaminated Lufa 2.2 soil or alder leaves as food. Uptake and elimination rate constants for soil exposure did not significantly differ between Ag NPs and ionic Ag at 30 and 60 mg Ag/kg. For dietary exposure, the uptake rate constant was up to 5 times higher for Ag NPs than for AgNO3, but this was related to feeding activity and exposure concentrations, while no difference in the elimination rate constants was found. When comparing both routes, dietary exposure resulted in lower Ag uptake rate constants but elimination rate constants did not differ. A fast Ag uptake was observed from both routes and most of the Ag taken up seemed not to be eliminated. Synchrotron X-ray fluorescence showed Ag in the S-cells of the hepatopancreas, thus supporting the observations from the kinetic experiment (i.e. low elimination). In addition, our results show that isopods have an extremely high Ag accumulation capacity, suggesting the presence of an efficient Ag storage compartment. PMID:26581474

  11. Microstructural evolution during aging of an Al-Cu-Li-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Pickens, Joseph R.

    1991-01-01

    Alloys in the Al-Cu-Li Ag-Mg subsystem were developed that exhibit desirable combinations of strength and ductility. These Weldalite (trademark) alloys, are unique for Al-Cu-Li alloys in that with or without a prior cold stretching operation, they obtain excellent strength-ductility combinations upon natural and artificial aging. This is significant because it enables complex, near-net shape products such as forgings and super plastically formed parts to be heat treated to ultra-high strengths. On the other hand, commercial extrusions, rolled plates and sheets of other Al-Cu-Li alloys are typically subjected to a cold stretching operation before artificial aging to the highest strength tempers to introduce dislocations that provide low-energy nucleation sites for strengthening precipitates such as the T(sub 1) phase. The variation in yield strength (YS) with Li content in the near-peak aged condition for these Weldalite (trademark) alloys and the associated microstructures were examined, and the results are discussed.

  12. Allergy Vaccines Using a Mycobacterium-Secreted Antigen, Ag85B, and an IL-4 Antagonist.

    PubMed

    Tsujimura, Yusuke; Yasutomi, Yasuhiro

    2016-01-01

    In recent decades, the prevalence of allergic diseases, including bronchial asthma, airway hypersensitivity, hay fever, and atopic dermatitis, has been increasing in the industrialized world, and effective treatments probably require manipulating the inflammatory response to pathogenic allergens. T helper (Th) 2 cells are thought to play a crucial role in the initiation, progression, and persistence of allergic responses in association with production of interleukin (IL)-4, IL-5, and IL-13. Therefore, a strategy of a shift from Th2- to Th1-type immune response may be valuable in the prophylaxis and management of allergic diseases. It is also necessary to develop prophylactic and therapeutic treatment that induces homeostatic functions in the multifaceted allergic environment, because various factors including innate and adaptive immunity, mucosal immune response, and functional and structural maintenance of local tissue might be involved in the pathogenesis of allergic disorders. We review herein recent findings related to the curative effect for mouse models of asthma and atopic dermatitis using DNA-, virus-, and protein-based vaccines of a Mycobacterium secretion antigen, Ag85B, and a plasmid encoding cDNA of antagonistic IL-4 mutant. PMID:27076163

  13. Effect of a prior stretch on the aging response of an Al-Cu-Li-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Pickens, J. R.

    1990-01-01

    The effect of a prior stretching of an aluminum alloy Al-5.3Cu-1.4Li-0.4Ag-0.4Mg-0.17Zr (in wt pct) on the microstructure that develops during aging of this alloy was investigated by comparing TEM and SAD observations and hardness curves with results for the unstretched alloy. The results suggest that stretching introduces a significant number of dislocations which may act as vacanacy sinks by sweeping vacancies away and thereby decreasing the vacancy concentration available for influencing the natural aging response. In the stretched and near-peak aged condition, a fine homogeneous distribution of T1, theta-prime, and S-prime phases were observed in an alpha solid solution matrix. Upon overaging, virtually all of the theta-prime and most of the S-prime phases were found to dissolve, leaving behind a microstructure of T1 precipitates.

  14. Modulation of localized surface plasmon resonance for an array of Ag nanostructures layered with nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shang, Zhenzhen; Huang, Haishen; Wan, Yuan; Deng, Luogen

    2016-08-01

    Sensitivity of the localized surface plasmon resonance (LSPR) for an array of Ag (silver) nanostructures layered with nematic liquid crystals (NLC) is investigated. Calculations are made by using finite-difference time-domain (FDTD) method under different geometrical and environmental parameters. Results show that the LSPR wavelength in this array can be controlled and tuned to infrared wavelength range by the rotation of the NLC optical-axis. The rotation of the array and the modifications to height of the NLC layer, the size and periods of the array can affect the sensitivity of the LSPR. The sensitivity is higher when the optical-axis is in xoz plane, than that for the optical-axis in xoy plane. An improved sensitivity has been obtained in the simulation.

  15. Assessing Youth Perceptions and Knowledge of Agriculture: The Impact of Participating in an AgVenture Program

    ERIC Educational Resources Information Center

    Luckey, Alisa Nicole; Murphrey, Theresa Pesl; Cummins, Richard L.; Edwards, Michael B.

    2013-01-01

    Agricultural education programs such as AgVenture have been established to educate youth about the importance of agriculture. The study reported here examined the direct impact that one agricultural education program, specifically AgVenture, had on youth perceptions and knowledge of agriculture. Youth's perceptions and knowledge of…

  16. An Ag(I) energetic metal-organic framework assembled with the energetic combination of furazan and tetrazole: synthesis, structure and energetic performance.

    PubMed

    Qu, Xiao-Ni; Zhang, Sheng; Wang, Bo-Zhou; Yang, Qi; Han, Jing; Wei, Qing; Xie, Gang; Chen, San-Ping

    2016-04-28

    A novel Ag(I) energetic MOF [Ag16(BTFOF)9]n·[2(NH4)]n () assembled with Ag(iI ions and a furazan derivative, 4,4'-oxybis[3,3'-(1H-5-tetrazol)]furazan (H2BTFOF) was successfully synthesized and structurally characterized, featuring a three-dimensional porous structure incorporating ammonium cations. The thermal stability and energetic properties were determined, revealing that the 3D energetic MOF had an outstanding insensitivity (IS > 40 J), an ultrahigh detonation pressure (P) of 65.29 GPa and a detonation velocity (D) of 11.81 km cm(-3). In addition, the self-accelerating decomposition temperature (TSADT) and the critical temperature of thermal explosion (Tb) are also discussed in detail. The finding exemplifies that the assembly strategy plays a decisive role in the density and energetic properties of MOF-based energetic materials. PMID:26987079

  17. Growth of Ag-nanoparticles in an aqueous solution and their antimicrobial activities against Gram positive, Gram negative bacterial strains and Candida fungus.

    PubMed

    Aazam, Elham Shafik; Zaheer, Zoya

    2016-04-01

    Silver nanoparticles (AgNPs) were synthesized using Ocimum sanctum (Tulsi) leaves aqueous extract as reducing as well as a capping agent in absence and presence of cetyltrimethylammonium bromide (CTAB). The resulting nanomaterials were characterized by UV-visible spectrophotometer, and transmission electron microscope. The UV-Vis spectroscopy revealed the formation of AgNPs at 400-450 nm. TEM photographs indicate that the truncated triangular silver nanoplates and/or spherical morphology of the AgNPs with an average diameter of 25 nm have been distorted markedly in presence of CTAB. The AgNPs were almost mono disperse in nature. Antimicrobial activities of AgNPs were determined by using two bacteria (Gram positive Staphylococcus aureus MTCC-3160), Gram negative Escherichia coli MTCC-450) and one species of Candida fungus (Candida albicans ATCC 90030) with Kirby-Bauer or disc diffusion method. The zone of inhibition seems extremely good showing a relatively large zone of inhibition in both Staphylococcus aureus, Escherichia coli, and Candida albicans strains. PMID:26796584

  18. Creep-constitutive behavior of Sn-3.8Ag-0.7Cu solder using an internal stress approach

    NASA Astrophysics Data System (ADS)

    Rist, Martin A.; Plumbridge, W. J.; Cooper, S.

    2006-05-01

    The experimental tensile creep deformation of bulk Sn-3.8Ag-0.7Cu solder at temperatures between 263 K and 398 K, covering lifetimes up to 3,500 h, has been rationalized using constitutive equations that incorporate structure-related internal state variables. Primary creep is accounted for using an evolving internal back stress, due to the interaction between the soft matrix phase and a more creep-resistant particle phase. Steady-state creep is incorporated using a conventional power law, modified to include the steady-state value of internal stress. It is demonstrated that the observed behavior is well-fitted using creep constants for pure tin in the modified creep power law. A preliminary analysis of damage-induced tertiary creep is also presented.

  19. AgH, Ag/sub 2/, and AgO revisited: Basis set extensions

    SciTech Connect

    Martin, R.L.

    1987-05-01

    An extended basis set has been developed for Ag which significantly improves the agreement between theoretical and experimental spectroscopic parameters for AgH, AgO, and Ag/sub 2/. The major improvement comes about as a result of the improved treatment of electron correlation in the Ag d shell upon the introduction of f functions. Their inclusion produces very slight differences at the SCF level, but significant reductions in r/sub e/ and increases in ..omega../sub e/ and D/sub e/ in the Mo-dash-barller--Plesset perturbation theory expansion. At the MP4(SDTQ) level, typical results are 0.02 A too long for r/sub e/, 4% too low for ..omega../sub e/, and 10 kcal too small for D/sub e/. From a pragmatic standpoint, MP2 give results very similar to this at a much reduced level of effort.

  20. Design and expression of fusion protein consists of HBsAg and Polyepitope of HCV as an HCV potential vaccine

    PubMed Central

    Gholizadeh, Monireh; Khanahmad, Hossein; Memarnejadian, Arash; Aghasadeghi, Mohammad Reza; Roohvand, Farzin; Sadat, Seyed Mehdi; Cohan, Reza Ahangari; Nazemi, Ali; Motevalli, Fatemeh; Asgary, Vahid; Arezumand, Roghaye

    2015-01-01

    Background: Hepatitis C virus (HCV) infection is a serious public health threat worldwide. Cellular immune responses, especially cytotoxic T-lymphocytes (CTLs), play a critical role in immune response toward the HCV clearance. Since polytope vaccines have the ability to stimulate the cellular immunity, a recombinant fusion protein was developed in this study. Materials and Methods: The designed fusion protein is composed of hepatitis B surface antigen (HBsAg), as an immunocarrier, fused to an HCV polytope sequence. The polytope containing five immunogenic epitopes of HCV was designed to induce specific CTL responses. The construct was cloned into the pET-28a, and its expression was investigated in BL21 (DE3), BL21 pLysS, BL21 pLysE, and BL21 AI Escherichia coli strains using 12% gel sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Finally, the identity of expressed fusion protein was confirmed by Western blotting using anti-His monoclonal antibody and affinity chromatography was applied to purify the expressed protein. Results: The accuracy of the construct was confirmed by restriction map analysis and sequencing. The transformation of the construct into the BL21 (DE3), pLysS, and pLysE E. coli strains did not lead to any expression. The fusion protein was found to be toxic for E. coli DE3. By applying two steps inhibition, the fusion protein was successfully expressed in BL21 (AI) E. coli strain. Conclusion: The HBsAg-polytope fusion protein expressed in this study can be further evaluated for its immunogenicity in animal models. PMID:26682209

  1. Visible light driven photocatalysis and antibacterial activity of AgVO{sub 3} and Ag/AgVO{sub 3} nanowires

    SciTech Connect

    Singh, Anamika; Dutta, Dimple P.; Ballal, A.; Tyagi, A.K.; Fulekar, M.H.

    2014-03-01

    Graphical abstract: - Highlights: • Ag/AgVO{sub 3} and pure AgVO{sub 3} nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO{sub 3} within 45 min. • Antibacterial activity of Ag/AgVO{sub 3} demonstrated. - Abstract: Ag/AgVO{sub 3} nanowires and AgVO{sub 3} nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO{sub 3} nanowires. The photocatalytic studies revealed that the Ag/AgVO{sub 3} nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO{sub 3} nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO{sub 3} nanorods prove that in case of the Ag dispersed Ag/AgVO{sub 3} nanowires, the enhanced antibacterial action is also due to contribution from the AgVO{sub 3} support.

  2. Demonstration and partial characterization of 22-nm HBsAg and Dane particles of subtype HBsAg/ady.

    PubMed

    Hess, G; Shih, J W; Arnold, W; Gerin, J L; zum Büschenfelde, K H

    1979-09-01

    The present paper describes the demonstration of d, y, w, and r HBsAg determinants in one serum. It was shown that there are two populations of HBsAg particles: HBsAg/ad and HBsAg/ady. All complete Dane particles were of subtype HBsAg/ady. Further characterization of HBsAg/ady particles did not reveal morphologic differences when they were compared with HBsAg/ad and HBsAg/ay particles. An HBsAg/ady phenotype may be the result of a double infection with hepatitis B viruses or exchanges of DNA sequences that determine HBsAg/ay and HBsAg/ad to form a new genotype. PMID:89163

  3. Highly luminescent Ag+ nanoclusters for Hg2+ ion detection

    NASA Astrophysics Data System (ADS)

    Yuan, Xun; Yeow, Teik Jin; Zhang, Qingbo; Lee, Jim Yang; Xie, Jianping

    2012-03-01

    A simple, low-cost and label-free Hg2+ ion sensor has been developed by using novel luminescent Ag+ nanoclusters (NCs) with an excellent optical property (quantum yield = 15%), an ultra-high ratio of active Ag+ species in the NC surface (~100%), and an ultra-short diffusion path length of Hg2+ ions to access the NC surface (~0.5 nm).A simple, low-cost and label-free Hg2+ ion sensor has been developed by using novel luminescent Ag+ nanoclusters (NCs) with an excellent optical property (quantum yield = 15%), an ultra-high ratio of active Ag+ species in the NC surface (~100%), and an ultra-short diffusion path length of Hg2+ ions to access the NC surface (~0.5 nm). Electronic supplementary information (ESI) available: Experimental details of the synthesis of b-Ag NCs; time-resolved evolution of photoemission spectra of the b-Ag NCs in toluene; photoexcitation spectrum of the b-Ag NCs in toluene; comparison of the luminescence of b-Ag NCs at different temperatures (4 and 25 °C) TEM image of the b-Ag NCs in toluene; optical properties of r-Ag NCs obtained by the reduction of b-Ag NCs in toluene; XPS spectra of b-Ag NCs, thiolate-Ag+ complexes, r-Ag NCs, and large Ag nanoparticles; TEM image of the Hg2+-Ag NCs; photostability of the b-Ag NCs; tolerance studies of the b-Ag NCs over other metal ions; tolerance studies of the b-Ag NCs over common thiol ligands (e.g., GSH) and anions; relative luminescence of the b-Ag NCs in different real water samples in the presence of Hg2+ ions; and relative luminescence of the b-Ag NCs in NaCl solution with different concentrations. See DOI: 10.1039/c2nr11999d

  4. Creating Open Education Resources for Teaching and Community Development through Action Research: An Overview of the Makerere AgShare Project

    ERIC Educational Resources Information Center

    Kaneene, John B.; Ssajjakambwe, Paul; Kisaka, Stevens; Miller, RoseAnn; Kabasa, John D.

    2013-01-01

    The AgShare Phase I Program, conducted at Makerere University, Kampala, Uganda, was formed to create open education resources for teaching and community development through action research. The study was conducted by an interdisciplinary team of investigators from fields of veterinary medicine and agri-business. Two master of science students…

  5. The AGS-Booster lattice

    SciTech Connect

    Lee, Y.Y.; Barton, D.S.; Claus, J.; Cottingham, J.G.; Courant, E.D.; Danby, G.T.; Dell, G.F.; Forsyth, E.B.; Gupta, R.C.; Kats, J.

    1987-01-01

    The AGS Booster has three objectives. They are to increase the space charge limit of the AGS, to increase the intensity of the polarized proton beam by accumulating many linac pulses (since the intensity is limited by the polarized ion source), and to reaccelerate heavy ions from the BNL Tandem Van de Graaff before injection into the AGS. The machine is capable of accelerating protons at 7.5 Hertz from 200 MeV to 1.5 GeV or to lower final energies at faster repetition rates. The machine will also be able to accelerate heavy ions from as low as 1 MeV/nucleon to a magnetic rigidity as high as 17.6 Tesla-meters with a one second repetition rate. As an accumulator for polarized protons, the Booster should be able to store the protons at 200 MeV for several seconds. We expect that the Booster will increase the AGS proton intensity by a factor of four, polarized proton intensity by a factor of twenty to thirty, and will also enable the AGS to accelerate all species of heavy ions (at present the AGS heavy ion program is limited to the elements lighter than sulfur because it can only accelerate fully stripped ions). The construction project started in FY 1985 and is expected to be completed in 1989. The purpose of this paper is to provide a future reference for the AGS Booster lattice.

  6. Studies on the electronic structure of Ag 2NiO 2, an intercalated delafossite containing subvalent silver

    NASA Astrophysics Data System (ADS)

    Wedig, Ulrich; Adler, Peter; Nuss, Jürgen; Modrow, Hartwig; Jansen, Martin

    2006-07-01

    Structural and electronic properties of Ag 2NiO 2 and AgNiO 2 were investigated and compared. Single crystal X-ray diffraction experiments on Ag 2NiO 2 at 100 K provide evidence for a ferrodistortive phase below 260 K. Ni K-edge and Ag L III-edge XANES spectra, both measured and simulated, as well as core level and valence band photoelectron spectra are analysed. They agree well with the results of bandstructure calculations, where pure DFT and mixed Hartree-Fock/DFT (hybrid) functionals were applied and spin-polarisation was considered. The electronic structure of the [NiO 2] - layers with Ni 3+ in a low spin state, forming a spin-1/2 triangular lattice, is very similar in both compounds. A ferrimagnetic alignment of the spins within the [NiO 2] - layers and their antiferromagnetic coupling via the intermediate silver layers is suggested.

  7. Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Li, Tao; Chen, Qianqian; Gao, Jiabing; Fan, Bingbing; Li, Jian; Li, Xinjian; Zhang, Rui; Sun, Jing; Gao, Lian

    2012-08-01

    The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in situ. WO3 nanocrystals with various shapes (i.e., nanoplates, nanorods, and nanoparticles) were used as the substrates to synthesize Ag/AgCl@WO3 photocatalysts, and the effects of the WO3 contents and photoreduction times on their visible-light-driven photocatalytic performance were investigated. The techniques of TEM, SEM, XPS, EDS, XRD, N2 adsorption-desorption and UV-vis DR spectra were used to characterize the compositions, phases and microstructures of the samples. The RhB aqueous solutions were used as the model system to estimate the photocatalytic performance of the as-obtained Ag/AgCl@WO3 nanostructures under visible light (λ >= 420 nm) and sunlight. The results indicated that the hierarchical Ag/AgCl@plate-WO3 photocatalyst has a higher photodegradation rate than Ag/AgCl, AgCl, AgCl@WO3 and TiO2 (P25). The contents and morphologies of the WO3 substrates in the Ag/AgCl@plate-WO3 photocatalysts have important effects on their photocatalytic performance. The related mechanisms for the enhancement in visible-light-driven photodegradation of RhB molecules were analyzed.The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in

  8. An Electrochemical Framework to Explain Intergranular Stress Corrosion Cracking in an Al-5.4%Cu-0.5%Mg-0.5%Ag Alloy

    NASA Technical Reports Server (NTRS)

    Little, D. A.; Connolly, B. J.; Scully, J. R.

    2001-01-01

    A modified version of the Cu-depletion electrochemical framework was used to explain the metallurgical factor creating intergranular stress corrosion cracking susceptibility in an aged Al-Cu-Mg-Ag alloy, C416. This framework was also used to explain the increased resistance to intergranular stress corrosion cracking in the overaged temper. Susceptibility in the under aged and T8 condition is consistent with the grain boundary Cu-depletion mechanism. Improvements in resistance of the T8+ thermal exposure of 5000 h at 225 F (T8+) compared to the T8 condition can be explained by depletion of Cu from solid solution.

  9. Study on the fabrication of transparent electrodes by using a thermal-roll imprinted Ag mesh and anATO thin film

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jin; Choi, Kyoon; Choi, Se Young

    2016-03-01

    Transparent conductive films have been widely studied because of their potential applications in optoelectronic devices such as paper displays, dye-sensitized solar cells (DSSCs), organic lighting-emitting diodes (OLEDs), organic solar cells and so on. In this paper, we report on a low-resistance, a high-transparents conductive film that can be applied as It a flexible device substrate. In order to the fabricate transparent conductive film, we used a high-resolution roll imprinting method. The following steps were performed: The design and manufacture of an electroforming stamp mold, the fabrication of high resolution roll imprinted on flexible film, and the manufacture of an Ag grid that was filled by using a doctor blade process with a nano-sized Ag paste. Then on patterned Its films, antimony tin oxide was coated with ATO sol solution by using bar the coating method. The fabricated ATO/Ag mesh electrode showed good flexibility, and It exhibited a high optical transmittance of 85.3% in the visible wavelength and a sheet resistance of 41 Ω/sq. Furthermore, the bending test for mechanical properties showed that the ATO/Ag thin film had good flexibility.

  10. Preparation, characterization, and photocatalytic activity of porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Tian, Baozhu; Zhang, Jinlong; Xiong, Tianqing; Wang, Tingting

    2014-02-01

    Porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts were synthesized by a multistep route, including a dealloying method to prepare porous Ag, a transformation from Ag to AgBr and AgBrI, and a photo-reduction process to form Ag nanoparticles on the surface of AgBr and AgBrI. It was found that the porous structure kept unchanged during Ag was transferred into AgBr, AgBrI, AgBr@Ag, and AgBrI@Ag. Both porous AgBr@Ag and porous AgBrI@Ag showed much higher visible-light photocatalytic activity than cubic AgBr@Ag for the degradation of methyl orange, which is because the interconnected pore channels not only provide more reactive sites but also favor the transportation of photo-generated electrons and holes. For AgBrI@Ag, AgBrI solid solution formed at the interface of AgBr and AgI, and the phase junction can effectively separate the photo-generated electrons and holes, favorable to the improvement of photocatalytic activity. The optimal I content for obtaining the highest activity is ∼10 at.%.

  11. Structure and properties during aging of an Al-Cu-Li-Ag-Mg alloy, Weldalite (tm) 049

    NASA Technical Reports Server (NTRS)

    Gayle, Frank W.; Heubaum, Frank H.; Pickens, Joseph R.

    1991-01-01

    An Al-Cu-Li-Ag-Mg alloy, Weldalite (trademark) 049, was recently introduced as an ultra-high strength alloy (7000 MPa yield strength in artificially aged tempers) with good weldability. In addition, the alloy exhibits an extraordinary natural aging response (440 MPa yield strength (YS) in the unstretch condition) and a high ductility reversion condition which may be useful as a cold-forming temper. In contrast to other Al-Li alloys, these properties can essentially be obtained with or without a stretch or other coldworking operation prior to aging. Preliminary studies have revealed that the T4 temper (no stretch, natural age) is strengthened by a combination of GP zones and delta prime (Al3Li). The T6 temper (no stretch, aged at 180 C to peak strength) was reported to be strengthened primarily by T(sub 1) phase (Al2CuLi) with a minor presence of a theta prime like (Al2Cu) phase. On the other hand, a similar but lower solute containing alloy was reported to contain omega, (stoichiometry unknown), theta prime, and S prime in the peak strength condition. The purpose of this study is to further elucidate the strengthening phases in Weldalite (trademark) 049 in the unstretched tempers, and to follow the development of the microstructure from the T4 temper through reversion (180 C for 5 to 45 minutes) to the T6 temper.

  12. A localized and propagating SPR, and molecular imprinting based fiber-optic ascorbic acid sensor using an in situ polymerized polyaniline-Ag nanocomposite.

    PubMed

    Shrivastav, Anand M; Usha, Sruthi P; Gupta, Banshi D

    2016-08-26

    We report a successful approach for the fabrication and characterization of a fiber-optic sensor for ascorbic acid (AA) detection, using a molecularly imprinted polyaniline-Ag (PANI-Ag) nanocomposite layer based on the combined phenomena of surface plasmon resonance (SPR) and localized SPR (LSPR). The PANI-Ag nanocomposite is synthesized by an in situ polymerization process and AA imprints are prepared on the polymeric composite. The confirmation of the PANI-Ag nanocomposite and AA imprinting is performed using various characterization methods such as x-ray diffraction (XRD), UV-vis, Fourier transform infrared spectroscopy and scanning electron microscopy. From XRD, the size of Ag nanoparticles is analyzed. The absorbance spectra are recorded for samples of different concentrations of AA around the sensing region of the probe. An increase in peak absorbance wavelength with the increase in AA concentration is observed with a linear response for the concentration range from 10(-8) M to 10(-6) M. The sensor possesses a high sensitivity of 45.1 nm log(-1) M near an AA concentration of 10(-8) M. The limit of detection (LOD) and limit of quantification of the sensor are found to be 7.383 × 10(-11) M and 4.16 × 10(-10) M, respectively. The LOD of the sensor is compared to studies reported in the literature and is found to be the lowest. The sensor possesses several other advantages such as cost effectiveness, selectivity, and low response time (<5 s), along with abilities of remote sensing and online monitoring. PMID:27405256

  13. A localized and propagating SPR, and molecular imprinting based fiber-optic ascorbic acid sensor using an in situ polymerized polyaniline–Ag nanocomposite

    NASA Astrophysics Data System (ADS)

    Shrivastav, Anand M.; Usha, Sruthi P.; Gupta, Banshi D.

    2016-08-01

    We report a successful approach for the fabrication and characterization of a fiber-optic sensor for ascorbic acid (AA) detection, using a molecularly imprinted polyaniline–Ag (PANI–Ag) nanocomposite layer based on the combined phenomena of surface plasmon resonance (SPR) and localized SPR (LSPR). The PANI–Ag nanocomposite is synthesized by an in situ polymerization process and AA imprints are prepared on the polymeric composite. The confirmation of the PANI–Ag nanocomposite and AA imprinting is performed using various characterization methods such as x-ray diffraction (XRD), UV–vis, Fourier transform infrared spectroscopy and scanning electron microscopy. From XRD, the size of Ag nanoparticles is analyzed. The absorbance spectra are recorded for samples of different concentrations of AA around the sensing region of the probe. An increase in peak absorbance wavelength with the increase in AA concentration is observed with a linear response for the concentration range from 10‑8 M to 10‑6 M. The sensor possesses a high sensitivity of 45.1 nm log‑1 M near an AA concentration of 10‑8 M. The limit of detection (LOD) and limit of quantification of the sensor are found to be 7.383 × 10‑11 M and 4.16 × 10‑10 M, respectively. The LOD of the sensor is compared to studies reported in the literature and is found to be the lowest. The sensor possesses several other advantages such as cost effectiveness, selectivity, and low response time (<5 s), along with abilities of remote sensing and online monitoring.

  14. TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles - an unexpected overdose effect decreasing their antibacterial efficacy.

    PubMed

    Roguska, A; Belcarz, A; Pisarek, M; Ginalska, G; Lewandowska, M

    2015-06-01

    Enhancement of biocompatibility and antibacterial properties of implant materials is potentially beneficial for their practical value. Therefore, the use of metallic and metallic oxide nanoparticles as antimicrobial coatings components which induce minimized antibacterial resistance receives currently particular attention. In this work, TiO2 nanotubes layers loaded with ZnO and Ag nanoparticles were designed for biomedical coatings and delivery systems and evaluated for antimicrobial activity. TiO2 nanotubes themselves exhibited considerable and diameter-dependent antibacterial activity against planktonic Staphylococcus epidermidis cells but favored bacterial adhesion. Loading of nanotubes with moderate amount of ZnO nanoparticles significantly diminished S. epidermidis cell adhesion and viability just after 1.5h contact with modified surfaces. However, an increase of loaded ZnO amount unexpectedly altered the structure of nanoparticle-nanolayer, caused partial closure of nanotube interior and significantly reduced ZnO solubility and antibacterial efficacy. Co-deposition of Ag nanoparticles enhanced the antibacterial properties of synthesized coatings. However, the increase of ZnO quantity on Ag nanoparticles co-deposited surfaces favored the adhesion of bacterial cells. Thus, ZnO/Ag/TiO2 nanotube composite layers may be promising delivery systems for combating post-operative infections in hard tissue replacement procedures. However, the amount of loaded antibacterial agents must be carefully balanced to avoid the overdose and reduced efficacy. PMID:25842121

  15. Dynamic Mechanisms of the Bactericidal Action of an Al2O3-TiO2-Ag Granular Material on an Escherichia coli Strain

    PubMed Central

    Tartanson, Marie-Anne; Rivallin, Matthieu; Pecastaings, Sophie; Chis, Cristian V.; Penaranda, Diego; Roques, Christine; Faur, Catherine

    2015-01-01

    The bactericidal activity of an Al2O3-TiO2-Ag granular material against an Escherichia coli strain was confirmed by a culture-based method. In particular, 100% of microorganisms were permanently inactivated in 30 to 45 min. The present work aimed to investigate the mechanisms of the bactericidal action of this material and their dynamics on Escherichia coli using different techniques. Observations by transmission electron microscopy (TEM) at different times of disinfection revealed morphological changes in the bacteria as soon as they were put in contact with the material. Notably highlighted were cell membrane damage; cytoplasm detachment; formation of vacuoles, possibly due to DNA condensation, in association with regions exhibiting different levels of electron density; and membrane lysis. PCR and flow cytometry analyses were used to confirm and quantify the observations of cell integrity. The direct exposure of cells to silver, combined with the oxidative stress induced by the reactive oxygen species (ROS) generated, was identified to be responsible for these morphological alterations. From the first 5 min of treatment with the Al2O3-TiO2-Ag material, 98% of E. coli isolates were lysed. From 30 min, cell viability decreased to reach total inactivation, although approximately 1% of permeable E. coli cells and 1% of intact cells (105 genomic units · ml−1) were evidenced. This study demonstrates that the bactericidal effect of the material results from a synergic action of desorbed and supported silver. Supported silver was shown to generate the ROS evidenced. PMID:26253665

  16. NMR investigation of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Son, Kwanghyo; Jang, Zeehoon

    2013-01-01

    109Ag nuclear magnetic resonance (NMR) and relaxation measurements have been performed on two powder samples of Ag nanoparticles with average sizes of 20 nm and 80 nm. The measurements have been done in an external field of 9.4 T and in the temperature range 10 K < T < 280 K. The 109Ag NMR spectra for both samples have close to Lorentzian shapes and turn out to be mixtures of homogeneous and inhomogeneous lines. The linewidth Δ ν at room temperature is 1.3 kHz for both samples and gradually increases with decreasing temperature. Both the Knight shift ( K) and the nuclear spin-lattice relaxation rate (1/ T 1) are observed to be almost identical to the values reported for the bulk Ag metal, whereby the Korringa ratio R(= K 2 T 1 T/S) is found to be 2.0 for both samples in the investigated temperature range.

  17. AGS preinjector improvement

    SciTech Connect

    Alessi, J.G.; Brennan, J.M.; Brown, H.N.; Brodowski, J.; Gough, R.; Kponou, A.; Prelec, K.; Staples, J.; Tanabe, J.; Witkover, R.

    1987-01-01

    In 1984, a polarized H/sup -/ source was installed to permit the acceleration of polarized protons in the AGS, using a low current, 750 keV RFQ Linear Accelerator as the preinjector. This RFQ was designed by LANL and has proved to be quite satisfactory and reliable. In order to improve the reliability and simplify maintenance of the overall AGS operations, it has been decided to replace one of the two 750 keV Cockcroft-Waltons (C-W) with an RFQ. The design of a new high current RFQ has been carried out by LBL and is also being constructed there. This paper describes the preinjector improvement project, centered around that RFQ, which is underway at BNL.

  18. Enhancement of the visible light activity and stability of Ag2CO3 by formation of AgI/Ag2CO3 heterojunction

    NASA Astrophysics Data System (ADS)

    Yu, Changlin; Wei, Longfu; Zhou, Wanqin; Chen, Jianchai; Fan, Qizhe; Liu, Hong

    2014-11-01

    An insurmountable problem for silver-based semiconductor photocatalysts is their poor stability. Here, at room temperature, AgI with different concentrations (5%, 10%, 20% and 30%) were coupled into Ag2CO3, producing a series of novel AgI/Ag2CO3 composite photocatalysts. The effects of AgI addition on the Ag2CO3 catalyst for photocatalytic degradation of methyl orange (MO) under visible light irradiation have been investigated. Some physicochemical technologies like N2 physical adsorption/desorption, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS) were applied to characterize these products. Results show that the photocatalytic degradation activity of AgI/Ag2CO3 photocatalyst is much higher than that of pure AgI and Ag2CO3. With the optimal content of AgI (20 wt%), the AgI/Ag2CO3 exhibits the highest photocatalytic degradation efficiency. Its first order reaction rate constant (0.54 h-1) is 20 times of that of AgI (0.026 h-1) and 3.6 times of that of Ag2CO3 (0.15 h-1). The characterizations and theory calculation show that AgI and Ag2CO3 have suitably matched band gap structures. The formation of AgI/Ag2CO3 heterojunction with intimate interface could effectively increase the separation efficiency of the e-/h+ pairs and promote the production of •OH and O2•- radicals, which brings about the fast degradation rate of the dye and an increase in photocatalytic stability.

  19. Multifunctional nanotube-like Fe3O4/PANI/CDs/Ag hybrids: An efficient SERS substrate and nanocatalyst.

    PubMed

    Yan, Manqing; Shen, Yang; Zhang, Guiyang; Bi, Hong

    2016-01-01

    In this paper, the stable and environment-friendly Fe3O4 nanotubes with polyaniline (Fe3O4 NTs/PANI hybrids) have been prepared via mesoporous anodic alumina oxide (AAO) template, sol-gel method and in-situ polymerization. Then multifunctional Fe3O4 NTs/PANI/Ag hybrids have been obtained by decorating Ag nanoparticles by glucose reduction on surface of Fe3O4 NTs/PANI hybrids. The morphologies and structures of these hybrids were subsequently investigated by SEM, XRD, TEM and XPS measurements. The Fe3O4 NTs/PANI/Ag hybrids presented high catalytic activity due to the template-assisted presence, preventing Ag particulate agglomeration. Importantly, the Fe3O4 NTs/PANI/Ag hybrids achieve sensitive surface-enhanced Raman scattering (SERS) signals. Furthermore, the introduction of carbon dots (CDs) endows these hybrids good dispersion and stable photoluminescence (PL). Therefore, the obtained hybrids may have potential applications in waste water treatment, biomedicine, photocatalyst, and environmental analysis. PMID:26478345

  20. DFT and TD-DFT assessment of the structural and optoelectronic properties of an organic-Ag14 nanocluster.

    PubMed

    Muniz-Miranda, Francesco; Menziani, Maria Cristina; Pedone, Alfonso

    2015-05-28

    An extensive benchmark of exchange-correlation functionals on the structure of the X-ray resolved phosphine and thiolate-protected Ag14-based nanocluster, named XMC1, is reported. Calculations were performed both on simplified model systems, with the complexity of the ligands greatly reduced, and on the complete XMC1 particle. Most of the density functionals that yielded good relaxed structures on analogous calculations on gold nanoclusters (viz. those employing the generalized gradient approximation) significantly deform the structure of XMC1. On the contrary, some of the exchange-correlation functionals including part of the exact Hartree-Fock exchange (hybrid functionals) reproduce the experimental geometry with minimal errors. In particular, the widely adopted B3LYP yields fairly accurate structures for XMC1, whereas it is outperformed by many other functionals (both hybrids and generalized gradient corrected) in similar calculations on analogous gold-based systems. Time-dependent density functional calculations have been employed to recover the experimental UV-vis spectrum. The present investigation shows that to correctly reproduce the optical feature of XMC1 the ligands cannot be omitted, because they interact with the metal core at energies much closer to the optical gap than in the case of gold-based nanoclusters of similar sizes. Due to this fact, a functional that accurately describes charge-transfer electronic transitions (such as the long-range corrected CAM-B3LYP) has to be adopted. PMID:25248052

  1. Association of hepatitis Be antigen (HBeAg) with the core of the hepatitis B virus (HBcAg).

    PubMed

    Slusarczyk, J; Hess, G; Meyer zum Büschenfelde, K H

    1985-02-01

    Three substances (pronase E, sodium dodecylsulfate (SDS) and guanidine hydrochloride) with different chemical actions partially convert HBcAg to HBeAg. This process retains the integrity of the HBcAg particle, which was not different between HBcAg subpopulations, and does not generate HBcAg or HBeAg sub-units. DNA polymerase activity was destroyed by SDS and guanidine hydrochloride, but not by pronase E. Serum HBeAg could not be converted into HBcAg, suggesting that this might be an irreversible process. The data are consistent with the assumption that HBcAg and HBeAg are coded for by the same gene (C gene of the HBV-DNA). PMID:3982243

  2. Study of the oxygen transport through Ag (110), Ag (poly), and Ag 2.0 Zr

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Wu, D.; Davidson, M. R.; Hoflund, Gar B.

    1992-01-01

    The transport of oxygen through high-purity membranes of Ag (110), Ag (poly), Ag (nano), and Ag 2.0 Zr has been studied by an ultrahigh vacuum permeation method over the temperature range of 400-800 C. The data show that there are substantial deviations from ordinary diffusion-controlled transport. A surface limitation has been confirmed by glow-discharge studies where the upstream O2 supply has been partially converted to atoms, which, for the same temperature and pressure, gave rise to over an order of magnitude increase in transport flux. Further, the addition of 2.0 wt percent Zr to the Ag has provided increased dissociative adsorption rates, which, in turn, increased the transport flux by a factor of 2. It was also observed that below a temperature of 630 C, the diffusivity exhibits an increase in activation energy of over 4 kcal/mol, which has been attributed to trapping of the atomic oxygen and/or kinetic barriers at the surface and subsurface of the vacuum interface. Above 630 C, the activation barrier decreases to the accepted value of about 11 kcal/mol for Ag (poly), consistent with zero concentration at the vacuum interface.

  3. Revisiting structure and dynamics of Ag+ in 18.6% aqueous ammonia: An ab initio quantum mechanical charge field simulation

    NASA Astrophysics Data System (ADS)

    Prasetyo, Niko; Armunanto, Ria

    2016-05-01

    Structures and dynamics of Ag+ in 18.6% aqueous ammonia have been studied using Quantum Mechanical Charge Field Molecular Dynamics (QMCF-MD) simulation at the Hartree-Fock (HF) level theory employing LANL2DZ ECP basis set for Ag+ and Dunning DZP for solvent molecules. Structural properties are in excellent agreement with previous QM/MM and experiments studies. [Ag(NH3)2(H2O)3]+ was found as dominant species during simulation time. For 20 ps of simulation time, a labile first solvation shell was observed with both fast ammonia and water ligands exchanges. QMCF-MD framework describes first solvation shell more labile than conventional QM/MM MD simulation.

  4. Genetic effect of an A/G polymorphism in the HSP70 gene on thermotolerance in chicken.

    PubMed

    Chen, Z Y; Zhang, W W; Gan, J K; Kong, L N; Zhang, X Q; Zhang, D X; Luo, Q B

    2016-01-01

    Studying thermotolerance is important for the prevention of thermostress in chickens. This study aimed to analyze the effect of mutations in the heat shock protein 70 (HSP70) gene on chicken thermotolerance. The C.-69A>G SNP in the 5'-flanking region of the HSP70 gene was genotyped in Lingshan and White Recessive Rock (WRR) chickens. Association of this SNP with thermotolerance traits revealed it to be significantly associated with CD4+/CD8+, and potentially associated with heterophil-to-lymphocyte ratio in WRR chickens exposed to thermoneutral temperature (15°C). Online prediction detected a putative myeloid zinc finger protein 1 binding factor in the C.-69A>G mutation. Under acute thermostress, mRNA levels of HSP70 in individuals with different C.-69A>G genotypes varied in the heart, leg muscle, and liver tissues. The HSP70 protein was expressed at higher levels in individuals with the GG genotype than in those with the AA genotype. In heart and liver, protein expression of HSP70 in individuals with the GG genotype was significantly higher than in those with the AA genotype. In leg muscle, protein expression was higher in birds with the GG genotype than in those with the AA and AG genotypes. Luciferase activity of the GG genotype was significantly higher than that of the AA genotype, suggesting that the C.-69A>G SNP regulates HSP70 gene expression. These results indicate that the C.-69A>G SNP in the 5'-flanking region of the HSP70 gene might affect chicken thermotolerance and that the GG genotype might be advantageous for the prevention of thermostress. PMID:27421010

  5. Ternary Ag/epoxy adhesive with excellent overall performance.

    PubMed

    Ji, Yan-Hong; Liu, Yu; Huang, Gui-Wen; Shen, Xiao-Jun; Xiao, Hong-Mei; Fu, Shao-Yun

    2015-04-22

    Excellent electrical conductivity (EC) generally conflicts with high lap shear strength (LSS) for electrically conductive adhesives (ECAs) since EC increases while LSS decreases with increasing conductive filler content. In this work, the ECAs with the excellent overall performance are developed based on the ternary hybrid of Ag microflakes (Ag-MFs), Ag nanospheres (Ag-NSs), and Ag nanowires (Ag-NWs). First, a low silver content adhesive system is determined. Then, the effects of the relative contents of Ag fillers on the EC and the LSS are studied. It is shown that a small amount of Ag-NSs or Ag-NWs can dramatically improve the EC for the Ag-MF/epoxy adhesives. The Ag-NSs and Ag-NWs with appropriate contents have a synergistic effect in improving the EC. Meanwhile, the LSS of the as-prepared adhesive with the appropriate Ag contents reaches an optimal value. Both the EC and the LSS of the as-prepared ternary hybrid ECA with a low content of 40 wt % Ag are higher than those of the commercial ECAs filled with the Ag-MF content over 60 wt %. Finally, the ternary hybrid ECA with the optimal formulation is shown to be promising for printing the radio frequency identification tag antennas as an immediate application example. PMID:25835391

  6. Studies on electronic structure of interfaces between Ag and gelatin for stabilization of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Uchida, Takayuki

    2015-06-01

    Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst’s equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix.

  7. Booster-to-AGS Multiwires and an Evolution of the Application Profile Display

    SciTech Connect

    Ahrens,L.

    2008-07-01

    Follow up on BtA multiwire beam measurements taken during the 2008 polarized proton run has led to a number of better understandings (for the author) associated with the beam instrumentation involved. This history will be reviewed--some 'beam-based' results noted--and the present state of the application for these monitors described. The BtA multiwire system seems to be fundamentally an excellent diagnostic for allowing us to get the BtA line well under control in a defendable way. When beam is available in BtA, carrying out some systematic measurements with the system can get us there.

  8. Thermoelectric device including an alloy of GeTe and AgSbTe as the P-type element

    DOEpatents

    Skrabek, Emanuel Andrew; Trimmer, Donald Smith

    1976-01-01

    Improved alloys suitable for thermoelectric applications and having the general formula: (AgSbTe.sub.2).sub.1.sub.-x + (GeTe).sub.x wherein x has a value of about 0.80 and 0.85, have been found to possess unexpectedly high thermoelectric properties such as efficiency index, as well as other improved physical properties.

  9. A Comparison of AH6 AG Scores and GCE Examinations Taken after an Interval of One Year

    ERIC Educational Resources Information Center

    Heim, A. W.; And Others

    1972-01-01

    GCE O-and A-level examinations were correlated with the AH6 AG test scores obtained a year earlier. Results suggest that the predictive value of AH6 for success in individual subjects is almost as high as when the examinations and testing were taken within a few weeks of each other. (Authors/CB)

  10. Studies of H2O on beta-AgI surfaces - An effective pair potential model. [molecular adsorption for ice nucleation

    NASA Technical Reports Server (NTRS)

    Hale, B. N.; Kiefer, J.

    1980-01-01

    The adsorption of a water molecule on surfaces of beta-AgI, the hexagonal crystal believed to be primarily responsible for the ice-nucleating properties of AgI, is studied on the basis of an effective pair potential model. The water molecule is represented by a rigid point charge ST-2 model and the AgI substrate by an array of point atoms, and maximal binding energy surfaces and optimal H2O configurations are generated for the water molecule adsorbed on the rigid and unrelaxed basal and prism faces. Modeling of H2O adsorption above a two-layer ledge, an iodine vacancy and an H2O molecule trapped in the vacancy indicates that H2O adsorption is favored at interstitial sites where no substrate atoms lie directly below. The prism face is found to attract the water molecule more strongly and provide larger energy barriers to surface diffusion than basal face sites, with the ideal basal faces providing hexagonal patterns of adsorption sites for the H2O with preferred dipole moments aligned.

  11. Locking-to-unlocking system is an efficient strategy to design DNA/silver nanoclusters (AgNCs) probe for human miRNAs

    PubMed Central

    Shah, Pratik; Choi, Suk Won; Kim, Ho-jin; Cho, Seok Keun; Bhang, Yong-Joo; Ryu, Moon Young; Thulstrup, Peter Waaben; Bjerrum, Morten Jannik; Yang, Seong Wook

    2016-01-01

    MicroRNAs (miRNAs), small non-coding RNA molecules, are important biomarkers for research and medical purposes. Here, we describe the development of a fast and simple method using highly fluorescent oligonucleotide-silver nanocluster probes (DNA/AgNCs) to efficiently detect specific miRNAs. Due to the great sequence diversity of miRNAs in humans and other organisms, a uniform strategy for miRNA detection is attractive. The concept presented is an oligonucleotide-based locking-to-unlocking system that can be endowed with miRNA complementarity while maintaining the same secondary structure. The locking-to-unlocking system is based on fold-back anchored DNA templates that consist of a cytosine-rich loop for AgNCs stabilization, an miRNA recognition site and an overlap region for hairpin stabilization. When an miRNA is recognized, fluorescence in the visible region is specifically extinguished in a concentration-dependent manner. Here, the exact composition of the fold-back anchor for the locking-to-unlocking system has been systematically optimized, balancing propensity for loop-structure formation, encapsulation of emissive AgNCs and target sensitivity. It is demonstrated that the applied strategy successfully can detect a number of cancer related miRNAs in RNA extracts from human cancer cell lines. PMID:26681688

  12. Locking-to-unlocking system is an efficient strategy to design DNA/silver nanoclusters (AgNCs) probe for human miRNAs.

    PubMed

    Shah, Pratik; Choi, Suk Won; Kim, Ho-Jin; Cho, Seok Keun; Bhang, Yong-Joo; Ryu, Moon Young; Thulstrup, Peter Waaben; Bjerrum, Morten Jannik; Yang, Seong Wook

    2016-04-01

    MicroRNAs (miRNAs), small non-coding RNA molecules, are important biomarkers for research and medical purposes. Here, we describe the development of a fast and simple method using highly fluorescent oligonucleotide-silver nanocluster probes (DNA/AgNCs) to efficiently detect specific miRNAs. Due to the great sequence diversity of miRNAs in humans and other organisms, a uniform strategy for miRNA detection is attractive. The concept presented is an oligonucleotide-based locking-to-unlocking system that can be endowed with miRNA complementarity while maintaining the same secondary structure. The locking-to-unlocking system is based on fold-back anchored DNA templates that consist of a cytosine-rich loop for AgNCs stabilization, an miRNA recognition site and an overlap region for hairpin stabilization. When an miRNA is recognized, fluorescence in the visible region is specifically extinguished in a concentration-dependent manner. Here, the exact composition of the fold-back anchor for the locking-to-unlocking system has been systematically optimized, balancing propensity for loop-structure formation, encapsulation of emissive AgNCs and target sensitivity. It is demonstrated that the applied strategy successfully can detect a number of cancer related miRNAs in RNA extracts from human cancer cell lines. PMID:26681688

  13. Facile synthesis of S-Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400.

    PubMed

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S-Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70-160 nm and lengths of 200-360 nm. X-ray diffraction of the S-Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag(+) plays an important role in controlling the size and morphology of the S-Ag nanocomposites. When the molar ratio of PVP to Ag(+) was 10:1, smaller sizes, better dispersibility and narrower distribution of S-Ag nanocomposites with diameters of 10-40 nm were obtained. The formation mechanism of the S-Ag nanocomposites was studied by designing a series of experiments using ultraviolet-visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag(+) becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S-Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S-Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles. PMID:27109417

  14. The cardiovascular response to the AGS

    NASA Technical Reports Server (NTRS)

    Cardus, David; Mctaggart, Wesley G.

    1993-01-01

    This paper reports the preliminary results of experiments on human subjects conducted to study the cardiovascular response to various g-levels and exposure times using an artificial gravity simulator (AGS). The AGS is a short arm centrifuge consisting of a turntable, a traction system, a platform and four beds. Data collection hardware is part of the communication system. The AGS provides a steep acceleration gradient in subjects in the supine position.

  15. Position-dependent property of resonant dipole—dipole interaction mediated by localized surface plasmon of an Ag nanosphere

    NASA Astrophysics Data System (ADS)

    Xu, Dan; Wang, Xiao-Yun; Huang, Yong-Gang; Ouyang, Shi-Liang; He, Hai-Long; He, Hao

    2015-02-01

    We use the photon Green-function method to study the quantum resonant dipole-dipole interaction (RDDI) induced by an Ag nanosphere (ANP). As the distance between the two dipoles increases, the RDDI becomes weaker, which is accompanied by the influence of the higher-order mode of the ANP on RDDI declining more quickly than that of the dipole mode. Across a broad frequency range (above 0.05 eV), the transfer rate of the RDDI is nearly constant since the two dipoles are fixed at the proper position. In addition, this phenomenon still exists for slightly different radius of the ANPs. We find that the frequency corresponding to the maximum transfer rate of RDDI exhibits a monotonic decrease by moving away one dipole as the other dipole and the ANP are kept fixed. In addition, the radius of ANP has little effect on this. When the two dipoles are far from the ANP, the maximum transfer rate of the RDDI takes place at the frequency of the dipole mode. In contrast, when the two dipoles are close to the ANP, the higher-order modes come into effect and they will play a leading role in the RDDI if they match the transition frequency of the dipole. Our results may be used in a biological detector and have a certain guiding significance for further application. Project supported by the National Natural Science Foundation of China (Grant Nos. 11347215, 11464014, and 11104113), the Natural Science Foundation of Hunan Province, China (Grant Nos. 13JJ6059 and 13JJB015), and the Natural Science Foundation of Education Department of Hunan Province, China (Grant Nos. 13C750 and 13B091).

  16. Experimental partitioning studies near the Fe-FeS eutectic, with an emphasis on elements important to iron meteorite chronologies (Pb, Ag, Pd, and Tl)

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Hart, S. R.; Benjamin, T. M.

    1993-01-01

    Partitioning coefficients for metal/sulfide liquid, troilite/sulfide liquid, and schreibersite/sulfide liquid were determined for Ag, Au, Mo, Ni, Pd, and Tl (using EMPA and proton-induced X-ray microprobe and ion microprobe analyses) in order to understand the chronometer systems of iron meteorites. In general, the obtained schreibersite/metal and troilite/metal partition coefficients for 'compatible' elements were quite similar to those inferred from natural assemblages, reinforcing an earlier made conclusion that there is a class of elements for which experimental troilite/metal and schreibersite/metal partition coefficients approximate those inferred from natural samples. The consistency between experimental and natural assemblages, however, was not observed for Ag, Pb, and Tl, indicating that the abundances of these elements determined in 'metal' and 'troilite' separates from iron meteorites are influenced by trace minerals that concentrate incompatible elements.

  17. AgPO2F2 and Ag9(PO2F2)14: the first Ag(i) and Ag(i)/Ag(ii) difluorophosphates with complex crystal structures.

    PubMed

    Malinowski, Przemysław J; Kurzydłowski, Dominik; Grochala, Wojciech

    2015-12-01

    The reaction of AgF2 with P2O3F4 yields a mixed valence Ag(I)/Ag(II) difluorophosphate salt with AgAg(PO2F2)14 stoichiometry - the first Ag(ii)-PO2F2 system known. This highly moisture sensitive brown solid is thermally stable up to 120 °C, which points at further feasible extension of the chemistry of Ag(ii)-PO2F2 systems. The crystal structure shows a very complex bonding pattern, comprising of polymeric Ag(PO2F2)14(4-) anions and two types of Ag(I) cations. One particular Ag(II) site present in the crystal structure of Ag9(PO2F2)14 is the first known example of square pyramidal penta-coordinated Ag(ii) in an oxo-ligand environment. Ag(i)PO2F2 - the product of the thermal decomposition of Ag9(PO2F2)14 - has also been characterized by thermal analysis, IR spectroscopy and X-ray powder diffraction. It has a complicated crystal structure as well, which consists of infinite 1D [Ag(I)O4/2] chains which are linked to more complex 3D structures via OPO bridges. The PO2F2(-) anions bind to cations in both compounds as bidentate oxo-ligands. The terminal F atoms tend to point inside the van der Waals cavities in the crystal structure of both compounds. All important structural details of both title compounds were corroborated by DFT calculations. PMID:26200921

  18. Dynamic Mechanisms of the Bactericidal Action of an Al2O3-TiO2-Ag Granular Material on an Escherichia coli Strain.

    PubMed

    Tartanson, Marie-Anne; Soussan, Laurence; Rivallin, Matthieu; Pecastaings, Sophie; Chis, Cristian V; Penaranda, Diego; Roques, Christine; Faur, Catherine

    2015-10-01

    The bactericidal activity of an Al2O3-TiO2-Ag granular material against an Escherichia coli strain was confirmed by a culture-based method. In particular, 100% of microorganisms were permanently inactivated in 30 to 45 min. The present work aimed to investigate the mechanisms of the bactericidal action of this material and their dynamics on Escherichia coli using different techniques. Observations by transmission electron microscopy (TEM) at different times of disinfection revealed morphological changes in the bacteria as soon as they were put in contact with the material. Notably highlighted were cell membrane damage; cytoplasm detachment; formation of vacuoles, possibly due to DNA condensation, in association with regions exhibiting different levels of electron density; and membrane lysis. PCR and flow cytometry analyses were used to confirm and quantify the observations of cell integrity. The direct exposure of cells to silver, combined with the oxidative stress induced by the reactive oxygen species (ROS) generated, was identified to be responsible for these morphological alterations. From the first 5 min of treatment with the Al2O3-TiO2-Ag material, 98% of E. coli isolates were lysed. From 30 min, cell viability decreased to reach total inactivation, although approximately 1% of permeable E. coli cells and 1% of intact cells (10(5) genomic units·ml(-1)) were evidenced. This study demonstrates that the bactericidal effect of the material results from a synergic action of desorbed and supported silver. Supported silver was shown to generate the ROS evidenced. PMID:26253665

  19. Valence State Driven Site Preference in the Quaternary Compound Ca5MgAgGe5: An Electron-Deficient Phase with Optimized Bonding

    SciTech Connect

    Ponou, Simeon; Lidin, Sven; Zhang, Yuemei; Miller, Gordon J.

