Sample records for ag au zn

  1. Phototodynamic activity of zinc monocarboxyphenoxy phthalocyane (ZnMCPPc) conjugated to gold silver (AuAg) nanoparticles in melanoma cancer cells

    NASA Astrophysics Data System (ADS)

    Manoto, Sello L.; Oluwole, David O.; Malabi, Rudzani; Maphanga, Charles; Ombinda-Lemboumba, Saturnin; Nyokong, Tebello; Mthunzi-Kufa, Patience

    2017-02-01

    Photodynamic therapy (PDT) is a minimally invasive therapeutic modality for the treatment of neoplastic and non-neoplastic diseases. In PDT of cancer, irradiation with light of a specific wavelength leads to activation of a photosensitizer which results in generation of reactive oxygen species (ROS) which induces cell death. Many phthalocyanine photosensitizers are hydrophobic and insoluble in water, which limits their therapeutic efficiency. Consequently, advanced delivery systems and strategies are needed to improve the effectiveness of these photosensitizers. Nanoparticles have shown promising results in increasing aqueous solubility, bioavailability, stability and delivery of photosensitizers to their target. This study investigated the photodynamic activity of zinc monocarboxyphenoxy phthalocyanine (ZnMCPPc) conjugated to gold silver (AuAg) nanoparticles in melanoma cancer cells. The photodynamic activity of ZnMCPPc conjugated to AuAg nanoparticles were evaluated using cellular morphology, viability, proliferation and cytotoxicity. Untreated cells showed no changes in cellular morphology, proliferation and cytotoxicity. However, photoactivated ZnMCPPc conjugated to AuAg nanoparticles showed changes in cell morphology and a dose dependent decrease in cellular viability, proliferation and an increase in cell membrane damage. The ZnMCPPc conjugated to AuAg nanoparticles used in this study was highly effective in inducing cell death of melanoma cancer cells.

  2. Geochemistry of the Patricia Zn-Pb-Ag Deposit (paguanta, NE Chile)

    NASA Astrophysics Data System (ADS)

    Chinchilla Benavides, D.; Merinero Palomares, R.; Piña García, R.; Ortega Menor, L.; Lunar Hernández, R.

    2013-12-01

    The Patricia Zn-Pb-Ag ore deposit is located within the Paguanta mining project, situated at the northern end of the Andean Oligocene Porphyry Copper Belt of Chile. The sulfide mineralization occurs as W-E oriented veins hosted in volcanic rocks, mainly andesite (pyroclastic, ash and lavas), of Upper Cretaceous to Middle Tertiary age. The ore mineralogy (obtained by EMPA analyses) comprises in order of abundance, pyrite, sphalerite (5.5 - 10.89 wt % Fe, 9.8-19 % molar FeS and 0.52 wt % Cd), galena, arsenopyrite, chalcopyrite and Ag-bearing sulfosalts. The veins show a zoned and banded internal structure with pyrite at the edges and sphalerite in the center. The Ag occurs mostly as Ag-Cu-Sb sulfosalts, in order of abundance: series freibergite - argentotennantite -polybasite and stephanite. Other minor Ag phases such as argentite, pyrargirite and diaphorite were also identified. These Ag phases are typically associated with the base-metal sulfides. Freibergite occurs filling voids within sphalerite, chalcopyrite and at the contact between sphalerite and galena. Polybasite, stephanite, pyrargirite and argentite are mostly in close association with freibergite. In the case of diaphorite, it commonly occurs filling voids between galena crystals or as inclusions within galena. Some minor Ag-bearing sulfosalts are also identified between pyrite crystals. The alteration minerals are dominated by chlorite, illite and kaolinite. The gangue minerals consist of quartz and carbonates identified by XRD as kutnahorite. We obtained linear correlation statistically significant only for Ag, As Au, Cd, Cu, Pb, Sb and Zn and therefore we generated an enhanced scatter plot matrix of these elements. Bulk rock analyses (ICP/MS and XRF) of drill cores show that Ag is strongly and positively correlated with Pb and As, moderately with Cd, Sb, Au and Zn and weakly with Cu, while Au is moderately and positively correlated with Ag, As, Cd, Sb and Zn and weakly with Cu and Pb. These results

  3. The effect of copper and silver on the properties of Au-ZnO catalyst and its activity in glycerol oxidation

    NASA Astrophysics Data System (ADS)

    Kaskow, Iveta; Decyk, Piotr; Sobczak, Izabela

    2018-06-01

    The goal of this work was to use ZnO as a support for gold and copper (Au-Cu system) or gold and silver (Au-Ag system) and comparison of the effect of copper and silver on the properties of gold and its activity in glycerol oxidation with oxygen in the liquid phase. The samples prepared were fully characterized by XRD, TEM techniques and UV-vis, XPS, ESR spectroscopic methods. It was found that the introduction of copper and silver changed the electronic state of gold loaded on ZnO by the electron transfer between metals. Three different metallic gold species were identified in calcined catalysts: (Au°)δ- (Au-ZnO), (Au°)η- (AuCu-ZnO) and (Au°)γ- (AuAg-ZnO), where δ-,η-,γ- indicate a different partial negative charge on metallic gold and γ > δ > η. The results showed that (Au°)η- centers (metallic gold with the lowest negative charge) formed on AuCu-ZnO were the most active in glycerol oxidation. The increase in the negative charge on metallic gold loaded on AuAg-ZnO reduced the gold activity in silver containing sample. The glyceric acid adsorption and desorption rate influenced the selectivity of the catalysts.

  4. Specific composition of native silver from the Rogovik Au-Ag deposit, Northeastern Russia

    NASA Astrophysics Data System (ADS)

    Kravtsova, R. G.; Tauson, V. L.; Palyanova, G. A.; Makshakov, A. S.; Pavlova, L. A.

    2017-09-01

    The first data on native silver from the Rogovik Au-Ag deposit in northeastern Russia are presented. The deposit is situated in central part of the Okhotsk-Chukchi Volcanic Belt (OCVB) in the territory of the Omsukchan Trough, unique in its silver resources. Native silver in the studied ore makes up finely dispersed inclusions no larger than 50 μm in size, which are hosted in quartz; fills microfractures and interstices in association with küstelite, electrum, acanthite, silver sulfosalts and selenides, argyrodite, and pyrite. It has been shown that the chemical composition of native silver, along with its typomorphic features, is a stable indication of the various stages of deposit formation and types of mineralization: gold-silver (Au-Ag), silver-base metal (Ag-Pb), and gold-silver-base metal (Au-Ag-Pb). The specificity of native silver is expressed in the amount of trace elements and their concentrations. In Au-Ag ore, the following trace elements have been established in native silver (wt %): up to 2.72 S, up to 1.86 Au, up to 1.70 Hg, up to 1.75 Sb, and up to 1.01 Se. Native silver in Ag-Pb ore is characterized by the absence of Au, high Hg concentrations (up to 12.62 wt %), and an increase in Sb, Se, and S contents; the appearance of Te, Cu, Zn, and Fe is notable. All previously established trace elements—Hg, Au, Sb, Se, Te, Cu, Zn, Fe, and S—are contained in native silver of Au-Ag-Pb ore. In addition, Pb appears, and silver and gold amalgams are widespread, as well as up to 24.61 wt % Hg and 11.02 wt % Au. Comparison of trace element concentrations in native silver at the Rogovik deposit with the literature data, based on their solubility in solid silver, shows that the content of chalcogenides (S, Se, Te) exceeds saturated concentrations. Possible mechanisms by which elevated concentrations of these elements are achieved in native silver are discussed. It is suggested that the appearance of silver amalgams, which is unusual for Au-Ag mineralization

  5. Diffusion Mechanisms of Ag atom in ZnO crystal: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Masoumi, Saeed; Noori, Amirreza; Nadimi, Ebrahim

    2017-12-01

    Zinc oxide (ZnO) is currently under intensive investigation, as a result of its various applications in micro, nano and optoelectronics. However, a stable and reproducible p-type doping of ZnO is still a main challenging issue. Group IB elements such as Au, Cu and Ag, are promising candidates for p-type doping. Particularly, Ag atoms has been shown to be able to easily diffuse through the crystal structure of ZnO and lead to the p-type doping of the host crystal. However, the current understanding of Ag defects and their mobility in the ZnO crystal is still not fully explored. In this work, we report the results of our first-principles calculations based on density functional theory for Ag defects, particularly the interstitial and substitutional defects in ZnO crystal. Defect formation energies are calculated in different charged states as a function of Fermi energy in order to clarify the p-type behaviour of Ag-doped ZnO. We also investigate the diffusion behaviour and migration paths of Ag in ZnO crystal in the framework of density functional theory applying climbing image (CI) nudged elastic band method (NEB).

  6. Tunable surface plasmon resonance frequency of Au-Ag bimetallic asymmetric structure thin films in the UV and IR region

    NASA Astrophysics Data System (ADS)

    Hong, Ruijin; Ji, Jialin; Tao, Chunxian; Zhang, Dawei

    2016-10-01

    Au/ZnO/Ag sandwich structure films were fabricated by DC magnetron sputter at room temperature. The tunability of the surface plasmon resonance wavelength was realized by varying the thickness of ZnO thin film. The effects of ZnO layer on the optical properties of Au/ZnO/Au thin films were investigated by optical absorption and Raman scattering measurements. It has been found that both the surface plasmon resonance frequency and SERS can be controlled by adjusting the thickness of ZnO layer due to the coupling of metal and semiconductor.

  7. Isomorphism and solid solutions among Ag- and Au-selenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palyanova, Galina A.; Seryotkin, Yurii V.; Novosibirsk State University

    Au-Ag selenides were synthesized by heating stoichiometric mixtures of elementary substances of initial compositions Ag{sub 2−x}Au{sub x}Se with a step of x=0.25 (0≤x≤2) to 1050 °C and annealing at 500 °C. Scanning electron microscopy, optical microscopy, electron microprobe analysis and X-ray powder diffraction methods have been applied to study synthesized samples. Results of studies of synthesized products revealed the existence of three solid solutions with limited isomorphism Ag↔Au: naumannite Ag{sub 2}Se – Ag{sub 1.94}Au{sub 0.06}Se, fischesserite Ag{sub 3}AuSe{sub 2} - Ag{sub 3.2}Au{sub 0.8}Se{sub 2} and gold selenide AuSe - Au{sub 0.94}Ag{sub 0.06}Se. Solid solutions and AgAuSe phases were added tomore » the phase diagram of Ag-Au-Se system. Crystal-chemical interpretation of Ag-Au isomorphism in selenides was made on the basis of structural features of fischesserite, naumannite, and AuSe. - Highlights: • Au-Ag selenides were synthesized. • Limited Ag-Au isomorphism in the selenides is affected by structural features. • Some new phases were introduced to the phase diagram Ag-Au-Se.« less

  8. ZnO/CuO/M (M = Ag, Au) Hierarchical Nanostructure by Successive Photoreduction Process for Solar Hydrogen Generation.

    PubMed

    Kwon, Jinhyeong; Cho, Hyunmin; Jung, Jinwook; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Han, Seungyong; Ko, Seung Hwan

    2018-05-12

    To date, solar energy generation devices have been widely studied to meet a clean and sustainable energy source. Among them, water splitting photoelectrochemical cell is regarded as a promising energy generation way for splitting water molecules and generating hydrogen by sunlight. While many nanostructured metal oxides are considered as a candidate, most of them have an improper bandgap structure lowering energy transition efficiency. Herein, we introduce a novel wet-based, successive photoreduction process that can improve charge transfer efficiency by surface plasmon effect for a solar-driven water splitting device. The proposed process enables to fabricate ZnO/CuO/Ag or ZnO/CuO/Au hierarchical nanostructure, having an enhanced electrical, optical, photoelectrochemical property. The fabricated hierarchical nanostructures are demonstrated as a photocathode in the photoelectrochemical cell and characterized by using various analytic tools.

  9. ZnO/CuO/M (M = Ag, Au) Hierarchical Nanostructure by Successive Photoreduction Process for Solar Hydrogen Generation

    PubMed Central

    Kwon, Jinhyeong; Cho, Hyunmin; Jung, Jinwook; Lee, Habeom; Han, Seungyong

    2018-01-01

    To date, solar energy generation devices have been widely studied to meet a clean and sustainable energy source. Among them, water splitting photoelectrochemical cell is regarded as a promising energy generation way for splitting water molecules and generating hydrogen by sunlight. While many nanostructured metal oxides are considered as a candidate, most of them have an improper bandgap structure lowering energy transition efficiency. Herein, we introduce a novel wet-based, successive photoreduction process that can improve charge transfer efficiency by surface plasmon effect for a solar-driven water splitting device. The proposed process enables to fabricate ZnO/CuO/Ag or ZnO/CuO/Au hierarchical nanostructure, having an enhanced electrical, optical, photoelectrochemical property. The fabricated hierarchical nanostructures are demonstrated as a photocathode in the photoelectrochemical cell and characterized by using various analytic tools. PMID:29757225

  10. Isomorphism and solid solutions among Ag- and Au-selenides

    NASA Astrophysics Data System (ADS)

    Palyanova, Galina A.; Seryotkin, Yurii V.; Kokh, Konstantin A.; Bakakin, Vladimir V.

    2016-09-01

    Au-Ag selenides were synthesized by heating stoichiometric mixtures of elementary substances of initial compositions Ag2-xAuxSe with a step of х=0.25 (0≤х≤2) to 1050 °С and annealing at 500 °C. Scanning electron microscopy, optical microscopy, electron microprobe analysis and X-ray powder diffraction methods have been applied to study synthesized samples. Results of studies of synthesized products revealed the existence of three solid solutions with limited isomorphism Ag↔Au: naumannite Ag2Se - Ag1.94Au0.06Se, fischesserite Ag3AuSe2 - Ag3.2Au0.8Se2 and gold selenide AuSe - Au0.94Ag0.06Se. Solid solutions and AgAuSe phases were added to the phase diagram of Ag-Au-Se system. Crystal-chemical interpretation of Ag-Au isomorphism in selenides was made on the basis of structural features of fischesserite, naumannite, and AuSe.

  11. Regional setting and characteristics of the Neoproterozoic Wadi Hamama Zn-Cu-Ag-Au prospect: evidence for an intra-oceanic island arc-hosted volcanogenic hydrothermal system

    NASA Astrophysics Data System (ADS)

    Abd El-Rahman, Yasser; Surour, Adel A.; El-Manawi, Abdel Hamid W.; El-Dougdoug, Abdel-Monem A.; Omar, Sayed

    2015-04-01

    The Wadi Hamama area is a volcanogenic Zn-Cu-Au-Ag prospect. It is hosted by a Neoproterozoic bimodal-mafic sequence, which comprises basalt, dacite and rhyolite along with volcaniclastic rocks. The rocks have a low-K tholeiitic affinity and are enriched in large ion lithophile elements over high field strength elements, which indicated their formation in an intra-oceanic island arc tectonic setting. The area was intruded by a tonalite-trondhjemite body, which has an intra-oceanic island arc affinity and later by diorite, which has a cordilleran-margin geochemical affinity. These rock units were intruded by post-tectonic granite dykes, which have a within-plate geochemical signature. There is a quartz-carbonate horizon extending along the contact between the basalt and the volcaniclastic rocks, mainly banded and lapilli tuffs. This horizon is of exhalative origin and is underlain by a mushroom-shaped alteration zone extending from the horizon down to the massive basalt. The footwall alteration is characterized by a silica-rich core surrounded by a thick chlorite sheath. Both the quartz-carbonate horizon and the footwall-altered rocks enclose historical trenches and pits. Sulfide-rich core samples are enriched in Zn, relative to Cu, and in Ag, which indicates the low-temperature nature of the hydrothermal system. The prospect was affected by supergene processes, which led to the widespread occurrence of secondary copper minerals and gold enrichment relative to the leached base metals, especially Zn. The prospect formed through a limited rifting of an intra-oceanic island arc which resulted in the formation of a small-scale volcanogenic Zn-Cu-Ag-Au prospect.

  12. Plasmon-enhanced versatile optical nonlinearities in a Au-Ag-Au multi-segmental hybrid structure.

    PubMed

    Yao, Lin-Hua; Zhang, Jun-Pei; Dai, Hong-Wei; Wang, Ming-Shan; Zhang, Lu-Man; Wang, Xia; Han, Jun-Bo

    2018-06-27

    A Au-Ag-Au multi-segmental hybrid structure has been synthesized by using an electrodeposition method based on an anodic aluminum oxide (AAO) membrane. The third-order optical nonlinearities, second harmonic generation (SHG) and photoluminescence (PL) properties containing ultrafast supercontinuum generation and plasmon mediated thermal emission have been investigated. Significant optical enhancements have been obtained near surface plasmon resonance wavelength in all the abovementioned nonlinear processes. Comparative studies between the Au-Ag-Au multi-segmental hybrid structure and the corresponding single-component Au and Ag hybrid structures demonstrate that the Au-Ag-Au multi-segmental hybrid structure has much larger optical nonlinearities than its counterparts. These results demonstrate that the Au-Ag-Au hybrid structure is a promising candidate for applications in plasmonic devices and enhancement substrates.

  13. Biosynthesis and stabilization of Au and Au Ag alloy nanoparticles by fungus, Fusarium semitectum

    NASA Astrophysics Data System (ADS)

    Dasaratrao Sawle, Balaji; Salimath, Basavaraja; Deshpande, Raghunandan; Dhondojirao Bedre, Mahesh; Krishnamurthy Prabhakar, Belawadi; Venkataraman, Abbaraju

    2008-09-01

    Crystallized and spherical-shaped Au and Au-Ag alloy nanoparticles have been synthesized and stabilized using a fungus, F . semitectum in an aqueous system. Aqueous solutions of chloroaurate ions for Au and chloroaurate and Ag+ ions (1 : 1 ratio) for Au-Ag alloy were treated with an extracellular filtrate of F . semitectum biomass for the formation of Au nanoparticles (AuNP) and Au-Ag alloy nanoparticles (Au-AgNP). Analysis of the feasibility of the biosynthesized nanoparticles and core-shell alloy nanoparticles from fungal strains is particularly significant. The resultant colloidal suspensions are highly stable for many weeks. The obtained Au and Au-Ag alloy nanoparticles were characterized by the surface plasmon resonance (SPR) peaks using a UV-vis spectrophotometer, and the structure, morphology and size were determined by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Possible optoelectronics and medical applications of these nanoparticles are envisaged.

  14. The extraction characteristic of Au-Ag from Au concentrate by thiourea solution

    NASA Astrophysics Data System (ADS)

    Kim, Bongju; Cho, Kanghee; On, Hyunsung; Choi, Nagchoul; Park, Cheonyoung

    2013-04-01

    The cyanidation process has been used commercially for the past 100 years, there are ores that are not amenable to treatment by cyanide. Interest in alternative lixiviants, such as thiourea, halogens, thiosulfate and malononitrile, has been revived as a result of a major increase in gold price, which has stimulated new developments in extraction technology, combined with environmental concern. The Au extraction process using the thiourea solvent has many advantages over the cyanidation process, including higher leaching rates, faster extraction time and less than toxicity. The purpose of this study was investigated to the extraction characteristic of Au-Ag from two different Au concentrate (sulfuric acid washing and roasting) under various experiment conditions (thiourea concentration, pH of solvent, temperature) by thiourea solvent. The result of extraction experiment showed that the Au-Ag extraction was a fast extraction process, reaching equilibrium (maximum extraction rate) within 30 min. The Au-Ag extraction rate was higher in the roasted concentrate than in the sulfuric acid washing. The higher the Au-Ag extraction rate (Au - 70.87%, Ag - 98.12%) from roasted concentrate was found when the more concentration of thiourea increased, pH decreased and extraction temperature increased. This study informs extraction method basic knowledge when thiourea was a possibility to eco-/economic resources of Au-Ag utilization studies including the hydrometallurgy.

  15. 3D morphology of Au and Au@Ag nanobipyramids

    NASA Astrophysics Data System (ADS)

    Burgin, Julien; Florea, Ileana; Majimel, Jérôme; Dobri, Adam; Ersen, Ovidiu; Tréguer-Delapierre, Mona

    2012-02-01

    The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance.The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11454b

  16. A comparative theoretical study of the catalytic activities of Au2(-) and AuAg(-) dimers for CO oxidation.

    PubMed

    Liu, Peng; Song, Ke; Zhang, Dongju; Liu, Chengbu

    2012-05-01

    The detailed mechanisms of catalytic CO oxidation over Au(2)(-) and AuAg(-) dimers, which represent the simplest models for monometal Au and bimetallic Au-Ag nanoparticles, have been studied by performing density functional theory calculations. It is found that both Au(2)(-) and AuAg(-) dimers catalyze the reaction according to the similar mono-center Eley-Rideal mechanism. The catalytic reaction is of the multi-channel and multi-step characteristic, which can proceed along four possible pathways via two or three elementary steps. In AuAg(-), the Au site is more active than the Ag site, and the calculated energy barrier values for the rate-determining step of the Au-site catalytic reaction are remarkably smaller than those for both the Ag-site catalytic reaction and the Au(2)(-) catalytic reaction. The better catalytic activity of bimetallic AuAg(-) dimer is attributed to the synergistic effect between Au and Ag atom. The present results provide valuable information for understanding the higher catalytic activity of Au-Ag nanoparticles and nanoalloys for low-temperature CO oxidation than either pure metallic catalyst.

  17. Sandwich-like TiO2@ZnO-based noble metal (Ag, Au, Pt, or Pd) for better photo-oxidation performance: Synergistic effect between noble metal and metal oxide phases

    NASA Astrophysics Data System (ADS)

    Li, Shunxing; Cai, Jiabai; Wu, Xueqing; Zheng, Fengying

    2018-06-01

    The performance of different noble metals (NMs) with controllable size (5 nm) as co-catalyst on the photocatalytic oxidation of TiO2@ZnO hollow spheres was tested with benzyl alcohol in the presence of water under ambient conditions. A new type of solar-light-driven TiO2@NMs@ZnO nanocomposite was fabricated by using a template (surface functionalized polystyrene balls), hydrothermal reaction, and calcination. Under simulated sunlight irradiation, the photo-oxidation rate of benzyl alcohol was in the following of TiO2@Ag@ZnO > TiO2@Au@ZnO > TiO2@Pt@ZnO > TiO2@Pd@ZnO > TiO2@ZnO. This result was due to the combination of TiO2 and ZnO, as well as the sandwiched Ag NPs as electron trap site, which can store and shuttle photo-generated electrons, and then enhance photo-generation of active radicals. Electron paramagnetic resonance (EPR) spectroscopy, as well as photo-luminescence (PL), photo-reduction of Cr(VI) and electrochemical measurements were taken to verify this conclusion. Taking into account the multi-functional combination of precious metals and semiconductor materials, this work could provide new insights for the design of high-performance photocatalysts.

  18. Classification of Broken Hill-Type Pb-Zn-Ag Deposits: A Refinement

    NASA Astrophysics Data System (ADS)

    Spry, P. G.; Teale, G. S.; Steadman, J. A.

    2009-05-01

    Broken Hill Hill-type Pb-Zn-Ag (BHT) deposits constitute some of the largest ore deposits in the world. The Broken Hill deposit is the largest accumulation of Pb, Zn, and Ag on Earth and the Cannington deposit is currently the largest silver deposit. Characteristic features of BHT deposits include: 1. high Pb+Zn+Ag values with Pb > Zn; 2. Metamorphism to amphibolite-granulite facies; 3. Paleo-to Mesoprotoerozoic clastic metasedimentary host rocks; 4. Sulfides that are spatially associated with bimodal (felsic and mafic) volcanic rocks, and stratabound gahnite- and garnet-bearing rocks and iron formations, 5. Stacked orebodies with characteristic Pb:Zn:Ag ratios and skarn-like Fe-Mn-Ca-F gangue assemblages, and the presence of Cu, Au, Bi, As, and Sb; and 6. Sulfur-poor assemblages. Broken Hill (Australia) has a prominent footwall feeder zone whereas other BHT deposits have less obvious alteration zones (footwall garnet spotting and stratabound alteration haloes). Deposits previously regarded in the literature as BHT deposits are Broken Hill, Cannington, Oonagalabie, Menninie Dam, and Pegmont (Australia), Broken Hill, Swartberg, Big Syncline, and Gamsberg (South Africa), Zinkgruvan (Sweden), Sullivan, Cottonbelt, and Foster River (Canada), and Boquira (Brazil). Of these deposits, only the Broken Hill (Australia, South Africa), Pinnacles, Cannington, Pegmont, and Swartberg deposits are BHT deposits. Another BHT deposit includes the Green Parrot deposit, Jervois Ranges (Northern Territory). The Foster River, Gamsberg, and Sullivan deposits are considered to be "SEDEX deposits with BHT affinities", and the Oonagalabie, Green Mountain (Colorado), and Zinkgruvan are "VMS deposits with BHT affinities". In the Broken Hill area (Australia), Corruga-type Pb-Zn-Ag deposits occur in calc-silicate rocks and possess some BHT characteristics; the Big Syncline, Cottonbelt, Menninie Dam, and Saxberget deposits are Corruga-type deposits. SEDEX deposits with BHT affinities, VMS

  19. Guazuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: Photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens.

    PubMed

    Karthika, Viswanathan; Arumugam, Ayyakannu; Gopinath, Kasi; Kaleeswarran, Periyannan; Govindarajan, Marimuthu; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M; Benelli, Giovanni

    2017-02-01

    In the present study, we focused on a quick and green method to fabricate Ag, Au and Ag/Au alloy nanoparticles (NPs) using the bark extract of Guazuma ulmifolia L. Green synthesized metal NPs were characterized using different techniques, including UV-Vis spectroscopy, FT-IR, XRD, AFM and HR-TEM analyses. The production of Ag, Au and Ag/Au alloy NPs was observed monitoring color change from colorless to brown, followed by pink and dark brown, as confirmed by UV-Vis spectroscopy characteristic peaks at 436, 522 and 510nm, respectively. TEM shed light on the spherical shapes of NPs with size ranges of 10-15, 20-25 and 10-20nm. Biosynthesized NPs showed good catalytic activity reducing two organic dyes, 4-nitrophenol (4-NP) and Congo red (CR). UV-vis spectroscopy, fluorescence, circular dichroism spectroscopy and viscosity analyses were used to investigate the NP binding with calf thymus DNA. The binding constant of NPs with DNA calculated in UV-Vis absorption studies were 1.18×10 4 , 1.83×10 4 and 2.91×10 4 M -1 , respectively, indicating that NPs were able to bind DNA with variable binding affinity: Ag/Au alloy NPs>Ag NPs>Au NPs. Ag/Au alloy NPs also showed binding activity to bovine serum albumin (BSA) over the other NPs. Ag and Ag/Au alloy NPs exhibited good antimicrobial activity on 14 species of microbial pathogens. In addition, the cytotoxic effects of Ag/Au alloy NPs were studied on human cervical cancer cells (HeLa) using MTT assay. Overall, our work showed the promising potential of bark-synthesized Ag and Ag/Au alloy NPs as cheap sources to develop novel and safer photocatalytic, antimicrobial and anticancer agents. Copyright © 2017. Published by Elsevier B.V.

  20. Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation.

    PubMed

    Liu, Jun-Hong; Wang, Ai-Qin; Chi, Yu-Shan; Lin, Hong-Ping; Mou, Chung-Yuan

    2005-01-13

    Au-Ag alloy nanoparticles supported on mesoporous aluminosilicate have been prepared by one-pot synthesis using hexadecyltrimethylammonium bromide (CTAB) both as a stabilizing agent for nanoparticles and as a template for the formation of mesoporous structure. The formation of Au-Ag alloy nanoparticles was confirmed by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, and transmission electron microscopy (TEM). Although the Au-Ag alloy nanoparticles have a larger particle size than the monometallic gold particles, they exhibited exceptionally high activity in catalysis for low-temperature CO oxidation. Even at a low temperature of 250 K, the reaction rate can reach 8.7 x 10(-6) mol.g(cat.)(-1).s(-1) at an Au/Ag molar ratio of 3/1. While neither monometallic Au@MCM-41 nor Ag@MCM-41 shows activity at this temperature, the Au-Ag alloy system shows a strongly synergistic effect in high catalytic activity. In this alloy system, the size effect is no longer a critical factor, whereas Ag is believed to play a key role in the activation of oxygen.

  1. Nanoporous Au structures by dealloying Au/Ag thermal- or laser-dewetted bilayers on surfaces

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Torrisi, V.; Grillo, R.; Cacciato, G.; Zimbone, M.; Piccitto, G.; Grimaldi, M. G.

    2017-03-01

    Nanoporous Au attracts great technological interest and it is a promising candidate for optical and electrochemical sensors. In addition to nanoporous Au leafs and films, recently, interest was focused on nanoporous Au micro- and nano-structures on surfaces. In this work we report on the study of the characteristics of nanoporous Au structures produced on surfaces. We developed the following procedures to fabricate the nanoporous Au structures: we deposited thin Au/Ag bilayers on SiO2 or FTO (fluorine-doped tin oxide) substrates with thickness xAu and xAg of the Au and Ag layers; we induced the alloying and dewetting processes of the bilayers by furnace annealing processes of the bilayers deposited on SiO2 and by laser irradiations of the bilayers deposited on FTO; the alloying and dewetting processes result in the formation of AuxAgy alloy sub-micron particles being x and y tunable by xAu and xAg. These particles are dealloyed in HNO3 solution to remove the Ag atoms. We obtain, so, nanoporous sub-micron Au particles on the substrates. Analyzing the characteristics of these particles we find that: a) the size and shape of the particles depend on the nature of the dewetting process (solid-state dewetting on SiO2, molten-state dewetting on FTO); b) the porosity fraction of the particles depends on how the alloying process is reached: about 32% of porosity for the particles fabricated by the furnace annealing at 900 °C, about 45% of porosity for the particles fabricated by the laser irradiation at 0.5 J/cm2, in both cases independently on the Ag concentration in the alloy; c) After the dealloying process the mean volume of the Au particles shrinks of about 39%; d) After an annealing at 400 °C the nanoporous Au particles reprise their initial volume while the porosity fraction is reduced. Arguments to justify these behaviors are presented.

  2. Plasmonic enhanced optical characteristics of Ag nanostructured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sarkar, Arijit; Gogurla, Narendar; Shivakiran Bhaktha, B. N.; Ray, Samit K.

    2016-04-01

    We have demonstrated the enhanced photoluminescence and photoconducting characteristics of plasmonic Ag-ZnO films due to the light scattering effect from Ag nanoislands. Ag nanoislands have been prepared on ITO-coated glass substrates by thermal evaporation followed by annealing. Plasmonic Ag-ZnO films have been fabricated by depositing ZnO over Ag nanoislands by sol-gel process. The band-edge emission of ZnO is enhanced for 170 nm sized Ag nanoislands in ZnO as compared to pure ZnO. The defect emission is also found to be quenched simultaneously for plasmonic Ag-ZnO films. The enhancement and quenching of photoluminescence at different wavelengths for Ag-ZnO films can be well understood from the localized surface plasmon resonance of Ag nanoislands. The Ag-ZnO M-S-M photoconductor device showed a tenfold increment in photocurrent and faster photoresponse as compared to the control ZnO device. The enhancement in photoresponse of the device is due to the increased photon absorption in ZnO films via scattering of the incident illumination.

  3. Ag-ZnO nanostructure for ANTA explosive molecule detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaik, Ummar Pasha; Sangani, L. D. Varma; Gaur, Anshu

    2016-05-23

    Ag/ZnO nanostructure for surface enhanced Raman scattering application in the detection of ANTA explosive molecule is demonstrated. A highly rough ZnO microstructure was achieved by rapid thermal annealing of metallic Zn film. Different thickness Ag nanostructures are decorated over these ZnO microstructures by ion beam sputtering technique. Surface enhanced Raman spectroscopic studies carried out over Ag/ZnO substrates have shown three orders higher enhancement compared to bare Ag nanostructure deposited on the same substrate. The reasons behind such huge enhancement are discussed based on the morphology of the sample.