    2014-04-18

    The quaternary phase Ca5Mg0.95Ag1.05(1)Ge5 (3) was synthesized by high-temperature solid-state techniques, and its crystal structure was determined by single-crystal diffraction methods in the orthorhombic space group Pnma – Wyckoff sequence c12 with a = 23.1481(4) Å, b = 4.4736(1) Å, c = 11.0128(2) Å, V = 1140.43(4) Å3, Z = 4. The crystal structure can be described as linear intergrowths of slabs cut from the CaGe (CrB-type) and the CaMGe (TiNiSi-type; M = Mg, Ag) structures. Hence, 3 is a hettotype of the hitherto missing n = 3 member of the structure series with the general formula R2+nT2X2+n, previously described with n = 1, 2, and 4. The member with n = 3 was predicted in the space group Cmcm – Wyckoff sequence f5c2. The experimental space group Pnma (in the nonstandard setting Pmcn) corresponds to a klassengleiche symmetry reduction of index two of the predicted space group Cmcm. This transition originates from the switching of one Ge and one Ag position in the TiNiSi-related slab, a process that triggers an uncoupling of each of the five 8f sites in Cmcm into two 4c sites in Pnma. The Mg/Ag site preference was investigated using VASP calculations and revealed a remarkable example of an intermetallic compound for which the electrostatic valency principle is a critical structure-directing force. The compound is deficient by one valence electron according to the Zintl concept, but LMTO electronic structure calculations indicate electronic stabilization and overall bonding optimization in the polyanionic network. Other stability factors beyond the Zintl concept that may account for the electronic stabilization are discussed.

  20. Ag on Si(111) from basic science to application

    SciTech Connect

    Belianinov, Aleksey

    2012-01-01

    In our work we revisit Ag and Au adsorbates on Si(111)-7x7, as well as experiment with a ternary system of Pentacene, Ag and Si(111). Of particular interest to us is the Si(111)-(√3x√3)R30°}–Ag (Ag-Si-√3 hereafter). In this thesis I systematically explore effects of Ag deposition on the Ag-Si-√3 at different temperatures, film thicknesses and deposition fluxes. The generated insight of the Ag system on the Si(111) is then applied to generate novel methods of nanostructuring and nanowire growth. I then extend our expertise to the Au system on the Ag-Si(111) to gain insight into Au-Si eutectic silicide formation. Finally we explore behavior and growth modes of an organic molecule on the Ag-Si interface.

  1. Association Between IL-10 Gene Promoter Polymorphisms (-592 A/C, -819 T/C, -1082 A/G) and Susceptibility to HBV Infection in an Iranian Population

    PubMed Central

    Moudi, Bita; Heidari, Zahra; Mahmoudzadeh-Sagheb, Hamidreza; Hashemi, Mohammad; Metanat, Malihe; Khosravi, Soheila; Farrokh, Parisa

    2016-01-01

    Background IL-10 can play a vital role in immune response against HBV. Three biallelic SNPs from the transcription start site control the transcription of the IL-10 gene. An association between susceptibility to HBV and IL-10 polymorphisms has been suggested in patients with HBV infection. Objectives The present study was designed to study the association between polymorphisms in interleukin-10 (-1082 A/G, -819 T/C and -592 A/C) promoter gene and chronic hepatitis B virus (HBV) infection. Patients and Methods 221 chronically infected patients and 200 healthy control subjects were enrolled in the study. Three biallelic (-1082 A/G, -819 T/C and -592 A/C) polymorphisms in the IL-10 promoter gene were determined by PCR-RFLP method. Results Persistent HBV infection was associated with IL-10-1082 AG (P = 0.001) and GG (P = 0.004) genotypes and G (P = 0.000) allele. IL-10-819 T/C and -592 A/C genotype and allele frequencies did not show any correlation with the risk of chronic hepatitis B infection. Conclusions These results suggest that polymorphisms in interleukin-10 gene promoter influence clinical outcome of HBV infection and susceptibility to HBV infection. PMID:27148384

  2. Partially disordered state and spin-lattice coupling in an S=3/2 triangular lattice antiferromagnet Ag2CrO2

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Yoshida, H.; Isobe, M.; de La Cruz, C.; Fishman, R. S.

    2012-02-01

    Ag2CrO2 consists of triangular lattice planes of CrO2, which are well separated by the metallic Ag2 layers. [1] This compound is an S=3/2 frustrated triangular lattice antiferromagnet without orbital degree of freedom. We performed neutron diffraction experiments on a powder sample of Ag2CrO2 on a neutron powder diffractometer HB-2A and a triple-axis neutron spectrometer HB-1, installed at HFIR in Oak Ridge National Laboratory. With decreasing temperature, a short-range 4-sublatice spin state develops. However, a long-range partially disordered state with 5 sublattices abruptly appears at TN=24 K, accompanied by a structural distortion, and persists at least down to 2 K. The spin-lattice coupling stabilizes the anomalous state, which is expected to appear only in limited ranges of further-neighbor interactions and temperature. It was found that the spin-lattice coupling is a common feature in triangular lattice antiferromagnets with multiple-sublattice spin states, since the triangular lattice is elastic. [4pt] [1] H. Yoshida et al., to appear in J. Phys. Soc. Jpn.

  3. Ag-Air Service

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Econ, Inc.'s agricultural aerial application, "ag-air," involves more than 10,000 aircraft spreading insecticides, herbicides, fertilizer, seed and other materials over millions of acres of farmland. Difficult for an operator to estimate costs accurately and decide what to charge or which airplane can handle which assignment most efficiently. Computerized service was designed to improve business efficiency in choice of aircraft and determination of charge rates based on realistic operating cost data. Each subscriber fills out a detailed form which pertains to his needs and then receives a custom-tailored computer printout best suited to his particular business mix.

  4. An unprecedented Ag-pipemidic acid complex with helical structure: Synthesis, structure and interaction with CT-DNA

    NASA Astrophysics Data System (ADS)

    Li, Meng-Ting; Sun, Jing-Wen; Sha, Jing-Quan; Wu, Hong-Bin; Zhang, Er-Lin; Zheng, Tao-Ye

    2013-08-01

    A new Ag-pipemidic acid complex with helical structure has been prepared and structurally characterized by routine technique. Single-crystal X-ray diffraction analysis shows that there are the left- and right-handed helical chains constructed by Ag ions and PPA drugs along the b direction. And two types of helical chains are connected into 2D layer by sharing pseudo-tetra-nuclear clusters, which are stabilized by PPA-1 molecules as scaffolds. UV study of the interaction of the complex with CT-DNA shows that the title complex can bind to the CT-DNA and exhibits the higher binding constant (Kb) than free HPPA drugs. Additionally, its competitive study with ethidium bromide and the relatively high KSV value also indicates that complex can bind to DNA for the intercalative binding sites.

  5. An energy investigation into 1D/2D oriented-attachment assemblies of 1D Ag nanocrystals.

    PubMed

    Lv, Weiqiang; Yang, Xuemei; Wang, Wei; Niu, Yinghua; Liu, Zhongping; He, Weidong

    2014-09-15

    In the field of oriented-attachment crystal growth, one-dimensional nanocrystals are frequently employed as building blocks to synthesize two-dimensional or large-aspect-ratio one-dimensional nanocrystals. Despite recent extensive experimental advances, the underlying inter-particle interaction in the synthesis still remains elusive. In this report, using Ag as a platform, we investigate the van der Waals interactions associated with the side-by-side and end-to-end assemblies of one-dimensional nanorods. The size, aspect ratio, and inter-particle separation of the Ag precursor nanorods are found to have dramatically different impacts on the van der Waals interactions in the two types of assemblies. Our work facilitates the fundamental understanding of the oriented-attachment assembling mechanism based on one-dimensional nanocrystals. PMID:24954815

  6. AGS experiments - 1994, 1995, 1996

    SciTech Connect

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here.

  7. Pd-Cu(2)O and Ag-Cu(2)O hybrid concave nanomaterials for an effective synergistic catalyst.

    PubMed

    Li, Lingling; Chen, Xiaobin; Wu, Yuen; Wang, Dingsheng; Peng, Qing; Zhou, Gang; Li, Yadong

    2013-10-11

    Palladium and silver salts were combined with Cu2 O octadecahedra in concave heterostructures. The formation of concave faces involved selective oxidative etching of Cu2 O on the {100} faces and in situ growth of Pd/Ag on different sites. The structures showed superior catalytic activities to both single domains and their mixtures in a model Sonogashira-type organic reaction. PMID:24038721

  8. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens.

    PubMed

    Boxi, Siddhartha Sankar; Mukherjee, Khushi; Paria, Santanu

    2016-02-26

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated (•)OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling. PMID:26808118

  9. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens

    NASA Astrophysics Data System (ADS)

    Sankar Boxi, Siddhartha; Mukherjee, Khushi; Paria, Santanu

    2016-02-01

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated •OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  10. BiPO4 photocatalyst employing synergistic action of Ag/Ag3PO4 nanostructure and graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Mohaghegh, N.; Rahimi, E.

    2016-06-01

    Graphene-supported BiPO4/Ag/Ag3PO4 photocatalyst has been fabricated by simple hydrothermal and impregnation reaction. In BiPO4/Ag/Ag3PO4 based on Reduced Graphene Oxide (RGO), this network renders numerous pathways for rapid mass transport, strong adsorption and multireflection of incident light; meanwhile, the interface between BiPO4/Ag/Ag3PO4 and RGO increases the active sites and electron transfer rate. BiPO4/Ag/Ag3PO4 based on RGO noticeably exhibited high photocatalytic activity than that of BiPO4/Ag/Ag3PO4 and P25 under visible light irradiation for cationic dye (Rhodamine B), anionic dye (methyl orange) and 4-chlorophenol (4-CP) as a neutral pollutant, which are usually difficult to be degraded over the other catalysts. This enhanced photocatalytic activity of Graphene-supported BiPO4/Ag/Ag3PO4 for all pollutants could be mainly ascribed to the reinforced charge transfer from BiPO4/Ag/Ag3PO4 to RGO, which suppresses the recombination of electron/hole pairs. Besides that, this photocatalyst can be used repetitively with a high photocatalytic activity and no apparent loss of activity occurs. The results reveal that the RGO nanosheets work as a photocatalyst promoter during the photocatalytic reaction, leading to an improved photocatalytic activity.

  11. Template synthesis of Ag/AgCl microrods and their efficient visible light-driven photocatalytic performance

    SciTech Connect

    Chen, Hua; Xiao, Liang; Huang, Jianhua

    2014-09-15

    Highlights: • Preparation ofAg/AgCl microrods by reaction of Ag{sub 2}WO{sub 4} microrods with NaCl solution. • Generation of metallic Ag is induced by the ambient light in the synthesis process. • Ag/AgCl shows excellent visible light-driven photodegradation of organic dyes. - Abstract: Ag/AgCl microrods, aggregated by nanoparticles with a diameter ranging from 100 nm to 2 μm, were prepared by an ion-exchange reaction at 80 °C between Ag{sub 2}WO{sub 4} template and NaCl solution. The existence of metallic Ag species was confirmed by XRD, DRS and XPS measurements. Ag/AgCl microrods showed excellent photocatalytic activity for the degradation of rhodamine B and methylene blue under visible light irradiation. The degradation rate constants of rhodamine B and methylene blue are 0.176 and 0.114 min{sup −1}, respectively. The cycling photodegradation experiments suggest that Ag/AgCl microds could be employed as stable plasmonic photocatalysts for the degradation of organic dyes under visible light irradiation.

  12. Sequence analysis of the Bs-Ag1 gene of Baylisascaris schroederi from the giant panda and an evaluation of the efficacy of a recombinant Baylisascaris schroederi Bs-Ag1 antigen in mice.

    PubMed

    He, Guangzhi; Chen, Sijie; Wang, Tao; Yan, Yubo; Zhang, Zhihe; Li, Desheng; Yu, Hua; Xie, Yue; Wang, Chengdong; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2012-07-01

    The Baylisascaris schroederi infection rate among wild giant pandas may reach over 50% or even 100%, making it one of the leading causes of death from primary or secondary infection in wild populations. Until now, little was known about how protective immunity to B. schroederi infection could be achieved. The present study was conducted to evaluate the immunogenicity and protective efficacy of recombinant Bs-Ag1 from B. schroederi, by cloning the full-length Bs-Ag1 gene of B. schroederi and expressing it in a heterologous host, Escherichia coli BL21. In mice vaccinated with rBs-Ag1 coupled with Freund's complete adjuvant (FCA), there was a significant reduction (69.2%) in the recovery of challenged B. schroederi L3 compared with either nonvaccinated controls or mice vaccinated with FCA alone. Our study supports the use of Bs-Ag1 as a potential candidate for vaccination against B. schroederi infection and provides basic data for further vaccination trials with mixtures of antigens (with Bs-Ag2 and Bs-Ag3) to B. schroederi. PMID:22339267

  13. Later stages of evolution of an epithermal system: Au-Ag mineralizations at Apigania Bay, Tinos Island, Cyclades, Hellas, Greece

    NASA Astrophysics Data System (ADS)

    Tombros, S. F.; St. Seymour, K.; Williams-Jones, A. E.; Spry, P. G.

    2008-11-01

    Precious metals accompany all types of epithermal deposits. In general, the largest of these deposits occur in intrusive or extrusive rocks of alkaline or calc-alkaline affinity. The Apigania Bay vein system and Au-Ag mineralization is hosted in Mesozoic marbles and schists, and is composed primarily of five nearly parallel, high-angle quartz veins that extend for at least 200 m. Gold-silver mineralization, in association with more than thirty ore and vein minerals, is developed in three stages and occurs at the contact of marbles and schists. Zones of epidote-chlorite-calcite and sericite-albite alteration are associated with precious metal-bearing milky and clear quartz veins. Fluid inclusion studies suggest that hydrothermal mineralization was deposited under hydrostatic pressures of 100 bars, at temperature of 120-235°C, from low to moderate, calcium-bearing, saline fluids of 0.2 to 6.8 equiv. wt.% NaCl. Calculated isotope compositions (δ18O = -4.7‰ to 1.7‰ and δD = -120‰ to -80‰) for waters in equilibrium with milky and clear quartz are consistent with mixing with dilute, low temperature meteoric ore fluids. Calculated δ 13CCO2 (0.6‰ to 1.1‰) and δ 34SH2S (-7.3 to -0.3‰) compositions of the ore fluids indicate exchange, in an open system, with a metasedimentary source. Gold and silver deposition was associated with degassing of hydrogen due to intense uplift of the mineralizing area. The physicochemical conditions of mineralization stages I to III range between 200°C and 150°C, f_{{text{S}}_2 } = 10^{ - 18.1} to 10-16.8, f_{{text{O}}_2 } = 10^{ - 44.0} to 10-41.5, pH = 6.9 to7.6, f_{{text{H}}_{text{2}} {text{S}}} = 10^{ - 3.4} to 10-2.6 and a_{{text{H}}_{text{2}} {text{S}}} = 10^{ - 2.7} to 10-2.6. Apigania Bay could be possibly considered the latest evolutional phase of Tinos hydrothermal system.

  14. PIKA as an adjuvant enhances specific humoral and cellular immune responses following the vaccination of mice with HBsAg plus PIKA.

    PubMed

    Shen, Erxia; Li, Li; Li, Lietao; Feng, Lianqiang; Lu, Lin; Yao, Ziliang; Lin, Haixiang; Wu, Changyou

    2007-04-01

    An adjuvant is usually used to enhance the immune response induced by vaccines. The choice of adjuvant or immune enhancer determines the effectiveness of the immune response. Currently, aluminium (Alum, a generic term for salts of aluminium) is the only FDA-approved adjuvant. Alum predominantly induces the differentiation of Th2 cells and thus mediates an antibody immune response. Therefore, there is an urgent need for new adjuvants that enhance not only humoral but also cellular immune responses. In the present study, we demonstrates that PIKA (a stabilized dsRNA) as an adjuvant directly induces the activation and the proliferation of both B and NK cells in vitro. Injection of PIKA into mice results in the production of cytokines in vivo. In addition, the study demonstrates that PIKA promotes the maturation of bone marrow-derived dendritic cells (BMDCs) including up-regulation of the co-stimulatory molecules CD80, CD86 and CD40, and the induction of cytokines such as IL-12p70, IL-12p40 and IL-6. Importantly, after immunization of mice with HBsAg plus PIKA, the presence of PIKA enhances the titers of HBsAg-specific IgG and HBsAg-specific IFN-gamma production. These results demonstrate that PIKA as an adjuvant can promote both humoral and cellular immune responses. These might have an implication in applying PIKA as an adjuvant to be used in the design and development of both therapeutic and preventive vaccines, and used in the clinical study. PMID:17484805

  15. Acceleration of heavy ions in the AGS

    SciTech Connect

    Barton, M.Q.

    1983-01-01

    It is possible to use the Brookhaven AGS as a heavy ion machine by adding a cyclotron to the Tandem and using this combination as injector. An intermediate step for lighter ions might consist of injecting the Tandem beam directly into the AGS. In either case, quite high intensities should be possible.

  16. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Mehdipour Moghaddam, M. J.; Sadeghi, A.

    2015-02-01

    Silver carbonate and silver nanoparticles (NPs) over of stabilizer montmorillonite (MMT) have been synthesized in aqueous and polyol solvent, respectively. Dispersions of silver nanoparticles have been prepared by the reduction of silver nitrate over of MMT in presence and absence of Na2CO3 compound in ethylene glycol. It was observed that montmorillonite was capable of stabilizing formed Ag nanoparticles through the reduction of Ag+ ions in ethylene glycol. Na2CO3 was used as carbonate source in synthesis of Ag2CO3 NPs in water solvent and also for controlling of Ag nanoparticles size in ethylene glycol medium. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The TEM images showed that Ag NPs size in presence Na2CO3 salts was smaller than without that. The results indicated intercalation of Ag and Ag2CO3 nanoparticles into the montmorillonite clay layers. The diffuse reflectance spectra exhibited a strong surface plasmon resonance (SPR) adsorption peak in the visible region, resulting from Ag nanoparticles. The antibacterial testing results showed that the Ag2CO3-MMT nanocomposite exhibited an antibacterial activity higher than Ag-MMT sample against Escherichia coli.

  17. Spectroscopic Study on Eu3+ Doped Borate Glasses Containing Ag Nanoparticles and Ag Aggregates.

    PubMed

    Fu, Shaobo; Zheng, Hui; Zhang, Jinsu; Li, Xiangping; Sun, Jiashi; Hua, Ruinian; Dong, Bin; Xia, Haiping; Chen, Baojiu

    2015-01-01

    Transparent Eu(3+)-doped borate glasses containing Ag nanoparticles and Ag aggregates with composition (40 - x) CaO-59.5B2O3-0.5Eu2O3-xAgNO3 were prepared by a simple one-step melt-quenching technique. The X-ray diffraction (XRD) patterns of the glasses reveal amorphous structural properties and no diffraction peaks belonging to metal Ag particles. Ag particles and Ag aggregates were observed from the absorption spectra. Effective energy transfers from the Ag aggregates to the Eu3+ ions were observed in the excitation spectra from monitoring the intrinsic emission of Eu3+x .5D0 --> 7F2. The glasses with higher Ag content can be effectively excited by light in a wide wavelength region, indicating that these glasses have potential application in the solid state lighting driven by semiconductor light emitting diodes (LEDs). The emission spectra of the samples with higher Ag contents exhibit plenteous spectral components covering the full visible region from violet to red, thus indicating that these glass materials possess an excellent and tunable color rendering index. The color coordinates for all the glass samples were calculated by using the intensity-corrected emission spectra and the standard data issued by the CIE (Commission International de l' Eclairage) in 1931. It was found that the color coordinates for most samples with higher Ag contents fall into the white region in the color space. PMID:26328363

  18. Highly efficient and stable Ag-AgBr/TiO2 composites for destruction of Escherichia coli under visible light irradiation.

    PubMed

    Wang, Xiaoping; Lim, Teik-Thye

    2013-08-01

    A series of Ag-AgBr/TiO2 composites were prepared by a sol-gel method followed by photoreduction. Effect of Ag-AgBr content on the physicochemical properties and antibacterial activities of the Ag-AgBr/TiO2 composites was investigated. These composites showed intrinsic antibacterial activities against Escherichia coli (E. coli) in the dark attributed to the Ag nanoparticles dispersed in the composites. Under visible light irradiation, inactivation of E. coli over these Ag-AgBr/TiO2 composites was attributed to both their photocatalytic disinfection activities and intrinsic antibacterial properties. The Ag-AgBr/TiO2 with an optimum Ti/Ag atomic ratio of 10 exhibited superior visible-light photocatalytic activities for ibuprofen degradation and mineralization as compared to the other Ag-AgBr/TiO2 composites and also Ag-AgBr/P25, Ag/TiO2 and TiO2. It is probably because of the coexistence of two visible-light active components (AgBr and Ag nanoparticles) and the most effective separation of photogenerated electrons and holes in this photocatalyst. Correspondingly, the photocatalyst achieved a much higher efficiency of E. coli destruction than Ag-AgBr/P25 and TiO2. E. coli was almost completely inactivated (7-log reduction) within 60 min by the photocatalyst with a rather low dosage of 0.05 g L(-1) under white LED irradiation. Furthermore, the Ag-AgBr/TiO2 showed high stability for photocatalytic destruction of E. coli and the dark repair and photoreactivation did not occur after the photocatalytic process. Finally, the action spectrum of this photocatalyst for E. coli inactivation and the influence of several inorganic ions present in surface water were also investigated. PMID:23562562

  19. The Drenchwater deposit, Alaska: An example of a natural low pH environment resulting from weathering of an undisturbed shale-hosted Zn-Pb-Ag deposit

    USGS Publications Warehouse

    Graham, G.E.; Kelley, K.D.

    2009-01-01

    The Drenchwater shale-hosted Zn-Pb-Ag deposit and the immediate vicinity, on the northern flank of the Brooks Range in north-central Alaska, is an ideal example of a naturally low pH system. The two drainages, Drenchwater and False Wager Creeks, which bound the deposit, differ in their acidity and metal contents. Moderately acidic waters with elevated concentrations of metals (pH ??? 4.3, Zn ??? 1400 ??g/L) in the Drenchwater Creek drainage basin are attributed to weathering of an exposed base-metal-rich massive sulfide occurrence. Stream sediment and water chemistry data collected from False Wager Creek suggest that an unexposed base-metal sulfide occurrence may account for the lower pH (2.7-3.1) and very metal-rich waters (up to 2600 ??g/L Zn, ??? 260 ??g/L Cu and ???89 ??g/L Tl) collected at least 2 km upstream of known mineralized exposures. These more acidic conditions produce jarosite, schwertmannite and Fe-hydroxides commonly associated with acid-mine drainage. The high metal concentrations in some water samples from both streams naturally exceed Alaska state regulatory limits for freshwater aquatic life, affirming the importance of establishing base-line conditions in the event of human land development. The studies at the Drenchwater deposit demonstrate that poor water quality can be generated through entirely natural weathering of base-metal occurrences, and, possibly unmineralized black shale.

  20. Control and performance of the AGS and AGS Booster Main Magnet Power Supplies

    SciTech Connect

    Reece, R.K.; Casella, R.; Culwick, B.; Geller, J.; Marneris, I.; Sandberg, J.; Soukas, A.; Zhang, S.Y.

    1993-06-01

    Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.

  1. Control and performance of the AGS and AGS Booster Main Magnet Power Supplies

    SciTech Connect

    Reece, R.K.; Casella, R.; Culwick, B.; Geller, J.; Marneris, I.; Sandberg, J.; Soukas, A.; Zhang, S.Y.

    1993-01-01

    Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.

  2. Regional setting and characteristics of the Neoproterozoic Wadi Hamama Zn-Cu-Ag-Au prospect: evidence for an intra-oceanic island arc-hosted volcanogenic hydrothermal system

    NASA Astrophysics Data System (ADS)

    Abd El-Rahman, Yasser; Surour, Adel A.; El-Manawi, Abdel Hamid W.; El-Dougdoug, Abdel-Monem A.; Omar, Sayed

    2015-04-01

    The Wadi Hamama area is a volcanogenic Zn-Cu-Au-Ag prospect. It is hosted by a Neoproterozoic bimodal-mafic sequence, which comprises basalt, dacite and rhyolite along with volcaniclastic rocks. The rocks have a low-K tholeiitic affinity and are enriched in large ion lithophile elements over high field strength elements, which indicated their formation in an intra-oceanic island arc tectonic setting. The area was intruded by a tonalite-trondhjemite body, which has an intra-oceanic island arc affinity and later by diorite, which has a cordilleran-margin geochemical affinity. These rock units were intruded by post-tectonic granite dykes, which have a within-plate geochemical signature. There is a quartz-carbonate horizon extending along the contact between the basalt and the volcaniclastic rocks, mainly banded and lapilli tuffs. This horizon is of exhalative origin and is underlain by a mushroom-shaped alteration zone extending from the horizon down to the massive basalt. The footwall alteration is characterized by a silica-rich core surrounded by a thick chlorite sheath. Both the quartz-carbonate horizon and the footwall-altered rocks enclose historical trenches and pits. Sulfide-rich core samples are enriched in Zn, relative to Cu, and in Ag, which indicates the low-temperature nature of the hydrothermal system. The prospect was affected by supergene processes, which led to the widespread occurrence of secondary copper minerals and gold enrichment relative to the leached base metals, especially Zn. The prospect formed through a limited rifting of an intra-oceanic island arc which resulted in the formation of a small-scale volcanogenic Zn-Cu-Ag-Au prospect.

  3. Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol.

    PubMed

    An, Changhua; Wang, Jizhuang; Jiang, Wen; Zhang, Meiyu; Ming, Xijuan; Wang, Shutao; Zhang, Qinhui

    2012-09-21

    Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO(2). For example, reduction of CO(2) under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO(2) into useful organic compounds. PMID:22869008

  4. Balancing the Osteogenic and Antibacterial Properties of Titanium by Codoping of Mg and Ag: An in Vitro and in Vivo Study.

    PubMed

    Zhao, Yaochao; Cao, Huiliang; Qin, Hui; Cheng, Tao; Qian, Shi; Cheng, Mengqi; Peng, Xiaochun; Wang, Jiaxin; Zhang, Yin; Jin, Guodong; Zhang, Xianlong; Liu, Xuanyong; Chu, Paul K

    2015-08-19

    To simultaneously enhance the osteogenic and antibacterial properties of titanium, we introduced magnesium (Mg), silver (Ag), or both by using the plasma immersion ion implantation (PIII) technique, producing three PIII sample groups, namely, Mg-doped titanium (Mg-PIII), Ag-doped titanium (Ag-PIII), and Mg and Ag codoped titanium (Mg/Ag-PIII). The in vitro antibacterial efficacy of Mg/Ag-PIII group was about 7-10% higher than that of Ag-PIII. In vitro and in vivo results demonstrated that osteogenic property of Mg/Ag PIII group was better than that of Ag-PIII or Mg-PIII. It was believed that the galvanic effects between Mg and Ag NPs played a key role in facilitating the release of Mg but reducing the release of silver, answering for the selective performances of the Mg/Ag-PIII group over bacterial and mammalian cells. This study demonstrated that the integration of multiple functional elements could be realized by the dual-source PIII technique, and in this case, the antibacterial properties and osteogenic property of titanium could be balanced. PMID:26202255

  5. Electronic properties of highly-active Ag3AsO4 photocatalyst and its band gap modulation: an insight from hybrid-density functional calculations.

    PubMed

    Reunchan, Pakpoom; Boonchun, Adisak; Umezawa, Naoto

    2016-08-17

    The electronic structures of highly active Ag-based oxide photocatalysts Ag3AsO4 and Ag3PO4 are studied by hybrid-density functional calculations. It is revealed that Ag3AsO4 and Ag3PO4 are indirect band gap semiconductors. The Hartree-Fock mixing parameters are fitted for experimental band gaps of Ag3AsO4 (1.88 eV) and Ag3PO4 (2.43 eV). The smaller electron effective mass and the lower valence band edge of Ag3AsO4 are likely to be responsible for the superior photocatalytic oxidation reaction to Ag3PO4. The comparable lattice constant and analogous crystal structure between the two materials allow the opportunities of fine-tuning the band gap of Ag3AsxP1-xO4 using a solid-solution approach. The development of Ag3AsxP1-xO4 should be promising for the discovery of novel visible-light sensitized photocatalysts. PMID:27502998

  6. What Is Ag-Ed?

    ERIC Educational Resources Information Center

    Linley, Judy; Mylne, Lee

    1998-01-01

    Ag-Ed, an agricultural education project for upper elementary students, was held in conjunction with the Toowoomba Show in Queensland, Australia. Agriculture industry representatives provided 20 interactive agricultural presentations for class groups, which were supplemented with a teacher resource-package containing a directory and 13 sections of…

  7. Ag85A/ESAT-6 chimeric DNA vaccine induces an adverse response in tuberculosis-infected mice

    PubMed Central

    Liang, Yan; Bai, Xuejuang; Zhang, Junxian; Song, Jingying; Yang, Yourong; Yu, Qi; Li, Ning; Wu, Xueqiong

    2016-01-01

    The Mycobacterium tuberculosis (M. tb) antigens encoded by the 6 kDa early secretory antigenic target (esat-6) and antigen 85A (ag85a) genes are known to exert protective effects against tuberculosis in animal models. In addition, these antigens represent vaccine components that were tested in early human clinical trials. In the present study, a chimeric DNA vaccine was constructed that contained two copies of the esat-6 gene inserted into the ag85a gene from M. tb. BALB/c mice were treated with this chimeric vaccine following infection with either M. tb H37Rv or a clinical multi drug resistant tuberculosis isolate. Treatment of both groups of mice with the chimeric vaccine resulted in accelerated mortality. These findings are in contrast with previous results, which indicated that DNA vaccines expressing the individual antigens were either beneficial or at least not harmful. The results of the present study suggested that the ESAT-6 antigen is not suitable for inclusion in therapeutic vaccines. PMID:27279275

  8. Ag85A/ESAT-6 chimeric DNA vaccine induces an adverse response in tuberculosis-infected mice.

    PubMed

    Liang, Yan; Bai, Xuejuang; Zhang, Junxian; Song, Jingying; Yang, Yourong; Yu, Qi; Li, Ning; Wu, Xueqiong

    2016-08-01

    The Mycobacterium tuberculosis (M. tb) antigens encoded by the 6 kDa early secretory antigenic target (esat-6) and antigen 85A (ag85a) genes are known to exert protective effects against tuberculosis in animal models. In addition, these antigens represent vaccine components that were tested in early human clinical trials. In the present study, a chimeric DNA vaccine was constructed that contained two copies of the esat‑6 gene inserted into the ag85a gene from M. tb. BALB/c mice were treated with this chimeric vaccine following infection with either M. tb H37Rv or a clinical multi-drug-resistant tuberculosis isolate. Treatment of both groups of mice with the chimeric vaccine resulted in accelerated mortality. These findings are in contrast with previous results, which indicated that DNA vaccines expressing the individual antigens were either beneficial or at least not harmful. The results of the present study suggested that the ESAT-6 antigen is not suitable for inclusion in therapeutic vaccines. PMID:27279275

  9. A surface plasmon model for laser ablation of Ag sup + ions from a roughened Ag surface

    SciTech Connect

    Ritchie, R.H. Tennessee Univ., Knoxville, TN . Dept. of Physics); Manson, J.R. . Dept. of Physics); Echenique, P.M. . Faculdad de Quimica)

    1991-01-01

    Experimental work by Shea and Compton suggests that Ag{sup +} ions emitted from a roughened Ag surface irradiated by a nanosecond or picosecond laser beam may absorb the full energy of the Ag surface plasmon. We have modeled this process under the assumption that it proceeds through an inverse bremsstrahlung-type absorption of the SP quantum by Ag{sup +} ion which also undergoes a small-impact parameter collision with another ion or atom in the vicinity of the surface. We give a quantitative estimate of the absorption probability and find reasonable agreement with the Shea-Compton results. 8 refs., 2 figs.

  10. Immunization of babies born to HBsAg positive mothers: An audit on the delivery and completeness of follow up in Norfolk and Suffolk, United Kingdom.

    PubMed

    Keeble, Stuart; Quested, Jane; Barker, Deborah; Varadarajan, Abina; Shankar, Ananda Giri

    2015-01-01

    Perinatal transmission of hepatitis B infection has increased in the UK over the last decade. Routine antenatal screening of pregnant mothers (based on HBsAg) provides an effective means to identify 'at risk' babies. Follow up of babies born to infected mothers involves 4 doses of vaccination and/or a single dose of HBIG at birth. In this study we report the outcome of follow up of babies born to infected mothers over a 5 y period. One hundred sixty-three babies born to HBsAg positive mothers were followed up to ascertain the completeness for immunization and serological testing. Vaccination completion was 99.4% (162 of babies) at birth (1st dose), 95.6% (152 babies) for the second dose (at 1st month), 94.3 % (148 babies) for the 3rd dose (at 2nd month) and 83.4% (106 babies) for the 4th dose (at 12 months). Additionally, at 12 months 29.9% (38) of babies had their blood tested serologically to ascertain infection status; all babies receiving antigen testing were HBsAg negative. The overall vaccination coverage was good, although there is scope to improve the coverage of 4th dose. However, the proportion of children who were serologically tested for surface antigen at 12 months was considerably lower and there is a greater need to test babies concurrently at the time of giving the 4(th) dose. The proposed dried blood spot testing which will be rolled out from September 2014 should address this issue. PMID:25876072

  11. AGS experiments: 1993 - 1994 - 1995

    SciTech Connect

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition.

  12. The effect of artificial seawater on SERS spectra of amino acids-Ag colloids: an experiment of prebiotic chemistry.

    PubMed

    Nascimento, Fernanda C; Carneiro, Cristine E A; de Santana, Henrique; Zaia, Dimas A M

    2014-01-24

    The large enhancement of signal observed in surface enhanced Raman spectroscopy (SERS) could be helpful for identifying amino acids on the surface of other planets, in particular for Mars, as well as in prebiotic chemistry experiments of interaction minerals/amino acids. This paper reports the effect of several substances (NaCl, MgCl2, KBr, CaSO4, K2SO4, MgSO4, KI, NH4Cl, SrCl2, CaCl2, Na2SO4, KOH, NaOH, H3BO3) on the SERS spectra of colloid of sodium citrate-CSC and colloid of sodium borohydride-CSB. The effect of four different artificial seawaters and these artificial seawaters plus amino acids (α-Ala-alanine, Gly-glycine, Cys-cysteine, AIB-2-aminoisobutiric acid) on SERS spectra using both CSC and CSB was also studied. For CSC, the effect of water, after dilution of the colloid, was the appearance of several absorption bands belonging to sodium citrate in the SERS spectrum. In general, artificial seawaters enhanced several bands in SERS spectra using CSC and CSB and CSC was more sensitive to those artificial seawaters than CSB. The identification of Gly, α-Ala and AIB using CSC or CSB was not possible because several bands belonging to artificial seawaters, sodium citrate or sodium borohydride were enhanced. On the other hand, artificial seawaters did not interfere in the SERS spectra of Cys using CSC or CSB, although the interaction of Cys with each colloid was different. For CSC the band at 2568 cm(-1) (S-H stretching) of Cys vanished and for CSB the intensity of this band decreased, indicating the -SH of Cys was bonded to Ag to form -S-Ag. Thus SERS spectroscopy could be used for Cys detection on Mars soils using Mars land rovers as well as to study the interaction between Cys and minerals in prebiotic chemistry experiments. PMID:24051298

  13. AN EXPERIMENTAL PROPOSAL TO STUDY HEAVY-ION COOLING IN THE AGS DUE TO BEAM GAS OR THE INTRABEAM SCATTERING.

    SciTech Connect

    TRBOJEVIC, D.; AHERNS, L.; ROSER, T.; MACKAY, W.; BRENNAN, J.; BLASKIEWICZ,M.; PARZEN, G.; BEEBE-WANG, J.

    2006-06-23

    Low emittance of not-fully-stripped gold (Z=79) Au{sup +77} Helium-like ion beams from the AGS (Alternating Gradient Synchrotron) injector to the Relativistic Heavy Ion Collider (RHIC) could be attributed to the cooling phenomenon due to inelastic intrabeam scattering [1,2] or due to electron de-excitations from collisions with the residual gas [3]. The low emittance gold beams have always been observed at injection in the Relativistic Heavy Ion Collider (RHIC). There have been previous attempts to attribute the low emittance to a cooling due to the exchange of energy between ions during the inelastic intrabeam scattering. The Fano-Lichten theory [4] of electron promotion might be applied during inelastic collisions between helium like gold ions in the AGS. The two K-shell electrons in gold Au{sup +77} could get promoted if the ions reach the critical distance of the closest approach during intra-beam scattering or collisions with the residual gas. During collisions if the ion energy is large enough, a quasi-molecule could be formed, and electron excitation could occur. During de-excitations of electrons, photons are emitted and a loss of total bunch energy could occur. This would lead to smaller beam size. We propose to inject gold ions with two missing electrons into RHIC, at injection energy, and study the beam behavior with bunched and de-bunched beam, varying the RF voltage and the beam intensity. If the ''cooling'' is observed additional X-ray detectors could be installed to observe emitted photons.

  14. EPIDAUROS Biotechnologie AG.

    PubMed

    Arnold, Hans-Peter; Kluge, Peter; Mauch, Simon

    2005-07-01

    EPIDAUROS Biotechnologie AG is a leading provider of pharmacogenetic consulting, genotyping and research services to the international pharmaceutical and biotechnology industries, contract research organizations and healthcare providers. The company's mission is to improve safety, efficacy and predictability in drug development and drug therapy. EPIDAUROS determines its customers' needs in the field of pharmacogenetics using an in-depth consultancy process. The development and conduct of genotyping assays for drug-metabolizing enzymes, drug transporters and drug targets (for example, receptors)--all performed under stringent quality standards--are a major activity at EPIDAUROS. The company offers its research services to academic and industrial partners for the development of innovative diagnostic solutions by using its intellectual property. PMID:16014003

  15. Agent planning in AgScala

    NASA Astrophysics Data System (ADS)

    Tošić, Saša; Mitrović, Dejan; Ivanović, Mirjana

    2013-10-01

    Agent-oriented programming languages are designed to simplify the development of software agents, especially those that exhibit complex, intelligent behavior. This paper presents recent improvements of AgScala, an agent-oriented programming language based on Scala. AgScala includes declarative constructs for managing beliefs, actions and goals of intelligent agents. Combined with object-oriented and functional programming paradigms offered by Scala, it aims to be an efficient framework for developing both purely reactive, and more complex, deliberate agents. Instead of the Prolog back-end used initially, the new version of AgScala relies on Agent Planning Package, a more advanced system for automated planning and reasoning.

  16. Enhanced Raman scattering and photocatalytic activity of Ag/ZnO heterojunction nanocrystals.

    PubMed

    Chen, Chongqi; Zheng, Yuanhui; Zhan, Yingying; Lin, Xingyi; Zheng, Qi; Wei, Kemei

    2011-10-01

    In this work, we study the enhancement of Raman signals and photocatalytic activity of Ag/ZnO heterojunctions with an Ag content of 1 at.%, which were synthesized by photochemical deposition of Ag nanoparticles onto pre-synthesized ZnO nanorods. A strong interaction between Ag and ZnO nanocrystals were evidenced by XPS and UV-vis spectroscopy. The binding energy of Ag nanoparticles shifts toward lower energy compared to that of pure Ag nanoparticles, revealing that electrons transfer from Ag to the ZnO nanocrystals. The red shift of the plasmon absorption peak of Ag nanoparticles in Ag/ZnO heterojunctions further confirms the strong interaction between the two components. This strong interaction, arising from the coupling between Ag and ZnO nanocrystals, is responsible for the enhancement of Raman signals and photocatalytic activity of the Ag/ZnO heterojunctions. PMID:21847472

  17. Effects of an artificial gravity countermeasure on orthostatic tolerance, blood volumes and aerobic power after short-term bed rest (BR-AG1).

    PubMed

    Linnarsson, Dag; Hughson, Richard L; Fraser, Katelyn S; Clément, Gilles; Karlsson, Lars L; Mulder, Edwin; Paloski, William H; Rittweger, Jörn; Wuyts, Floris L; Zange, Jochen

    2015-01-01

    Exposure to artificial gravity (AG) in a short-arm centrifuge has potential benefits for maintaining human performance during long-term space missions. Eleven subjects were investigated during three campaigns of 5 days head-down bed rest: 1) bed rest without countermeasures (control), 2) bed rest and 30 min of AG (AG1) daily, and 3) bed rest and six periods of 5 min AG (AG2) daily. During centrifugation, the supine subjects were exposed to AG in the head-to-feet direction with 1 G at the center of mass. Subjects participated in the three campaigns in random order. The cardiovascular effects of bed rest and countermeasures were determined from changes in tolerance to a head-up tilt test with superimposed lower body negative pressure (HUT), from changes in plasma volume (PV) and from changes in maximum aerobic power (V̇o2 peak) during upright work on a cycle ergometer. Complete data sets were obtained in eight subjects. After bed rest, HUT tolerance times were 36, 64, and 78% of pre-bed rest baseline during control, AG1 and AG2, respectively, with a significant difference between AG2 and control. PV and V̇o2 peak decreased to 85 and 95% of pre-bed rest baseline, respectively, with no differences between the treatments. It was concluded that the AG2 countermeasure should be further investigated during future long-term bed rest studies, especially as it was better tolerated than AG1. The superior effect of AG2 on orthostatic tolerance could not be related to concomitant changes in PV or aerobic power. PMID:25342708

  18. Beet Juice-Induced Green Fabrication of Plasmonic AgCl/Ag Nanoparticles

    EPA Science Inventory

    A simple, green, and fast approach (complete within 5 min) was explored for the fabrication of hybrid AgCl/Ag plasmonic nanoparticles under microwave (MW) irradiation. In this method, beet juice served as a reducing reagent, which is an abundant sugar-rich agricultural produce. I...

  19. Long-wavelength lattice vibrations of Ag3In5Se9 and Ag3In5Te9 single crystals — An inversion of LO- and TO-mode frequencies

    NASA Astrophysics Data System (ADS)

    Gasanly, Nizami Mamed

    2016-06-01

    Infrared (IR) reflectivities are registered in the frequency range of 50-2000 cm‑1 for Ag3In5Se9 and Ag3In5Te9 single crystals grown by Bridgman method. Three infrared-active modes are detected in spectra. The optical parameters, real and imaginary parts of the dielectric function, the function of energy losses, refractive index, absorption index and absorption coefficient were calculated from reflectivity experiments. The frequencies of transverse and longitudinal optical modes (TO and LO modes) and oscillator strength were also determined. The bands detected in infrared spectra were tentatively attributed to various vibration types (valence and valence-deformation). The inversion of LO- and TO-mode frequencies of the sandwiched pair was observed for studied crystals.

  20. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-01

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10‑5 Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  1. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum.

    PubMed

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-16

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10(-5) Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains. PMID:27487089

  2. Ultra-sensitive detection of Ag+ ions based on Ag+-assisted isothermal exponential degradation reaction.

    PubMed

    Zhao, Jing; Fan, Qi; Zhu, Sha; Duan, Aiping; Yin, Yongmei; Li, Genxi

    2013-01-15

    Ag(+) ions are greatly toxic to a lot of algae, fungi, viruses and bacteria, which can also induce harmful side-effects to environments and human health. Herein we report an ultra-sensitive method for the selective detection of Ag(+) ions with electrochemical technique based on Ag(+)-assisted isothermal exponential degradation reaction. In the presence of Ag(+), mismatched trigger DNA can transiently bind to template DNA immobilized on an electrode surface through the formation of C-Ag(+)-C base pair, which then initiates the isothermal exponential degradation reaction. As a result, the mismatched trigger DNA may melt off the cleaved template DNA to trigger rounds of elongation and cutting. After the cyclic degradation reactions, removal of the template DNA immobilized on the electrode surface can be efficiently monitored by using electrochemical technique to show the status of the electrode surface, which can be then used to determine the presence of Ag(+). Further studies reveal that the proposed method can be ultra-sensitive to detect Ag(+) at a picomolar level. The selectivity of the detection can also be satisfactory, thus the proposed method for the Ag(+) ions detection may be potentially useful in the future. PMID:22921090

  3. Superionic behavior in the xAgI-(1-x)CsAg2I3 polycrystalline system

    NASA Astrophysics Data System (ADS)

    Rodríguez, L. A.; Zapata, J.; Vargas, R. A.; Peña Lara, D.; Diosa, J. E.

    2016-06-01

    A superionic phase behavior (with DC ionic conductivities higher than 0.01 S/cm) has been observed in xAgI-(1-x)CsAg2I3 (x≈0.67) polycrystalline system grown by slow evaporation using AgI and CsI powders (molar ratio Cs/Ag=0.25) as starting salts and an aqueous solution of HI as solvent. The transition from the normal-to- the superionic state is first-order with a hysteretic behavior in temperature centered at about 116 °C as reflected by thermal (DSC) and electrical conductivity measurements. This mixture is composed of CsAg2I3 and AgI crystalline phases and an additional amorphous AgI phase that explains the glassy-type behavior observed in the superionic phase transition.

  4. Oxidase-like mimic of Ag@Ag3PO4 microcubes as a smart probe for ultrasensitive and selective Hg(2+) detection.

    PubMed

    Chai, Dong-Feng; Ma, Zhuo; Qiu, Yunfeng; Lv, Yu-Guang; Liu, Hong; Song, Chao-Yu; Gao, Guang-Gang

    2016-02-21

    An oxidase-like mimic system based on facilely synthesized Ag@Ag3PO4 microcubes (Ag@Ag3PO4MCs) was designed and utilized to detect mercury ions with high selectivity and ultrasensitivity. Ag@Ag3PO4MCs with an average size of ca. 1.6 μm were synthesized by the reaction of [Ag(NH3)2](+) complex and Na2HPO4 and subsequent photoreduction under ultraviolet light. The as-prepared Ag@Ag3PO4MCs can effectively catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) and o-phenylenediamine (OPD) in the presence of dissolved oxygen in slightly acidic solution, exhibiting oxidase-like activities rather than peroxidase-like activity. Interestingly, the introduction of Ag nanoparticles (AgNPs) on the surfaces of Ag3PO4MCs can dramatically enhance the oxidase-like activities due to a synergistic effect between AgNPs and Ag3PO4MCs, as evidenced by the faster oxidation speed of TMB and OPD than that of native Ag3PO4MCs in the presence of dissolved oxygen. The enzyme kinetics can be well-explained by the Michaelis-Menten equation. As "poisoning" inhibitor, Hg(2+) ions can inhibit the enzyme reaction catalyzed by Ag3PO4MCs or Ag@Ag3PO4MCs. On the basis of this effect, a colorimetric Hg(2+) sensor was developed by the enzyme inhibition reaction of Ag3PO4MCs or Ag@Ag3PO4MCs. The excellent specific interaction of Hg-Ag or Hg(2+)-Ag(+) provides high selectivity for Hg(2+) over interfering metal ions. Meanwhile, the sensitivity of this sensor to Hg(2+) is extremely excellent with a limit of detection as low as 0.253 nM for Ag@Ag3PO4MCs. Considering the advantages of low detection limit, low cost, facile preparation, and visualization, the colorimetric Ag@Ag3PO4MCs sensor shows high promise for the testing of Hg(2+) in water samples. PMID:26763181

  5. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates

    NASA Astrophysics Data System (ADS)

    Manninen, N. K.; Calderon, S.; Carvalho, I.; Henriques, M.; Cavaleiro, A.; Carvalho, S.

    2016-07-01

    Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano-galvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against Staphylococcus epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive OCP value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag+ due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 h, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

  6. Fabrication of Sn-3.5Ag Eutectic Alloy Powder by Annealing Sub-Micrometer Sn@Ag Powder Prepared by Citric Acid-Assisted Ag Immersion Plating.

    PubMed

    Chee, Sang-Soo; Choi, Eun Byeol; Lee, Jong-Hyun

    2015-11-01

    A Sn-3.5Ag eutectic alloy powder has been developed by chemically synthesizing sub-micrometer Sn@Ag powder at room temperature. This synthesis was achieved by first obtaining a sub-micrometer Sn powder for the core using a modified variant of the polyol method, and then coating this with a uniformly thin and continuous Ag layer through immersion plating in 5.20 mM citric acid. The citric acid was found to play multiple roles in the Ag coating process, acting as a chelating agent, a reducing agent and a stabilizer to ensure coating uniformity; and as such, the amount used has an immense influence on the coating quality of the Ag shells. It was later verified by transmission electron microscopy and X-ray diffraction analysis that the coated Ag layer transfers to the Sn core via diffusion to form an Ag3Sn phase at room temperature. Differential scanning calorimetry also revealed that the synthesized Sn@Ag powder is nearly transformed into Sn-3.5Ag eutectic alloy powder upon annealing three times at a temperature of up to 250 degrees C, as evidenced by a single melting peak at 220.5 degrees C. It was inferred from this that Sn-3.5Ag eutectic alloy powder can be successfully prepared through the synthesis of core Sn powders by a modified polyol method, immersion plating using citric acid, and annealing, in that order. PMID:26726525

  7. Partially disordered state and spin-lattice coupling in an S=3/2 triangular lattice antiferromagnet Ag2CrO2

    SciTech Connect

    Matsuda, Masaaki; Yoshida, H.; Isobe, M.; De la cruz, Clarina; Fishman, Randy Scott

    2012-01-01

    Ag{sub 2}CrO{sub 2} is an S = 3/2 frustrated triangular lattice antiferromagnet without an orbital degree of freedom. With decreasing temperature, a four-sublattice spin state develops. However, a long-range partially disordered state with five sublattices abruptly appears at T{sub N} = 24 K, accompanied by a structural distortion, and persists at least down to 2 K. The spin-lattice coupling stabilizes the anomalous state, which is expected to appear only in limited ranges of further-neighbor interactions and temperature. It was found that the spin-lattice coupling is a common feature in triangular lattice antiferromagnets with multiple-sublattice spin states, since the triangular lattice is elastic.

  8. Suitable Thicknesses of Base Metal and Interlayer, and Evolution of Phases for Ag/Sn/Ag Transient liquid-phase Joints Used for Power Die Attachment

    NASA Astrophysics Data System (ADS)

    Li, J. F.; Agyakwa, P. A.; Johnson, C. M.

    2014-04-01

    Real Si insulated gate bipolar transistors with conventional Ni/Ag metallization and dummy Si chips with thickened Ni/Ag metallization have both been bonded, at 250°C for 0 min, 40 min, and 640 min, to Ag foil electroplated with 2.7 µm and 6.8 µm thick Sn as an interlayer. On the basis of characterization of the microstructure of the resulting joints, suitable thicknesses are suggested for the Ag base metal and the Sn interlayer for Ag/Sn/Ag transient liquid-phase (TLP) joints used for power die attachment. The diffusivities of Ag and Sn in the ξAg phase were also obtained. In combination with the kinetic constants of Ag3Sn growth and diffusivities of Ag and Sn in Ag reported in the literature, the diffusivities of Ag and Sn in the ξAg phase were also used to simulate and predict diffusion-controlled growth and evolution of the phases in Ag/Sn/Ag TLP joints during extended bonding and in service.

  9. EXAFS Studies of Bimetallic Ag-Pt and Ag-Pd Nanorods

    SciTech Connect

    Lahiri, D.; Chattopadhyay, S.; Bunker, B.A.; Doudna, C.M.; Bertino, M.F.; Blum, F.; Tokuhiro, A.; Terry, J.

    2008-10-30

    Nanoparticles of Ag-Pt and Ag-Pd with high aspect ratios were synthesized using a radiolysis method. Gamma rays at dose rates below 0.5 kGy/h were used for irradiation. The nanoparticles were characterized by transmission electron microscopy (TEM), optical absorption spectroscopy and x-ray Absorption Fine Structure (XAFS) spectroscopy. Bright field micrographs show that Ag-Pt nanowires are composed of large particles with diameters ranging from 20-30 nm and joined by filaments of diameter between 2-5 nm. The Ag-Pd nanowires have diameters of 20-25 nm and lengths of 1.5 {micro}m. For XAFS measurements, the Pt L3 edge (11.564 keV), Ag K-edge (25.514 keV) and Pd K-edge (24.350 keV) were excited to determine the local structure around the respective atoms in the cluster. The Ag-Pt particles were found to possess a distinct core-shell structure with Pt in the core surrounded by Ag shell, with no indication of alloy formation. However, nanorods of Ag-Pd have formed an alloy for all the alloy compositions.

  10. New data for AG haplotype frequencies in Caucasoid populations and selective neutrality of the AG polymorphism.

    PubMed

    Sanchez-Mazas, A; Bütler-Brunner, E; Excoffier, L; Ghanem, N; Ben Salem, M; Breguet, G; Dard, P; Pellegrini, B; Tikkanen, M J; Langaney, A

    1994-02-01

    We present the results of AG antigen typings of three Caucasoid population samples: Lebanese, Tunisians, and Finns. AG haplotype frequencies estimated by maximum-likelihood methods are compared with the frequencies observed in 13 world populations previously tested for AG specificities by computing a genetic distance matrix used in a multivariate analysis. A high degree of polymorphism characterizes the three samples, with 10 haplotypes detected in the Lebanese and 11 haplotypes detected in the Tunisians and Finns; high heterozygosity levels are also present in the three populations. The genetic distance analysis shows that the three populations possess a genetic structure intermediate between those observed in sub-Saharan Africans and in Caucasoids from the Near East and India. This tight correspondence between AG differentiation and geography is confirmed by a highly significant correlation coefficient found between genetic and geographic distances computed worldwide, suggesting that an isolation by distance model of evolution applies to the AG system. The Ewens-Watterson test for selective neutrality on all world populations tested for AG specificities also supports the hypothesis that the AG system behaves like a neutral polymorphism. Overall, the AG differentiation pattern appears to be close to the patterns observed for other serological polymorphisms, such as RH, GM, and HLA, whose evolutionary mechanisms are also discussed. PMID:8157263

  11. A 2-pyridyl (py) attached phosphine imine [P(Npy)(NHpy)3] and an imido phosphinate ion [P(Npy)2)(NHpy)2]- in its Ag(I) complex.

    PubMed

    Gupta, Arvind K; Chipem, Francis A S; Boomishankar, Ramamoorthy

    2012-02-14

    A new phosphine imine 3, [P(Npy)(NHpy)(3)] (py = 2-pyridyl), was synthesized from the phosphonium salt 1, [P(NHpy)(4)]Cl. Subsequent reaction of 1 or 3 with AgClO(4) lead to an unprecedented penta-nuclear Ag(I) complex 4 stabilized by two [P(Npy)(2)(NHpy)(2)](-) anions [L](-). The packing diagram of 4 shows an interesting channel structure which contains solvated molecules of methanol and toluene. The diimine ligand [L](-), which represents the N-analogue of a phosphinate ion (H(2)PO(4)(-)), was obtained in situ under the mild reaction conditions in the absence of a base. PMID:22167162

  12. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    PubMed

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution. PMID:26952433

  13. Effect of MWNT electroless Ag plating on field emission properties of MWNT/Ag nanocomposite cathodes

    NASA Astrophysics Data System (ADS)

    Ye, Yun; Guo, Tailiang

    2013-01-01

    Field emission properties of multiwall carbon nanotube (MWNT) electroless Ag plating nanocomposite cathodes fabricated using screen printing were studied. The MWNT was purified and electroless plated with Ag. The results of field emission scanning electron microscopy (FESEM) showed that the morphology of Ag electroless plating on the surface of MWNT depended on the temperature of electroless plating. Experiments showed that the stability of MWNT/Ag nanocomposite cathodes had no more than 10% degradation, achieving a field emission current density of 4.0 mA/cm2 at an applied electric field of 0.5 V/μm for 50 h. The proposed MWNT/Ag nanocomposite cathodes possess good field emission properties and have potential for application in field emission displays.