  4. Electrical conduction in PVDF/ZnO-Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Singh, Utpal; Jha, Anal K.; Chandra, K. P.; Kolte, Jayant; Kulkarni, A. R.; Prasad, K.

    2018-05-01

    A hybrid combination of Ag and ZnO nanoparticles were utilized to fabricate PVDF/ZnO(90/10)-Ag nanocomposites (with Ag as filler: 0.5, 1 and 1.5%) utilizing melt-mixing technique. X-ray diffraction study confirmed the formations of nanocomposites. Electric modulus analysis indicated the dielectric relaxation in this system to be of non- Debye type. Correlated barrier hopping model successfully explained the charge conduction in PVDF/ZnO-Ag nanocomposites and ac conductivity data followed Jonscher's power law.

  5. Structure and optical properties of silica-supported Ag-Au nanoparticles.

    PubMed

    Barreca, Davide; Gasparotto, Alberto; Maragno, Cinzia; Tondello, Eugenio; Gialanella, Stefano

    2007-07-01

    Bimetallic Ag-Au nanoparticles are synthesized by sequential deposition of Au and Ag on amorphous silica by Radio Frequency (RF)-sputtering under mild conditions. Specimens are thoroughly characterized by a multi-technique approach, aimed at investigating the system properties as a function of the Ag/Au content, as well as the evolution induced by ex-situ annealing under inert (N2) or reducing (4% H2/N2) atmospheres. The obtained results demonstrate the possibility to obtain Ag-Au alloyed nanoparticles with controllable size, shape, structure, and dispersion under mild conditions, so that the optical properties can be finely tuned as a function of the synthesis and thermal treatment conditions.

  6. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin.

    PubMed

    Bagheri, Nafiseh; Khataee, Alireza; Habibi, Biuck; Hassanzadeh, Javad

    2018-03-01

    Here, Ag nanoparticle/flake-like Zn-based MOF nanocomposite (AgNPs@ZnMOF) with great peroxidase-like activity was applied as an efficient support for molecularly imprinted polymer (MIP) and successfully used for selective determination of patulin. AgNPs@ZnMOF was simply synthesized by creating Ag nanoparticles (Ag NPs) inside the nano-pores of flake-like (Zn)MOF. The high surface area of MOF remarkably improved the catalytic activity of Ag NPs which was assessed by fluorometric, colorimetric and electrochemical techniques. Furthermore, it was observed that patulin could strangely reduce the catalytic activity of AgNPs@ZnMOF, probably due to its electron capturing features. This outcome was the motivation to design an assay for patulin detection. In order to make a selective interaction with patulin molecules, MIP layer was created on the surface of AgNPs@ZnMOF by co-polymerization reaction of 3-aminopropyl triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) monomers wherein patulin was applied as template agent. Combination between the selective identifying feature of MIP and outstanding peroxidase-like activity of novel AgNPs@ZnMOF nanocomposite as well as the sensitive fluorescence detection system was led to the design of a reliable probe for patulin. The prepared MIP-capped AgNPs@ZnMOF catalyzed the H 2 O 2 -terephthalic acid reaction which produced a high florescent product. In the presence of patulin, the fluorescence intensity was decreased proportional to its concentration in the range of 0.1-10µmolL -1 with a detection limit of 0.06µmolL -1 . The proposed method was able to selectively measure patulin in a complex media without significant interfering effects from analogue compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Corrosion resistance evaluation of Pd-free Ag-Au-Pt-Cu dental alloys.

    PubMed

    Fujita, Takeshi; Shiraishi, Takanobu; Takuma, Yasuko; Hisatsune, Kunihiro

    2011-01-01

    The corrosion resistance of nine experimental Pd-free Ag-Au-Pt-Cu dental alloys in a 0.9% NaCl solution was investigated using cyclic voltammetry (CV), optical microscopy, and scanning electron microscopy (SEM). CV measurements revealed that the breakdown potential (E(bd)) and zero current potential (E(zc)) increased with increasing Au/(Au+Ag) atomic ratio. Thus, the Au/(Au+Ag) atomic ratio, but not the Cu content, influenced the corrosion resistance of Ag-Au-Pt-Cu alloys. After the forward scan of CV, both optical and scanning electron microscope images showed that in all the experimental alloys, the matrix phase was corroded but not the second phase. From corrosion resistance viewpoint, the Ag-Au-Pt-Cu alloys seemed to be suitable for clinical application.

  8. Highly reliable Ag/Zn/Ag ohmic reflector for high-power GaN-based vertical light-emitting diode.

    PubMed

    Yum, Woong-Sun; Jeon, Joon-Woo; Sung, Jun-Suk; Seong, Tae-Yeon

    2012-08-13

    We report the improved performance of InGaN/GaN-based light-emitting diodes (LEDs) through Ag reflectors combined with a Zn middle layer. It is shown that the Zn middle layer (5 nm thick) suppresses the agglomeration of Ag reflectors by forming ZnO and dissolving into Ag. The Ag/Zn/Ag contacts show a specific contact resistance of 6.2 × 10(-5) Ωcm(2) and reflectance of ~83% at a wavelength of 440 nm when annealed at 500 °C, which are much better than those of Ag only contacts. Blue LEDs fabricated with the 500 °C-annealed Ag/Zn/Ag reflectors show a forward voltage of 2.98 V at an injection current of 20 mA, which is lower than that (3.02 V) of LEDs with the annealed Ag only contacts. LEDs with the 500 °C-annealed Ag/Zn/Ag contacts exhibit 34% higher output power (at 20 mA) than LEDs with the annealed Ag only contacts.

  9. Bioaccumulation of Zn and Ag Nanoparticles in the Earthworms (Eisenia fetida)

    NASA Astrophysics Data System (ADS)

    Ha, Lee Seung; Sung-Dae, Kim; Yi, Yang Song; Byeong-Gweon, Lee

    2014-05-01

    Many studies are carried out to evaluate environmental effects of engineered nanoparticles (ENPs). Most of the previous studies primarily focused on the effects of nanoparticles into the aquatic environment and human. Model studies predict that ENPs released into environment would transferred primarily to the soil of the terrestrial environment. Despite this prediction, biogeochemical behavior of ENPs in soil environment as well as bioavailability of ENPs to soil-dwelling organisms such as earthworm, springtail, isopod and nematodes are poorly understood. The main goal of this study was to compare the bioaccumulation factor (BAFs) and subcellular partitioning of nanoparticles in the soil-dwelling earthworm (Eisenia fetida) from ENP (ZnO and Ag nanoparticles) or ionic metal (Zn2+, Ag+) contaminated soil. And the sequential extraction was also used to determine the mobility of metals in soil which could be used as to predict bioavailability and compare that with bioaccumulation factor. The radiotracer method was employed to trace the transfer of ENPs and ionic metal among different environmental media and animals. Radiolabeled 65ZnO, 110mAgNPs coated with PVP or citrate were synthesized in the laboratory and their chemical and biological behavior was compared to ionic 65Zn and 110mAg. The BAFs of Zn and Ag in the earthworms were determined after animals exposed to the contaminated soils. After the 7 days of elimination phase, subcellular partitioning of metals were also obtained. BAF for ZnO(0.06) was 31 times lower than that for Zn ion (1.86), suggesting that ZnO was less bioavailable than its ionic form from contaminated soil. On the other hands, BAFs for AgNPs coated with PVP (0.12) or with citrate (0.11) were comparable to those for Ag ion (0.17), indicating that Ag from contaminated soil was bioavailable in a similar rate regardless of chemical forms. The subcellular partitioning results showed that bioaccumulated Zn from Zn ion and ZnO contaminated soil were

  10. Exploration of new methods for growing Ag films on Au(111) studied by ARPES

    NASA Astrophysics Data System (ADS)

    Luh, Dah-An; Cheng, Cheng-Maw; Tsai, Chi-Ting; Tsuei, Ku-Ding

    2007-03-01

    Ag/Au(111) thin films have attracted lots of interests as a model system in the past decades. Ag and Au are lattice-matched, and thin Ag films of very high quality are expected to grow on Au(111). However, the intermixing between Ag and Au at elevated temperatures has been a major concern during the growth of Ag films on the Au(111) surface. In many previous studies, Ag was deposited on the Au(111) surface at near room temperature to avoid the intermixing problem. Investigating the results from these studies, the Ag films on Au(111) grown by this recipe still show clear thickness variation. This thickness variation may result from Ag-Au intermixing or film roughening during the process of room temperature deposition. We are revisiting this classical model system with new growth methods. Our goal is to find growth methods that will stop the intermixing between Ag and Au and reduce the variation in the thickness of Ag films. Preliminary results from our study will be presented in this poster.

  11. Enhanced catalyst activity by decorating of Au on Ag@Cu2O nanoshell

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Liu, Maomao; Zhao, Yue; Kou, Qiangwei; Wang, Yaxin; Liu, Yang; Zhang, Yongjun; Yang, Jinghai; Jung, Young Mee

    2018-03-01

    We successfully synthesized Au-decorated Ag@Cu2O heterostructures via a simple galvanic replacement method. As the Au precursor concentration increased, the density of the Au nanoparticles (NPs) on the Ag@Cu2O surface increased, which changed the catalytic activity of the Ag@Cu2O-Au structure. The combination of Au, Ag, and Cu2O exhibited excellent catalytic properties, which can further effect on the catalyst activity of the Ag@Cu2O-Au structure. In addition, the proposed Ag@Cu2O-Au nanocomposite was used to transform the organic, toxic pollutant, 4-nitrophenol (4-NP), into its nontoxic and medicinally important amino derivative via a catalytic reduction to optimize the material performance. The proposed Au-decorated Ag@Cu2O exhibited excellent catalytic activity, and the catalytic reduction time greatly decreased (5 min). Thus, three novel properties of Ag@Cu2O-Au, i.e., charge redistribution and transfer, adsorption, and catalytic reduction of organic pollutants, were ascertained for water remediation. The proposed catalytic properties have potential applications for photocatalysis and localized surface plasmon resonance (LSPR)- and peroxidase-like catalysis.

  12. Hollow Au-Ag Nanoparticles Labeled Immunochromatography Strip for Highly Sensitive Detection of Clenbuterol

    NASA Astrophysics Data System (ADS)

    Wang, Jingyun; Zhang, Lei; Huang, Youju; Dandapat, Anirban; Dai, Liwei; Zhang, Ganggang; Lu, Xuefei; Zhang, Jiawei; Lai, Weihua; Chen, Tao

    2017-01-01

    The probe materials play a significant role in improving the detection efficiency and sensitivity of lateral-flow immunochromatographic test strip (ICTS). Unlike conventional ICTS assay usually uses single-component, solid gold nanoparticles as labeled probes, in our present study, a bimetallic, hollow Au-Ag nanoparticles (NPs) labeled ICTS was successfully developed for the detection of clenbuterol (CLE). The hollow Au-Ag NPs with different Au/Ag mole ratio and tunable size were synthesized by varying the volume ratio of [HAuCl4]:[Ag NPs] via the galvanic replacement reaction. The surface of hollow Ag-Au NPs was functionalized with 11-mercaptoundecanoic acid (MUA) for further covalently bonded with anti-CLE monoclonal antibody. Overall size of the Au-Ag NPs, size of the holes within individual NPs and also Au/Ag mole ratio have been systematically optimized to amplify both the visual inspection signals and the quantitative data. The sensitivity of optimized hollow Au-Ag NPs probes has been achieved even as low as 2 ppb in a short time (within 15 min), which is superior over the detection performance of conventional test strip using Au NPs. The optimized hollow Au-Ag NPs labeled test strip can be used as an ideal candidate for the rapid screening of CLE in food samples.

  13. Room-temperature synthesis of carnation-like ZnO@AgI hierarchical nanostructures assembled by AgI nanoparticles-decorated ZnO nanosheets with enhanced visible light photocatalytic activity.

    PubMed

    Huang, He; Huang, Ni; Wang, Zhonghua; Xia, Guangqiang; Chen, Ming; He, Lingling; Tong, Zhifang; Ren, Chunguang

    2017-09-15

    The preparation of highly efficient visible-light-driven photocatalyst for the photodegradation of organic pollutants has received much attention due to the increasing global energy crises and environmental pollution. In this study, carnation-like ZnO@AgI hierarchical nanostructures assembled by AgI nanoparticles-decorated ZnO nanosheets were successfully prepared via a room-temperature route. The as-prepared ZnO@AgI nanostructures exhibited highly efficient photocatalytic activity under visible light irradiation (λ>400nm). Under optimized AgI content, the ZnO@AgI-5% sample showed high photocatalytic activity, which was 25.7 and 1.5 times the activity of pure ZnO and pure AgI, respectively. Mechanism studies indicated that superoxide anion radicals (O 2 - ) was the main reactive species in the photocatalytic process. The high photocatalytic activity of the ZnO@AgI nanostructures is attributed to the highly active AgI nanoparticles and the heterojunction between AgI nanoparticles and ZnO nanosheets. The heterojunction structure reduced the recombination of the photogenerated electron-hole pairs in the conduction band (CB) and valence band (VB) of AgI nanoparticles by transferring the electrons from the CB of AgI nanoparticles to the CB of ZnO nanosheets. The composite of ZnO and AgI not only improves photocatalytic efficiency but also reduces photocatalyst cost, which is beneficial for practical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Toward hybrid Au nanorods @ M (Au, Ag, Pd and Pt) core-shell heterostructures for ultrasensitive SERS probes

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobin; Gao, Guanhui; Kang, Shendong; Lei, Yanhua; Pan, Zhengyin; Shibayama, Tamaki; Cai, Lintao

    2017-06-01

    Being able to precisely control the morphologies of noble metallic nanostructures is of essential significance for promoting the surface-enhanced Raman scattering (SERS) effect. Herein, we demonstrate an overgrowth strategy for synthesizing Au @ M (M = Au, Ag, Pd, Pt) core-shell heterogeneous nanocrystals with an orientated structural evolution and highly improved properties by using Au nanorods as seeds. With the same reaction condition system applied, we obtain four well-designed heterostructures with diverse shapes, including Au concave nanocuboids (Au CNs), Au @ Ag crystalizing face central cube nanopeanuts, Au @ Pd porous nanocuboids and Au @ Pt nanotrepangs. Subsequently, the exact overgrowth mechanism of the above heterostructural building blocks is further analysed via the systematic optimiziation of a series of fabrications. Remarkably, the well-defined Au CNs and Au @ Ag nanopeanuts both exhibit highly promoted SERS activity. We expect to be able to supply a facile strategy for the fabrication of multimetallic heterogeneous nanostructures, exploring the high SERS effect and catalytic activities.

  15. Effect of ablation time on femtosecond laser synthesis of Au- Ag colloidal nanoalloys

    NASA Astrophysics Data System (ADS)

    Hidayah, A. N.; Triyono, D.; Herbani, Y.; Isnaeni; Suliyanti, M. M.

    2018-03-01

    Au-Ag nanoalloys have been synthesized by laser irradiation technique. First, Au and Ag nanoparticles were prepared from Au and Ag pure metal (99.9%) ablated using an 800 nm femtosecond laser in distilled water. Using the same laser, Au and Ag nanoparticle with 1:1 ratio were subsequently mixed and irradiated with various irradiation time, i.e. 0, 5, 20, and 35 minutes. We varied the ablation time for each metal nanoparticles, i.e. 25 minutes and 1 hour to see its effect on the production of nanoalloys in the subsequent irradiation. Au-Ag nanoalloys were characterized and analyzed using transmission electron microscope and UV-Vis spectrophotometry. The result shows that Au-Ag nanoalloys were already formed in 20 minutes irradiation, either for the sample ablated for 25 minutes or 1 hour. The result of TEM shows that the size of Au-Ag nanoalloys prepared from 1 hour ablation was around 15.03 nm.

  16. Au crystal growth on natural occurring Au-Ag aggregate elucidated by means of precession electron diffraction (PED)

    NASA Astrophysics Data System (ADS)

    Roqué Rosell, Josep; Portillo Serra, Joaquim; Aiglsperger, Thomas; Plana-Ruiz, Sergi; Trifonov, Trifon; Proenza, Joaquín A.

    2018-02-01

    In the present work, a lamella from an Au-Ag aggregate found in Ni-laterites has been examined using Transmission Electron Microscope to produce a series of Precision Electron Diffraction (PED) patterns. The analysis of the structural data obtained, coupled with Energy Dispersive X-ray microanalysis, made it possible to determine the orientation of twinned native gold growing on the Au-Ag aggregate. The native Au crystal domains are found to have grown at the outermost part of the aggregate whereas the inner core of the aggregate is an Au-Ag alloy (∼4 wt% Ag). The submicron structural study of the natural occurring Au aggregate points to the mobilization and precipitation of gold in laterites and provides insights on Au aggregates development at supergene conditions. This manuscript demonstrates the great potential of electron crystallographic analysis, and in particular, PED to study submicron structural features of micron sized mineral aggregates by using the example of a gold grain found in a Ni-laterite deposits.

  17. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.

    PubMed

    Erwin, William R; Coppola, Andrew; Zarick, Holly F; Arora, Poorva; Miller, Kevin J; Bardhan, Rizia

    2014-11-07

    In this work, we employed wet chemically synthesized bimetallic Au-Ag core-shell nanostructures (Au-AgNSs) to enhance the photocurrent density of mesoporous TiO2 for water splitting and we compared the results with monometallic Au nanoparticles (AuNPs). While Au-AgNSs incorporated photoanodes give rise to 14× enhancement in incident photon to charge carrier efficiency, AuNPs embedded photoanodes result in 6× enhancement. By varying nanoparticle concentration in the photoanodes, we observed ∼245× less Au-AgNSs are required relative to AuNPs to generate similar photocurrent enhancement for solar fuel conversion. Power-dependent measurements of Au-AgNSs and AuNPs showed a first order dependence to incident light intensity, relative to half-order dependence for TiO2 only photoanodes. This indicated that plasmonic nanostructures enhance charge carriers formed on the surface of the TiO2 which effectively participate in photochemical reactions. Our experiments and simulations suggest the enhanced near-field, far-field, and multipolar resonances of Au-AgNSs facilitating broadband absorption of solar radiation collectively gives rise to their superior performance in water splitting.

  18. Au/ZnO nanoarchitectures with Au as both supporter and antenna of visible-light

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Chen, Wei; Hua, Yuxiang; Liu, Xiaoheng

    2017-01-01

    In this paper, we fabricate Au/ZnO nanostructure with smaller ZnO nanoparticles loaded onto bigger gold nanoparticles via combining seed-mediated method and sol-gel method. The obtained Au/ZnO nanocomposites exhibit excellent properties in photocatalysis process like methyl orange (MO) degradation and oxidative conversion of methanol into formaldehyde under visible light irradiation. The enhanced properties were ascribed to the surface plasmon resonance (SPR) effect of Au nanoparticles, which could contribute to the separation of photo-excited electrons and holes and facilitate the process of absorbing visible light. This paper contributes to the emergence of multi-functional nanocomposites with possible applications in visible-light driven photocatalysts and makes the Au/ZnO photocatalyst an exceptional choice for practical applications such as environmental purification of organic pollutants in aqueous solution and the synthesis of fine chemicals and intermediates.

  19. Photocatalytic reduction of CO2 by employing ZnO/Ag1-xCux/CdS and related heterostructures

    NASA Astrophysics Data System (ADS)

    Lingampalli, S. R.; Ayyub, Mohd Monis; Magesh, Ganesan; Rao, C. N. R.

    2018-01-01

    In view of the great importance of finding ways to reduce CO2 by using solar energy, we have examined the advantage of employing heterostructures containing bimetallic alloys for the purpose. This choice is based on the knowledge that metals such as Pt reduce CO2, although the activity may not be considerable. Our studies on the reduction of CO2 by ZnO/M/CdS (M = Ag, Au, Ag1-xAux, Ag1-xCux) heterostructures in liquid phase have shown good results specially in the case of ZnO/Ag1-xCux/CdS, reaching a CO production activity of 327.4 μmol h-1 g-1. The heterostructures also reduce CO2 in the gas-phase although the production activity is not high. Some of the heterostructures exhibit reduction of CO2 even in the absence of a sacrificial reagent.

  20. Picosecond laser fabricated Ag, Au and Ag-Au nanoparticles for detecting ammonium perchlorate using a portable Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Byram, Chandu; Moram, Sree Sathya Bharathi; Soma, Venugopal Rao

    2018-04-01

    In this paper, we present the results from fabrication studies of Ag, Au, and Ag-Au alloy nanoparticles (NPs) using picosecond laser ablation technique in the presence of liquid media. The alloy formation in the NPs was confirmed from UV-Visible measurements. The shape and crystallinity of NPs were investigated by using high resolution transmission electron microscopy (HRTEM), selected area diffraction pattern (SAED) and energy dispersive spectroscopy (EDS). The SERS effect of fabricated NPs was tested with methylene blue and an explosive molecule (ammonium perchlorate) using a portable Raman spectrometer and achieved EFs of ˜106.

  1. Plasmon Mapping in Au@Ag Nanocube Assemblies

    PubMed Central

    2014-01-01

    Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag core–shell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles. PMID:25067991

  2. Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x = 1 - 5, 147) and monometallic Au and Ag low-energy surfaces*

    NASA Astrophysics Data System (ADS)

    Gould, Anna L.; Catlow, C. Richard A.; Logsdail, Andrew J.

    2018-02-01

    Density functional theory calculations have been performed to investigate the use of CO as a probe molecule for the determination of the structure and composition of Au, Ag and AuAg nanoparticles. For very small nanoclusters (x = 1 - 5), the CO vibrational frequencies can be directly correlated to CO adsorption strength, whereas larger 147-atom nanoparticles show a strong energetic preference for CO adsorption at a vertex position but the highest wavenumbers are for the bridge positions. We also studied CO adsorption on Au and Ag (100) and (111) surfaces, for a 1 monolayer coverage, which proves to be energetically favourable on atop only and bridge positions for Au (100) and atop for Ag (100); vibrational frequencies of the CO molecules red-shift to lower wavenumbers as a result of increased metal coordination. We conclude that CO vibrational frequencies cannot be solely relied upon in order to obtain accurate compositional analysis, but we do propose that elemental rearrangement in the core@shell nanoclusters, from Ag@Au (or Au@Ag) to an alloy, would result in a shift in the CO vibrational frequencies that indicate changes in the surface composition. Contribution to the Topical Issue "Shaping Nanocatalysts", edited by Francesca Baletto, Roy L. Johnston, Jochen Blumberger and Alex Shluger.Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80280-7

  3. Study of Ag induced bimetallic (Au-Ag) nanowires on silicon (5 5 12) surfaces: Experiment and theoretical aspects

    NASA Astrophysics Data System (ADS)

    Bhukta, Anjan; Bagarti, Trilochan; Guha, Puspendu; Ravulapalli, Sathyavathi; Satpati, Biswarup; Rakshit, Bipul; Maiti, Paramita; Parlapalli, Venkata Satyam

    2017-10-01

    The reconstructed vicinal (high index) silicon surfaces, such as, Si (5 5 12) composes row-like structures that can be used as templates for growing aligned nanowires. By using a sub-monolayers of Ag, prior to Au deposition on reconstructed Si (5 512) surface, intermixing of Au and Ag, enhancement of aspect ratio of bimetallic Au-Ag nanowires with tunable morphology is reported. This is attributed to a combined effect of pre-grown Ag strips as nucleation centers for incoming Au ad-atoms and anisotropic Au-Ag intermixing. To achieve optimum conditions for the growth of larger aspect ratio Au-Ag nanostructures, the growth kinetics have been studied by varying growth and annealing temperatures. At ≈400 °C, the Ag diffused into silicon substrate and the inter-diffusion found to inhibit the formation of Au-Ag bimetallic nanostructures. Controlled experiments under ultra-high vacuum condition in a molecular beam epitaxy system and in-situ scanning tunneling microscopy measurements along with ex-situ scanning transmission and secondary electron microscopy measurements have been carried out to understand the bimetallic nanostructure growth. Kinetic Monte Carlo (KMC) simulations based on kinematics of ad-atoms on an anisotropic template with a solid on solid model in which the relative ratios of binding energies (that are obtained from the Density Functional Theory) have been used and the KMC simulations results agree with the experimental observations. Advantage of having bimetallic structures as effective substrates for Surface enhanced Raman spectroscopy application is demonstrated by detecting Rhodamine 6 G (R6G) molecule at the concentration of 10-7M.

  4. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2012-11-01

    The partitioning of 15 major to trace metals between monosulfide solid solution (MSS), sulfide liquid (SL) and mafic silicate melt (SM) was determined in piston-cylinder experiments performed at 1175-1300 °C, 1.5-3.0 GPa and oxygen fugacities ranging from 3.1 log units below to 1.0 log units above the quartz-fayalite-magnetite fO2 buffer, which conditions are representative of partial melting in the upper mantle in different tectonic settings. The silicate melt was produced by partial melting of a natural, amphibole-rich mantle source rock, resulting in hydrous (˜5 wt% H2O) basanitic melts similar to low-degree partial melts of metasomatized mantle, whereas the major element composition of the starting sulfide (˜52 wt% Fe; 39 wt% S; 7 wt% Ni; 2 wt% Cu) was similar to the average composition of sulfides in this environment. SL/SM partition coefficients are high (≥100) for Au, Ni, Cu, Ag, Bi, intermediate (1-100) for Co, Pb, Sn, Sb (±As, Mo), and low (≤1) for the remaining elements. MSS/SM partition coefficients are generally lower than SL/SM partition coefficients and are high (≥100) for Ni, Cu, Au, intermediate (1-100) for Co, Ag (±Bi, Mo), and low (≤1) for the remaining elements. Most sulfide-silicate melt partition coefficients vary as a function of fO2, with Mo, Bi, As (±W) varying by a factor >10 over the investigated fO2 range, Sb, Ag, Sn (±V) varying by a factor of 3-10, and Pb, Cu, Ni, Co, Au, Zn, Mn varying by a factor of 3-10. The partitioning data were used to model the behavior of Cu, Au, Ag, and Bi during partial melting of upper mantle and during fractional crystallization of primitive MORB and arc magmas. Sulfide phase relationships and comparison of the modeling results with reported Cu, Au, Ag, and Bi concentrations from MORB and arc magmas suggest that: (i) MSS is the dominant sulfide in the source region of arc magmas, and thus that Au/Cu ratios in the silicate melt and residual sulfides may decrease with increasing degree of

  5. Structure and properties of nanostructured ZnO arrays and ZnO/Ag nanocomposites fabricated by pulsed electrodeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopach, V. R.; Klepikova, K. S.; Klochko, N. P., E-mail: klochko-np@mail.ru

    We investigate the structure, surface morphology, and optical properties of nanostructured ZnO arrays fabricated by pulsed electrodeposition, Ag nanoparticles precipitated from colloidal solutions, and a ZnO/Ag nanocomposite based on them. The electronic and electrical parameters of the ZnO arrays and ZnO/Ag nanocomposites are analyzed by studying the I–V and C–V characteristics. Optimal modes for fabricating the ZnO/Ag heterostructures with the high stability and sensitivity to ultraviolet radiation as promising materials for use in photodetectors, gas sensors, and photocatalysts are determined.

  6. Etching-dependent fluorescence quenching of Ag-dielectric-Au three-layered nanoshells: The effect of inner Ag nanosphere

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Xu, Zai-jie; Weng, Guo-jun; Zhao, Jing; Li, Jian-jun; Zhao, Jun-wu

    2018-07-01

    In this report, Ag-dielectric-Au three-layered nanoshells with controlled inner core size were synthesized. The fluorescence emission of the rhodamine 6G (R6G) could be quenched by the three-layered nanoshells distinctly. What's more, the fluorescence quenching efficiency could be further improved by tuning the etching of inner Ag nanosphere. The maximum fluorescence quenching efficiency is obtained when the separate layer just appears between the inner Ag core and the outer Au shell. Whereas the fluorescence quenching efficiency is weakened when no gaps take place around the inner Ag core or the separate layer is too thick and greater than 13 nm. The fluorescence quenching properties of the Ag-dielectric-Au three-layered nanoshells with different initial sizes of the Ag nanoparticles are also studied. The maximum fluorescence quenching efficiency is obtained when the three-layered nanoshells are synthesized based on the Ag nanoparticles with 60 nm, which is better than others two sizes (42 and 79 nm). Thus we believe that the size of initial Ag nanospheres also greatly affects the optimized fluorescence quenching efficiency. These results about fluorescence quenching properties of Ag-dielectric-Au three-layered nanoshells present a potential for design and fabrication of fluorescence nanosensors based on tuning the geometry of the inner core and the separate layer.

  7. Direct electrochemical oxidation of S-captopril using gold electrodes modified with graphene-AuAg nanocomposites

    PubMed Central

    Pogacean, Florina; Biris, Alexandru R; Coros, Maria; Lazar, Mihaela Diana; Watanabe, Fumiya; Kannarpady, Ganesh K; Al Said, Said A Farha; Biris, Alexandru S; Pruneanu, Stela

    2014-01-01

    In this paper, we present a novel approach for the electrochemical detection of S-captopril based on graphene AuAg nanostructures used to modify an Au electrode. Multi-layer graphene (Gr) sheets decorated with embedded bimetallic AuAg nanoparticles were successfully synthesized catalytically with methane as the carbon source. The two catalytic systems contained 1.0 wt% Ag and 1.0 wt% Au, while the second had a larger concentration of metals (1.5 wt% Ag and 1.5 wt% Au) and was used for the synthesis of the Gr-AuAg-1 and Gr-AuAg-1.5 multicomponent samples. High-resolution transmission electron microscopy analysis indicated the presence of graphene flakes that had regular shapes (square or rectangular) and dimensions in the tens to hundreds of nanometers. We found that the size of the embedded AuAg nanoparticles varied between 5 and 100 nm, with the majority being smaller than 20 nm. Advanced scanning transmission electron microscopy studies indicated a bimetallic characteristic of the metallic clusters. The resulting Gr-AuAg-1 and Gr-AuAg-1.5 samples were used to modify the surface of commonly used Au substrates and subsequently employed for the direct electrochemical oxidation of S-captopril. By comparing the differential pulse voltammograms recorded with the two modified electrodes at various concentrations of captopril, the peak current was determined to be well-defined, even at relatively low concentration (10−5 M), for the Au/Gr-AuAg-1.5 electrode. In contrast, the signals recorded with the Au/Gr-AuAg-1 electrode were poorly defined within a 5×10−6 to 5×10−3 M concentration range, and many of them overlapped with the background. Such composite materials could find significant applications in nanotechnology, sensing, or nanomedicine. PMID:24596464

  8. Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa

    NASA Astrophysics Data System (ADS)

    Li, Junli; Sang, Hyunkyu; Guo, Huiyuan; Popko, James T.; He, Lili; White, Jason C.; Parkash Dhankher, Om; Jung, Geunhwa; Xing, Baoshan

    2017-04-01

    Fungicides have extensively been used to effectively combat fungal diseases on a range of plant species, but resistance to multiple active ingredients has developed in pathogens such as Sclerotinia homoeocarpa, the causal agent of dollar spot on cool-season turfgrasses. Recently, ZnO and Ag nanoparticles (NPs) have received increased attention due to their antimicrobial activities. In this study, the NPs’ toxicity and mechanisms of action were investigated as alternative antifungal agents against S. homoeocarpa isolates that varied in their resistance to demethylation inhibitor (DMI) fungicides. S. homoeocarpa isolates were treated with ZnO NPs and ZnCl2 (25-400 μg ml-1) and Ag NPs and AgNO3 (5-100 μg ml-1) to test antifungal activity of the NPs and ions. The mycelial growth of S. homoeocarpa isolates regardless of their DMI sensitivity was significantly inhibited on ZnO NPs (≥200 μg ml-1), Ag NPs (≥25 μg ml-1), Zn2+ ions (≥200 μg ml-1), and Ag+ ions (≥10 μg ml-1) amended media. Expression of stress response genes, glutathione S-transferase (Shgst1) and superoxide dismutase 2 (ShSOD2), was significantly induced in the isolates by exposure to the NPs and ions. In addition, a significant increase in the nucleic acid contents of fungal hyphae, which may be due to stress response, was observed upon treatment with Ag NPs using Raman spectroscopy. We further observed that a zinc transporter (Shzrt1) might play an important role in accumulating ZnO and Ag NPs into the cells of S. homoeocarpa due to overexpression of Shzrt1 significantly induced by ZnO or Ag NPs within 3 h of exposure. Yeast mutants complemented with Shzrt1 became more sensitive to ZnO and Ag NPs as well as Zn2+ and Ag+ ions than the control strain and resulted in increased Zn or Ag content after exposure. This is the first report of involvement of the zinc transporter in the accumulation of Zn and Ag from NP exposure in filamentous plant pathogenic fungi. Understanding the molecular

  9. Continuous-flow biosynthesis of Au-Ag bimetallic nanoparticles in a microreactor

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Huang, Jiale; Sun, Daohua; Odoom-Wubah, Tareque; Li, Jun; Li, Qingbiao

    2014-11-01

    Herein, a microfluidic biosynthesis of Au-Ag bimetallic nanoparticle (NP) in a tubular microreactor, based on simultaneous reduction of HAuCl4 and AgNO3 precursors in the presence of Cacumen Platycladi ( C. Platycladi) extract was studied. The flow velocity profile was numerically analyzed with computational fluid dynamics. Au-Ag bimetallic NPs with Ag/Au molar ratios of 1:1 and 2:1 were synthesized, respectively. The alloy formation, morphology, structure, and size were investigated by UV-Vis spectra analysis, transmission electron microscopy (TEM), high resolution TEM, scanning TEM, and energy-dispersive X-ray analysis. In addition, the effects of volumetric flow rate, reaction temperature, and concentration of C. Platycladi extract and NaOH on the properties of the as-synthesized Au-Ag bimetallic NPs were investigated. The results indicated that these factors could not only affect the molar ratios of the two elements in the Au-Ag bimetallic NPs, but also affect particle size which can be adjusted from 3.3 to 5.6 nm. The process was very rapid and green, since a microreactor was employed with no additional synthetic reagents used. This work is anticipated to provide useful parameters for continuous-flow biosynthesis of bimetallic NPs in microreactors.

  10. Preparation and characterization of double layer thin films ZnO/ZnO:Ag for methylene blue photodegradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibowo, Singgih, E-mail: singgih@st.fisika.undip.ac.id; Sutanto, Heri, E-mail: herisutanto@undip.ac.id

    2016-02-08

    Double layer (DL) thin films of zinc oxide and silver-doped zinc oxide (ZnO/ZnO:Ag) were deposited on glass substrate by sol-gel spray coating technique. The prepared thin films were subjected for optical and photocatalytic studies. UV-visible transmission spectra shows that the subtitution of Ag in ZnO leads to band gap reduction. The influence of Ag doping on the photocatalytic activity of ZnO for the degradation of methylene blue dye was studied under solar radiation. The light absorption over an extended visible region by Ag ion doping in ZnO film contributed equally to improve the photocatalytic activity up to 98.29%.

  11. Third-order optical nonlinearity studies of bilayer Au/Ag metallic films

    NASA Astrophysics Data System (ADS)

    Mezher, M. H.; Chong, W. Y.; Zakaria, R.

    2016-05-01

    This paper presents nonlinear optical studies of bilayer metallic films of gold (Au) and silver (Ag) on glass substrate prepared using electron beam evaporation. The preparation of Au and Ag nanoparticles (NPs) on the substrate involved the use of electron beam deposition, then thermal annealing at 600 °C and 270 °C, respectively, to produce a randomly distributed layer of Au and a layer of Ag NPs. Observation of field-effect scanning electron microscope images indicated the size of the NPs. Details of the optical properties related to peak absorption of surface plasmon resonance of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear absorption and nonlinear refraction of the fabricated NP layers. The third-order nonlinear refractive index coefficients for Au and Ag are (-9.34 and  -1.61)  ×  10-11 cm2 W-1 given lower n 2, in comparison with bilayer (Au and Ag) NPs at  -1.24  ×  10-10 cm2 W-1. The results show bilayer NPs have higher refractive index coefficients thus enhance the nonlinearity effects.

  12. Bactericidal impact of Ag, ZnO and mixed AgZnO colloidal nanoparticles on H37Rv Mycobacterium tuberculosis phagocytized by THP-1 cell lines.

    PubMed

    Jafari, Alireza; Mosavari, Nader; Movahedzadeh, Farahnaz; Nodooshan, Saeedeh Jafari; Safarkar, Roya; Moro, Rossella; Kamalzadeh, Morteza; Majidpour, Ali; Boustanshenas, Mina; Mosavi, Tahereh

    2017-09-01

    The purpose of this research project was to infection of human macrophages (THP-1) cell lines by H 37 Rv strain of Mycobacterium tuberculosis (H 37 RvMTB) and find out the ratio/dilution of mixture silver (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) whose ability to eliminate phagocytized bacteria compared to rifampicin. The colloidal Ag NPs and ZnO NPs were synthesized and their characteristics were evaluated. The THP-1 cell lines were infected with different concentration of H 37 RvMTB. Next, the infected cells were treated with different ratios/dilutions of Ag NPs, ZnO NPs and rifampicin. The THP-1 were lysed and were cultured in Lowenstein-Jensen agar medium, for eight weeks. The TEM and AFM images of NPs and H 37 RvMTB were supplied. It is observed that Ag NPs, 2 Ag :8 ZnO and 8 Ag :2 ZnO did not have any anti-tubercular effects on phagocytized H 37 RvMTB. Conversely, ZnO NPs somehow eliminated 18.7 × 10 4  CFU ml -1 of H 37 RvMTB in concentration of ∼ 0.468 ppm. To compare with 40 ppm of rifampicin, ∼ 0.663 ppm of 5 Ag :5 ZnO had the ability to kill of H 37 RvMTB, too. Based on previous research, ZnO NPs had strong anti-tubercular impact against H 37 RvMTB to in-vitro condition, but it was toxic in concentration of ∼ 0.468 ppm to both of THP-1 and normal lung (MRC-5) cell lines. It also seems that 5 Ag :5 ZnO is justified because in concentration of ∼ 0.663 ppm of 5 Ag :5 ZnO , phagocytized H 37 RvMTB into the THP-1 had died without any toxicity effects against THP-1 and also MRC-5 cell lines. It is obvious that the mixture of colloidal silver and zinc oxide NPs with ratio of 5 Ag :5 ZnO would be trustworthy options as anti-tubercular nano-drugs in future researches. Copyright © 2017. Published by Elsevier Ltd.

  13. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Shu, Zhan; Zhang, Yi; Yang, Qian; Yang, Huaming

    2017-02-01

    Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs) and silver (Ag) into zinc oxide (ZnO) nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs) and Ag nanoparticles (Ag NPs) with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.

  14. Fabrication of Porous Ag/TiO2/Au Coatings with Excellent Multipactor Suppression

    PubMed Central

    Wu, Duoduo; Ma, Jianzhong; Bao, Yan; Cui, Wanzhao; Hu, Tiancun; Yang, Jing; Bai, Yuanrui

    2017-01-01

    Porous Ag/TiO2/Au coatings with excellent multipactor suppression were prepared by fabrication of porous Ag surface through two-step wet chemical etching, synthesis of TiO2 coatings by electroless-plating-like solution deposition and deposition of Au coatings via electroless plating. Porous structure of Ag surface, TiO2 coatings on porous Ag surface and Au coatings on porous Ag/TiO2 surface were verified by field-emission scanning electron microscopy, the composition and crystal type of TiO2 coatings was characterized by X-ray photoelectron spectroscopy and X-ray diffraction. Secondary electron yield (SEY) measurement was used to monitor the SEY coefficient of the porous Ag coatings and Ag/TiO2/Au coatings. The as-obtained porous Ag coatings were proved exhibiting low SEY below 1.2, and the process was highly reproducible. In addition, the porous Ag/TiO2/Au coatings showed excellent multipactor suppression with the SEY 1.23 and good environmental stability. It is worth mentioning that the whole preparation process is simple and feasible, which would provide a promising application in RF devices. PMID:28281546

  15. Templated Atom-Precise Galvanic Synthesis and Structure Elucidation of a [Ag24Au(SR)18](-) Nanocluster.

    PubMed

    Bootharaju, Megalamane S; Joshi, Chakra P; Parida, Manas R; Mohammed, Omar F; Bakr, Osman M

    2016-01-18

    Synthesis of atom-precise alloy nanoclusters with uniform composition is challenging when the alloying atoms are similar in size (for example, Ag and Au). A galvanic exchange strategy has been devised to produce a compositionally uniform [Ag24Au(SR)18](-) cluster (SR: thiolate) using a pure [Ag25(SR)18](-) cluster as a template. Conversely, the direct synthesis of Ag24Au cluster leads to a mixture of [Ag(25-x)Au(x)(SR)18](-), x=1-8. Mass spectrometry and crystallography of [Ag24Au(SR)18](-) reveal the presence of the Au heteroatom at the Ag25 center, forming Ag24Au. The successful exchange of the central Ag of Ag25 with Au causes perturbations in the Ag25 crystal structure, which are reflected in the absorption, luminescence, and ambient stability of the particle. These properties are compared with those of Ag25 and Ag24Pd clusters with same ligand and structural framework, providing new insights into the modulation of cluster properties with dopants at the single-atom level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation.

    PubMed

    Wang, Ai-Qin; Chang, Chun-Ming; Mou, Chung-Yuan

    2005-10-13

    We report a novel Au-Ag alloy catalyst supported on mesoporous aluminosilicate Au-Ag@MCM prepared by a one-pot synthesis procedure, which is very active for low-temperature CO oxidation. The activity was highly dependent on the hydrogen pretreatment conditions. Reduction at 550-650 degrees C led to high activity at room temperature, whereas as-synthesized or calcined samples did not show any activity at the same temperature. Using various characterization techniques, such as XRD, UV-vis, XPS, and EXAFS, we elucidated the structure and surface composition change during calcination and the reduction process. The XRD patterns show that particle size increased only during the calcination process on those Ag-containing samples. XPS and EXAFS data demonstrate that calcination led to complete phase segregation of the Au-Ag alloy and the catalyst surface is greatly enriched with AgBr after the calcination process. However, subsequent reduction treatment removed Br- completely and the Au-Ag alloy was formed again. The surface composition of the reduced Au-Ag@MCM (nominal Au/Ag = 3/1) was more enriched with Ag, with the surface Au/Ag ratio being 0.75. ESR spectra show that superoxides are formed on the surface of the catalyst and its intensity change correlates well with the trend of catalytic activity. A DFT calculation shows that CO and O2 coadsorption on neighboring sites on the Au-Ag alloy was stronger than that on either Au or Ag. The strong synergism in the coadsorption of CO and O2 on the Au-Ag nanoparticle can thus explain the observed synergetic effect in catalysis.

  17. Ag nanoparticle-functionalized ZnO micro-flowers for enhanced photodegradation of herbicide derivatives

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wu, Shumin; Li, Xianliang; Meng, Hao; Zhang, Xia; Wang, Zhuopeng; Han, Yide

    2017-07-01

    We demonstrate a general strategy to design step by step the Ag nanoparticle-functionalized ZnO micro-flowers (Ag/ZnO composites). XRD patterns confirmed the presence of Ag nanoparticles in ZnO/Ag composites, and the SEM and TEM results further demonstrated that Ag nanoparticles were highly dispersed and anchored onto the surface of each ZnO nanosheets. By using the ZnO/Ag composites, the photodegradation of two herbicide derivatives, metamitron and metribuzin, were studied. The enhanced photocatalytic performance was ascribed to the fact that the Ag deposition could reduce the recombination probability of electron-hole pairs, and the photocatalytic mechanism were also investigated in this paper.

  18. ZnO:Zn/6LiF scintillator-A low afterglow alternative to ZnS:Ag/6LiF for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Sykora, G. Jeff; Schooneveld, Erik M.; Rhodes, Nigel J.

    2018-03-01

    Current ZnS:Ag/6LiF based scintillation detectors are often count rate limited by the long lifetime afterglow in the scintillator. Despite this drawback, new instruments at neutron scattering facilities, like ISIS in the UK, would still like to use ZnS:Ag/6LiF detectors due to their low gamma sensitivity, high light output, simplicity of detector design and relatively inexpensive production. One particular advantage of ZnS:Ag/6LiF detectors is their ability to provide strong pulse shape discrimination between neutrons and gammas. Despite the advantages of these detectors, it is becoming clear that new and upgraded instruments will be limited by the count rate capability of ZnS:Ag/6LiF, so an alternative scintillator technology with equivalent simplicity is being sought. ZnO:Zn/6LiF is investigated here as a low afterglow alternative to ZnS:Ag/6LiF. Basic scintillation properties of ZnO:Zn are studied and are discussed. Pulse shape discrimination between neutrons and gammas is explored and taken advantage of through simple single photon counting methods. A further step toward a realistic detector for neutron scattering is also taken by fiber coupling the ZnO:Zn/6LiF to a PMT. In an initial study of this fiber coupled configuration, 60Co gamma sensitivity of ∼ 7 × 10-6 is shown and improvements in count rate capability of at least a factor of 6 over ZnS:Ag/6LiF based neutron detectors are demonstrated.

  19. Photoelectron spectroscopic and computational study of (M-CO2)- anions, M = Cu, Ag, Au

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxing; Lim, Eunhak; Kim, Seong K.; Bowen, Kit H.

    2015-11-01

    In a combined photoelectron spectroscopic and computational study of (M-CO2)-, M = Au, Ag, Cu, anionic complexes, we show that (Au-CO2)- forms both the chemisorbed and physisorbed isomers, AuCO 2- and Au-(CO2), respectively; that (Ag-CO2)- forms only the physisorbed isomer, Ag-(CO2); and that (Cu-CO2)- forms only the chemisorbed isomer, CuCO 2- . The two chemisorbed complexes, AuCO 2- and CuCO 2- , are covalently bound, formate-like anions, in which their CO2 moieties are significantly reduced. These two species are examples of electron-induced CO2 activation. The two physisorbed complexes, Au-(CO2) and Ag-(CO2), are electrostatically and thus weakly bound.

  20. Synthesis and enhanced humidity detection response of nanoscale Au-particle-decorated ZnS spheres

    PubMed Central

    2014-01-01

    We successfully prepared Au-nanoparticle-decorated ZnS (ZnS-Au) spheres by sputtering Au ultrathin films on surfaces of hydrothermally synthesized ZnS spheres and subsequently postannealed the samples in a high-vacuum atmosphere. The Au nanoparticles were distributed on ZnS surfaces without substantial aggregation. The Au nanoparticle diameter range was 5 to 10 nm. Structural information showed that the surface of the annealed ZnS-Au spheres became more irregular and rough. A humidity sensor constructed using the Au-nanoparticle-decorated ZnS spheres demonstrated a substantially improved response to the cyclic change in humidity from 11% relative humidity (RH) to 33% to 95% RH at room temperature. The improved response was associated with the enhanced efficiency of water molecule adsorption onto the surfaces of the ZnS because of the surface modification of the ZnS spheres through noble-metal nanoparticle decoration. PMID:25520595

  1. Interface state density distribution in Au/n-ZnO nanorods Schottky diodes

    NASA Astrophysics Data System (ADS)

    Faraz, S. M.; Willander, M.; Wahab, Q.

    2012-04-01

    Interface states density (NSS) distribution is extracted in Au/ ZnO Schottky diodes. Nanorods of ZnO are grown on silver (Ag) using aqueous chemical growth (ACG) technique. Well aligned hexagonal-shaped vertical nanorods of a mean diameter of 300 - 450 nm and 1.3 -1.9 μm high are revealed in SEM. Gold (Au) Schottky contacts of thickness 60 nm and 1.5mm diameter were evaporated. For electrical characterization of Schottky diodes current-voltage (I-V) and capacitance-Voltage (C-V) measurements are performed. The diodes exhibited a typical non-linear rectifying behavior with a barrier height of 0.62eV and ideality factor of 4.3. Possible reasons for low barrier height and high ideality factor have been addressed. Series resistance (RS) has been calculated from forward I-V characteristics using Chueng's function. The density of interfacial states (NSS) below the conduction band (EC-ESS) is extracted using I-V and C-V measured values. A decrease in interface states density (NSS) is observed from 3.74 × 1011 - 7.98 × 1010 eV-1 cm-2 from 0.30eV - 0.61eV below the conduction band edge.

  2. Surface tension estimation of high temperature melts of the binary alloys Ag-Au

    NASA Astrophysics Data System (ADS)

    Dogan, Ali; Arslan, Hüseyin

    2017-11-01

    Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.

  3. Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H2S detection.

    PubMed

    Zhao, Yuan; Yang, Yaxin; Cui, Linyan; Zheng, Fangjie; Song, Qijun

    2018-05-26

    In this work, a novel and facile electrochemical sensor is reported for the highly selective and sensitive detection of dissolved hydrogen sulfide (H 2 S), attributing to the redox reaction between Au@Ag core-shell nanoparticles (Au@Ag NPs) and H 2 S. Electroactive Au@Ag NPs not only possess excellent conductivity, but exhibit great electrochemical reactivity at 0.26 V due to the electrochemical oxidation from Ag° to Ag + . In the presence of H 2 S, the Ag shell of Au@Ag NPs can be oxidized to Ag 2 S, resulting in the decrease of differential pulse voltammetry (DPV) peak at 0.26 V. The electrochemical sensor exhibits a wide linear response range from 0.1 nM to 500 nM. The limit of detection (LOD) for H 2 S is as low as 0.04 nM. The developed sensor shows significant prospects in the study of pathological processes related to the mechanism of H 2 S production. Copyright © 2018. Published by Elsevier B.V.

  4. Nanoporous Au: An experimental study on the porosity of dealloyed AuAg leafs

    NASA Astrophysics Data System (ADS)

    Grillo, R.; Torrisi, V.; Ruffino, F.

    2016-12-01

    We present a study on the fraction of porosity for dealloyed nanoporous Au leafs. Nanoporous Au is attracting great scientific interest due to its peculiar plasmonic properties and the high exposed surface (∼10 m2/g). As examples, it was used in prototypes of chemical and biological devices. However, the maximization of the devices sensitivity is subjected to the maximization of the exposed surface by the nanoporous Au, i. e. maximization of the porosity fraction. So, we report on the analyses of the porosity fraction in nanoporous Au leafs as a function of the fabrication process parameters. We dealloyed 60 μm-thick Au23Ag77 at.% leafs and we show that: a) for dealloying time till to 6 h, only a 450 nm-thick surface layer of the leafs assumes a nanoporous structure with a porosity fraction of 32%. For a dealloying time of 20 h the leafs result fragmented in small black pieces with a porosity fraction increased to 60%. b) After 600 °C-30 minutes annealing of the previous samples, the nanopores disappear due to the Au/residual Ag inter-diffusion. c) After a second dealloying process on the previously annealed samples, the surface nanoporous structure is, again, obtained with the porosity fraction increased to 50%.

  5. Rhombohedrally Distorted γ-Au 5–x Zn 8+y Phases in the Au–Zn System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thimmaiah, Srinivasa; Miller, Gordon J.

    2013-02-04

    The region of the Au–Zn phase diagram encompassing γ-brass-type phases has been studied experimentally from 45 to 85 atom % Zn. The γ phases were obtained directly from the pure elements by heating to 680 °C in evacuated silica tubes, followed by annealing at 300 °C. Powder X-ray and single-crystal diffraction studies show that γ-“Au5Zn8” phases adopt a rhombohedrally distorted Cr5Al8 structure type rather than the cubic Cu5Zn8 type. The refined compositions from two single crystals extracted from the Zn- and Au-rich loadings are Au4.27(3)Zn8.26(3)γ0.47 (I) and Au4.58(3)Zn8.12(3)γ0.3 (II), respectively (γ = vacancy). These (I and II) refinements indicated bothmore » nonstatistical mixing of Au and Zn atoms as well as partially ordered vacancy distributions. The structures of these γ phases were solved in the acentric space group R3m (No. 160, Z = 6), and the observed lattice parameters from powder patterns were found to be a = 13.1029(6) and 13.1345(8) Å and c = 8.0410(4) and 8.1103(6) Å for crystals I and II, respectively. According to single-crystal refinements, the vacancies were found on the outer tetrahedron (OT) and octahedron (OH) of the 26-atom cluster. Single-crystal structural refinement clearly showed that the vacancy content per unit cell increases with increasing Zn, or valence-electron concentration. Electronic structure calculations, using the tight-binding linear muffin-tin orbital method with the atomic-sphere approximation (TB-LMTO-ASA) method, indicated the presence of a well-pronounced pseudogap at the Fermi level for “Au5Zn8” as the representative composition, an outcome that is consistent with the Hume–Rothery interpretation of γ brass.« less

  6. Tunable UV- and Visible-Light Photoresponse Based on p-ZnO Nanostructures/n-ZnO/Glass Peppered with Au Nanoparticles.

    PubMed

    Hsu, Cheng-Liang; Lin, Yu-Hong; Wang, Liang-Kai; Hsueh, Ting-Jen; Chang, Sheng-Po; Chang, Shoou-Jinn

    2017-05-03

    UV- and visible-light photoresponse was achieved via p-type K-doped ZnO nanowires and nanosheets that were hydrothermally synthesized on an n-ZnO/glass substrate and peppered with Au nanoparticles. The K content of the p-ZnO nanostructures was 0.36 atom %. The UV- and visible-light photoresponse of the p-ZnO nanostructures/n-ZnO sample was roughly 2 times higher than that of the ZnO nanowires. The Au nanoparticles of various densities and diameter sizes were deposited on the p-ZnO nanostructures/n-ZnO samples by a simple UV photochemical reaction method yielding a tunable and enhanced UV- and visible-light photoresponse. The maximum UV and visible photoresponse of the Au nanoparticle sample was obtained when the diameter size of the Au nanoparticle was approximately 5-35 nm. On the basis of the localized surface plasmon resonance effect, the UV, blue, and green photocurrent/dark current ratios of Au nanoparticle/p-ZnO nanostructures/n-ZnO are ∼1165, ∼94.6, and ∼9.7, respectively.

  7. Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy

    DOE PAGES

    Zhang, Jiawei; Winget, Sarah A.; Wu, Yiren; ...

    2016-01-26

    In this paper, we report a facile synthesis of Ag@Au concave cuboctahedra by titrating aqueous HAuCl4 into a suspension of Ag cuboctahedra in the presence of ascorbic acid (AA), NaOH, and poly(vinylpyrrolidone) (PVP) at room temperature. Initially, the Au atoms derived from the reduction of Au 3+ by AA are conformally deposited on the entire surface of a Ag cuboctahedron. Upon the formation of a complete Au shell, however, the subsequently formed Au atoms are preferentially deposited onto the Au{100} facets, resulting in the formation of a Ag@Au cuboctahedron with concave structures at the sites of {111} facets. The concavemore » cuboctahedra embrace excellent SERS activity that is more than 70-fold stronger than that of the original Ag cuboctahedra at an excitation wavelength of 785 nm. The concave cuboctahedra also exhibit remarkable stability in the presence of an oxidant such as H 2O 2 because of the protection by a complete Au shell. These two unique attributes enable in-situ SERS monitoring of the reduction of 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP) by NaBH4 through a 4,4'-dimercaptoazobenzene ( trans-DMAB) intermediate and the subsequent oxidation of 4-ATP back to trans-DMAB upon the introduction of H 2O 2.« less

  8. Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiawei; Winget, Sarah A.; Wu, Yiren

    In this paper, we report a facile synthesis of Ag@Au concave cuboctahedra by titrating aqueous HAuCl4 into a suspension of Ag cuboctahedra in the presence of ascorbic acid (AA), NaOH, and poly(vinylpyrrolidone) (PVP) at room temperature. Initially, the Au atoms derived from the reduction of Au 3+ by AA are conformally deposited on the entire surface of a Ag cuboctahedron. Upon the formation of a complete Au shell, however, the subsequently formed Au atoms are preferentially deposited onto the Au{100} facets, resulting in the formation of a Ag@Au cuboctahedron with concave structures at the sites of {111} facets. The concavemore » cuboctahedra embrace excellent SERS activity that is more than 70-fold stronger than that of the original Ag cuboctahedra at an excitation wavelength of 785 nm. The concave cuboctahedra also exhibit remarkable stability in the presence of an oxidant such as H 2O 2 because of the protection by a complete Au shell. These two unique attributes enable in-situ SERS monitoring of the reduction of 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP) by NaBH4 through a 4,4'-dimercaptoazobenzene ( trans-DMAB) intermediate and the subsequent oxidation of 4-ATP back to trans-DMAB upon the introduction of H 2O 2.« less

  9. Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films

    NASA Astrophysics Data System (ADS)

    Oh, Yoonseok; Lee, Jeeyoung; Lee, Myeongkyu

    2018-03-01

    We here show that Ag-Au bimetallic nanoparticles (NPs) can be produced by dewetting an Ag/Au bilayer film coated on glass using a nanosecond-pulsed laser beam. Elemental analysis revealed that the obtained bimetallic NPs are Ag-Au alloys, with two elements well mixed over the whole volume of the particle. The composition of the produced particles was controllable by changing the relative thickness of each layer. The localized surface plasmon resonance (LSPR) peak was red-shifted with an increasing Au content and the LSPR wavelength could be tuned from 415 to 525 nm by varying the alloy composition. A film area of several square centimeters could be transformed into Ag-Au NPs by a single laser pulse of 6 ns duration. This study provides a facile and scalable route to prepare bimetallic NPs for plasmonic and other applications.

  10. Facile synthesis of Au-ZnO plasmonic nanohybrids for highly efficient photocatalytic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Kuriakose, Sini; Sahu, Kavita; Khan, Saif A.; Tripathi, A.; Avasthi, D. K.; Mohapatra, Satyabrata

    2017-02-01

    Au-ZnO plasmonic nanohybrids were synthesized by a facile two step process. In the first step, nanostructured ZnO thin films were prepared by carbothermal evaporation followed by thermal annealing in oxygen atmosphere. Deposition of ultrathin Au films onto the nanostructured ZnO thin films by sputtering combined with thermal annealing resulted in the formation of Au-ZnO plasmonic nanohybrid thin films. The structural, optical, plasmonic and photocatalytic properties of the Au-ZnO nanohybrid thin films were studied. XRD studies on the Au-ZnO hybrid thin films revealed the presence of Au and ZnO nanostructures. UV-visible absorption studies showed two peaks corresponding to the excitonic absorption of ZnO nanostructures in the UV region and the surface plasmon resonance (SPR) absorption of Au nanoparticles in the visible region. The Au-ZnO nanohybrid thin films annealed at 400 °C showed enhanced photocatalytic activity as compared to nanostructrured ZnO thin films towards sun light driven photocatalytic degradation of methylene blue (MB) dye in water. The observed enhanced photocatalytic activity of Au-ZnO plasmonic nanohybrids is attributed to the efficient suppression of the recombination of photogenerated charge carriers in ZnO due to the strong electron scavenging action of Au nanoparticles combined with the improved sun light utilization capability of Au-ZnO nanohybrids coming from the plasmonic response of Au nanoparticles decorating ZnO nanostructures.

  11. Characterization of spatial manipulation on ZnO nanocomposites consisting of Au nanoparticles, a graphene layer, and ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Huang, Shen-Che; Lu, Chien-Cheng; Su, Wei-Ming; Weng, Chen-Yuan; Chen, Yi-Cian; Wang, Shing-Chung; Lu, Tien-Chang; Chen, Ching-Pang; Chen, Hsiang

    2018-01-01

    Three types of ZnO-based nanocomposites were fabricated consisting of 80-nm Au nanoparticles (NPs), a graphene layer, and ZnO nanorods (NRs). To investigate interactions between the ZnO NRs and Au nanoparticle, multiple material analysis techniques including field-emission scanning electron microscopy (FESEM), surface contact angle measurements, secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopic characterizations were performed. Results indicate that incorporating a graphene layer could block the interaction between the ZnO NRs and the Au NPs. Furthermore, the Raman signal of the Au NPs could be enhanced by inserting a graphene layer on top of the ZnO NRs. Investigation of these graphene-incorporated nanocomposites would be helpful to future studies of the physical properties and Raman analysis of the ZnO-based nanostructure design.

  12. The Role of Work Function and Band Gap in Resistive Switching Behaviour of ZnTe Thin Films

    NASA Astrophysics Data System (ADS)

    Rowtu, Srinu; Sangani, L. D. Varma; Krishna, M. Ghanashyam

    2018-02-01

    Resistive switching behavior by engineering the electrode work function and band gap of ZnTe thin films is demonstrated. The device structures Au/ZnTe/Au, Au/ZnTe/Ag, Al/ZnTe/Ag and Pt/ZnTe/Ag were fabricated. ZnTe was deposited by thermal evaporation and the stoichiometry and band gap were controlled by varying the source-substrate distance. Band gap could be varied between 1.0 eV to approximately 4.0 eV with the larger band gap being attributed to the partial oxidation of ZnTe. The transport characteristics reveal that the low-resistance state is ohmic in nature which makes a transition to Poole-Frenkel defect-mediated conductivity in the high-resistance states. The highest R off-to- R on ratio achieved is 109. Interestingly, depending on stoichiometry, both unipolar and bipolar switching can be realized.

  13. Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaojuan, E-mail: lixiaojuan@fzu.edu.cn; Tang, Duanlian; Tang, Fan

    2014-08-15

    Highlights: • A plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} photocatalyst has been successfully synthesized. • Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites exhibit high visible light photocatalytic activity. • Ag/AgBr/ZnFe{sub 2}O{sub 4} photocatalyst is stable and magnetically separable. - Abstract: A visible-light-driven plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposite has been successfully synthesized via a deposition–precipitation and photoreduction through a novel one-pot process. X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy were employed to investigate the crystal structure, chemical composition, morphology, and optical properties of the as-prepared nanocomposites. The photocatalytic activities of the nanocomposites were evaluated by photodegradationmore » of Rhodamine B (RhB) and phenol under visible light. The results demonstrated that the obtained Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites exhibited higher photocatalytic activity as compared to pure ZnFe{sub 2}O{sub 4}. In addition, the sample photoreduced for 20 min and calcined at 500 °C achieved the highest photocatalytic activity. Furthermore, the Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposite has high stability under visible light irradiation and could be conveniently separated by using an external magnetic field.« less

  14. One-Step Synthesis of Au-Ag Nanowires through Microorganism-Mediated, CTAB-Directed Approach.

    PubMed

    Xu, Luhang; Huang, Dengpo; Chen, Huimei; Jing, Xiaoling; Huang, Jiale; Odoom-Wubah, Tareque; Li, Qingbiao

    2018-05-28

    Synthesis and applications of one dimensional (1D) metal nanostructures have attracted much attention. However, one-step synthesis of bimetallic nanowires (NWs) has remained challenging. In this work, we developed a microorganism-mediated, hexadecyltrimethylammonium bromide (CTAB)-directed (MCD) approach to synthesize closely packed and long Au-Ag NWs with the assistance of a continuous injection pump. Characterization results confirmed that the branched Au-Ag alloy NWs was polycrystalline. And the Au-Ag NWs exhibited a strong absorbance at around 1950 nm in the near-infrared (NIR) region, which can find potential application in NIR absorption. In addition, the Au-Ag NWs showed excellent surface-enhanced Raman scattering (SERS) enhancement when 4-mercaptobenzoic acid (MBA) and rhodamine 6G (R6G) were used as probe molecules.