  14. Nanosized Fe3O4 an efficient PCR yield enhancer-Comparative study with Au, Ag nanoparticles.

    PubMed

    Kambli, Priyanka; Kelkar-Mane, Varsha

    2016-05-01

    Nanomaterials-assisted PCR is a promising field of nanobiotechnology that amalgamates nanomaterials into the conventional PCR system to achieve better amplification of desired product. With literature documenting the variable effects of these nanomaterials on the PCR yield and amplification; it was thought worthwhile to compare the PCR enhancing efficiency of three transition metal nanoparticles in form of stable colloidal suspensions at varying concentrations.The nanoparticles(NPs) of silver, gold and magnetite were chemically synthesized by reducing their respective salts and characterized using UV-vis spectroscopy. Their morphology was assessed using nanoparticle tracking system and AFM. The effect of these nanofluids on amplification of 800 bp prokaryotic DNA template with 30% GC content was studied using conventional thermal cycler. The reaction kinetics for all the three nanofluids yielded a Gaussian curve of amplification with varying concentrations. The ammonium salt of oleic acid coated magnetite (Fe3O4) nanoparticles at a concentration of 0.72 × 10(-2)nM and average size of 33 nm demonstrated highest amplification efficiency of 190% as compared to the citrate stabilized AgNP-25 nm (45%) and AuNP-15.19 nm (134%) using a conventional PCR system. The major reasons that allow Fe3O4 NPs outperform the other 2 transition metal NP's seem to be attributed to its heat conduction property as well as effective adsorption of PCR components onto the ammonium salt of oleic acid coated magnetite nanofluids. The data from our study offers valuable information for the application of ferrofluids as economically, efficient and effective alternative for nanomaterial-assisted PCR yield enhancers. PMID:26896662

  15. 20% PARTIAL SIBERIAN SNAKE IN THE AGS.

    SciTech Connect

    Huang, H; Bai, M; Brown, K A; Glenn, W; Luccio, A U; Mackay, W W; Montag, C; Ptitsyn, V; Roser, T; Tsoupas, N; Zeno, K; Ranjbar, V; Spinka, H; Underwood, D

    2002-11-06

    An 11.4% partial Siberian snake was used to successfully accelerate polarized proton through a strong intrinsic depolarizing spin resonance in the AGS. No noticeable depolarization was observed. This opens up the possibility of using a 20% to 30% partial Siberian snake in the AGS to overcome all weak and strong depolarizing spin resonances. Some design and operation issues of the new partial Siberian snake are discussed.

  16. High-Quality AgGaTe2 Layers on Si Substrates with Ag2Te Buffer Layers

    NASA Astrophysics Data System (ADS)

    Uruno, Aya; Kobayashi, Masakazu

    2016-05-01

    AgGaTe2 layers were successfully grown on Si substrates by the close-spaced sublimation method. The Si substrates were confirmed to be etched during AgGaTe2 layer growth when the layer was grown directly on the substrate. To eliminate melt-back etching, a buffer layer of Ag2Te was introduced. It was found that the Ag2Te buffer layer changed into the AgGaTe2 layer during the growth process, and a uniform AgGaTe2 layer with an abrupt interface was formed. Both the diffusion of Ga into Ag2Te and the growth of AgGaTe2 occurred simultaneously. It was confirmed that uniform AgGaTe2 layers could be formed without any traces of the Ag2Te layer or melt-back etching by tuning the growth parameters. A solar cell was also fabricated using the p-AgGaTe2/n-Si heterojunction. This solar cell showed conversion efficiency of approximately 3%.

  17. High-Quality AgGaTe2 Layers on Si Substrates with Ag2Te Buffer Layers

    NASA Astrophysics Data System (ADS)

    Uruno, Aya; Kobayashi, Masakazu

    2016-09-01

    AgGaTe2 layers were successfully grown on Si substrates by the close-spaced sublimation method. The Si substrates were confirmed to be etched during AgGaTe2 layer growth when the layer was grown directly on the substrate. To eliminate melt-back etching, a buffer layer of Ag2Te was introduced. It was found that the Ag2Te buffer layer changed into the AgGaTe2 layer during the growth process, and a uniform AgGaTe2 layer with an abrupt interface was formed. Both the diffusion of Ga into Ag2Te and the growth of AgGaTe2 occurred simultaneously. It was confirmed that uniform AgGaTe2 layers could be formed without any traces of the Ag2Te layer or melt-back etching by tuning the growth parameters. A solar cell was also fabricated using the p-AgGaTe2/n-Si heterojunction. This solar cell showed conversion efficiency of approximately 3%.

  18. High-sensitivity assay for Hg (II) and Ag (I) ion detection: A new class of droplet digital PCR logic gates for an intelligent DNA calculator.

    PubMed

    Cheng, Nan; Zhu, Pengyu; Xu, Yuancong; Huang, Kunlun; Luo, Yunbo; Yang, Zhansen; Xu, Wentao

    2016-10-15

    The first example of droplet digital PCR logic gates ("YES", "OR" and "AND") for Hg (II) and Ag (I) ion detection has been constructed based on two amplification events triggered by a metal-ion-mediated base mispairing (T-Hg(II)-T and C-Ag(I)-C). In this work, Hg(II) and Ag(I) were used as the input, and the "true" hierarchical colors or "false" green were the output. Through accurate molecular recognition and high sensitivity amplification, positive droplets were generated by droplet digital PCR and viewed as the basis of hierarchical digital signals. Based on this principle, YES gate for Hg(II) (or Ag(I)) detection, OR gate for Hg(II) or Ag(I) detection and AND gate for Hg(II) and Ag(I) detection were developed, and their sensitively and selectivity were reported. The results indicate that the ddPCR logic system developed based on the different indicators for Hg(II) and Ag(I) ions provides a useful strategy for developing advanced detection methods, which are promising for multiplex metal ion analysis and intelligent DNA calculator design applications. PMID:27140307

  19. Structural evolution of Ag nanoparticles during electron driven synthesis of Ag filaments on Ag2WO4: In situ observation and theoretical supporting evidence

    NASA Astrophysics Data System (ADS)

    da Silva, Edison Z.; da Silva Pereira, Wyllamanney; Andrés, Juan; Gracia, Lourdes; San-Miguel, Miguel; Longo, Elson; Longo, Valeria M.

    2015-03-01

    α - Ag2WO4 crystals irradiated by an electron beam from an electron microscope under high vacuum, nucleate metallic Ag, and form Ag metallic nanowires on the α crystals surface. In order to understand this interesting and complex behavior of the formation and growth of Ag nanowires on α-Ag2WO4 we investigated by detailed in situ transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) studies, density functional theory calculations and ab initio molecular dynamics (MD) simulations. First principle calculations point out that Ag-3 and Ag-4 atoms, located on the (100) surface, are the most energetically favorable to undergo the diffusion process to form metallic Ag. Ab initio MD simulations and nudged elastic band (NEB) method were used to investigate the minimum energy pathways for diffusion of Ag atoms to outward sites on the (100) surface. The results point out that the injection of electrons decreases the activation barrier for this diffusion step and this unusual behavior results from the presence of a lower energy barrier process. Financial support FAPESP, Project 2010/16970-0, grant (2013/02032-7), calculations performed at CENAPAD-SP.

  20. A Stretcher for the Brookhaven AGS

    SciTech Connect

    Foelsche, H.W.J.

    1989-01-01

    Brookhaven National Laboratory is proposing to add a Stretcher ring to increase the capacity and the quality of the experimental physics program at the AGS. At the present time a typical AGS cycle is about equally divided between the task of accelerating the beam to full energy and the task of distributing it on a 30 GeV flattop. The Stretcher, a 30 GeV dc storage ring, will take over from the AGS the distribution of the high energy beam with a continuous slow spill, and the AGS can then provide beam for the program at more than twice the present repetition rate. In this manner the average current delivered to the experimenters will be more than doubled, and the duty cycle of the spill will increase from the present optimum of about 40% to nearly 100%. The Stretcher proposal continues the gradual evolution of the AGS toward a high intensity hadron factory. At the present time the AGS provides about 1 ..mu..A average proton current. With the booster alone, now under construction, this is expected to increase to above 4 ..mu..A, and with the Stretcher to about 8-10 ..mu..A, an order of magnitude higher than now. 5 refs., 9 figs.

  1. Optical properties of Ag- and AgI-doped Ge-Ga-Te far-infrared chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Cheng, Ci; Wang, Xunsi; Xu, Tiefeng; Sun, Lihong; Pan, Zhanghao; Liu, Shuo; Zhu, Qingde; Liao, Fangxing; Nie, Qiuhua; Dai, Shixun; Shen, Xiang; Zhang, Xianghua; Chen, Wei

    2016-05-01

    Te-based glasses are ideal material for life detection and infrared-sensing applications because of their excellent far-infrared properties. In this study, the influence of Ag- and AgI- doped Te-based glasses were discussed. Thermal and optical properties of the prepared glasses were evaluated using X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy. Results show that these glass samples have good amorphous state and thermal stability. However, Ge-Ga-Te-Ag and Ge-Ga-Te-AgI glass systems exhibit completely different in optical properties. With an increase of Ag content, the absorption cut-off edge of Ge-Ga-Te-Ag glass system has a red shift. On the contrary, a blue shift appears in Ge-Ga-Te-AgI glass system with an increase of AgI content. Moreover, the transmittance of Ge-Ga-Te-Ag glass system deteriorates while that of Ge-Ga-Te-AgI glass system ameliorates. All glass samples have wide infrared transmission windows and the far-infrared cut-off wavelengths of these glasses are beyond 25 μm. The main absorption peaks of these glasses are eliminated through a purifying method.

  2. Ag{sub 3}PO{sub 4}/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B

    SciTech Connect

    Liu, Wei; Wang, Mingliang; Xu, Chunxiang; Chen, Shifu; Fu, Xianliang

    2013-01-15

    Graphical abstract: The free OH radicals generated in the VB of ZnO play the primary role in the visible-light photocatalytic degradation of RhB in Ag{sub 3}PO{sub 4}/ZnO system. The accumulated electrons in the CB of Ag{sub 3}PO{sub 4} can be transferred to O{sub 2} adsorbed on the surface of the composite semiconductors and H{sub 2}O{sub 2} yields. H{sub 2}O{sub 2} reacts with electrons in succession to produce active ·OH to some extent. Display Omitted Highlights: ► Efficient visible-light-sensitized Ag{sub 3}PO{sub 4}/ZnO composites were successfully prepared. ► Effect of Ag{sub 3}PO{sub 4} content on the catalytic activity of Ag{sub 3}PO{sub 4}/ZnO is studied in detail. ► Rate constant of RhB degradation over Ag{sub 3}PO{sub 4}(3.0 wt.%)/ZnO is 3 times that of Ag{sub 3}PO{sub 4}. ► The active species in RhB degradation are examined by adding a series of scavengers. ► Visible light degradation mechanism of RhB over Ag{sub 3}PO{sub 4}/ZnO is systematically studied. -- Abstract: The efficient visible-light-sensitized Ag{sub 3}PO{sub 4}/ZnO composites with various weight percents of Ag{sub 3}PO{sub 4} were prepared by a facile ball milling method. The photocatalysts were characterized by XRD, DRS, SEM, EDS, XPS, and BET specific area. The ·OH radicals produced during the photocatalytic reaction was detected by the TA–PL technique. The photocatalytic property of Ag{sub 3}PO{sub 4}/ZnO was evaluated by photocatalytic degradation of Rhodamine B under visible light irradiation. Significantly, the results revealed that the photocatalytic activity of the composites was much higher than that of pure Ag{sub 3}PO{sub 4} and ZnO. The rate constant of RhB degradation over Ag{sub 3}PO{sub 4}(3.0 wt.%)/ZnO is 3 times that of single-phase Ag{sub 3}PO{sub 4}. The optimal percentage of Ag{sub 3}PO{sub 4} in the composite is 3.0 wt.%. It is proposed that the ·OH radicals produced in the valence band of ZnO play the leading role in the photocatalytic degradation of

  3. Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance

    PubMed Central

    Olofsson, Louise E.; Unger, Elizabeth K.; Cheung, Clement C.; Xu, Allison W.

    2013-01-01

    Chronic consumption of a fat-rich diet leads to attenuation of leptin signaling in hypothalamic neurons, a hallmark feature of cellular leptin resistance. To date, little is known about the temporal and spatial dysregulation of neuronal function under conditions of nutrient excess. We show that agouti-related protein (AgRP)-expressing neurons precede proopiomelanocortin neurons in developing diet-induced cellular leptin resistance. High-fat diet-induced up-regulation of suppressor of cytokine signaling-3 (SOCS3) occurs in AgRP neurons before proopiomelanocortin and other hypothalamic neurons. SOCS3 expression in AgRP neurons increases after 2 d of high-fat feeding, but reduces after switching to a low-fat diet for 1 d. Consistently, transgenic overexpression of SOCS3 in AgRP neurons produces metabolic phenotypes resembling those observed after short-term high-fat feeding. We further show that AgRP neurons are the predominant cell type situated outside the blood-brain barrier in the mediobasal hypothalamus. AgRP neurons are more responsive to low levels of circulating leptin, but they are also more prone to development of leptin resistance in response to a small increase in blood leptin concentrations. Collectively, these results suggest that AgRP neurons are able to sense slight changes in plasma metabolic signals, allowing them to serve as first-line responders to fluctuation of energy intake. Furthermore, modulation of SOCS3 expression in AgRP neurons may play a dynamic and physiological role in metabolic fine tuning in response to short-term changes of nutritional status. PMID:23386726

  4. An antimicrobial peptide with angiogenic properties, AG-30/5C, activates human mast cells through the MAPK and NF-κB pathways.

    PubMed

    Kanazawa, Kazo; Okumura, Ko; Ogawa, Hideoki; Niyonsaba, François

    2016-04-01

    Apart from their direct antimicrobial activities against invading pathogens, antimicrobial peptides exhibit additional protective functions that have led to their being named host defense peptides (HDPs). These functions include the stimulation of the production of cytokines/chemokines, the promotion of chemotaxis and cell proliferation and the induction of angiogenesis and wound healing. AG-30/5C is a novel angiogenic HDP that in addition to its antimicrobial activity also activates fibroblasts and endothelial cells and promotes angiogenesis and wound healing. Given that mast cells are found primarily in the vicinity of vessels, where they are intimately involved in wound healing, we hypothesized that AG-30/5C may activate mast cells. We demonstrated that AG-30/5C activated LAD2 human mast cells to degranulate and produce lipid mediators including leukotriene C4, prostaglandin D2 and E2. Moreover, AG-30/5C increased mast cell chemotaxis and induced the production of the cytokines GM-CSF and TNF-α and various chemokines, such as IL-8, MCP-1, MCP-3, MIP-1α and MIP-1β. The chemotaxis and cytokine/chemokine production induced by AG-30/5C were suppressed by both pertussis toxin and U-73122, suggesting the involvement of the G protein and phospholipase C pathways in AG-30/5C-induced mast cell activation. Furthermore, these pathways were activated downstream of the MAPK and NF-κB signaling molecules, as demonstrated by the inhibitory effects of ERK-, JNK-, p38- and NF-κB-specific inhibitors on cytokine/chemokine production. Interestingly, AG-30/5C caused the phosphorylation of MAPKs and IκB. We suggest that the angiogenic and antimicrobial peptide AG-30/5C plays a key role in the recruitment and activation of human mast cells at inflammation and wound sites. PMID:26663017

  5. Mediator and label free estimation of stress biomarker using electrophoretically deposited Ag@AgO-polyaniline hybrid nanocomposite.

    PubMed

    Kaushik, Ajeet; Vasudev, Abhay; Arya, Sunil K; Bhansali, Shekhar

    2013-12-15

    Cortisol, a steroid hormone, is an important biomarker for psychological stress and its detection is gaining prominence for personalized health monitoring. In present work, electrophoretically deposited nanocomposite films of polyaniline (PANI) and core-shell Ag@AgO nanoparticles (NP~5 nm) have been explored as an electro-active nanostructured platform for Anti-cortisol antibody (Anti-Cab) immobilization for electrochemical immunosensing of cortisol. Covalent binding of Anti-Cab onto Ag@AgO-PANI nanocomposite was achieved using EDC/NHS chemistry, which results in the amide bond formation between amino groups of PANI and COOH groups of anti-Cab. Nonspecific binding sites on the immunosensing electrodes were blocked using bovine serum albumin (BSA). The uniform distribution of electro-active and surface charged Ag@AgO NP in PANI matrix results in a nanoporous granular morphology (roughness~10 nm) that provides a functionalized conductive microenvironment for Anti-Cab immobilization. The BSA/Anti-Cab/Ag@AgO-PANI/Au bioelectrodes have been characterized using electrochemical impedance technique (EIS), cyclic voltammetric (CV) technique and atomic force microscopic (AFM) technique, respectively. In CV studies nanocomposite exhibited characteristic response current peak corresponding to AgO NP (0.25 V) with large magnitude of current response and resulted in high electron transport at the electrode-electrolyte interface without a mediator. Electrochemical response studies via CV for the fabricated BSA/Anti-Cab/Ag@AgO-PANI/Au immunosensor as a function of cortisol concentration exhibited a wide linear detection range of 1 pM-1 µM, a detection limit of 0.64 pM mL(-1)(lower than ELISA), and high sensitivity 66 µA M(-1) with a regression coefficient of 0.998. The findings of present work may explore the application of Ag@AgO-PANI hybrid nanocomposite to detect cortisol and other biomarkers for point-of-care application. PMID:23831854

  6. Shedding Light on the Photochemistry of Coinage-Metal Phosphorescent Materials: A Time-Resolved Laue Diffraction Study of an AgI–CuI Tetranuclear Complex

    PubMed Central

    Jarzembska, Katarzyna N.; Kamiński, Radosław; Fournier, Bertrand; Trzop, Elżbieta; Sokolow, Jesse D.; Henning, Robert; Chen, Yang; Coppens, Philip

    2015-01-01

    The triplet excited state of a new crystalline form of a tetranuclear coordination d10–d10-type complex, Ag2Cu2L4 (L = 2-diphenylphosphino-3-methylindole ligand), containing AgI and CuI metal centers has been explored using the Laue pump–probe technique with ≈80 ps time resolution. The relatively short lifetime of 1 μs is accompanied by significant photoinduced structural changes, as large as the Ag1···Cu2 distance shortening by 0.59(3) Å. The results show a pronounced strengthening of the argentophilic interactions and formation of new Ag···Cu bonds on excitation. Theoretical calculations indicate that the structural changes are due to a ligand-to-metal charge transfer (LMCT) strengthening the Ag···Ag interaction, mainly occurring from the methylindole ligands to the silver metal centers. QM/MM optimizations of the ground and excited states of the complex support the experimental results. Comparison with isolated molecule optimizations demonstrates the restricting effect of the crystalline matrix on photoinduced distortions. The work represents the first time-resolved Laue diffraction study of a heteronuclear coordination complex and provides new information on the nature of photoresponse of coinage metal complexes, which have been the subject of extensive studies. PMID:25238405

  7. New AGS fast extraction system

    SciTech Connect

    Weng, W.T.

    1980-09-01

    Both the high energy physics program and ISA injection require an improved fast extraction system from the AGS. The proposed new system consists of a fast kicker at H5 and an ejector magnet at H10. The H5 kicker is capable of producing 1.2 mrad deflection and rising up to 99% strength in 150 nsec with flat top ripple within +- 1%. It is found that the focusing strengths and positions of UQ3-UQ7 have to be modified to achieve an achromatic condition at the end of 8/sup 0/-bend. Also, the conceptual design of the H5 magnet and the pulser system are discussed.

  8. Dissociation energies of Ag-RG (RG = Ar, Kr, Xe) and AgO molecules from velocity map imaging studies.

    PubMed

    Cooper, Graham A; Kartouzian, Aras; Gentleman, Alexander S; Iskra, Andreas; van Wijk, Robert; Mackenzie, Stuart R

    2015-09-28

    The near ultraviolet photodissociation dynamics of silver atom-rare gas dimers have been studied by velocity map imaging. Ag-RG (RG = Ar, Kr, Xe) species generated by laser ablation are excited in the region of the C ((2)Σ(+))←X ((2)Σ(+)) continuum leading to direct, near-threshold dissociation generating Ag* ((2)P3/2) + RG ((1)S0) products. Images recorded at excitation wavelengths throughout the C ((2)Σ(+))←X ((2)Σ(+)) continuum, coupled with known atomic energy levels, permit determination of the ground X ((2)Σ(+)) state dissociation energies of 85.9 ± 23.4 cm(-1) (Ag-Ar), 149.3 ± 22.4 cm(-1) (Ag-Kr), and 256.3 ± 16.0 cm(-1) (Ag-Xe). Three additional photolysis processes, each yielding Ag atom photoproducts, are observed in the same spectral region. Two of these are markedly enhanced in intensity upon seeding the molecular beam with nitrous oxide, and are assigned to photodissociation of AgO at the two-photon level. These features yield an improved ground state dissociation energy for AgO of 15 965 ± 81 cm(-1), which is in good agreement with high level calculations. The third process results in Ag atom fragments whose kinetic energy shows anomalously weak photon energy dependence and is assigned tentatively to dissociative ionization of the silver dimer Ag2. PMID:26429006

  9. Polymorphism in Cs[AgZn(NCS)4].

    PubMed

    Güneş, Minna; Valkonen, Jussi

    2002-12-01

    The title compound, caesium silver zinc tetrathiocyanate, crystallizes in two polymorphic forms, in space groups P2(1)/n and C2/c. Both structures form a continuous three-dimensional network. The structure in C2/c contains a delocalized Ag atom in a binuclear-like anion, where two [Ag(NCS)(4)] units (delocalized Ag as an average) share two common NCS(-) ligands. PMID:12466595

  10. Rare and forbidden kaon decays at the AGS

    SciTech Connect

    Kettell, S.

    1997-12-09

    An overview of the Rare Kaon Decay program at the AGS is presented, with particular emphasis on the three major experiments currently running and analyzing data. A brief overview of earlier kaon decay experiments and of the AGs performance improvements is also provided. This review concludes with a discussion of proposed and developing experiments planned to run in the year 2000 and beyond (AGS-2000).

  11. Facile Decoration of Polyaniline Fiber with Ag Nanoparticles for Recyclable SERS Substrate.

    PubMed

    Mondal, Sanjoy; Rana, Utpal; Malik, Sudip

    2015-05-20

    Facile synthesis of polyaniline@Ag composite has been successfully demonstrated by a simple solution-dipping method using high-aspect-ratio benzene tetracarboxylic acid-doped polyaniline (BDP) fiber as a nontoxic reducing agent as well as template cum stabilizer. In BDP@Ag composite, BDP fibers are decorated with spherical Ag nanoparticles (Ag NPs), and the population of Ag NPs on BDP fibers is controlled by changing the molar concentration of AgNO3. Importantly, Ag-NP-decorated BDP fibers (BDP@Ag composites) have been evolved as a sensitive materials for the detection of trace amounts of 4-mercaptobenzoic acid and rhodamine 6G as an analyte of surface-enhanced Raman scattering (SERS), and the detection limit is down to nanomolar concentrations with excellent recyclability. Furthermore, synthesized BDP@Ag composites are applied simultaneously as an active SERS substrate and a superior catalyst for reduction of 4-nitrothiophenol. PMID:25912640

  12. Highly Active Carbon Supported Pd-Ag Nanofacets Catalysts for Hydrogen Production from HCOOH.

    PubMed

    Wang, Wenhui; He, Ting; Liu, Xuehua; He, Weina; Cong, Hengjiang; Shen, Yangbin; Yan, Liuming; Zhang, Xuetong; Zhang, Jinping; Zhou, Xiaochun

    2016-08-17

    Hydrogen is regarded as a future sustainable and clean energy carrier. Formic acid is a safe and sustainable hydrogen storage medium with many advantages, including high hydrogen content, nontoxicity, and low cost. In this work, a series of highly active catalysts for hydrogen production from formic acid are successfully synthesized by controllably depositing Pd onto Ag nanoplates with different Ag nanofacets, such as Ag{111}, Ag{100}, and the nanofacet on hexagonal close packing Ag crystal (Ag{hcp}). Then, the Pd-Ag nanoplate catalysts are supported on Vulcan XC-72 carbon black to prevent the aggregation of the catalysts. The research reveals that the high activity is attributed to the formation of Pd-Ag alloy nanofacets, such as Pd-Ag{111}, Pd-Ag{100}, and Pd-Ag{hcp}. The activity order of these Pd-decorated Ag nanofacets is Pd-Ag{hcp} > Pd-Ag{111} > Pd-Ag{100}. Particularly, the activity of Pd-Ag{hcp} is up to an extremely high value, i.e., TOF{hcp} = 19 000 ± 1630 h(-1) at 90 °C (lower limit value), which is more than 800 times higher than our previous quasi-spherical Pd-Ag alloy nanocatalyst. The initial activity of Pd-Ag{hcp} even reaches (3.13 ± 0.19) × 10(6) h(-1) at 90 °C. This research not only presents highly active catalysts for hydrogen generation but also shows that the facet on the hcp Ag crystal can act as a potentially highly active catalyst. PMID:27454194

  13. Biodynamic modelling of the bioaccumulation of trace metals (Ag, As and Zn) by an infaunal estuarine invertebrate, the clam Scrobicularia plana.

    PubMed

    Kalman, J; Smith, B D; Bury, N R; Rainbow, P S

    2014-09-01

    Biodynamic modelling was used to investigate the uptake and accumulation of three trace metals (Ag, As, Zn) by the deposit feeding estuarine bivalve mollusc Scrobicularia plana. Radioactive labelling techniques were used to quantify the rates of trace metal uptake (and subsequent elimination) from water and sediment diet. The uptake rate constant from solution (±SE) was greatest for Ag (3.954±0.375 l g(-1) d(-1)) followed by As (0.807±0.129 l g(-1) d(-1)) and Zn (0.103±0.016 l g(-1) d(-1)). Assimilation efficiencies from ingested sediment were 40.2±1.3% (Ag), 31.7±1.0% (Zn) and 25.3±0.9% (As). Efflux rate constants after exposure to metals in the solution or sediment fell in the range of 0.014-0.060 d(-1). By incorporating these physiological parameters into biodynamic models, our results showed that dissolved metal is the predominant source of accumulated Ag, As and Zn in S. plana, accounting for 66-99%, 50-97% and 52-98% of total accumulation of Ag, As and Zn, respectively, under different field exposure conditions. In general, model-predicted steady state concentrations of Ag, As and Zn matched well with those observed in clams collected in SW England estuaries. Our findings highlight the potential of biodynamic modelling to predict Ag, As and Zn accumulation in S. plana, taking into account specific dissolved and sediment concentrations of the metals at a particular field site, together with local water and sediment geochemistries. PMID:24880784

  14. Synthesis and characterization of cube-like Ag@AgCl-doped TiO2/fly ash cenospheres with enhanced visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Shaomin; Zhu, Jinglin; Yang, Qing; Xu, Pengpeng; Ge, Jianhua; Guo, Xuetao

    2016-03-01

    A cube-like Ag@AgCl-doped TiO2/fly ash cenosphere composite (denoted Ag@AgCl-TiO2/fly ash cenospheres) was successfully synthesized via a two-step approach. The as-prepared catalysts were characterized by scanning electron microscopy, X-ray diffraction, diffuse reflectance ultraviolet-visible spectroscopy, Brunauer-Emmett-Teller, and X-ray photoelectron spectroscopy. The photocatalytic experiment showed that the rhodamine B degradation rate with Ag@AgCl-TiO2/fly ash cenospheres was 1.56 and 1.33 times higher than that with AgCl-TiO2/fly ash cenospheres and Ag@AgCl, respectively. The degradation ratio of rhodamine B with Ag@AgCl-TiO2/fly ash cenospheres was nearly 100% within 120 min under visible light. Analysis of active species indicated that radO2- and h+ dominated the reaction, and radOH participated in the photocatalytic reactions as an active species. A mechanism for the photocatalytic degradation by the Ag@AgCl-TiO2/fly-ash cenospheres was also proposed based on the experimental results.

  15. H(C)Ag: a triple resonance NMR experiment for (109) Ag detection in labile silver-carbene complexes.

    PubMed

    Weske, Sebastian; Li, Yingjia; Wiegmann, Sara; John, Michael

    2015-04-01

    In silver complexes, indirect detection of (109) Ag resonances via (1) H,(109) Ag-HMQC frequently suffers from small or absent JHAg couplings or rapid ligand dissociation. In these cases, it would be favourable to employ H(X)Ag triple resonance spectroscopy that uses the large one-bond JXAg coupling (where the donor atom of the ligand X is the relay nucleus). We have applied an HMQC-based version of the H(C)Ag experiment to a labile silver-NHC complex (NHC=N-heterocyclic carbene) at natural (13) C isotopic abundance and variable temperature. In agreement with simulations, H(C)Ag detection became superior to (1) H,(109) Ag-HMQC detection above -20 °C. PMID:25641122

  16. Novel visible-light-responsive Ag/AgCl@MIL-101 hybrid materials with synergistic photocatalytic activity.

    PubMed

    Gao, Shutao; Feng, Tao; Feng, Cheng; Shang, Ningzhao; Wang, Chun

    2016-03-15

    In this paper, a novel visible-light responsive photocatalyst of Ag/AgCl@MIL-101 was synthesized via vapor diffusion-photoreduction strategy. The as-prepared composite material was characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, ultraviolet-visible diffuse reflection spectra and X-ray photoelectron spectroscopy. Due to the synergistic effect between Ag/AgCl and MIL-101, the composite photocatalyst exhibited an enhanced and stable photoactivity for the degradation of Rhodamine B under visible light irradiation. The relationship between the photocatalytic activity and the structure of Ag/AgCl@MIL-101 hybrid material was discussed and the possible reaction mechanism was proposed. PMID:26745745

  17. An Ag3PO4/nitridized Sr2Nb2O7 composite photocatalyst with adjustable band structures for efficient elimination of gaseous organic pollutants under visible light irradiation.

    PubMed

    Guo, Jianjun; Zhou, Han; Ouyang, Shuxin; Kako, Tetsuya; Ye, Jinhua

    2014-07-01

    A new Ag3PO4/nitridized Sr2Nb2O7 (N: 0-6.18 wt%) heterojunction was designed to eliminate gaseous pollutants under visible light irradiation. The phase compositions, optical properties, and morphologies of the heterojunction photocatalysts were systematically investigated via powder X-ray diffraction, UV-visible absorption spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Calculations of the electronic structure indicated that the top of the valance band of Sr2Nb2O7 could be raised by nitrogen doping. Therefore, the electronic structure of the Ag3PO4/nitridized Sr2Nb2O7 composite photocatalysts could be continually changed by controlling the amount of nitrogen in nitridized Sr2Nb2O7. Photocatalytic degradation of isopropyl alcohol (IPA) was carried out to test the photocatalytic activity of the heterojunction. The highest activity (CO2 evolution rate, 10.32 ppm h(-1)) was observed over the Ag3PO4/nitridized Sr2Nb2O7 heterojunction prepared by nitridation of Sr2Nb2O7 (SNO) at 1023 K. The CO2 evolution rate over the heterojunction was about 40 times higher than that over pure Ag3PO4 (CO2 evolution rate, 0.26 ppm h(-1)) under visible light irradiation. An investigation of the energy-band structure via valence band X-ray photoelectron spectroscopy indicated that the conduction band (CB) and valence band (VB) of Ag3PO4 are both more positive than those of nitridized Sr2Nb2O7, which facilitates the separation and transfer of photogenerated electrons and holes between the two photocatalysts. By continually adjusting the electronic structures, an optimal band gap for the nitridized Sr2Nb2O7 of 2.15 eV was obtained, and the potential of the valance band was +1.88 eV. PMID:24847986

  18. Increased spectral sensitivity of Si photodetector by surface plasmon effect of Ag nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Hong-Sik; Kumar, Melvin David; Kim, Hyunki; Kim, Joondong

    2016-05-01

    Highly-sensitive Si photodetectors were prepared by using Ag nanowires (AgNWs). A transparent indium-tin-oxide (ITO) coating was coated on a Si substrate followed by spin-coating of AgNWs-containing solution. AgNWs having average length of 5-20 μm with a diameter of about 40-60 nm were observed in FESEM images. The haze effect of AgNWs was totally avoided because of the optimum value of diameter. The transmittance of above 85% was shown by AgNWs over a broad spectral range due to surface plasmon resonance effect. The AgNW-coated device showed an excellent rectifying ratio of 288. Under light illumination, AgNWs-coated device exhibited a significant photoresponse ratio of 5373. This advanced feature of AgNWs-templated method would be applied in broadband wavelength photodetection devices.

  19. Synergistic photocatalytic inactivation mechanisms of bacteria by graphene sheets grafted plasmonic AgAgX (X = Cl, Br, I) composite photocatalyst under visible light irradiation.

    PubMed

    Xia, Dehua; An, Taicheng; Li, Guiying; Wang, Wanjun; Zhao, Huijun; Wong, Po Keung

    2016-08-01

    By coupling graphene sheet and plasmonic photocatalysis technologies, a series of AgAgX/RGOs (X = Cl, Br, I; RGO = reduced graphene oxide) composites were prepared and found to be efficient antimicrobial agents for water disinfection upon visible light. Attributed to the efficient charge transfer by RGO sheets, the optimum AgAgBr/0.5% RGO could completely inactivate 2 × 10(7) cfu mL(-1) of Escherichia coli within 8 min, much faster than bare AgAgBr within 35 min. The synergistic antimicrobial mechanism of AgAgBr/0.5% RGO was studied by Ag(+) ions release evaluation, radical scavengers study, and radical determination. The enhanced photocatalytic activity of irradiated AgAgBr/0.5% RGO originated from the synergistic activities of its three components including Ag, AgBr and RGO, and the proposed mechanisms contained enhanced attraction by RGO followed by two pathways: primary oxidative stress caused by plasma induced reactive species like H2O2 and bactericidal effect of released Ag(+) ions. Furthermore, characterization of E. coli cells using SEM, fluorescent microscopy, and cytoplasmic substance leakage illustrated that VL irradiated AgAgBr/0.5% RGO could not only cause metabolic dysfunction but also destroy the cell envelope and biomolecular, while irradiated Ag(+) ions play a differential bactericidal action with a limited metabolic injury and no cell-membrane damage. The present work provides an efficient water disinfection technology and also opens a new idea in studying the antimicrobial mechanism of plasmonic photocatalyst. PMID:27155987

  20. Freeze-dried PVP-Ag+ precursors to novel AgBr/AgCl-Ag hybrid nanocrystals for visible-light-driven photodegradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Chen, Qianqian; Zhang, Wenjie; Ge, Lianfang; Shao, Gang; Fan, Bingbing; Lu, Hongxia; Zhang, Rui; Yang, Daoyuan; Shao, Guosheng

    2015-04-01

    AgBr/AgCl-Ag nanocrystals with various molar Br-to-Ag ratios (RBr/Ag = 0, 1/3, 1/2, 2/3, 1) and different photoreduction times (0-20 min) were synthesized via stepwise liquid-solid reactions using the freeze-dried PVP-Ag+ hybrid as the Ag source, followed by a photoreduction reaction. The AgBr/AgCl-Ag7.5(1:2) nanocrystals obtained take on a spherical morphology with a particle-size range of 58 ± 15 nm. The photocatalytic performance of AgBr/AgCl-Ag nanocrystals was evaluated by photodegrading organic dyes, 4-chlorophenol and isopropanol under artificial visible light (λ ⩾ 420 nm, 100 mW cm-2). For the decomposition of rhodamine B, the AgBr/AgCl-Ag7.5(1:2) nanocrystals has a photodegradation rate of ∼0.87 min-1, ∼159 times higher than that (∼0.0054 min-1) of TiO2 (P25), whereas the AgCl-Ag and AgBr-Ag nanocrystals have photodegradation rates of 0.35 min-1 and 0.45 min-1, respectively. The efficient separation of photogenerated electron-hole pairs in the ternary system consisting of AgBr, AgCl and Ag species plays a key role in the enhancement of photocatalytic performance.

  1. Polarized proton acceleration at the Brookhaven AGS

    SciTech Connect

    Ahrens, L.A.

    1986-01-01

    At the conclusion of polarized proton commissioning in February 1986, protons with an average polarization of 45%, momentum of 21.7 GeV/c, and intensity of 2 x 10/sup 10/ protons per pulse, were extracted to an external polarimeter at the Brookhaven AGS. In order to maintain this polarization, five intrinsic and nearly forty imperfection depolarizing resonances had to be corrected. An apparent interaction between imperfection and intrinsic resonances occurring at very nearly the same energy was observed and the correction of imperfection resonances using ''beat'' magnetic harmonics discovered in the previous AGS commissioning run was further confirmed.

  2. Superhydrophobic-oleophobic Ag nanowire platform: an analyte-concentrating and quantitative aqueous and organic toxin surface-enhanced Raman scattering sensor.

    PubMed

    Li, Xing; Lee, Hiang Kwee; Phang, In Yee; Lee, Choon Keong; Ling, Xing Yi

    2014-10-21

    The ultratrace detection and quantification of toxins in both water and organic liquids remains a challenge due to the random spreading and dilution of liquids on substrate-based sensors, especially for organic liquids with low surface tension. Herein, we fabricate a superhydrophobic-oleophobic (SHP-OP) 3D Ag nanowire mesh-like surface-enhanced Raman scattering (SERS) platform to overcome the random spreading issue, demonstrating ultratrace toxin sensing in both water and organic liquid. Our SHP-OP SERS platform is able to concentrate analyte solutions in water and toluene to 100-fold and 8-fold smaller areas, respectively, as compared to its omniphilic counterparts. The synergy of analyte-concentrating ability and intense SERS-enhancing properties on our SHP-OP SERS platform enables quantitative and ultratrace detection of melamine and Sudan I down to 0.1 fmol in water and toluene, respectively, using just 1 μL of analyte solution. These detection limits are 10(3)-fold lower than the regulatory limits, clearly indicating our SHP-OP SERS platform as an appealing universal ultratrace toxin sensor. The ultratrace detection of spiked melamine in liquid milk down to 100 fmol also highlights the suitability of our SHP-OP SERS platform for the sensing of food toxins in real samples. PMID:25230236

  3. AGS67E, an Anti-CD37 Monomethyl Auristatin E Antibody–Drug Conjugate as a Potential Therapeutic for B/T-Cell Malignancies and AML: A New Role for CD37 in AML

    PubMed Central

    Pereira, Daniel S.; Guevara, Claudia I.; Jin, Liqing; Mbong, Nathan; Verlinsky, Alla; Hsu, Ssucheng J.; Aviña, Hector; Karki, Sher; Abad, Joseph D.; Yang, Peng; Moon, Sung-Ju; Malik, Faisal; Choi, Michael Y.; An, Zili; Morrison, Kendall; Challita-Eid, Pia M.; Doñate, Fernando; Joseph, Ingrid B.J.; Kipps, Thomas J.; Dick, John E.; Stover, David R.

    2015-01-01

    CD37 is a tetraspanin expressed on malignant B cells. Recently, CD37 has gained interest as a therapeutic target. We developed AGS67E, an antibody–drug conjugate that targets CD37 for the potential treatment of B/T-cell malignancies. It is a fully human monoclonal IgG2 antibody (AGS67C) conjugated, via a protease-cleavable linker, to the microtubule-disrupting agent mono-methyl auristatin E (MMAE). AGS67E induces potent cytotoxicity, apoptosis, and cell-cycle alterations in many non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL) cell lines and patient-derived samples in vitro. It also shows potent antitumor activity in NHL and CLL xenografts, including Rituxan-refractory models. During profiling studies to confirm the reported expression of CD37 in normal tissues and B-cell malignancies, we made the novel discovery that the CD37 protein was expressed in T-cell lymphomas and in AML. AGS67E bound to >80% of NHL and T-cell lymphomas, 100% of CLL and 100% of AML patient-derived samples, including CD34+CD38− leukemic stem cells. It also induced cytotoxicity, apoptosis, and cell-cycle alterations in AML cell lines and antitumor efficacy in orthotopic AML xenografts. Taken together, this study shows not only that AGS67E may serve as a potential therapeutic for B/T-cell malignancies, but it also demonstrates, for the first time, that CD37 is well expressed and a potential drug target in AML. PMID:25934707

  4. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae.

    PubMed

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-01-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag(+), C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag(+), and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs. PMID:27615743

  5. Communication: Kinetics of chemical ordering in Ag-Au and Ag-Ni nanoalloys

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Fortunelli, A.; Negreiros, F.; Wales, D. J.

    2013-09-01

    The energy landscape and kinetics of medium-sized Ag-Au and Ag-Ni nanoalloy particles are explored via a discrete path sampling approach, focusing on rearrangements connecting regions differing in chemical order. The highly miscible Ag27Au28 supports a large number of nearly degenerate icosahedral homotops. The transformation from reverse core-shell to core-shell involves large displacements away from the icosahedron through elementary steps corresponding to surface diffusion and vacancy formation. The immiscible Ag42Ni13 naturally forms an asymmetric core-shell structure, and about 10 eV is required to extrude the nickel core to the surface. The corresponding transformation occurs via a long and smooth sequence of surface displacements. For both systems the rearrangement kinetics exhibit Arrhenius behavior. These results are discussed in the light of experimental observations.

  6. Stability of Ag nanoparticles dispersed in amphiphilic organic matrix

    NASA Astrophysics Data System (ADS)

    Suvorova, Elena I.; Klechkovskaya, Vera V.; Kopeikin, Victor V.; Buffat, Philippe A.

    2005-02-01

    Nano- and thin-film technologies based on novel systems associating metals particles to polymer matrix open a broad range of different applications. Such composites were found to be more efficient and safe, for instance, in biomedical needs. The Ag/poly(N-vinyl-2-pyrrolidone) (Ag/PVP) composite investigated in the present work is a new bactericide mean applied in complicated cases of infected burns and purulent wounds. High-resolution transmission electron microscopy (HRTEM) and X-ray energy-dispersive (EDS) microanalysis were used to bring chemical and structural information in a study of the properties and stability of thin-film nanocomposite whih consisted of Ag nanoparticles dispersed in water-soluble organic matrix poly(N-vinyl-2-pyrrolidone). The nanostructural investigation of Ag/PVP composite by HRTEM and EDS exposed to SO 2 and H 2S from the atmosphere and some traces of S-containing substances explains the limited stability of this system by a structural modification associated with a phase change and formation of Ag 2S and Ag 2SO 3. However, formation of the hardly water-soluble Ag 2S and Ag 2SO 3 salts may play an important role in the suppression of bacterial growth. On the one hand, silver could block S-H groups in vital proteins and conduced to their destruction, in that way revealing the antibacterial power. On the other hand, antiseptic properties of Ag consist in binding the products of the protein decay.

  7. AGS experiments -- 1995, 1996 and 1997

    SciTech Connect

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  8. AGS experiments -- 1991, 1992, 1993. Tenth edition

    SciTech Connect

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

  9. Development of Ag dendrites-reduced graphene oxide composite catalysts via galvanic replacement reaction

    NASA Astrophysics Data System (ADS)

    Fu, Li; Sokiransky, Mika Matsunaka; Wang, James; Lai, Guosong; Yu, Aimin

    2016-09-01

    Silver dendrites/reduced graphene oxide (AgD/RGO) composites were synthesized via a facile galvanic replacement method. The successful formation of Ag dendrites and the graphene oxide reduction were proved by a series of characterization techniques. The possible formation mechanism of Ag dendrites during the galvanic replacement reaction was discussed. The catalytic activity of the as-synthesized AgD/RGO composite was evaluated by its performance on the chemical reduction of an organic dye methylene blue. The AgD/RGO composite showed a much higher catalytic performance and stability than that of Ag dendrites.

  10. The isotopic composition of AG in meteorites and the presence of Pd-107 in protoplanets

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Wasserburg, G. J.

    1990-06-01

    Results are presented on the isotopic composition of Ag and the concentrations of Pd and Ag in metal and sulfide phases in iron meteorites Gibeon, Derrick Peak, and Mundrabilla and in schereibersite in Derrick Peak. It was found that almost all iron meteorite samples with a ratio of Pd-108/Ag-109 greater than about 400 had an excess of Ag-107. The results, in conjunction with the data of Chen and Wasserburg (1983) on IIIA-IIIB meteorites, demonstrate the widespread occurrence of excess Ag-107 in diverse types of small early planetary bodies. The excess Ag-107 is believed to be produced by the decay of Pd-107.

  11. In Situ EXAFS and TEM Investigations of Ag Nanoparticles in Glass

    SciTech Connect

    Schneider, R.; Dubiel, M.; Haug, J.; Hofmeister, H.

    2007-02-02

    Ag particle-glass composites produced by ion exchange processes of soda-lime glasses were investigated by EXAFS spectroscopy at the Ag K-edge. The spectra measured at 10 K were used to characterize the structure of nanoparticles as a result of ion exchange. The evolution of Ag K-edge EXAFS oscillations measured by in situ heating at 823 K as a function of time clearly shows an increase of Ag-Ag distance and coordination number caused by annealing. Together with transmission electron microscopy characterization a preferred growth of Ag particles with respect to nucleation has been found that leads to increased particle sizes in deeper glass regions.

  12. Destabilization of Ag nanoislands on Ag(100) by adsorbed sulfur

    SciTech Connect

    Shen, Mingmin; Russell, Selena M.; Liu, Da-Jiang; Thiel, Patricia A.

    2011-10-17

    Sulfur accelerates coarsening of Ag nanoislands on Ag(100) at 300 K, and this effect is enhanced with increasing sulfur coverage over a range spanning a few hundredths of a monolayer, to nearly 0.25 monolayers. We propose that acceleration of coarsening in this system is tied to the formation of AgS{sub 2} clusters primarily at step edges. These clusters can transport Ag more efficiently than can Ag adatoms (due to a lower diffusion barrier and comparable formation energy). The mobility of isolated sulfur on Ag(100) is very low so that formation of the complex is kinetically limited at low sulfur coverages, and thus enhancement is minimal. However, higher sulfur coverages force the population of sites adjacent to step edges, so that formation of the cluster is no longer limited by diffusion of sulfur across terraces. Sulfur exerts a much weaker effect on the rate of coarsening on Ag(100) than it does on Ag(111). This is consistent with theory, which shows that the difference between the total energy barrier for coarsening with and without sulfur is also much smaller on Ag(100) than on Ag(111).

  13. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Zanjanchi, M. A.; Razavi, M.

    2014-09-01

    Metal-semiconductor compounds, such as Ag/AgX (X = Cl, Br, I), enable visible light absorption and separation of photogenerated electron-hole through surface plasmon resonance (SPR) effect. However, the electron-hole generated and separated by light are vulnerable in Ag/AgX phase because of the occurrence of secondary recombined. In order to more effectively utilize the SPR photocatalytic effect, nanoparticles are located in a matrix. In this article, Ag/AgCl nanoparticles were synthesized in montmorillonite (MMT) matrix using dispersion method and light irradiation. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed intercalation of Ag/AgCl nanoparticles into the clay layers. The as-prepared plasmonic photocatalyst exhibited an enhanced and stable photoactivity for the degradation of methylene blue (MB) under visible light. The high activity was attributed to the surface plasmon resonance (SPR) exhibited by Ag nanoparticles on the surface of AgCl. The detection of reactive species by radical scavengers displays that rad O2- and rad OH- are the main reactive species for the degradation of MB under visible light irradiation. The studies showed that 20 min illumination under visible light can complete degradation of methylene blue (MB), and indicate a high stability of photocatalytic degradation. The mechanism of separation of the photo-generated electrons and holes at the Ag/AgCl-MMT nanocomposite was discussed.

  14. Jak1/Stat3 is an upstream signaling of NF-κB activation in Helicobacter pylori-induced IL-8 production in gastric epithelial AGS cells.

    PubMed

    Cha, Boram; Lim, Joo Weon; Kim, Hyeyoung

    2015-05-01

    Helicobacter pylori (H. pylori) induces the activation of nuclear factor-kB (NF-κB) and cytokine expression in gastric epithelial cells. The Janus kinase/signal transducers and activators of transcription (Jak/Stat) cascade is the inflammatory signaling in various cells. The purpose of the present study is to determine whether H. pylori-induced activation of NF-κB and the expression of interleukin-8 (IL-8) are mediated by the activation of Jak1/Stat3 in gastric epithelial (AGS) cells. Thus, gastric epithelial AGS cells were infected with H. pylori in Korean isolates (HP99) at bacterium/cell ratio of 300:1, and the level of IL-8 in the medium was determined by enzyme-linked immonosorbent assay. Phospho-specific and total forms of Jak1/Stat3 and IκBα were assessed by Western blot analysis, and NF-κB activation was determined by electrophoretic mobility shift assay. The results showed that H. pylori induced the activation of Jak1/Stat3 and IL-8 production, which was inhibited by a Jak/Stat3 specific inhibitor AG490 in AGS cells in a dose-dependent manner. H. pylori-induced activation of NF-κB, determined by phosphorylation of IκBα and NF-κB-DNA binding activity, were inhibited by AG490. In conclusion, Jak1/Stat3 activation may mediate the activation of NF-κB and the expression of IL-8 in H. pylori-infected AGS cells. Inhibition of Jak1/Stat3 may be beneficial for the treatment of H. pylori-induced gastric inflammation, since the activation of NF-κB is inhibited and inflammatory cytokine expression is suppressed. PMID:25837197

  15. Jak1/Stat3 Is an Upstream Signaling of NF-κB Activation in Helicobacter pylori-Induced IL-8 Production in Gastric Epithelial AGS Cells

    PubMed Central

    Cha, Boram; Lim, Joo Weon

    2015-01-01

    Helicobacter pylori (H. pylori) induces the activation of nuclear factor-kB (NF-κB) and cytokine expression in gastric epithelial cells. The Janus kinase/signal transducers and activators of transcription (Jak/Stat) cascade is the inflammatory signaling in various cells. The purpose of the present study is to determine whether H. pylori-induced activation of NF-κB and the expression of interleukin-8 (IL-8) are mediated by the activation of Jak1/Stat3 in gastric epithelial (AGS) cells. Thus, gastric epithelial AGS cells were infected with H. pylori in Korean isolates (HP99) at bacterium/cell ratio of 300:1, and the level of IL-8 in the medium was determined by enzyme-linked immonosorbent assay. Phospho-specific and total forms of Jak1/Stat3 and IκBα were assessed by Western blot analysis, and NF-κB activation was determined by electrophoretic mobility shift assay. The results showed that H. pylori induced the activation of Jak1/Stat3 and IL-8 production, which was inhibited by a Jak/Stat3 specific inhibitor AG490 in AGS cells in a dose-dependent manner. H. pylori-induced activation of NF-κB, determined by phosphorylation of IκBα and NF-κB-DNA binding activity, were inhibited by AG490. In conclusion, Jak1/Stat3 activation may mediate the activation of NF-κB and the expression of IL-8 in H. pylori-infected AGS cells. Inhibition of Jak1/Stat3 may be beneficial for the treatment of H. pylori-induced gastric inflammation, since the activation of NF-κB is inhibited and inflammatory cytokine expression is suppressed. PMID:25837197

  16. Direct observation of two-electron Ag(I)/Ag(III) redox cycles in coupling catalysis.

    PubMed

    Font, Marc; Acuña-Parés, Ferran; Parella, Teodor; Serra, Jordi; Luis, Josep M; Lloret-Fillol, Julio; Costas, Miquel; Ribas, Xavi

    2014-01-01

    Silver is extensively used in homogeneous catalysis for organic synthesis owing to its Lewis acidity, and as a powerful one-electron oxidant. However, two-electron redox catalytic cycles, which are most common in noble metal organometallic reactivity, have never been considered. Here we show that a Ag(I)/Ag(III) catalytic cycle is operative in model C-O and C-C cross-coupling reactions. An aryl-Ag(III) species is unequivocally identified as an intermediate in the catalytic cycle and we provide direct evidence of aryl halide oxidative addition and C-N, C-O, C-S, C-C and C-halide bond-forming reductive elimination steps at monometallic silver centres. We anticipate our study as the starting point for expanding Ag(I)/Ag(III) redox chemistry into new methodologies for organic synthesis, resembling well-known copper or palladium cross-coupling catalysis. Furthermore, findings described herein provide unique fundamental mechanistic understanding on Ag-catalysed cross-coupling reactions and dismiss the generally accepted conception that silver redox chemistry can only arise from one-electron processes. PMID:25014317

  17. A stretcher for the Brookhaven AGS

    SciTech Connect

    Foelsche, H.W.J.

    1989-01-01

    This paper summarizes the conceptual design of a 30 GeV Stretcher ring, which is designed to increase the capacity and the quality of the experimental physics program at the AGS. In a typical 3 second operating cycle the AGS now accomplishes two functions: accelerating the beam to full energy and then providing a slow spill on a 30 GeV flattop. These tasks consume approximately equal time. The proposed Stretcher, a dc storage ring, will take up the task of distributing the high energy beam with a continuous slow spill, making it possible for the AGS to provide beam for the program at more than twice the present repetition rate. Thus the average current delivered to the experimenters will be more than doubled, and the duty cycle of the spill will increase from the present optimum of about 40% to nearly 100%. The Stretcher will continue the gradual evolution of the AGS toward a kaon factory. At present, the AGS provides about 1 {mu}A average proton current. A Booster, now under construction, is expected to increase the current to above 4 {mu}a, and the Stretcher to about 8-10 {mu}A, an order of magnitude higher than now. 5 refs., 6 figs., 1 tab.

  18. Ag@AgI, core@shell structure in agarose matrix as hybrid: synthesis, characterization, and antimicrobial activity.

    PubMed

    Ghosh, Somnath; Saraswathi, A; Indi, S S; Hoti, S L; Vasan, H N

    2012-06-01

    A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria. PMID:22582868

  19. Synthesis of polydopamine at the femtoliter scale and confined fabrication of Ag nanoparticles on surfaces.

    PubMed

    Guardingo, M; Esplandiu, M J; Ruiz-Molina, D

    2014-10-25

    Nanoscale polydopamine motifs are fabricated on surfaces by deposition of precursor femtolitre droplets using an AFM tip and employed as confined reactors to fabricate Ag nanoparticle patterns by in situ reduction of a Ag(+) salt. PMID:25195667

  20. Structural control of tertiary Au-Ag-bearing breccias in an extensional environment, Nelson area, Southern Nevada, USA

    NASA Astrophysics Data System (ADS)

    Craw, D.; McKeag, S. A.

    1995-02-01

    Gold-silver mineralization in the Nelson area of southern Nevada was controlled by structures associated with intrusion of an east-west oriented pluton. Flatlying breccias formed during intrusion have allowed passive flooding of highly permeable zones and deposition of mineralized quartz and calcite. Steep fractures were formed in the pluton and immediate country rock during cooling, and later reactivated by north-south extension. These fractures have channelled fluids, and some have been the sites of hydrothermal eruptions which produced further brecciation and deposition of mineralized quartzcalcite veins. The mineralizing fluid was water which was boiling at or near 100 °C. The calcite deposited by this water has δ 13C = -5.4 to -7.1, and δ 18O = +5.8 to +11.3, and the water was probably meteoric in origin. Mineralization had an epithermal style, with strong local structural control, rather than deep-sourced regional detachment-related hydrothermal origin.