  15. Structure formation in Ag-X (X = Au, Cu) alloys synthesized far-from-equilibrium

    NASA Astrophysics Data System (ADS)

    Elofsson, V.; Almyras, G. A.; Lü, B.; Garbrecht, M.; Boyd, R. D.; Sarakinos, K.

    2018-04-01

    We employ sub-monolayer, pulsed Ag and Au vapor fluxes, along with deterministic growth simulations, and nanoscale probes to study structure formation in miscible Ag-Au films synthesized under far-from-equilibrium conditions. Our results show that nanoscale atomic arrangement is primarily determined by roughness build up at the film growth front, whereby larger roughness leads to increased intermixing between Ag and Au. These findings suggest a different structure formation pathway as compared to the immiscible Ag-Cu system for which the present study, in combination with previously published data, reveals that no significant roughness is developed, and the local atomic structure is predominantly determined by the tendency of Ag and Cu to phase-separate.

  16. Melting curve of metals Cu, Ag and Au under pressure

    NASA Astrophysics Data System (ADS)

    Tam, Pham Dinh; Hoc, Nguyen Quang; Tinh, Bui Duc; Tan, Pham Duy

    2016-01-01

    In this paper, the dependence of the melting temperature of metals Cu, Ag and Au under pressure in the interval from 0 kbar to 40 kbar is studied by the statistical moment method (SMM). This dependence has the form of near linearity and the calculated slopes of melting curve are 3.9 for Cu, 5.7 for Ag and 6 for Au. These results are in good agreement with the experimental data.

  17. Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials

    NASA Astrophysics Data System (ADS)

    Yallappa, S.; Manjanna, J.; Dhananjaya, B. L.

    2015-02-01

    A green chemistry approach for the synthesis of Au, Ag and Au-Ag alloy nanoparticles (NPs) using the corresponding metal precursors and Jasminum sambac leaves extract as both reducing and capping media, under microwave irradiation, is reported. During the formation, as expected, the reaction mixture shows marginal decrease in pH and an increase in solution potential. The formation of NPs is evident from their surface plasmon resonance (SPR) peak observed at ∼555 nm for Au, ∼435 nm for Ag and ∼510 nm for Au-Ag alloy. The XRD pattern shows fcc structure while the FTIR spectra indicate the presence of plant residues adsorbed on these NPs. Such a bio-capping of NPs is characterized by their weight loss, ∼35% due to thermal degradation of biomass, as observed in TG analysis. The colloidal dispersion of NPs is stable for about 6 weeks. The near spherical shape of NPs (ϕ20-50 nm) is observed by FE-SEM/TEM images and EDAX gives the expected elemental composition. Furthermore, these NPs showed enhanced antimicrobial activity (∼1-4-fold increase in zone of inhibition) in combination with antimicrobials against test strains. Thus, the phytosynthesized NPs could be used as effective growth inhibitors for various microorganisms.

  18. Enhanced wound healing activity of Ag-ZnO composite NPs in Wistar Albino rats.

    PubMed

    Kantipudi, Sravani; Sunkara, Jhansi Rani; Rallabhandi, Muralikrishna; Thonangi, Chandi Vishala; Cholla, Raga Deepthi; Kollu, Pratap; Parvathaneni, Madhu Kiran; Pammi, Sri Venkata Narayana

    2018-06-01

    In the present study, silver (Ag) and Ag-zinc oxide (ZnO) composite nanoparticles (NPs) were synthesised and studied their wound-healing efficacy on rat model. Ultraviolet-visible spectroscopy of AgNPs displayed an intense surface plasmon (SP) resonance absorption at 450 nm. After the addition of aqueous Zn acetate solution, SP resonance band has shown at 413.2 nm indicating a distinct blue shift of about 37 nm. X-ray diffraction analysis Ag-ZnO composite NPs displayed existence of two mixed sets of diffraction peaks, i.e. both Ag and ZnO, whereas AgNPs exhibited face-centred cubic structures of metallic Ag. Scanning electron microscope (EM) and transmission EM analyses of Ag-ZnO composite NPs revealed the morphology to be monodispersed hexagonal and quasi-hexagonal NPs with distribution of particle size of 20-40 nm. Furthermore, the authors investigated the wound-healing properties of Ag-ZnO composite NPs in an animal model and found that rapid healing within 10 days when compared with pure AgNPs and standard drug dermazin.

  19. EFFECTS OF Au ON THE GROWTH OF ZnO NANOSTRUCTURES ON Si BY MOCVD

    NASA Astrophysics Data System (ADS)

    Cong, Chen; Fan, Lu Yang; Ping, He Hai; Wei, Wu Ke; Zhen, Ye Zhi

    2013-06-01

    The effects of Au on the growth of ZnO nanostructures on Si by metal organic chemical vapor deposition (MOCVD) at a relatively low temperature (450°C) were investigated. The experimental results showed that Au nanoparticles played a critical role during the growth of the ZnO nanostructures and affected their morphology and optical properties. It was found that Au nanoparticles particularly affected the nucleation of ZnO nanostructures during the growth process and the Au-assisted growth mechanism of ZnO nanostructures should be ascribed to the vapor-solid (VS) mechanism. The formation of a nanoneedle may be attributed to a more reactive interface between Au and ZnO, which leads to more zinc gaseous species absorbed near the interface. Different nucleation sites on ZnO nuclei resulted in the disorder of ZnO nanoneedles. Moreover, the crystalline quality of nano-ZnO was improved due to the presence of Au, according to the smaller full width at half maximum (FWHM) of the low-temperature exciton emission. We confirmed that ZnO nanoneedles showed better crystalline quality than ZnO nanorods through the HRTEM images and the SAED patterns. The reason for the improvement of the crystalline quality of nano-ZnO may be due to the less lattice mismatch.

  20. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures

    NASA Astrophysics Data System (ADS)

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-05-01

    In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd150 nm/Ag80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks ( 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from 510 to 475 nm along with the decreased average size of alloy nanostructures.

  1. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

    NASA Astrophysics Data System (ADS)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-01

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic

  2. Sulfonated graphene oxide-ZnO-Ag photocatalyst for fast photodegradation and disinfection under visible light.

    PubMed

    Gao, Peng; Ng, Kokseng; Sun, Darren Delai

    2013-11-15

    Synthesis of efficient visible-light-driven photocatalyst is urgent but challenging for environmental remediation. In this work, for the first time, the hierarchical plasmonic sulfonated graphene oxide-ZnO-Ag (SGO-ZnO-Ag) composites were prepared through nanocrystal-seed-directed hydrothermal method combining with polyol-reduction process. The results indicated that SGO-ZnO-Ag exhibited much faster rate in photodegradation of Rhodamine B (RhB) and disinfection of Escherichia coli (E. coli), than ZnO, SGO-ZnO and ZnO-Ag. SGO-ZnO-Ag totally degraded RhB dye and kill 99% of E. coli within 20 min under visible light irradiation. The outstanding performances of SGO-ZnO-Ag were attributed to the synergetic merits of SGO sheets, ZnO nanorod arrays and Ag nanoparticles. Firstly, the light absorption ability of SGO-ZnO-Ag composite in the visible region was enhanced due to the surface plasmon resonance of Ag. In addition, the hierarchical structure of SGO-ZnO-Ag composite improved the incident light scattering and reflection. Furthermore, SGO sheets facilitated charge transfer and reduce electron-hole recombination rate. Finally, the tentative mechanism was proposed and verified by the photoluminescence (PL) measurement as well as the theoretical finite-difference time-domain (FDTD) simulation. In view of above, this work paves the way for preparation of multi-component plasmonic composites and highlights the potential applications of SGO-ZnO-Ag in photocatalytic wastewater treatment field. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  3. Electrically conductive nanostructured silver doped zinc oxide (Ag:ZnO) prepared by solution-immersion technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afaah, A. N., E-mail: afaahabdullah@yahoo.com; Asib, N. A. M., E-mail: amierahasib@yahoo.com; Aadila, A., E-mail: aadilaazizali@gmail.com

    2016-07-06

    p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO{sub 3} as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films weremore » characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.« less

  4. Fabrication and surface enhanced Raman scattering effect of centimeter level AgCuAu composite nanowires

    NASA Astrophysics Data System (ADS)

    Xu, Dapeng; Zhang, Song; Yang, Wei; Chen, Jian

    2017-10-01

    Centimeter level AgCuAu composite nanowires were prepared by a solid-state ionics method under a direct current electric field (DCEF) using fast ionic conductor RbAg4I5 films and vacuum thermal evaporation method. The surface morphology and chemical composition of the AuAgCu composite nanowires were characterized by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), respectively. Raman enhancement performance of the AgCuAu composite nanowires substrates was detected by Rhodamine 6G (R6G) aqueous solutions as probe molecules. Long-range order and short-range order AgCuAu composite nanowires with the length of 1 cm were prepared. The nanowires were bamboo-shaped with high surface roughness and the diameters of nanowires ranged from 60 to 100 nm. The molar ratio of Ag:Cu:Au in composite nanowires is 15:2:1. The intrinsic Raman peaks of 10-16 mol/L R6G at 612, 773, 1125, 1182, 1307, 1361, 1418, 1506, 1545, 1575, 1597, 1650 cm-1 are all present when AgCuAu composite nanowires were used as the SERS substrates.

  5. Study of Sn and SnAgCu Solders Wetting Reaction on Ni/Pd/Au Substrates

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Wei, Y. S.; Lin, E. J.; Hsu, Y. C.; Tang, Y. K.

    2016-12-01

    Wetting reactions of pure Sn and Sn-Ag-Cu solder balls on Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates were investigated. The (Au, Pd)Sn4 phase formed in the initial interfacial reaction between pure Sn and Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates. Then, the initially formed (Au, Pd)Sn4 compound layer either dissolved or spalled into the molten Sn solder with 3 s of reflowing. The exposed Ni under-layer reacted with Sn solder and formed an interfacial Ni3Sn4 compound. We did not observe spalling compound in the Sn-Ag-Cu case, either on the thin Au (100 Å) or the thick Au (1000 Å) substrates. This implies that the Cu content in the Sn-Ag-Cu solder can efficiently suppress the spalling effect and really stabilize the interfacial layer. Sn-Ag-Cu solder has a better wetting than that of the pure Sn solder, regardless of the Au thickness of the Au/Pd/Ni substrate. For both cases of pure Sn and Sn-Ag-Cu, the initial wetting (<3-s reflowing) on the thin Au (100 Å) substrate is better than that of the thick Au (1000 Å) substrate. Over 3-s reflowing, the wetting on the thicker Au layer (1000 Å) substrate becomes better than the wetting on the thinner Au layer (100 Å) substrate.

  6. Effect of heavy Ag doping on the physical properties of ZnO

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Zhao, Chunwang; Jia, Xiaofang; Xu, Zhenchao

    2018-04-01

    The band structure, density of state and absorption spectrum of Zn1‑xAgxO (x = 0.02778, 0.04167) were calculated. Results indicated that a higher doping content of Ag led to a higher total energy, lower stability, higher formation energy, narrower bandgap, more significant red shift of the absorption spectrum, higher relative concentration of free hole, smaller hole effective mass, lower mobility and better conductivity. Furthermore, four types of model with the same doping content of double Ag-doped Zn1‑xAgxO (x = 0.125) but different manners of doping were established. Two types of models with different doping contents of double Ag-doped Zn1‑xAgxO (x = 0.0626, 0.0833) but the same manner of doping, were also established. Under the same doping content and different ordering occupations in Ag double doping, the doped system almost caused magnetic quenching upon the nearest neighbor -Ag-O-Ag- bonding at the direction partial to the a- or b-axis. Upon the next-nearest neighbor of -Ag-O-Zn-O-Ag- bonding at the direction partial to the c-axis, the total magnetic moment of the doped system increased, and the doped system reached a Curie temperature above the room-temperature. All these results indicated that the magnetic moments of Ag double-doped ZnO systems decreased with increased Ag doping content. Within the range of the mole number of the doping content of 0.02778-0.04167, a greater Ag doping content led to a narrower bandgap of the doped system and a more significant red shift in the absorption spectrum. The absorption spectrum of the doped ZnO system with interstitial Ag also shows a red shift.

  7. Chemical synthesis and structural characterization of small AuZn nanoparticles

    NASA Astrophysics Data System (ADS)

    Juárez-Ruiz, E.; Pal, U.; Lombardero-Chartuni, J. A.; Medina, A.; Ascencio, J. A.

    2007-03-01

    In this paper, we report the aqueous synthesis of bimetallic Au-Zn nanoparticles of different compositions by the simultaneous reduction technique. The stability and atomic configuration of the particles are studied through high-resolution transmission electron microscopy (HRTEM) and UV-Vis optical absorption techniques. Depending on the composition, small bimetallic nanoparticles of 1 15 nm in size were obtained. The average size and size distribution of the bimetallic nanoparticles are seen to be critically dependent on the atomic ratio of the constituting elements Au and Zn. While a 1:1 atomic proportion of Au and Zn produced most stable nanoparticles of smallest average size, nanoparticles produced with higher content of either of the component elements are unstable, inducing agglomeration and coalescence to form elongated structures with uneven morphologies. Au3Zn1 nanoparticles followed a directional growth pattern, producing bimetallic nanorods with multiple crystalline domains. Interestingly, in these rod-like nanostructures, the domains are in well array of solid solution-like bimetallic and pure mono-metallic regions alternatively. Such nanostructures with uneven morphology and compositions might show distinct catalytic selectivity in chemical reactions.

  8. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF.

  9. Controlling Shape and Plasmon Resonance of Pt-Etched Au@Ag Nanorods.

    PubMed

    Ye, Rongkai; Zhang, Yanping; Chen, Yuyu; Tang, Liangfeng; Wang, Qiong; Wang, Qianyu; Li, Bishan; Zhou, Xuan; Liu, Jianyu; Hu, Jianqiang

    2018-05-22

    Pt-based catalysts with novel structure have attracted great attention due to their outstanding performance. In this work, H 2 PtCl 6 was used as both precursor and etching agent to realize the shape-controlled synthesis of Pt-modified Au@Ag nanorods (NRs). During the synthesis, the as-prepared Ag shell played a crucial role in both protecting the Au NRs from being etched away by PtCl 6 2- and leading to an unusual growth mode of Pt component. The site-specified etching and/or growth depended on the concentration of H 2 PtCl 6 , where high-yield core-shell structure or dumbbell-like structure could be obtained. The shape-controlled synthesis also led to a tunable longitudinal surface plasmon resonance from ca. 649 to 900 nm. Meanwhile, the core-shell Pt-modified Au@Ag NRs showed approximately 4-fold enhancement in catalytic reduction reaction of p-nitrophenol than that of the Au NRs, suggesting the great potential for photocatalytic reaction.

  10. Localized Surface Plasmon Resonance in Au Nanoparticles Embedded dc Sputtered ZnO Thin Films.

    PubMed

    Patra, Anuradha; Balasubrahmaniyam, M; Lahal, Ranjit; Malar, P; Osipowicz, T; Manivannan, A; Kasiviswanathan, S

    2015-02-01

    The plasmonic behavior of metallic nanoparticles is explicitly dependent on their shape, size and the surrounding dielectric space. This study encompasses the influence of ZnO matrix, morphology of Au nanoparticles (AuNPs) and their organization on the optical behavior of ZnO/AuNPs-ZnO/ZnO/GP structures (GP: glass plate). These structures have been grown by a multiple-step physical process, which includes dc sputtering, thermal evaporation and thermal annealing. Different analytical techniques such as scanning electron microscopy, glancing angle X-ray diffraction, Rutherford backscattering spectrometry and optical absorption have been used to study the structures. In-situ rapid thermal treatment during dc sputtering of ZnO film has been found to induce subtle changes in the morphology of AuNPs, thereby altering the profile of the plasmon band in the absorption spectra. The results have been contrasted with a recent study on the spectral response of dc magnetron sputtered ZnO films embedded with AuNPs. Initial simulation results indicate that AuNPs-ZnO/Au/GP structure reflects/absorbs UV and infrared radiations, and therefore can serve as window coatings.

  11. Manipulation of surface morphology of flower-like Ag/ZnO nanorods to enhance photocatalytic performance

    NASA Astrophysics Data System (ADS)

    U-thaipan, Kasira; Tedsree, Karaked

    2018-06-01

    The surface morphology of flower-like Ag/ZnO nanorod can be manipulated by adopting different synthetic routes and also loading different levels of Ag in order to alter their surface structures to achieve the maximum photocatalytic efficiency. In a single-step preparation method Ag/ZnO was prepared by heating directly a mixture of Zn2+ and Ag+ precursors in an aqueous NaOH-ethylene glycol solution, while in the two-step preparation method an intermediate of flower-shaped ZnO nanorod was obtained by a hydrothermal process before depositing Ag particles on the ZnO surfaces by chemical reduction. The structure, morphology and optical properties of the synthesized samples were characterized using TEM, SEM, XRD, DRS and PL techniques. The sample prepared by single-step method are characterized with agglomeration of Ag atoms as clusters on the surface of ZnO, whereas in the sample prepared by two-step method Ag atoms are found uniformly dispersed and deposited as discrete Ag nanoparticles on the surface of ZnO. A significant enhancement in the adsorption of visible light was evident for Ag/ZnO samples prepared by two-step method especially with low Ag content (0.5 mol%). The flower-like Ag/ZnO nanorod prepared with 0.5 mol% Ag by two-step process was found to be the most efficient photocatalyst for the degradation of phenol, which can decompose 90% of phenol within 120 min.

  12. Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure

    NASA Astrophysics Data System (ADS)

    Zhu, Zhu; Chen, Feng; Xu, Chunxiang; Yang, Guangcan; Zhu, Ye; Luo, Zhaoxu

    2017-12-01

    Monitoring the nucleation and growth of nanomaterials is a key technique for material synthesis design and control. An efficient fabrication method can be realized deeply understanding the growth mechanisms. Here, noble metal nanostructures, gold (Au) nanoparticles, silver nanostructures (Ag nanoparticles/Ag nanowires) and gold-silver alloy nanoparticles were prepared in a facile method at room temperature. The growth processes of the Au nanoparticles, Ag nanowires and Au-Ag alloy nanoparticles can be monitored real-timely through the ultraviolet visible absorption (UV-vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is found that the whole formation involved Digestive ripening and Ostwald ripening cooperative mechanism. Furthermore, the self-assembly growth is noticed in the oriented attachment of precursor Ag monomers into nanowires under the same synthetic conditions without external templates or rigorous conditions. This result can provide a platform to discover the underlying growth mechanism of wet-chemistry methods for metal nanostructure fabrication.

  13. Au functionalized ZnO rose-like hierarchical structures and their enhanced NO2 sensing performance

    NASA Astrophysics Data System (ADS)

    Shingange, K.; Swart, H. C.; Mhlongo, G. H.

    2018-04-01

    Herein, we present ZnO rose-like hierarchical nanostructures employed as support to Au nanoparticles to produce Au functionalized three dimensional (3D) ZnO hierarchical nanostructures (Au/ZnO) for NO2 detection using a microwave-assisted method. Comparative analysis of NO2 sensing performance between the pristine ZnO and Au/ZnO rose-like structures at 300 °C revealed improved NO2 response and rapid response-recovery times with Au incorporation owing to a combination of high surface accessibility induced by hierarchical nanostructure design and catalytic activity of the small Au nanoparticles. Structural and optical analyses acquired from X-ray diffraction, scanning electron microscopy, transmission electron microscope and photoluminescence spectroscopy were also performed.

  14. A single-cell analysis platform for electrochemiluminescent detection of platelets adhesion to endothelial cells based on Au@DL-ZnCQDs nanoprobes.

    PubMed

    Long, Dongping; Shang, Yunfei; Qiu, Youyi; Zhou, Bin; Yang, Peihui

    2018-04-15

    A novel single-cell analysis platform (SCA) was developed for the investigation of platelets adhesion to single human umbilical vein endothelial cell (HUVEC) via using the adhesion molecule (E-selectin) on the damaged HUVEC as the marker site, and integrating electrochemiluminescence (ECL) with the ultrasensitive Au@DL-ZnCQDs nanoprobes. The Au@DL-ZnCQDs nanocomposite, a kind of double layer zinc-coadsorbed carbon quantum dot (ZnCQDs) core-shell nanoprobe, was firstly constructed by using gold nanoparticles (AuNPs) as the core to load with ZnCQDs and then the citrate-modified silver nanoparticles (AgNPs) as the bridge to link AuNPs-ZnCQDs with ZnCQDs to form the core-shell with double layer ZnCQDs (DL-ZnCQDs) nanoprobe, revealed a 10-fold signal amplification. The H 2 O 2 -induced oxidative damage HUVECs were utilized as the cellular model on which anti-E-selectin functionalized nanoprobes specially recognized E-selectin, the SCA showed that the ECL signals decreased with platelets adhesion to single HUVEC. The proposed SCA could effectively and dynamically monitor the adhesion between single HUVEC and platelets in the absence and presence of collagen activation, moreover, be able to quantitatively detect the number of platelets adhesion to single HUVEC, and show a good analytical performance with linear range from 1 to 15 platelets. In contrast, the HUVEC was down-regulated the expression of adhesion molecules by treating with quercetin inhibitor, and the SCA also exhibited the feasibility for analysis of platelets adhesion to single HUVEC. Therefore, the single-cell analysis platform provided a novel and promising protocol for analysis of the single intercellular adhesion, and it will be beneficial to elucidate the pathogenesis of cardiovascular diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. How Ag Nanospheres Are Transformed into AgAu Nanocages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, Liane M.; Schurman, Charles A.; Kewalramani, Sumit

    Bimetallic hollow, porous noble metal nanoparticles are of broad interest for biomedical, optical and catalytic applications. The most straightforward method for preparing such structures involves the reaction between HAuCl4 and well-formed Ag particles, typically spheres, cubes, or triangular prisms, yet the mechanism underlying their formation is poorly understood at the atomic scale. By combining in situ nanoscopic and atomic-scale characterization techniques (XAFS, SAXS, XRF, and electron microscopy) to follow the process, we elucidate a plausible reaction pathway for the conversion of citrate-capped Ag nanospheres to AgAu nanocages; importantly, the hollowing event cannot be explained by the nanoscale Kirkendall effect, normore » by Galvanic exchange alone, two processes that have been previously proposed. We propose a modification of the bulk Galvanic exchange process that takes into account considerations that can only occur with nanoscale particles. This nanoscale Galvanic exchange process explains the novel morphological and chemical changes associated with the typically observed hollowing process.« less

  16. SERS activity studies of Ag/Au bimetallic films prepared by galvanic replacement

    NASA Astrophysics Data System (ADS)

    Wang, Chaonan; Fang, Jinghuai; Jin, Yonglong

    2012-10-01

    Ag films on Si substrates were fabricated by immersion plating, which served as sacrificial materials for preparation of Ag/Au bimetallic films by galvanic replacement method. SEM images displayed that the sacrificial Ag films presenting island morphology experienced interesting structural evolution process during galvanic replacement reaction, and nano-scaled holes were formed in the resultant bimetallic films. SERS measurements using crystal violet as an analyte showed that SERS intensities of bimetallic films were enhanced significantly compared with that of pure Ag films and related mechanisms were discussed. Immersion plating experiment carried out on Ag films on PEN substrates fabricated by photoinduced reduction method further confirmed that galvanic replacement is an easy method to fabricate Ag/Au bimetallic and a potential approach to improve the SERS performance of Ag films.

  17. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures.

    PubMed

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-05-16

    In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd 150 nm /Ag 80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks (~ 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from ~ 510 to ~ 475 nm along with the decreased average size of alloy nanostructures.

  18. Enhanced photocatalytic performances and magnetic recovery capacity of visible-light-driven Z-scheme ZnFe2O4/AgBr/Ag photocatalyst

    NASA Astrophysics Data System (ADS)

    He, Jie; Cheng, Yahui; Wang, Tianzhao; Feng, Deqiang; Zheng, Lingcheng; Shao, Dawei; Wang, Weichao; Wang, Weihua; Lu, Feng; Dong, Hong; Zheng, Rongkun; Liu, Hui

    2018-05-01

    High efficiency, high stability and easy recovery are three key factors for practical photocatalysts. Z-scheme heterostructure is one of the most promising photocatalytic systems to meet all above requirements. However, efficient Z-scheme photocatalysts which could absorb visible light are still few and difficult to implement at present. In this work, the composite photocatalysts ZnFe2O4/AgBr/Ag were prepared through a two-step method. A ∼92% photodegradation rate on methyl orange was observed within 30 min under visible light, which is much better than that of individual ZnFe2O4 or AgBr/Ag. The stability was also greatly improved compared with AgBr/Ag. The increased performance is resulted from the suitable band alignment of ZnFe2O4 and AgBr, and it is defined as Z-scheme mechanism which was demonstrated by detecting active species and electrochemical impedance spectroscopy. Besides, ZnFe2O4/AgBr/Ag is ferromagnetic and can be recycled by magnet. These results show that ZnFe2O4/AgBr/Ag is a potential magnetically recyclable photocatalyst which can be driven by visible light.

  19. Au-Ag-Cu nano-alloys: tailoring of permittivity

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-04-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective.

  20. Extremely high efficient nanoreactor with Au@ZnO catalyst for photocatalysis

    NASA Astrophysics Data System (ADS)

    Su, Chung-Yi; Yang, Tung-Han; Gurylev, Vitaly; Huang, Sheng-Hsin; Wu, Jenn-Ming; Perng, Tsong-Pyng

    2015-10-01

    We fabricated a photocatalytic Au@ZnO@PC (polycarbonate) nanoreactor composed of monolayered Au nanoparticles chemisorbed on conformal ZnO nanochannel arrays within the PC membrane. A commercial PC membrane was used as the template for deposition of a ZnO shell into the pores by atomic layer deposition (ALD). Thioctic acid (TA) with sufficient steric stabilization was used as a molecular linker for functionalization of Au nanoparticles in a diameter of 10 nm. High coverage of Au nanoparticles anchored on the inner wall of ZnO nanochannels greatly improved the photocatalytic activity for degradation of Rhodamine B. The membrane nanoreactor achieved 63% degradation of Rhodamine B within only 26.88 ms of effective reaction time owing to its superior mass transfer efficiency based on Damköhler number analysis. Mass transfer limitation can be eliminated in the present study due to extremely large surface-to-volume ratio of the membrane nanoreactor.

  1. The investigation of Ag/ZnO interface system by first principle: The structural, electronic and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hai-Xia; Wang, Xiao-Xu; Beijing Computing Center, Beijing 100094

    Ag/ZnO interfaces have been investigated for both of Zn-termination and O-termination by the first principle based on density functional theory. Our calculations demonstrate that the Ag atoms go inward from the Ag/ZnO interface, and the Zn and O atoms are all move outward bulk in the Zn-termination interface, and the changes are just opposite for O-termination. These behaviors are in agreement with the other studies in literatures. Furthermore, an expansion situation is observed in the first two Zn-O bilayer and first three Ag monolayers for both of Zn-termination and O-termination interfaces by comparing with the pure ZnO(0001) and Ag(111) surfaces.more » Moreover, the valence-band both of O-2p and Zn-3d states of Ag/ZnO interface gradual close to Femi level as the Zn, O atoms locate at the deeper layer for Zn-termination, but it is the other way round for O-termination. Calculated absorption spectrum indicates that the absorption intensity of Zn-termination interface is stronger than that of O-termination in the lower energy range (visible light region). These properties of ZnO surfaces are also evaluated for comparison with interfaces. - Graphical abstract: The structures of Ag/ZnO interface: Zn-termination (left) and O-termination (right). In this Ag/ZnO interface system, the ZnO (0001) surface is rotated 30°(R30), and Ag (111) surface is built (2×2) supercell, then a (2×√3) R30 Ag/ZnO interface is constructed using the supercell method (i.e. periodically repeated slabs). The lattice mismatch of (2×√3) R30 Ag/ZnO (2.6% mismatch) is smaller than that of (1×1) Ag/ZnO (11% mismatch).« less

  2. A mixture toxicity approach to predict the toxicity of Ag decorated ZnO nanomaterials.

    PubMed

    Azevedo, S L; Holz, T; Rodrigues, J; Monteiro, T; Costa, F M; Soares, A M V M; Loureiro, S

    2017-02-01

    Nanotechnology is a rising field and nanomaterials can now be found in a vast variety of products with different chemical compositions, sizes and shapes. New nanostructures combining different nanomaterials are being developed due to their enhancing characteristics when compared to nanomaterials alone. In the present study, the toxicity of a nanostructure composed by a ZnO nanomaterial with Ag nanomaterials on its surface (designated as ZnO/Ag nanostructure) was assessed using the model-organism Daphnia magna and its toxicity predicted based on the toxicity of the single components (Zn and Ag). For that ZnO and Ag nanomaterials as single components, along with its mixture prepared in the laboratory, were compared in terms of toxicity to ZnO/Ag nanostructures. Toxicity was assessed by immobilization and reproduction tests. A mixture toxicity approach was carried out using as starting point the conceptual model of Concentration Addition. The laboratory mixture of both nanomaterials showed that toxicity was dependent on the doses of ZnO and Ag used (immobilization) or presented a synergistic pattern (reproduction). The ZnO/Ag nanostructure toxicity prediction, based on the percentage of individual components, showed an increase in toxicity when compared to the expected (immobilization) and dependent on the concentration used (reproduction). This study demonstrates that the toxicity of the prepared mixture of ZnO and Ag and of the ZnO/Ag nanostructure cannot be predicted based on the toxicity of their components, highlighting the importance of taking into account the interaction between nanomaterials when assessing hazard and risk. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole.

    PubMed

    Liao, Xue; Chen, Yanhua; Qin, Meihong; Chen, Yang; Yang, Lei; Zhang, Hanqi; Tian, Yuan

    2013-12-15

    In this paper, Au-Ag-Au double shell nanoparticles were prepared based on the reduction of the metal salts HAuCl4 and AgNO3 at the surface of seed particles. Due to the synergistic effect between Au and Ag, the hybrid nanoparticles are particularly stable and show excellent performances on the detection of 2-mercapto-1-methylimidazole (methimazole). The binding of target molecule at the surface of Au-Ag-Au double shell nanoparticles was demonstrated based on both localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) spectra. The LSPR intensity is directly proportional to the methimazole concentration in the range of 0.10-3.00×10(-7) mol L(-1). The SERS spectrum can be applied in identification of methimazole molecule. The LSPR coupled with SERS based on the Au-Ag-Au double shell nanoparticles would be very attractive for the quantitative determination and qualitative analysis of the analytes in medicines. © 2013 Elsevier B.V. All rights reserved.

  4. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hai-Xia; Wang, Xiao-Xu; Beijing Computing Center, Beijing 100094

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations showmore » that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.« less

  5. Mechanical and Electrical Performance of Thermally Stable Au-ZnO films

    DOE PAGES

    Schoeppner, Rachel L.; Goeke, Ronald S.; Moody, Neville R.; ...

    2015-03-28

    The mechanical properties, thermal stability, and electrical performance of Au–ZnO composite thin films are determined in this work. The co-deposition of ZnO with Au via physical vapor deposition leads to grain refinement over that of pure Au; the addition of 0.1 vol.% ZnO reduces the as-grown grain size by over 30%. The hardness of the as-grown films doubles with 2% ZnO, from 1.8 to 3.6 GPa as measured by nanoindentation. Films with ZnO additions greater than 0.5% show no significant grain growth after annealing at 350 °C, while pure gold and smaller additions do exhibit grain growth and subsequent mechanicalmore » softening. Films with 1% and 2% ZnO show a decrease of approximately 50% in electrical resistivity and no change in hardness after annealing. A model accounting for both changes in the interface structure between dispersed ZnO particles and the Au matrix captures the changes in mechanical and electrical resistivity. Furthermore, the addition of 1–2% ZnO co-deposited with Au provides a method to create mechanically hard and thermally stable films with a resistivity less than 80 nΩ-m. Our results complement previous studies of other alloying systems, suggesting oxide dispersion strengthened (ODS) gold shows a desirable hardness–resistivity relationship that is relatively independent of the particular ODS chemistry.« less

  6. Fabrication and surface-enhanced Raman scattering (SERS) of Ag/Au bimetallic films on Si substrates

    NASA Astrophysics Data System (ADS)

    Wang, Chaonan; Fang, Jinghuai; Jin, Yonglong; Cheng, Mingfei

    2011-11-01

    Ag films on Si substrates were fabricated by immersion plating and served as sacrificial materials for preparation of Ag/Au bimetallic films by galvanic replacement reaction. The formation procedure of films on the surface of Si was studied by scanning electron microscopy (SEM), which revealed Ag films with island and dendritic morphologies experienced novel structural evolution process during galvanic replacement reaction, and nanostructures with holes were produced within the resultant Ag/Au bimetallic films. SERS activity both of sacrificial Ag films and resultant Ag/Au bimetallic films was investigated by using crystal violet as an analyte. It has been shown that SERS signals increased with the process of galvanic substitution and reached intensity significantly stronger than that obtained from pure Ag films.

  7. An Atomically Precise Au10 Ag2 Nanocluster with Red-Near-IR Dual Emission.

    PubMed

    Lei, Zhen; Guan, Zong-Jie; Pei, Xiao-Li; Yuan, Shang-Fu; Wan, Xian-Kai; Zhang, Jin-Yuan; Wang, Quan-Ming

    2016-08-01

    A red-near-IR dual-emissive nanocluster with the composition [Au10 Ag2 (2-py-C≡C)3 (dppy)6 ](BF4 )5 (1; 2-py-C≡C is 2-pyridylethynyl, dppy=2-pyridyldiphenylphosphine) has been synthesized. Single-crystal X-ray structural analysis reveals that 1 has a trigonal bipyramidal Au10 Ag2 core that contains a planar Au4 (2-py-C≡C)3 unit sandwiched by two Au3 Ag(dppy)3 motifs. Cluster 1 shows intense red-NIR dual emission in solution. The visible emission originates from metal-to-ligand charge transfer (MLCT) from silver atoms to phosphine ligands in the Au3 Ag(dppy)3 motifs, and the intense NIR emission is associated with the participation of 2-pyridylethynyl in the frontier orbitals of the cluster, which is confirmed by a time-dependent density functional theory (TD-DFT) calculation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition

    PubMed Central

    Maijenburg, A. Wouter; Rodijk, Eddy J.B.; Maas, Michiel G.; ten Elshof, Johan E.

    2014-01-01

    Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution. PMID:24837535

  9. Heavy metals contamination and their risk assessment around the abandoned base metals and Au-Ag mines in Korea

    NASA Astrophysics Data System (ADS)

    Chon, Hyo-Taek

    2017-04-01

    Heavy metals contamination in the areas of abandoned Au-Ag and base metal mines in Korea was investigated in order to assess the level of metal pollution, and to draw general summaries about the fate of toxic heavy metals in different environments. Efforts have been made to compare the level of heavy metals, chemical forms, and plant uptake of heavy metals in each mine site. In the base-metals mine areas, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials and tailings. Leafy vegetables tend to accumulate heavy metals(in particular, Cd and Zn) higher than other crop plants, and high metal concentrations in rice crops may affect the local residents' health. In the Au-Ag mining areas, arsenic would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and the mobility of these metals would be enhanced by the effect of continuing weathering and oxidation. According to the sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. The concept of pollution index(PI) of soils gives important information on the extent and degree of multi-element contamination, and can be applied to the evaluation of mine soils before their agricultural use and remediation. The risk assessment process comprising exposure assessment, dose-response assessment, and risk characterization was discussed, and the results of non-cancer risk of As, Cd, and Zn, and those of cancer risk of As were suggested.

  10. Au-Ag-Cu nano-alloys: tailoring of permittivity

    PubMed Central

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-01-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective. PMID:27118459

  11. AuNPs Hybrid Black ZnO Nanorods Made by a Sol-Gel Method for Highly Sensitive Humidity Sensing.

    PubMed

    Zhang, Hongyan; Zhang, Min; Lin, Cunchong; Zhang, Jun

    2018-01-13

    A highly sensitive self-powered humidity sensor has been realized from AuNPs hybrid black zinc oxide (ZnO) nanorods prepared through a sol-gel method. XRD pattern reveals that both ZnO and ZnO/AuNPs exhibit a wurtzite structure. ZnO/AuNPs nanorods grow in a vertical alignment, which possesses high uniformity and forms dense arrays with a smaller diameter than that of ZnO nanoparticles. All ZnO/AuNPs and pure black ZnO show lower band gap energy than the typically reported 3.34 eV of pure ZnO. Furthermore, the band gap of ZnO/AuNPs nanocomposites is effectively influenced by the amount of AuNPs. The humidity sensing tests clearly prove that all the ZnO/AuNPs humidity sensors exhibit much higher response than that of ZnO sensors, and the sensitivity of such ZnO/AuNPs nanorods (6 mL AuNPs) display a change three orders higher than that of pure ZnO with relative humidity (RH) ranging from 11% to 95% at room temperature. The response and recovery time of the ZnO/AuNPs are 5.6 s and 32.4 s, respectively. This study of the construction of semiconductor/noble metal sensors provides a rational way to control the morphology of semiconductor nanomaterials and to design a humidity sensor with high performance.

  12. Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril'sk sulfide ores

    NASA Astrophysics Data System (ADS)

    Spiridonov, E. M.; Kulagov, E. A.; Serova, A. A.; Kulikova, I. M.; Korotaeva, N. N.; Sereda, E. V.; Tushentsova, I. N.; Belyakov, S. N.; Zhukov, N. N.

    2015-09-01

    The undeformed ore-bearing intrusions of the Noril'sk ore field (NOF) cut through volcanic rocks of the Late Permian-Early Triassic trap association folded in brachysynclines. Due to the nonuniform load on the roof of intrusive bodies, most sulfide melts were squeezed, up to the tops of ore-bearing intrusions; readily fusible Ni-Fe-Cu sulfide melts were almost completely squeezed. In our opinion, not only one but two stages of mineralization developed at the Noril'sk deposits: (i) syntrap magmatic and (ii) epigenetic post-trap metamorphic-hydrothermal. All platinum-group minerals (PGM) and minerals of gold are metasomatic in the Noril'sk ores. They replaced sulfide solid solutions and exsolution structures. All types of PGM and Au minerals occur in the ores, varying in composition from pyrrhotite to chalcopyrite, talnakhite, mooihoekite, and rich in galena; they are localized in the inner and outer contact zones and differ only in the quantitative proportions of ore minerals. The aureoles of PGM and Au-Ag minerals are wider than the contours of sulfide bodies and coincide with halos of fluid impact on orebodies and adjacent host rocks. The pneumatolytic PGM and Au-Ag minerals are correlated in abundance with the dimensions of sulfide bodies. Their amounts are maximal in veins of late fusible ore composed of eutectic PbS ss and iss intergrowths, as well as at their contacts. The Pd and Pt contents in eutectic sulfide ores of NOF are the world's highest. In the process of noble-metal mineral formation, the fluids supply Pd, Pt, Au, As, Sb, Sn, Bi, and a part of Te, whereas Fe, Ni, Cu, Pb, Ag, Rh, a part of Te and Pd are leached from the replaced sulfide minerals. The pneumatolytic PGM of the early stage comprises Pd and Pt intermetallic compounds enriched in Au along with Pd-Pt-Fe-Ni-Cu-Sn-Pb(As) and (Pd,Pt,Au)(Sn,Sb,Bi,Te,As) solid solutions. Pneumatolytic PGM and Au minerals of the middle stage are products of solid-phase transformation and recrystallization of

  13. Mechanical behavior enhancement of ZnO nanowire by embedding different nanowires

    NASA Astrophysics Data System (ADS)

    Vazinishayan, Ali; Yang, Shuming; Lambada, Dasaradha Rao; Wang, Yiming

    2018-06-01

    In this work, we employed commercial finite element modeling (FEM) software package ABAQUS to analyze mechanical properties of ZnO nanowire before and after embedding with different kinds of nanowires, having different materials and cross-section models such as Au (circular), Ag (pentagonal) and Si (rectangular) using three point bending technique. The length and diameter of the ZnO nanowire were measured to be 12,280 nm and 103.2 nm, respectively. In addition, Au, Ag and Si nanowires were considered to have the length of 12,280 nm and the diameter of 27 nm. It was found that after embedding Si nanowire with rectangular cross-section into the ZnO nanowire, the distribution of Von Misses stresses criterion, displacement and strain were decreased than the other nanowires embedded. The highest stiffness, the elastic deformation and the high strength against brittle failure have been made by Si nanowire comparison to the Au and Ag nanowires, respectively.

  14. Effect of Spin Multiplicity in O2 Adsorption and Dissociation on Small Bimetallic AuAg Clusters.

    PubMed

    García-Cruz, Raúl; Poulain, Enrique; Hernández-Pérez, Isaías; Reyes-Nava, Juan A; González-Torres, Julio C; Rubio-Ponce, A; Olvera-Neria, Oscar

    2017-08-17

    To dispose of atomic oxygen, it is necessary the O 2 activation; however, an energy barrier must be overcome to break the O-O bond. This work presents theoretical calculations of the O 2 adsorption and dissociation on small pure Au n and Ag m and bimetallic Au n Ag m (n + m ≤ 6) clusters using the density functional theory (DFT) and the zeroth-order regular approximation (ZORA) to explicitly include scalar relativistic effects. The most stable Au n Ag m clusters contain a higher concentration of Au with Ag atoms located in the center of the cluster. The O 2 adsorption energy on pure and bimetallic clusters and the ensuing geometries depend on the spin multiplicity of the system. For a doublet multiplicity, O 2 is adsorbed in a bridge configuration, whereas for a triplet only one O-metal bond is formed. The charge transfer from metal toward O 2 occupies the σ* O-O antibonding natural bond orbital, which weakens the oxygen bond. The Au 3 ( 2 A) cluster presents the lowest activation energy to dissociate O 2 , whereas the opposite applies to the AuAg ( 3 A) system. In the O 2 activation, bimetallic clusters are not as active as pure Au n clusters due to the charge donated by Ag atoms being shared between O 2 and Au atoms.

  15. Spectrum-enhanced Au@ZnO plasmonic nanoparticles for boosting dye-sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Liu, Qisheng; Wei, Yunwei; Shahid, Malik Zeeshan; Yao, Mingming; Xu, Bo; Liu, Guangning; Jiang, Kejian; Li, Cuncheng

    2018-03-01

    Spectrum-enhanced Au@ZnO plasmonic nanoparticles (NPs) are developed for fabrication of the dye-sensitized solar cells (DSSCs), and their remarkable enhanced performances are achieved due to Surface Plasmon Resonance (SPR) effects. When being doped different blended amounts of the Au@ZnO NPs within the photoanode layers, various enhanced effects in the SPR-based DSSCs are exhibited. Compared with the power conversion efficiency (PCE, 7.50%) achieved for bare DSSC, device with doped Au@ZnO NPs of 1.93% delivers the top PCE of 8.91%, exhibiting about 20% enhancement. To elaborate the charge transfer process in the Au@ZnO NPs blended DSSCs, the photoluminescence (PL), electrochemical impedance spectra (EIS), etc are performed. We find that both the enhanced SPR absorption properties and the suppressed recombination process of charges contribute much to the improved performance of Au@ZnO-incorporated DSSCs.

  16. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    NASA Astrophysics Data System (ADS)

    Nakate, U. T.; Bulakhe, R. N.; Lokhande, C. D.; Kale, S. N.

    2016-05-01

    The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  17. AuNPs Hybrid Black ZnO Nanorods Made by a Sol-Gel Method for Highly Sensitive Humidity Sensing

    PubMed Central

    Zhang, Min; Lin, Cunchong; Zhang, Jun

    2018-01-01

    A highly sensitive self-powered humidity sensor has been realized from AuNPs hybrid black zinc oxide (ZnO) nanorods prepared through a sol-gel method. XRD pattern reveals that both ZnO and ZnO/AuNPs exhibit a wurtzite structure. ZnO/AuNPs nanorods grow in a vertical alignment, which possesses high uniformity and forms dense arrays with a smaller diameter than that of ZnO nanoparticles. All ZnO/AuNPs and pure black ZnO show lower band gap energy than the typically reported 3.34 eV of pure ZnO. Furthermore, the band gap of ZnO/AuNPs nanocomposites is effectively influenced by the amount of AuNPs. The humidity sensing tests clearly prove that all the ZnO/AuNPs humidity sensors exhibit much higher response than that of ZnO sensors, and the sensitivity of such ZnO/AuNPs nanorods (6 mL AuNPs) display a change three orders higher than that of pure ZnO with relative humidity (RH) ranging from 11% to 95% at room temperature. The response and recovery time of the ZnO/AuNPs are 5.6 s and 32.4 s, respectively. This study of the construction of semiconductor/noble metal sensors provides a rational way to control the morphology of semiconductor nanomaterials and to design a humidity sensor with high performance. PMID:29342860

  18. Bimetallic Pt-Au Nanocatalysts on ZnO/Al2O3/Monolith for Air Pollution Control.

    PubMed

    Kim, Ki-Joong; Ahn, Ho-Geun

    2015-08-01

    The catalytic activity of a monolithic catalyst with nanosized Pt and Au particles on ZnO/Al2O3 (Pt-Au/ZnO/Al2O3/M) prepared by a wash-coat method was examined, specifically for toluene oxidation. Scanning electron microscopy image showed clearly the formation of a ZnO/Al2O3 layer on the monolith. Nanosized Pt-Au particles on ZnO/Al2O3/M with different sizes could be found in the Pt-Au/ZnO/Al2O3/M catalyst. The conversion of toluene decreased with increasing toluene concentration and was also largely affected by the feed flow rate. The Pt-Au/ZnO/Al2O3/M catalysts prepared in this work have almost the same activity (molecules of toluene per second) compared with a powder Pt-Au/ZnO/Al2O3 catalyst with the same loadings of Pt and Au components; thus this catalyst could be used in controlling air pollution with very low concentrations and high flow rate.

  19. Atomic structure of water/Au, Ag, Cu and Pt atomic junctions.

    PubMed

    Li, Yu; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2017-02-08

    Much progress has been made in understanding the transport properties of atomic-scale conductors. We prepared atomic-scale metal contacts of Cu, Ag, Au and Pt using a mechanically controllable break junction method at 10 K in a cryogenic vacuum. Water molecules were exposed to the metal atomic contacts and the effect of molecular adsorption was investigated by electronic conductance measurements. Statistical analysis of the electronic conductance showed that the water molecule(s) interacted with the surface of the inert Au contact and the reactive Cu ant Pt contacts, where molecular adsorption decreased the electronic conductance. A clear conductance signature of water adsorption was not apparent at the Ag contact. Detailed analysis of the conductance behaviour during a contact-stretching process indicated that metal atomic wires were formed for the Au and Pt contacts. The formation of an Au atomic wire consisting of low coordination number atoms leads to increased reactivity of the inert Au surface towards the adsorption of water.

  20. Au@Ag core/shell cuboids and dumbbells: Optical properties and SERS response

    NASA Astrophysics Data System (ADS)

    Khlebtsov, Boris N.; Liu, Zhonghui; Ye, Jian; Khlebtsov, Nikolai G.

    2015-12-01

    Recent studies have conclusively shown that the plasmonic properties of Au nanorods can be finely controlled by Ag coating. Here, we investigate the effect of asymmetric silver overgrowth of Au nanorods on their extinction and surface-enhanced Raman scattering (SERS) properties for colloids and self-assembled monolayers. Au@Ag core/shell cuboids and dumbbells were fabricated through a seed-mediated anisotropic growth process, in which AgCl was reduced by use of Au nanorods with narrow size and shape distribution as seeds. Upon tailoring the reaction rate, monodisperse cuboids and dumbbells were synthesized and further transformed into water-soluble powders of PEGylated nanoparticles. The extinction spectra of AuNRs were in excellent agreement with T-matrix simulations based on size and shape distributions of randomly oriented particles. The multimodal plasmonic properties of the Au@Ag cuboids and dumbbells were investigated by comparing the experimental extinction spectra with finite-difference time-domain (FDTD) simulations. The SERS efficiencies of the Au@Ag cuboids and dumbbells were compared in two options: (1) individual SERS enhancers in colloids and (2) self-assembled monolayers formed on a silicon wafer by drop casting of nanopowder solutions mixed with a drop of Raman reporters. By using 1,4-aminothiophenol Raman reporter molecules, the analytical SERS enhancement factor (AEF) of the colloidal dumbbells was determined to be 5.1×106, which is an order of magnitude higher than the AEF=4.0×105 for the cuboids. This difference can be explained by better fitting of the dumbbell plasmon resonance to the excitation laser wavelength. In contrast to the colloidal measurements, the AEF=5×107 of self-assembled cuboid monolayers was almost twofold higher than that for dumbbell monolayers, as determined with rhodamine 6G Raman reporters. According to TEM data and electromagnetic simulations, the better SERS response of the self-assembled cuboids is due to uniform

  1. ZnO:Ag nanorods as efficient photocatalysts: Sunlight driven photocatalytic degradation of sulforhodamine B

    NASA Astrophysics Data System (ADS)

    Raji, R.; K. S., Sibi; K. G., Gopchandran

    2018-01-01

    Visible light responsive highly photocatalytic ZnO:Ag nanorods with varying Ag concentration were synthesized via co-precipitation method. X-ray diffraction analysis and high resolution transmission electron microscopy investigations confirmed the hexagonal wurtzite phase for these ZnO:Ag nanorods with preferential growth along the (101) plane. Raman shift and luminescence measurements indicated that the incorporation of Ag influences the lattice vibrational modes; there by causing distortion in lattice, inducing silent vibrational modes and emission behavior by quenching of both the band edge and visible emissions respectively. The photocatalytic performance of these nanorods as catalysts was tested by observing the photodegradation of a representative dye pollutant, viz., sulforhodamine B under sunlight irradiation. Photocatalytic performance was evaluated by determining the rate of reaction kinetics, photodegradation efficiency and mineralization efficiency. A high rate constant of 0.552 min-1, chemical oxygen demand value of 5.8 ppm and a mineralization efficiency of 94% were obtained when ZnO: Ag nanorods with an Ag content of 1.5 at.% were used as catalysts. The observed increase in photocatalytic efficiency with Ag content in ZnO:Ag nanorods is attributed to the electron scavenging action of silver, Schottky barrier between the Ag and ZnO interface and the better utilization of sunlight due to enhanced absorption due to plasmons in the visible region. BET analysis indicated that silver doping causes effective surface area of nanorods to increase, which in turn increases the photocatalytic efficiency. The possible mechanism for degradation of dye under sunlight irradiation is described with a schematic and the photostability of the ZnO:Ag nanorods were also tested through five repetitive cycles. This work suggests that the prepared ZnO:Ag nanorods are excellent reusable photocatalysts for the degradation of toxic organic waste in water, which causes severe

  2. Au/n-ZnO rectifying contact fabricated with hydrogen peroxide pretreatment

    NASA Astrophysics Data System (ADS)

    Gu, Q. L.; Cheung, C. K.; Ling, C. C.; Ng, A. M. C.; Djurišić, A. B.; Lu, L. W.; Chen, X. D.; Fung, S.; Beling, C. D.; Ong, H. C.

    2008-05-01

    Au contacts were deposited on n-type ZnO single crystals with and without hydrogen peroxide pretreatment for the ZnO substrate. The Au/ZnO contacts fabricated on substrates without H2O2 pretreatment were Ohmic and those with H2O2 pretreatment were rectifying. With an aim of fabricating a good quality Schottky contact, the rectifying property of the Au/ZnO contact was systemically investigated by varying the treatment temperature and duration. The best performing Schottky contact was found to have an ideality factor of 1.15 and a leakage current of ˜10-7 A cm-2. A multispectroscopic study, including scanning electron microscopy, positron annihilation spectroscopy, deep level transient spectroscopy, x-ray photoelectron spectroscopy, and photoluminescence, showed that the H2O2 treatment removed the OH impurity and created Zn-vacancy related defects hence decreasing the conductivity of the ZnO surface layer, a condition favorable for forming good Schottky contact. However, the H2O2 treatment also resulted in a deterioration of the surface morphology, leading to an increase in the Schottky contact ideality factor and leakage current in the case of nonoptimal treatment time and temperature.

  3. Study on surface-enhanced Raman scattering efficiency of Ag core-Au shell bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Gu, Huaimin; Kang, Jian; Yuan, Xiaojuan

    2009-08-01

    In this article, the relationship between the states of Ag core-Au shell (core-shell) nanoparticles (NP) and the intensity of Raman scattering of analytes dissolved in the water and adsorbed on the NP was studied. The core-shell NP were synthesised by coating Au layers over Ag seeds by the method of "seed-growth". To highlight the advantage of the core-shell NP, Ag colloid and Au colloid were chosen for contrasting. The analyte that were chosen for this testing were methylene blue (MB) for the reason that MB has very strong signal in surface-enhanced Raman scattering (SERS). The SERS activity of optimalizing states of Ag and Au colloids were compared with that of core-shell NP when MB was used as analyte. In this study, sodium chloride, sodium sulfate and sodium nitrate were used as aggregating agents for Ag, Au colloids and core-shell NP, because anions have a strong influence on the SERS efficiency and the stability of colloids. The results indicate that core-shell NP can obviously enhance the SERS of MB. The aim of this study is to prove that compared with the metal colloid, the core-shell NP is a high efficiency SERS active substrate.

  4. Hydrothermal synthesis of coral-like Au/ZnO catalyst and photocatalytic degradation of Orange II dye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P.K.; Lee, G.J.; Davies, S.H.

    Highlights: ► Coral-like Au/ZnO was successfully prepared using green synthetic method. ► Gold nanoparticles were deposited on the ZnO structure using NaBH{sub 4} and β-D-glucose. ► Coral-like Au/ZnO exhibited superior photocatalytic activity to degrade Orange II. - Abstract: A porous coral-like zinc oxide (c-ZnO) photocatalyst was synthesized by the hydrothermal method. The coral-like structure was obtained by precipitating Zn{sub 4}(CO{sub 3})(OH){sub 6}·H{sub 2}O (ZnCH), which forms nanosheets that aggregate together to form microspheres with the coral-like structure. X-ray diffraction (XRD) studies indicate that after heating at 550 °C the ZnCH microspheres can be converted to ZnO microspheres with a morphologymore » similar to that of ZnCH microspheres. Thermogravimetric analysis (TGA) shows this conversion takes place at approximately 260 °C. A simple electrostatic self-assembly method has been employed to uniformly disperse Au nanoparticles (1 wt.%) on the ZnO surface. In this procedure β-D-glucose was used to stabilize the Au nanoparticles. Scanning electron microscope images indicate that the diameter of coral-like ZnO microspheres (c-ZnO) is about 8 μm. X-ray diffraction reveals that the ZnO is highly crystalline with a wurtzite structure and the Au metallic particles have an average size of about 13 nm. X-ray photoelectron spectroscopic (XPS) studies have confirmed the presence of ZnO and also showed that the Au is present in the metallic state. The photocatalytic degradation of Orange II dye, with either ultraviolet or visible light, is faster on Au/c-ZnO than on c-ZnO.« less

  5. Effects on the optical properties and conductivity of Ag-N co-doped ZnO

    NASA Astrophysics Data System (ADS)

    Xu, Zhenchao; Hou, Qingyu; Qu, Lingfeng

    2017-01-01

    Nowadays, the studies of the effects on the optical bandgap, absorption spectrum, and electrical properties of Ag-N co-doped ZnO have been extensively investigated. However, Ag and N atoms in doped systems are randomly doped, and the asymmetric structure of ZnO is yet to be explored. In this paper, the geometric structure, stability, density of states, absorption spectra and conductivity of pure and Ag-N co-doped Zn1-xAgxO1-xNx(x=0.03125, 0.0417 and 0.0625) in different orientations are calculated by using plane-wave ultrasoft pseudopotential on the basis of density functional theory with GGA+U method. Results show that the volume, equivalent total energy and formation energy of the doped system increase as the concentration of Ag-N co-doped Zn1-xAgxO1-xNx increases at the same doping mode. The doped systems also become unstable, and difficulty in doping. At the same concentration of Ag-N co-doped Zn1-xAgxO1-xNx, the systems with Ag-N along the c-axis orientation is unstable, and doping is difficult. The optical bandgap of Ag-N co-doped systems is narrower than that of the pure ZnO. At the same doping mode, the optical bandgap of the systems with Ag-N perpendicular to the c-axis orientation becomes narrow as the concentration of Ag-N co-doped Zn1-xAgxO1-xNx increases. The absorption spectra of the doped systems exhibit a red shift, and this red shift becomes increasingly significant as the concentration of Ag-N co-doped Zn1-xAgxO1-xNx increases. Under the same condition, the relative hole concentrations of the doped systems increases, the hole effective mass in valence band maximum decreases, the hole mobility decreases, the ionization energy decreases, Bohr radius increases, the conductance increases and the conductivity become better. Our results may be used as a basis for the designing and preparation of new optical and electrical materials for Ag-N co-doped ZnO applied in low temperature end of temperature difference battery.

  6. ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents.

    PubMed

    Saravanan, R; Mansoob Khan, M; Gupta, Vinod Kumar; Mosquera, E; Gracia, F; Narayanan, V; Stephen, A

    2015-08-15

    A ternary ZnO/Ag/CdO nanocomposite was synthesized using thermal decomposition method. The resulting nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, and X-ray photoelectron spectroscopy. The ZnO/Ag/CdO nanocomposite exhibited enhanced photocatalytic activity under visible light irradiation for the degradation of methyl orange and methylene blue compared with binary ZnO/Ag and ZnO/CdO nanocomposites. The ZnO/Ag/CdO nanocomposite was also used for the degradation of the industrial textile effluent (real sample analysis) and degraded more than 90% in 210 min under visible light irradiation. The small size, high surface area and synergistic effect in the ZnO/Ag/CdO nanocomposite is responsible for high photocatalytic activity. These results also showed that the Ag nanoparticles induced visible light activity and facilitated efficient charge separation in the ZnO/Ag/CdO nanocomposite, thereby improving the photocatalytic performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A first principles study on the electronic origins of silver segregation at the Ag-Au (111) surface

    NASA Astrophysics Data System (ADS)

    Hoppe, Sandra; Müller, Stefan

    2017-12-01

    The special electronic structure of gold gives rise to many interesting phenomena, such as its color. The surface segregation of the silver-gold system has been the subject of numerous experimental and theoretical studies, yielding conflicting results ranging from strong Ag surface enrichment to Au surface segregation. Via a combined approach of density functional theory (DFT) and statistical physics, we have analyzed the segregation at the Ag-Au (111) surface with different Ag bulk concentrations. Interestingly, we observe a moderate Au surface segregation, which is due to a charge transfer from the less electronegative Ag to Au. Canonical Monte Carlo simulations suggest that the calculated concentration profile with a Au-enriched surface layer remains stable up to higher temperatures. However, the presence of adsorbed oxygen reverses the segregation behavior and leads to strong Ag enrichment of the surface layer.

  8. Synthesis of highly efficient antibacterial agent Ag doped ZnO nanorods: Structural, Raman and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan, Tariq; Iqbal, Javed, E-mail: javed.saggu@iiu.edu.pk; Ismail, Muhammad

    Here, synthesis, structural, morphological, Raman, optical properties and antibacterial activity of undoped and Ag doped ZnO nanorods by chemical co-precipitation technique have been reported. Structural analysis has revealed that Ag doping cannot deteriorate the structure of ZnO and wurtzite phase is maintained. Lattice constants are found to be decreased with the Ag doping. Fourier transform infrared and Raman spectroscopy also confirm the X-ray diffraction results. Scanning electron microscopy results have demonstrated the formation of ZnO nanorods with average diameter and length of 96 nm and 700 nm, respectively. Raman spectroscopy results suggest that the Ag doping enhances the number of defects inmore » ZnO crystal. It has been found from optical study that Ag doping results in positional shift of band edge absorption peak. This is attributed to the successful incorporation of Ag dopant into ZnO host matrix. The antibacterial activity of prepared nanorods has been determined by two different methods and compared to that of undoped ZnO nanorods. Ag doped ZnO nanorods exhibit excellent antibacterial activity as compared to that of undoped ZnO nanorods. This excellent antibacterial activity may be attributed to the presence of oxygen vacancies and Zn{sup 2+} interstitial defects. Our preliminary findings suggest that Ag doped ZnO nanorods can be used externally to control the spreading of infections related with tested bacterial strains.« less

  9. Multi-angle ZnO microstructures grown on Ag nanorods array for plasmon-enhanced near-UV-blue light emitter

    NASA Astrophysics Data System (ADS)

    Pal, Anil Kumar; Bharathi Mohan, D.

    2017-10-01

    Metal enhanced ultraviolet light emission has been explored in ZnO/Ag hybrid structures prepared by hydrothermal growth of multi-angled ZnO nanorods on slanted Ag nanorods array fabricated by the thermal evaporation technique. Slanted Ag nanorods are realized to be the stacking of non-spherical Ag nanoparticles, resulting in asymmetric surface plasmon resonance spectra. The surface roughness of Ag nanorod array films significantly influences the growth mechanism of ZnO nanorods, leading to the formation of multi-angled ZnO microflowers. ZnO/Ag hybrid structures facilitate the interfacial charge transfer from Ag to ZnO with the realization of negative shift in binding energy of Ag 3d orbitals by ˜0.8 eV. These high quality ZnO nanorods in ZnO/Ag hybrid nanostructures exhibit strong ultraviolet emission in the 383-396 nm region without broad deep level emission, which can be explained by a suitable band diagram. The metal enhanced photoluminescence is witnessed mainly due to interfacial charge transfer with its dependence on surface roughness of bottom layer Ag nanorods, number density of ZnO nanorods and diversity in the interfacial area between Ag and ZnO nanorods. The existence of strong ultraviolet light with minor blue light emission and appearance of CIE shade in strong violet-blue region by ZnO/Ag hybrid structures depict exciting possibilities towards near UV-blue light emitting devices.

  10. Multi-angle ZnO microstructures grown on Ag nanorods array for plasmon-enhanced near-UV-blue light emitter.

    PubMed

    Pal, Anil Kumar; Mohan, D Bharathi

    2017-10-13

    Metal enhanced ultraviolet light emission has been explored in ZnO/Ag hybrid structures prepared by hydrothermal growth of multi-angled ZnO nanorods on slanted Ag nanorods array fabricated by the thermal evaporation technique. Slanted Ag nanorods are realized to be the stacking of non-spherical Ag nanoparticles, resulting in asymmetric surface plasmon resonance spectra. The surface roughness of Ag nanorod array films significantly influences the growth mechanism of ZnO nanorods, leading to the formation of multi-angled ZnO microflowers. ZnO/Ag hybrid structures facilitate the interfacial charge transfer from Ag to ZnO with the realization of negative shift in binding energy of Ag 3d orbitals by ∼0.8 eV. These high quality ZnO nanorods in ZnO/Ag hybrid nanostructures exhibit strong ultraviolet emission in the 383-396 nm region without broad deep level emission, which can be explained by a suitable band diagram. The metal enhanced photoluminescence is witnessed mainly due to interfacial charge transfer with its dependence on surface roughness of bottom layer Ag nanorods, number density of ZnO nanorods and diversity in the interfacial area between Ag and ZnO nanorods. The existence of strong ultraviolet light with minor blue light emission and appearance of CIE shade in strong violet-blue region by ZnO/Ag hybrid structures depict exciting possibilities towards near UV-blue light emitting devices.