  1. Distribution of Pd, Ag & U in the SiC Layer of an Irradiated TRISO Fuel Particle

    SciTech Connect

    Thomas M. Lillo; Isabella J. van Rooyen

    2014-08-01

    The distribution of silver, uranium and palladium in the silicon carbide (SiC) layer of an irradiated TRISO fuel particle was studied using samples extracted from the SiC layer using focused ion beam (FIB) techniques. Transmission electron microscopy in conjunction with energy dispersive x-ray spectroscopy was used to identify the presence of the specific elements of interest at grain boundaries, triple junctions and precipitates in the interior of SiC grains. Details on sample fabrication, errors associated with measurements of elemental migration distances and the distances migrated by silver, palladium and uranium in the SiC layer of an irradiated TRISO particle from the AGR-1 program are reported.

  2. EMU Ag-Zn battery wet-life extension test

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Wooten, Claude M.

    1992-01-01

    The Extravehicular Mobility Unit (EMU) silver/zinc (Ag/Zn) battery is an 11 cell battery of approximately 30 AH. The Ag/Zn battery is comprised of two 4-cell monoblocks and one 3-cell monoblock. A discussion of a wet-life extension test performed on the battery is given in viewgraph form.

  3. An empirical investigation on thermal characteristics and pressure drop of Ag-oil nanofluid in concentric annular tube

    NASA Astrophysics Data System (ADS)

    Abbasian Arani, A. A.; Aberoumand, H.; Aberoumand, S.; Jafari Moghaddam, A.; Dastanian, M.

    2016-08-01

    In this work an experimental study on Silver-oil nanofluid was carried out in order to present the laminar convective heat transfer coefficient and friction factor in a concentric annulus with constant heat flux boundary condition. Silver-oil nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. The average sizes of particles were 20 nm. Nanofluids with various particle Volume fractions of 0.011, 0.044 and 0.171 vol% were employed. The nanofluid flowing between the tubes is heated by an electrical heating coil wrapped around it. The effects of different parameters such as flow Reynolds number, tube diameter ratio and nanofluid particle concentration on heat transfer coefficient are studied. Results show that, heat transfer coefficient increased by using nanofluid instead of pure oil. Maximum enhancement of heat transfer coefficient occurs in 0.171 vol%. In addition the results showed that, there are slight increases in pressure drop of nanofluid by increasing the nanoparticle concentration of nanofluid in compared to pure oil.

  4. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation

    NASA Astrophysics Data System (ADS)

    González-Castillo, Jr.; Rodriguez, E.; Jimenez-Villar, E.; Rodríguez, D.; Salomon-García, I.; de Sá, Gilberto F.; García-Fernández, T.; Almeida, DB; Cesar, CL; Johnes, R.; Ibarra, Juana C.

    2015-10-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag+ concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM).

  5. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation.

    PubMed

    González-Castillo, J R; Rodriguez, E; Jimenez-Villar, E; Rodríguez, D; Salomon-García, I; de Sá, Gilberto F; García-Fernández, T; Almeida, D B; Cesar, C L; Johnes, R; Ibarra, Juana C

    2015-12-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag(+) concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM). PMID:26464175

  6. Fermi surfaces of surface states on Si(111)-Ag, Au

    NASA Astrophysics Data System (ADS)

    Crain, J. N.; Altmann, K. N.; Bromberger, C.; Himpsel, F. J.

    2002-11-01

    Metallic surface states on semiconducting substrates provide an opportunity to study low-dimensional electrons decoupled from the bulk. Angle resolved photoemission is used to determine the Fermi surface, group velocity, and effective mass for surface states on Si(111)(3)×(3)-Ag, Si(111)(3)×(3)-Au, and Si(111)(21)×(21)-(Ag+Au). For Si(111)(3)×(3)-Ag the Fermi surface consists of small electron pockets populated by electrons from a few % excess Ag. For Si(111)(21)×(21)-(Ag+Au) the pockets increase their size corresponding to a filling by three electrons per unit cell. The (21)×(21) superlattice leads to an intricate surface umklapp pattern and to minigaps of 110 meV, giving an interaction potential of 55 meV for the (21)×(21) superlattice.

  7. Spin relaxation characteristics in Ag nanowire covered with various oxides

    NASA Astrophysics Data System (ADS)

    Karube, S.; Idzuchi, H.; Kondou, K.; Fukuma, Y.; Otani, Y.

    2015-09-01

    We have studied spin relaxation characteristics in a Ag nanowire covered with various oxide layers of Bi2O3, Al2O3, HfO2, MgO, or AgOx by using non-local spin valve structures. The spin-flip probability, a ratio of momentum relaxation time to spin relaxation time at 10 K, exhibits a gradual increase with an atomic number of the oxide constituent elements, Mg, Al, Ag, and Hf. Surprisingly, the Bi2O3 capping was found to increase the probability by an order of magnitude compared with other oxide layers. This finding suggests the presence of an additional spin relaxation mechanism such as Rashba effect at the Ag/Bi2O3 interface, which cannot be explained by the simple Elliott-Yafet mechanism via phonon, impurity, and surface scatterings. The Ag/Bi2O3 interface may provide functionality as a spin to charge interconversion layer.

  8. Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition

    SciTech Connect

    Leng Jian; Yu Zhinong; Xue Wei; Zhang Ting; Jiang Yurong; Zhang Jie; Zhang Dongpu

    2010-10-15

    The structural, optical, and electrical characteristics of zinc sulfide (ZnS)/Ag/ZnS (ZAZ) multilayer films prepared by ion beam assisted deposition on k9 glass have been investigated as a function of Ag layer thickness. The characteristics of ZAZ multilayer are significantly improved up insertion of optimal Ag thickness between ZnS layers. The results show that due to bombardment of Ar ion beam, distinct Ag islands evolve into continuous Ag films at a thin Ag thickness of about 4 nm. The thinner Ag film as a thickness of 2 nm leads to high sheet resistance and low transmittance for the interface scattering induced by the Ag islands or noncontinuous films; and when the Ag thickness is over 4 nm, the ZAZ multilayer exhibits a remarkably reduced sheet resistance between 7-80 {Omega}/sq for the increase in carrier concentration and mobility of Ag layer, and a high transmittance over 90% for the interference phenomena of multilayers and low absorption and surface scattering of Ag layer. The ZAZ multilayer with 14 nm Ag film has a figure of merit up to 6.32x10{sup -2} {Omega}{sup -1}, an average transmittance over 92% and a sheet resistance of 7.1 {Omega}/sq. The results suggest that ZAZ film has better optoelectrical properties than conditional indium tin oxide single layer.

  9. Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites

    SciTech Connect

    Li, Xiaojuan Tang, Duanlian; Tang, Fan; Zhu, Yunyan; He, Changfa; Liu, Minghua Lin, Chunxiang; Liu, Yifan

    2014-08-15

    Highlights: • A plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} photocatalyst has been successfully synthesized. • Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites exhibit high visible light photocatalytic activity. • Ag/AgBr/ZnFe{sub 2}O{sub 4} photocatalyst is stable and magnetically separable. - Abstract: A visible-light-driven plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposite has been successfully synthesized via a deposition–precipitation and photoreduction through a novel one-pot process. X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy were employed to investigate the crystal structure, chemical composition, morphology, and optical properties of the as-prepared nanocomposites. The photocatalytic activities of the nanocomposites were evaluated by photodegradation of Rhodamine B (RhB) and phenol under visible light. The results demonstrated that the obtained Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites exhibited higher photocatalytic activity as compared to pure ZnFe{sub 2}O{sub 4}. In addition, the sample photoreduced for 20 min and calcined at 500 °C achieved the highest photocatalytic activity. Furthermore, the Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposite has high stability under visible light irradiation and could be conveniently separated by using an external magnetic field.

  10. Understanding nanostructures in thermoelectric materials: an electron microscopy study of AgPb{sub 18}SbSe{sub 20} crystals.

    SciTech Connect

    Lioutas, C. B.; Frangis, N.; Todorov, I.; Chung, D. Y.; Kanatzidis, M. G.; Materials Science Division; Aristotle Univ. Thessaloniki; Northwestern Univ.

    2010-01-01

    The characterization and understanding of the presence of nanostructuring in bulk thermoelectric materials requires real space atomic level information. We report electron diffraction and high-resolution transmission electron microscopy studies of crystals of the system AgPb{sub 18}SbSe{sub 20} (=18PbSe + AgSbSe{sub 2}) which reveal that this system is nanostructured rather than a solid solution. Nanocrystals of varying sizes are found, endotaxially grown in the matrix of PbSe (phase A), and consist of two phases, a cubic one (phase B) and a tetragonal one (phase C). Well-defined coherent interfaces between the phases in the same nanocrystals are observed. On the basis of the results of combined electron crystallography techniques, we propose reasonable structural models for the phases B and C. There are significant differences in the nanostructuring chemistry between AgPb{sub 18}SbSe{sub 20} and the telluride analog AgPb{sub 18}SbTe{sub 20} (LAST-18).

  11. Siberian Snake solenoid for the AGS

    SciTech Connect

    Ratner, L. G.

    1991-01-01

    Recent experiments at the Indiana University Cyclotron Facility (IUCF) have demonstrated that Siberian Snakes'' can be used to preserve the polarization of an accelerated polarized beam in a circular accelerator. Retrofitting full snakes into accelerators such as the Alternating Gradient Synchrotron (AGS) at Brookhaven is almost impossible due to space limitations, but a partial snake that can correct depolarization due to imperfection resonances with 1/20 to 1/30 of a full strength snake seems to present a viable option. We describe such a device for the AGS and give the design criteria in terms of simplicity of accelerator operation and level of achievable polarization. 2 refs., 5 figs., 1 tab.

  12. The axisymmetric stellar wind of AG Carinae

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, Regina E.; Clayton, Geoffrey C.; Hillier, D. John; Harries, Tim J.; Howarth, Ian D.

    1994-01-01

    We present optical linear spectropolarimetry of the Luminous Blue Variable AG Carinae obtained after a recent visual brightness increase. The absence of He II lambda 4686 emission, together with the weakening of the He I spectrum and the appearance of Fe lines in the region around 5300 A, confirm that AG Car has started a new excursion across the HR diagram. The H alpha line profile exhibits very extended line wings that are polarized differently in both amount and position angle from either the continuum or the line core. The polarization changes across H alpha, together with variable continuum polarization, indicate the presence of intrinsic polarization. Coexistence of the line-wing polarization with extended flux-line wings evidences that both are formed by electron scattering in a dense wind. The position angle rotates across the line profiles, in a way that presently available models suggest is due to rotation and expansion of the scattering material. AG Car displays very large variations of its linear polarization with time, Delta P approximately 1.2%, indicating significant variations in envelope opacity. We find that the polarization varies along a preferred position angle of approximately 145 deg (with a scatter of +/- 10 deg) which we interpret as a symmetry axis of the stellar wind (with an ambiguity of 90 deg). This position angle is co-aligned with the major axis of the AG Car ring nebula and perpendicular to the AG Car jet. Our observations thus suggest that the axisymmetric geometry seen in the resolved circumstellar environment at various distances already exists within a few stellar radii of AG Car. From the H alpha polarization profile we deduce an interstellar polarization of Q = 0.31%, U = -1.15% at H alpha. The inferred interstellar polarization implies that the intrinsic polarization is not always of the same sign. This indicates either significant temporal changes in the envelope geometry, or it may arise from effects of multiple scattering

  13. Measurement of the thermodynamic properties of saturated solid solutions of compounds in the Ag-Sn-Se system by the EMF method

    NASA Astrophysics Data System (ADS)

    Moroz, M. V.; Prokhorenko, M. V.

    2015-08-01

    The dependence of the EMF ( E) of galvanic cells Ag|AgI|Ag2GeS3 glass| D on temperature (where Ag, D denotes the electrodes of an electrochemical cell; D represents equilibrium two- and three-phase alloys of the Ag-Sn-Se system; and AgI|Ag2GeS3 glass is a bilayer membrane with purely ionic (Ag+) conductivity) is studied in the range of 480-580 K. Analytical equations of E( T) are used to calculate the values of the thermodynamic functions of saturated solid solutions of the SnSe, β-Ag2Se, AgSnSe2, and Ag8SnSe6 phases of the Ag-Sn-Se system in the standard state.

  14. The role of reduction extent of graphene oxide in the photocatalytic performance of Ag/AgX (X = Cl, Br)/rGO composites and the pseudo-second-order kinetics reaction nature of the Ag/AgBr system.

    PubMed

    Gao, Weiyin; Ran, Chenxin; Wang, Minqiang; Li, Le; Sun, Zhongwang; Yao, Xi

    2016-07-21

    Although reduced graphene oxide (rGO)-based photocatalyst composites have been intensively developed during the past few years, the influence of reduction extent of rGO on the photocatalytic performance of the rGO-based composite has virtually not been investigated due to some technical limitations, such as the poor water dispersibility of rGO and low reduction selectivity of the hydrothermal method, which make it difficult to control the reduction extent of rGO in these composites. Herein, we used a facile room-temperature method to synthesize Ag/AgX (X = Cl, Br)/rGO photocatalyst composites as a model to study the effect of reduction extent of rGO on the photocatalytic performance of the photocatalyst. It was found that the photocatalytic activities of both Ag/AgCl/PrGO and Ag/AgBr/PrGO systems had an optimized threshold of the reduction extent of photoreduced GO (PrGO). More importantly, due to the different conductive band values of AgCl and AgBr, the optimized thresholds in the two systems were at different PrGO reduction extents, based on which we proposed that the favorable energy band matching between AgX and PrGO in the two systems played a crucial role in obtaining high photocatalysis performance. Besides, the photocatalytic reaction of the Ag/AgBr based system was confirmed to be a pseudo-second-order kinetics reaction rather than pseudo-first-order kinetics reaction. The new insights presented in this work provided useful information on the design and development of a more sophisticated photocatalyst, and can also be applied to many other applications. PMID:27332751

  15. Formation of AgFeO2, α-FeOOH, and Ag2O from mixed Fe(NO3)3-AgNO3 solutions at high pH

    NASA Astrophysics Data System (ADS)

    Krehula, Stjepko; Musić, Svetozar

    2013-07-01

    Precipitation of ternary oxide silver ferrite (AgFeO2), iron oxyhydroxide goethite (α-FeOOH) and silver(I) oxide (Ag2O) from mixed Fe(NO3)3-AgNO3 solutions in a whole [Ag+]:[Fe3+] concentration ratio range at high pH was investigated using X-ray powder diffraction (XRD), 57Fe Mössbauer, FT-IR and UV-Vis-NIR spectroscopies and field emission scanning electron microscopy (FE-SEM). Strong alkalis organic tetramethylammonium hydroxide (TMAH) or inorganic NaOH were used as precipitating agents. Monodispersed lath-like α-FeOOH particles were formed from a pure Fe(NO3)3 solution. The presence of Ag+ ions influenced the formation of the delafossite-type ternary oxide AgFeO2 beside α-FeOOH. The positions of XRD and Mössbauer lines did not suggest any significant incorporation of Ag+ ions into the α-FeOOH structure. AgFeO2 was formed in the precipitation system with the equimolar initial [Ag+]:[Fe3+] concentration ratio. The size and shape of AgFeO2 particles, as well as their structural polytype (2H or 3R), were dependent on reaction temperature, aging time and alkali used. In systems with an excess of Ag+ ions mixtures of AgFeO2 and Ag2O were formed. Single phase Ag2O precipitated from a pure AgNO3 solution.

  16. Electrical Characteristics of an Ag/n-InP Schottky Diode Based on Temperature-Dependent Current-Voltage and Capacitance-Voltage Measurements

    NASA Astrophysics Data System (ADS)

    Gülnahar, Murat

    2015-09-01

    The rectifying junction properties of an Ag/n-InP Schottky diode are investigated in a wide temperature range from 10 K to 300 K (-263 °C to 27 °C). The electronic structure of the junction is analyzed by the techniques of current-voltage I- V and capacitance-voltage C- V measurement as a function of temperature. The electrical parameters are characterized with the standard thermionic emission theory. The main electrical characteristics including the values of apparent barrier height and ideality factor n are found to be 0.414 eV and 1.008 at 300 K (27 °C), respectively, even though the value of barrier height at 300 K (27 °C) from C- V data is 0.417 eV. The , n, and Richardson plot demonstrate strong temperature dependency; that is, the decreases, n increases, and the Richardson plot deviates with decreasing temperature. Such behaviors are attributed to Schottky barrier anomalies, which are explained by assuming the existence of a Gaussian distribution of nanometer-sized patches with low barrier height at the interface. The accurate theoretical models such as Tung's lateral inhomogeneity and multi-Gaussian distribution to comment the barrier inhomogeneity on the electron transport across the interface are applied, and the comparisons between these approaches for the present experimental results are carried out. According to the multi-Gaussian distribution approach, the double-Gaussian nature of Ag/n-InP/In is commented by the values of the weighting coefficients, standard deviations, and mean barrier height calculated for each distribution. The total effective area of the patches is calculated for high and low temperatures, and as a result, it is found that the low barrier regions influence significantly the electron transport at the interface of the junction. The discrepancy between I- V and C- V barrier heights is discussed based on a Gaussian approach. From the linear relationship between and n, the homogeneous barrier height is noted to be 0.418 eV. The

  17. Breakthrough of the p-type doping bottleneck in ZnO by inserting an ultrathin ZnX (X  =  S, Se and Te) layer doped with NX or AgZn

    NASA Astrophysics Data System (ADS)

    Jiang, Xin-he; Shi, Jun-jie; Zhang, Min; Zhong, Hong-xia; Huang, Pu; Ding, Yi-min; Cao, Xiong; Wu, Meng; Liao, Zhi-min

    2016-03-01

    The worldwide problem of p-type doping in ZnO is investigated based on first-principles calculations by combining the standard density functional theory and hybrid functional methods. We find that p-type doping can be realized by inserting an ultrathin ZnX (X  =  S, Se and Te) layer, doped with NX or AgZn, into ZnO to form short-period (ZnO) m /(ZnX) n (m  >  n) superlattices. The formation energy is the lowest for NX or AgZn in the ZnX layer. The Zn-rich (Zn-poor) condition is favourable for the formation of the NX (AgZn) defect. Compensation by the native defects can be avoided for the Ag-doped (ZnO) m /(ZnX) n under the Zn-poor condition. The N (Ag) acceptor activation energy can be reduced from 0.45 (0.43) eV in ZnO to 0.33 (0.32) eV in (ZnO)5/(ZnS)1, 0.20 (0.24) eV in (ZnO)5/(ZnSe)1 and 0.12 (0.13) eV in (ZnO)5/(ZnTe)1, which is caused by the ZnX-monolayer modulation to the local structure around the NX or AgZn defect and the high-lying p-derived valence bands. Moreover, the band gaps can be tuned from 3.40 eV of ZnO to 3.21 eV of (ZnO)5/(ZnS)1, 2.41 eV of (ZnO)5/(ZnSe)1 and 2.26 eV of (ZnO)5/(ZnTe)1, which is promising for the integration of ZnO-based white light-emitting diodes.

  18. Theory of doping properties of Ag acceptors in ZnO

    NASA Astrophysics Data System (ADS)

    Volnianska, O.; Boguslawski, P.; Kaczkowski, J.; Jakubas, P.; Jezierski, A.; Kaminska, E.

    2009-12-01

    Doping properties of Ag in ZnO were analyzed by first-principles calculations within both the local-density and generalized gradient approximations. The ionization energy of AgZn , about 0.2 eV, is comparable to that of the commonly used group-V acceptors, and is lower than that of two other IB species, Cu and Au. Formation energy of Ag in the favorable O-rich conditions is 0.85 eV, which corresponds to the solubility limit of about 1018cm-3 at 700°C . Formation of Ag-rich second phases is predicted for high Ag concentrations. Energetics of the onset of this process is analyzed and AgZn display a tendency to form aggregates of AgO with the wurtzite structure. Formation of such nanoinclusions is shown to affect the lattice constant of ZnO:Ag. Two “wrong” incorporation channels, i.e., at the interstitial sites and at the oxygen sites as AgO , are predicted to be nonefficient due to the high formation energies. The calculated magnetic coupling between Ag ion reveals an unexpected dependence on the Ag-Ag distance; the interaction between the nearest-neighbor AgZn pair vanishes while that for the more distant pairs is weakly ferromagnetic.

  19. Rare HIV-1 Subtype J Genomes and a New H/U/CRF02_AG Recombinant Genome Suggests an Ancient Origin of HIV-1 in Angola.

    PubMed

    Bártolo, Inês; Calado, Rita; Borrego, Pedro; Leitner, Thomas; Taveira, Nuno

    2016-08-01

    Angola has an extremely diverse HIV-1 epidemic fueled in part by the frequent interchange of people with the Democratic Republic of Congo (DRC) and Republic of Congo (RC). Characterization of HIV-1 strains circulating in Angola should help to better understand the origin of HIV-1 subtypes and recombinant forms and their transmission dynamics. In this study we characterize the first near full-length HIV-1 genomic sequences from HIV-1 infected individuals from Angola. Samples were obtained in 1993 from three HIV-1 infected patients living in Cabinda, Angola. Near full-length genomic sequences were obtained from virus isolates. Maximum likelihood phylogenetic tree inference and analyses of potential recombination patterns were performed to evaluate the sequence classifications and origins. Phylogenetic and recombination analyses revealed that one virus was a pure subtype J, another mostly subtype J with a small uncertain region, and the final virus was classified as a H/U/CRF02_AG recombinant. Consistent with their epidemiological data, the subtype J sequences were more closely related to each other than to other J sequences previously published. Based on the env gene, taxa from Angola occur throughout the global subtype J phylogeny. HIV-1 subtypes J and H are present in Angola at low levels since at least 1993. Low transmission efficiency and/or high recombination potential may explain their limited epidemic success in Angola and worldwide. The high diversity of rare subtypes in Angola suggests that Angola was part of the early establishment of the HIV-1 pandemic. PMID:27098898

  20. Whole recombinant Hansenula polymorpha expressing hepatitis B virus surface antigen (yeast-HBsAg) induces potent HBsAg-specific Th1 and Th2 immune responses.

    PubMed

    Bian, Guanglin; Cheng, Yuming; Wang, Zekun; Hu, Yunwen; Zhang, Xiaonan; Wu, Min; Chen, Zhiao; Shi, Bisheng; Sun, Shuhui; Shen, Yan; Chen, Er Jia; Yao, Xin; Wen, Yumei; Yuan, Zhenghong

    2009-12-10

    Recent studies have suggested that yeast cell wall components possess adjuvant activities. In the present study, heat-killed whole recombinant Hansenula polymorpha yeast expressing hepatitis B surface antigen (yeast-HBsAg) was generated, and the immune responses elicited by yeast-HBsAg were investigated in mice. The studies showed that yeast-HBsAg as well as yeast greatly promotes the accumulation of immune cells in mouse spleen and contributes to the maturation of dendritic cells (DCs). Yeast-HBsAg not only induces significantly higher antibody responses (including IgG, IgG1 and IgG2a), but also increases the IgG2a/IgG1 ratio, while alum combined with HBsAg (HBsAg+alum) only enhances antibody responses, but not the IgG2a/IgG1 ratio compared to HBsAg alone. Analysis of HBsAg-specific cytokines revealed that yeast-HBsAg is associated with production of both IFN-gamma and IL-4, but neither IFN-gamma nor IL-4 was detected in the HBsAg+alum-immunized group. Moreover, yeast-HBsAg induces potent HBsAg-specific lymphocyte proliferation and Cytotoxic T lymphocyte (CTL) responses. In conclusion, yeast-HBsAg enhances both HBsAg-specific Th1 and Th2 immune responses, while alum only enhances Th2 immune responses, suggesting that yeast-HBsAg may be an ideal candidate for an effective vaccine for the control of chronic hepatitis B virus (HBV) infection. PMID:19789093

  1. Thermal Diffusion Dynamic Behavior of Two-Dimensional Ag-SMALL Clusters on Ag(1 1 1) Surface

    NASA Astrophysics Data System (ADS)

    Zakirur-Rehman; Hayat, Sardar Sikandar

    2015-07-01

    In this paper, the thermal diffusion behavior of small two-dimensional Ag-islands on Ag(1 1 1) surface has been explored using molecular dynamics (MD) simulations. The approach is based on semi-empirical potentials. The key microscopic processes responsible for the diffusion of Ag1-5 adislands on Ag(1 1 1) surface are identified. The hopping and zigzag concerted motion along with rotation are observed for Ag one-atom to three-atom islands while single-atom and multi-atom processes are revealed for Ag four-atom and five-atom islands, during the diffusion on Ag(1 1 1) surface. The same increasing/decreasing trend in the diffusion coefficient and effective energy barrier is observed in both the self learning kinetic Monte Carlo (SLKMC) and MD calculations, for the temperature range of 300-700 K. An increase in the value of effective energy barrier is noticed with corresponding increase in the number of atoms in Ag-adislands. A reasonable linear fit is observed for the diffusion coefficient for studied temperatures (300, 500 and 700 K). For the observed diffusion mechanisms, our findings are in good agreement with ab initio density-functional theory (DFT) calculations for Al/Al(1 1 1) while the energy barrier values are in same range as the experimental values for Cu/Ag(1 1 1) and the theoretical values using ab initio DFT supplemented with embedded-atom method for Ag/Ag(1 1 1).

  2. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  3. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  4. Accuracy Assessment for AG500, Electromagnetic Articulograph

    ERIC Educational Resources Information Center

    Yunusova, Yana; Green, Jordan R.; Mefferd, Antje

    2009-01-01

    Purpose: The goal of this article was to evaluate the accuracy and reliability of the AG500 (Carstens Medizinelectronik, Lenglern, Germany), an electromagnetic device developed recently to register articulatory movements in three dimensions. This technology seems to have unprecedented capabilities to provide rich information about time-varying…

  5. Fabrication and characterization of spark plasma sintered Ce:LuAG ceramic for scintillation application

    NASA Astrophysics Data System (ADS)

    Kumar, S. Arun; Senthilselvan, J.

    2016-05-01

    Rare earth Cerium doped Lutetium Aluminum Garnet (Ce:LuAG) ceramics are widely used as phosphor material in medical imaging and high-energy physics. Due to its technological importance, an attempt has been made to fabricate Ce:LuAG ceramics by using spark plasma sintering (SPS) technique. XRD patterns of SPS sintered Ce:LuAG ceramics reveals a mixed LuAG and CeO2 (antisite defect) phases. The microstructures of SPS sintered Ce:LuAG ceramics shows limited densification, inappropriate compaction of particles and existence of residual pores, voids between the grain boundaries affects the transparency of Ce:LuAG ceramics. Relative density and hardness of post sintered Ce:LuAG ceramic is also determined. The effect of Ce3+ doping concentration and sintering temperature on optical luminescence behavior of Ce:LuAG ceramic is presented.

  6. Synthesis of Cu core Ag shell nanoparticles using chemical reduction method

    NASA Astrophysics Data System (ADS)

    Chinh Trinh, Dung; Dung Dang, Thi My; Khanh Huynh, Kim; Fribourg-Blanc, Eric; Chien Dang, Mau

    2015-01-01

    A simple chemical reduction method is used to prepare colloidal bimetallic Cu-Ag core-shell (Cu@Ag) nanoparticles. Polyvinyl pyrrolidone (PVP) was used as capping agent, and ascorbic acid (C6H8O6) and sodium borohydride (NaBH4) were used as reducing agents. The obtained Cu@Ag nanoparticles were characterized by powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectrophotometry. The influence of [Ag]/[Cu] molar ratios on the formation of Ag coatings on the Cu particles was investigated. From the TEM results we found that the ratio [Ag+]/[Cu2+] = 0.2 is the best for the stability of Cu@Ag nanoparticles with an average size of 22 nm. It is also found out that adding ammonium hydroxide (NH4OH) makes the obtained Cu@Ag nanoparticles more stable over time when pure deionized water is used as solvent.

  7. Transparent Conductive AGZO/Ag/AGZO Multilayers on PET Substrate by Roll-to-Roll Sputtering.

    PubMed

    Kim, Taehoon; Park, Kwangwon; Kim, Jongsu

    2016-02-01

    Indium-free Al and Ga-codoped ZnO (AGZO) multilayer films with nanoscale Ag interlayer were deposited by dual target roll-to-roll RF for AGZO and DC sputtering systems for Ag at room temperature for a large scale. The thicknesses of AGZO/Ag/AGZO multilayer were optimized by changing the roll speed: 0.15/1.1/0.15 m/min for AGZO/Ag/AGZO multilayers, respectively. The optimum thicknesses of AGZO/Ag/AGZO multilayer are 9.21, 8.32 and 8.04 nm, respectively. Optimized AGZO/Ag/AGZO multilayer films showed an excellent transparency (84% at 550 nm) and a low sheet resistance (9.2 omega/sq.) on PET substrates for opto-electronic applications. The effects of nanoscale Ag interlayer on optical and electrical properties of AGZO/Ag/AGZO multilayer films were discussed. PMID:27433648

  8. Propagating and localized surface plasmons in Ag nanostructures

    NASA Astrophysics Data System (ADS)

    Dabrowski, Maciej; Dai, Yanan; Petek, Hrvoje

    Plasmonic excitations strongly depend on the size, geometry and dielectric environment of nanoscale metals. Here, we study an epitaxially grown Ag nanostructures on Si(001) and Si(111) surfaces by Low Energy Electron Microscopy/Photoemission Electron Microscopy (LEEM/PEEM). Using the combination of LEEM and broadly tunable femtosecond laser excited multiphoton PEEM we image how single crystalline metallic nanostructures form and how plasmon excitations depend on the particle structure and laser excitation parameters. For Ag pyramids with the dimensions of few hundreds nanometers, dipolar and quadrupolar localized surface plasmons are observed. For Ag wires with several micrometer lengths, both localized and propagating surface plasmons can be excited, depending on the polarization, particle orientation and energy of the excitation. Finally, in larger Ag islands, several micrometers in size, the interference patterns are created by plasmon waves excited at the island edges. In addition to plasmonic response, light diffraction patterns around the Ag nanostrutures are discussed.

  9. Progress in the AGS upgrade projects

    SciTech Connect

    Sluyters, T.J.

    1989-01-01

    The objectives of the AGS Upgrade Project are to prepare the AGS for Booster injection with an increase in the proton intensity to 6 {times} 10{sup 13} particles per pulse for a new generation of experiments on rare K decay, neutrino physics, the (g-2) value of the muon, and many other areas; to increase polarized proton intensity to 10{sup 12} particles per pulse for multi-target spin physics; to accelerate heavy ions up to Au for heavy ion physics; and, of course, to improve the flexibility and reliability of the AGS. High priority has been given to those projects which will reduce, at an early stage, beam losses during injection and acceleration, such as a fast electrostatic beam chopper and a high frequency dilution cavity. Other upgrade programs in progress are: a vacuum overhaul to reduce the AGS operating pressure by a factor of 100; an upgrade of the low and high field magnet correction system; automation of the Siemens main magnet power supply, etc. 3 refs., 2 figs.

  10. Bimetallic Pt-Ag and Pd-Ag nanoparticles

    SciTech Connect

    Lahiri, Debdutta; Bunker, Bruce; Mishra, Bhoopesh; Zhang, Zhenyuan; Meisel, Dan; Doudna, C. M.; Bertino, M. F.; Blum, Frank D.; Tokuhiro, A. T.; Chattopadhyay, Soma; Shibata, Tomohiro; Terry, Jeff

    2005-04-19

    We report studies of bimetallic nanoparticles with 15%–16% atomic crystal parameters size mismatch. The degree of alloying was also probed in a 2-nm Pt core ssmallest attainable core sized of Pt–Ag nanoparticles scompletely immiscible in bulkd and 20-nm-diameter Pd–Ag nanowires scompletely miscible in bulkd. Particles were synthesized radiolytically, and depending on the initial parameters, they assume spherical or cylindrical snanowired morphologies. In all cases, the metals are seen to follow their bulk alloying characteristics. Also, Pt and Ag segregate in both spherical and wire forms, which indicates that strain due to crystallographic mismatch overcomes the excess surface free energy in the small particles. The Pd–Ag nanowires alloy similar to previously reported spherical Pd–Ag particles of similar diameter and composition

  11. Bimetallic Pt-Ag and Pd-Ag nanoparticles

    SciTech Connect

    Lahiri, Debdutta; Bunker, Bruce; Mishra, Bhoopesh; Zhang, Zhenyuan; Meisel, Dan; Doudna, C.M.; Bertino, M. F.; Blum, Frank D.; Tokuhiro, A.T.; Chattopadhyay, Soma; Shibata, Tomohiro; Terry, Jeff

    2005-05-01

    We report studies of bimetallic nanoparticles with 15%-16% atomic crystal parameters size mismatch. The degree of alloying was probed in a 2-nm Pt core (smallest attainable core size) of Pt-Ag nanoparticles (completely immiscible in bulk) and 20-nm-diameter Pd-Ag nanowires (completely miscible in bulk). Particles were synthesized radiolytically, and depending on the initial parameters, they assume spherical or cylindrical (nanowire) morphologies. In all cases, the metals are seen to follow their bulk alloying characteristics. Pt and Ag segregate in both spherical and wire forms, which indicates that strain due to crystallographic mismatch overcomes the excess surface free energy in the small particles. The Pd-Ag nanowires alloy similar to previously reported spherical Pd-Ag particles of similar diameter and composition.

  12. One-pot synthesis of M (M = Ag, Au)@SiO2 yolk-shell structures via an organosilane-assisted method: preparation, formation mechanism and application in heterogeneous catalysis.

    PubMed

    Chen, Yu; Wang, Qihua; Wang, Tingmei

    2015-05-21

    We demonstrate the fabrication of yolk-shell catalysts consisting of a single M (M = Ag, Au) nanoparticle encapsulated within a hollow mesoporous organosilica shell via an organosilane-assisted strategy. The advantages of our method lie in its good controllability of the void space as well as the thickness of the mesoporous shell. The M@CTAB/SiO2 synthesized through a modified Stöber method can transform to yolk-shell structures after adding (3-aminopropyl)trimethoxysilane (APTMS)/TEOS or (3-aminopropyl)triethoxysilane (APTES)/TEOS into the synthetic medium. We give unambiguous evidence that the middle CTAB/SiO2 layer transforms into a less dense APTMS-rich organic-inorganic layer which was selectively removed in alkaline aqueous solution, while the amino-functionalized hybrid shells remain intact. Moreover, we discuss the role of alkylamino groups in the shell in the transformation from Ag@SiO2 nanorattles to hollow structures when impregnating the as-synthesized Ag@SiO2 nanorattles in HAuCl4 aqueous solution. The nanorattles also exhibit high catalytic activity for the catalytic reduction of p-nitrophenol. PMID:25869174

  13. Formation and properties of hyaluronan/nano Ag and hyaluronan-lecithin/nano Ag films.

    PubMed

    Khachatryan, Gohar; Khachatryan, Karen; Grzyb, Jacek; Fiedorowicz, Maciej

    2016-10-20

    A facile and environmentally friendly method of the preparation of silver nanoparticles embedded in hyaluronan (Hyal/Ag) and hyaluronan-lecithin (Hyal-L/Ag) matrix was developed. Thin, elastic foils were prepared from gels by an in situ synthesis of Ag in an aqueous solution of sodium hyaluronate (Hyal), using aq. d-(+)-xylose solution as a reducing agent. The gels were applied to a clean, smooth, defatted Teflon surface and left for drying in the air. The dry foils were stored in a closed container. UV-vis spectroscopy, transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectra confirmed formation of about 10nm ball-shaped Ag nanoparticles situated within the polysaccharide template. Thermal properties of the composites were characterized involving differential scanning calorimetry (DSC) and thermogravimetric (TGA) analyses, whereas molecular weights of polysaccharide chains of the matrix were estimated with the size exclusion chromatography coupled with multiangle laser light scattering and refractometric detectors (HPSEC-MALLS-RI). An increase in the molecular weight of the hyaluronate after generation of Ag nanoparticles was observed. The foils showed specific properties. The study confirmed that silver nanoparticles can be successfully prepared with environmentally friendly method, using hyaluronan as a stabilizing template. Hyaluronan and hyaluronan-lecithin matrices provide nanocrystals uniform in size and shape. The composites demonstrated a bacteriostatic activity. PMID:27474588

  14. Bonding of Cf/SiC composite to Invar alloy using an active cement, Ag-Cu eutectic and Cu interlayer

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Xiaohong, Li; Jinbao, Hou; Qiang, Sun; Fuli, Zhang

    2012-10-01

    The interfacial microstructures and mechanical properties of the joints formed by active cement added brazing in vacuum of Cf/SiC composite to Invar alloy, using Ag-Cu eutectic alloy and pure copper foil as braze alloy and interlayer respectively, were investigated. CuTi, Cu4Ti3, Fe2Ti and the reaction layer of TiC and Si were the predominant components at the joint interface. The maximum shear strength of the joint was 77 MPa for brazing at 850 °C for 15 min. The results show that active cement added brazing in vacuum using Ag-Cu eutectic alloy and Cu interlayer can be used successfully for joining Cf/SiC composites to Invar alloy.

  15. An Environmentally Friendly Method for Testing Photocatalytic Inactivation of Cyanobacterial Propagation on a Hybrid Ag-TiO₂ Photocatalyst under Solar Illumination.

    PubMed

    Chang, Shu-Yu; Huang, Winn-Jung; Lu, Ben-Ren; Fang, Guor-Cheng; Chen, Yeah; Chen, Hsiu-Lin; Chang, Ming-Chin; Hsu, Cheng-Feng

    2015-12-01

    Cyanobacteria were inactivated under sunlight using mixed phase silver (Ag) and deposited titanium dioxide (TiO₂) coated on the surface of diatomite (DM) as a hybrid photocatalyst (Ag-TiO₂/DM). The endpoints of dose-response experiments were chlorophyll a, photosynthetic efficiency, and flow cytometry measurements. In vitro experiments revealed that axenic cultures of planktonic cyanobacteria lost their photosynthetic activity following photocatalyzed exposure to sunlight for more than 24 h. Nearly 92% of Microcystis aeruginosa cells lost their photosynthetic activity, and their cell morphology was severely damaged within 24 h of the reaction. Preliminary carbon-14 ((14)CO₃(-2)) results suggest that the complete inactivation of cyanobacteria arises from damage to cell wall components (peroxidation). A small concomitant increase in cell wall disorder and a consequent decrease in cell wall functional groups increase the cell wall fluidity prior to cell lysis. A high dosage of Ag-TiO₂/DM during photocatalysis increased the concentration of extracellular polymeric substances (EPSs) in the Microcystis aeruginosa suspension by up to approximately 260%. However, photocatalytic treatment had a small effect on the disinfection by-product (DBP) precursor, as revealed by only a slight increase in the formation of trihalomethanes (THMs) and haloacetic acids (HAAs). PMID:26690465

  16. Immune response elicited by an intranasally delivered HBsAg low-dose adsorbed to poly-ε-caprolactone based nanoparticles.

    PubMed

    Jesus, Sandra; Soares, Edna; Costa, João; Borchard, Gerrit; Borges, Olga

    2016-05-17

    Among new strategies to increase hepatitis B virus (HBV) vaccination, especially in developing countries, the development of self-administered vaccines is considered one of the most valuable. Nasal vaccination using polymeric nanoparticles (NPs) constitutes a valid approach to this issue. In detail, poly-ε-caprolactone (PCL)/chitosan NPs present advantages as a mucosal vaccine delivery system: the high resistance of PCL against degradation in biological fluids and the mucoadhesive and immunostimulatory properties of chitosan. In vitro studies revealed these NPs were retained in a mucus-secreting pulmonary epithelial cell line and were capable of entering into differentiated epithelial cells. The intranasal (IN) administration of 3 different doses of HBsAg (1.5μg, 5μg and 10μg) adsorbed on a fixed amount of PCL/chitosan NPs (1614μg) generated identical titers of serum anti-HBsAg IgG and anti-HBsAg sIgA in mice nasal secretions. Besides other factors, the NP surface characteristics, particularly, zeta potential differences among the administered formulations are believed to be implicated in the outcome of the immune response generated. PMID:26976502

  17. An Environmentally Friendly Method for Testing Photocatalytic Inactivation of Cyanobacterial Propagation on a Hybrid Ag-TiO2 Photocatalyst under Solar Illumination

    PubMed Central

    Chang, Shu-Yu; Huang, Winn-Jung; Lu, Ben-Ren; Fang, Guor-Cheng; Chen, Yeah; Chen, Hsiu-Lin; Chang, Ming-Chin; Hsu, Cheng-Feng

    2015-01-01

    Cyanobacteria were inactivated under sunlight using mixed phase silver (Ag) and deposited titanium dioxide (TiO2) coated on the surface of diatomite (DM) as a hybrid photocatalyst (Ag-TiO2/DM). The endpoints of dose-response experiments were chlorophyll a, photosynthetic efficiency, and flow cytometry measurements. In vitro experiments revealed that axenic cultures of planktonic cyanobacteria lost their photosynthetic activity following photocatalyzed exposure to sunlight for more than 24 h. Nearly 92% of Microcystis aeruginosa cells lost their photosynthetic activity, and their cell morphology was severely damaged within 24 h of the reaction. Preliminary carbon-14 (14CO3−2) results suggest that the complete inactivation of cyanobacteria arises from damage to cell wall components (peroxidation). A small concomitant increase in cell wall disorder and a consequent decrease in cell wall functional groups increase the cell wall fluidity prior to cell lysis. A high dosage of Ag-TiO2/DM during photocatalysis increased the concentration of extracellular polymeric substances (EPSs) in the Microcystis aeruginosa suspension by up to approximately 260%. However, photocatalytic treatment had a small effect on the disinfection by-product (DBP) precursor, as revealed by only a slight increase in the formation of trihalomethanes (THMs) and haloacetic acids (HAAs). PMID:26690465

  18. Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on-off-on probe for Ag+ ions

    NASA Astrophysics Data System (ADS)

    Suryawanshi, Anil; Biswal, Mandakini; Mhamane, Dattakumar; Gokhale, Rohan; Patil, Shankar; Guin, Debanjan; Ogale, Satishchandra

    2014-09-01

    Graphene quantum dots (GQDs) are synthesized from bio-waste and are further modified to produce amine-terminated GQDs (Am-GQDs) which have higher dispersibility and photoluminescence intensity than those of GQDs. A strong fluorescence quenching of Am-GQDs (switch-off) is observed for a number of metal ions, but only for the Ag+ ions is the original fluorescence regenerated (switch-on) upon addition of l-cysteine.Graphene quantum dots (GQDs) are synthesized from bio-waste and are further modified to produce amine-terminated GQDs (Am-GQDs) which have higher dispersibility and photoluminescence intensity than those of GQDs. A strong fluorescence quenching of Am-GQDs (switch-off) is observed for a number of metal ions, but only for the Ag+ ions is the original fluorescence regenerated (switch-on) upon addition of l-cysteine. Electronic supplementary information (ESI) available: HRTEM images, GQD SAED patterns and EDAX analysis of Am-GQD@Ag. See DOI: 10.1039/c4nr02494j

  19. Scarlet-Rz1, an EMS-generated hexaploid wheat with tolerance to the soilborne necrotrophic pathogens Rhizoctonia solani AG-8 and R. oryzae.

    PubMed

    Okubara, Patricia Ann; Steber, Camille M; Demacon, Victor L; Walter, Nathalie L; Paulitz, Timothy C; Kidwell, Kimberlee K

    2009-07-01

    The necrotrophic root pathogens Rhizoctonia solani AG-8 and R. oryzae cause Rhizoctonia root rot and damping-off, yield-limiting diseases that pose barriers to the adoption of conservation tillage in wheat production systems. Existing control practices are only partially effective, and natural genetic resistance to Rhizoctonia has not been identified in wheat or its close relatives. We report the first genetic resistance/tolerance to R. solani AG-8 and R. oryzae in wheat (Triticum aestivum L. em Thell) germplasm 'Scarlet-Rz1'. Scarlet-Rz1 was derived from the allohexaploid spring wheat cultivar Scarlet using EMS mutagenesis. Tolerant seedlings displayed substantial root and shoot growth after 14 days in the presence of 100-400 propagules per gram soil of R. solani AG-8 and R. oryzae in greenhouse assays. BC(2)F(4) individuals of Scarlet-Rz1 showed a high and consistent degree of tolerance. Seedling tolerance was transmissible and appeared to be dominant or co-dominant. Scarlet-Rz1 is a promising genetic resource for developing Rhizoctonia-tolerant wheat cultivars because the tolerance trait immediately can be deployed into wheat breeding germplasm through cross-hybridization, thereby avoiding difficulties with transfer from secondary or tertiary relatives as well as constraints associated with genetically modified plants. Our findings also demonstrate the utility of chemical mutagenesis for generating tolerance to necrotrophic pathogens in allohexaploid wheat. PMID:19407984

  20. AGS Experiments: 1989, 1990, 1991

    SciTech Connect

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule ``as run``; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  1. AGS Experiments: 1989, 1990, 1991

    SciTech Connect

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  2. Reversible formation of Ag44 from selenolates

    NASA Astrophysics Data System (ADS)

    Chakraborty, Indranath; Pradeep, T.

    2014-11-01

    The cluster Ag44SePh30, originally prepared from silver selenolate, upon oxidative decomposition by H2O2 gives the same cluster back, in an apparently reversible synthesis. Such an unusual phenomenon was not seen for the corresponding thiolate analogues. From several characterization studies such as mass spectrometry, Raman spectroscopy, etc., it has been confirmed that the degraded and as-synthesized selenolates are the same in nature, which leads to the reversible process. The possibility of making clusters from the degraded material makes cluster synthesis economical. This observation makes one to consider cluster synthesis to be a reversible chemical process, at least for selenolates.The cluster Ag44SePh30, originally prepared from silver selenolate, upon oxidative decomposition by H2O2 gives the same cluster back, in an apparently reversible synthesis. Such an unusual phenomenon was not seen for the corresponding thiolate analogues. From several characterization studies such as mass spectrometry, Raman spectroscopy, etc., it has been confirmed that the degraded and as-synthesized selenolates are the same in nature, which leads to the reversible process. The possibility of making clusters from the degraded material makes cluster synthesis economical. This observation makes one to consider cluster synthesis to be a reversible chemical process, at least for selenolates. Electronic supplementary information (ESI) available: Details of experimental procedures; instrumentation; reversible cycles, UV/Vis spectra of thiophenol, 4-FTP, 3-FTP protected Ag44, and Ag152 cluster; UV/Vis, SEM images and Raman spectra of as-synthesized and degraded thiolates & selenolates; SEM/EDAX of degraded selenolates, UV/Vis of the Ag44(SePh)30 cluster under different selenol concentrations and temperatures. See DOI: 10.1039/c4nr03267e

  3. Fabrication, characterization and photocatalytic properties of Ag/AgI/BiOI heteronanostructures supported on rectorite via a cation-exchange method

    SciTech Connect

    Chen, Yunfang; Fang, Jianzhang; Lu, Shaoyou; Wu, Yan; Chen, Dazhi; Huang, Liyan; Xu, Weicheng; Zhu, Ximiao; Fang, Zhanqiang

    2015-04-15

    Highlights: • Ag/AgI/BiOI-rectorite was prepared by twice cation-exchange process. • Ag/AgI/BiOI-rectorite photocatalyst possessed SPR and adsorption capacity. • Ag/AgI/BiOI-rectorite exhibited highly photocatalytic activity. • Trapped holes and ·O{sub 2}{sup −} were formed active species in the photocatalytic system. - Abstract: In this work, a new plasmonic photocatalyst Ag/AgI/BiOI-rectorite was prepared via a cation exchange process. The photocatalyst had been characterized by X-ray powder diffraction (XRD), Raman spectra, nitrogen sorption (BET), field-emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity, which was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) under visible light irradiation, was enhanced significantly by loading Ag/AgI/BiOI nanoparticles onto rectorite. The photogenerated holes and superoxide radical (·O{sub 2}{sup −}) were both formed as active species for the photocatalytic reactions under visible light irradiation. The existence of metallic Ag particles, which possess the surface plasmon resonance effect, acted as an indispensable role in the photocatalytic reaction.

  4. Formation of Ag Nanoparticles on β-Ag2WO4 through Electron Beam Irradiation: A Synergetic Computational and Experimental Study.

    PubMed

    Roca, Roman A; Gouveia, Amanda F; Lemos, Pablo S; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-09-01

    In the present work, a combined theoretical and experimental study was performed on the structure, optical properties, and growth of Ag nanoparticles in metastable β-Ag2WO4 microcrystals. This material was synthesized using the precipitation method without the presence of surfactants. The structural behavior was analyzed using X-ray diffraction and Raman and infrared spectroscopy. Field-emission scanning electron microscopy revealed the presence of irregular spherical-like Ag nanoparticles on the β-Ag2WO4 microcrystals, which were induced by electron beam irradiation under high vacuum conditions. A detailed analysis of the optimized β-Ag2WO4 geometry and theoretical results enabled interpretation of both the Raman and infrared spectra and provided deeper insight into rationalizing the observed morphology. In addition, first-principles calculations, within the quantum theory of atoms in molecules framework, provided an in-depth understanding of the nucleation and early evolution of Ag nanoparticles. The Ag nucleation and formation is the result of structural and electronic changes of the [AgO6] and [AgO5] clusters as a constituent building block of β-Ag2WO4, which is consistent with Ag metallic formation. PMID:27533109

  5. Formation of surface oxides and Ag2O thin films with atomic oxygen on Ag(111)

    NASA Astrophysics Data System (ADS)

    Derouin, Jonathan; Farber, Rachael G.; Heslop, Stacy L.; Killelea, Daniel R.

    2015-11-01

    The nature of the oxygen species adsorbed to silver surfaces is a key component of the heterogeneously catalyzed epoxidation of ethylene and partial oxidation of methanol over silver catalysts. We report the formation of two different silver-oxygen species depending on the flux and energy of incident gas-phase oxygen atoms on an Ag(111) surface. A combination of surface science techniques was used to characterize the oxidized surfaces. Atomic oxygen was generated with an Ir filament; lower temperatures created surface oxides previously reported. When O was deposited with a higher filament temperature, the surface became highly corrugated, little subsurface oxygen was observed, and thin layers of Ag2O were likely formed. These results show that the energy and flux of oxygen are important parameters in the chemical identity and abundance of oxygen on silver surfaces and suggest that formation of the Ag2O thin film hinders formation of subsurface oxygen.

  6. 3D [Ag-Mg] polyanionic frameworks in the La{sub 4}Ag{sub 10}Mg{sub 3} and La{sub 4}Ag{sub 10.3}Mg{sub 12} new ternary compounds

    SciTech Connect

    Solokha, Pavlo; De Negri, Serena; Pavlyuk, Volodymyr; Saccone, Adriana

    2010-12-15

    The crystal structures of two new ternary phases, La{sub 4}Ag{sub 10}Mg{sub 3} and La{sub 4}Ag{sub 10.3}Mg{sub 12}, were refined from X-ray single crystal diffraction data. La{sub 4}Ag{sub 10}Mg{sub 3} crystallizes in the Ca{sub 4}Au{sub 10}In{sub 3} structure type, an ordered variant of the binary Zr{sub 7}Ni{sub 10} compound: orthorhombic, Cmce, oS68, a=14.173(5), b=10.266(3), c=10.354(3) A, Z=4, wR{sub 2}=0.0826, 676 F{sup 2} values, 50 variables. La{sub 4}Ag{sub 10.3}Mg{sub 12} represents a new structure type: orthorhombic, Cmmm, oS116-10.32, a=9.6130(3), b=24.9663(8), c=9.6333(2) A, Z=4, wR{sub 2}=0.0403, 1185 F{sup 2} values, 101 variables. The structural analysis of both compounds, highlighting a significant contraction of the Ag-Mg distances, suggests the existence of three-dimensional [Ag-Mg] networks hosting La atoms. LMTO calculations applied to La{sub 4}Ag{sub 10}Mg{sub 3} indicate that the strongest bonds occur for Ag-Ag and Ag-Mg interactions, and confirm the presence of a 3D{sub {infinity}}[Ag{sub 10}Mg{sub 3}]{sup {delta}}{sup -} polyanionic framework balanced by positively charged La atoms. -- Graphical abstract: An independent fragment of the 3D [Ag-Mg] framework in La{sub 4}Ag{sub 10}Mg{sub 3} together with an ELF section (1/2 0 0 basal plane). Display Omitted

  7. Herringbone and triangular patterns of dislocations in Ag, Au, and AgAu alloy films on Ru(0001).

    SciTech Connect

    Thayer, Gayle Echo; de la Figuera, Juan; Bartelt, Norman Charles; Carter, C. Barrington; Hwang, R. Q.; Thurmer, Konrad; Ling, W. L.; Hamilton, John C.; McCarty, Kevin F.

    2008-10-01

    We have studied the dislocation structures that occur in films of Ag, Au, and Ag{sub 0.5}Au{sub 0.5} alloy on a Ru(0001) substrate. Monolayer (ML) films form herringbone phases while films two or more layers thick contain triangular patterns of dislocations. We use scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) to determine how the film composition affects the structure and periodicity of these ordered structures. One layer of Ag forms two different herringbone phases depending on the exact Ag coverage and temperature. Low-energy electron microscopy (LEEM) establishes that a reversible, first-order phase transition occurs between these two phases at a certain temperature. We critically compare our 1 ML Ag structures to conflicting results from an X-ray scattering study [H. Zajonz et al., Phys. Rev. B 67 (2003) 155417]. Unlike Ag, the herringbone phases of Au and AgAu alloy are independent of the exact film coverage. For two layer films in all three systems, none of the dislocations in the triangular networks thread into the second film layer. In all three systems, the in-plane atomic spacing of the second film layer is nearly the same as in the bulk. Film composition does, however, affect the details of the two layer structures. Ag and Au films form interconnected networks of dislocations, which we refer to as 'trigons.' In 2 ML AgAu alloy, the dislocations form a different triangular network that shares features of both trigon and moire structures. Yet another well-ordered structure, with square symmetry, forms at the boundaries of translational trigon domains in 2 ML Ag films but not in Au films.

  8. THE AGS ELECTROSTATIC SEPTUM.

    SciTech Connect

    HOCK,J.RUSSO,T.GLEN,J.BROWN,K.

    2003-05-12

    The previous slow beam extraction electro static septum in the AGS was designed in 1981. Research documented at the Fermi Laboratory was used as the base line for this design. The septum consisted of a ground plane of .002 inch diameter wire tungsten-rhenium alloy (75%W 25%Re) with a hollow welded titanium cathode assembly. The vacuum chamber is stationary and the septum is moved with a pair of high vacuum linear feed throughs. After years of beam time, the frequency of failures increased. The vacuum system design was poor by today's standards and resulted in long pump down times after repairs. The failures ranged from broken septum wires to a twisted cathode. In addition to the failures, the mechanical drive system had too much backlash, making the operating position difficult to repeat. The new septum needed to address all of these issues in order to become a more reliable septum.

  9. Results from the AGS Booster transverse damper

    SciTech Connect

    Russo, D.; Brennan, M.; Meth, M.; Roser, T.

    1993-01-01

    To reach the design intensity of 1.5 [times] 10[sup 13] protons per pulse in the AGS Booster, transverse coupled bunch instabilities with an estimated growth rate of 1500s[sup [minus]1] have to be dampened. A prototype transverse damper has been tested successfully using a one turn digital delay and closed orbit suppression implemented in a programmable gate array. An updated damper, which includes an algorithm to optimize damping for a changing betatron rune, will also be presented.

  10. Results from the AGS Booster transverse damper

    SciTech Connect

    Russo, D.; Brennan, M.; Meth, M.; Roser, T.

    1993-06-01

    To reach the design intensity of 1.5 {times} 10{sup 13} protons per pulse in the AGS Booster, transverse coupled bunch instabilities with an estimated growth rate of 1500s{sup {minus}1} have to be dampened. A prototype transverse damper has been tested successfully using a one turn digital delay and closed orbit suppression implemented in a programmable gate array. An updated damper, which includes an algorithm to optimize damping for a changing betatron rune, will also be presented.

  11. Prognostic potential of AgNORs in oral submucous fibrosis

    PubMed Central

    Murgod, Sanjay; Channabasaviah, Girish Hemadal; Shivamurthy, Dyamenahalli Malleshappa; Ashok, Lingappa; Krishnappa, Savita Jangal

    2016-01-01

    Aim and Objective: The role of prognosis cannot be stressed enough, especially when it comes to potentially malignant lesions. The argyrophilic nucleolar organizer regions (AgNORs), which is simple and cost-effective has been used in diagnostic and prognostic pathologies. This study seeks to identify the nucleolar organizer regions (NORs) in oral submucous fibrosis (OSMF), to correlate the AgNOR count with the histologic grade of OSMF, and to evaluate the prognostic potential of AgNOR. Materials and Methods: The sample size consisted of archival paraffin blocks of 35 cases of varying grades of OSMF and 10 cases of squamous cell carcinoma. Normal mucosa samples served as controls for the study. AgNOR staining in accordance with the method of Smith and Crocker was performed and Student's t-test was used for statistical analysis. Results: The results showed an increase in AgNOR counts with corresponding grades of OSMF, the count being least in normal mucosa and also an increase in AgNOR count with corresponding decrease in differentiation of oral squamous cell carcinoma. Conclusion: AgNOR staining is a rapid and inexpensive procedure representing cellular proliferation that can be used to assess the nature of the lesion and therefore, the prognosis. PMID:27114958

  12. Enhanced Noble Gas Adsorption in Ag@MOF-74Ni

    SciTech Connect

    Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.

    2014-01-14

    Various amounts of Ag nanoparticles were successfully deposited in porous MOF-74Ni (or Ni/DOBDC) with an auto-reduction method. An optimized silver-loaded MOF-74Ni was shown to have an improved Xe adsorption capacity (15% more) at STP compared to the MOF without silver nanoparticles. The silver-loaded sample also has a higher Xe/Kr selectivity. These results are explained by the stronger interactions between polarizable Xe molecules and the well-dispersed Ag nanoparticles.

  13. Self-regulated route to ternary hybrid nanocrystals of Ag-Ag2S-CdS with near-infrared photoluminescence and enhanced photothermal conversion

    NASA Astrophysics Data System (ADS)

    Zhu, Guoxing; Bao, Chunlin; Liu, Yuanjun; Shen, Xiaoping; Xi, Chunyan; Xu, Zheng; Ji, Zhenyuan

    2014-09-01

    Developing hybrid nanocrystals is a hot topic in materials science. Herein, a ternary hybrid nanocrystal, Ag-Ag2S-CdS, combining near infrared emission and photothermal conversion properties was demonstrated. The ternary Ag-Ag2S-CdS hybrid nanocrystals with cubic shape and uniform size were synthesized by a simple one-pot and one-step colloidal method. The growth process is self-regulated with the formation order of Ag2S, Ag, and CdS, sequentially. The formation of Ag originates from the partial reduction of Ag2S, while the formation of CdS is through an Ag2S catalytic mechanism based on its superionic feature. The obtained ternary hybrid nanocrystals show near infrared emission and photothermal conversion properties in a lab-on-a-particle system. Importantly, an enhanced effect is observed for the photothermal conversion, which is mainly due to the presence of heterointerfaces among the crystals. This work will not only advance the synthesis chemistry of multi-component hybrid nanocrystals but also provide a possible route for the design of advanced multi-model materials used in bio-related fields.Developing hybrid nanocrystals is a hot topic in materials science. Herein, a ternary hybrid nanocrystal, Ag-Ag2S-CdS, combining near infrared emission and photothermal conversion properties was demonstrated. The ternary Ag-Ag2S-CdS hybrid nanocrystals with cubic shape and uniform size were synthesized by a simple one-pot and one-step colloidal method. The growth process is self-regulated with the formation order of Ag2S, Ag, and CdS, sequentially. The formation of Ag originates from the partial reduction of Ag2S, while the formation of CdS is through an Ag2S catalytic mechanism based on its superionic feature. The obtained ternary hybrid nanocrystals show near infrared emission and photothermal conversion properties in a lab-on-a-particle system. Importantly, an enhanced effect is observed for the photothermal conversion, which is mainly due to the presence of

  14. Atomic oxygen flux determined by mixed-phase Ag/Ag2O deposition

    SciTech Connect

    Kaspar, Tiffany C.; Droubay, Timothy C.; Chambers, Scott A.

    2010-11-01

    The flux of atomic oxygen generated in a electron cyclotron resonance (ECR) microwave plasma source was quantified by two different methods. The commonly applied approach of monitoring the frequency change of a silver-coated quartz crystal microbalance (QCM) deposition rate monitor as the silver is oxidized was found to underestimate the atomic oxygen flux by an order of magnitude compared to a more direct deposition approach. In the mixed-phase Ag/Ag2O deposition method, silver films were deposited in the presence of the plasma such that the films were partially oxidized to Ag2O; x-ray photoelectron spectroscopy (XPS) was utilized for quantification of the oxidized fraction. The inaccuracy of the QCM oxidation method was tentatively attributed to efficient catalytic recombination of O atoms on the silver surface.

  15. Saltwater ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C60 engineered nanoparticles: An overview.

    PubMed

    Minetto, D; Volpi Ghirardini, A; Libralato, G

    2016-01-01

    This review paper examined 529 papers reporting experimental nanoecotoxicological original data. Only 126 papers referred to saltwater environments (water column and sediment) including a huge variety of species (n=51), their relative endpoints and engineered nanoparticles (ENPs) (n=38). We tried to provide a synthetic overview of the ecotoxicological effects of ENPs from existing data, refining papers on the basis of cross-cutting selection criteria and supporting a "mind the gap" approach stressing on missing data for hazard and risk assessment. After a codified selection procedure, attention was paid to Ag, Au, CuO, TiO2, ZnO and C60 ENPs, evidencing and comparing the observed nanoecotoxicity range of effect. Several criticisms were evidenced: i) some model organisms are overexploited like microalgae and molluscs compared to annelids, echinoderms and fish; ii) underexploited model organisms: mainly bacteria and fish; iii) exposure scenario variability: high species-specific and ENP scenarios including organism life stage and way of administration/spiking of toxicants; iv) scarce comparability between results due to exposure scenario variability; v) micro- and mesocosms substantially unexplored; vi) mixture effects: few examples are available only for ENPs and traditional pollutants; mixtures of ENPs have not been investigated yet; vii) effects of ions and ENPs: nAg, nCuO and nZnO toxicity aetiology is still a matter of discussion; viii) size and morphology effects of ENPs: scarcely investigated, justified and understood. Toxicity results evidenced that: nAu>nZnO>nAg>nCuO>nTiO2>C60. PMID:27107224

  16. Ag(I)-triggered one-pot synthesis of Ag nanoparticles onto natural nanorods as a multifunctional nanocomposite for efficient catalysis and adsorption.

    PubMed

    Tian, Guangyan; Wang, Wenbo; Mu, Bin; Kang, Yuru; Wang, Aiqin

    2016-07-01

    A multifunctional palygorskite/polyaniline/Ag nanoparticles (PAL/PANI/AgNPs) nanocomposite was prepared at room temperature using a simple one-pot in-situ polymerization reaction of aniline monomers triggered by Ag(I) on the surface of natural PAL nanorods. Ag(I) served as both the oxidant and the precursor of the AgNPs, which initiated the polymerization of aniline monomers on PAL nanorods while simultaneously being reduced to form Ag(0) nanoparticles (AgNPs). The in-situ formed AgNPs were evenly distributed on the surface of the PAL nanorods because the interfacial effect of PAL prevents their aggregation. The density and size of the AgNPs and the catalytic activity of the nanocomposites could be controlled by altering the molar ratio of aniline to Ag(I). The performance evaluation revealed that the nanocomposites could be used as highly active catalysts, which rapidly catalyzed the reduction of 4-nitrophenol (4-NP) within 2min and Congo red (CR) within 10min. The nanocomposites are also an effective adsorbent for H2PO4(-) able to remove 99.40% of H2PO4(-) (only 61.77% for raw PAL) from a solution with an initial concentration of 50mg/L. This multifunctional nanocomposite synthesized by a simple one-pot approach is a promising material for environmental applications. PMID:27054770

  17. Work Function Reduction by BaO: Growth of Crystalline Barium Oxide on Ag(001) and Ag(111) Surfaces

    SciTech Connect

    Droubay, Timothy C.; Kong, Lingmei; Chambers, Scott A.; Hess, Wayne P.

    2015-02-01

    Ultrathin films of barium oxide were grown on Ag(001) and Ag(111) using the evaporation of Ba metal in an O2 atmosphere by molecular beam epitaxy. Ultraviolet photoemission spectroscopy reveals that films consisting of predominantly BaO or BaO2 result in Ag(001) work function reductions of 1.74 eV and 0.64 eV, respectively. On the Ag(001) surface, Ba oxide growth is initiated by two-dimensional nucleation of epitaxial BaO, followed by a transition to three-dimensional dual-phase nucleation of epitaxial BaO and BaO2. Three-dimensional islands of primarily BaO2(111) nucleate epitaxially on the Ag(111) substrate leaving large patches of Ag uncovered. We find no indication of chemical reaction or charge transfer between the films and the Ag substrates. These data suggest that the origin of the observed work function reduction is largely due to a combination of BaO surface relaxation and an electrostatic compressive effect.

  18. Direct observation of Ag filament growth and unconventional SET-RESET operation in GeTe amorphous films

    NASA Astrophysics Data System (ADS)

    Imanishi, Yusuke; Kida, Shimon; Nakaoka, Toshihiro

    2016-07-01

    We report on the direct observation of Ag filament growth and a peculiar resistance switching in amorphous GeTe films with a lateral electrode geometry. The Ag filament growth was monitored by in-situ optical microscopy. The resistance switching was studied in three electrode pairs, Ag-Ag, Pt-Ag, and Pt-Ag/Pt (Ag electrode covered with Pt). In all the three electrode pairs, similar dendritic Ag filaments were clearly observed growing along both directions from one electrode to the other, according to the applied bias polarity. However, the SET and RESET processes are quite different. The Ag-Ag pair produces a unipolar clockwise switching. The Pt-Ag pair shows a bipolar counter-clockwise switching, as predicted in the basic electrochemical metallization theory, but the observed switching polarity is exactly opposite to the basic theory prediction. The Pt-Ag/Pt pair produces a unipolar counter-clockwise switching. The peculiar SET/RESET processes are explained on the basis of strong Ag diffusion into GeTe matrix resulting in an asymmetric effective electrode pair. The findings suggest that the SET/RESET processes are controlled by the amount of Ag and the electrode geometry.

  19. Immobilization of Highly Dispersed Ag Nanoparticles on Carbon Nanotubes Using Electron-Assisted Reduction for Antibacterial Performance.

    PubMed

    Yan, Xiaoliang; Li, Sha; Bao, Jiehua; Zhang, Nan; Fan, Binbin; Li, Ruifeng; Liu, Xuguang; Pan, Yun-Xiang

    2016-07-13

    Silver nanoparticles (Ag NPs) supported on certain materials have been widely used as disinfectants. Yet, to date, the antibacterial activity of the supported Ag NPs is still far below optimum. This is mainly associated with the easy aggregation of Ag NPs on the supporting materials. Herein, an electron-assisted reduction (EAR) method, which is operated at temperatures as low as room temperature and without using any reduction reagent, was employed for immobilizing highly dispersed Ag NPs on aminated-CNTs (Ag/A-CNTs). The average Ag NPs size on the EAR-prepared Ag/A-CNTs is only 3.8 nm, which is much smaller than that on the Ag/A-CNTs fabricated from the traditional thermal calcination (25.5 nm). Compared with Ag/A-CNTs fabricated from traditional thermal calcination, EAR-prepared Ag/A-CNTs shows a much better antibacterial activity to E. coli/S. aureus and antifouling performance to P. subcordiformis/T. lepidoptera. This is mainly originated from the significantly enhanced Ag(+) ion releasing rate and highly dispersed Ag NPs with small size on the EAR-prepared Ag/A-CNTs. The findings from the present work are helpful for fabricating supported Ag NPs with small size and high dispersion for efficient antibacterial process. PMID:27327238

  20. The SH3/PH domain protein AgBoi1/2 collaborates with the Rho-type GTPase AgRho3 to prevent nonpolar growth at hyphal tips of Ashbya gossypii.

    PubMed

    Knechtle, Philipp; Wendland, Jürgen; Philippsen, Peter

    2006-10-01

    Unlike most other cells, hyphae of filamentous fungi permanently elongate and lack nonpolar growth phases. We identified AgBoi1/2p in the filamentous ascomycete Ashbya gossypii as a component required to prevent nonpolar growth at hyphal tips. Strains lacking AgBoi1/2p frequently show spherical enlargement at hyphal tips with concomitant depolarization of actin patches and loss of tip-located actin cables. These enlarged tips can repolarize and resume hyphal tip extension in the previous polarity axis. AgBoi1/2p permanently localizes to hyphal tips and transiently to sites of septation. Only the tip localization is important for sustained elongation of hyphae. In a yeast two-hybrid experiment, we identified the Rho-type GTPase AgRho3p as an interactor of AgBoi1/2p. AgRho3p is also required to prevent nonpolar growth at hyphal tips, and strains deleted for both AgBOI1/2 and AgRHO3 phenocopied the respective single-deletion strains, demonstrating that AgBoi1/2p and AgRho3p function in a common pathway. Monitoring the polarisome of growing hyphae using AgSpa2p fused to the green fluorescent protein as a marker, we found that polarisome disassembly precedes the onset of nonpolar growth in strains lacking AgBoi1/2p or AgRho3p. AgRho3p locked in its GTP-bound form interacts with the Rho-binding domain of the polarisome-associated formin AgBni1p, implying that AgRho3p has the capacity to directly activate formin-driven actin cable nucleation. We conclude that AgBoi1/2p and AgRho3p support polarisome-mediated actin cable formation at hyphal tips, thereby ensuring permanent polar tip growth. PMID:16950929

  1. Two-photon interference and coherent control of single InAs quantum dot emissions in an Ag-embedded structure

    SciTech Connect

    Liu, X.; Kumano, H.; Nakajima, H.; Odashima, S.; Asano, T.; Suemune, I.; Kuroda, T.

    2014-07-28

    We have recently reported the successful fabrication of bright single-photon sources based on Ag-embedded nanocone structures that incorporate InAs quantum dots. The source had a photon collection efficiency as high as 24.6%. Here, we show the results of various types of photonic characterizations of the Ag-embedded nanocone structures that confirm their versatility as regards a broad range of quantum optical applications. We measure the first-order autocorrelation function to evaluate the coherence time of emitted photons, and the second-order correlation function, which reveals the strong suppression of multiple photon generation. The high indistinguishability of emitted photons is shown by the Hong-Ou-Mandel-type two-photon interference. With quasi-resonant excitation, coherent population flopping is demonstrated through Rabi oscillations. Extremely high single-photon purity with a g{sup (2)}(0) value of 0.008 is achieved with π-pulse quasi-resonant excitation.

  2. Chronically Implanted, Nafion-Coated Ag/AgCl Reference Electrodes for Neurochemical Applications.

    PubMed

    Hashemi, Parastoo; Walsh, Paul L; Guillot, Thomas S; Gras-Najjar, Julie; Takmakov, Pavel; Crews, Fulton T; Wightman, R Mark

    2011-11-16

    Fast-scan cyclic voltammetry (FSCV) at carbon fiber microelectrodes can be used to measure behaviorally correlated dopamine changes in the extracellular fluid of the brain of freely moving rats. These experiments employ a chronically implanted Ag/AgCl reference electrode. When dopamine measurements are taken 4 days after implantation, there is often a potential shift, typically greater than +0.2 V, in the anodic and cathodic peaks in the cyclic voltammogram for dopamine. In this work, we optimized a method to coat sintered Ag/AgCl reference electrodes with the perfluorinated polymer, Nafion, to prevent this shift. We find that we can stabilize reference electrodes for up to 28 days. Immunohistochemistry of the tissue around the implant site shows extensive glial encapsulation around both bare and Nafion-coated devices. However, the lesion around bare electrodes has a rough texture implying that these cells are strongly adsorbed onto the bare reference electrode, while the lesion around a Nafion-coated electrode shows that cells are more intact implying that they adsorb less strongly. EDS and SEM analysis of the surface of the electrodes confirms this by visualizing a heavy build up of plaques, organic in nature, only on bare electrodes. Impedance spectroscopy indicates no difference between the impedance of bare and Nafion-coated Ag/AgCl electrodes, indicating that glial encapsulation does not lead to an increase in uncompensated resistance between the working and reference electrodes. The electrochemical shift therefore must be due to the unique chemical microenvironment around the reference electrode that alters the chloride equilibrium, a process that the Nafion coating prevents. PMID:22125666

  3. Visible light driven Ag/Ag3PO4/AC photocatalyst with highly enhanced photodegradation of tetracycline antibiotics

    NASA Astrophysics Data System (ADS)

    Wang, Huiqin; Ye, Zhefei; Liu, Chun; Li, Jinze; Zhou, Mingjun; Guan, Qingfeng; Lv, Peng; Huo, Pengwei; Yan, Yongsheng

    2015-10-01

    Ag/Ag3PO4/active carbon (AC) composite photocatalysts were successfully synthesized using the simple deposition and photoinduced methods. The structures, morphology and photocatalytic properties of as-prepared photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, X-ray photoelectron spectroscopy (XPS). The Ag/Ag3PO4/AC composite photocatalysts exhibited a conspicuously improved photocatalytic performance for tetracycline (TC) degradation. The optimal conditions of loaded dosage and photoinduced time were investigated, and the results showed that the photoinduced time played an important role in prepared processes, and also that for the loaded dosage of Ag3PO4. The DRS analysis showed that the composite photocatalysts exhibited strong absorption ability in the visible light range. The radicals trap experiments demonstrated that there were multiple active species during the degrading process of TC. The possible mechanism of improved photocatalytic activity of Ag-Ag3PO4/AC composite was also proposed.

  4. Spin dynamics simulations at AGS

    SciTech Connect

    Huang, H.; MacKay, W.W.; Meot, F.; Roser, T.

    2010-05-23

    To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.

  5. Low emissivity Ag/Ta/glass multilayer thin films deposited by sputtering

    SciTech Connect

    Park, Sun Ho; Lee, Kee Sun; Sivasankar Reddy, A.

    2011-09-15

    Ta is deposited on a glass substrate as an interlayer for the two-dimensional growth of Ag thin films because Ta has good thermal stability and can induce a negative surface-energy change in Ag/glass. From the transmission electron microscopy results, we concluded that the Ag crystals in the bottom layer (seemingly on Ag/Ta) were flattened; this was rarely observed in the three-dimensional growth mode. Comparing Ag/Ta/glass with Ag/glass, we found that the Ta interlayer was effective in reducing both the resistance and the emissivity, accompanied by the relatively high transmittance in the visible region. In particular, Ag(9 nm)/Ta(1 nm)/glass film showed 0.08 of the emissivity, including {approx}61% of the transmittance in the visible region (wavelength: 550 nm).

  6. Preparation and antibacterial performance testing of Ag nanoparticles embedded biological materials

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyun; Gao, Guanhui; Sun, Chengjun; Zhu, Yaoyao; Qu, Lingyun; Jiang, Fenghua; Ding, Haibing

    2015-03-01

    In this study, we developed an environmentally friendly chemistry strategy to synthesize Ag nanoparticles (Ag-NPs) embedded biological material, powdered mussel shell (PMS). With the PMS as scaffolds and surfactant, Ag nanoparticles of controllable size dispersed uniformly on it via liquid chemical reduction approach. Morphologies and characteristics of synthesized Ag-NPs/PMS hybrids were analyzed with TEM, SEM and XPS. Antibacterial properties were investigated with Gram-positive bacteria (Arthrobacter sulfureus (A. sulfureus) YACS14, Staphylococcus aureus (S. aureus)) and Gram-negative bacteria (Vibrio anguillarum (V. anguillarum) MVM425, Escherichia coli (E. coli)). The antimicrobial results illustrated that Ag-NPs/PMS composites have antibacterial effect on both sea water and fresh water bacteria with a better effect on sea water bacteria. The degree of antibacterial effect is directly related to the amount of Ag released from Ag-NPs/PMS.

  7. Diagnostic value of AgNOR method in thyroid cytopathology: correlation with morphometric measurements.

    PubMed

    Solymosi, T; Tóth, V; Sápi, Z; Bodó, M; Gál, I; Csanádi, L

    1996-03-01

    A silver staining technique was applied to 51 thyroid smears. The numbers of silver-stained nucleolar organizer regions (AgNORs) were counted, and the mean AgNOR and nuclear area per cell were determined with an image analyzer. The mean AgNOR count per cell was significantly higher in malignant than in benign lesions, but there was a considerable overlap. The mean AgNOR area and the mean SD of the AgNOR area per cell were significantly higher in carcinomas than in benign lesions (P = 10-9 and P = 5 x 10-10, respectively) and there were only two and one benign cases, respectively, of overlap. A strong correlation was observed between the mean AgNOR area and the mean nuclear area (r = 0.88), the former being a better discriminator between benign and malignant lesions. The AgNOR technique may contribute to routine thyroid cytopathology. PMID:8964170

  8. Synchrotron Micro-XRF Mapping of Ag Storage in a Coastal Marine Diatom: Implications for Ag as a Novel Paleoproductivity Proxy

    NASA Astrophysics Data System (ADS)

    King, M. W.; Hendy, I. L.; Lai, B.

    2012-12-01

    Silver (Ag) has potential for use as a paleoproductivity proxy in environments where a high flux of organic matter creates reducing conditions in sediments. Its proposed sequestration under reducing conditions as the species Ag2S confers an advantage over the more conventional productivity proxy barite, which becomes unreliable when sulfate reduction occurs in sediments. Other conventional productivity proxies (organic carbon and biogenic silica) are subject to rapid remineralization during early diagenesis, whereas Ag is likely to be preserved. Prior studies have hinted that Ag may be delivered to sediments via diatom debris. However, whether Ag is primarily associated with the frustule silica matrix or with diatom organic matter has not been established, and hence the mechanism of Ag delivery to sediments remains ambiguous. In this study we investigated the location of Ag storage in diatoms using synchrotron micro-XRF to map Ag, along with Ca, P, S, Si, and Fe, in single cells of the coastal marine diatom Thalassiosira pseudonana. Diatoms were cultured in the laboratory with Ag added to the growth medium at 50 and 100 ppb. Samples were analyzed at the sub-micron scale at the Advanced Photon Source, Argonne National Laboratory. Detectable Ag concentrations appear to be localized to intracellular "hotspots" that are not associated with frustule Si, either as part of the matrix or surface-adsorbed. Silver "hotspots" are co-localized with Fe, suggesting that Ag is stored within vacuoles, as recently shown for Fe in centric diatoms. Overall, our results support the hypothesis that Ag is delivered to sediments with diatom organic matter and suggest a common strategy by centric diatoms for intracellular sequestration of micronutrient (Fe) and nonessential (Ag) trace metals.

  9. Near-surface and bulk behavior of Ag in SiC

    SciTech Connect

    Xiao, Haiyan; Zhang, Yanwen; Snead, Lance Lewis; Shutthanandan, Vaithiyalingam; Xue, Haizhou; Weber, William J

    2012-01-01

    The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the near-surface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85-1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor.

  10. Determine Minimum Silver Flake Addition to GCM for Iodine Loaded AgZ

    SciTech Connect

    Garino, Terry J.; Nenoff, Tina M.; Rodriguez, Mark A.

    2014-04-01

    The minimum amount of silver flake required to prevent loss of I{sub 2} during sintering in air for a SNL Glass Composite Material (GCM) Waste Form containing AgI-MOR (ORNL, 8.7 wt%) was determined to be 1.1 wt% Ag. The final GCM composition prior to sintering was 20 wt% AgI-MOR, 1.1 wt% Ag, and 80 wt% Bi-Si oxide glass. The amount of silver flake needed to suppress iodine loss was determined using thermo gravimetric analysis with mass spectroscopic off-gas analysis. These studies found that the ratio of silver to AgI-MOR required is lower in the presence of the glass than without it. Therefore an additional benefit of the GCM is that it serves to inhibit some iodine loss during processing. Alternatively, heating the AgI-MOR in inert atmosphere instead of air allowed for densified GCM formation without I{sub 2} loss, and no necessity for the addition of Ag. The cause of this behavior is found to be related to the oxidation of the metallic Ag to Ag{sup +} when heated to above ~300{degrees}C in air. Heating rate, iodine loading levels and atmosphere are the important variables that determine AgI migration and results suggest that AgI may be completely incorporated into the mordenite structure by the 550{degrees}C sintering temperature.

  11. Characterization and device performance of (AgCu)(InGa)Se2 absorber layers

    SciTech Connect

    Hanket, Gregory; Boyle, Jonathan H.; Shafarman, William N.

    2009-06-08

    The study of (AgCu)(InGa)Se2 absorber layers is of interest in that Ag-chalcopyrites exhibit both wider bandgaps and lower melting points than their Cu counterparts. (AgCu)(InGa)Se2 absorber layers were deposited over the composition range 0 < Ag/(Ag+Cu) < 1 and 0.3 < Ga/(In+Ga) < 1.0 using a variety of elemental co-evaporation processes. Films were found to be singlephase over the entire composition range, in contrast to prior studies. Devices with Ga content 0.3 < Ga/(In+Ga) <0.5 tolerated Ag incorporation up to Ag/(Ag+Cu) = 0.5 without appreciable performance loss. Ag-containing films with Ga/(In+Ga) = 0.8 showed improved device characteristics over Cu-only control samples, in particular a 30-40% increase in short-circuit current. An absorber layer with composition Ag/(Ag+Cu) = 0.75 and Ga/(In+Ga) = 0.8 yielded a device with VOC = 890 mV, JSC = 20.5mA/cm2, fill factor = 71.3%, and η = 13.0%.

  12. Highly quasi-monodisperse ag nanoparticles on titania nanotubes by impregnative aqueous ion exchange.

    PubMed

    Toledo-Antonio, J A; Cortes-Jácome, M A; Angeles-Chavez, C; López-Salinas, E; Quintana, P

    2009-09-01

    Silver nanoparticles were homogenously dispersed on titania nanotubes (NT), which were prepared by alkali hydrothermal methodology and dried at 373 K. Ag(+) incorporation was done by impregnative ion exchange of aqueous silver nitrate onto NT. First, Ag(+) ions incorporate into the layers of nanotube walls, and then, upon heat treatment under N(2) at 573 and 673 K, they migrate and change into Ag(2)O and Ag(0) nanoparticles, respectively. In both cases, Ag nanoparticles are highly dispersed, decorating the nanotubes in a polka-dot pattern. The Ag particle size distribution is very narrow, being ca. 4 +/- 2 nm without any observable agglomeration. The reduction of Ag(2)O into Ag(0) octahedral nanoparticles occurs spontaneously and topotactically when annealing, without the aid of any reducing agent. The population of Ag(0) nanoparticles can be controlled by adjusting the annealing temperature. An electron charge transfer from NT support to Ag(0) nanoparticles, because of a strong interaction, is responsible for considerable visible light absorption in Ag(0) nanoparticles supported on NT. PMID:19485374

  13. Fate of Ag-NPs in Sewage Sludge after Application on Agricultural Soils.

    PubMed

    Pradas del Real, Ana E; Castillo-Michel, Hiram; Kaegi, Ralf; Sinnet, Brian; Magnin, Valérie; Findling, Nathaniel; Villanova, Julie; Carrière, Marie; Santaella, Catherine; Fernández-Martínez, Alejandro; Levard, Clément; Sarret, Géraldine

    2016-02-16

    The objective of this work was to investigate the fate of silver nanoparticles (Ag-NPs) in a sludge-amended soil cultivated with monocot (Wheat) and dicot (Rape) crop species. A pot experiment was performed with sludges produced in a pilot wastewater treatment plant containing realistic Ag concentrations (18 and 400 mg kg(-1), 14 mg kg(-1) for the control). Investigations focused on the highest dose treatment. X-ray absorption spectroscopy (XAS) showed that Ag2S was the main species in the sludge and amended soil before and after plant culture. The second most abundant species was an organic and/or amorphous Ag-S phase whose proportion slightly varied (from 24% to 36%) depending on the conditions. Micro and nano X-ray fluorescence (XRF) showed that Ag was preferentially associated with S-rich particles, including organic fragments, of the sludge and amended soils. Ag was distributed as heteroaggregates with soil components (size ranging from ≤0.5 to 1-3 μm) and as diffused zones likely corresponding to sorbed/complexed Ag species. Nano-XRF evidenced the presence of mixed metallic sulfides. Ag was weakly exchangeable and labile. However, micronutrient mobilization by plant roots and organic matter turnover may induce Ag species interconversion eventually leading to Ag release on longer time scales. Together, these data provide valuable information for risk assessment of sewage sludge application on agricultural soils. PMID:26756906

  14. Flowing Liquid Anode Atmospheric Pressure Glow Discharge as an Excitation Source for Optical Emission Spectrometry with the Improved Detectability of Ag, Cd, Hg, Pb, Tl, and Zn.

    PubMed

    Greda, Krzysztof; Swiderski, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-09-01

    A novel atmospheric pressure glow discharge generated in contact with a flowing liquid anode (FLA-APGD) was developed as the efficient excitation source for the optical emission spectrometry (OES) detection. Differences in the appearance and the electrical characteristic of the FLA-APGD and a conventional system operated with a flowing liquid cathode (FLC-APGD) were studied in detail and discussed. Under the optimal operating conditions for the FLA-APGD, the emission from the analytes (Ag, Cd, Hg, Pb, Tl, and Zn) was from 20 to 120 times higher as compared to the FLC-APGD. Limits of detections (LODs) established with a novel FLA-APGD system were on average 20 times better than those obtained for the FLC-APGD. A further improvement of the LODs was achieved by reducing the background shift interferences and, as a result, the LODs for Ag, Cd, Hg, Pb, Tl, and Zn were 0.004, 0.040, 0.70, 1.7, 0.035, and 0.45 μg L(-1), respectively. The precision of the FLA-APGD-OES method was evaluated to be within 2-5% (as the relative standard deviation of the repeated measurements). The method found its application in the determination of the content of Ag, Cd, Hg, Pb, Tl, and Zn in a certified reference material (CRM) of Lobster hepatopancreas (TORT-2), four brass samples as well as mineral water and tea leaves samples spiked with the analytes. In the case of brass samples, a reference method, i.e., inductively coupled plasma optical emission spectrometry (ICP-OES) was used. A good agreement between the results obtained with FLA-APGD-OES and the certified values for the CRM TORT-2 as well as the reference values obtained with ICP-OES for the brass samples was revealed, indicating the good accuracy of the proposed method. The recoveries obtained for the spiked samples of mineral water and tea leaves were within the range of 97.5-102%. PMID:27476678

  15. Coverage induced structural transformations of tetracene on Ag(110)

    NASA Astrophysics Data System (ADS)

    Takasugi, Kazushiro; Yokoyama, Takashi

    2016-03-01

    Self-assembly of tetracene on an anisotropic surface of Ag(110) has been investigated using scanning tunneling microscopy and low-energy electron diffraction. We observe multistage structural transformations of the self-assembled tetracene on Ag(110) as a function of molecular coverages, which are accompanied by the changes in molecular orientations. They are analyzed by a balance between multiple molecule-molecule and anisotropic substrate-molecule interactions.

  16. Strong magnetization damping induced by Ag nanostructures in Ag/NiFe/Ag trilayers

    NASA Astrophysics Data System (ADS)

    Ley Domínguez, D.; da Silva, G. L.; Rodríguez-Suárez, R. L.; Rezende, S. M.; Azevedo, A.

    2013-07-01

    Ferromagnetic resonance has been used to investigate the magnetization relaxation in trilayers of Ag(t)/NiFe(10 nm)/Ag(t), sputter deposited on Si(001) where the thickness of the Ag layer varied from 0 nm to 24 nm. In the first stages of formation, the Ag layers form islands that work as mold to imprint defects or inhomogeneities on the NiFe film surface. The magnetic inhomogeneities and defects imprinted on the surface of the NiFe film act as extrinsic sources of magnetization relaxation in addition to the intrinsic Gilbert damping mechanism. Weak inhomogeneities are associated to the two-magnon scattering source and the strong inhomogeneities are associated to the fluctuations of the local magnetization. By adding the three different sources of magnetization damping, we were able to explain the azimuthal dependence of the ferromagnetic resonance linewidth.

  17. Investigating the properties of infrared PCFs based on AgCl-AgBr, AgBr-TlI, AgCl-AgBr-AgI(TlI) crystals theoretically and experimentally

    NASA Astrophysics Data System (ADS)

    Korsakov, A. S.; Zhukova, L. V.; Vrublevsky, D. S.; Korsakova, E. A.

    2014-12-01

    For operating at the CO2 laser wavelength (10.6 μm), we manufactured single- and double-layered infrared (IR) fibers, as well as those with an enlarged mode field diameter, obtained via extrusion from Ag(Cl) x Br1 - x (0 < x < 1), Ag1 - x Tl x Br1 - x I x (0 < x ≤ 0.08), Ag1 - x Tl x Cl y I z Br1 - y - z (0.003 ≤ x ≤ 0.040; 0.066 ≤ y ≤ 0.246; 0.004 ≤ z ≤ 0.048) crystals. We calculated their fundamental characteristics at 10.6 μm and conducted computer simulation of their structure and mode field beforehand. Optical and mechanical characteristics of IR crystals and fibers, such as transmission range, refractive indices, and durability, were also determined, with the dependence of varying monadic thallium iodide content on them being shown as well. In particular, we demonstrated that the increase of thallium iodide content in the initial silver chloride bromide widens the transparency range to 40 μm and improves the rupture strength up to 200 MPa, which is due to the decrease in average fiber grain size up to 95 nm—nanocrystalline size. Using a CCD camera for the far field investigation at 10.6 μm, we showed the single mode of the fibers obtained.

  18. Ellipsometric study of Al2O3/Ag/Si and SiO2/Ag/quartz ashed in an oxygen plasma. [protective coatings to prevent degradation of materials in low earth orbits

    NASA Technical Reports Server (NTRS)

    De, Bhola N.; Woollam, John A.

    1989-01-01

    The growth of silver oxide (proposed as a potentially useful protective coating for space environment) on a silver mirror coated with an Al2O3 or a SiO2 protective layer was investigated using the monolayer-sensitive variable angle of incidence spectroscopic ellipsometry technique. The samples were exposed to a pure oxygen plasma in a plasma asher, and the silver oxide growth was monitored as a function of the exposure time. It was found that atomic oxygen in the asher penetrated through the SiO2 or Al2O3 coatings to convert the silver underneath to silver oxide, and that the quantity of the silver oxide formed was proportional to the ashing time. The band gap of silver oxide was determined to be 1.3 eV. A schematic diagram of the variable angle of incidence spectroscopic ellipsometer is included.

  19. Synthesis of Ag(2) S-Ag nanoprisms and their use as DNA hybridization probes.

    PubMed

    Liu, Bing; Ma, Zhanfang

    2011-06-01

    A simple synthetic route to prepare Ag(2) S-Ag nanoprisms consists of the facile addition of Na(2) S to a solution of triangular Ag nanoprisms. The resulting Ag(2) S-Ag nanoparticles are more stable in solution than the original Ag nanoprisms, and two surface plasmon resonance (SPR) bands of the original Ag nanoprisms still remain. In addition, the SPR bands of the Ag(2) S-Ag nanoprisms are tunable over a wide range. The Ag(2) S-Ag nanoprisms can be directly bioconjugated via well-established stable Ag(2) S surface chemistry with readily available sulfur coupling agents. The nanoprisms are used in the hybridization of functionalized oligonucleotides, and show promise as probes for future biosensing applications. PMID:21538868

  20. A facile synthesis of Ag/AgCl hybrid nanostructures with tunable morphologies and compositions as advanced visible light plasmonic photocatalysts.

    PubMed

    Shahzad, Aasim; Kim, Woo-Sik; Yu, Taekyung

    2016-05-31

    This paper describes a simple and fast aqueous-phase route to the synthesis of Ag/AgCl hybrid nanostructures. These hybrid nanostructures were synthesized by reduction of AgCl nanoparticles with controlled shapes prepared by reacting Ag(+) with Cl(-) in the presence of polyethyleneimine (PEI) in an aqueous-phase. We could easily control the morphology and composition of the nanostructures by varying the experimental conditions, including the reaction temperature and the amount of the reducing agent. The as-synthesized Ag/AgCl hybrid nanostructures exhibited enhanced photocatalytic activity and stability during the degradation of methyl orange under visible light irradiation because of their strong surface plasmon resonance (SPR) effect. PMID:27169749

  1. Lake County Geo-Ag heat center

    SciTech Connect

    Not Available

    1987-07-01

    Lake County is proceeding with plans to develop a unique agricultural park called the Geo-Ag Heat Center Project. The project will combine vocational training, geothermal heat-transfer research, and commercial resources for greenhouse heating, crop drying, and other agricultural operations. The first phase of the project involved drilling wells to confirm the availability of an adequate geothermal resource. The first well, AG Park 1, drilled in January, 1986 to a depth of 1614 feet, proved noncommercial; it will be used as an injection well. Next, a geophysical program of seismic surveys was undertaken to pinpoint the more productive fracture zones. Wells AG Park 2 and 3 were drilled in these zones. Both wells were drilled in December 1986, to depths of 592 and 488 feet, respectively. In 3-day tests of continuous production, AG Park 2 and 3 yielded flowing wellhead temperatures of 143/sup 0/F and 153/sup 0/F, respectively, at flow rates exceeding 150 gpm, with minor drawdowns. The next phase of the project entails construction of a 7000 square-foot greenhouse by the end of 1987. It will be operated by the Mendocino-Lake Community College District as an educational and demonstration facility. Geothermal-fluid and irrigation water-distribution and injection-pipeline systems will also be installed in preparation for future commercial leasing on the 3-acre site. The demonstration greenhouse will allow evaluation of the effectiveness of various heat-transfer systems. This would assist commercial operators in designing the most economical system for their needs.

  2. Hybrid CFx–Ag2V4O11 as a high-energy, power density cathode for application in an underwater acoustic microtransmitter

    SciTech Connect

    Meduri, Praveen; Chen, Honghao; Chen, Xilin; Xiao, Jie; Gross, Mark E.; Carlson, Thomas J.; Zhang, Jiguang; Deng, Zhiqun

    2011-12-01

    This study demonstrates the excellent electrochemical performance of the hybrid carbon fluoride(CFx)/silver vanadium oxide(SVO)/graphene(G) cathode and its potential utilization in Acoustic Telemetry System Transmitter (ATST). The impedance increase issue caused by LiF formation from CFx is effectively addressed by the deposition of conductive silver metal from the reduction of SVO aided by the coexistence of graphene additive thus a prolonged operation voltage is observed with enhanced electronic conductivity throughout the whole discharge process. In particular, the hybrid shows capacity retention of {approx}462 mAhg-1 at 5C rate and 661 mAhg-1 at 1C rate. The peak current delivered from the as-designed hybrid cathode is improved compared with that of commercial Zn/Ag2O batteries suggesting the possibility of the further reduction on the size/weight of the micro batteries which is critical for the transmitters.

  3. Thick c-axis textured (Tl,Pb)(Ba,Sr)2Ca2Cu3O9/Ag0.37 superconducting tapes by an ink spray pyrolysis method using a Tl-free precursor

    NASA Astrophysics Data System (ADS)

    Schulz, Douglas L.; Parilla, Philip A.; Ginley, David S.; Voigt, James A.; Roth, E. Peter

    1994-11-01

    In this letter we demonstrate a synthetic route to thick (5-20 μm) highly c-axis textured, nearly phase-pure superconducting (Tl,Pb)(Ba,Sr)2Ca2Cu3O9/Ag0.37 tapes. First, a Tl-free ink consisting of Pb0.5Ba0.4Sr1.6Ca2.0Cu3.0O9/Ag0.37 precursor powder in an ethanolic ethyl cellulose binder is sprayed onto a heated LaAlO3 substrate. After an intermediate oxygen anneal to remove the carbonaceous binder, a static 2-zone thallination anneal is performed to promote superconducting phase formation. Films exhibit excellent c-axis texturing as evidenced by x-ray diffraction θ/2θ and rocking curve characterization with morphological evidence for partial melting by scanning electron microscopy. Electrical characterization of these films give Tc onset values of 106-115 K with Tc zero reached by 99-101 K and transport Jc(77 K) up to 2.9×104 A/cm2. A mixed strong/weak-linked magnetic field dependence is observed for these films at 77 K and 0.4 T.

  4. Ag-catalyzed C-H/C-C bond functionalization.

    PubMed

    Zheng, Qing-Zhong; Jiao, Ning

    2016-08-21

    Silver, known and utilized since ancient times, is a coinage metal, which has been widely used for various organic transformations in the past few decades. Currently, the silver-catalyzed reaction is one of the frontier areas in organic chemistry, and the progress of research in this field is very rapid. Compared with other transition metals, silver has long been believed to have low catalytic efficiency, and most commonly, it is used as either a cocatalyst or a Lewis acid. Interestingly, the discovery of Ag-catalysis has been significantly improved in recent years. Especially, Ag(i) has been demonstrated as an important and versatile catalyst for a variety of organic transformations. However, so far, there has been no systematic review on Ag-catalyzed C-H/C-C bond functionalization. In this review, we will focus on the development of Ag-catalyzed C-H/C-C bond functionalization and the corresponding mechanism. PMID:27056573

  5. Communication: UV photoionization of cytosine catalyzed by Ag+

    NASA Astrophysics Data System (ADS)

    Taccone, Martín I.; Féraud, Geraldine; Berdakin, Matías; Dedonder-Lardeux, Claude; Jouvet, Christophe; Pino, Gustavo A.

    2015-07-01

    The photo-induced damages of DNA in interaction with metal cations, which are found in various environments, still remain to be characterized. In this paper, we show how the complexation of a DNA base (cytosine (Cyt)) with a metal cation (Ag+) changes its electronic properties. By means of UV photofragment spectroscopy of cold ions, it was found that the photoexcitation of the CytAg+ complex at low energy (315-282) nm efficiently leads to ionized cytosine (Cyt+) as the single product. This occurs through a charge transfer state in which an electron from the p orbital of Cyt is promoted to Ag+, as confirmed by ab initio calculations at the TD-DFT/B3LYP and RI-ADC(2) theory level using the SV(P) basis set. The low ionization energy of Cyt in the presence of Ag+ could have important implications as point mutation of DNA upon sunlight exposition.

  6. The instability of silicene on Ag(111)

    SciTech Connect

    Acun, A.; Poelsema, B.; Zandvliet, H. J. W.; Gastel, R. van

    2013-12-23

    We have used low energy electron microscopy to directly visualize the formation and stability of silicene layers on a Ag(111) substrate. Theoretical calculations call into question the stability of this graphene-like analog of silicon. We find that silicene layers are intrinsically unstable against the formation of an “sp{sup 3}-like” hybridized, bulk-like silicon structure. The irreversible formation of this bulk-like structure is triggered by thermal Si adatoms that are created by the silicene layer itself. To add injury to insult, this same instability prevents the formation of a fully closed silicene layer or a thicker bilayer, rendering the future large-scale fabrication of silicene layers on Ag substrates unlikely.

  7. One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers.

    PubMed

    Celebioglu, Asli; Aytac, Zeynep; Umu, Ozgun C O; Dana, Aykutlu; Tekinay, Turgay; Uyar, Tamer

    2014-01-01

    One-step synthesis of size-tunable silver nanoparticles (Ag-NP) incorporated into electrospun nanofibers was achieved. Initially, in situ reduction of silver salt (AgNO3) to Ag-NP was carried out in aqueous solution of polyvinyl alcohol (PVA). Here, PVA was used as reducing agent and stabilizing polymer as well as electrospinning polymeric matrix for the fabrication of PVA/Ag-NP nanofibers. Afterwards, hydroxypropyl-beta-cyclodextrin (HPβCD) was used as an additional reducing and stabilizing agent in order to control size and uniform dispersion of Ag-NP. The size of Ag-NP was ∼8 nm and some Ag-NP aggregates were observed for PVA/Ag-NP nanofibers, conversely, the size of Ag-NP decreased from ∼8 nm down to ∼2 nm within the fiber matrix without aggregation were attained for PVA/HPβCD nanofibers. The PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibers exhibited surface enhanced Raman scattering (SERS) effect. Moreover, antibacterial properties of PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibrous mats were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. PMID:24274573

  8. Monitoring Si growth on Ag(111) with scanning tunneling microscopy reveals that silicene structure involves silver atoms

    SciTech Connect

    Prévot, G.; Bernard, R.; Cruguel, H.; Borensztein, Y.

    2014-11-24

    Using scanning tunneling microscopy (STM), the elaboration of the so-called silicene layer on Ag(111) is monitored in real time during Si evaporation at different temperatures. It is shown that the growth of silicene is accompanied by the release of about 65% of the surface Ag atoms from the Si covered areas. We observe that Si islands develop on the Ag terraces and Si strips at the Ag step edges, progressively forming ordered (4×4), (√(13)×√(13)) R13.9°, and dotted phases. Meanwhile, displaced Ag atoms group to develop additional bare Ag terraces growing round the Si islands from the pristine Ag step edges. This indicates a strong interaction between Si and Ag atoms, with an important modification of the Ag substrate beneath the surface layer. This observation is in contradiction with the picture of a silicene layer weakly interacting with the unreconstructed Ag substrate, and strongly indicates that the structure of silicene on Ag(111) corresponds either to a Si-Ag surface alloy or to a Si plane covered with Ag atoms.

  9. The role of the local chemical environment of Ag on the resistive switching mechanism of conductive bridging random access memories.

    PubMed

    Souchier, E; D'Acapito, F; Noé, P; Blaise, P; Bernard, M; Jousseaume, V

    2015-10-01

    Conductive bridging random access memories (CBRAMs) are one of the most promising emerging technologies for the next generation of non-volatile memory. However, the lack of understanding of the switching mechanism at the nanoscale level prevents successful transfer to industry. In this paper, Ag/GeSx/W CBRAM devices are analyzed using depth selective X-ray Absorption Spectroscopy before and after switching. The study of the local environment around Ag atoms in such devices reveals that Ag is in two very distinct environments with short Ag-S bonds due to Ag dissolved in the GeSx matrix, and longer Ag-Ag bonds related to an Ag metallic phase. These experiments allow the conclusion that the switching process involves the formation of metallic Ag nano-filaments initiated at the Ag electrode. All these experimental features are well supported by ab initio molecular dynamics simulations showing that Ag favorably bonds to S atoms, and permit the proposal of a model at the microscopic level that can explain the instability of the conductive state in these Ag-GeSx CBRAM devices. Finally, the principle of the nondestructive method described here can be extended to other types of resistive memory concepts. PMID:26312954

  10. Morphological and electrochemical characterization of electrodeposited Zn–Ag nanoparticle composite coatings

    SciTech Connect

    Punith Kumar, M.K.; Srivastava, Chandan

    2013-11-15

    Silver nanoparticles with an average size of 23 nm were chemically synthesized and used to fabricate Zn–Ag composite coatings. The Zn–Ag composite coatings were generated by electrodeposition method using a simple sulfate plating bath dispersed with 0.5, 1 and 1.5 g/l of Ag nanoparticles. Scanning electron microscopy, X-ray diffraction and texture co-efficient calculations revealed that Ag nanoparticles appreciably influenced the morphology, micro-structure and texture of the deposit. It was also noticed that agglomerates of Ag nanoparticles, in the case of high bath load conditions, produced defects and dislocations on the deposit surface. Ag nanoparticles altered the corrosion resistance property of Zn–Ag composite coatings as observed from Tafel polarization, electrochemical impedance analysis and an immersion test. Reduction in corrosion rate with increased charge transfer resistance was observed for Zn–Ag composite coatings when compared to a pure Zn coating. However, the particle concentration in the plating bath and their agglomeration state directly influenced the surface morphology and the subsequent corrosion behavior of the deposits. - Highlights: • Synthesis of Ag nanoparticles with an average size of 23 nm • Fabrication of Zn/nano Ag composite coating on mild steel • Composite coatings showed better corrosion resistance. • Optimization of particle concentration is necessary.

  11. Defects responsible for abnormal n-type conductivity in Ag-excess doped PbTe thermoelectrics

    SciTech Connect

    Ryu, Byungki Lee, Jae Ki; Lee, Ji Eun; Joo, Sung-Jae; Kim, Bong-Seo; Min, Bok-Ki; Lee, Hee-Woong; Park, Su-Dong; Oh, Min-Wook

    2015-07-07

    Density functional calculations have been performed to investigate the role of Ag defects in PbTe thermoelectric materials. Ag-defects can be either donor, acceptor, or isovalent neutral defect. When Ag is heavily doped in PbTe, the neutral (Ag-Ag) dimer defect at Pb-site is formed and the environment changes to the Pb-rich/Te-poor condition. Under Pb-rich condition, the ionized Ag-interstitial defect (Ag{sub I}{sup +}) becomes the major donor. The formation energy of Ag{sub I}{sup +} is smaller than other native and Ag-related defects. Also it is found that Ag{sub I}{sup +} is an effective dopant. There is no additional impurity state near the band gap and the conduction band minimum. The charge state of Ag{sub I}{sup +} defect is maintained even when the Fermi level is located above the conduction band minimum. The diffusion constant of Ag{sub I}{sup +} is calculated based on the temperature dependent Fermi level, formation energy, and migration energy. When T > 550 K, the diffusion length of Ag within a few minutes is comparable to the grain size of the polycrystalline PbTe, implying that Ag is dissolved into PbTe and this donor defect is distributed over the whole lattice in Ag-excess doped polycrystalline PbTe. The predicted solubility of Ag{sub I}{sup +} well explains the increased electron carrier concentration and electrical conductivity reported in Ag-excess doped polycrystalline PbTe at T = 450–750 K [Pei et al., Adv. Energy Mater. 1, 291 (2011)]. In addition, we suggest that this abnormal doping behavior is also found for Au-doped PbTe.

  12. Egg White Templated Synthesis of Ag and Au@Ag Alloy Microspheres for Surface-Enhanced Raman Spectroscopy Research.

    PubMed

    Li, Min; Zhang, Ying; Wang, Xiansong; Cui, Daxiang

    2016-01-01

    Herein, we report the green synthesis of Ag and Au@Ag microspheres by using the aqueous extracts of the egg white as well as their application as substrates for surface-enhanced Raman spectroscopy (SERS) detection. Both microspheres are prepared via the green synthesis method (room temperature, in aqueous solution and a benign reducer). The as-prepared urchin-like Ag microspheres have an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 10-40 nm. Meanwhile, the Au@Ag architectures prepared by galvanic replacement keep nearly similar size, which is also composed of some compact nanoparticles with an average diameter of about 10-40 nm. These products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electronic microscopy (TEM), and Fourier transform infrared spectrophotometer (FTIR). The study on SERS activities is also carried out for both microspheres. It is found that Au@Ag microspheres possess much higher SERS activity than Ag microspheres. Our work may shed light on the design and synthesis of self-assembled 3D micro/nano-architectures for the use of SERS, catalysis, biosensors, nanomedicine, etc. PMID:27398550

  13. Influence of the silver oxidation on the resistive switching in Ag/AgOx/WO3-x/Pt heterostructures

    NASA Astrophysics Data System (ADS)

    Dong, Chun-Ying; Wei, Wen Gang; Zhao, Jing; Zhang, Jian; Zhao, Xu; Chen, Wei

    2015-12-01

    Silver is usually considered as an inert material and is most commonly used as an electrode. In this work, however, we demonstrate that silver can be easily oxidized during preparation. The influence of the silver oxidation on the resistive switching (RS) effect of the Ag/AgOx/WO3-x/Pt heterostructures was systematically investigated. The heterostructure in which the AgOx film was deposited under an oxygen pressure of 5 × 10-4 Pa showed a linear current-voltage relationship (Ohmic contact). The heterostructures in which the AgOx films were deposited under oxygen pressures of 10 and 100 Pa showed a typical interface RS effect with rectification. In combination with the analysis of the dependence of high-resistance-state (HRS) on RESET current and RESET voltage under different compliance currents, we inferred that the electrochemical redox reaction of the silver oxide is responsible for the RS effect in Ag/AgOx/WO3-x/Pt heterostructures.

  14. Fully and partially Li-stuffed diamond polytypes with Ag-Ge structures: Li2AgGe and Li2.53AgGe2.

    PubMed

    Henze, Alexander; Hlukhyy, Viktor; Fässler, Thomas F

    2015-02-01

    In view of the search for and understanding of new materials for energy storage, the Li-Ag-Ge phase diagram has been investigated. High-temperature syntheses of Li with reguli of premelted Ag and Ge led to the two new compounds Li(2)AgGe and Li(2.80-x)AgGe(2) (x = 0.27). The compounds were characterized by single-crystal X-ray diffraction. Both compounds show diamond-polytype-like polyanionic substructures with tetrahedrally coordinated Ag and Ge atoms. The Li ions are located in the channels provided by the network. The compound Li(2)AgGe crystallizes in the space group R3̅m (No. 166) with lattice parameters of a = 4.4424(6) Å and c = 42.7104(6) Å. All atomic positions are fully occupied and ordered. Li(2.80-x)AgGe(2) crystallizes in the space group I4(1)/a (No. 88) with lattice parameters of a = 9.7606(2) Å and c = 18.4399(8) Å. The Ge substructure consists of unique (1)(∞)[Ge(10)] chains that are interconnected by Ag atoms to build a three-dimensional network. In the channels of this diamond-like network, not all of the possible positions are occupied by Li ions. Li atoms in the neighborhood of the vacancies show considerably enlarged displacement vectors. The occurrence of the vacancy is traced back to short Li-Li distances in the case of the occupation of the vacancy with Li. Both compounds are not electron-precise Zintl phases. The density of states, band structure, and crystal orbital Hamilton population analyses of Li(2.80-x)AgGe(2 )reveal metallic properties, whereas a full occupation of all Li sites leads to an electron-precise Zintl compound within a rigid-band model. Li(2)AgGe reveals metallic character in the ab plane and is a semiconductor with a small band gap along the c direction. PMID:25521213

  15. First-principles study on distribution of Ag in ZnO

    NASA Astrophysics Data System (ADS)

    Wan, Qixin; Xiong, Zhihua; Li, Dongmei; Liu, Guodong; Peng, Jianfei

    2009-08-01

    Except for the group-V dopants, Ag, as a group IB element, could also act as an acceptor in ZnO, if incorporated on substitutional Zn sites. In this paper, first-principles density-functional calculations have been performed to investigate various distributions of Ag in ZnO. The first-principles calculations were carried out using the density functional theory with the generalized gradient approximation (GGA) and the projector augmented wave (PAW) pseudopotentials. The supercell employed contained 32 atoms that corresponded to a 2×2×2 supercell of ZnO. The various distributions of Ag in ZnO have been calculated corresponding to each possible location. In conclusion, the calculation results show that the formation energies of Ag on the substitutional Zn site (AgZn) and incorporation in the interstitial site (Agi) are smaller than that of Ag on the O site (AgO). When AgZn and Agi coexist and are partitioned by an oxygen atom layer, the formation energy and the total energy is the smallest. As a result, Ag prefers to distribute discretely in Ag doped ZnO. It is also found that our results are in agreement with other experimental results.