  11. A Thermally Stable NiZn/Ta/Ni Scheme to Replace AuBe/Au Contacts in High-Efficiency AlGaInP-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyun; Park, Jae-Seong; Kang, Daesung; Seong, Tae-Yeon

    2017-08-01

    We developed NiZn/(Ta/)Ni ohmic contacts to replace expensive AuBe/Au contacts commonly used in high-efficiency AlGaInP-based light-emitting diodes (LEDs), and compared the electrical properties of the two contact types. Unlike the AuBe/Au (130 nm/100 nm) contact, the NiZn/Ta/Ni (130 nm/20 nm/100 nm) contact shows improved electrical properties after being annealed at 500°C, with a contact resistivity of 5.2 × 10-6 Ω cm2. LEDs with the NiZn/Ta/Ni contact exhibited a 4.4% higher output power (at 250 mW) than LEDs with the AuBe/Au contact. In contrast to the trend for the AuBe/Au contact, the Ga 2 p core level for the NiZn/Ta/Ni contact shifted toward lower binding energies after being annealed at 500°C. Auger electron spectroscopy (AES) depth profiles showed that annealing the AuBe/Au samples caused the outdiffusion of both Be and P atoms into the metal contact, whereas in the NiZn/Ta/Ni samples, Zn atoms indiffused into the GaP layer. The annealing-induced electrical degradation and ohmic contact formation mechanisms are described and discussed on the basis of the results of x-ray photoemission spectroscopy and AES.

  12. Dissociative adsorption of water on Au/MgO/Ag(001) from first principles calculations

    NASA Astrophysics Data System (ADS)

    Nevalaita, J.; Häkkinen, H.; Honkala, K.

    2015-10-01

    The molecular and dissociative adsorption of water on a Ag-supported 1 ML, 2 ML and 3 ML-a six atomic layer-thick MgO films with a single Au adatom is investigated using density functional theory calculations. The obtained results are compared to a bulk MgO(001) surface with an Au atom. On thin films the negatively charged Au strengthens the binding of the polar water molecule due to the attractive Au-H interaction. The adsorption energy trends of OH and H with respect to the film thickness depend on an adsorption site. In the case OH or H binds atop Au on MgO/Ag(001), the adsorption becomes more exothermic with the increasing film thickness, while the reverse trend is seen when the adsorption takes place on bare MgO/Ag(001). This behavior can be explained by different bonding mechanisms identified with the Bader analysis. Interestingly, we find that the rumpling of the MgO film and the MgO-Ag interface distance correlate with the charge transfer over the thin film and the interface charge, respectively. Moreover, we employ a modified Born-Haber-cycle to analyze the effect of film thickness to the adsorption energy of isolated Au and OH species on MgO/Ag(001). The analysis shows that the attractive Coulomb interaction between the negatively charged adsorbate and the positive MgO-Ag-interface does not completely account for the weaker binding with increasing film thickness. The redox energy associated with the charge transfer from the interface to the adsorbate is more exothermic with the increasing film thickness and partly compensates the decrease in the attractive Coulomb interaction.

  13. Laccase/AuAg Hybrid Glucose Microfludic Fuel Cell

    NASA Astrophysics Data System (ADS)

    López-González, B.; Cuevas-Muñiz, F. M.; Guerra-Balcázar, M.; Déctor, A.; Arjona, N.; Ledesma-García, J.; Arriaga, L. G.

    2013-12-01

    In this work a hybrid microfluidic fuel cell was fabricated and evaluated with a AuAg/C bimetallic material for the anode and an enzymatic cathode. The cathodic catalyst was prepared adsorbing laccase and ABTS on Vulcan carbon (Lac-ABTS/C). This material was characterized by FTIR-ATR, the results shows the presence of absorption bands corresponding to the amide bounds. The electrochemical evaluation for the materials consisted in cyclic voltammetry (CV). The glucose electrooxidation reaction in AuAg/C occurs around - 0.3 V vs. NHE. Both electrocatalytic materials were placed in a microfluidic fuel cell. The fuel cell was fed with PBS pH 5 oxygen saturated solution in the cathodic compartment and 5 mM glucose + 0.3 M KOH in the anodic side. Several polarization curves were performed and the maximum power density obtained was 0.3 mWcm-2 .

  14. Pulse laser ablation of Au, Ag, and Cu metal targets in liquid for nanoparticle production

    NASA Astrophysics Data System (ADS)

    Herbani, Y.; Irmaniar; Nasution, R. S.; Mujtahid, F.; Masse, S.

    2018-03-01

    We have fabricated metal and oxide nanoparticles using pulse laser ablation of Au, Ag, and Cu metal targets immersed in water. While laser ablation of Au and Ag targets in water produced metal nanoparticles which were stable for a month even without any dispersant, we found CuO nanoparticles for Cu target due to rapid oxidation of Cu in water resulted in its poor stability. Au, Ag, and CuO nanoparticles production were barely identified by naked eyes for their distinctive colour of red, yellow, and dark green colloidal suspensions, respectively. It was also verified using UV-Vis spectrometer that Au, Ag, and CuO colloidal nanoparticles have their respective surface plasmon resonance at 520, 400, and 620 nm. TEM observation showed that particle sizes for all the fabricated nanoparticles were in the range of 20 – 40 nm with crystalline structures.

  15. Photodegradation of Acid Violet 7 with AgBr-ZnO under highly alkaline conditions.

    PubMed

    Krishnakumar, B; Swaminathan, M

    2012-12-01

    The photocatalytic activity of AgBr-ZnO was investigated for the degradation of Acid Violet 7 (AV 7) in aqueous solution using UV-A light. AgBr-ZnO is found to be more efficient than commercial ZnO and prepared ZnO at pH 12 for the mineralization of AV 7. The effects of operational parameters such as the amount of photocatalyst, dye concentration, initial pH on photo mineralization have been analyzed. Expect oxone, other oxidants decrease the degradation efficiency. Addition of metal ions and anions decrease the degradation efficiency of AgBr-ZnO significantly. The mineralization of AV 7 has also been confirmed by COD measurements. The mechanism of degradation by AgBr-ZnO is proposed to explain its higher activity under UV light. The catalyst is found to be reusable. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Tuning the emission of ZnO nanorods based light emitting diodes using Ag doping

    NASA Astrophysics Data System (ADS)

    Echresh, Ahmad; Chey, Chan Oeurn; Shoushtari, Morteza Zargar; Nur, Omer; Willander, Magnus

    2014-11-01

    We have fabricated, characterized, and compared ZnO nanorods/p-GaN and n-Zn0.94Ag0.06O nanorods/p-GaN light emitting diodes (LEDs). Current-voltage measurement showed an obvious rectifying behaviour of both LEDs. A reduction of the optical band gap of the Zn0.94Ag0.06O nanorods compared to pure ZnO nanorods was observed. This reduction leads to decrease the valence band offset at n-Zn0.94Ag0.06O nanorods/p-GaN interface compared to n-ZnO nanorods/p-GaN heterojunction. Consequently, this reduction leads to increase the hole injection from the GaN to the ZnO. From electroluminescence measurement, white light was observed for the n-Zn0.94Ag0.06O nanorods/p-GaN heterojunction LEDs under forward bias, while for the reverse bias, blue light was observed. While for the n-ZnO nanorods/p-GaN blue light dominated the emission in both forward and reverse biases. Further, the LEDs exhibited a high sensitivity in responding to UV illumination. The results presented here indicate that doping ZnO nanorods might pave the way to tune the light emission from n-ZnO/p-GaN LEDs.

  17. ZnS-Au planet-like structure: a facile fabrication and improved optical performance induced by surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Yang, Chaoshun; An, Guofei; Zhou, Yawei; Zhao, Xiaopeng

    2013-05-01

    Semiconductor-metal planet-like structure composed of ZnS crystals and Au nanoparticles (NPs) were successfully synthesized using a simple method. The external surface of ZnS was pre-modified with sodium dodecyl sulfate (SDS). With the assistance of this anionic surfactant, Au NPs could be deposited onto the surface of ZnS crystals via electrostatic adsorption. The samples were structurally characterized by X-ray diffraction, Fourier transform infrared, and transmission electron microscope. It was shown that all samples were made up of face-centered cubic Au and wurtzite ZnS. In this structure, the surface coverage of Au NPs could be readily adjusted by varying the Au/ZnS ratio during the synthesis. Photoluminescence results showed that the defect emission intensity of the ZnS-Au planet-like structure improved by 20 % at the Au/ZnS molar ratio of 1:588, with the Au NPs measuring 12 nm in diameter. This enhancement can be primarily ascribed to localized surface plasmon resonance on the surface of the Au NPs.

  18. Sandwiched ZnO@Au@CdS nanorod arrays with enhanced visible-light-driven photocatalytical performance

    NASA Astrophysics Data System (ADS)

    Ren, Shoutian; Wang, Yingying; Fan, Guanghua; Gao, Renxi; Liu, Wenjun

    2017-11-01

    The development of high-performance photocatalysts is central to efforts focused on taking advantage of solar energy to overcome environmental and energy crises. Integrating different functional materials artfully into nanostructures can deliver more efficient photocatalytic activity. Here, sandwiched ZnO@Au@CdS nanorod films were synthesized via successive ZnO nanorod electrodeposition, Au sputtering and CdS electrodeposition. The as-synthesized composites were characterized by UV-vis spectrophotometer, x-ray diffractometer, scanning and transmission electron microscopy. Their photocatalytic activity was assessed by degrading Rhodamine B solution under visible light irradiation. ZnO@Au@CdS exhibited better photocatalytic performance than ZnO@CdS throughout the visible light region, and the corresponding enhancement factor of Au nanoparticles was measured as a function of CdS loading amount, and it could reach 190% with CdS deposition for 1 min. The normalized rate constant could reach 0.387 h-1 for ZnO@Au@CdS-1min, which was equivalent to or better than results in reference photocatalysts. The enhancement mechanism of Au nanoparticles was estimated by comparing the monochromatic photocatalytic action spectra with the absorption spectrum of ZnO@Au@CdS, and it was mainly determined by incident photon energy. With selective excitation of Au nanoparticles by incident photons, the excited hot electrons in Au NPs are transferred to the conduction band of ZnO to boost photocatalytic reaction. With selective excitation of CdS, the enhanced interband absorption of CdS and relay station effect of Au nanoparticles should be responsible for the enhanced photocatalytic performance. Our work not only opens the door to the design of efficient supported photocatalysts, but also helps to understand the enhancement mechanism of LSPR effect on the photoelectric conversion of semiconductors.

  19. The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate

    PubMed Central

    Yanagiya, Shun-ichi; Van Nong, Ngo; Xu, Jianxiao; Pryds, Nini

    2010-01-01

    Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied. The addition of Ag and Zn was found to enhance the formation of CuAlO2 phase and to increase the electrical conductivity. The addition of Ag or Ag and Ni on the other hand decreases the electrical conductivity. The highest power factor of 1.26 × 10-4 W/mK2 was obtained for the addition of Ag and Zn at 1,060 K, indicating a significant improvement compared with the non-doped CuAlO2 sample.

  20. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application.

    PubMed

    Slaughter, Gymama; Stevens, Brian

    2015-11-16

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 mW/ cm² in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm², respectively.

  1. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application

    PubMed Central

    Slaughter, Gymama; Stevens, Brian

    2015-01-01

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 μW/ cm2 in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm2, respectively. PMID:26580661

  2. Origin and tectonic implications of the Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalaya: evidence from structures, Re-Os-Pb-S isotopes, and fluid inclusions

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Li, Wenchang; Qing, Chengshi; Lai, Yang; Li, Yingxu; Liao, Zhenwen; Wu, Jianyang; Wang, Shengwei; Dong, Lei; Tian, Enyuan

    2018-04-01

    The Zhaxikang Pb-Zn-Sb-Ag-(Au) deposits, located in the eastern part of northern Himalaya, totally contain more than 1.146 million tonnes (Mt) of Pb, 1.407 Mt of Zn, 0.345 Mt of Sb, and 3 kilotonnes (kt) of Ag. Our field observations suggest that these deposits are controlled by N-S trending and west- and steep-dipping normal faults, suggesting a hydrothermal rather than a syngenetic sedimentary origin. The Pb-Zn-Sb-Ag-(Cu-Au) mineralization formed in the Eocene as indicated by a Re-Os isochron age of 43.1 ± 2.5 Ma. Sulfide minerals have varying initial Pb isotopic compositions, with (206Pb/204Pb)i of 19.04-19.68, (207Pb/204Pb)i of 15.75-15.88, and (208Pb/204Pb)i of 39.66-40.31. Sulfur isotopic values display a narrow δ34S interval of +7.8-+12.2‰. These Pb-S isotopic data suggest that the Zhaxikang sources of Pb and S should be mainly from the coeval felsic magmas and partly from the surrounding Mesozoic strata including metasedimentary rocks and layered felsic volcanic rocks. Fluid inclusion studies indicate that the hydrothermal fluids have medium temperatures (200-336 °C) but varying salinities (1.40-18.25 wt.% NaCl equiv.) with densities of 0.75-0.95 g/cm3, possibly suggesting an evolution mixing between a high salinity fluid, perhaps of magmatic origin, with meteoric water.

  3. Study on swift heavy ions induced modifications of Ag-ZnO nanocomposite thin film

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.; Siva Kumar, V. V.

    2017-03-01

    In the present work, swift heavy ion (SHI) irradiation induced modifications in structural and optical properties of Ag-ZnO nanocomposite thin films have been investigated. Ag-ZnO nanocomposite (NCs) thin films were synthesized by RF magnetron sputtering technique and irradiated with 100 MeV Ag7+ ions at three different fluences 3 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. Rutherford Backscattering Spectrometry revealed Ag concentration to be ∼8.0 at.%, and measured thickness of the films was ∼55 nm. Structural properties of pristine and irradiated films have been analyzed by X-ray diffraction analysis and found that variation in crystallite size of the film with ion irradiation. X-ray photoelectron spectroscopy (XPS) indicates the formation of Ag-ZnO nanocomposite thin film with presence of Ag, Zn and O elements. Oxidation state of Ag and Zn also estimated by XPS analysis. Surface plasmon resonance (SPR) of Ag nanoparticle has appeared at ∼475 nm in the pristine thin film, which is blue shifted by ∼30 nm in film irradiated at fluence of 3 × 1012 ions/cm2 and completely disappeared in film irradiated at higher fluences, 1 × 1013 and 3 × 1013 ions/cm2. A marginal change in the optical band gap of Ag-ZnO nanocomposite thin film is also found with increasing ion fluence. Surface morphology of pristine and irradiated films have been studied using Atomic Force Microscopy (AFM). Raman and Photo-luminance (PL) spectra of nanocomposite thin films have been investigated to understand the ion induced modifications such as lattice defects and disordering in the nanocomposite thin film.

  4. Fabrication of Sb₂S₃ Hybrid Solar Cells Based on Embedded Photoelectrodes of Ag Nanowires-Au Nanoparticles Composite.

    PubMed

    Kim, Kang-Pil; Hwang, Dae-Kue; Woo, Sung-Ho; Kim, Dae-Hwan

    2018-09-01

    The Ag nanowire (NW) + Au nanoparticle (NP)-embedded TiO2 photoelectrodes were adopted for conventional planar TiO2-based Sb2S3 hybrid solar cells to improve the cell efficiency. Compared to conventional planar TiO2-based Sb2S3 hybrid solar cells, the Ag NW + Au NP/TiO2-based Sb2S3 hybrid solar cells exhibited an improvement of approximately 40% in the cell efficiency due to the significant increase in both Jsc and Voc. These enhanced Jsc and Voc were attributed to the increased surface area, charge-collection efficiency, and light absorption by embedding the Ag NWs + Au NPs composite. The Ag NW + Au NP/TiO2-based Sb2S3 hybrid solar cells showed the highest efficiency of 2.17%, demonstrating that the Ag NW + Au NP-embedded TiO2 photoelectrode was a suitable photoelectrode structure to improve the power conversion efficiency in the Sb2S3 hybrid solar cells.

  5. Preparation, characterization and dye adsorption of Au nanoparticles/ZnAl layered double oxides nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Yu Xin; Hao, Xiao Dong; Kuang, Min; Zhao, Han; Wen, Zhong Quan

    2013-10-01

    In this work, Au/ZnAl-layer double oxides (LDO) nanocomposties were prepared through a facile calcination process of AuCl4- intercalated ZnAl-layered double hydroxides (LDHs) nanocomposites. The morphology and crystal structure of these nanocomposites were characterized by Scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and N2 sorption analysis. By tailoring the process parameter, such as calcination temperature, heating time and the component composition, the adsorption properties of methyl orange (MO) on the Au/ZnAl-LDO nanocomposites were investigated in this work. In a typical adsorption process, it was found that 0.985 mg of MO (0.01 g L-1, 100 mL, 1 mg of MO in total) can be removed in 60 min by utilizing only 2.5 mg of Au/ZnAl-LDO (Au content, 1%) as adsorbents. Our adsorption data obtained from the Langmuir model also gave good values of the determination coefficient, and the saturated adsorption capacity of Au/ZnAl-LDO nanocomposites for MO was found to be 627.51 mg/g under ambient condition (e.g., room temperature, 1 atm). In principle, these hybrid nanostructures with higher adsorption abilities could be very promising adsorbents for wastewater treatment.

  6. Critical island size for Ag thin film growth on ZnO (0 0 0 1 bar)

    NASA Astrophysics Data System (ADS)

    Lloyd, Adam L.; Smith, Roger; Kenny, Steven D.

    2017-02-01

    Island growth of Ag on ZnO is investigated with the development of a new technique to approximate critical island sizes. Ag is shown to attach in one of three highly symmetric sites on the ZnO surface or initial monolayers of grown Ag. Due to this, a lattice based adaptive kinetic Monte Carlo (LatAKMC) method is used to investigate initial growth phases. As island formation is commonly reported in the literature, the critical island sizes of Ag islands on a perfect polar ZnO surface and a first monolayer of grown Ag on the ZnO surface are considered. A mean rate approach is used to calculate the average time for an Ag ad-atom to drop off an island and this is then compared to deposition rates on the same island. Results suggest that Ag on ZnO (0 0 0 1 bar) will exhibit Stranski-Krastanov (layer plus island) growth.

  7. Fabrication and photoelectrochemical properties of ZnS/Au/TiO2 nanotube array films.

    PubMed

    Zhu, Yan-Feng; Zhang, Juan; Xu, Lu; Guo, Ya; Wang, Xiao-Ping; Du, Rong-Gui; Lin, Chang-Jian

    2013-03-21

    A highly ordered TiO(2) nanotube array film was fabricated by an anodic oxidation method. The film was modified by Au nanoparticles (NPs) formed by a deposition-precipitation technique and was covered with a thin ZnS shell prepared by a successive ionic layer adsorption and reaction (SILAR) method. The photoelectrochemical properties of the prepared ZnS/Au/TiO(2) composite film were evaluated by incident photon-to-current conversion efficiency (IPCE), and photopotential and electrochemical impedance spectroscopy (EIS) measurements under white light illumination. The results indicated that the Au NPs could expand the light sensitivity range of the film and suppress the electron-hole recombination, and the ZnS shell could inhibit the leakage of photogenerated electrons from the surface of Au NPs to the ZnS/electrolyte interface. When the 403 stainless steel in a 0.5 M NaCl solution was coupled to the ZnS/Au/TiO(2) nanotube film photoanode under illumination, its potential decreased by 400 mV, showing that the composite film had a better photocathodic protection effect on the steel than that of a pure TiO(2) nanotube film.

  8. Tri-functional Fe2O3-encased Ag-doped ZnO nanoframework: magnetically retrievable antimicrobial photocatalyst

    NASA Astrophysics Data System (ADS)

    Karunakaran, Chockalingam; Vinayagamoorthy, Pazhamalai

    2016-11-01

    Fe2O3-encased ZnO nanoframework was obtained by hydrothermal method and was doped with Ag through photoreduction process. Energy dispersive x-ray spectroscopy, transmission electron microscopy (TEM), high resolution TEM, selected area electron diffractometry, x-ray diffractometry and Raman spectroscopy were employed for the structural characterization of the synthesized material. While the charge transfer resistance of the prepared nanomaterial is larger than those of Fe2O3 and ZnO the coercivity of the nanocomposite is less than that of hydrothermally obtained Fe2O3 nanostructures. Although Fe2O3/Ag-ZnO exhibits weak visible light absorption its band gap energy does not differ from that of ZnO. The photoluminescence of the fabricated nanoframework is similar to that of ZnO. The radiative recombination of charge carriers is slightly slower in Fe2O3/Ag-ZnO than in ZnO. The synthesized Fe2O3-encased Ag-doped ZnO, under UV A light, exhibits sustainable photocatalytic activity to degrade dye and is magnetically recoverable. Also, the Fe2O3/Ag-ZnO nanocomposite disinfects bacteria effectively in absence of direct illumination.

  9. Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells.

    PubMed

    Baek, Se-Woong; Park, Garam; Noh, Jonghyeon; Cho, Changsoon; Lee, Chun-Ho; Seo, Min-Kyo; Song, Hyunjoon; Lee, Jung-Yong

    2014-04-22

    In this report, we propose a metal-metal core-shell nanocube (NC) as an advanced plasmonic material for highly efficient organic solar cells (OSCs). We covered an Au core with a thin Ag shell as a scattering enhancer to build Au@Ag NCs, which showed stronger scattering efficiency than Au nanoparticles (AuNPs) throughout the visible range. Highly efficient plasmonic organic solar cells were fabricated by embedding Au@Ag NCs into an anodic buffer layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and the power conversion efficiency was enhanced to 6.3% from 5.3% in poly[N-9-hepta-decanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71-butyric acid methyl ester (PC70BM) based OSCs and 9.2% from 7.9% in polythieno[3,4-b]thiophene/benzodithiophene (PTB7):PC70BM based OSCs. The Au@Ag NC plasmonic PCDTBT:PC70BM-based organic solar cells showed 2.2-fold higher external quantum efficiency enhancement compared to AuNPs devices at a wavelength of 450-700 nm due to the amplified plasmonic scattering effect. Finally, we proved the strongly enhanced plasmonic scattering efficiency of Au@Ag NCs embedded in organic solar cells via theoretical calculations and detailed optical measurements.

  10. Studies on plasmon characteristics and the local density of states of Au and Ag based nanoparticles

    NASA Astrophysics Data System (ADS)

    Vinod, M.; Biju, V.; Gopchandran, K. G.

    2016-01-01

    Knowledge about the conductive properties and the local density of states of chemically pure Au, Ag, Ag@Au core-shell and Au-Ag bimetallic nanoparticles is technologically important. Herein, the I-V characteristics and the density of states derived from scanning tunneling microscopy measurements made under atmospheric conditions is reported. The nanoparticles in thin film form used in this study were prepared by laser ablation in water followed by drop and evaporation. The morphology of the surface of the nanostructures was observed from optimizing tunneling current in each case. The monometallic Au and Ag particles shows almost similar current characteristics as well as discrete energy states but the slope of I-V characteristics was different for bimetallic structures. An attempt has also been made to compare the current measurements done in the nanoscale with the surface plasmon characteristics.

  11. Dependence of nonlinear optical properties of Ag2S@ZnS core-shells on Zinc precursor and capping agent

    NASA Astrophysics Data System (ADS)

    Dehghanipour, M.; Khanzadeh, M.; Karimipour, M.; Molaei, M.

    2018-03-01

    In this research, four different types of Ag2S@ZnS core-shells were synthesized and their nonlinear optical (NLO) properties were investigated using a Z-scan technique by a 532 nm laser diode. Here, Ag2S and ZnS nanoparticles were also synthesized and their NLO properties were compared with Ag2S@ZnS core-shells. It was observed that the NLO properties of Ag2S@ZnS quantum dots significantly increased by increasing the values of Zn(NO3)2 and thioglycolic acid (TGA). It was also observed that the NLO properties of Ag2S@ZnS core-shells for 0.1 g of Zn(NO3)2 and 7000 μl TGA is higher than sole Ag2S and ZnS nanoparticles. In open aperture Z-scan curve of ZnS sample, a saturable absorption peak was observed and this peak was seen also in type of Ag2S@ZnS nanoparticles which the value of Zn(NO3)2 much more.

  12. Enhanced emission and photoconductivity due to photo-induced charge transfer from Au nanoislands to ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shang-Hsuan; Chan, Ching-Hsiang; Liang, Ching-Tarng

    2016-01-25

    We report systematic studies based on photoluminescence, Hall, and photoconductivity measurements together with theoretical modeling in order to identify mechanisms for the photo-induced charge transfer effects in ZnO thin film incorporated with the Au nano-islands (AuNIs). Significant enhancement of near band edge emission and improvement in conductivity of ZnO/AuNIs samples after illumination are observed, which are attributed to the photo-induced hot electrons in Au which are then transferred into the conduction band of ZnO as long as the excitation energy is higher than the offset between the ZnO conduction-band minimum and Au Fermi level. Our experimental results are consistent withmore » the general features predicted by first principles calculations.« less

  13. Doping Ag in ZnO Nanorods to Improve the Performance of Related Enzymatic Glucose Sensors.

    PubMed

    Zhou, Fan; Jing, Weixuan; Liu, Pengcheng; Han, Dejun; Jiang, Zhuangde; Wei, Zhengying

    2017-09-27

    In this paper, the performance of a zinc oxide (ZnO) nanorod-based enzymatic glucose sensor was enhanced with silver (Ag)-doped ZnO (ZnO-Ag) nanorods. The effect of the doped Ag on the surface morphologies, wettability, and electron transfer capability of the ZnO-Ag nanorods, as well as the catalytic character of glucose oxidase (GOx) and the performance of the glucose sensor was investigated. The results indicate that the doped Ag slightly weakens the surface roughness and hydrophilicity of the ZnO-Ag nanorods, but remarkably increases their electron transfer ability and enhances the catalytic character of GOx. Consequently, the combined effects of the above influencing factors lead to a notable improvement of the performance of the glucose sensor, that is, the sensitivity increases and the detection limit decreases. The optimal amount of the doped Ag is determined to be 2 mM, and the corresponding glucose sensor exhibits a sensitivity of 3.85 μA/(mM·cm²), detection limit of 1.5 μM, linear range of 1.5 × 10 -3 -6.5 mM, and Michaelis-Menten constant of 3.87 mM. Moreover, the glucose sensor shows excellent selectivity to urea, ascorbic acid, and uric acid, in addition to displaying good storage stability. These results demonstrate that ZnO-Ag nanorods are promising matrix materials for the construction of other enzymatic biosensors.

  14. Doping Ag in ZnO Nanorods to Improve the Performance of Related Enzymatic Glucose Sensors

    PubMed Central

    Zhou, Fan; Jing, Weixuan; Liu, Pengcheng; Han, Dejun; Jiang, Zhuangde; Wei, Zhengying

    2017-01-01

    In this paper, the performance of a zinc oxide (ZnO) nanorod-based enzymatic glucose sensor was enhanced with silver (Ag)-doped ZnO (ZnO-Ag) nanorods. The effect of the doped Ag on the surface morphologies, wettability, and electron transfer capability of the ZnO-Ag nanorods, as well as the catalytic character of glucose oxidase (GOx) and the performance of the glucose sensor was investigated. The results indicate that the doped Ag slightly weakens the surface roughness and hydrophilicity of the ZnO-Ag nanorods, but remarkably increases their electron transfer ability and enhances the catalytic character of GOx. Consequently, the combined effects of the above influencing factors lead to a notable improvement of the performance of the glucose sensor, that is, the sensitivity increases and the detection limit decreases. The optimal amount of the doped Ag is determined to be 2 mM, and the corresponding glucose sensor exhibits a sensitivity of 3.85 μA/(mM·cm2), detection limit of 1.5 μM, linear range of 1.5 × 10−3–6.5 mM, and Michaelis-Menten constant of 3.87 mM. Moreover, the glucose sensor shows excellent selectivity to urea, ascorbic acid, and uric acid, in addition to displaying good storage stability. These results demonstrate that ZnO-Ag nanorods are promising matrix materials for the construction of other enzymatic biosensors. PMID:28953217

  15. Antitumor Activity of Alloy and Core-Shell-Type Bimetallic AgAu Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shmarakov, Igor; Mukha, Iuliia; Vityuk, Nadiia; Borschovetska, Vira; Zhyshchynska, Nelya; Grodzyuk, Galyna; Eremenko, Anna

    2017-05-01

    Nanoparticles (NPs) of noble metals, namely gold and silver, remain promising anticancer agents capable of enhancing current surgery- and chemotherapeutic-based approaches in cancer treatment. Bimetallic AgAu composition can be used as a more effective agent due to the synergetic effect. Among the physicochemical parameters affecting gold and silver nanoparticle biological activity, a primary concern relates to their size, shape, composition, charge, etc. However, the impact of metal components/composition as well as metal topological distribution within NPs is incompletely characterized and remains to be further elucidated and clarified. In the present work, we tested a series of colloidal solutions of AgAu NPs of alloy and core-shell type for an antitumor activity depending on metal molar ratios (Ag:Au = 1:1; 1:3; 3:1) and topological distribution of gold and silver within NPs (AucoreAgshell; AgcoreAushell). The efficacy at which an administration of the gold and silver NPs inhibits mouse Lewis lung carcinoma (LLC) growth in vivo was compared. The data suggest that in vivo antitumor activity of the studied NPs strongly depends on gold and silver interaction arising from their ordered topological distribution. NPs with Ag core covered by Au shell were the most effective among the NPs tested towards LLC tumor growth and metastasizing inhibition. Our data show that among the NPs tested in this study, AgcoreAushell NPs may serve as a suitable anticancerous prototype.

  16. Highly Stretchable and Transparent Supercapacitor by Ag-Au Core-Shell Nanowire Network with High Electrochemical Stability.

    PubMed

    Lee, Habeom; Hong, Sukjoon; Lee, Jinhwan; Suh, Young Duk; Kwon, Jinhyeong; Moon, Hyunjin; Kim, Hyeonseok; Yeo, Junyeob; Ko, Seung Hwan

    2016-06-22

    Stretchable and transparent electronics have steadily attracted huge attention in wearable devices. Although Ag nanowire is the one of the most promising candidates for transparent and stretchable electronics, its electrochemical instability has forbidden its application to the development of electrochemical energy devices such as supercapacitors. Here, we introduce a highly stretchable and transparent supercapacitor based on electrochemically stable Ag-Au core-shell nanowire percolation network electrode. We developed a simple solution process to synthesize the Ag-Au core-shell nanowire with excellent electrical conductivity as well as greatly enhanced chemical and electrochemical stabilities compared to pristine Ag nanowire. The proposed core-shell nanowire-based supercapacitor still possesses fine optical transmittance and outstanding mechanical stability up to 60% strain. The Ag-Au core-shell nanowire can be a strong candidate for future wearable electrochemical energy devices.

  17. Photocatalytic degradation of lignin on synthesized Ag-AgCl/ZnO nanorods under solar light and preliminary trials for methane fermentation.

    PubMed

    Li, Huifang; Lei, Zhongfang; Liu, Chunguang; Zhang, Zhenya; Lu, Baowang

    2015-01-01

    New photocatalysts, Ag-AgCl/ZnO nanorods, were successfully synthesized in this study by using microwave assisted chemical precipitation and deposition-precipitation-photoreduction methods. The optimal preparation condition was determined as pH 9 in distilled water and 40min for UV light photoreduction of Ag (i.e. Ag40-AgCl/ZnO) by degradation of methyl orange. This work investigated the feasibility of using Ag40-AgCl/ZnO to degrade lignin under natural solar light and then subsequent methane production with influencing factors like solution pH, dosage of catalyst and initial lignin concentration being considered. OH radicals were found to play the most important role in the photocatalytic process, and the new prepared catalyst possessed stable photocatalytic activity after 7 cycles' utilization. During the subsequent biogasification, the degraded lignin obtained from 120min photocatalysis yielded 184ml methane and 325ml biogas for per gram of removed total organic carbon, increased by 10.9% and 23.1%, respectively compared to the control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Synergistic mechanism of Ag+-Zn2+ in anti-bacterial activity against Enterococcus faecalis and its application against dentin infection.