  16. Antibacterial burst-release from minimal Ag-containing plasma polymer coatings.

    PubMed

    Lischer, Stefanie; Körner, Enrico; Balazs, Dawn J; Shen, Dakang; Wick, Peter; Grieder, Kathrin; Haas, Dieter; Heuberger, Manfred; Hegemann, Dirk

    2011-07-01

    Biomaterials releasing silver (Ag) are of interest because of their ability to inhibit pathogenic bacteria including antibiotic-resistant strains. In order to investigate the potential of nanometre-thick Ag polymer (Ag/amino-hydrocarbon) nanocomposite plasma coatings, we studied a comprehensive range of factors such as the plasma deposition process and Ag cation release as well as the antibacterial and cytocompatible properties. The nanocomposite coatings released most bound Ag within the first day of immersion in water yielding an antibacterial burst. The release kinetics correlated with the inhibitory effects on the pathogens Pseudomonas aeruginosa or Staphylococcus aureus and on animal cells that were in contact with these coatings. We identified a unique range of Ag content that provided an effective antibacterial peak release, followed by cytocompatible conditions soon thereafter. The control of the in situ growth conditions for Ag nanoparticles in the polymer matrix offers the possibility to produce customized coatings that initially release sufficient quantities of Ag ions to produce a strong adjacent antibacterial effect, and at the same time exhibit a rapidly decaying Ag content to provide surface cytocompatibility within hours/days. This approach seems to be favourable with respect to implant surfaces and possible Ag-resistance/tolerance built-up. PMID:21247951

  17. Antibacterial burst-release from minimal Ag-containing plasma polymer coatings

    PubMed Central

    Lischer, Stefanie; Körner, Enrico; Balazs, Dawn J.; Shen, Dakang; Wick, Peter; Grieder, Kathrin; Haas, Dieter; Heuberger, Manfred; Hegemann, Dirk

    2011-01-01

    Biomaterials releasing silver (Ag) are of interest because of their ability to inhibit pathogenic bacteria including antibiotic-resistant strains. In order to investigate the potential of nanometre-thick Ag polymer (Ag/amino-hydrocarbon) nanocomposite plasma coatings, we studied a comprehensive range of factors such as the plasma deposition process and Ag cation release as well as the antibacterial and cytocompatible properties. The nanocomposite coatings released most bound Ag within the first day of immersion in water yielding an antibacterial burst. The release kinetics correlated with the inhibitory effects on the pathogens Pseudomonas aeruginosa or Staphylococcus aureus and on animal cells that were in contact with these coatings. We identified a unique range of Ag content that provided an effective antibacterial peak release, followed by cytocompatible conditions soon thereafter. The control of the in situ growth conditions for Ag nanoparticles in the polymer matrix offers the possibility to produce customized coatings that initially release sufficient quantities of Ag ions to produce a strong adjacent antibacterial effect, and at the same time exhibit a rapidly decaying Ag content to provide surface cytocompatibility within hours/days. This approach seems to be favourable with respect to implant surfaces and possible Ag-resistance/tolerance built-up. PMID:21247951

  18. AgII doped MIL-101 and its adsorption of iodine with high speed in solution

    NASA Astrophysics Data System (ADS)

    Mao, Ping; Qi, Bingbing; Liu, Ying; Zhao, Lei; Jiao, Yan; Zhang, Yi; Jiang, Zheng; Li, Qiang; Wang, Jinfeng; Chen, Shouwen; Yang, Yi

    2016-05-01

    In order to improve the adsorption speed of iodine from water, MIL-101 with extra-large specific surface area (3054 m2/g) was chosen as a base material, and then, Ag was doped into MIL-101 to enhance its adsorption capacity through an incipient-wetness impregnation method. With the characterization of SEM-EDS, TEM, XRD, XPS, TGA, IR, and BET techniques, the resulting Ag was identified to be stay in the framework of MIL-101 stably in the form of AgII (generally, AgII cation is not stable). However, after the adsorption of I- anions, AgII stay in the cages of MIL-101 in the form of AgI/AgI3. It is important to note that, all adsorbents show high adsorption speed of iodine in solution. The equilibrium adsorption time of the adsorbents were acquired by only a few minutes, which can be attributed to its large BET surface area. An interesting note is that, when the doping amount of Ag is less than 9%, the iodine anions adsorption capacity of Ag@MIL-101 is greater than its theoretical adsorption capacity. It shows that both physical adsorption and chemical adsorption are existed in the adsorption process. This study hopefully leads to a new and highly efficient Ag-based adsorbent for iodide adsorb from solutions.

  19. Synthesis and visible light photoactivity of anatase Ag, and garlic loaded TiO2 nanocrystalline catalyst

    EPA Science Inventory

    An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...

  20. Evaluation of the catalytic activity of Pd-Ag alloys on ethanol oxidation and oxygen reduction reactions in alkaline medium

    NASA Astrophysics Data System (ADS)

    Oliveira, M. C.; Rego, R.; Fernandes, L. S.; Tavares, P. B.

    2011-08-01

    Pd-Ag alloys containing different amounts of Ag (8, 21 and 34 at.%) were prepared in order to evaluate their catalytic activity towards the ethanol oxidation (EOR) and oxygen reduction (ORR) reactions. A sequential electroless deposition of Ag and Pd on a stainless steel disc, followed by annealing at 650 °C under Ar stream, was used as the alloy electrode deposition process. From half-cell measurements in a 1.0 M NaOH electrolyte at ≅20 °C, it was found that alloying Pd with Ag leads to an increases of the ORR and EOR kinetics, relative to Pd. Among the alloys under study, the 21 at.% Ag content alloy presents the highest catalytic activity for the EOR and the lowest Ag content alloy (8 at.% Ag) shows the highest ORR activity. Moreover, it was found that the selectivity of Pd-Ag alloys towards ORR is sustained when ethanol is present in the electrolyte.

  1. Effects of flexibility on AGS performance. [Annular suspension pointing system Gimbal System aboard Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Shelton, H. L.; Cunningham, D. C.; Worley, H. E.; Seltzer, S. M.

    1982-01-01

    The Marshall Space Flight Center has had under development the Annular Suspension Pointing System Gimbal System (AGS) since early 1979. The AGS is an Orbiter cargo bay mounted subarcsecond 3 axis inertial pointer that can accommodate a wide range of payloads which require more stringent pointing than the Orbiter can provide. This paper will describe the AGS, state performance requirements and the control law configuration. Then an approach to investigating the flexible body effects on control system design will be discussed.

  2. Enhanced reverse saturable absorption in graphene/Ag2S organic glasses.

    PubMed

    Ouyang, Qiuyun; Di, Xinpeng; Lei, Zhenyu; Qi, Lihong; Li, Chunyan; Chen, Yujin

    2013-07-14

    G/Ag2S composites were synthesized for the first time by a hydrothermal method. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analysis demonstrated that Ag2S nanoparticles with a diameter of about 130 nm uniformly covered the graphene surfaces. G/Ag2S composites were dispersed in methyl methacrylate (MMA), polymerized at 75 °C for 30-35 min, and finally dried at 45 °C for 10 h, to afford G/Ag2S/PMMA organic glasses. The nonlinear absorption (NLA) properties of the G/Ag2S/PMMA organic glasses with different amounts of G/Ag2S were investigated by an open-aperture Z-scan technique. The experimental results showed that the G/Ag2S/PMMA organic glass with an appropriate amount of G/Ag2S exhibited enhanced reverse saturable absorption (RSA) properties compared to G/PMMA and Ag2S/PMMA organic glasses, which was attributed to the notable synergistic effects between graphene and Ag2S. Both one-photon absorption (OPA) in Ag2S and two-photon absorption (TPA) in graphene played important roles in RSA processes of the G/Ag2S/PMMA organic glasses. The effective NLA coefficient βeff of the G/Ag2S/PMMA organic glasses was in the order of 10(3) cm GW(-1). Thus this kind of organic glasses have great promise in optical limiter and optical shutter applications. PMID:23715155

  3. Integrated Assessments of the Impact of Climate Change on Agriculture: An Overview of AgMIP Regional Research in South Asia

    NASA Technical Reports Server (NTRS)

    McDermid, Sonali P.; Dileepkumar, Guntuku; Murthy, K. M. Dakshina; Nedumaran, S.; Singh, Piara; Srinivasa, Chukka; Gangwar, B.; Subash, N.; Ahmad, Ashfaq; Zubair, Lareef; Nissanka, S. P.

    2015-01-01

    South Asia's growing population. In order to assess the future of food and livelihood security across South Asia, the Agricultural Model Intercomparison and Improvement Project (AgMIP) has undertaken integrated climate-crop-economic assessments of the impact of climate change on food security and poverty in South Asia, encompassing Bangladesh, India, Nepal, Pakistan, and Sri Lanka. AgMIP has funded, on a competitive basis, four South Asian regional research teams (RRTs) and one South Asian coordination team (CT) to undertake climate-crop-economic integrated assessments of food security for many districts in each of these countries, with the goal of characterizing the state of food security and poverty across the region, and projecting how these are subject to change under future climate change conditions.

  4. Probing the rupture of a Ag atomic junction in a Ag-Au mixed electrode

    NASA Astrophysics Data System (ADS)

    Kim, Taekyeong

    2015-09-01

    We probed that the atomic junction in Ag part ruptures during stretching of atomic sized contacts of Ag-Au mixed electrodes, resulting in Ag-Ag electrodes through a scanning tunneling microscope breaking junction (STM-BJ) technique. We observed that the conductance and tunneling decay constant for a series of amine-terminated oligophenyl molecular junctions are essentially the same for the Ag-Au mixed and the Ag-Ag electrodes. We also found the molecular plateau length and the evolution patterns with the Ag-Au mixed electrodes are similar to those with Ag-Ag electrodes rather than the Au-Au electrodes in the molecular junction elongation. This result is attributed to the smaller binding energy of Ag atoms compared to that of Au atoms, so the Ag junction part is more easily broken than that of Au part in stretching of Ag-Au mixed electrodes. Furthermore, we successfully observed that the rupture force of the atomic junction for the Ag-Au mixed electrodes was identical to that for the Ag-Ag electrodes and smaller than that for the Au-Au electrodes. This study may advance the understanding of the electrical and the mechanical properties in molecular devices with Ag and Au electrodes in future.

  5. Investigations on electrical and electrochemical properties of Ag+ ion conducting quaternary solid electrolyte systems: x[0.75 AgI : 0.25 AgCl] : (1-x)RbI

    NASA Astrophysics Data System (ADS)

    Agrawal, R. C.; Chandra, Angesh; Bhatt, Alok; Mahipal, Y. K.

    2007-08-01

    Investigations on ion transport behaviour of new Ag+ ion conducting quaternary solid electrolyte systems: x[0.75AgI : 0.25AgCl] : (1 - x)RbI, where 0.1 <= x <= 1 mol.wt fractions, are reported. The solid electrolyte systems were synthesized adopting different routes of solid solution reactions. An alternative host salt, 'a quenched [0.75AgI : 0.25AgCl] mixed system solid solution', discovered at the present laboratory, has been used in place of AgI. The compositional dependent conductivity studies at room temperature revealed the quaternary systems 0.7[0.75AgI : 0.25AgCl] : 0.3RbI as the optimum conducting composition (OCC). AgI has been traditionally and most widely used as host salt in the past to prepare the majority of well-known fast Ag+ ion conductors including the ternary superionic solids MAg4I5 (M = Rb, K, NH4). Also, RbAg4I5 has been recognized as one of the highest conducting superionic solids with conductivity σrt ~ 10-1 S cm-1 at room temperature. However, it has been observed that RbAg4I5 is thermodynamically unstable, particularly in the open ambient conditions, while the newly synthesized quaternary solid electrolyte, having OCC 0.7[0.75AgI : 0.25AgCl] : 0.3RbI, has been observed to be much more stable than RbAg4I5. For direct comparison of the ion conduction behaviour of the newly synthesized OCC, the ternary superionic solid RbAg4I5 (0.8AgI : 0.2RbI) has also been synthesized in an identical manner. The room temperature conductivity (σrt) of the newly synthesized quaternary OCC was slightly lower than that of RbAg4I5. However, σrt remained practically stable for a fairly long time in the open ambient conditions as compared with that of RbAg4I5. The mechanism of ion transport in OCC has been characterized on the basis of experimental studies on various ionic parameters namely conductivity (σ), ionic mobility (μ), mobile ion concentration (n), ionic drift velocity (vd), ionic transference number (tion) etc. The temperature dependent studies on

  6. The AGS Booster control system

    SciTech Connect

    Frankel, R.; Auerbach, E.; Culwick, B.; Clifford, T.; Mandell, S.; Mariotti, R.; Salwen, C.; Schumburg, N.

    1988-01-01

    Although moderate in size, the Booster construction project requires a comprehensive control system. There are three operational modes: as a high intensity proton injector for the AGS, as a heavy ion accelerator and injector supporting a wide range of ions and as a polarized proton storage injector. These requirements are met using a workstation based extension of the existing AGS control system. Since the Booster is joining a complex of existing accelerators, the new system will be capable of supporting multiuser operational scenarios. A short discussion of this system is discussed in this paper.

  7. Conductance switching in Ag2S devices fabricated by in situ sulfurization

    NASA Astrophysics Data System (ADS)

    Morales-Masis, M.; van der Molen, S. J.; Fu, W. T.; Hesselberth, M. B.; van Ruitenbeek, J. M.

    2009-03-01

    We report a simple and reproducible method to fabricate switchable Ag2S devices. The α-Ag2S thin films are produced by a sulfurization process after silver deposition on an Si substrate. Structure and composition of the Ag2S are characterized using XRD and RBS. Our samples show semiconductor behaviour at low bias voltages, whereas they exhibit reproducible bipolar resistance switching at higher bias voltages. The transition between both types of behaviour is observed by hysteresis in the I-V curves, indicating decomposition of the Ag2S, increasing the Ag+ ion mobility. The as-fabricated Ag2S samples are a good candidate for future solid state memory devices, as they show reproducible memory resistive properties and they are fabricated by an accessible and reliable method.

  8. Conductance switching in Ag(2)S devices fabricated by in situ sulfurization.

    PubMed

    Morales-Masis, M; van der Molen, S J; Fu, W T; Hesselberth, M B; van Ruitenbeek, J M

    2009-03-01

    We report a simple and reproducible method to fabricate switchable Ag(2)S devices. The alpha-Ag(2)S thin films are produced by a sulfurization process after silver deposition on an Si substrate. Structure and composition of the Ag(2)S are characterized using XRD and RBS. Our samples show semiconductor behaviour at low bias voltages, whereas they exhibit reproducible bipolar resistance switching at higher bias voltages. The transition between both types of behaviour is observed by hysteresis in the I-V curves, indicating decomposition of the Ag(2)S, increasing the Ag(+) ion mobility. The as-fabricated Ag(2)S samples are a good candidate for future solid state memory devices, as they show reproducible memory resistive properties and they are fabricated by an accessible and reliable method. PMID:19417506

  9. Cellular Energy Allocation to Assess the Impact of Nanomaterials on Soil Invertebrates (Enchytraeids): The Effect of Cu and Ag.

    PubMed

    Gomes, Susana I L; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2015-06-01

    The effects of several copper (Cu) and silver (Ag) nanomaterials were assessed using the cellular energy allocation (CEA), a methodology used to evaluate the energetic status and which relates with organisms' overall condition and response to toxic stress. Enchytraeus crypticus (Oligochatea), was exposed to the reproduction effect concentrations EC20/50 of several Cu and Ag materials (CuNO3, Cu-Field, Cu-Nwires and Cu-NPs; AgNO3, Ag NM300K, Ag-NPs Non-coated and Ag-NPs PVP-coated) for 7 days (0-3-7d). The parameters measured were the total energy reserves available (protein, carbohydrate and lipid budgets) and the energy consumption (Ec) integrated to obtain the CEA. Results showed that these parameters allowed a clear discrimination between Cu and Ag, but less clearly within each of the various materials. For Cu there was an increase in Ec and protein budget, while for Ag a decrease was observed. The results corroborate known mechanisms, e.g., with Cu causing an increase in metabolic rate whereas Ag induces mitochondrial damage. The various Cu forms seem to activate different mechanisms with size and shape (e.g., Cu-NPs versus Cu-Nwires), causing clearly different effects. For Ag, results are in line with a slower oxidation rate of Ag-NMs in comparison with Ag-salt and hence delayed effects. PMID:26086707

  10. Cellular Energy Allocation to Assess the Impact of Nanomaterials on Soil Invertebrates (Enchytraeids): The Effect of Cu and Ag

    PubMed Central

    Gomes, Susana I. L.; Scott-Fordsmand, Janeck J.; Amorim, Mónica J. B.

    2015-01-01

    The effects of several copper (Cu) and silver (Ag) nanomaterials were assessed using the cellular energy allocation (CEA), a methodology used to evaluate the energetic status and which relates with organisms’ overall condition and response to toxic stress. Enchytraeus crypticus (Oligochatea), was exposed to the reproduction effect concentrations EC20/50 of several Cu and Ag materials (CuNO3, Cu-Field, Cu-Nwires and Cu-NPs; AgNO3, Ag NM300K, Ag-NPs Non-coated and Ag-NPs PVP-coated) for 7 days (0-3-7d). The parameters measured were the total energy reserves available (protein, carbohydrate and lipid budgets) and the energy consumption (Ec) integrated to obtain the CEA. Results showed that these parameters allowed a clear discrimination between Cu and Ag, but less clearly within each of the various materials. For Cu there was an increase in Ec and protein budget, while for Ag a decrease was observed. The results corroborate known mechanisms, e.g., with Cu causing an increase in metabolic rate whereas Ag induces mitochondrial damage. The various Cu forms seem to activate different mechanisms with size and shape (e.g., Cu-NPs versus Cu-Nwires), causing clearly different effects. For Ag, results are in line with a slower oxidation rate of Ag-NMs in comparison with Ag-salt and hence delayed effects. PMID:26086707

  11. Characterization of radiative recombination in Ag(In,Ga)Se2 thin films by photoluminescence

    NASA Astrophysics Data System (ADS)

    Zhang, X. F.; Liu, J.; Liu, G. F.

    2016-06-01

    A detailed analysis of the radiative recombination processes in Ag(InGa)Se2 thin films grown by a three-stage method was carried out by photoluminescence. The temperature and excitation dependence of the photoluminescence spectra was used to identify the recombination types and determine the ionization energy of the defects in the films. Significant differences were observed between the spectra of the Ag-rich and Ag-poor samples. The Ag-rich films were dominated by two emission peaks of donor acceptor pairs (DAPs). The DAP at lower energy level is attributed to recombination of donor level 13.8 meV (Agi) with acceptor level 70.3 meV (AgIn), while the one at high energy level is assigned to recombination of donor level 18.5 meV (Agi) with acceptor level 108.9 (AgSe). When Ag/III atomic ratio was near 2.00, a phonon related-structure began to appear, which is attributed to the phonon replica of the high energy level DAP. In the case of Ag-poor AIGS samples, the dominant broad asymmetric peaks of AIGS films with different Ag/III atomic ratios were related to potential fluctuation at low temperature, and the compensation level decreased with increasing Ag/III atomic ratio. The emission line was assigned to recombination of donor level 12.7 meV (Agi) with acceptor level 175 meV ( AgGa 2). When the excitation power and temperature were increased, new free-bound and DAP emission lines began to appear. The free-bound was assigned to the transition from the conduction band to an acceptor level of 80 meV (AgIn). The DAP was assigned to recombination of donor level 20 meV (VSe) with acceptor level 145 meV (AgGa).

  12. The isotopic composition and concentration of AG in iron meteorites and the origin of exotic silver

    NASA Astrophysics Data System (ADS)

    Kaiser, T.; Wasserburg, G. J.

    1983-01-01

    The isotopic composition of Ag and the concentration of Ag and Pd have been determined in Canyon Diablo (IA), Grant (IIIB), Hoba, Santa Clara, Tlacotepec and Warburton Range (IVB), Piñon and Deep Springs (anom.). Troilite from Grant and Santa Clara have also been analyzed. All of these meteorites, with the exception of Canyon Diablo, give 107Ag/109Ag in the metal phase that is greater than the terrestrial value with the enrichments of 107Ag ranging from ≡2% to 212%. These data show that Ag of anomalous isotopic composition is common to all IVB and anomalous meteorites. The results on Grant suggest that the anomalies may be widespread including more common meteorite groups. There is a general correlation of 107Ag/109Ag with Pd/Ag except for the data from FeS of Santa Clara. The data suggest that Ag in Santa Clara and possibly other IVB meteorites is made up of almost pure 107Ag produced from 107Pd decay and 109Ag produced by nuclear reactions with only a small amount of "normal" Ag. This indicates an intense energetic particle bombardment history in the early solar system (≡1020 p/m2) which occurred after the formation of small planetary bodies. The authors infer that a T-Tauri activity by the early sun contributed to some late stage "nucleosynthesis" and the heating of a dust cloud. In addition, implications on the early thermal evolution of iron meteorites are presented based on 107Pd decay and models of the cooling history.

  13. New insights in understanding plasma-catalysis reaction pathways: study of the catalytic ozonation of an acetaldehyde saturated Ag/TiO2/SiO2 catalyst

    NASA Astrophysics Data System (ADS)

    Sauce, Sonia; Vega-González, Arlette; Jia, Zixian; Touchard, Sylvain; Hassouni, Khaled; Kanaev, Andrei; Duten, Xavier

    2015-07-01

    This paper is a preliminary study intended to straighten out the role of reactive oxygen species in the activation mechanisms occurring in a plasma driven catalysis process for acetaldehyde decomposition. For this purpose, the interaction between the surface, the pollutant and one of the main oxidative species generated by non-thermal plasma, namely ozone, was studied. Acetaldehyde catalytic ozonation over a nanostructured Ag/TiO2/SiO2 catalyst is carried out at room temperature and atmospheric pressure, and followed by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS). For this, the catalyst is firstly saturated with acetaldehyde. At the end of the saturation, acetaldehyde and crotonaldehyde, its condensation product, are identified as the major adsorbed species. In a second step, the surface ozonation is carried out and three additional intermediates are identified, namely, acetone, formic acid and acetic acid. Gaseous CO, CO2, methyl formate and methyl acetate are detected at the DRIFTS outlet, evidencing the partial mineralization of the adsorbed species. A global reaction scheme is proposed for explaining the formation of those adsorbed intermediates and gaseous products. This proposed heterogeneous ozone induced chemistry has to be taken into account when associating non-thermal plasma in air to a catalyst. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  14. Interfacial Phenomena in Al/Al, Al/Cu, and Cu/Cu Joints Soldered Using an Al-Zn Alloy with Ag or Cu Additions

    NASA Astrophysics Data System (ADS)

    Pstruś, Janusz; Gancarz, Tomasz

    2014-05-01

    The studies of soldered joints were carried out in systems: Al/solder/Al, Al/solder/Cu, Cu/solder/Cu, where the solder was (Al-Zn)EUT, (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Ag and (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Cu addition. Brazing was performed at 500 °C for 3 min. The EDS analysis indicated that the composition of the layers starting from the Cu pad was CuZn, Cu5Zn8, and CuZn4, respectively. Wetting tests were performed at 500 °C for 3, 8, 15, and 30 min, respectively. Thickness of the layers and their kinetics of growth were measured based on the SEM micrographs. The formation of interlayers was not observed from the side of Al pads. On the contrary, dissolution of the Al substrate and migration of Al-rich particles into the bulk of the solder were observed.

  15. Development of a supramolecular ensemble of an AIEE active hexaphenylbenzene derivative and Ag@Cu2O core-shell NPs: an efficient photocatalytic system for C-H activation.

    PubMed

    Chopra, Radhika; Kumar, Manoj; Bhalla, Vandana

    2016-08-01

    A supramolecular ensemble having Ag@Cu2O core-shell nanoparticles stabilized by aggregates of a hexaphenylbenzene derivative has been developed which exhibits excellent photocatalytic efficiency in reactions involving preparation of imidazole and benzimidazole derivatives via C-H activation. PMID:27464360

  16. An innovative method for joining materials at low temperature using silver (nano)particles derived from [AgO2C(CH2OCH2)3H

    NASA Astrophysics Data System (ADS)

    Oestreicher, Annerose; Röhrich, Tobias; Wilden, Johannes; Lerch, Martin; Jakob, Alexander; Lang, Heinrich

    2013-01-01

    A novel method for the manufacture of compact sintered silver layers as joining materials at low temperatures without applying pressure is described. The metal-organic silver complex [AgO2C(CH2OCH2)3H] (3) is used, which generates silver nanoparticles with heat treatment below 200 °C. Complex (3) provides the features for the formation of a molten metal-like silver phase in which silver particles in the nanometer and submicron size range, respectively, are completely miscible. Within this study, copper specimens were bonded, and the joints were evaluated by cross-sectional scanning electron microscope (SEM) images. Moreover, this approach enables the incorporation of copper. An example is given with an average amount of 20 at.% copper content in the silver layer.

  17. Analysis of the symbiotic star AG Pegasi

    NASA Technical Reports Server (NTRS)

    Keyes, C. D.; Plavec, M. J.

    1981-01-01

    High and low dispersion IUE data are analyzed in conjunction with coincident ground based spectrophotometric scans and supplementary infrared photometry of the symbiotic object AG Pegasi. The IUE observations yield an improved value of E(B-V) = 0.12. The two stellar components are easily recognized in the spectra. The cool component may be an M1.7 III star and the hot component appears to have T (sub eff) of approximately 30000 K. The emission lines observed in the ultraviolet indicate two or three distince emitting regions. Nebular component ultraviolet intercombination lines suggest an electron density of several times 10 billion/cu cm.

  18. Ordering Ag nanowire arrays by spontaneous spreading of volatile droplet on solid surface

    PubMed Central

    Dai, Han; Ding, Ruiqiang; Li, Meicheng; Huang, Jinjer; Li, Yingfeng; Trevor, Mwenya

    2014-01-01

    Large-area Ag nanowires are ordered by spontaneous spreading of volatile droplet on a wettable solid surface. Compared with other nanowires orientation methods, radial shaped oriented Ag nanowires in a large ring region are obtained in an extremely short time. Furthermore, the radial shaped oriented Ag nanowires are transferred and aligned into one direction. Based on the hydrodynamics, the coactions among the microfluid, gravity effect and the adhesion of substrate on the orientation of the Ag nanowires are clearly revealed. This spreading method opens an efficient way for extreme economic, efficient and “green” way for commercial producing ordered nanowire arrays. PMID:25339118

  19. Photoreduction of Ag+ in Ag/Ag2S/Au memristor

    NASA Astrophysics Data System (ADS)

    Mou, N. I.; Tabib-Azar, M.

    2015-06-01

    Silver halides and chalcogenides are excellent memristor materials that have been extensively used in the past as photosensitive layers in photography. Here we examine the effect of illumination on the operating voltages and switching speed of Ag/Ag2S/Au memristors using a green laser (473-523 nm). Our results indicate that illumination decreases the average switching time from high to low resistance states by ∼19% and decreases the turn-off voltages dramatically from -0.8 V to -0.25 V that we attribute to the change in sulfur valency and a photo-induced change in its oxidation/reduction potential. Photo-induced reduction of silver in Ag2S may be used in three dimensional optical memories that can be electronically read and reset.

  20. Ag nanotubes and Ag/AgCl electrodes in nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Davenport, Matthew; Healy, Ken; Siwy, Zuzanna S.

    2011-04-01

    Miniaturization of the entire experimental setup is a key requirement for widespread application of nanodevices. For nanopore biosensing, integrating electrodes onto the nanopore membrane and controlling the pore length is important for reducing the complexity and improving the sensitivity of the system. Here we present a method to achieve these goals, which relies on electroless plating to produce Ag nanotubes in track-etched polymer nanopore templates. By plating from one side only, we create a conductive nanotube that does not span the full length of the pore, and thus can act as a nanoelectrode located inside the nanopore. To give optimal electrochemical behavior for sensing, we coat the Ag nanotube with a layer of AgCl. We characterize the behavior of this nanoelectrode by measuring its current-voltage response and find that, in most cases, the response is asymmetric. The plated nanopores have initial diameters between 100 and 300 nm, thus a range suitable for detection of viruses.

  1. Spin polarization and additional magneto-optical activity of nonmagnetic layers in Fe/Ag CMF

    NASA Astrophysics Data System (ADS)

    Xu, Y. B.; Zhai, H. R.; Lu, M.; Jin, Q. Y.; Miao, Y. Z.

    1992-08-01

    The experimental magneto-optical Kerr rotation spectra of Fe/Ag compositionally modulated films reported by Katayama et al. are studied theoretically. It is found that the free electrons of Ag are spin polarized. The magnitude of the polarization is about 1% with a direction opposite to that of Fe. The polarized Ag also gives rise to an additional magneto-optical activity as in Pt and Pd.

  2. Ag-Ag2S Hybrid Nanoprisms: Structural versus Plasmonic Evolution.

    PubMed

    Shahjamali, Mohammad M; Zhou, Yong; Zaraee, Negin; Xue, Can; Wu, Jinsong; Large, Nicolas; McGuirk, C Michael; Boey, Freddy; Dravid, Vinayak; Cui, Zhifeng; Schatz, George C; Mirkin, Chad A

    2016-05-24

    Recently, Ag-Ag2S hybrid nanostructures have attracted a great deal of attention due to their enhanced chemical and thermal stability, in addition to their morphology- and composition-dependent tunable local surface plasmon resonances. Although Ag-Ag2S nanostructures can be synthesized via sulfidation of as-prepared anisotropic Ag nanoparticles, this process is poorly understood, often leading to materials with anomalous compositions, sizes, and shapes and, consequently, optical properties. In this work, we use theory and experiment to investigate the structural and plasmonic evolution of Ag-Ag2S nanoprisms during the sulfidation of Ag precursors. The previously observed red-shifted extinction of the Ag-Ag2S hybrid nanoprism as sulfidation occurs contradicts theoretical predictions, indicating that the reaction does not just occur at the prism tips as previously speculated. Our experiments show that sulfidation can induce either blue or red shifts in the extinction of the dipole plasmon mode, depending on reaction conditions. By elucidating the correlation with the final structure and morphology of the synthesized Ag-Ag2S nanoprisms, we find that, depending on the reaction conditions, sulfidation occurs on the prism tips and/or the (111) surfaces, leading to a core(Ag)-anisotropic shell(Ag2S) prism nanostructure. Additionally, we demonstrate that the direction of the shift in the dipole plasmon is a function of the relative amounts of Ag2S at the prism tips and Ag2S shell thickness around the prism. PMID:27148792

  3. Ag-doped carbon aerogels for removing halide ions in water treatment.

    PubMed

    Sánchez-Polo, M; Rivera-Utrilla, J; Salhi, E; von Gunten, U

    2007-03-01

    The objective of this study was to analyze the efficiency of silver(Ag)-doped carbon aerogels for the removal of bromide (Br(-)) and iodide (I(-)) from drinking waters. Textural characterization of Ag-doped aerogels showed that an increase in the Ag dose added during the preparation process produced: (i) a reduction in the surface area (S(BET)) and (ii) an increase in mesopore (V(2)) and macropore (V(3)) volumes. Chemical characterization of the materials revealed an acidic surface (pH of point of zero charge, pH(PZC)=4.5, O(surface)=20%). The oxidation state of Ag was +1 and the surface concentration of this element ranged from 4% to 10%. The adsorption capacity (X(m)) and affinity of adsorbent (BX(m)) increased with a reduction in the radius of the halogenide. Furthermore, an increase in the adsorption capacity was observed with higher Ag concentrations on the aerogel surface. The high adsorption capacity of the aerogel may be due to the presence of Ag(I) on its surface, with the formation of the corresponding Ag halides. Our observations indicate that the halogenides adsorption on commercial activated carbon (Sorbo-Norit) is much lower than that of the Ag-doped carbon aerogels. The presence of chloride and natural organic matter (NOM) in the medium reduced the adsorption capacity of Br(-) and I(-) on Ag carbon aerogels. PMID:16970974

  4. Understanding the dispersion of Ag on high surface area TiO2 supports using XPS intensity ratios

    NASA Astrophysics Data System (ADS)

    Davis, Zenda D.; Tatarchuk, Bruce J.

    2015-10-01

    Silver-titania (Ag/TiO2) adsorbents, in the range of 4 wt% Ag, display high selectivity toward sulfur heterocyclic compounds from complex fuel streams containing other aromatics. An experimental investigation of Ag on TiO2 has been undertaken to understand the state of dispersion and growth of Ag. XPS is one of the more promising characterization tools for the state of dispersion. Silver loading from 1 wt% to 20 wt% on 150 m2/g titania was investigated. Ag/Ti intensity ratios increased linearly with Ag content up to 4 wt% and increased less significantly thereafter from 8 wt% to 20 wt% indicating nucleation and growth of Ag crystallites. Inelastic mean free path (IMFP) calculations were used to estimate Ag crystallite size based on the attenuation of the Ag signal, realizing in this regime there is insufficient Ag to attenuate background titania. At 4, 8, 12, and 20 wt% the estimated average crystallite sizes were 0.35, 0.71, 0.84, and 1.11 nm respectively. Ag loadings up to 4 wt% were present in the form of Ag+1 adatoms presumably occupying TiO2 surface defects. Saturation of surface TiO2 defects is in good agreement with quantitative sulfur heterocycle adsorption.

  5. Ag@polypyrrole: A highly efficient nanocatalyst for the N-alkylation of amines using alcohols.

    PubMed

    Mandi, Usha; Kundu, Sudipta K; Salam, Noor; Bhaumik, Asim; Islam, Sk Manirul

    2016-04-01

    We have synthesized Ag@polypyrrole nanomaterial by dispersing ultrafine silver nanoparticles (Ag NPs) over the organic polymer polypyrrole. The Ag@polypyrrole material has been characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron paramagnetic resonance (EPR), Fourier transform infrared (FT-IR), ultraviolet-visible absorption (UV-vis) and atomic adsorption spectroscopy (AAS), and thermogravimetric analysis (TGA). The XRD pattern suggested the cubic crystalline phase of Ag NPs in Ag@polypyrrole. TEM image analysis revealed that silver nanoparticles are highly dispersed in the polymer matrix. The Ag@polypyrrole acts as an efficient and versatile heterogeneous nanocatalyst in the N-alkylation of amines using alcohols. The catalyst can be easily prepared, highly robust and reused several times without decrease in its catalytic activity. PMID:26809107

  6. 1.5-GEV FFAG ACCELERATOR AS INJECTOR TO THE BNL-AGS.

    SciTech Connect

    RUGGIERO,A.G.BLASKIEWICZ,M.TRBOJEVIC,D.ET AL.

    2004-07-05

    A 1.5-GeV Fixed-Field Alternating-Gradient (FFAG) proton Accelerator is being studied as a new injector to the Alternating-Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The major benefit is that it would considerably shorten the overall AGS acceleration cycle, and, consequently, may yield to an improvement of beam stability, intensity and size. The AGS-FFAG will also facilitate the proposed upgrade of the AGS facility toward a 1-MW average proton beam power at the top energy of 28 GeV. This paper describes the FFAG design for acceleration of protons from 400 MeV to 1.5 GeV, with the same circumference of the AGS, and entirely housed in the AGS tunnel.

  7. Kinetic study of Pt nanocrystal deposition on Ag nanowires with clean surfaces via galvanic replacement

    PubMed Central

    2012-01-01

    Without using any templates or surfactants, this study develops a high-yield process to prepare vertical Ag-Pt core-shell nanowires (NWs) by thermally assisted photoreduction of Ag NWs and successive galvanic replacement between Ag and Pt ions. The clean surface of Ag nanowires allows Pt ions to reduce and deposit on it and forms a compact sheath comprising Pt nanocrystals. The core-shell structural feature of the NWs thus produced has been demonstrated via transmission electron microscopy observation and Auger electron spectroscopy elemental analysis. Kinetic analysis suggests that the deposition of Pt is an interface-controlled reaction and is dominated by the oxidative dissolution of Ag atoms. The boundaries in between Pt nanocrystals may act as microchannels for the transport of Ag ions during galvanic replacement reactions. PMID:22559242

  8. Effects of the surface Miller index on the resonant neutralization of hydrogen anions near Ag surfaces

    SciTech Connect

    Chakraborty, Himadri; Niederhausen, Thomas; Thumm, Uwe

    2004-05-01

    We compare the resonant neutralization dynamics of hydrogen anions in front of plane Ag surfaces of symmetries (100) and (111) using a Crank-Nicholson wave-packet propagation method. For the Ag(100) surface, the surface state, degenerate with the valence band, rapidly decays while being populated by the ion. For Ag(111), in contrast, the population of a quasi-local Shockley surface state inside the projected L-band gap impedes the electron decay into the bulk along the direction normal to the surface. This difference in the decay pattern strongly affects the survival of 1 keV ions scattered from these surfaces. Scattering off the Ag(111) surface results in about an order of magnitude higher ion-survival as a function of the exit angle with respect to the surface plane compared to that off Ag(100). Results for Ag(111) show good agreement with measurements [Guillemot and Esaulov, Phys. Rev. Lett. 82, 4552 (1999)].

  9. Effective electrocatalysis based on Ag2O nanowire arrays supported on a copper substrate.

    PubMed

    Ji, Rong; Wang, Lingling; Yu, Liutao; Geng, Baoyou; Wang, Guangfeng; Zhang, Xiaojun

    2013-11-13

    Silver oxide nanowire arrays (Ag2O NWAs) were first synthesized on a copper (Cu) rod by a simple and facile wet-chemistry approach without using any surfactants. The as-synthesized Ag2O NWA/Cu rod not only can be used as an integrated electrode (called a Ag2O NWA/CRIE) to detect hydrazine (HZ) but also can serve as the catalyst layer for a direct HZ fuel cell. The current density of HZ oxidation on Ag2O NWA (94.4 mA cm(-2)) is much bigger than that on a bare Cu rod (3.9 mA cm(-2)) at -0.6 V, and other Ag2O NWAs have the lowest onset potential (-0.85 V). This suggests that a Ag2O NWA integrated electrode has potential application in catalytic fields that contain the HZ fuel cell. PMID:23978111

  10. Facile synthesis of Ag-reduced graphene oxide hybrids and their application in electromagnetic interference shielding

    NASA Astrophysics Data System (ADS)

    Long, Tao; Hu, Li; Dai, HongXia; Tang, YuXia

    2014-07-01

    A fast and environmentally friendly method was proposed toward one-pot synthesis of Ag-reduced graphene oxide (Ag-RGO) hybrids by a chemical reduction method assisted by microwave irradiation treatment with the use of sodium citrate as green reductant. The as-synthesized samples were characterized systematically, and the results indicated the successful synthesis of Ag-RGO. Ag-RGO was further applied as filler in polymethyl methacrylate (PMMA) matrix polymer composites, and their electromagnetic interference (EMI) shielding performance was investigated. The prepared Ag-RGO/PMMA composites with 3.0 vol% Ag-RGO exhibited an excellent EMI shielding effectiveness (EMI SE) of average 26.8 dB in the 8-12 GHz X-band range, which outperformed the RGO/PMMA composites (18.4 dB) with bare RGO as fillers.

  11. Fabrication of Ag nanowire and Al-doped ZnO hybrid transparent electrodes

    NASA Astrophysics Data System (ADS)

    You, Sslimsearom; Park, Yong Seo; Choi, Hyung Wook; Kim, Kyung Hwan

    2016-01-01

    Among the materials used as transparent electrodes, silver nanowires (AgNWs) have attracted attention because of their high transmittance and excellent conductivity. However, AgNWs have shortcomings, including their poor adhesion, oxidation by atmospheric oxygen, and unstable characteristics at high temperature. To overcome these shortcomings, multi-layer thin films with an aluminum-doped zinc oxide (AZO)/AgNW/AZO structure were fabricated using facing targets sputtering. The samples heated to 350 °C exhibited stable electrical characteristics. In addition, the adhesion to the substrate was improved compared with AgNWs layer. The AZO/AgNW/AZO thin films with multilayer structure overcame the shortcomings of AgNWs, and we propose their use as transparent electrodes with excellent properties for optoelectronic applications.

  12. Alloying of Co ultrathin films on Pt(111) with Ag buffer layers

    NASA Astrophysics Data System (ADS)

    Shern, C. S.; Su, C. W.; Wu, Y. E.; Fu, T. Y.

    2000-07-01

    The structure at the interfaces of Co/Ag/Pt(111) was studied by low-energy electron diffraction, ultraviolet photoelectron spectroscopy, Auger electron spectroscopy, and depth profiling. An atomic exchange occurs between Co and Ag before the formation of a Co-Pt alloy. Ag atoms start moving to the top at 425 K when the coverage of Co is one monolayer. The temperature of the complete exchange between Ag atoms and Co atoms is dependent on the thickness of the Ag buffer layer. The Co-Pt alloy develops after the atomic exchange is complete. The especially small surface free energy of Ag and large strain energy in this system are proposed as the driving force for the exchange.

  13. AGS experiments: 1990, 1991, 1992. Ninth edition

    SciTech Connect

    Depken, J.C.

    1993-04-01

    This report contains a description of the following: AGS Experimental Area - High Energy Physics FY 1993 and Heavy Ion Physics FY 1993; Table of Beam Parameters and Fluxes; Experiment Schedule ``as run``; Proposed 1993 Schedule; A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Publications of AGS Experiments; and List of AGS Experimenters.

  14. AGS experiments, 1988, 1989, 1990

    SciTech Connect

    Depken, J.C.

    1991-04-01

    This report contains: experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; experiment long range schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS experiments; and list of experimenters.

  15. AGS experiments: 1985, 1986, 1987

    SciTech Connect

    Depken, J.C.

    1987-01-01

    This report contains: Experimental areas layout, table of beam parameters and fluxes, experiment schedule ''as run,'' experiment long range schedule, a listing of experiments by number, two-page summaries of each experiment, also ordered by number, and publications of AGS experiments, 1982-1987.

  16. AGS 20th anniversary celebration

    SciTech Connect

    Baggett, N.V.

    1980-05-22

    On May 22, 1980, a symposium was held at Brookhaven to celebrate the 20th birthday of the AGS, to recall its beginnings, and to review major discoveries that have been made with its beams. The talks at the symposium are recorded in this volume.

  17. Controlled formation of ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution.

    PubMed

    Huber, Klaus; Witte, Thomas; Hollmann, Jutta; Keuker-Baumann, Susanne

    2007-02-01

    A new tool is presented to control formation of Ag nanoparticles. Small amounts of silver ions were added to dilute solutions of long-chain sodium polyacrylates (NaPA). Four NaPA samples covering a molar mass regime of 97 kD < or = Mw < or = 650 kD have been used. With amounts of added Ag(+) as low as 1-2% of the COO(-) groups of the polyanionic chains, significant changes could already be induced in the NaPA coils with 650 kD. If the NaPA concentration was kept below 0.1 g/L, the coils with 650 kD exhibited a significant coil shrinking in stable solutions. At larger NaPA concentrations, addition of Ag+ initiates an aggregation of the polyacrylate coils toward compact structures. Coil shrinking and aggregation was revealed by means of time-resolved static light scattering. If exposed to UV-radiation, small Ag particles formed within the shrunken anionic polyacrylate coils. The Ag nanoparticles were identified by means of an enhanced light scattering and a characteristic plasmon absorption band around 410 nm. No such Ag particle formation could be observed even at 5 times larger concentrations of Ag(+) and NaPA if the two smallest polyacrylate samples have been used under otherwise equal conditions. This molar mass sensitive response of NaPA to Ag(+)-addition suggests an interesting phenomenon: if the coil size of the NaPa chains, which act as Ag(+) collectors, is large enough, local Ag(+) concentration in these coil-shaped Ag(+) containers exceeds a critical value, and irradiation with UV generates Ag nanoparticles. PMID:17263389

  18. Photoionizaton electronic spectroscopy of AgK

    NASA Astrophysics Data System (ADS)

    Yeh, C. S.; Robbins, D. L.; Pilgrim, J. S.; Duncan, M. A.

    1993-05-01

    An electronic spectrum is observed for the new heteronuclear metal dimer, AgK. Two electronic states are observed with origins near 315 nm. Spectra are detected for three isotopomers with mass-resolved one-color two-photon photoionization spectroscopy (R2PI). The vibrational bands in the more intense state (ω e = 85.8 cm -1) have rotational structure consistent with a 1Σ + → 1Π transition. This structure is red-shaded, consistent with an excited state having a significantly longer bond (3.02 Å) than the ground state (2.40 Å). The possible importance of ionic bonding is discussed.

  19. Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition

    PubMed Central

    Lu, Xiong; Zhang, Bailin; Wang, Yingbo; Zhou, Xianli; Weng, Jie; Qu, Shuxin; Feng, Bo; Watari, Fumio; Ding, Yonghui; Leng, Yang

    2011-01-01

    Hydroxyapatite (HA) coatings on titanium (Ti) substrates have attracted much attention owing to the combination of good mechanical properties of Ti and superior biocompatibility of HA. Incorporating silver (Ag) into HA coatings is an effective method to impart the coatings with antibacterial properties. However, the uniform distribution of Ag is still a challenge and Ag particles in the coatings are easy to agglomerate, which in turn affects the applications of the coatings. In this study, we employed pulsed electrochemical deposition to co-deposit HA and Ag simultaneously, which realized the uniform distribution of Ag particles in the coatings. This method was based on the use of a well-designed electrolyte containing Ag ions, calcium ions and l-cysteine, in which cysteine acted as the coordination agent to stabilize Ag ions. The antibacterial and cell culture tests were used to evaluate the antibacterial properties and biocompatibility of HA/Ag composite coatings, respectively. The results indicated the as-prepared coatings had good antibacterial properties and biocompatibility. However, an appropriate silver content should be chosen to balance the biocompatibility and antibacterial properties. Heat treatments promoted the adhesive strength and enhanced the biocompatibility without sacrificing the antibacterial properties of the HA/Ag coatings. In summary, this study provided an alternative method to prepare bioactive surfaces with bactericidal ability for biomedical devices. PMID:20880853

  20. Ag{sub 3}Ni{sub 2}O{sub 4}-A new stage-2 intercalation compound of 2H-AgNiO{sub 2} and physical properties of 2H-AgNiO{sub 2} above ambient temperature

    SciTech Connect

    Soergel, Timo; Jansen, Martin

    2007-01-15

    Ag{sub 3}Ni{sub 2}O{sub 4} was obtained as single crystals from a mixture of 2H-AgNiO{sub 2} and Ag{sub 2}O in oxygen high-pressure autoclaves (P6{sub 3}/mmc (no. 194), a=2.9331(6), c=28.313(9)A, Z=2). It may be regarded as a stage-2 intercalation compound of the host 2H-AgNiO{sub 2} and is the first staging compound constituted of alternating subvalent {approx}2Ag{sub 2}{sup +} and Ag{sup +} sheets, inserted between NiO{sub 2}{sup -} slabs. From a structural point of view, Ag{sub 3}Ni{sub 2}O{sub 4} represents an intermediate between AgNiO{sub 2} and the recently reported Ag{sub 2}NiO{sub 2}. The electronic structures of 2H-AgNiO{sub 2} and Ag{sub 3}Ni{sub 2}O{sub 4} have been investigated based on DFT band structure calculations. The high-temperature characteristics of the starting material 2H-AgNiO{sub 2} were investigated. The inverse magnetic susceptibility, electrical resistivity and differential scanning calorimetry (DSC) show a phase transition in the temperature range of T=320-365K.

  1. Genesis of the Assif El Mal Zn-Pb (Cu, Ag) vein deposit. An extension-related Mesozoic vein system in the High Atlas of Morocco. Structural, mineralogical, and geochemical evidence

    USGS Publications Warehouse

    Bouabdellah, M.; Beaudoin, G.; Leach, D.L.; Grandia, F.; Cardellach, E.

    2009-01-01

    The Assif El Mal Zn-Pb (Cu-Ag) vein system, located in the northern flank of the High Atlas of Marrakech (Morocco), is hosted in a Cambro-Ordovician volcaniclastic and metasedimentary sequence composed of graywacke, siltstone, pelite, and shale interlayered with minor tuff and mudstone. Intrusion of synorogenic to postorogenic Late Hercynian peraluminous granitoids has contact metamorphosed the host rocks giving rise to a metamorphic assemblage of quartz, plagioclase, biotite, muscovite, chlorite, amphibole, chloritoid, and garnet. The Assif El Mal Zn-Pb (Cu-Ag) mineralization forms subvertical veins with ribbon, fault breccia, cockade, comb, and crack and seal textures. Two-phase liquid-vapor fluid inclusions that were trapped during several stages occur in quartz and sphalerite. Primary inclusion fluids exhibit Th mean values ranging from 104??C to 198??C. Final ice-melting temperatures range from -8.1??C to -12.8??C, corresponding to salinities of ???15 wt.% NaCl equiv. Halogen data suggest that the salinity of the ore fluids was largely due to evaporation of seawater. Late secondary fluid inclusions have either Ca-rich, saline (26 wt.% NaCl equiv.), or very dilute (3.5 wt.% NaCl equiv.) compositions and homogenization temperatures ranging from 75??C to 150??C. The ??18O and ??D fluid values suggest an isotopically heterogeneous fluid source involving mixing between connate seawater and black-shale-derived organic waters. Low ??13CVPDB values ranging from -7.5??? to -7.7??? indicate a homogeneous carbon source, possibly organic matter disseminated in black shale hosting the Zn-Pb (Cu-Ag) veins. The calculated ??34SH2S values for reduced sulfur (22.5??? to 24.3???) are most likely from reduction of SO42- in trapped seawater sulfate or evaporite in the host rocks. Reduction of sulfate probably occurred through thermochemical sulfate reduction in which organic matter was oxidized to produce CO2 which ultimately led to precipitation of saddle dolomite with

  2. Genesis of the Assif El Mal Zn-Pb (Cu, Ag) vein deposit. An extension-related Mesozoic vein system in the High Atlas of Morocco. Structural, mineralogical, and geochemical evidence

    NASA Astrophysics Data System (ADS)

    Bouabdellah, Mohammed; Beaudoin, Georges; Leach, David L.; Grandia, Fidel; Cardellach, Esteve

    2009-08-01

    The Assif El Mal Zn-Pb (Cu-Ag) vein system, located in the northern flank of the High Atlas of Marrakech (Morocco), is hosted in a Cambro-Ordovician volcaniclastic and metasedimentary sequence composed of graywacke, siltstone, pelite, and shale interlayered with minor tuff and mudstone. Intrusion of synorogenic to postorogenic Late Hercynian peraluminous granitoids has contact metamorphosed the host rocks giving rise to a metamorphic assemblage of quartz, plagioclase, biotite, muscovite, chlorite, amphibole, chloritoid, and garnet. The Assif El Mal Zn-Pb (Cu-Ag) mineralization forms subvertical veins with ribbon, fault breccia, cockade, comb, and crack and seal textures. Two-phase liquid-vapor fluid inclusions that were trapped during several stages occur in quartz and sphalerite. Primary inclusion fluids exhibit T h mean values ranging from 104°C to 198°C. Final ice-melting temperatures range from -8.1°C to -12.8°C, corresponding to salinities of ˜15 wt.% NaCl equiv. Halogen data suggest that the salinity of the ore fluids was largely due to evaporation of seawater. Late secondary fluid inclusions have either Ca-rich, saline (26 wt.% NaCl equiv.), or very dilute (3.5 wt.% NaCl equiv.) compositions and homogenization temperatures ranging from 75°C to 150°C. The δ18O and δD fluid values suggest an isotopically heterogeneous fluid source involving mixing between connate seawater and black-shale-derived organic waters. Low δ13CVPDB values ranging from -7.5‰ to -7.7‰ indicate a homogeneous carbon source, possibly organic matter disseminated in black shale hosting the Zn-Pb (Cu-Ag) veins. The calculated δ34SH2S values for reduced sulfur (22.5‰ to 24.3‰) are most likely from reduction of SO4 2- in trapped seawater sulfate or evaporite in the host rocks. Reduction of sulfate probably occurred through thermochemical sulfate reduction in which organic matter was oxidized to produce CO2 which ultimately led to precipitation of saddle dolomite with

  3. Highly luminescent material based on Alq3:Ag nanoparticles.

    PubMed

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2013-09-01

    Tris (8-hydroxyquinoline) aluminum (Alq3) is an organic semiconductor molecule, widely used as an electron transport layer, light emitting layer in organic light-emitting diodes and a host for fluorescent and phosphorescent dyes. In this work thin films of pure and silver (Ag), cupper (Cu), terbium (Tb) doped Alq3 nanoparticles were synthesized using the physical vapor condensation method. They were fabricated on glass substrates and characterized by X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectroscopy, atomic force microscope (AFM), UV-visible absorption spectra and studied for their photoluminescence (PL) properties. SEM and AFM results show spherical nanoparticles with size around 70-80 nm. These nanoparticles have almost equal sizes and a homogeneous size distribution. The maximum absorption of Alq3 nanoparticles is observed at 300 nm, while the surface plasmon resonant band of Ag doped sample appears at 450 nm. The PL emission spectra of Tb, Cu and Ag doped Alq3 nanoparticles show a single broad band at around 515 nm, which is similar to that of the pure one, but with enhanced PL intensity. The sample doped with Ag at a concentration ratio of Alq3:Ag = 1:0.8 is found to have the highest PL intensity, which is around 2 times stronger than that of the pure one. This enhancement could be attributed to the surface plasmon resonance of Ag ions that might have increased the absorption and then the quantum yield. These remarkable result suggest that Alq3 nanoparticles incorporated with Ag ions might be quite useful for future nano-optoelectronic devices. PMID:23653126

  4. Novel soft-chemistry route of Ag2Mo3O10·2H2O nanowires and in situ photogeneration of a Ag@Ag2Mo3O10·2H2O plasmonic heterostructure.

    PubMed

    Hakouk, Khadija; Deniard, Philippe; Lajaunie, Luc; Guillot-Deudon, Catherine; Harel, Sylvie; Wang, Zeyan; Huang, Baibiao; Koo, Hyun-Joo; Whangbo, Myung-Hwan; Jobic, Stéphane; Dessapt, Rémi

    2013-06-01

    Ultrathin Ag2Mo3O10·2H2O nanowires (NWs) were synthesized by soft chemistry under atmospheric pressure from a hybrid organic-inorganic polyoxometalate (CH3NH3)2[Mo7O22] and characterized by powder X-ray diffraction, DSC/TGA analyses, FT-IR and FT-Raman spectroscopies, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Their diameters are a few tens of nanometers and hence much thinner than that found for silver molybdates commonly obtained under hydrothermal conditions. The optical properties of Ag2Mo3O10·2H2O NWs before and after UV irradiation were investigated by UV-vis-NIR diffuse reflectance spectroscopy revealing, in addition to photoreduction of Mo(6+) to Mo(5+) cations, in situ photogeneration of well-dispersed silver Ag(0) nanoparticles on the surface of the NWs. The resulting Ag@Ag2Mo3O10·2H2O heterostructure was confirmed by electron energy-loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS), and Auger spectroscopy. Concomitant reduction of Mo(6+) and Ag(+) cations under UV excitation was discussed on the basis of electronic band structure calculations. The Ag@Ag2Mo3O10·2H2O nanocomposite is an efficient visible-light-driven plasmonic photocatalyst for degradation of Rhodamine B dye in aqueous solution. PMID:23679344

  5. Photocatalytic degradation of acid blue 74 in water using Ag-Ag2O-Zno nanostuctures anchored on graphene oxide

    NASA Astrophysics Data System (ADS)

    Umukoro, Eseoghene H.; Peleyeju, Moses G.; Ngila, Jane C.; Arotiba, Omotayo A.

    2016-01-01

    Water pollution due to industrial effluents from industries which utilize dyes in the manufacturing of their products has serious implications on aquatic lives and the general environment. Thus, there is need for the removal of dyes from wastewater before being discharged into the environment. In this study, a nanocomposite consisting of silver, silver oxide (Ag2O), zinc oxide (ZnO) and graphene oxide (GO) was synthesized, characterized and photocatalytically applied in the degradation (and possibly mineralization) of organic pollutants in water treatment process. The Ag-Ag2O-ZnO nanostructure was synthesized by a co-precipitation method and calcined at 400 °C. It was functionalized using 3-aminopropyl triethoxysilane and further anchored on carboxylated graphene oxide via the formation of an amide bond to give the Ag-Ag2O-ZnO/GO nanocomposite. The prepared nanocomposite was characterized by UV-Vis diffuse reflectance spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), energy dispersive X-ray spectrometry (EDX), Fourier transformed infrared spectroscopy (FTIR), and Raman spectroscopy. The applicability of Ag-Ag2O-ZnO/GO nanocomposite as a photocatalyst was investigated in the photocatalytic degradation of acid blue 74 dye under visible light irradiation in synthetic wastewater containing the dye. The results indicated that Ag-Ag2O-ZnO/GO nanocomposite has a higher photocatalytic activity (90% removal) compared to Ag-Ag2O-ZnO (85% removal) and ZnO (75% removal) respectively and thus lends itself to application in water treatment, where the removal of organics is very important.

  6. Trapping phosphate anions inside the [Ag{sub 4}I]{sup 3+} framework: Structure, bonding, and properties of Ag{sub 4}I(PO{sub 4})

    SciTech Connect

    Oleneva, Olga S.; Kirsanova, Maria A.; Shestimerova, Tatiana A.; Abramchuk, Nikolay S.; Davliatshin, Dmitry I.; Bykov, Mikhail A.; Dikarev, Evgeny V.; Shevelkov, Andrei V.

    2008-01-15

    Orange-red Ag{sub 4}I(PO{sub 4}) crystallizes in the monoclinic system, space group P2{sub 1}/m (No. 11), with the unit cell dimensions a=9.0874(6) A, b=6.8809(5) A, c=11.1260(7) A, {beta}=109.450(1){sup o}, and Z=4. The crystal structure is fully ordered; it comprises the silver-iodine three-dimensional positively charged framework hosting the tetrahedral PO{sub 4}{sup 3-} guest anions. The framework features high coordination numbers for iodine and manifold Ag-Ag bonds ranging from 3.01 to 3.46 A. The Ag-Ag interaction is bonding, it involves silver 4d and 5s orbitals lying, together with the orbitals of iodine, just below the Fermi level. Though the orbitals of silver and iodine define the conducting properties of the title compound, the interaction between the framework and the guest anions is also important and is responsive to the number of the silver atoms surrounding the PO{sub 4}{sup 3-} tetrahedra. Ag{sub 4}I(PO{sub 4}) melts incongruently at 591 K and produces a mixture of the silver phosphate and an amorphous phase upon cooling. Pure Ag{sub 4}I(PO{sub 4}) is a poor conductor with a room temperature conductivity of 3x10{sup -6} S m{sup -1}. The discrepancies between the properties observed here and those reported previously in the literature are discussed. - Graphical abstract: Regular [PO{sub 4}] tetrahedra fill large voids in the Ag-I framework to form a host-guest compound, Ag{sub 4}I(PO{sub 4}). It has a perfectly ordered crystal structure, atypical for this kind of compounds, rendering the study of the manifold Ag-Ag bonds and the host-guest interaction. However, this ordering leads to low ionic conductivity.

  7. Modified embedded-atom potential for B2-MgAg

    NASA Astrophysics Data System (ADS)

    Groh, Sébastien

    2016-08-01

    Interatomic potentials for pure Ag and Mg–Ag alloy have been developed in the framework of the second nearest-neighbors modified embedded-atom method (MEAM). The validity and the transferability of the Ag potential were obtained by calculating physical, mechanical, thermal, and dislocation related properties. Since the {1 1 1}-generalized stacking fault energy curves obtained from first-principle calculations was used to develop the Ag potential, the critical resolved shear stress to move screw dislocations in Ag single crystal is in good agreement with the experimental data. By combining the ability of the potential to predict the surface energies with its accuracy in describing dislocation properties, the potential is thought to be a predictive model for analyzing the fracture properties of Ag. In addition, the performance of the potential was tested under dynamics conditions by predicting the melting temperature, where a good agreement with experimental value was found. The Ag-MEAM potential was then coupled to an existing Mg-MEAM potential to describe the properties of the binary system MgAg. While the heat of formation, the elastic constants, and the (1 1 0) γ-surface of the MgAg compound in the B2 phase were used to parameterize the potential, heat of formation for MgAg alloys with different stoichiometry, thermal properties of the B2-MgAg compound, as well as dislocation related properties in B2-MgAg compound were tested to validate the transferability of the potential. The heat of formation of Mg5Ag2, MgAg, and MgAg3, the elastic constants and the thermal properties of B2-MgAg obtained with the proposed potential align with first-principles and experimental data. In addition, the core structure of both <0 0 1> and <1 1 1> dislocations in {1 1 0} are in agreement with theoretical predictions, and the magnitudes of the critical resolved shear stress obtained at 0 K for both slip systems partially validate the slip behavior of B2-MgAg

  8. Ice nucleation efficiency of AgI: review and new insights

    NASA Astrophysics Data System (ADS)

    Marcolli, Claudia; Nagare, Baban; Welti, André; Lohmann, Ulrike

    2016-07-01

    AgI is one of the best-investigated ice-nucleating substances. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Theoretical and experimental studies over the last 60 years provide a complex picture of silver iodide as an ice-nucleating agent with conflicting and inconsistent results. This review compares experimental ice nucleation studies in order to analyze the factors that influence the ice nucleation ability of AgI. The following picture emerges from this analysis: the ice nucleation ability of AgI seems to be enhanced when the AgI particle is on the surface of a droplet, which is indeed the position that a particle takes when it can freely move in a droplet. The ice nucleation by particles with surfaces exposed to air depends on water adsorption. AgI surfaces seem to be most efficient at nucleating ice when they are exposed to relative humidity at or even above water saturation. For AgI particles that are completely immersed in water, the freezing temperature increases with increasing AgI surface area. Higher threshold freezing temperatures seem to correlate with improved lattice matches as can be seen for AgI-AgCl solid solutions and 3AgI·NH4I·6H2O, which have slightly better lattice matches with ice than AgI and also higher threshold freezing temperatures. However, the effect of a good lattice match is annihilated when the surfaces have charges. Also, the ice nucleation ability seems to decrease during dissolution of AgI particles. This introduces an additional history and time dependence for ice nucleation in cloud chambers with short residence times.

  9. Coordination Chemistry of Diiodine and Implications for the Oxidation Capacity of the Synergistic Ag(+) /X2 (X=Cl, Br, I) System.

    PubMed

    Malinowski, Przemysław J; Himmel, Daniel; Krossing, Ingo

    2016-08-01

    The synergistic Ag(+) /X2 system (X=Cl, Br, I) is a very strong, but ill-defined oxidant-more powerful than X2 or Ag(+) alone. Intermediates for its action may include [Agm (X2 )n ](m+) complexes. Here, we report on an unexpectedly variable coordination chemistry of diiodine towards this direction: (A)Ag-I2 -Ag(A), [Ag2 (I2 )4 ](2+) (A(-) )2 and [Ag2 (I2 )6 ](2+) (A(-) )2 ⋅(I2 )x≈0.65 form by reaction of Ag(A) (A=Al(OR(F) )4 ; R(F) =C(CF3 )3 ) with diiodine (single crystal/powder XRD, Raman spectra and quantum-mechanical calculations). The molecular (A)Ag-I2 -Ag(A) is ideally set up to act as a 2 e(-) oxidant with stoichiometric formation of 2 AgI and 2 A(-) . Preliminary reactivity tests proved this (A)Ag-I2 -Ag(A) starting material to oxidize n-C5 H12 , C3 H8 , CH2 Cl2 , P4 or S8 at room temperature. A rough estimate of its electron affinity places it amongst very strong oxidizers like MF6 (M=4d metals). This suggests that (A)Ag-I2 -Ag(A) will serve as an easily in bulk accessible, well-defined, and very potent oxidant with multiple applications. PMID:27411163

  10. Dendritic macromolecules supported Ag nanoparticles as efficient catalyst for the reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Safari, Javad; Zarnegar, Zohre; Sadeghi, Masoud; Enayati-Najafabadi, Azadeh

    2016-12-01

    Polymer supported Ag nanoparticles, generated in situ by silver nitrate (AgNO3) reduction under reaction conditions, catalyzed the hydrogenation of 4-nitrophenol with high efficiency in water at room temperature in the presence of an excess amount of NaBH4. Amphiphilic linear-dendritic copolymers containing a poly(ethylene glycol) (PEG) core and poly(2-ethyl-2-oxazoline)-poly(ε-caprolactone) arms were able to load the Ag nanoparticles. The Ag nanoparticles with a diameter of 8-10 nm were found to show a comparable catalytic activity towards formation of the aromatic amine as single product with short reaction time.

  11. Direct sunlight responsive Ag-ZnO heterostructure photocatalyst: Enhanced degradation of rhodamine B

    NASA Astrophysics Data System (ADS)

    Zhai, Hongju; Wang, Lijing; Sun, Dewu; Han, Donglai; Qi, Bing; Li, Xiuyan; Chang, Limin; Yang, Jinghai

    2015-03-01

    The catalytic activity of Ag-ZnO heterostructure on the photocatalytic degradation of rhodamine B was investigated. It demonstrated that Ag-ZnO heterostructure exhibited an enhanced photocatalytic activity compared to pure ZnO nanoparticles under direct sunlight. The possible factors to the photocatalytic acitivity of the sample were explored, including Ag content, dispersity and calcination temperature. It was shown that the sample dispersed by PVP, with 5% mol ratio Ag content, calcined at 400 °C showed the highest photocatalytic acitivity and this catalyst was reusable.

  12. Electron and hole traps in Ag-doped lithium tetraborate (Li2B4O7) crystals

    NASA Astrophysics Data System (ADS)

    Brant, A. T.; Kananan, B. E.; Murari, M. K.; McClory, J. W.; Petrosky, J. C.; Adamiv, V. T.; Burak, Ya. V.; Dowben, P. A.; Halliburton, L. E.

    2011-11-01

    Electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and thermoluminescence (TL) are used to characterize the primary electron and hole trapping centers in a lithium tetraborate (Li2B4O7) crystal doped with Ag. Three defects, two holelike and one electronlike, are observed after exposure at room temperature to 60 kV x-rays. The as-grown crystal contains both interstitial Ag+ ions and Ag+ ions substituting for Li+ ions. During the irradiation, substitutional Ag+ ions (4d10) trap holes and two distinct Ag2+ centers (4d9) are formed. These Ag2+ EPR spectra consist of doublets (i.e., the individual 107Ag and 109Ag hyperfine lines are not resolved). One of these hole centers is an isolated unperturbed Ag2+ ion and the other is a Ag2+ ion with a nearby perturbing defect. EPR and ENDOR angular-dependence data provide the g matrix and the 107Ag and 109Ag hyperfine matrices for the more intense isolated hole center. In contrast, the electronlike EPR spectrum produced during the irradiation exhibits large nearly isotropic hyperfine interactions with 107Ag and 109Ag nuclei and a neighboring I = 3/2 nucleus (either 7Li or 11B). This spectrum is assigned to a trapped electron shared between an interstitial Ag ion and the substitutional I = 3/2 ion. Upon warming, the radiation-induced trapped electrons and holes seen with EPR recombine between 100 and 200 °C, in agreement with a single strong TL peak observed near 160 °C.

  13. Study on synthesis of ultrafine Cu-Ag core-shell powders with high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Peng, Yu-hsien; Yang, Chih-hao; Chen, Kuan-ting; Popuri, Srinivasa R.; Lee, Ching-Hwa; Tang, Bo-Shin

    2012-12-01

    Cu-Ag composite powders with high electrical conductivity were synthesized by electroless plating of silver sulfate, copper powders with eco-friendly sodium citrate as reducing agent, dispersant and chelating agent in an aqueous system. The influences of sodium citrate/Ag ratio on Ag coatings of Cu powders were investigated. Ag was formed a dense coating on the surface of Cu powders at a molar ratio of sodium citrate/Ag = 0.07/1. SEM showed an uniformity of Ag coatings on Cu powders. SEM-EDX also revealed that Cu cores were covered by Ag shells on the whole. The surface composition analysis by XPS indicated that without Cu or Ag atoms in the surface were oxidized. The resistivity measurements of Cu-Ag paste shows that they have closer resistivity as the pure silver paste's after 250 °C for 30 min heat-treatment (2.55 × 10-4 Ω cm) and 350 °C for 30 min heat-treatment (1.425 × 10-4 Ω cm).

  14. Spin relaxation characteristics in Ag nanowire covered with various oxides

    SciTech Connect

    Karube, S.; Idzuchi, H.; Otani, Y.; Kondou, K.; Fukuma, Y.

    2015-09-21

    We have studied spin relaxation characteristics in a Ag nanowire covered with various oxide layers of Bi{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, HfO{sub 2}, MgO, or AgO{sub x} by using non-local spin valve structures. The spin-flip probability, a ratio of momentum relaxation time to spin relaxation time at 10 K, exhibits a gradual increase with an atomic number of the oxide constituent elements, Mg, Al, Ag, and Hf. Surprisingly, the Bi{sub 2}O{sub 3} capping was found to increase the probability by an order of magnitude compared with other oxide layers. This finding suggests the presence of an additional spin relaxation mechanism such as Rashba effect at the Ag/Bi{sub 2}O{sub 3} interface, which cannot be explained by the simple Elliott-Yafet mechanism via phonon, impurity, and surface scatterings. The Ag/Bi{sub 2}O{sub 3} interface may provide functionality as a spin to charge interconversion layer.

  15. Antibacterial activity and reusability of CNT-Ag and GO-Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Kim, Ji Dang; Yun, Hyosuk; Kim, Gwui Cheol; Lee, Chul Won; Choi, Hyun Chul

    2013-10-01

    A facile approach to the synthesis of novel CNT-Ag and GO-Ag antibacterial materials, in which thiol groups are utilized as linkers to secure silver (Ag) nanoparticles to the CNT and GO surfaces without agglomeration, is reported. The resulting CNT-Ag and GO-Ag samples were characterized by performing TEM, XRD, Auger, XPS, and Raman measurements, which revealed that in these antibacterial materials size-similar and quasi-spherical Ag nanoparticles are anchored to the CNT and GO surfaces. The Ag nanoparticles in CNT-Ag and GO-Ag have narrow size distributions with average diameters of 2.6 and 3.5 nm respectively. The antibacterial activities of CNT-Ag and GO-Ag against Escherichia coli were assessed with the paper-disk diffusion method and by determining the minimal inhibitory concentrations (MICs). CNT-Ag was found to have higher antibacterial activity than the reference Ag colloid. Moreover, both CNT-Ag and GO-Ag retain more than 50% of their original antibacterial activities after 20 washes with detergent, which indicates their potential as antibacterial materials for laboratory and medical purposes.

  16. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    PubMed Central

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  17. Effect of Ag addition on the thermal characteristics and structural evolution of Ag-Cu-Ni ternary alloy nanoclusters: Atomistic simulation study

    NASA Astrophysics Data System (ADS)

    Subbaraman, Ram; Sankaranarayanan, Subramanian K. R. S.

    2011-08-01

    Atomic-scale compositional variation in Ag contents across Ag-Cu-Ni alloy upon being subjected to repeated annealing cycles is shown to result in significant differences in the structure and the thermal stability of ternary alloy nanoclusters. Molecular dynamics (MD) simulations employing quantum Sutton-Chen potentials were used to investigate the effect of Ag addition on the thermal characteristics of Ag-Cu-Ni ternary alloy nanoclusters of 4-nm diameter. The initial configurations were generated using Monte Carlo simulations and comprise surface-segregated structures with the lowest surface energy component, Ag, occupying low coordination sites such as corners, edges, and faces. A compositional oscillation between the Cu and Ni atoms was observed for layers beneath the surface which transitions into a bulk alloy composition at the core. We find that the Cu-Ni binary alloys on being subjected to annealing schedules demonstrated an increase in thermal stability, as indicated by the increase in melting points. The annealed configurations of the Ag-Cu-Ni ternary alloy, on the other hand, showed a nonmonotonic behavior. For Ag compositions less than 20%, we observe an initial increase in melting point followed by a decrease in the third cycle. For higher Ag compositions (>20%), we observe a decrease in melting point with annealing; the rate of decrease is strongly correlated to the Ag composition in the alloy. Cu-Ni nanoclusters having 50% Cu showed a transition from an initial icosahedral to a cuboctahedron-like structure whereas Ag-rich Ag-Cu-Ni ternary alloys showed a transition from icosahedral to an amorphous structure. Compositional analysis based on radial distribution functions and density profiles indicate that these transitions were dependent on the distribution of the alloying elements in the nanocluster. Calculated root-mean-square displacements and diffusion coefficients indicate that the rate of mixing of Ag increases with Ag content in the Ag

  18. Fabrication of Cu-Ag core-shell bimetallic superfine powders by eco-friendly reagents and structures characterization

    SciTech Connect

    Zhao Jun; Zhang Dongming; Zhao Jie

    2011-09-15

    Superfine bimetallic Cu-Ag core-shell powders were synthesized by reduction of copper sulfate pentahydrate and silver nitrate with eco-friendly ascorbic acid as a reducing agent and cyclodextrins as a protective agent in an aqueous system. The influence of Ag/Cu ratio on coatings was investigated. Ag was homogeneously distributed on the surface of Cu particles at a mole ratio of Ag/Cu=1. FE-SEM showed an uniformity of Ag coatings on Cu particles. Antioxidation of Cu particles was improved by increasing Ag/Cu ratio. TEM-EDX and UV-vis spectra also revealed that Cu cores were covered by Ag nanoshells on the whole. The surface composition analysis by XPS indicated that only small parts of Cu atoms in the surface were oxidized. It was noted that the hindrance of cyclodextrins chemisorbed on particles plays an important role in forming high quality and good dispersity Cu-Ag (Cu-Ag) core-shell powders. - Graphical abstract: Mechanism of fabricating Cu-Ag particles with good dispersibility using {beta}-CDs as a protective agent was studied because of its special structure. Highlights: > Green supramolecular {beta}-CD used as a protective agent and ascorbic acid(Vc) as a reducing agent to fabricate Cu-Ag powders. > Particles are monodisperse and the diameter is close to nanoscale(100-150 nm). > Resistance of Cu particles to oxidation was higher. > Formation mechanism explained.

  19. Managing the Grey Literature of a Discipline through Collaboration: AgEcon Search

    ERIC Educational Resources Information Center

    Kelly, Julia; Letnes, Louise

    2005-01-01

    AgEcon Search, http://www.agecon.lib.umn.edu, is an important and ground-breaking example of an alternative method of delivering current research results to many potential users. AgEcon Search, through a distributed model, collects and disseminates the grey literature of the fields of agricultural and resource economics. The development of this…

  20. Na[subscript 1.5]Ag[subscript 1.5]MO[subscript 3]F[subscript 3] (M = Mo, W): An Ordered Oxyfluoride Derivative of the LiNbO[subscript 3] Structure

    SciTech Connect

    Fry, Allyson M.; Seibel, II, Harry A.; Lokuhewa, Indunil N.; Woodward, Patrick M.

    2012-04-02

    Na{sub 1.5}Ag{sub 1.5}MoO{sub 3}F{sub 3} and Na{sub 1.5}Ag{sub 1.5}WO{sub 3}F{sub 3} have been synthesized by solid state reactions and structurally characterized using synchrotron X-ray and neutron powder diffraction. Unlike the vast majority of salts containing [MO{sub 3}F{sub 3}]{sup 3-} anions (M = Mo, W) the oxyfluoride groups in Na{sub 1.5}Ag{sub 1.5}MoO{sub 3}F{sub 3} and Na{sub 1.5}Ag{sub 1.5}WO{sub 3}F{sub 3} are orientationally ordered, so that the Na{sup +} ions are coordinated by fluorine and the Ag{sup +} ions by oxygen. The resulting structure type, which has not previously been reported, is related to the LiNbO{sub 3} structure, but the combination of Na/Ag ordering and orientational ordering of the [MO{sub 3}F{sub 3}]{sup 3-} anions produces a supercell that doubles the c-axis and changes the space group symmetry from R3 to R{bar 3}. The use of hard (Na{sup +}) and soft (Ag{sup +}) cations to direct the orientational ordering of polar oxyfluoride building units provides a new approach to the design of polar materials.

  1. Modelling of the AGS using Zgoubi - Status

    SciTech Connect

    Meot F.; Ahrens, L.; Dutheil, Y.; Glenn, J.; Huang, H.; Roser, T.; Schoefer, V.; Tsoupas, N.

    2012-05-20

    This paper summarizes the progress achieved so far, and discusses various outcomes, regarding the development of a model of the Alternating Gradient Synchrotron at the RHIC collider. The model, based on stepwise ray-tracing methods, includes beam and polarization dynamics. This is an on-going work, and a follow-on of code developments and particle and spin dynamics simulations that have been subject to earlier publications at IPAC and PAC [1, 2, 3]. A companion paper [4] gives additional informations, regarding the use of the measured magnetic field maps of the AGS main magnets.

  2. Surface-enhanced Raman scattering of a Ag/oligo(phenyleneethynylene)/Ag sandwich

    NASA Astrophysics Data System (ADS)

    Fletcher, Melissa; Alexson, D. M.; Prokes, Sharka; Glembocki, Orest; Vivoni, Alberto; Hosten, Charles

    2011-02-01

    α,ω-Dithiols are a useful class of compounds in molecular electronics because of their ability to easily adsorb to two metal surfaces, producing a molecular junction. We have prepared Ag nanosphere/oligo(phenyleneethynylene)/Ag sol (AgNS/OPE/Ag sol) and Ag nanowire/oligo(phenyleneethynylene)/Ag sol (AgNW/OPE/Ag sol) sandwiches to simulate the architecture of a molecular electronic device. This was achieved by self-assembly of OPE on the silver nanosurface, deprotection of the terminal sulfur, and deposition of Ag sol atop the monolayer. These sandwiches were then characterized by surface-enhanced Raman scattering (SERS) spectroscopy. The resulting spectra were compared to the bulk spectrum of the dimer and to the Ag nanosurface/OPE SERS spectra. The intensities of the SERS spectra in both systems exhibit a strong dependence on Ag deposition time and the results are also suggestive of intense interparticle coupling of the electromagnetic fields in both the AgNW/OPE/Ag and the AgNS/OPE/Ag systems. Three previously unobserved bands (1219, 1234, 2037 cm -1) arose in the SER spectra of the sandwiches and their presence is attributed to the strong enhancement of the electromagnetic field which is predicted from the COSMOL computational package. The 544 cm -1 disulfide bond which is observed in the spectrum of solid OPE but is absent in the AgNS/OPE/Ag and AgNW/OPE/Ag spectra is indicative of chemisorption of OPE to the nanoparticles through oxidative dissociation of the disulfide bond.

  3. Heat-induced spinodal decomposition of Ag-Cu nanoparticles.

    PubMed

    Sopoušek, Jiří; Zobač, Ondřej; Buršík, Jiří; Roupcová, Pavla; Vykoukal, Vít; Brož, Pavel; Pinkas, Jiří; Vřešt'ál, Jan

    2015-11-14

    Solvothermal synthesis was used for Ag-Cu nanoparticle (NP) preparation from metallo-organic precursors. The detailed NP characterization was performed to obtain information about nanoparticle microstructure and both phase and chemical compositions. The resulting nanoparticles exhibited chemical composition inside a FCC_Ag + FCC_Cu two-phase region. The microstructure study was performed by various methods of electron microscopy including high-resolution transmission electron microscopy (HRTEM) at an atomic scale. The HRTEM and X-ray diffraction studies showed that the prepared nanoparticles form the face centred cubic (FCC) crystal lattice where the silver atoms are randomly mixed with copper. The CALPHAD approach was used for predicting the phase diagram of the Ag-Cu system in both macro- and nano-scales. The predicted spinodal decomposition of the metastable Ag-Cu nanoparticles was experimentally induced by heating on an X-ray powder diffractometer (HT XRD). The nucleation of the Cu-rich phase was detected and its growth was studied. Changes in the Ag-rich phase were observed in situ by X-ray diffraction under vacuum. The heat treatment was conducted at different maximum temperatures up to 450 °C and the resulting particle product was analysed. The experiments were complemented by differential scanning calorimetry (DSC) measurements up to liquidus temperature. The start temperatures of the spinodal phase transformation and particle aggregation were evaluated. PMID:25929324

  4. Organic pollutant photodecomposition by Ag/KNbO3 nanocomposites: A combined experimental and theoretical study

    DOE PAGESBeta

    Zhang, Tingting; Liu, Ping; Lei, Wanying; Rodriguez, J. A.; Yu, Jiaguo; Qi, Yang; Liu, Gang; Liu, Minghua

    2016-01-12

    In this study, Ag nanoparticles supported on well-defined perovskite orthorhombic KNbO3 nanowires are synthesized via facile photoreduction and systematically characterized by XRD, Raman, DRUV–vis, XPS, PL, TEM, HRTEM, and HAADF-STEM. The photoreactivity of Ag/KNbO3 nanocomposites as a function of Ag contents (0.4–2.8 wt %) is assessed toward aqueous rhodamine B degradation under UV- and visible-light, respectively. It is found that the UV-induced photoreactivity initially increases and then decreases with increasing Ag contents. At an optimal Ag content (ca. 1.7 wt %), the greatest photoreactivity is achieved under UV light, with the photocatalytic reaction rate of 1.7 wt % Ag/KNbO3 exceedingmore » that of pristine KNbO3 by a factor of ca. 13. In contrast, visible light-induced photoreactivity monotonically increases with increasing Ag contents in the range of 0.4–2.8 wt %. On the basis of the detected active species and intermediate products in the photocatalytic processes, conjugated structure cleavage and N-deethylation are revealed to be the respective predominant pathway under UV and visible-light illumination. To gain an insight into the observed photoreactivity, the electronic properties of Ag/KNbO3 have been investigated using spin-polarized DFT calculations. Herein, Ag extended adlayers (1–4 ML) on the slab models of KNbO3 (101) are employed to mimic large supported Ag nanoparticles. A Bader analysis of the electron density shows a small net charge transfer (ca. 0.1 e) from KNbO3 to Ag. The electron localization function of Ag/KNbO3 (101) illustrates that Ag adlayers with thickness larger than 2 ML are essentially metallic, and weak polarization occurs at the interface. In addition, the metallic Ag adlayers generate a continuum of Ag bandgap states, which play a key role in determining different Ag content-dependent behavior between UV and visible-light illumination.« less

  5. Bio-inspired sustainable and green synthesis of plasmonic Ag/AgCl nanoparticles for enhanced degradation of organic compound from aqueous phase.

    PubMed

    Devi, Th Babita; Ahmaruzzaman, M

    2016-09-01

    In the current study, we report the utilization of the biogenic potential of Benincasa hispida (ash gourd) peel extract for the synthesis of Ag embedded AgCl nanoparticles nanoparticles (Ag/AgCl NPs) without the use of any external organic solvents. The appearance of dark brown color from the pale yellow color confirmed the formation of Ag/AgCl nanoparticles which was further validated by absorbance peak using UV-visible spectroscopy. The phytochemicals (flavones) present in the B. hispida peel extract acts as a reducing/stabilizing agents. The morphology and size of the synthesized NPs were characterized by transmission electron microscope (TEM), selected area electron microscope (SAED) and high resolution transmission electron microscope (HR-TEM). FT-IR spectra of the B. hispida peel extract and after the development of nanoparticles are determined to identify the functional groups responsible for the conversion of metal ions to metal nanoparticles. The synthesized nanoparticles showed an excellent photocatalytic property in the degradation of toxic dye like malachite green oxalate under sunlight irradiation. For the first time, malachite green oxalate dye was degraded by Ag/AgCl nanoparticles under sunlight irradiation. PMID:27246560

  6. Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria

    NASA Astrophysics Data System (ADS)

    Cui, Li; Chen, Shaode; Zhang, Kaisong

    2015-02-01

    Ag nanoparticles (NPs) have been extensively utilized in surface-enhanced Raman scattering (SERS) spectroscopy for bacterial identification. However, Ag NPs are toxic to bacteria. Whether such toxicity can affect SERS features of bacteria and interfere with bacterial identification is still unknown and needed to explore. Here, by carrying out a comparative study on non-toxic Au NPs with that on toxic Ag NPs, we investigated the influence of nanoparticle concentration and incubation time on bacterial SERS spectral variance, both of which were demonstrated to be closely related to the toxicity of Ag NPs. Sensitive spectral alterations were observed on Ag NPs with increase of NPs concentration or incubation time, accompanied with an obvious decrease in number of viable bacteria. In contrast, SERS spectra and viable bacterial number on Au NPs were rather constant under the same conditions. A further analysis on spectral changes demonstrated that it was cell response (i.e. metabolic activity or death) to the toxicity of Ag NPs causing spectral variance. However, biochemical responses to the toxicity of Ag were very different in different bacteria, indicating the complex toxic mechanism of Ag NPs. Ag NPs are toxic to a great variety of organisms, including bacteria, fungi, algae, protozoa etc., therefore, this work will be helpful in guiding the future application of SERS technique in various complex biological systems.

  7. Mildly reduced graphene oxide-Ag nanoparticle hybrid films for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Li, Xiaocheng; Tay, Beng Kang; Li, Junshuai; Tan, Dunlin; Tan, Chong Wei; Liang, Kun

    2012-04-01

    Large-area mildly reduced graphene oxide (MR-GO) monolayer films were self-assembled on SiO2/Si surfaces via an amidation reaction strategy. With the MR-GO as templates, MR-GO-Ag nanoparticle (MR-GO-Ag NP) hybrid films were synthesized by immersing the MR-GO monolayer into a silver salt solution with sodium citrate as a reducing agent under UV illumination. SEM image indicated that Ag NPs with small interparticle gap are uniformly distributed on the MR-GO monolayer. Raman spectra demonstrated that the MR-GO monolayer beneath the Ag NPs can effectively quench the fluorescence signal emitted from the Ag films and dye molecules under laser excitation, resulting in a chemical enhancement (CM). The Ag NPs with narrow gap provided numerous hot spots, which are closely related with electromagnetic mechanism (EM), and were believed to remarkably enhance the Raman signal of the molecules. Due to the co-contribution of the CM and EM effects as well as the coordination mechanism between the MR-GO and Ag NPs, the MR-GO-Ag NP hybrid films showed more excellent Raman signal enhancement performance than that of either Ag films or MR-GO monolayer alone. This will further enrich the application of surface-enhanced Raman scattering in molecule detection.

  8. Synthesis of nanoscale Fe-Ag alloy within thermally evaporated fatty acid films

    NASA Astrophysics Data System (ADS)

    Damle, Chinmay; Biswas, Kushan; Sastry, Murali

    2002-02-01

    The low-temperature alloying of Fe-Ag nanoparticles entrapped within thermally evaporated fatty acid films by a novel ion exchange technique is described. Nanoparticles of iron and silver were grown in thermally evaporated stearic acid (StA) films by sequential immersion of the film in solutions containing Fe2+ ions and Ag+ ions followed by their in situ reduction at each stage. Entrapment of Fe2+ and Ag+ ions in the StA film occurs by selective electrostatic binding with the carboxylate ions in the fatty acid matrix. Thereafter, the metal ions were reduced in situ to yield nanoparticles of Fe and Ag of ca. 35 nm diameter within the fatty acid matrix. Thermal treatment of the StA-(Fe + Ag) nanocomposite film at 200 °C resulted in the formation of an Fe-Ag alloy. Prolonged heat treatment at 250 °C resulted in the phase separation of the alloy and the re-formation of individual Fe and Ag nanoparticles. The process of Fe2+ and Ag+ ion incorporation in the StA matrix and synthesis of the Fe-Ag alloy were followed by quartz crystal microgravimetry, Fourier transform infrared spectroscopy, transmission electron microscopy and x-ray diffraction measurements.

  9. Intermediate-range chemical ordering of cations in molten RbCl-AgCl.

    PubMed

    Tahara, S; Kawakita, Y; Shimakura, H; Ohara, K; Fukami, T; Takeda, S

    2015-07-28

    A first sharp diffraction peak (FSDP) is observed in the X-ray total structure factor of a molten mixture of RbCl-AgCl, while both pure melts of RbCl and AgCl do not exhibit FSDP individually. Molecular dynamics simulations were performed to investigate the origin of the FSDP with the polarizable ion model (PIM). Coexistence of covalent Ag-Cl and ionic Rb-Cl bonds leads the system to evolve intermediate range ordering, which is simulated by introducing the induced polarization in different ways between Ag-Cl with fully polarizable treatment based on Vashishta-Raman potential and Rb-Cl with suppression over-polarization in the nearest neighbor contribution based on Born-Meyer potential. The partial structure factors for both the Ag-Ag and Rb-Rb correlations, SAgAg(Q) and SRbRb(Q), show a positive contribution to the FSDP, while SAgRb(Q) for the Ag-Rb correlation exhibits a negative contribution, indicating that Ag and Rb ions are distributed in an alternating manner within the intermediate-range length scale. The origin of the intermediate-range chemical ordering of cations can be ascribed to the preferred direction of the dipole moments of anions in the PIM. PMID:26233147

  10. Functionalization of Ag nanoparticles using local hydrophilic pool segment designed on their particle surface

    NASA Astrophysics Data System (ADS)

    Iijima, Motoyuki; Kurumiya, Aki; Esashi, Junki; Miyazaki, Hayato; Kamiya, Hidehiro

    2014-10-01

    The preparation of SiO2-coated Ag nanoparticles dispersible in various organic solvents has been achieved using a solgel reaction of tetraethylorthosilicate (TEOS), in the localized hydrophilic pool segments designed on Ag nanoparticle surfaces. First, oleylamine-capped core Ag nanoparticles were synthesized, followed by ligand exchange with polyethyleneimine (PEI) and further adsorption of an anionic surfactant comprising hydrophilic polyethylene glycol (PEG) chains and hydrophobic alkyl chains, which has previously been reported to improve the stability of nanoparticles in various solvents. Then, a reaction of TEOS with the localized hydrophilic PEI layer on the Ag nanoparticles' surface was conducted by stirring a toluene/TEOS solution of surface-modified Ag nanoparticles at various temperatures. It was found that a SiO2 layer was successfully formed on Ag nanoparticles when the reaction temperature was increased to 60 °C. It was also found, however, that at this elevated temperature, the primary particle size of Ag nanoparticles increased to several tens of nm, attributable to the dissolution and re-reduction of Ag+. Because the surface modifier, PEI and anionic surfactant all remained on the nanoparticle surface during the SiO2 coating process, the prepared SiO2-coated Ag nanoparticles were found to be dispersible in various organic solvents near to their primary particle size.

  11. A Binder-Free Ag Paste Using a Chemically Adsorbed Monolayer

    NASA Astrophysics Data System (ADS)

    Onishi, Shogo; Ohkubo, Yuji; Soejima, Kazuhiro; Ogawa, Kazufumi

    2009-06-01

    We developed a binder-free Ag paste using reactive chemically absorbed monolayers (CAMs), such as epoxy-terminated CAMs. Ag paste was prepared by forming an epoxy-terminated CAM with 2-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane (ECHxES) on the surface of Ag particles, followed by adding 2-methyl-imidazole (2-MeIm) as a cross-linker into a suspension of dispersed Ag particles modified with ECHxES. To increase electrical conductivity, a mixture of large (average diameter D = 1.0 µm) and small (D = 0.5 µm) Ag particles was used. When the ratio in the mixture of large: small was 7:3, the best conductivity, 4.0 ×104 S/cm, was obtained. To prepare rigid wires from Ag paste, a cross-linker of a copper imidazole complex, instead of 2-MeIm, was added to the mixture of the Ag particles covered with ECHxES CAMs. The best pencil hardness and the best electrical conductivity obtained with the Ag paste wire were F and 2.5 ×105 S/cm, respectively, which exceeded the values of commercially available Ag pastes.

  12. Preparation and Sintering Properties of Ag27Cu2Sn Nanopaste as Die Attach Material

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojian; Liu, Wei; Wang, Chunqing; Zheng, Zhen; Kong, Lingchao

    2016-06-01

    Ag27Cu2Sn nanopaste has been prepared by mixing Ag, Cu, and Sn nanoparticles with an organic solvent system. Sintering and mechanical properties of this nanopaste were characterized and investigated. Effects of sintering temperature and time on the sintered microstructure of the nanopaste and shear strength of Cu/Ag27Cu2Sn/Cu structure were analyzed. The results showed that the organic shells coated on the outside of metal nanoparticles could effectively prevent metal nanoparticles from being oxidized below 480°C. When the paste was sintered at 480°C without pressure, few voids or large particles formed within the sintered layer and distributions of Ag, Cu, and Sn were quite uniform. This sintering temperature was much lower than the eutectic temperature (779°C) of Ag-Cu bulk material. Moreover, mutual solid solubilities of Ag and Cu were increased remarkably, which may be caused by high surface activity of Ag and Cu nanoparticles and the important role of the Sn addition. Shear strength of samples with Cu/Ag27Cu2Sn/Cu structure could reach 21 MPa, which could compare with that of Ag nanopaste or conductive adhesives.

  13. Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria.

    PubMed

    Cui, Li; Chen, Shaode; Zhang, Kaisong

    2015-02-25

    Ag nanoparticles (NPs) have been extensively utilized in surface-enhanced Raman scattering (SERS) spectroscopy for bacterial identification. However, Ag NPs are toxic to bacteria. Whether such toxicity can affect SERS features of bacteria and interfere with bacterial identification is still unknown and needed to explore. Here, by carrying out a comparative study on non-toxic Au NPs with that on toxic Ag NPs, we investigated the influence of nanoparticle concentration and incubation time on bacterial SERS spectral variance, both of which were demonstrated to be closely related to the toxicity of Ag NPs. Sensitive spectral alterations were observed on Ag NPs with increase of NPs concentration or incubation time, accompanied with an obvious decrease in number of viable bacteria. In contrast, SERS spectra and viable bacterial number on Au NPs were rather constant under the same conditions. A further analysis on spectral changes demonstrated that it was cell response (i.e. metabolic activity or death) to the toxicity of Ag NPs causing spectral variance. However, biochemical responses to the toxicity of Ag were very different in different bacteria, indicating the complex toxic mechanism of Ag NPs. Ag NPs are toxic to a great variety of organisms, including bacteria, fungi, algae, protozoa etc., therefore, this work will be helpful in guiding the future application of SERS technique in various complex biological systems. PMID:25291503

  14. Comparative study in annealing effects of Ag/Co/Pt(1 1 1) and Co/Ag/Pt(1 1 1) ultrathin films

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Wu, Y. E.; Shern, C. S.

    2001-06-01

    Low-energy electron diffraction (LEED), Auger electron spectroscopy and depth profile were used to study the growth and annealing effects of mirror systems: Ag/Co/Pt(1 1 1) and Co/Ag/Pt(1 1 1). An anomalous behavior of specular beam intensity of LEED versus temperature was found in the annealing process for Ag/Co/Pt(1 1 1). A dramatic increase of the beam intensity occurs after Co-Pt alloy formation is complete. The exchange between Co and Ag atoms of Co/Ag/Pt(1 1 1) occurs when the annealing temperature is high enough. The Co-Pt alloy develops after the atomic exchange is complete. The chemical compositions at the interfaces of these two ultrathin films were investigated. The mechanisms of the different behaviors of the two systems in the annealing processes are discussed.

  15. Fabrication and Characterization of Planar Screen-Printed Ag/AgCl Reference Electrode for Disposable Sensor Strip

    NASA Astrophysics Data System (ADS)

    Idegami, Koutarou; Chikae, Miyuki; Nagatani, Naoki; Tamiya, Eiichi; Takamura, Yuzuru

    2010-09-01

    An accurate disposable planar Ag/AgCl reference electrode with an internal electrolyte was successfully fabricated by the screen-printing process. The internal electrolyte layer was also printed by using an electrolyte paste of sodium alginate containing KCl. The potential stability of the electrode was investigated at different operation times and Cl- concentrations in test solutions. Results show that the electrode has long-term potential stability (approximately 60 min), and that its performance does not depend on the Cl- concentration. This electrode can be used to provide various promising applications in sensing techniques based on disposable strips for sensing purposes.

  16. Self-Depolarization Studies on Some Fast Ag+ Ion Conducting Glasses

    NASA Astrophysics Data System (ADS)

    Agrawal, R. C.; Verma, M. L.; Bhatt, A.

    2002-12-01

    A novel technique based on the dc polarization method is being reported to study polarization/self-depolarization phenomenon in some fast Ag+ ion conducting glass systems viz.: 0.8[0.75AgI: 0.25AgCl]: 0.2[Ag2O: MoO3] & 0.7[0.75AgI: 0.25AgCl]: 0.3[Ag2O: WO3]. These superionic glasses were prepared recently in the present laboratory using an alternate host: "a quenched [0.75AgI: 0.25AgCl] mixed system/solid solution" in place of the traditional host AgI. An extensive investigation on ion transport behavior of these systems has been done which appeared elsewhere in the literature. In the present study, the sample pallet, placed in between two blocking (graphite) electrodes, was initially polarized with the help of an external d. c. potential (~ 0.5 V) for sufficient long time ensuring that the system attained the state of complete polarization. This resulted into a build up of a potential gradient across the two faces of the sample pallet, which can be measured instantly on removal of the external dc potential. This has been be referred to as an 'Instant Peak Potential (Vp)'. The magnitude of 'Vp' gives the quantitative information regarding the number of mobile Ag+ ions present in the system at a given temperature. 'Vp' measurements were carried out extensively on the sample pallets of different thickness as a function of time and temperature. The log Vp - 1/T variations for these systems were found to be almost analogous to log n - 1/T plots, reported earlier.

  17. THE RHIC/AGS ONLINE MODEL ENVIRONMENT: DESIGN AND OVERVIEW.

    SciTech Connect

    SATOGATA,T.; BROWN,K.; PILAT,F.; TAFTI,A.A.; TEPIKIAN,S.; VAN ZEIJTS,J.

    1999-03-29

    An integrated online modeling environment is currently under development for use by AGS and RHIC physicists and commissioners. This environment combines the modeling efforts of both groups in a CDEV [1] client-server design, providing access to expected machine optics and physics parameters based on live and design machine settings. An abstract modeling interface has been designed as a set of adapters [2] around core computational modeling engines such as MAD and UAL/Teapot++ [3]. This approach allows us to leverage existing survey, lattice, and magnet infrastructure, as well as easily incorporate new model engine developments. This paper describes the architecture of the RHIC/AGS modeling environment, including the application interface through CDEV and general tools for graphical interaction with the model using Tcl/Tk. Separate papers at this conference address the specifics of implementation and modeling experience for AGS and RHIC.

  18. Visualizing Redox Dynamics of a Single Ag/AgCl Heterogeneous Nanocatalyst at Atomic Resolution.

    PubMed

    Wu, Yimin A; Li, Liang; Li, Zheng; Kinaci, Alper; Chan, Maria K Y; Sun, Yugang; Guest, Jeffrey R; McNulty, Ian; Rajh, Tijana; Liu, Yuzi

    2016-03-22

    Operando characterization of gas-solid reactions at the atomic scale is of great importance for determining the mechanism of catalysis. This is especially true in the study of heterostructures because of structural correlation between the different parts. However, such experiments are challenging and have rarely been accomplished. In this work, atomic scale redox dynamics of Ag/AgCl heterostructures have been studied using in situ environmental transmission electron microscopy (ETEM) in combination with density function theory (DFT) calculations. The reduction of Ag/AgCl to Ag is likely a result of the formation of Cl vacancies while Ag(+) ions accept electrons. The oxidation process of Ag/AgCl has been observed: rather than direct replacement of Cl by O, the Ag/AgCl nanocatalyst was first reduced to Ag, and then Ag was oxidized to different phases of silver oxide under different O2 partial pressures. Ag2O formed at low O2 partial pressure, whereas AgO formed at atmospheric pressure. By combining in situ ETEM observation and DFT calculations, this structural evolution is characterized in a distinct nanoscale environment. PMID:26937679

  19. Differential Responsivity of the Organic-Inorganic Ag/n-GaAs/p-CuPc/Ag Photoelectric Sensor

    NASA Astrophysics Data System (ADS)

    Karimov, Kh. S.; Qazi, I.; Fedorov, M. I.; Moiz, S. A.; Khan, T. A.; Senin, H. B.

    2007-05-01

    A thin film of copper phthalocynanine (CuPc) as p-type semiconductor was deposited by vacuum evaporation on an n-type GaAs single-crystal semiconductor substrate. Then semitransparent Ag thin film having gradient of thickness was deposited on CuPc film by thermal evaporation in vacuum to fabricate Ag/n-GaAs/p-CuPc/Ag sensor. Due to gradient of thickness, 6% and 10% of the incident light can be transmitted through the silver film in the edge and in the center of the sample respectively. Open circuit voltage and short circuit current were measured by exposing only a small area of the sensor to light i.e. in differential mode of operation. It was observed that open-circuit voltage and short-circuit current depends on position of the exposed area of the sensor to light. In differential mode of operation the open-circuit voltage and short circuit current versus intensity of illumination showed less non linearity as compared to integral mode of operation. On the basis of experimental data, an equivalent circuit of the sensor was designed and its computer simulation was carried out. The simulated data matched reasonably with the experimental curves. It was found that in differential mode of operation the Ag/n-GaAs/p-CuPc/Ag sensor's output voltage and current depends on the position of light beam probe. Due to this the sensor may be used as a photoelectric displacement transducer.

  20. Predicting the optimized thermoelectric performance of MgAgSb

    NASA Astrophysics Data System (ADS)

    Sheng, C. Y.; Liu, H. J.; Fan, D. D.; Cheng, L.; Zhang, J.; Wei, J.; Liang, J. H.; Jiang, P. H.; Shi, J.

    2016-05-01

    Using first-principles method and Boltzmann theory, we provide an accurate prediction of the electronic band structure and thermoelectric transport properties of α-MgAgSb. Our calculations demonstrate that only when an appropriate exchange-correlation functional is chosen can we correctly reproduce the semiconducting nature of this compound. By fine tuning the carrier concentration, the thermoelectric performance of α-MgAgSb can be significantly optimized, which exhibits a strong temperature dependence and gives a maximum ZT value of 1.7 at 550 K. We also provide a simple map by which one can efficiently find the best doping atoms and optimal doping content.

  1. Influence of size, shape and core–shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiOx

    PubMed Central

    Pinotti, Daniele; Spadaro, Maria Chiara; Paolicelli, Guido; Grillo, Vincenzo; Valeri, Sergio; Pasquali, Luca; Bergamini, Luca; Corni, Stefano

    2015-01-01

    Summary Ag and Ag@MgO core–shell nanoparticles (NPs) with a diameter of d = 3–10 nm were obtained by physical synthesis methods and deposited on Si with its native ultrathin oxide layer SiOx (Si/SiOx). Scanning electron microscopy and transmission electron microscopy (TEM) images of bare Ag NPs revealed the presence of small NP aggregates caused by diffusion on the surface and agglomeration. Atomic resolution TEM gave evidence of the presence of crystalline multidomains in the NPs, which were due to aggregation and multitwinning occurring during NP growth in the nanocluster source. Co-deposition of Ag NPs and Mg atoms in an oxygen atmosphere gave rise to formation of a MgO shell matrix surrounding the Ag NPs. The behaviour of the surface plasmon resonance (SPR) excitation in surface differential reflectivity (SDR) spectra with p-polarised light was investigated for bare Ag and Ag@MgO NPs. It was shown that the presence of MgO around the Ag NPs caused a red shift of the plasmon excitation, and served to preserve its existence after prolonged (five months) exposure to air, realizing the possibility of technological applications in plasmonic devices. The Ag NP and Ag@MgO NP film features in the SDR spectra could be reproduced by classical electrodynamics simulations by treating the NP-containing layer as an effective Maxwell Garnett medium. The simulations gave results in agreement with the experiments when accounting for the experimentally observed aggregation. PMID:25821680

  2. Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration.

    PubMed

    Pang, Chengfang; Brunelli, Andrea; Zhu, Conghui; Hristozov, Danail; Liu, Ying; Semenzin, Elena; Wang, Wenwen; Tao, Wuqun; Liang, Jingnan; Marcomini, Antonio; Chen, Chunying; Zhao, Bin

    2016-03-01

    With the advance in material science and the need to diversify market applications, silver nanoparticles (AgNPs) are modified by different surface coatings. However, how these surface modifications influence the effects of AgNPs on human health is still largely unknown. We have evaluated the uptake, toxicity and pharmacokinetics of AgNPs coated with citrate, polyethylene glycol, polyvinyl pyrolidone and branched polyethyleneimine (Citrate AgNPs, PEG AgNPs, PVP AgNPs and BPEI AgNPs, respectively). Our results demonstrated that the toxicity of AgNPs depends on the intracellular localization that was highly dependent on the surface charge. BPEI AgNPs (ζ potential = +46.5 mV) induced the highest cytotoxicity and DNA fragmentation in Hepa1c1c7. In addition, it showed the highest damage to the nucleus of liver cells in the exposed mice, which is associated with a high accumulation in liver tissues. The PEG AgNPs (ζ potential = -16.2 mV) showed the cytotoxicity, a long blood circulation, as well as bioaccumulation in spleen (34.33 µg/g), which suggest better biocompatibility compared to the other chemically modified AgNPs. Moreover, the adsorption ability with bovine serum albumin revealed that the PEG surface of AgNPs has an optimal biological inertia and can effectively resist opsonization or non-specific binding to protein in mice. The overall results indicated that the biodistribution of AgNPs was significantly dependent on surface chemistry: BPEI AgNPs > Citrate AgNPs = PVP AgNPs > PEG AgNPs. This toxicological data could be useful in supporting the development of safe AgNPs for consumer products and drug delivery applications. PMID:25962681

  3. Reversible modulated mid-infrared absorption of Ag/TiO{sub 2} by photoinduced interfacial charge transfer

    SciTech Connect

    Xu, S. C. E-mail: ghli@issp.ac.cn; Li, L.; Pan, S. S.; Luo, Y. Y.; Zhang, Y. X.; Li, G. H. E-mail: ghli@issp.ac.cn

    2014-10-06

    An enhanced mid-infrared absorption in Ag nanoparticles-decorated TiO{sub 2} microflowers was reported. It was found that the mid-infrared absorption of the Ag/TiO{sub 2} complex depends strongly on the content and size of Ag nanoparticles, the higher the Ag nanoparticles content, the stronger the infrared absorption. The average reflectivity in the entire mid-infrared region of the microflowers drops from 57.6% to 10.5% after Ag nanoparticles decoration. Reversible modulated mid-infrared absorption properties were found in the Ag/TiO{sub 2} complexes upon alternative illumination of visible and UV light due to the photoinduced interfacial electron transfer between TiO{sub 2} semiconductor and Ag nanoparticles.

  4. On the impact of Ag doping on performance and reliability of GeS2-based conductive bridge memories

    NASA Astrophysics Data System (ADS)

    Longnos, F.; Vianello, E.; Cagli, C.; Molas, G.; Souchier, E.; Blaise, P.; Carabasse, C.; Rodriguez, G.; Jousseaume, V.; De Salvo, B.; Dahmani, F.; Verrier, P.; Bretegnier, D.; Liebault, J.

    2013-06-01

    In this work, we study the impact of Ag doping on GeS2-based CBRAM devices employing Ag as active electrode. Several devices with Ag doping varying between 10% and 24% are extensively analyzed. First, we assess switching voltages and time-to-set as a function of Ag concentration in the electrolyte layer. Subsequently, we evaluate the two most important reliability aspects of RRAM devices: endurance and data retention at different temperatures. The results show that an increase of Ag doping in the GeS2 layer yields a strong improvement to both endurance and data retention performances. The extrapolated temperature allowing for 10 years data retention increases from 75 °C for the 10% Ag-doped sample to 109 °C for the 24% Ag-doped one.

  5. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film

    NASA Astrophysics Data System (ADS)

    Wang, Long-De; Zhang, Tong; Zhang, Xiao-Yang; Song, Yuan-Jun; Li, Ruo-Zhou; Zhu, Sheng-Qing

    2014-03-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence.

  6. Current-perpendicular-to-the-plane giant magnetoresistance in spin-valves with AgSn alloy spacers

    SciTech Connect

    Read, J. C.; Nakatani, T. M.; Smith, Neil; Choi, Y.-S.; York, B. R.; Brinkman, E.; Childress, J. R.

    2015-07-28

    We investigate the use of AgSn alloys as the spacer layer in current-perpendicular-to-the-plane magnetoresistance devices. Alloying with Sn increases resistivity but results in a reasonably long (>10 nm) spin-diffusion length, so large magnetoresistance can be achieved with thin AgSn spacers. Compared to Ag thin films, AgSn forms smaller grain sizes, reduced roughness, and exhibits less interdiffusion upon annealing, resulting in decreased interlayer magnetic coupling in exchange biased spin-valves. AgSn also shows improved corrosion resistance compared to Ag, which is advantageous for nanofabrication, including magnetic recording head sensors. Combining a AgSn spacer with Co-based Heusler alloy ferromagnet in an exchange biased, polycrystalline trilayer thinner than 12 nm results in magnetoresistance values up to 15% at room temperature.

  7. Halloysite nanotube supported Ag nanoparticles heteroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres.

    PubMed

    Li, Cuiping; Li, Xueyuan; Duan, Xuelan; Li, Guangjie; Wang, Jiaqiang

    2014-12-15

    Halloysite nanotube supported Ag nanoparticles heteroarchitectures have been prepared through a very simple electroless plating method. Robust Ag nanocrystals can be reproducibly fabricated by soaking halloysite nanotubes in ethanolic solutions of AgNO3 and butylamine. By simply adjusting the molar ratio of AgNO3 and butylamine, Ag nanoparticles with tunable size and quantity on halloysite nanotube are achieved. It reveals that the Ag nanoparticles are well-dispersed on the surface of halloysite nanotubes. The halloysite nanotube supported Ag nanoparticles heteroarchitectures can serve as active catalysts for the polymerization of an alkylsilane C18H37SiH3 with water to form silanol/siloxane composite microspheres and exhibit interesting superhydrophobicity ascribed to the micro/nanobinary structure. PMID:25268813

  8. Current-perpendicular-to-the-plane giant magnetoresistance in spin-valves with AgSn alloy spacers

    NASA Astrophysics Data System (ADS)

    Read, J. C.; Nakatani, T. M.; Smith, Neil; Choi, Y.-S.; York, B. R.; Brinkman, E.; Childress, J. R.