    PubMed

    Fan, Wei; Sun, Qing; Li, Yanyun; Tay, Franklin R; Fan, Bing

    2018-01-31

    Ag + and Zn 2+ have already been used in combinations to obtain both enhanced antibacterial effect and low cytotoxicity. Despite this, it is still unclear how the Zn 2+ co-works with Ag + in the synergistic antibacterial activity. The main purposes of this study were to investigate the co-work pattern and optimum ratio between Ag + and Zn 2+ in their synergistic antibacterial activity against E. faecalis, the possible mechanisms behind this synergy and the primary application of optimum Ag + -Zn 2+ co-work pattern against the E. faecalis biofilm on dentin. A serial of Ag + -Zn 2+ atomic combination ratios were tested on both planktonic and biofilm-resident E. faecalis on dentin, their antibacterial efficiency was calculated and optimum ratio determined. And the cytotoxicity of various Ag + -Zn 2+ atomic ratios was tested on MC3T3-E1 Cells. The role of Zn 2+ in Ag + -Zn 2+ co-work was evaluated using a Zn 2+ pretreatment study and membrane potential-permeability measurement. The results showed that the synergistically promoted antibacterial effect of Ag + -Zn 2+ combinations was Zn 2+ amount-dependent with the 1:9 and 1:12 Ag + -Zn 2+ atomic ratios showing the most powerful ability against both planktonic and biofilm-resident E. faecalis. This co-work could likely be attributed to the depolarization of E. faecalis cell membrane by the addition of Zn 2+ . The cytotoxicity of the Ag + -Zn 2+ atomic ratios of 1:9 and 1:12 was much lower than 2% chlorhexidine. The Ag + -Zn 2+ atomic ratios of 1:9 and 1:12 demonstrated similar strong ability against E. faecalis biofilm on dentin but much lower cytotoxicity than 2% chlorhexidine. New medications containing optimum Ag + -Zn 2+ atomic ratios higher than 1:6, such as 1:9 or 1:12, could be developed against E. faecalis infection in root canals of teeth or any other parts of human body.

  19. Bifunctional Ag@SiO 2 /Au Nanoparticles for Probing Sequential Catalytic Reactions by Surface-Enhanced Raman Spectroscopy

    DOE PAGES

    Wu, Yiren; Su, Dong; Qin, Dong

    2017-02-22

    Here, we report the synthesis of bifunctional Ag@SiO 2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl 4 solution into an aqueous suspension of Ag@SiO 2 core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO 2 shell in situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO 2 sea. Furthermore, by controlling the amount of HAuCl 4more » titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO 2 shell, embracing catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. And while the Ag in the core provides a strong surface-enhanced Raman scattering activity, the SiO 2 sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO 2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and Ag-catalyzed oxidation of 4-aminothiophenol to trans-4,4'-dimercaptoazobenzene by the O 2 from air in the same reaction system.« less

  20. Bifunctional Ag@SiO 2 /Au Nanoparticles for Probing Sequential Catalytic Reactions by Surface-Enhanced Raman Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yiren; Su, Dong; Qin, Dong

    Here, we report the synthesis of bifunctional Ag@SiO 2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl 4 solution into an aqueous suspension of Ag@SiO 2 core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO 2 shell in situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO 2 sea. Furthermore, by controlling the amount of HAuCl 4more » titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO 2 shell, embracing catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. And while the Ag in the core provides a strong surface-enhanced Raman scattering activity, the SiO 2 sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO 2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and Ag-catalyzed oxidation of 4-aminothiophenol to trans-4,4'-dimercaptoazobenzene by the O 2 from air in the same reaction system.« less

  1. Correlating structural dynamics and catalytic activity of AgAu nanoparticles with ultrafast spectroscopy and all-atom molecular dynamics simulations.

    PubMed

    Ferbonink, G F; Rodrigues, T S; Dos Santos, D P; Camargo, P H C; Albuquerque, R Q; Nome, R A

    2018-05-29

    In this study, we investigated hollow AgAu nanoparticles with the goal of improving our understanding of the composition-dependent catalytic activity of these nanoparticles. AgAu nanoparticles were synthesized via the galvanic replacement method with controlled size and nanoparticle compositions. We studied extinction spectra with UV-Vis spectroscopy and simulations based on Mie theory and the boundary element method, and ultrafast spectroscopy measurements to characterize decay constants and the overall energy transfer dynamics as a function of AgAu composition. Electron-phonon coupling times for each composition were obtained from pump-power dependent pump-probe transients. These spectroscopic studies showed how nanoscale surface segregation, hollow interiors and porosity affect the surface plasmon resonance wavelength and fundamental electron-phonon coupling times. Analysis of the spectroscopic data was used to correlate electron-phonon coupling times to AgAu composition, and thus to surface segregation and catalytic activity. We have performed all-atom molecular dynamics simulations of model hollow AgAu core-shell nanoparticles to characterize nanoparticle stability and equilibrium structures, besides providing atomic level views of nanoparticle surface segregation. Overall, the basic atomistic and electron-lattice dynamics of core-shell AgAu nanoparticles characterized here thus aid the mechanistic understanding and performance optimization of AgAu nanoparticle catalysts.

  2. Aligned hierarchical Ag/ZnO nano-heterostructure arrays via electrohydrodynamic nanowire template for enhanced gas-sensing properties.

    PubMed

    Yin, Zhouping; Wang, Xiaomei; Sun, Fazhe; Tong, Xiaohu; Zhu, Chen; Lv, Qiying; Ye, Dong; Wang, Shuai; Luo, Wei; Huang, YongAn

    2017-09-22

    Gas sensing performance can be improved significantly by the increase in both the effective gas exposure area and the surface reactivitiy of ZnO nanorods. Here, we propose aligned hierarchical Ag/ZnO nano-heterostructure arrays (h-Ag/ZnO-NAs) via electrohydrodynamic nanowire template, together with a subsequent hydrothermal synthesis and photoreduction reaction. The h-Ag/ZnO-NAs scatter at top for higher specific surface areas with the air, simultaneously contact at root for the electrical conduction. Besides, the ZnO nanorods are uniformly coated with dispersed Ag nanoparticles, resulting in a tremendous enhancement of the surface reactivity. Compared with pure ZnO, such h-Ag/ZnO-NAs exhibit lower electrical resistance and faster responses. Moreover, they demonstrate enhanced NO 2 gas sensing properties. Self-assembly via electrohydrodynamic nanowire template paves a new way for the preparation of high performance gas sensors.

  3. Ag-NPs embedded in two novel Zn3/Zn5-cluster-based metal-organic frameworks for catalytic reduction of 2/3/4-nitrophenol.

    PubMed

    Wu, Xue-Qian; Huang, Dan-Dan; Zhou, Zhi-Hang; Dong, Wen-Wen; Wu, Ya-Pan; Zhao, Jun; Li, Dong-Sheng; Zhang, Qichun; Bu, Xianhui

    2017-02-21

    By utilizing symmetrical pentacarboxylate ligands, 3,5-di(2',5'-dicarboxylphenyl)benzoic acid (H 5 L1) and 3,5-di(2',4'-dicarboxylphenyl)benzoic acid (H 5 L2), two novel porous Zn-MOFs, [Zn 5 (μ 3 -H 2 O) 2 (L1) 2 ]·3DMA·4H 2 O (CTGU-3) and [Zn 3 (μ 3 -OH)L2(H 2 O) 3 ]·H 2 O (CTGU-4) have been synthesized under solvothermal conditions. CTGU-3 and CTGU-4 exhibit 3D microporous frameworks with flu and dia topologies and possess unique secondary building units [Zn 5 (μ 3 -H 2 O) 2 (RCO 2 ) 6 ] and [Zn 3 (μ 3 -OH)(RCO 2 ) 3 ], respectively. Such porous systems create a unique space or surface to accommodate Ag nanoparticles (Ag NPs), which could efficiently prevent Ag NPs from aggregation and leaching. In this work, two new Ag@Zn-MOF composites, denoted as Ag@CTGU, have been successfully fabricated through solution infiltration, for the reduction of nitrophenol. Compared with CTGU-4, CTGU-3 shows enhanced catalytic efficiency toward the reaction when it is used as a catalyst support of Ag NPs. Moreover, gas sorption and luminescence properties of two compounds were also investigated.

  4. Optical properties of ordered ZnO/Ag thin films on polystyrene spheres

    NASA Astrophysics Data System (ADS)

    Li, Xiu; Chen, Xiuyan; Xin, Zhiqing; Li, Luhai; Xu, Yanfang

    2017-08-01

    A thorough research of the optical properties of ZnO/Ag structures sputtered by RF on PS colloidal crystal molds with different diameters is reported. The influences of the period of the substrates on the performance of ZnO thin films were studied. The results of scanning electron microscopic, X-ray diffraction patterns and UV-vis absorption spectroscopy indicated that the ZnO/Ag thin films were well-covering on PS colloidal crystal molds. The diameter of the polystyrene particles significantly influenced the PL spectrum intensity of ZnO/Ag by affecting the interferences of light. After adding PS colloidal crystal molds with different diameters, all the samples show two luminescent regions, namely a strong, narrow UV emission peak and a wide, weak visible emission band. However, the signal of UV emission increases more significantly. In particular, the maximum enhancement occurs when the diameter is 300 nm. This work proposes an effective way to improve ZnO light emission based on a simple, rapid and cost effective method to fabricate ordered periodic substrates by preparing single layer polystyrene microspheres masks.

  5. Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles

    DOE PAGES

    Bertoni, Giovanni; Fabbri, Filippo; Villani, Marco; ...

    2016-01-12

    Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules, resulting in clean interfaces. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presentingmore » an isotropic distribution around the nanoparticle. Moreover, on the contrary, a localization of the ZnO signal has been observed inside the Au nanoparticle, as also confirmed by numerical simulations.« less

  6. Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertoni, Giovanni; Fabbri, Filippo; Villani, Marco

    Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules, resulting in clean interfaces. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presentingmore » an isotropic distribution around the nanoparticle. Moreover, on the contrary, a localization of the ZnO signal has been observed inside the Au nanoparticle, as also confirmed by numerical simulations.« less

  7. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity

    NASA Astrophysics Data System (ADS)

    Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago

    2015-08-01

    Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars

  8. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Wang, Huiqiao; Liu, Jinbin; Wu, Xuan; Tong, Zhonghua; Deng, Zhaoxiang

    2013-05-01

    Water-dispersible two-dimensional (2D) assemblies of Au@Ag core-shell nanoparticles are obtained through a highly selective electroless silver deposition on pre-assembled gold nanoparticles on bovine serum albumin (BSA)-coated graphene oxide (BSA-GO). While neither BSA-GO nor AuNP-decorated BSA-GO shows any antibacterial ability, the silver-coated GO@Au nanosheets (namely GO@Au@Ag) exhibit an enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) bacteria, superior to unassembled Au@Ag nanoparticles and even ionic Ag. Such an improvement may be attributed to the increased local concentration of silver nanoparticles around a bacterium and a polyvalent interaction with the bacterial surface. In addition, the colloidal stability of this novel nano-antimicrobial against the formation of random nanoparticle aggregates guarantees a minimized activity loss of the Au@Ag nanoparticles. The antibacterial efficacy of GO@Au@Ag is less sensitive to the existence of Cl-, in comparison with silver ions, providing another advantage for wound dressing applications. Our research unambiguously reveals a strong and very specific interaction between the GO@Au@Ag nanoassembly and E. coli, which could be an important clue toward a rational design, synthesis and assembly of innovative and highly active antibacterial nanomaterials.

  9. Preparation of plasmonic porous Au@AgVO3 belt-like nanocomposites with enhanced visible light photocatalytic activity.

    PubMed

    Fu, Haitao; Yang, Xiaohong; Zhang, Zhikui; Wang, Wenwen; An, Xizhong; Dong, Yu; Li, Xue

    2018-07-20

    This study reports a visible light-driven plasmonic photocatalyst of Au deposited AgVO 3 nanocomposites prepared by a hydrothermal method, and further in situ modification of Au nanoparticles by a reducing agent of NaHSO 3 in an aqueous solution at room temperature. Various characterization techniques, such as SEM, TEM, XRD, EDS, XPS, and Brunauer-Emmett-Teller, were used to reveal the morphology, composition, and related properties. The results show that belt-like AgVO 3 nanoparticles with a width of ∼100 nm were successfully synthesized, and Au nanoparticles with controlled sizes (5-20 nm) were well distributed on the surface of the nanobelts. The UV-vis absorption spectra indicate that the decoration of Au nanoparticles can modulate the optical properties of the nanocomposites, namely, red shift occurs with the increase of Au content. The photocatalytic activities were measured by monitoring the degradation of Rhodamine B (RhB) with the presence of photocatalysts under visible light irradiation. The photodegradation results show that AgVO 3 nanobelts exhibit good visible light photocatalytic activities with a degradation efficiency of 98% in 50 min and a reaction rate constant of 0.025 min -1 towards 30 ppm RhB. With the modification of Au nanoparticles, photocatalytic activity basically increases with the molar ratio of Au to V. Among the Au@AgVO 3 nanocomposites, the 3% (molar ratio) Au decorated AgVO 3 nanobelts showed the highest photocatalytic activity, and the k (0.064 min -1 ) was almost two times higher than that of the pure AgVO 3 nanobelts. This can be attributed to several factors including specific surface areas, optical properties, and the energy band structure of the composites under visible light illumination. These findings may be useful for the practical use of visible light-driven photocatalysts with enhanced photocatalytic efficiencies for environmental remediation.

  10. Preparation of plasmonic porous Au@AgVO3 belt-like nanocomposites with enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Fu, Haitao; Yang, Xiaohong; Zhang, Zhikui; Wang, Wenwen; An, Xizhong; Dong, Yu; Li, Xue

    2018-07-01

    This study reports a visible light-driven plasmonic photocatalyst of Au deposited AgVO3 nanocomposites prepared by a hydrothermal method, and further in situ modification of Au nanoparticles by a reducing agent of NaHSO3 in an aqueous solution at room temperature. Various characterization techniques, such as SEM, TEM, XRD, EDS, XPS, and Brunauer–Emmett–Teller, were used to reveal the morphology, composition, and related properties. The results show that belt-like AgVO3 nanoparticles with a width of ∼100 nm were successfully synthesized, and Au nanoparticles with controlled sizes (5–20 nm) were well distributed on the surface of the nanobelts. The UV–vis absorption spectra indicate that the decoration of Au nanoparticles can modulate the optical properties of the nanocomposites, namely, red shift occurs with the increase of Au content. The photocatalytic activities were measured by monitoring the degradation of Rhodamine B (RhB) with the presence of photocatalysts under visible light irradiation. The photodegradation results show that AgVO3 nanobelts exhibit good visible light photocatalytic activities with a degradation efficiency of 98% in 50 min and a reaction rate constant of 0.025 min‑1 towards 30 ppm RhB. With the modification of Au nanoparticles, photocatalytic activity basically increases with the molar ratio of Au to V. Among the Au@AgVO3 nanocomposites, the 3% (molar ratio) Au decorated AgVO3 nanobelts showed the highest photocatalytic activity, and the k (0.064 min‑1) was almost two times higher than that of the pure AgVO3 nanobelts. This can be attributed to several factors including specific surface areas, optical properties, and the energy band structure of the composites under visible light illumination. These findings may be useful for the practical use of visible light-driven photocatalysts with enhanced photocatalytic efficiencies for environmental remediation.

  11. Room temperature synthesis and optical studies on Ag and Au mixed nanocomposite polyvinylpyrrolidone polymer films.

    PubMed

    Udayabhaskar, R; Mangalaraja, R V; Manikandan, D; Arjunan, V; Karthikeyan, B

    2012-12-01

    Optical properties of silver, gold and bimetallic (Au:Ag) nanocomposite polymer films which are prepared by chemical method have been reported. The experimental data was correlated with the theoretical calculations using Mie theory. We adopt small change in the theoretical calculations of bimetallic/mixed particle nanocomposite and the theory agrees well with the experimental data. Polyvinylpyrrolidone (PVP) was used as reducing and capping agent. Fourier transform infrared spectroscopy (FTIR) study reveals the presence of different functional groups, the possible mechanism that leads to the formation of nanoparticles by using PVP alone as reducing agent. Optical absorption spectra of Ag and Au nanocomposite polymers show a surface plasmon resonance (SPR) band around 430 and 532 nm, respectively. Thermal annealing effect on the prepared samples at 60 °C for different time durations result in shift of SPR band maximum and varies the full width at half maximum (FWHM). Absorption spectra of Au:Ag bimetallic films show bands at 412 and 547 nm confirms the presence of Ag and Au nanoparticles in the composite. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Photocatalytic activity of Ag/ZnO core-shell nanoparticles with shell thickness as controlling parameter under green environment

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Himanshu; Bhattacharjee, Suparna; Datta, Pranayee

    2017-02-01

    Plasmonic Ag/ZnO core-shell nanoparticles have been synthesized via a simple two-step wet chemical method for application in Photocatalysis. The morphology, size, crystal structure, composition and optical properties of the nanoparticles are investigated by x-ray diffraction, transmission electron microscopy (TEM), FTIR spectroscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy and photoluminescence (PL) spectroscopy. The shell thicknesses are varied by varying the concentration of zinc nitrate hexa-hydrate and triethanolamine. The ZnO shell coating over Ag core enhances the charge separation, whereas the larger shell thickness and increased refractive index of surrounding medium cause red shifts of surface Plasmon resonance (SPR) peak of Ag core. The photoluminescence (PL) spectra of Ag/ZnO core-shell show that the larger shell thickness quenches the near band edge UV emission of ZnO. The electrochemical impedance spectra (EIS) i.e. Nyquist plots also confirm the higher charge transfer efficiency of the Ag/ZnO core-shell nanoparticles. The Photocatalytic activities of Ag/ZnO core-shell nanoparticles are investigated by the degradation of methylene blue (MB) dye under direct sunlight irradiation. Compared to pure ZnO nanoparticles (NPs), Ag/ZnO core-shell NPs display efficient sunlight plasmonic photocatalytic activity because of the influence of SPR of Ag core and the electron sink effect. The photocatalytic activity of Ag/ZnO core-shell NPs is found to be enhanced with increase in shell thickness.

  13. Impact of ZnO and Ag Nanoparticles on Bacterial Growth and Viability

    NASA Astrophysics Data System (ADS)

    Olson, M. S.; Digiovanni, K. A.

    2007-12-01

    Hundreds of consumer products containing nanomaterials are currently available in the U.S., including computers, clothing, cosmetics, sports equipment, medical devices and product packaging. Metallic nanoparticles can be embedded in or coated on product surfaces to provide antimicrobial, deodorizing, and stain- resistant properties. Although these products have the potential to provide significant benefit to the user, the impact of these products on the environment remains largely unknown. The purpose of this project is to study the effect of metallic nanoparticles released to the environment on bacterial growth and viability. Inhibition of bacterial growth was tested by adding doses of suspended ZnO and Ag nanoparticles into luria broth prior to inoculation of Escherichia coli cells. ZnO particles (approximately 40 nm) were obtained commercially and Ag particles (12-14 nm) were fabricated by reduction of silver nitrate with sodium borohydride. Toxicity assays were performed to test the viability of E. coli cells exposed to both ZnO and Ag nanoparticles using the LIVE/DEAD BacLight bacterial viability kit (Invitrogen). Live cells stain green whereas cells with compromised membranes that are considered dead or dying stain red. Cells were first grown, stained, and exposed to varying doses of metallic nanoparticles, and then bacterial viability was measured hourly using fluorescence microscopy. Results indicate that both ZnO and Ag nanoparticles inhibit the growth of E. coli in liquid media. Preliminary results from toxicity assays confirm the toxic effect of ZnO and Ag nanoparticles on active cell cultures. Calculated death rates resulting from analyses of toxicity studies will be presented.

  14. Ternary Au/ZnO/rGO nanocomposites electrodes for high performance electrochemical storage devices

    NASA Astrophysics Data System (ADS)

    Chaudhary, Manchal; Doong, Ruey-an; Kumar, Nagesh; Tseng, Tseung Yuen

    2017-10-01

    The combination of metal and metal oxide nanoparticles with reduced graphene oxides (rGO) is an active electrode material for electrochemical storage devices. Herein, we have, for the first time, reported the fabrication of ternary Au/ZnO/rGO nanocomposites by using a rapid and environmentally friendly microwave-assisted hydrothermal method for high performance supercapacitor applications. The ZnO/rGO provides excellent electrical conductivity and good macro/mesopore structures, which can facilitate the rapid electrons and ions transport. The Au nanoparticles with particle sizes of 7-12 nm are homogeneously distributed onto the ZnO/rGO surface to enhance the electrochemical performance by retaining the capacitance at high current density. The Au/ZnO/rGO nanocomposites, prepared with the optimized rGO amount of 100 mg exhibit a high specific capacitance of 875 and 424 F g-1 at current densities of 1 and 20 A g-1, respectively, in 2 M KOH. In addition, the energy and power densities of ternary Au/ZnO/rGO can be up to 17.6-36.5 Wh kg-1 and 0.27-5.42 kW kg-1, respectively. Results obtained in this study clearly demonstrate the excellence of ternary Au/ZnO/rGO nanocomposites as the active electrode materials for electrochemical pseudocapacitor performance and can open an avenue to fabricate metal/metal oxide/rGO nanocomposites for electrochemical storage devices with both high energy and power densities.

  15. A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application.

    PubMed

    Gupta, Vinod Kumar; Atar, Necip; Yola, Mehmet Lütfi; Eryılmaz, Merve; Torul, Hilal; Tamer, Uğur; Boyacı, Ismail Hakkı; Ustündağ, Zafer

    2013-09-15

    This study represents a novel template demonstration of a glucose biosensor based on mercaptophenyl boronic acid (MBA) terminated Ag@AuNPs/graphene oxide (Ag@AuNPs-GO) nanomaterials. The nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) method. The TEM image shows that Ag@AuNPs in the nanocomposite is in the range of diameters of 10-20 nm. The nanocomposite was used for the determination of glucose through the complexation between boronic acid and diol groups of glucose. Thus, a novel glucose biosensor was further fabricated by immobilizing glucose oxidase (GOD) into MBA terminated Ag@AuNPs-GO nanocomposite film (MBA-Ag@AuNPs-GO). The linearity range of glucose was obtained as 2-6mM with detection limit of 0.33 mM. The developed biosensor was also applied successfully for the determination of glucose in blood samples. The concentration value of glucose in blood samples was calculated to be 1.97±0.002 mM from measurements repeated for six times. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Seifi, A.

    2016-11-01

    The Ag/ZnO-MMT nanocomposite was prepared using urtica dioica leaf extract. To improve the photocatalytic properties of ZnO-MMT nanocomposite, silver metal nanoparticles was deposited over nanocomposite. Zn(CH3COO)2, AgNO3 and Urtica dioica leaf extract were used as a zinc, silver precursor and reducing agent, respectively. The nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed that Ag/ZnO nanoparticles located on the surface MMT layers. The diffuse reflectance spectra of nanocomposite indicated a strong surface plasmon resonance (SPR) absorption band in the visible region, resulting from metallic Ag nanoparticles. TEM image demonstrated the presence of silver nanoparticles with an average size of 2-4 nm over both MMT and flower-shape ZnO. The photocatalytic activity of nanocomposite was studied for destructive reaction methylene blue dye under visible light. In addition, the effects of different parameters such as amount of nanocomposite, concentration of the dye and pH of the solution were studied. The results showed that modiffication of ZnO-MMT nanocomposite with silver nanoparticles increased the percentage of discoloration methylene blue (MB) from 38.95 to 91.95. MMT matrix showed an important role in the reduction of recombination of electron-hole in nanocomposite.

  17. Enhancement of Au-Ag-Te contents in tellurium-bearing ore minerals via bioleaching

    NASA Astrophysics Data System (ADS)

    Choi, Nag-Choul; Cho, Kang Hee; Kim, Bong Ju; Lee, Soonjae; Park, Cheon Young

    2018-03-01

    The purpose of this study was to enhance the content of valuable metals, such as Au, Ag, and Te, in tellurium-bearing minerals via bioleaching. The ore samples composed of invisible Au and Au paragenesis minerals (such as pyrite, chalcopyrite, sphalerite and galena) in combination with tellurium-bearing minerals (hessite, sylvanite and Tellurobismuthite) were studied. Indigenous microbes from mine drainage were isolated and identified as Acidithiobacillus ferrooxidans, which were used in bioleaching after adaption to copper. The effect of the microbial adaption on the bioleaching performance was then compared with the results produced by the non-adaptive process. The microbial adaption enhanced the Au-Ag-Te contents in biological leaching of tellurium-bearing ore minerals. This suggests that bioleaching with adapted microbes can be used both as a pretreatment and in the main recovery processes of valuable metals.

  18. Accumulation and interparticle connections of triangular Ag-coated Au nanoprisms by oil-coating method for surface-enhanced Raman scattering applications

    NASA Astrophysics Data System (ADS)

    Noda, Yuta; Asaka, Toru; Fudouzi, Hiroshi; Hayakawa, Tomokatsu

    2018-03-01

    To examine the optical responses of surface-enhanced Raman scattering (SERS) for tuned plasmonic nanoparticles, triangular Ag-coated Au (Au@Ag) nanoprisms with different sizes were separately synthesized, which were well controlled in their size (edge-length) and localized surface plasmon resonance (LSPR) wavelength (69.0 ± 8.4 to 173.8 ± 25.6 nm in size and 662-943 nm in LSPR wavelength). The mechanism of Ag shell formation on the Au nanoprisms was also studied with scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS). The Au@Ag nanoprisms were immobilized by covering a colloidal solution containing the nanoprisms with silicone oil and evaporating the solvent in the oil (oil-coating method) so as to form a layer of accumulated plasmonic Au@Ag nanoprisms that had LSPR peak wavelengths tuned from 839 to 1182 nm. The accumulation conditions were analyzed by field-emission scanning electron microscopy (FE-SEM) and a Raman mapping technique. The Au@Ag nanoprisms under excitation at 632.8 nm exhibited higher SERS signals of rhodamine 6G, and SERS-mapped images of the novel immobilized films were obtained at different magnifications. It was concluded that accumulated Au@Ag nanoprisms undergoing tip-planar interconnections could produce enhanced local fields, resulting in higher SERS signals.

  19. Growth of periodic nano-layers of nano-crystals of Au, Ag, Cu by ion beam

    NASA Technical Reports Server (NTRS)

    Smith, Cydale C.; Zheng, B.; Muntele, C. I.; Muntele, I. C.; Ila, D.

    2005-01-01

    Multilayered thin films of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/, were grown by deposition. We have previously shown that MeV ion Bombardment of multi-nano-layers of SiO2/AU+ SiO2/ produces Au nanocrystals in the AU+ SiO2 layers. An increased number of nano-layers followed by MeV ion bombardment produces a wide optical absorption band, of which its FWHM depends on the number of nano-layers of SiO2/AU+ SiO2/. We have successfully repeated this process for nano-layers of SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/. In this work we used 5 MeV Si as the post deposition bombardment ion and monitored the location as well as the optical absorption's FWHM for each layered structure using Optical Absorption Photospectrometry. The concentration and location of the metal nano-crystals were measured by Rutherford Backscattering Spectrometry. We will report on the results obtained for nano-layered structures produced by post deposition bombardment of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/ layered systems as well as the results obtained from a system containing a periodic combination of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/.

  20. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-03-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.

  1. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties.

    PubMed

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-01-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.

  2. Morphologically manipulated Ag/ZnO nanostructures as surface enhanced Raman scattering probes for explosives detection

    NASA Astrophysics Data System (ADS)

    Shaik, Ummar Pasha; Hamad, Syed; Ahamad Mohiddon, Md.; Soma, Venugopal Rao; Ghanashyam Krishna, M.

    2016-03-01

    The detection of secondary explosive molecules (e.g., ANTA, FOX-7, and CL-20) using Ag decorated ZnO nanostructures as surface enhanced Raman scattering (SERS) probes is demonstrated. ZnO nanostructures were grown on borosilicate glass substrates by rapid thermal oxidation of metallic Zn films at 500 °C. The oxide nanostructures, including nanosheets and nanowires, emerged over the surface of the Zn film leaving behind the metal residue. We demonstrate that SERS measurements with concentrations as low as 10 μM, of the three explosive molecules ANTA, FOX-7, and CL-20 over ZnO/Ag nanostructures, resulted in enhancement factors of ˜107, ˜107, and ˜104, respectively. These measurements validate the high sensitivity of detection of explosive molecules using Ag decorated ZnO nanostructures as SERS substrates. The Zn metal residue and conditions of annealing play an important role in determining the detection sensitivity.

  3. Application of Direct Current Atmospheric Pressure Glow Microdischarge Generated in Contact with a Flowing Liquid Solution for Synthesis of Au-Ag Core-Shell Nanoparticles.

    PubMed

    Dzimitrowicz, Anna; Jamroz, Piotr; Nyk, Marcin; Pohl, Pawel

    2016-04-06

    A direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between an Ar nozzle microjet and a flowing liquid was applied to produce Au-Ag core-shell nanoparticles (Au@AgCSNPs) in a continuous flow system. Firstly, operating dc-μAPGD with the flowing solution of the Au(III) ions as the cathode, the Au nanoparticles (AuNPs) core was produced. Next, to produce the core-shell nanostructures, the collected AuNPs solution was immediately mixed with an AgNO₃ solution and passed through the system with the reversed polarity to fabricate the Ag nanoshell on the AuNPs core. The formation of Au@AgCSNPs was confirmed using ultraviolet-visible (UV-Vis) absorbance spectrophotometry, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Three localized surface plasmon resonance absorption bands with wavelengths centered at 372, 546, and 675 nm were observed in the UV-Vis spectrum of Au@AgCSNPs, confirming the reduction of both the Au(III) and Ag(I) ions. The right configuration of metals in Au@AgCSNPs was evidenced by TEM. The Au core diameter was 10.2 ± 2.0 nm, while the thickness of the Ag nanoshell was 5.8 ± 1.8 nm. The elemental composition of the bimetallic nanoparticles was also confirmed by EDS. It is possible to obtain 90 mL of a solution containing Au@AgCSNPs per hour using the applied microdischarge system.