    2015-07-01

    We investigate the use of AgSn alloys as the spacer layer in current-perpendicular-to-the-plane magnetoresistance devices. Alloying with Sn increases resistivity but results in a reasonably long (>10 nm) spin-diffusion length, so large magnetoresistance can be achieved with thin AgSn spacers. Compared to Ag thin films, AgSn forms smaller grain sizes, reduced roughness, and exhibits less interdiffusion upon annealing, resulting in decreased interlayer magnetic coupling in exchange biased spin-valves. AgSn also shows improved corrosion resistance compared to Ag, which is advantageous for nanofabrication, including magnetic recording head sensors. Combining a AgSn spacer with Co-based Heusler alloy ferromagnet in an exchange biased, polycrystalline trilayer thinner than 12 nm results in magnetoresistance values up to 15% at room temperature.

  9. Palatability Can Drive Feeding Independent of AgRP Neurons.

    PubMed

    Denis, Raphaël G P; Joly-Amado, Aurélie; Webber, Emily; Langlet, Fanny; Schaeffer, Marie; Padilla, Stéphanie L; Cansell, Céline; Dehouck, Bénédicte; Castel, Julien; Delbès, Anne-Sophie; Martinez, Sarah; Lacombe, Amélie; Rouch, Claude; Kassis, Nadim; Fehrentz, Jean-Alain; Martinez, Jean; Verdié, Pascal; Hnasko, Thomas S; Palmiter, Richard D; Krashes, Michael J; Güler, Ali D; Magnan, Christophe; Luquet, Serge

    2015-10-01

    Feeding behavior is exquisitely regulated by homeostatic and hedonic neural substrates that integrate energy demand as well as the reinforcing and rewarding aspects of food. Understanding the net contribution of homeostatic and reward-driven feeding has become critical because of the ubiquitous source of energy-dense foods and the consequent obesity epidemic. Hypothalamic agouti-related peptide-secreting neurons (AgRP neurons) provide the primary orexigenic drive of homeostatic feeding. Using models of neuronal inhibition or ablation, we demonstrate that the feeding response to a fast ghrelin or serotonin receptor agonist relies on AgRP neurons. However, when palatable food is provided, AgRP neurons are dispensable for an appropriate feeding response. In addition, AgRP-ablated mice present exacerbated stress-induced anorexia and palatable food intake--a hallmark of comfort feeding. These results suggest that, when AgRP neuron activity is impaired, neural circuits sensitive to emotion and stress are engaged and modulated by food palatability and dopamine signaling. PMID:26278050

  10. Desorption of oxygen from alloyed Ag/Pt(111)

    SciTech Connect

    Jankowski, Maciej; Wormeester, Herbert Zandvliet, Harold J. W.; Poelsema, Bene

    2014-06-21

    We have investigated the interaction of oxygen with the Ag/Pt(111) surface alloy by thermal desorption spectroscopy (TDS). The surface alloy was formed during the deposition of sub-monolayer amounts of silver on Pt(111) at 800 K and subsequent cooling to 300 K. The low-temperature phase of the surface alloy is composed of nanometer-sized silver rich stripes, embedded within platinum-rich domains, which were characterized with spot profile analysis low energy electron diffraction. The TDS measurements show that oxygen adsorption is blocked on Ag sites: the saturation coverage of oxygen decreases with increasing Ag coverage. Also, the activation energy for desorption (E{sub des}) decreases with Ag coverage. The analysis of the desorption spectra from clean Pt(111) shows a linear decay of E{sub des} with oxygen coverage, which indicates repulsive interactions between the adsorbed oxygen atoms. In contrast, adsorption on alloyed Ag/Pt(111) leads to an attractive interaction between adsorbed oxygen atoms.

  11. The AGS Ggamma Meter and Calibrating the Gauss Clock

    SciTech Connect

    Ahrens, Leif

    2014-03-31

    During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle’s Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than the AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).

  12. METAL MEDIA FILTERS, AG-1 SECTION FI

    SciTech Connect

    Adamson, D.

    2012-05-23

    One application of metal media filters is in various nuclear air cleaning processes including applications for protecting workers, the public and the environment from hazardous and radioactive particles. To support this application the development of the ASME AG-1 FI Standard on Metal Media has been under way for more than ten years. Development of the proposed section has required resolving several difficult issues associated with operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality acceptance testing. Performance characteristics of metal media are dramatically different than the glass fiber media with respect to parameters like differential pressures, operating temperatures, media strength, etc. These differences make existing data for a glass fiber media inadequate for qualifying a metal media filter for AG-1. In the past much work has been conducted on metal media filters at facilities such as Lawrence Livermore National Laboratory (LLNL) and Savannah River National Laboratory (SRNL) to qualify the media as High Efficiency Particulate Air (HEPA) Filters. Particle retention testing has been conducted at Oak Ridge Filter Test Facility and at Air Techniques International (ATI) to prove that the metal media meets or exceeds the 99.97% particle retention required for a HEPA Filter. Even with his testing, data was lacking to complete an AG-1 FI Standard on metal media. With funding secured by Mississippi State University (MSU) from National Nuclear Security Administration (NNSA), a research test stand is being designed and fabricated at MSU's Institute for Clean Energy Technology (ICET) Facility to obtain qualification data on metal media. This in turn will support required data needed for the FI Standard. The paper will discuss in detail how the test stand at MSU will obtain the necessary data to complete the FI Standard.

  13. X-ray diffraction structure of the 1,1{prime}-bis(diphenylphosphino)ferrocene (dppf)-bridged complex [(dppf)AgCl]{sub 2}: An unexpected product from the reaction between cis-(bpy){sub 2}RuCl{sub 2} and dppf in the presence of AgBF{sub 4}

    SciTech Connect

    Yang, K.; Bott, S.G.; Richmond, M.G.

    1995-05-01

    The reaction between cis-Ru(bpy){sub 2}Cl{sub 2}(where bpy = bipyridine) and the diphosphine ligand 1,1 {prime} - bis(diphenylphosphino)ferrocene (dppf) in the presence of AgBF{sub 4} has led to the isolation of the title compound [Ag(dppf)Cl]{sub 2}. [Ag(dppf)Cl]{sub 2} has been structurally characterized by X-ray diffraction analysis, which confirms the bridging mode adopted by the ancillary dppf ligand and the centrosymmetric nature of this molecule. Dimeric [Ag(dppf)Cl]{sub 2} crystallizes in the triclinic space group P1, a = 11.426(1) {angstrom}, b = 11.509(1) {angstrom}, c = 12.786(1) {angstrom}, {alpha} = 68.96(2){degrees}, {beta} = 70.66(2){degrees} = {gamma} = 71.24(2){degrees}, V = 1441(1) {angstrom}{sup 3}, Z = 1, d{sub calc} = 1.608 g {center_dot} cm{sup {minus}3}; R = 0.0445, R{sub 2} = 0.0566 for 4486 observed reflections with l {ge} 3{sigma}(l).

  14. Constraints on Variable Ag:Au:Cu Ore-Metal Ratios in Felsic Arc-Magmas

    NASA Astrophysics Data System (ADS)

    Piccoli, P.; Englander, L.; Candela, P.

    2004-12-01

    Silver:gold:copper ratios are variable in porphyry-type ore systems. In an attempt to better understand why, we have employed experimental techniques to determine how silver and copper, and gold from previous experiments, are sequestered in felsic magmas. To this end, we are performing sealed silica tube experiments on the equilibria among pyrrhotite-magnetite-silver alloy at 800C and at vapor pressure. Run times for the preliminary experiments were 144 hours; runs had magnetite/pyrrhotite ratio of 4. The source of silver in the runs was AgCl. Analysis of reconnaissance experiments demonstrates the stability of magnetite, pyrrhotite and a silver sulfide solid solution under the conditions of the experiments. Equilibrium concentrations of ore metals in the run products are ~3000 ppm Ag and 3500 ppm Cu in the pyrrhotite. However, the concentrations in magnetite are significantly different: 100 ppm Ag and ~20 ppm Cu. Like copper and gold (Jugo et al., 1999; Lithos), silver is concentrated in pyrrhotite relative to magnetite. The equilibrium Ag-sulfide composition in the run products is Ag53Fe8Cu3S36, with a mole fraction of Ag2S of 0.74. The log fS2 is approximated as ~ -4. The mole fraction of Ag in an ideal metal solid solution in equilibrium with an ideal model Ag2S solid solution, and a log fS2 of -4, is ~0.4. By analogy with Au, the substitution of Ag into pyrrhotite may occur as an AgFeS2 component. The substitutional mechanism for Ag in magnetite is not clear: silver may substitute as AgFe(3+)(Fe(2+))-2, but may also be present in defects in the magnetite structure. The partition coefficient (D(po/mt)) for approximately 30 for Ag. The partition coefficient for Au is higher (~120) based on the data of Simon et al. (2003; Am. Min,) and Jugo et al. (1999; Lithos). These data can be combined with data on the solubility of Ag in silicate melts to calculate mineral-melt partition coefficients. These data suggest that the role of pyrrhotite crystallization in felsic

  15. Visible emission from Ag+ exchanged SOD zeolites

    NASA Astrophysics Data System (ADS)

    Lin, H.; Imakita, K.; Fujii, M.; Prokof'ev, V. Yu.; Gordina, N. E.; Saïd, B.; Galarneau, A.

    2015-09-01

    Broad visible emissions dominant at green or red have been observed for the thermally-treated Ag+ exchanged SOD zeolites, determined by the Ag+ loading contents and the excitation wavelengths. Contrary to the notable reversible green/red dominant emission evolution in the Ag+ exchanged LTA zeolites upon hydration/dehydration in air (or water vapor)/vacuum, emission spectra of the Ag+ exchanged SOD zeolites are insensitive to the environmental change. This is most probably due to the difficult H2O permeation in SOD zeolites in comparison with LTA zeolites. By combining the environment dependent emission spectra of the Ag+ exchanged LTA and SOD zeolites, we proposed the following emission mechanisms for Ag+ exchanged LTA and SOD zeolites: the green emission is due to the transition from ligand-to-metal (framework O2- --> Ag+) charge transfer state to the ground state and the red emission is due to the transition from the metal-metal (Ag+-Ag+) charge transfer state to the ground state. The insensitive environment dependent emission characteristics of Ag+ exchanged SOD zeolites may have potential applications as robust phosphors.

  16. Near-net-shape fabrication of continuous Ag-Clad Bi-Based superconductors

    SciTech Connect

    Lanagan, M. T. et al.

    1998-04-01

    We have developed a near-net-shape process for Ag-clad Bi-2212 superconductors as an alternative to the powder-in-tube process. This new process offers the advantages of nearly continuous processing, minimization of processing steps, reasonable ability to control the Bi-2212/Ag ratio, and early development of favorable texture of the Bi-2212 grains. Superconducting properties are discussed.

  17. One pot green synthesis of Ag, Au and Au-Ag alloy nanoparticles using isonicotinic acid hydrazide and starch.

    PubMed

    Malathi, Sampath; Ezhilarasu, Tamilarasu; Abiraman, Tamilselvan; Balasubramanian, Sengottuvelan

    2014-10-13

    Gold-silver alloy nanoparticles were synthesized via chemical reduction of varying mole fractions of chloroauric acid (HAuCl4) and silver nitrate (AgNO3) by environmentally benign isonicotinic acid hydrazide (INH) in the presence of starch as a capping agent in aqueous medium. The absorption spectra of Au-Ag nanoparticles show blue shift with increasing silver content indicating the formation of alloy nanoparticles. When the Ag content in the alloy decreases the size of the nanoparticles increases and as a result of which the oxidation potential also increases. The emission maximum undergoes a red shift from 443 to 614 nm. The nanoparticles are monodisperse and spherical with an average particle size of 3-18 nm. The catalytic behavior of alloy nanoparticles indicate that the rate constant for the reduction of 4-nitro phenol to 4-amino phenol increases exponentially from metallic Ag to metallic Au as Au content increases in the Au-Ag alloy nanoparticles. PMID:25037410

  18. Study of Ag transport in Cr2N0.61-7Ag nanocomposite thin film due to thermal exposition

    NASA Astrophysics Data System (ADS)

    Bílek, P.; Jurči, P.; Podgornik, B.; Jenko, D.; Hudáková, M.; Kusý, M.

    2015-12-01

    Cr2N0.61-7Ag nanocomposite coatings were deposited on substrates made of Cr-V ledeburitic tool steel Vanadis 6 using reactive magnetron sputtering at a deposition temperature of 500 °C. Investigations of as-deposited films and annealing experiments in closed-air atmosphere at temperatures of 300, 400 and 500 °C and the durations up to 24 h, followed by quantitative scanning electron microscopy, transmission electron microscopy, Auger electron spectroscopy and X-ray diffraction revealed that the films were composed of Cr2N0.61 matrix and individual silver agglomerates located along columnar crystals of the matrix. The maximal size of Ag-agglomerates was 80 nm. The surface population density of silver agglomerates increased with prolonging the annealing time up to 2 h and then decreased. The increase was more pronounced at lower annealing temperatures. This behaviour was referred to the competition between three phenomena, namely the transport of detached Ag atoms to the free surface, formation of oxide layer on the surface and sublimation of silver from the surface. At lower temperatures and/or shorter annealing times, the Ag-transport to the free surface was determined to be prevalent, thus, an increase in population density of silver agglomerates was determined. On the other hand, for higher temperatures and/or longer annealing times the population density of Ag-agglomerates rather decreased due to retarding effect of thicker oxide layer and sublimation of silver.

  19. Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts

    SciTech Connect

    Zhou, Yang; Lu, Qi; Zhuang, Zhongbin; Hutchings, Gregory S.; Kattel, Shyam; Yan, Yushan; Chen, Jingguang G.; Xiao, John Q.; Jiao, Feng

    2015-05-07

    Here we report a monolithic nanoporous Ag (np-Ag) material, synthesized using the dealloying method, as high-performance catalysts for ORR in alkaline media. As shown in Scheme 1, when there is insufficient potential input, the O2 molecules are more likely to rebound off from a planar electrode surface (i.e. bulk polycrystalline metal, films made from nanoparticles or nanowires) before they could be reduced. In contrast, they are more likely to be trapped inside the monolithic nanoporous structure, contacting with catalytic surface for multiple time, which greatly enhances the chance for them to be fully reduced. As a result, the np-Ag catalyst is able to achieve an equivalent or better ORR performance than the state-of the-art Pt/C catalyst at low overpotentials, which is most desired in electrochemical energy applications for maximizing efficiency.

  20. Photoemission from Shockley surface state on Ag(111)

    NASA Astrophysics Data System (ADS)

    Karkare, Siddharth; Wan, Weishi; Feng, Jun; Padmore, Howard

    We present measurements of quantum yield and transverse momentum distributions of electrons emitted from the Shockley surface state on Ag(111) surface using near threshold photons. Our measurements shed light on the validity of the conservation of transverse momentum during photoemission when the kinetic energy of electrons is less than 0.1 eV. We also develop a one-step photoemission model that quantitatively explains photoemission from single crystal metal surfaces. This model accurately calculates the dependence of the electron yield on the angle of incidence and the polarization of incident light (vectorial photoelectric effect). We show excellent agreement between the measured and calculated photoemission properties of the Ag(111) surface. Our measurements show that Ag(111) surface can act as an excellent electron source for several applications like Free Electron Lasers and Ultra-fast Electron Diffraction.

  1. Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts

    DOE PAGESBeta

    Zhou, Yang; Lu, Qi; Zhuang, Zhongbin; Hutchings, Gregory S.; Kattel, Shyam; Yan, Yushan; Chen, Jingguang G.; Xiao, John Q.; Jiao, Feng

    2015-05-07

    Here we report a monolithic nanoporous Ag (np-Ag) material, synthesized using the dealloying method, as high-performance catalysts for ORR in alkaline media. As shown in Scheme 1, when there is insufficient potential input, the O2 molecules are more likely to rebound off from a planar electrode surface (i.e. bulk polycrystalline metal, films made from nanoparticles or nanowires) before they could be reduced. In contrast, they are more likely to be trapped inside the monolithic nanoporous structure, contacting with catalytic surface for multiple time, which greatly enhances the chance for them to be fully reduced. As a result, the np-Ag catalystmore » is able to achieve an equivalent or better ORR performance than the state-of the-art Pt/C catalyst at low overpotentials, which is most desired in electrochemical energy applications for maximizing efficiency.« less

  2. Fractal structure formation from Ag nanoparticle films on insulating substrates.

    PubMed

    Tang, Jing; Li, Zhiyong; Xia, Qiangfei; Williams, R Stanley

    2009-07-01

    Two dimensional (2D) fractal structures were observed to form from fairly uniform Ag island films (equivalent mass thicknesses of 1.5 and 5 nm) on insulating silicon dioxide surfaces (thermally grown silicon oxide on Si or quartz) upon immersion in deionized water. This result is distinctly different from the previously observed three-dimensional (3D) growth of faceted Ag nanocrystals on conductive surfaces (ITO and graphite) as the result of an electrochemical Ostwald ripening process, which also occurs on native oxide covered silicon surfaces as reported here. The fractal structures formed by diffusion-limited aggregation (DLA) of Ag species on the insulating surfaces. We present the experimental observation of this phenomenon and discuss some possible mechanisms for the DLA formation. PMID:19496573

  3. Simulations on the AGS horizontal tune jump mechanism

    SciTech Connect

    Lin,F.; Huang, H.; Luccio, A. U.; Roser, T.

    2009-05-04

    A new horizontal tune jump mechanism has been proposed to overcome the horizontal intrinsic resonances and preserve the polarization of the proton beam in the Alternating Gradient Synchrotron (AGS) during the energy ramp. An adiabatic change of the AGS lattice is needed to avoid the emittance growth in both horizontal and vertical planes, as the emittance growth can deteriorate the polarization of the proton beam. Two critical questions are necessary to be answered: how fast can the lattice be changed and how much emittance growth can be tolerated from both optics and polarization points of view? Preliminary simulations, using a realistic AGS lattice and acceleration rate, have been carried out to give a first glance of this mechanism. Results with different optics are presented in this paper.

  4. Plasmon Mapping in Au@Ag Nanocube Assemblies

    PubMed Central

    2014-01-01

    Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag core–shell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles. PMID:25067991

  5. Advocating for Ag Education

    ERIC Educational Resources Information Center

    Fritsch, Julie

    2012-01-01

    The strongest advocates for agricultural education are the educators who teach it and the students who reap the results of their learning. Teacher advocates in Idaho discuss how their efforts have made a difference at the local and state levels. The author describes an approach the teacher advocates take to advocacy which proves that it isn't just…

  6. Shedding Light on the Photochemistry of Coinage-Metal Phosphorescent Materials: A Time-Resolved Laue Diffraction Study of an AgI-CuI Tetranuclear Complex

    SciTech Connect

    Jarzembska, Katarzyna N.; Kami,; #324; ski, Radoslaw; Fournier, Bertrand; Trzop, El; #380; bieta,; Sokolow, Jesse D.; Henning, Robert; Chen, Yang; Coppens, Philip

    2014-11-14

    The triplet excited state of a new crystalline form of a tetranuclear coordination d10–d10-type complex, Ag2Cu2L4 (L = 2-diphenylphosphino-3-methylindole ligand), containing AgI and CuI metal centers has been explored using the Laue pump–probe technique with ≈80 ps time resolution. The relatively short lifetime of 1 μs is accompanied by significant photoinduced structural changes, as large as the Ag1···Cu2 distance shortening by 0.59(3) Å. The results show a pronounced strengthening of the argentophilic interactions and formation of new Ag···Cu bonds on excitation. Theoretical calculations indicate that the structural changes are due to a ligand-to-metal charge transfer (LMCT) strengthening the Ag···Ag interaction, mainly occurring from the methylindole ligands to the silver metal centers. QM/MM optimizations of the ground and excited states of the complex support the experimental results. Comparison with isolated molecule optimizations demonstrates the restricting effect of the crystalline matrix on photoinduced distortions. The work represents the first time-resolved Laue diffraction study of a heteronuclear coordination complex and provides new information on the nature of photoresponse of coinage metal complexes, which have been the subject of extensive studies.

  7. Fabrication of Ag-Nanorods/Polyimide Nanocomposites and Their Thermal, Mechanical, Electrical, and Dielectric Properties.

    PubMed

    Weng, Ling; Yan, Li-Wen; Li, Hong-Xia; Liu, Li-Zhu

    2016-02-01

    Silver nanorods/polyimide (Ag-NRs/PI) nanocomposites with high conductivity (An order of magnitude higher than pure PI), frequency-independent dielectric permittivity (3.8-4.2) and low dielectric loss (<0.05) were prepared by an in-situ polymerization process. Ag-nanorods with a mean width of approximately 300 nm and an average length over 8 microm were synthesized in the presence of polyvinylpyrrolidone (PVP) and NaCl by polyol process. SEM images showed that metallic Ag-nanorods were well dispersed in PI matrix. The structure of Ag-NRs was not destroyed or changed in nanocomposite films and the order of PI molecular chains was maintained as well. The orientation of the Ag-NRs in the PI matrix improved the mechanical properties of nanocomposite films. TGA results showed that the thermal property of nanocomposite films was almost as good as pure PI. PMID:27433637

  8. Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene.

    PubMed

    Cai, P-F; Su, C-J; Chang, W-T; Chang, F-C; Peng, C-Y; Sun, I-W; Wei, Y-L; Jou, C-J; Wang, H Paul

    2014-08-30

    Drinking water shortage has become worse in recent decades. A new capacitive deionization (CDI) method for increasing water supplies through the effective desalination of seawater has been developed. Silver as nano Ag and Ag@C which was prepared by carbonization of the Ag(+)-β-cyclodextrin complex at 573 K for 30 min can add the antimicrobial function into the CDI process. The Ag@C and Ag nanoparticles dispersed on reduced graphene oxide (Ag@C/rGO and nano Ag/rGO) were used as the CDI electrodes. The nano Ag/rGO and Ag@C/rGO electrodes can reduce the charging resistant, and enhance the electrosorption capability. Better CDI efficiencies with the nano Ag/rGO and Ag@C/rGO electrodes can therefore be obtained. When reversed the voltage, the electrodes can be recovered up to 90% within 5 min. This work presents the feasibility for the nano Ag and Ag@C on rGO electrodes applied in CDI process to produce drinking water from seawater or saline water. PMID:24928455

  9. Preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels.

    PubMed

    Im, Hee-Jung; Lee, Byung Cheol; Yeon, Jei-Won

    2013-11-01

    Ag nanoparticles, used for halogen (especially iodine) adsorption and an evaluation of halogen behavior, were embedded in synthesized inorganic-organic hybrid gels. In particular, an irradiation method using an electron beam plays a part in introducing Ag nanoparticles to the organofunctionalized silica gels from AgNO3 solutions in a simple way at atmospheric pressure and room temperature. For preparation of the Ag nanoparticle-embedded inorganic-organic hybrid gels, ligands of ethylenediamine (NH2CH2CH2NH-, TMSen) and mercapto (HS-) functionalized three-dimensional porous SiO2 sol-gels were first synthesized through hydrolysis and condensation reactions, and Ag nanoparticles were then embedded into the ethylenediamine- and mercapto-anchored silica gels each, through electron-beam irradiation. The addition of ligands yielded larger average pore sizes than the absence of any ligand. Moreover, the ethylenediamine ligand led to looser structures and better access of the Ag nanoparticles to the ethylenediamine-anchored gel. As a result, more Ag nanoparticles were introduced into the ethylenediamine-anchored gel. The preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels are discussed in detail. PMID:24245307

  10. Structural and magnetic characterization of Co partical coated with Ag

    NASA Astrophysics Data System (ADS)

    Rivas, J.; Sanchez, R. D.; Fondado, A.; Izco, C.; Garcia-Bastida, A. J.; Garcia-Otero, J.; Mira, J.; Baldomir, D.; Gonzalez, A.; Lado, I.

    1994-11-01

    Co fine particles coated with Ag have been synthesized through the microemulsion method in an inert atmosphere. The size of the particles is controlled by the water droplets of the microemulsions. Fine particles prepared by this method, consist of a magnetic core of Co covered by a layer of Ag. Samples containing from 3.3 to 40.5 vol % Co have been prepared. The average size of the particles obtained is in the nanometer range. The magnetic properties were studied by dc magnetization at 77 K and room temperature. The data show a strong dependence of the magnetic properties on the annealing temperature.

  11. Ag nanotubes and Ag/AgCl electrodes in nanoporous membranes.

    PubMed

    Davenport, Matthew; Healy, Ken; Siwy, Zuzanna S

    2011-04-15

    Miniaturization of the entire experimental setup is a key requirement for widespread application of nanodevices. For nanopore biosensing, integrating electrodes onto the nanopore membrane and controlling the pore length is important for reducing the complexity and improving the sensitivity of the system. Here we present a method to achieve these goals, which relies on electroless plating to produce Ag nanotubes in track-etched polymer nanopore templates. By plating from one side only, we create a conductive nanotube that does not span the full length of the pore, and thus can act as a nanoelectrode located inside the nanopore. To give optimal electrochemical behavior for sensing, we coat the Ag nanotube with a layer of AgCl. We characterize the behavior of this nanoelectrode by measuring its current-voltage response and find that, in most cases, the response is asymmetric. The plated nanopores have initial diameters between 100 and 300 nm, thus a range suitable for detection of viruses. PMID:21389573

  12. Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli.

    PubMed

    Wang, Lian; He, Hong; Yu, Yunbo; Sun, Li; Liu, Sijin; Zhang, Changbin; He, Lian

    2014-06-01

    Silver-loaded CeO2 nanomaterials (Ag/CeO2) including Ag/CeO2 nanorods, nanocubes, nanoparticles were prepared with hydrothermal and impregnation methods. Catalytic inactivation of Escherichia coli with Ag/CeO2 catalysts through the formation of reactive oxygen species (ROS) was investigated. For comparison purposes, the bactericidal activities of CeO2 nanorods, nanocubes and nanoparticles were also studied. There was a 3-4 log order improvement in the inactivation of E. coli with Ag/CeO2 catalysts compared with CeO2 catalysts. Temperature-programmed reduction of H2 showed that Ag/CeO2 catalysts had higher catalytic oxidation ability than CeO2 catalysts, which was the reason for that Ag/CeO2 catalysts exhibited stronger bactericidal activities than CeO2 catalysts. Further, the bactericidal activities of CeO2 and Ag/CeO2 depend on their shapes. Results of 5,5-dimethyl-1-pyrroline-N-oxide spin-trapping measurements by electron spin resonance and addition of catalase as a scavenger indicated the formation of OH, O2(-), and H2O2, which caused the obvious bactericidal activity of catalysts. The stronger chemical bond between Ag and CeO2 nanorods led to lower Ag(+) elution concentrations. The toxicity of Ag(+) eluted from the catalysts did not play an important role during the bactericidal process. Experimental results also indicated that Ag/CeO2 induced the production of intracellular ROS and disruption of the cell wall and cell membrane. A possible production mechanism of ROS and bactericidal mechanism of catalytic oxidation were proposed. PMID:24662462

  13. HIV-1 derived peptides fused to HBsAg affect its immunogenicity.

    PubMed

    Gonzalez, Minerva Cervantes; Kostrzak, Anna; Guetard, Denise; Pniewski, Tomasz; Sala, Monica

    2009-12-01

    The hepatitis B virus (HBV) surface small antigen (HBsAg) self-assembles into virus-like particles (VLPs). HBsAg-based VLPs constitute a powerful vector for heterologous immunogenic peptides to develop a safe vaccine delivery system. HBV and the human immunodeficiency virus type 1 (HIV-1) are frequently associated in infection. An HIV-1 class I polyepitope was designed for an HIV-1/HBV vaccine prototype based on HBsAg VLPs. Invariable peptides from the original HIV-1 polyepitope were here permutated to study the influence of epitope order on HIV-1/HBV VLP immunogenicity. Anti-HIV-1 cellular responses were statistically comparable among polyepitope variants. Nevertheless, delivered HIV-1 polyepitopes impacted anti-HBsAg carrier immunogenicity in a polyepitope-specific manner. For a given set of epitopes, the choice of epitope order in polyepitopes is strategic to control immune responses towards HBsAg VLPs used as carrier of foreign immunogenic peptides. PMID:19766153

  14. Surface-segregated Si and Ge ultrathin films formed by Ag-induced layer exchange process

    NASA Astrophysics Data System (ADS)

    Kurosawa, Masashi; Ohta, Akio; Araidai, Masaaki; Zaima, Shigeaki

    2016-08-01

    We have developed a new method of growing Si or Ge ultrathin films on a Ag(111) surface by using a Ag-induced layer exchange (ALEX) process toward the creation of 2D honeycomb sheets of Si and Ge, known as silicene and germanene, respectively. In the present paper, we clarify ALEX features, specifically the surface segregation of Si (or Ge) atoms from the underlying substrate, focusing on the annealing temperature and time. Hard X-ray photoelectron spectroscopy analyses demonstrate that surface-segregated Si (or Ge) exists on the Ag surfaces after the epitaxial growth of the Ag layer on Si(111) [or Ge(111)] substrates; the amount of segregated Si (or Ge) can be controlled by a subsequent annealing. Also, we find that the segregation of an ultrathin Si or Ge layer proceeds at an interface between Ag and the AlO x capping layer.

  15. Novel S = 3/2 Triangular Antiferromagnet Ag2CrO2 with Metallic Conductivity

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Takayama-Muromachi, Eiji; Isobe, Masaaki

    2011-12-01

    A novel metallic silver chromate, Ag2CrO2, was synthesized using a high-pressure technique. Ag2CrO2 crystallizes in trigonal symmetry with lattice parameters of a = 2.9271(1) Å and c = 8.6721(4) Å. The structure consists of CrO2 and double Ag layers stacked alternately along the c-axis. The former realizes an S = 3/2 triangular-lattice Heisenberg system, while the latter provides itinerant electrons. Ag2CrO2 exhibits an antiferromagnetic long-range order at TN = 24 K with the weak ferromagnetic moment. The resistivity shows a sudden drop at TN, suggesting a large s--d interaction (RKKY interaction) between the Cr 3d localized spins on the triangular lattice and the Ag 5s itinerant electrons. The RKKY interaction is responsible for releasing the magnetic frustration and the three-dimensional long-range ordering at TN.

  16. Acceleration of polarized proton at the AGS

    SciTech Connect

    Lee, Y Y

    1980-01-01

    The unexpected importance of high energy spin effects and the success of the ZGS in correcting many intrinsic and imperfection depolarizing resonances led us to attempt to accelerate polarized protons in the AGS. A collaborative effort is underway by the groups in Argonne, Michigan, Rice, Yale and Brookhaven to improve and modify the AGS to accelerate polarized protons. With the appropriate funding the first polarized proton acceleration at the AGS should be possible by 1983.

  17. Visible-light-driven photocatalysts Ag/AgCl dispersed on mesoporous Al2O3 with enhanced photocatalytic performance.

    PubMed

    Feng, Zhouzhou; Yu, Jiajie; Sun, Dongping; Wang, Tianhe

    2016-10-15

    In this paper, Ag/AgCl and Ag/AgCl/Al2O3 photocatalysts were synthesized via a precipitation reaction between NaCl and CH3COOAg or Ag(NH3)2NO3, wherein Ag/AgCl was immobilized into mesoporous Al2O3 medium. The Ag/AgCl-based nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectra, and so on. The photocatalysts displayed excellent photocatalytic activity for the degradations of methyl orange (MO) and methylene blue (MB) pollutants under visible light irradiation. The Ag/AgCl(CH3COOAg)/Al2O3 sample exhibited the best photocatalytic performance, degrading 99% MO after 9min of irradiation, which was 1.1 times, 1.22 times and 1.65 times higher than that of Ag/AgCl(Ag(NH3)2NO3)/Al2O3, Ag/AgCl(CH3COOAg) and Ag/AgCl(Ag(NH3)2NO3) photocatalyst, respectively. Meanwhile, Ag/AgCl(CH3COOAg)/Al2O3 also showed excellent capability of MB degradation. Compared to the data reported for Ag/AgCl/TiO2, the Ag/AgCl/Al2O3 prepared in this work exhibited a good performance for the degradation of methyl orange (MO). The results suggest that the dispersion of Ag/AgCl on mesoporous Al2O3 strongly affected their photocatalytic activities. O2(-), OH radicals and Cl(0) atoms are main active species during photocatalysis. PMID:27442145

  18. Fabrication and characterization of Ag-clad Bi-2223 tapes.

    SciTech Connect

    Balachandran, U.

    1999-04-20

    The powder-in-tube (PIT) technique was used to fabricate multifilament (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) superconducting tapes. Transport current properties of these tapes were enhanced by increasing the packing density of the precursor powder and improving the mechanical deformation condition. A critical current (I{sub c}) of > 35 A in long lengths (> 200 m) tapes has been achieved. In measuring the dependence of critical current density on magnetic field and temperature for the optimally processed tapes, we found a J{sub c} of > 10{sup 4} A/cm{sup 2} at 20 K in magnetic fields up to 3 T and parallel to the c-axis, which is of interest for use in refrigerator-cooled magnets. I{sub c} declined exponentially when an external field was applied perpendicular to the tape surface at 77 K. Mechanical stability was tested for tapes sheathed with pure Ag and Ag-Mg alloy. Tapes made with pure Ag sheathing can withstand a tensile stress of {approx}20 MPa with no detrimental effect on I{sub c} values. Mechanical performance was improved by using Ag-Mg alloy sheathing: values of transport critical current began to decrease at the tensile stress of {approx} 100 MPa. Transport current measurements on tapes wound on a mandrel of 3.81 cm (1.5 in.) diameter at 30{degree} to the longitudinal axis, showed a reduction of {approx} 10% in I{sub c} values for pure Ag-sheathed tapes and 5% reduction in I{sub c} values for Ag-Mg sheathed tapes, compared with the I{sub c} values of as-coiled tapes.

  19. Multiple Partial Siberian Snakes in the AGS

    SciTech Connect

    Takano, J.; Ahrens, L. A.; Bai, M.; Brown, K.; Courant, E. D.; Gardner, C. J.; Glenn, J. W.; Huang, H.; Luccio, A. U.; MacKay, W. W.; Okamura, M.; Roser, T.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.; Hattori, T.; Lin, F.

    2007-06-13

    Polarized protons are accelerated up to 24.3 GeV in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). To accelerate the beam with preserving the polarization, two different types of helical dipole partial Siberian snake have been installed to the AGS. One is a superconducting magnet (Cold Snake, CSNK), and the other is a normal conducting one (Warm Snake, WSNK). With these snake magnets, the polarization at the AGS extraction achieved 65%. However, the AGS has spin mismatches at the injection and extraction. This description shows calculated results to have better spin matching with using two or three snakes.

  20. Coexistence of HBsAg and HBsAb in a difficult-to-treat chronic hepatitis B: loss of HBsAg with entecavir plus tenofovir combination

    PubMed Central

    2014-01-01

    Background Some reports have documented the coexistence of Hepatitis B surfage Antigen (HBsAg) and anti-HBsAg antibodies (HBsAb) in patients with chronic hepatitis B (CHB), often in the absence of amino acid substitutions in the HBsAg sequences of the Hepatitis B Virus (HBV) genome able to explain an immunological escape variant. HBV genome has a very compact coding organization, with four partially overlapping open reading frames (ORFs). Because the reverse transcriptase region (rt) of HBV polymerase overlaps the HBsAg ORF, it is possible that some mutations in the HBsAg region correspond to mutations in the rt ORF, conferring resistance to current antiviral therapies. This unique case explores the response to antiviral therapies of a CHB with concurrent HBsAg and HBsAb positivity, and analyse the clinical implications of possible mutations in rt and HBsAg ORFs. Case presentation Here we describe the case of a 59 year-old Italian man suffering from Hepatitis B envelope Antigen (HBeAg) positive CHB with concurrent HBsAb positivity. By ultra-deep pyro-sequencing (UDPS) technique, mutations conferring immunological escape or resistance to antiviral therapies were found neither in HBsAg nor in HBV rt ORFs, respectively. The patient was unsuccessfully treated with interferon, adefovir monotherapy and adefovir plus entecavir combination. Surprisingly, during entecavir plus tenofovir combination, anti-HBe seroconversion and HBsAg loss were observed, while the titer of HBsAb persisted. Conclusions Concurrent HBsAg/HBsAb positivity in active CHB is a clinical and virological dilemma. In this setting, there are not consistent data about the response to conventional therapies and the immunological balance between host and virus remains so far unexplained. This is, to our knowledge, the first case described of a CHB with HBsAg/HBsAb positivity, wild type for clinically relevant mutations in HBsAg and rt ORFs, successfully treated with a combination of nucleot(s)ide analogues

  1. Preparation and use of photocatalytically active segmented Ag|ZnO and coaxial TiO2-Ag nanowires made by templated electrodeposition.

    PubMed

    Maijenburg, A Wouter; Rodijk, Eddy J B; Maas, Michiel G; Ten Elshof, Johan E

    2014-01-01

    Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution. PMID:24837535

  2. Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition

    PubMed Central

    Maijenburg, A. Wouter; Rodijk, Eddy J.B.; Maas, Michiel G.; ten Elshof, Johan E.

    2014-01-01

    Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution. PMID:24837535

  3. Synthesis of Cu-Ag@Ag particles using hyperbranched polyester as template

    NASA Astrophysics Data System (ADS)

    Han, Wen-Song

    2015-07-01

    In this manuscript, the third-generation hyperbranched polyester was synthesized with 2, 2-dimethylol propionic acid as AB2 monomer and pentaerythrite as core molecule by using step by step polymerization process at first. Then, the Cu-Ag particles were prepared by co-reduction of silver nitrate and copper nitrate with ascorbic acid in the aqueous solution using hyperbranched polyester as template. Finally, the Cu-Ag@Ag particles were prepared by coating silver on the surface of Cu-Ag particles by reduction of silver nitrate. The synthesized hyperbranched polyester and Cu-Ag@Ag particles were characterized by Fourier transform infrared (FT-IR) spectroscopy, UV-vis spectra, x-ray diffraction, Laser light scattering, thermogravimetric analysis (TGA) and SEM. UV-vis spectra results showed that the Cu-Ag@Ag particles had a strong absorption band at around 420 nm. Laser light scattering and SEM studies confirmed that the most frequent particle sizes of Cu-Ag@Ag particles were 1.2 um. TGA results indicated that the Cu-Ag@Ag particles had good thermal stability. [Figure not available: see fulltext.

  4. Antibacterial action of Ag-containing MFI zeolite at low Ag loadings.

    PubMed

    Lalueza, Patricia; Monzón, Marta; Arruebo, Manuel; Santamaria, Jesus

    2011-01-14

    We show that Ag-containing zeolites are highly effective against Staphylococcus aureus (SA) bacteria even at low Ag loadings and in the presence of high (10(9) CFU per mL) bacterial concentrations. At short contact times the bactericidal efficiency correlates strongly with Ag(+) release. At longer times data dispersion is higher, probably as a consequence of bacterial metabolism. PMID:21103583

  5. 78 FR 30965 - AG Valley Railroad, LLC-Operation Exemption-Ag Valley Holdings, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board AG Valley Railroad, LLC--Operation Exemption--Ag Valley Holdings, LLC AG... original and 10 copies of all pleadings, referring to Docket No. FD 35736, must be filed with the...

  6. Progress with the AGS Booster

    SciTech Connect

    Weng, W.T.

    1988-01-01

    Rare K-decay, neutrino and heavy ion physics demands that a rapid- cycling high vacuum and high intensity Booster be built for the AGS at Brookhaven. For each mode of operation there are corresponding accelerator physics and design issues needing special attention. Problems pertinent to any single mode of operation have been encountered and solved before, but putting high intensity proton requirements and high vacuum heavy ion requirements into one machine demands careful design considerations and decisions. The lattice design and magnet characteristics will be briefly reviewed. Major design issues will be discussed and design choices explained. Finally, the construction status and schedule will be presented. 6 refs., 6 figs.

  7. Polarization preservation in the AGS

    SciTech Connect

    Ratner, L.G.

    1983-01-01

    The successful operation of a high energy polarized beam at the Argonne Zero Gradient Synchrotron (ZGS) with the concommitant development of depolarizing resonance correction techniques has led to the present project of commissioning such a beam at the Brookhaven Alternating Gradient Synchrotron (AGS). A description of the project was presented at the 1981 National Accelerator Conference. I would like to now present a more detailed description of how we plan to preserve the polarization during acceleration, and to present our game plan for tuning through some 50 resonances and reaching our goal of a 26 GeV polarized proton beam with greater than 60% polarization.

  8. Hypernuclear research at the AGS

    SciTech Connect

    Chrien, R.E.

    1984-01-01

    Although the field of hypernuclear research is over 30 years old, progress in exploring the detailed behavior of hypernuclei has been slow. This fact is due mainly to the technical problems of producing and studying these strange objects. Indeed each step in the improvement of technique has been accompanied by a breakthrough in our understanding of this fascinating subject. In this paper, the aim is to describe the evolution of hypernuclear research, stressing especially the contributions of the program based on the Brookhaven AGS. 23 references, 17 figures, 1 table.

  9. AgGaS2 infrared parametric oscillator

    NASA Technical Reports Server (NTRS)

    Fan, Y. X.; Eckardt, R. C.; Byer, R. L.; Route, R. K.; Feigelson, R. S.

    1984-01-01

    A report is presented of the first operation of an optical parametric oscillator in a chalcopyrite crystal, AgGaS2. Tuning from 1.4 to 4.0 microns is demonstrated for 1.06-micron Nd:yttrium aluminum garnet pumping. The potential tuning range extends to the 12-micron transparency limit of the crystal.

  10. A Tribute to My Ag Teacher: 2011 AAAE Distinguished Lecture

    ERIC Educational Resources Information Center

    Barrick, R. Kirby

    2012-01-01

    The author is a product of school-based agricultural education. In a way, this distinguished lecture could also be called a tribute to his high school ag teacher, John Stimpert. Mr. Stimpert was a true professional and an excellent teacher. He changed and he changed the program with the changing school and community. The more the author became…

  11. [Synthesis, spectral analysis and photocatalysis of Ag/K4Nb6,O17 heterojunction catalysts].

    PubMed

    Zhang, Feng-li; Cao, Yan-ning; Ying, Song; Chen, Rong; Zhang, Han-hui; Zheng, Qi

    2010-10-01

    K4Nb6O17 photocatalyst was successfully synthesized by low-temperature hydrothermal method with layer structure. Considering that a large number of hydroxyl (Nb-OH) and oxygen species (Nb==O, Nb--O-) exist on the surface of K4Nb6O17 synthesized by hydrothermal method, Ag(en)2+ precursors were employed to synthesize Ag/K4Nb6O17 heterostructure photo-catalysts with highly dispersed Ag. Photocatalytic performance evaluation results show that the photodegradation rate of MO for K4Nb6O17 was remarkably improved when a small amont of Ag was loaded. The best loading dose of Ag is 0.5 at%. Based on various characterizations results of XRD, FTIR, UV-Vis DRS, XRF and TEM, the photocatalytic mechanism of Ag/ K4Nb6O17 heterostructure catalysts was illuminated in detail and the conclusions were drawn as follows: (1) K4Nb6O17 nanocrystals serve as electron and hole sources for degradation of an organic dye; (2) Ag nanoparticles on the surface of K4Nb6O17 nanocrystals act as a sink for the electrons, promote interfacial charge-transfer kinetics between the metal and semiconductor, improve the separation of photogenerated electron-hole pairs, and thus enhance the photocatalytic activity of Ag/K4Nb6O17 photocatalyst. PMID:21137389

  12. Preparation and photocatalytic properties of AgI–SnO{sub 2} nano-composites

    SciTech Connect

    Wen, Biao; Wang, Xiao-Hui; Lu, Juan; Cao, Jia-Lei; Wang, Zuo-Shan

    2013-05-15

    Highlights: ► AgI–SnO{sub 2} nano-composites have been successfully synthesized. ► As-prepared AgI–SnO{sub 2} nano-composites own the excellent visible light photocatalytic activity. ► As-prepared AgI–SnO{sub 2} nano-composites own the excellent stability. - Abstract: AgI doped SnO{sub 2} nano-composites were prepared by the chemical coprecipitation method and were characterized by the X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. Results showed that main of the I{sup −} ions remained in the AgI lattice which is highly dispersed in the system. The photo-catalytic experiments performed under visible light irradiation using methylene blue as the pollutant revealed that not only the photo-catalytic activity but also the stability of SnO{sub 2} based photocatalyst could be improved by introduction of an appropriate amount of AgI, and the result was further supported by the UV–Vis diffuse reflection spectra and the electron spin-resonance spectra. Among all of the samples, AgI–SnO{sub 2} nano-composite with 2At% AgI exhibited the best catalytic efficiency and stability.

  13. Artificial silver sulfide Ag2S: Crystal structure and particle size in deposited powders

    NASA Astrophysics Data System (ADS)

    Sadovnikov, S. I.; Gusev, A. I.; Rempel, A. A.

    2015-07-01

    Chemical deposition from aqueous solutions of silver nitrate and sodium sulfide was used for synthesis of coarse-crystalline and nanocrystalline silver sulfide Ag2S powders. Sodium citrate was used as a complexing and stabilizing agent during synthesis. X-ray diffraction study shows that synthesized Ag2S powders have monoclinic (space group P21/c) α-Ag2S acanthite type crystal structure. The unit cell of artificial monoclinic silver sulfide Ag2S contains four Ag2S formula units and has the following parameters: a = 0.42264 nm, b = 0.69282 nm, c = 0.95317 nm and β = 125.554°. The size of silver sulfide particles in deposited powders was estimated by the X-ray diffraction and BET methods. By varying the ratio between the concentrations of reagents in the initial reaction mixture it is possible to deposit Ag2S nanoparticles with average size ranging in the interval from ∼1000 to ∼30 nm. Ag2S nanopowders have no deformation distortions of the crystal lattice practically because the microstrains ε in the synthesized powders do not exceed 0.15%. All the Ag2S powders with different particle size have an identical morphology.

  14. Polyvinyl alcohol electrospun nanofibers containing Ag nanoparticles used as sensors for the detection of biogenic amines

    NASA Astrophysics Data System (ADS)

    Marega, Carla; Maculan, Jenny; Rizzi, Gian Andrea; Saini, Roberta; Cavaliere, Emanuele; Gavioli, Luca; Cattelan, Mattia; Giallongo, Giuseppe; Marigo, Antonio; Granozzi, Gaetano

    2015-02-01

    Polyvinyl alcohol (PVA) electrospun nanofibers containing Ag nanoparticles (NPs) have been deposited on glass substrates. The aim of the work was to test the feasibility of this approach for the detection of biogenic amines by using either the Ag localized surface plasmon resonance quenching caused by the adsorption of amines on Ag NPs or by detecting the amines by surface enhanced Raman spectroscopy (SERS) after adsorption, from the gas phase, on the metal NPs. Two different approaches have been adopted. In the first one an ethanol/water solution containing AgNO3 was used directly in the electrospinning apparatus. In this way, a simple heat treatment of the nanofibers mat was sufficient to obtain the formation of Ag NPs inside the nanofibers and a partial cross-link of PVA. In the second procedure, the Ag NPs were deposited on PVA nanofibers by using the supersonic cluster beam deposition method, so that a beam of pure Ag NPs of controlled size was obtained. Exposure of the PVA mat to the beam produced a uniform distribution of the NPs on the nanofibers surface. Ethylendiamine vapors and volatile amines released from fresh shrimp meat were chemisorbed on the nanofibers mats. A SERS spectrum characterized by a diagnostic Ag-N stretching vibration at 230 cm-1 was obtained. The results allow to compare the two different approaches in the detection of ammines.

  15. The interaction of Ag with Bi-Pb-Sr-Ca-Cu-O superconductor

    NASA Astrophysics Data System (ADS)

    Dou, S. X.; Song, K. H.; Liu, H. K.; Sorrell, C. C.; Apperley, M. H.; Gouch, A. J.; Savvides, N.; Hensley, D. W.

    1989-10-01

    Bi-Pb-Sr-Ca-Cu-O superconductor compounds have been doped with up to 30 wt% Ag, sintered under variable oxygen partial pressure, and characterised in terms of the electrical and crystallographic behaviour. In contrast to previous reports that claim that Ag is the only metal non-poisoning to the superconductivity of Bi-Sr-Ca-Cu-O (BSCCO), it has been found that Ag additions to Bi-Pb-Sr-Ca-Cu-O depress Tc and Jc drastically and cause a large decrease in lattice parameters when samples are treated in air or pure oxygen. However, the lattice parameters, Tc and Jc remain unaffected by Ag additions when samples are heat treated in 0.030-0.067 atm oxygen. It is clear that the Ag reacts with and destabilises the superconducting phase when the samples are treated in air or pure oxygen while, when the samples are heat treated in low oxygen partial pressures, the Ag remains as an isolated inert metal phase that improves the weak links between the grains. This discovery clearly shows the feasibility of Ag-clad superconductor wire. For Ag-clad superconductor tape of 0.1 mm 2 cross sectional area heat treated in air, Jc was measured to be 54 A/cm 2. The same specimen sintered in 0.067 atm oxygen showed that the Jc increased to 2078 A/cm 2.

  16. Synthesis and properties of polyamide-Ag2S composite based solar energy absorber surfaces

    NASA Astrophysics Data System (ADS)

    Krylova, Valentina; Baltrusaitis, Jonas

    2013-10-01

    Silver sulfide (Ag2S), an efficient solar light absorber, was synthesized using a modified chemical bath deposition (CBD) method and polyamide 6 (PA) as a host material via solution phase reaction between AgNO3 and Na2S2O3. X-ray diffraction (XRD) data showed a single, α-Ag2S (acanthite), crystalline phase present while surface and bulk chemical analyses, performed using X-ray photoelectron (XPS) and energy dispersive (EDS) spectroscopies, showed 2:1 Ag:S ratio. Direct and indirect bandgaps obtained from Tauc plots were 1.3 and 2.3 eV, respectively. Detailed surface chemical analysis showed the presence of three distinct sulfur species with majority component due to the Ag2S chemical bonds and minority components due to two types of oxygen-sulfur bonds. Conductivity of the resulting composite material was shown to change with the reaction time thus enabling to obtain controlled conductivity composite material. The synthesis method presented is based on the low solubility of Ag2S and is potentially green, no by-product producing, as all Ag2S nucleated outside the host material can be recycled into the process via dissolving it in HNO3.

  17. Negligible shift of 3Ag- potential in longer-chain carotenoids as revealed by a single persistent peak of 3Ag-→1Ag- stimulated emission followed by 3Ag-←1Ag- transient-absorption

    NASA Astrophysics Data System (ADS)

    Li, Chunyong; Miki, Takeshi; Kakitani, Yoshinori; Koyama, Yasushi; Nagae, Hiroyoshi

    2007-12-01

    Upon excitation of lycopene, anhydrorhodovibrin or spirilloxanthin to the 1Bu+(0) state, stimulated emission followed by transient-absorption was observed as a single peak with the 3Ag-(0) energy that had been determined by measurement of resonance-Raman excitation profiles. This observation was explained in terms of negligible shift of the 3Ag- potential, in reference to the 1Ag- potential, where only the 3Ag-(υ)→1Ag-(υ) emission and the 3Ag-(υ)←1Ag-(υ) absorption become allowed during the vibrational relaxation of υ = 2 → 1 → 0, starting from the 3Ag-(2) level generated by diabatic internal conversion from the 1Bu+(0) level, in anhydrorhodovibrin, for example.

  18. Microwave-assisted hydrothermal synthesis of Ag2(W1 -xMox)O4 heterostructures: Nucleation of Ag, morphology, and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Silva, M. D. P.; Gonçalves, R. F.; Nogueira, I. C.; Longo, V. M.; Mondoni, L.; Moron, M. G.; Santana, Y. V.; Longo, E.

    2016-01-01

    Ag2W1 -xMoxO4 (x = 0.0 and 0.50) powders were synthesized by the co-precipitation (drop-by-drop) method and processed using a microwave-assisted hydrothermal method. We report the real-time in situ formation and growth of Ag filaments on the Ag2W1 -xMoxO4 crystals using an accelerated electron beam under high vacuum. Various techniques were used to evaluate the influence of the network-former substitution on the structural and optical properties, including photoluminescence (PL) emission, of these materials. X-ray diffraction results confirmed the phases obtained by the synthesis methods. Raman spectroscopy revealed significant changes in local order-disorder as a function of the network-former substitution. Field-emission scanning electron microscopy was used to determine the shape as well as dimensions of the Ag2W1 -xMoxO4 heterostructures. The PL spectra showed that the PL-emission intensities of Ag2W1 -xMoxO4 were greater than those of pure Ag2WO4, probably because of the increase of intermediary energy levels within the band gap of the Ag2W1 -xMoxO4 heterostructures, as evidenced by the decrease in the band-gap values measured by ultraviolet-visible spectroscopy.

  19. Redox-Robust Pentamethylferrocene Polymers and Supramolecular Polymers, and Controlled Self-Assembly of Pentamethylferricenium Polymer-Embedded Ag, AgI, and Au Nanoparticles.

    PubMed

    Gu, Haibin; Ciganda, Roberto; Castel, Patricia; Vax, Amélie; Gregurec, Danijela; Irigoyen, Joseba; Moya, Sergio; Salmon, Lionel; Zhao, Pengxiang; Ruiz, Jaime; Hernández, Ricardo; Astruc, Didier

    2015-12-01

    We report the first pentamethylferrocene (PMF) polymers and the redox chemistry of their robust polycationic pentamethylferricenium (PMFium) analogues. The PMF polymers were synthesized by ring-opening metathesis polymerization (ROMP) of a PMF-containing norbornene derivative by using the third-generation Grubbs ruthenium metathesis catalyst. Cyclic voltammetry studies allowed us to determine confidently the number of monomer units in the polymers through the Bard-Anson method. Stoichiometric oxidation by using ferricenium hexafluorophosphate quantitatively and instantaneously provided fully stable (even in aerobic solutions) blue d(5) Fe(III) metallopolymers. Alternatively, oxidation of the PMF-containing polymers was conducted by reactions with Ag(I) or Au(III) , to give PMFium polymer-embedded Ag and Au nanoparticles (NPs). In the presence of I2 , oxidation by using Ag(I) gave polymer-embedded Ag/AgI NPs and AgNPs at the surface of AgI NPs. Oxidation by using Au(III) also produced an Au(I) intermediate that was trapped and characterized. Engineered single-electron transfer reactions of these redox-robust nanomaterial precursors appear to be a new way to control their formation, size, and environment in a supramolecular way. PMID:26494439

  20. Synthesis, optical, photocatalytic, and electrochemical studies on Ag2S/ZnS and ZnS/Ag2S nanocomposites

    NASA Astrophysics Data System (ADS)

    Murugadoss, G.; Jayavel, R.; Rajesh Kumar, M.; Thangamuthu, R.

    2016-04-01

    Novel Ag2S/ZnS and ZnS/Ag2S nanocomposites were synthesized by a simple chemical method in air. Different morphologies were obtained for Ag2S/ZnS nanocomposites annealed at different temperatures. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption, and photoluminescence (PL) spectroscopy. Thermal stability and phase transition of the sample were studied by TG-DTA. Compared the PL spectra of Ag2S/ZnS at 640 nm, it was significantly red shifted from 640 to 670 nm for reversed ZnS/Ag2S nanocomposites. The band gaps of nanocomposites were lying between 2.25 and 2.55 eV range. It has been found that as-synthesized powder has excellent photocatalytic activity toward degradation of methylene blue (MB) under visible light and electrochemical activity, indicating that Ag2S/ZnS and ZnS/Ag2S nanocomposites can play an important role as semiconductor photocatalyst and energy storage applications.