  4. Application of Direct Current Atmospheric Pressure Glow Microdischarge Generated in Contact with a Flowing Liquid Solution for Synthesis of Au-Ag Core-Shell Nanoparticles

    PubMed Central

    Dzimitrowicz, Anna; Jamroz, Piotr; Nyk, Marcin; Pohl, Pawel

    2016-01-01

    A direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between an Ar nozzle microjet and a flowing liquid was applied to produce Au-Ag core-shell nanoparticles (Au@AgCSNPs) in a continuous flow system. Firstly, operating dc-μAPGD with the flowing solution of the Au(III) ions as the cathode, the Au nanoparticles (AuNPs) core was produced. Next, to produce the core-shell nanostructures, the collected AuNPs solution was immediately mixed with an AgNO3 solution and passed through the system with the reversed polarity to fabricate the Ag nanoshell on the AuNPs core. The formation of Au@AgCSNPs was confirmed using ultraviolet-visible (UV-Vis) absorbance spectrophotometry, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Three localized surface plasmon resonance absorption bands with wavelengths centered at 372, 546, and 675 nm were observed in the UV-Vis spectrum of Au@AgCSNPs, confirming the reduction of both the Au(III) and Ag(I) ions. The right configuration of metals in Au@AgCSNPs was evidenced by TEM. The Au core diameter was 10.2 ± 2.0 nm, while the thickness of the Ag nanoshell was 5.8 ± 1.8 nm. The elemental composition of the bimetallic nanoparticles was also confirmed by EDS. It is possible to obtain 90 mL of a solution containing Au@AgCSNPs per hour using the applied microdischarge system. PMID:28773393

  5. A colorimetric assay for measuring iodide using Au@Ag core-shell nanoparticles coupled with Cu(2+).

    PubMed

    Zeng, Jingbin; Cao, Yingying; Lu, Chun-Hua; Wang, Xu-Dong; Wang, Qianru; Wen, Cong-Ying; Qu, Jian-Bo; Yuan, Cunguang; Yan, Zi-Feng; Chen, Xi

    2015-09-03

    Au@Ag core-shell nanoparticles (NPs) were synthesized and coupled with copper ion (Cu(2+)) for the colorimetric sensing of iodide ion (I(-)). This assay relies on the fact that the absorption spectra and the color of metallic core-shell NPs are sensitive to their chemical ingredient and dimensional core-to-shell ratio. When I(-) was added to the Au@Ag core-shell NPs-Cu(2+) system/solution, Cu(2+) can oxidize I(-) into iodine (I2), which can further oxidize silver shells to form silver iodide (AgI). The generated Au@AgI core-shell NPs led to color changes from yellow to purple, which was utilized for the colorimetric sensing of I(-). The assay only took 10 min with a lowest detectable concentration of 0.5 μM, and it exhibited excellent selectivity for I(-) over other common anions tested. Furthermore, Au@Ag core-shell NPs-Cu(2+) was embedded into agarose gels as inexpensive and portable "test strips", which were successfully used for the semi-quantitation of I(-) in dried kelps. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Preparation, structural and luminescent properties of nanocrystalline ZnO films doped Ag by close space sublimation method

    NASA Astrophysics Data System (ADS)

    Khomchenko, Viktoriya; Mazin, Mikhail; Sopinskyy, Mykola; Lytvyn, Oksana; Dan'ko, Viktor; Piryatinskii, Yurii; Demydiuk, Pavlo

    2018-05-01

    The simple way for silver doping of ZnO films is presented. The ZnO films were prepared by reactive rf-magnetron sputtering on silicon and sapphire substrates. Ag doping is carried out by sublimation of the Ag source located at close space at atmospheric pressure in air. Then the ZnO and ZnO-Ag films were annealed in wet media. The microstructure and optical properties of the films were compared and studied by atomic force microscopy (AFM), X-ray diffraction (XRD), photoluminescence (PL) and cathodoluminescence (CL). XRD results indicated that all the ZnO films have a polycrystalline hexagonal structure and a preferred orientation with the c-axis perpendicular to the substrate. The annealing and Ag doping promote increasing grain's sizes and modification of grain size distribution. The effect of substrate temperature, substrate type, Ag doping and post-growth annealing of the films was studied by PL spectroscopy. The effect of Ag doping was obvious and identical for all the films, namely the wide visible bands of PL spectra are suppressed by Ag doping. The intensity of ultraviolet band increased 15 times as compared to their reference films on sapphire substrate. The ultraviolet/visible emission ratio was 20. The full width at half maximum (FWHM) for a 380 nm band was 14 nm, which is comparable with that of epitaxial ZnO. The data implies the high quality of ZnO-Ag films. Possible mechanisms to enhance UV emission are discussed.

  7. Plasmonic Ag coated Zn/Ti-LDH with excellent photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zhu, Yanping; Zhu, Runliang; Zhu, Gangqiang; Wang, Miaomiao; Chen, Yannan; Zhu, Jianxi; Xi, Yunfei; He, Hongping

    2018-03-01

    Nowadays, two-dimensional (2D) nanosheets, such as layered double hydroxides (LDH), have received considerable attention for their potential to meeting clean energy demand and solving environmental problems. In this work, novel and efficient photocatalysts of plasmonic Ag nanoparticles coated Zn/Ti-LDH nanosheets have been synthesized through low-temperature reduction method. The structural characteristics of the as-prepared products were investigated by a series of characteristic methods The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images showed that Ag nanoparticles were distributed on the surface of Zn/Ti-LDH uniformly. The UV-vis diffuse reflectance spectra (DRS) showed that the absorbance of Ag/LDH in visible-light region enhanced markedly and presented a broad band at 500-600 nm, which was resulted from the surface plasmon resonance (SPR) effect of Ag nanoparticles. The photocatalytic activities of Ag/LDH were evaluated by degradation of Rhodamine-B (RhB) and NO. The photocatalytic experiments showed that Ag/LDH had higher photocatalytic activity than that of pure LDH, and 2%Ag/LDH exhibited the highest photocatalytic activity. In addition, the 2%Ag/LDH exhibited high photochemical stability after multiple reaction runs. The obtained results from photoluminescence (PL) spectroscopic measurement and transient photocurrent (I-V) analysis both revealed the existence of Schottky barriers between LDH and Ag nanoparticles. The electron spin resonance (ESR) showed that rad OH were the dominant active species in the photo-degradation process. The enhanced photocatalytic performance of the composite should be ascribed to both the SPR effect of Ag nanoparticles in visible light and the Schottky barriers between LDH and Ag nanoparticles.

  8. Proton, Deuteron and Helion Spectra from Central Au+Au collisions at the AG

    NASA Astrophysics Data System (ADS)

    Baumgart, Stephen

    2002-10-01

    The AGS E895 experiment ran Au+Au collisions at bombarding energies of 2, 4, 6 and 8 AGeV. For central collisions, particle spectra have been measured for pions, kaons, protons, deuterons, and helions. From these spectra, the dN/dy distributions have been determined across a rapidity range from approximately -1.5 to 1.5 at maximum beam energy. Integration of the rapidity densities gives the total yields of each particle species. The final charge of the system can be calculated from the total yields to show that all of the initial charge is accounted for. The conclusions from the analyses of the condensate particle spectra will be presented. Fits to the spectra determine the freeze-out temperatures, radial flow velocities, and chemical potentials. The rapidity density distributions are used to estimate the longitudinal flow. The proton phase space density can be estimated by combining the proton spectra with the gaussian freeze-out radii intrepreted from a coalescence model employing the yields of protons, deuterons, tritons, and helions. Comparisons of the above results will be made to the experimental evidence from SIS, the AGS, the SPS, and RHIC.

  9. Doping of the step-edge Si chain: Ag on a Si(557)-Au surface

    NASA Astrophysics Data System (ADS)

    Krawiec, M.; Jałochowski, M.

    2010-11-01

    Structural and electronic properties of monatomic Ag chains on the Au-induced, highly ordered Si(557) surface are investigated by scanning tunneling microscopy (STM)/spectroscopy and first-principles density functional theory (DFT) calculations. The STM topography data show that a small amount of Ag (0.25 ML) very weakly modifies the one-dimensional structure induced by Au atoms. However, the bias-dependent STM topography and spectroscopy point to the importance of the electronic effects in this system, which are further corroborated by the DFT calculations. The obtained results suggest that Ag atoms act as electron donors leaving the geometry of the surface almost unchanged.

  10. Au/Zn Contacts to rho-InP: Electrical and Metallurgical Characteristics and the Relationship Between Them

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.; Korenyi-Both, Andras L.

    1994-01-01

    The metallurgical and electrical behavior of Au/Zn contacting metallization on p-type InP was investigated as a function of the Zn content in the metallization. It was found that ohmic behavior can be achieved with Zn concentrations as small as 0.05 atomic percent Zn. For Zn concentrations between 0.1 and 36 at. percent, the contact resistivity rho(sub c) was found to be independent of the Zn content. For low Zn concentrations the realization of ohmic behavior was found to require the growth of the compound Au2P3 at the metal-InP interface. The magnitude of rho(sub c) is shown to be very sensitive to the growth rate of the interfacial Au2P3 layer. The possibility of exploiting this sensitivity to provide low resistance contacts while avoiding the semiconductor structural damage that is normally attendant to contact formation is discussed.

  11. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiu, Fu-Rong, E-mail: xiu_chem@hotmail.com; Qi, Yingying; Zhang, Fu-Shen

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercriticalmore » water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process.« less

  12. Single-layer ZnS supported on Au(111): A combined XPS, LEED, STM and DFT study

    DOE PAGES

    Deng, Xingyi; Sorescu, Dan C.; Lee, Junseok

    2016-12-31

    Single-layer of ZnS, consisting of one atomic layer of ZnS(111) plane, has been grown on Au(111) and characterized using X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). While the LEED measurement indicates a coincidence structure of ZnS-(3×3)/Au(111)-(4×4), high resolution STM images reveal hexagonal unit cells of 6.7×6.7 Å 2 and 11.6×11.6 Å 2, corresponding to √3 and 3 times the unit cell of the ideal zincblende ZnS-(1×1), respectively, depending on the tunneling conditions. Calculations based on density functional theory (DFT) indicate a significantly reconstructed non-planar structure of ZnS single-layer on Au(111) with 2/3 ofmore » the S anions being located nearly in the plane of the Zn cations and the rest 1/3 of the S anions protruding above the Zn plane. In conclusion, the calculated STM image shows similar characteristics to those of the experimental STM image. Additionally, the DFT calculations reveal the different bonding nature of the S anions in ZnS single-layer supported on Au(111).« less

  13. Studies on Magnetron Sputtered ZnO-Ag Films: Adhesion Activity of S. aureus

    NASA Astrophysics Data System (ADS)

    Geetha, S. R.; Dhivya, P.; Raj, P. Deepak; Sridharan, M.; Princy, S. Adline

    Zinc oxide (ZnO) thin films have been deposited onto thoroughly cleaned stainless steel (AISI SS 304) substrates by reactive direct current (dc) magnetron sputtering and the films were doped with silver (Ag). The prepared thin films were analyzed using X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) to investigate the structural and morphological properties. The thickness values of the films were in the range of 194 to 256nm. XRD results revealed that the films were crystalline with preferred (002) orientation. Grain size values of pure ZnO films were found to be 19.82-23.72nm. On introducing Ag into ZnO film, the micro-structural properties varied. Adhesion test was carried out with Staphylococcus aureus (S. aureus) in order to know the adherence property of the deposited films. Colony formation units (CFU) were counted manually and bacterial adhesion inhibition (BAI) was calculated. We observed a decrease in the CFU on doping Ag in the ZnO films. BAI of the film deposited at - 100 V substrate bias was found to be increased on Ag doping from 69 to 88%.

  14. Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers

    PubMed Central

    Cho, Jongmin; Wang, Min; Gonzalez-Lepera, Carlos; Mawlawi, Osama; Cho, Sang Hyun

    2016-01-01

    Purpose: Gold nanoparticles (GNPs) are being investigated actively for various applications in cancer diagnosis and therapy. As an effort to improve the imaging of GNPs in vivo, the authors developed bimetallic hybrid Zn@Au NPs with zinc cores and gold shells, aiming to render them in vivo visibility through positron emission tomography (PET) after the proton activation of the zinc core as well as capability to induce radiosensitization through the secondary electrons produced from the gold shell when irradiated by various radiation sources. Methods: Nearly spherical zinc NPs (∼5-nm diameter) were synthesized and then coated with a ∼4.25-nm gold layer to make Zn@Au NPs (∼13.5-nm total diameter). 28.6 mg of these Zn@Au NPs was deposited (∼100 μm thick) on a thin cellulose target and placed in an aluminum target holder and subsequently irradiated with 14.15-MeV protons from a GE PETtrace cyclotron with 5-μA current for 5 min. After irradiation, the cellulose matrix with the NPs was placed in a dose calibrator to assess the induced radioactivity. The same procedure was repeated with 8-MeV protons. Gamma ray spectroscopy using an high-purity germanium detector was conducted on a very small fraction (<1 mg) of the irradiated NPs for each proton energy. In addition to experimental measurements, Monte Carlo simulations were also performed with radioactive Zn@Au NPs and solid GNPs of the same size irradiated with 160-MeV protons and 250-kVp x-rays. Results: The authors measured 168 μCi of activity 32 min after the end of bombardment for the 14.15-MeV proton energy sample using the 66Ga setting on a dose calibrator; activity decreased to 2 μCi over a 24-h period. For the 8-MeV proton energy sample, PET imaging was additionally performed for 5 min after a 12-h delay. A 12-h gamma ray spectrum showed strong peaks at 511 keV (2.05 × 106 counts) with several other peaks of smaller magnitude for each proton energy sample. PET imaging showed strong PET signals from

  15. Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers.

    PubMed

    Cho, Jongmin; Wang, Min; Gonzalez-Lepera, Carlos; Mawlawi, Osama; Cho, Sang Hyun

    2016-08-01

    Gold nanoparticles (GNPs) are being investigated actively for various applications in cancer diagnosis and therapy. As an effort to improve the imaging of GNPs in vivo, the authors developed bimetallic hybrid Zn@Au NPs with zinc cores and gold shells, aiming to render them in vivo visibility through positron emission tomography (PET) after the proton activation of the zinc core as well as capability to induce radiosensitization through the secondary electrons produced from the gold shell when irradiated by various radiation sources. Nearly spherical zinc NPs (∼5-nm diameter) were synthesized and then coated with a ∼4.25-nm gold layer to make Zn@Au NPs (∼13.5-nm total diameter). 28.6 mg of these Zn@Au NPs was deposited (∼100 μm thick) on a thin cellulose target and placed in an aluminum target holder and subsequently irradiated with 14.15-MeV protons from a GE PETtrace cyclotron with 5-μA current for 5 min. After irradiation, the cellulose matrix with the NPs was placed in a dose calibrator to assess the induced radioactivity. The same procedure was repeated with 8-MeV protons. Gamma ray spectroscopy using an high-purity germanium detector was conducted on a very small fraction (<1 mg) of the irradiated NPs for each proton energy. In addition to experimental measurements, Monte Carlo simulations were also performed with radioactive Zn@Au NPs and solid GNPs of the same size irradiated with 160-MeV protons and 250-kVp x-rays. The authors measured 168 μCi of activity 32 min after the end of bombardment for the 14.15-MeV proton energy sample using the (66)Ga setting on a dose calibrator; activity decreased to 2 μCi over a 24-h period. For the 8-MeV proton energy sample, PET imaging was additionally performed for 5 min after a 12-h delay. A 12-h gamma ray spectrum showed strong peaks at 511 keV (2.05 × 10(6) counts) with several other peaks of smaller magnitude for each proton energy sample. PET imaging showed strong PET signals from mostly decaying (66)Ga

  16. Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Jongmin, E-mail: jongmin.cho@okstate.edu

    2016-08-15

    Purpose: Gold nanoparticles (GNPs) are being investigated actively for various applications in cancer diagnosis and therapy. As an effort to improve the imaging of GNPs in vivo, the authors developed bimetallic hybrid Zn@Au NPs with zinc cores and gold shells, aiming to render them in vivo visibility through positron emission tomography (PET) after the proton activation of the zinc core as well as capability to induce radiosensitization through the secondary electrons produced from the gold shell when irradiated by various radiation sources. Methods: Nearly spherical zinc NPs (∼5-nm diameter) were synthesized and then coated with a ∼4.25-nm gold layer tomore » make Zn@Au NPs (∼13.5-nm total diameter). 28.6 mg of these Zn@Au NPs was deposited (∼100 μm thick) on a thin cellulose target and placed in an aluminum target holder and subsequently irradiated with 14.15-MeV protons from a GE PETtrace cyclotron with 5-μA current for 5 min. After irradiation, the cellulose matrix with the NPs was placed in a dose calibrator to assess the induced radioactivity. The same procedure was repeated with 8-MeV protons. Gamma ray spectroscopy using an high-purity germanium detector was conducted on a very small fraction (<1 mg) of the irradiated NPs for each proton energy. In addition to experimental measurements, Monte Carlo simulations were also performed with radioactive Zn@Au NPs and solid GNPs of the same size irradiated with 160-MeV protons and 250-kVp x-rays. Results: The authors measured 168 μCi of activity 32 min after the end of bombardment for the 14.15-MeV proton energy sample using the {sup 66}Ga setting on a dose calibrator; activity decreased to 2 μCi over a 24-h period. For the 8-MeV proton energy sample, PET imaging was additionally performed for 5 min after a 12-h delay. A 12-h gamma ray spectrum showed strong peaks at 511 keV (2.05 × 10{sup 6} counts) with several other peaks of smaller magnitude for each proton energy sample. PET imaging showed

  17. Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials.

    PubMed

    Youssef, Ahmed M; Abdel-Aziz, Mohamed S; El-Sayed, Samah M

    2014-08-01

    Chitosan-silver (CS-Ag) and Chitosan-gold (CS-Au) nanocomposites films were synthesized by a simple chemical method. A local bacterial isolate identified as Bacillus subtilis ss subtilis was found to be capable to synthesize both silver nanoparticles (Ag-NP) and gold nanoparticles (Au-NP) from silver nitrate (AgNO3) and chloroauric acid (AuCl(4-)) solutions, respectively. The biosynthesis of both Ag-NP and Au-NP characterize using UV/vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), and then added to chitosan by different ratios (0.5, 1 and 2%). The prepared chitosan nanocomposites films were characterize using UV, XRD, SEM and TEM. Moreover, the antibacterial activity of the prepared films was evaluated against gram positive (Staphylococcus aureus) and gram negative bacteria (Pseudomonas aerugenosa), fungi (Aspergillus niger) and yeast (Candida albicans). Therefore, these materials can be potential used as antimicrobial agents in packaging applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Structural and electronic properties of graphene nanoflakes on Au(111) and Ag(111)

    PubMed Central

    Tesch, Julia; Leicht, Philipp; Blumenschein, Felix; Gragnaniello, Luca; Fonin, Mikhail; Marsoner Steinkasserer, Lukas Eugen; Paulus, Beate; Voloshina, Elena; Dedkov, Yuriy

    2016-01-01

    We investigate the electronic properties of graphene nanoflakes on Ag(111) and Au(111) surfaces by means of scanning tunneling microscopy and spectroscopy as well as density functional theory calculations. Quasiparticle interference mapping allows for the clear distinction of substrate-derived contributions in scattering and those originating from graphene nanoflakes. Our analysis shows that the parabolic dispersion of Au(111) and Ag(111) surface states remains unchanged with the band minimum shifted to higher energies for the regions of the metal surface covered by graphene, reflecting a rather weak interaction between graphene and the metal surface. The analysis of graphene-related scattering on single nanoflakes yields a linear dispersion relation E(k), with a slight p-doping for graphene/Au(111) and a larger n-doping for graphene/Ag(111). The obtained experimental data (doping level, band dispersions around EF, and Fermi velocity) are very well reproduced within DFT-D2/D3 approaches, which provide a detailed insight into the site-specific interaction between graphene and the underlying substrate. PMID:27002297

  19. Highly efficient and porous TiO2-coated Ag@Fe3O4@C-Au microspheres for degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Shen, Mao; Chen, Suqing; Jia, Wenping; Fan, Guodong; Jin, Yanxian; Liang, Huading

    2016-12-01

    In this paper, we reported a novel hierarchical porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres with a highly photocatalytic activity and magnetically separable properties. The synthesis method is included of a Fe3O4 magnetic embedded Ag core (Ag@Fe3O4), an interlayer of carbon modified by PEI to form sufficient amounts of amine functional groups (Ag@Fe3O4@C-PEI), the grafting of Au nanoparticles on the surface of Ag@Fe3O4@C-PEI (Ag@Fe3O4@C-Au), and an ordered porous TiO2 structured shell. As an example of the applications, the photocatalytic activities of the samples were investigated by the reduction of Rhodamine B (RhB) under visible-light irradiation. The results show that the porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres display higher adsorption and photocatalytic activities compared to the pure porous TiO2 and Ag@Fe3O4@C@TiO2 microspheres, which are attributed to the local surface plasmon resonance (LSPR) by the Ag and Au nanoparticles and the high specific surface area.

  20. Molecular oxygen adsorption and dissociation on Au12M clusters with M = Cu, Ag or Ir

    NASA Astrophysics Data System (ADS)

    Jiménez-Díaz, Laura M.; Pérez, Luis A.

    2018-03-01

    In this work, we present a density functional theory study of the structural and electronic properties of isolated neutral clusters of the type Au12M, with M = Cu, Ag, or Ir. On the other hand, there is experimental evidence that gold-silver, gold-copper and gold-iridium nanoparticles have an enhanced catalytic activity for the CO oxidation reaction. In order to address these phenomena, we also performed density functional calculations of the adsorption and dissociation of O2 on these nanoparticles. Moreover, to understand the effects of Cu, Ag, and Ir impurity atoms on the dissociation of O2, we also analyze this reaction in the corresponding pure gold cluster. The results indicate that the substitution of one gold atom in a Au13 cluster by Ag, Cu or Ir diminishes the activation energy barrier for the O2 dissociation by nearly 1 eV. This energy barrier is similar for Au12Ag and Au12Cu, whereas for Au12Ir is even lower. These results suggest that the addition of other transition metal atoms to gold nanoclusters can enhance their catalytic activity towards the CO oxidation reaction, independently of the effect that the substrate could have on supported nanoclusters.

  1. On the Effect of Native SiO2 on Si over the SPR-mediated Photocatalytic Activities of Au and Ag Nanoparticles.

    PubMed

    Wang, Jiale; de Freitas, Isabel C; Alves, Tiago V; Ando, Romulo A; Fang, Zebo; Camargo, Pedro H C

    2017-05-29

    In hybrid materials containing plasmonic nanoparticles such as Au and Ag, charge-transfer processes from and to Au or Ag can affect both activities and selectivity in plasmonic catalysis. Inspired by the widespread utilization of commercial Si wafers in surface-enhanced Raman spectroscopy (SERS) studies, we investigated herein the effect of the native SiO 2 layer on Si wafers over the surface plasmon resonance (SPR)-mediated activities of the Au and Ag nanoparticles (NPs). We prepared SERS-active plasmonic comprised of Au and Ag NPs deposited onto a Si wafer. Here, two kinds of Si wafers were employed: Si with a native oxide surface layer (Si/SiO 2 ) and Si without a native oxide surface layer (Si). This led to Si/SiO 2 /Au, Si/SiO 2 /Ag, Si/Au, and Si/Ag NPs. The SPR-mediated oxidation of p-aminothiophenol (PATP) to p,p'-dimercaptoazobenzene (DMAB) was employed as a model transformation. By comparing the performances and band structures for the Si/Au and Si/Ag relative to Si/SiO 2 /Au and Si/SiO 2 /Ag NPs, it was found that the presence of a SiO 2 layer was crucial to enable higher SPR-mediated PATP to DMAB conversions. The SiO 2 layer acts to prevent the charge transfer of SPR-excited hot electrons from Au or Ag nanoparticles to the Si substrate. This enabled SPR-excited hot electrons to be transferred to adsorbed O 2 molecules, which then participate in the selective oxidation of PATP to DMAB. In the absence of a SiO 2 layer, SPR-excited hot electrons are preferentially transferred to Si instead of adsorbed O 2 molecules, leading to much lower PATP oxidation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Self-assembled Ag nanoparticle network passivated by a nano-sized ZnO layer for transparent and flexible film heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr; Kim, Min-Yi

    2015-12-15

    We investigated a self-assembled Ag nanoparticle network electrode passivated by a nano-sized ZnO layer for use in high-performance transparent and flexible film heaters (TFFHs). The low temperature atomic layer deposition of a nano-sized ZnO layer effectively filled the uncovered area of Ag network and improved the current spreading in the self-assembled Ag network without a change in the sheet resistance and optical transmittance as well as mechanical flexibility. The time-temperature profiles and heat distribution analysis demonstrate that the performance of the TFTH with the ZnO/Ag network is superior to that of a TFFH with Ag nanowire electrodes. In addition, themore » TFTHs with ZnO/Ag network exhibited better stability than the TFFH with a bare Ag network due to the effective current spreading through the nano-sized ZnO layer.« less

  3. c-T phase diagram and Landau free energies of (AgAu)55 nanoalloy via neural-network molecular dynamic simulations.

    PubMed

    Chiriki, Siva; Jindal, Shweta; Bulusu, Satya S

    2017-10-21

    For understanding the structure, dynamics, and thermal stability of (AgAu) 55 nanoalloys, knowledge of the composition-temperature (c-T) phase diagram is essential due to the explicit dependence of properties on composition and temperature. Experimentally, generating the phase diagrams is very challenging, and therefore theoretical insight is necessary. We use an artificial neural network potential for (AgAu) 55 nanoalloys. Predicted global minimum structures for pure gold and gold rich compositions are lower in energy compared to previous reports by density functional theory. The present work based on c-T phase diagram, surface area, surface charge, probability of isomers, and Landau free energies supports the enhancement of catalytic property of Ag-Au nanoalloys by incorporation of Ag up to 24% by composition in Au nanoparticles as found experimentally. The phase diagram shows that there is a coexistence temperature range of 70 K for Ag 28 Au 27 compared to all other compositions. We propose the power spectrum coefficients derived from spherical harmonics as an order parameter to calculate Landau free energies.

  4. Effect of (Ag, Sn) Doping on the Structure and Optical Properties of Au Nanocluster

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan; Karna, Shashi

    2014-03-01

    Noble metal nanoclusters (NCs) consisting of a few to 35 atoms in size in the sub 2 nm range dimension are considered to be nontoxic as opposed to nanoparticles that are cytotoxic. Also, due to the quantum confinement of electrons, these NCs exhibit atom-like energy spectrum and display fluorescent properties useful in a wide range of applications, including medical diagnosis. The unique features of NCs such as size-tunable optical properties, intense fluorescence in the visible, and biocompatibility have stimulated an active area of investigation of noble metal NCs comprised of Au, Ag, Cu, and Pt. Furthermore, the electronic properties of nanoclusters can be modified by combining them with other elements. In this study, we consider the space-filled configuration of Au32 NC and investigate the effects of Ag and Sn atom incorporation on geometry and electronic spectrum. Our study suggests that Ag and Sn doping of Au32 NC red-shifts the absorption maximum and also reduces the oscillator strength.

  5. A theoretical investigation on Cu/Ag/Au bonding in XH2P⋯MY(X = H, CH3, F, CN, NO2; M = Cu, Ag, Au; Y = F, Cl, Br, I) complexes

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoxu; Liu, Yi; Zheng, Baishu; Zhou, Fengxiang; Jiao, Yinchun; Liu, Yuan; Ding, XunLei; Lu, Tian

    2018-05-01

    Intermolecular interaction of XH2P...MY (X = H, CH3, F, CN, NO2; M = Cu, Ag, Au; Y = F, Cl, Br, I) complexes was investigated by means of an ab initio method. The molecular interaction energies are in the order Ag < Cu < Au and increased with the decrease of RP...M. Interaction energies are strengthened when electron-donating substituents X connected to XH2P, while electron-withdrawing substituents produce the opposite effect. The strongest P...M bond was found in CH3H2P...AuF with -70.95 kcal/mol, while the weakest one was found in NO2H2P...AgI with -20.45 kcal/mol. The three-center/four-electron (3c/4e) resonance-type of P:-M-:Y hyperbond was recognized by the natural resonance theory and the natural bond orbital analysis. The competition of P:M-Y ↔ P-M:Y resonance structures mainly arises from hyperconjugation interactions; the bond order of bP-M and bM-Y is in line with the conservation of the idealized relationship bP-M + bM-Y ≈ 1. In all MF-containing complexes, P-M:F resonance accounted for a larger proportion which leads to the covalent characters for partial ionicity of MF. The interaction energies of these Cu/Ag/Au complexes are basically above the characteristic values of the halogen-bond complexes and close to the observed strong hydrogen bonds in ionic hydrogen-bonded species.

  6. Significant enhancement of yellow-green light emission of ZnO nanorod arrays using Ag island films

    NASA Astrophysics Data System (ADS)

    Lin, Chin-An; Tsai, Dung-Sheng; Chen, Cheng-Ying; He-Hau, Jr.

    2011-03-01

    Surface plasmon (SP) mediated emission from ZnO nanorod arrays (NRAs)/Ag/Si structures has been investigated. The ratio of visible emission to UV emission can be increased by over 30 times via coupling with SP without deterioration of the crystal quality. The fact that the effect of SP crucially depends on the size of Ag island films provides the feasibility to significantly enhance the yellow-green emission of the ZnO nanostructures without sacrificing the crystallinity of ZnO.Surface plasmon (SP) mediated emission from ZnO nanorod arrays (NRAs)/Ag/Si structures has been investigated. The ratio of visible emission to UV emission can be increased by over 30 times via coupling with SP without deterioration of the crystal quality. The fact that the effect of SP crucially depends on the size of Ag island films provides the feasibility to significantly enhance the yellow-green emission of the ZnO nanostructures without sacrificing the crystallinity of ZnO. Electronic supplementary information (ESI) available. See DOI: 10.1039/c0nr00732c

  7. Facile synthesis of Ag/ZnO heterostructures assisted by UV irradiation: Highly photocatalytic property and enhanced photostability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhongmei, E-mail: kalimodor@163.com; Zhang, Ping; Ding, Yanhuai

    2011-10-15

    Highlights: {yields} Fabrication of Ag/ZnO heterostructure between the two incompatible phases is realized under UV irradiation in the absence of surfactant. {yields} The synthetic method is facile, low cost, and low carbon, which depends on the photogenerated electrons produced by ZnO under UV light. {yields} Photocatalytic property of the as-synthesized samples is 3.0 times as good as the pure ZnO synthesized under the same condition or the commercial TiO{sub 2} (Degussa, P-25). {yields} The heterostructures exhibit good durability without significant change in the activity even after the third cycle compared to the pure ZnO. -- Abstract: We report a newmore » method to synthesize Ag/ZnO heterostructures assisted by UV irradiation. The formation of Ag/ZnO heterostructures depends on photogenerated electrons produced by ZnO under UV light to reduce high valence silver. Functional property of the Ag/ZnO heterostructures is evaluated by photodegradation of methylene blue (MB) under UV illumination. Results of photodegradation tests reveal that the optimal photocatalytic activity of as-syntheszied samples is about 1.5 times higher than the pure ZnO synthesized in the same condition or commercial TiO{sub 2} (P-25), showing the advantage of the unique structure in the Ag/ZnO heterostructure. Besides, due to the reduced activation of surface oxygen atom, photocatalytic activity of the photocatalysts has no evident decrease even after three recycles.« less

  8. A nanocomposite of Au-AgI core/shell dimer as a dual-modality contrast agent for x-ray computed tomography and photoacoustic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orza, Anamaria; Wu, Hui; Li, Yuancheng

    Purpose: To develop a core/shell nanodimer of gold (core) and silver iodine (shell) as a dual-modal contrast-enhancing agent for biomarker targeted x-ray computed tomography (CT) and photoacoustic imaging (PAI) applications. Methods: The gold and silver iodine core/shell nanodimer (Au/AgICSD) was prepared by fusing together components of gold, silver, and iodine. The physicochemical properties of Au/AgICSD were then characterized using different optical and imaging techniques (e.g., HR- transmission electron microscope, scanning transmission electron microscope, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, Z-potential, and UV-vis). The CT and PAI contrast-enhancing effects were tested and then compared with a clinically used CT contrast agentmore » and Au nanoparticles. To confer biocompatibility and the capability for efficient biomarker targeting, the surface of the Au/AgICSD nanodimer was modified with the amphiphilic diblock polymer and then functionalized with transferrin for targeting transferrin receptor that is overexpressed in various cancer cells. Cytotoxicity of the prepared Au/AgICSD nanodimer was also tested with both normal and cancer cell lines. Results: The characterizations of prepared Au/AgI core/shell nanostructure confirmed the formation of Au/AgICSD nanodimers. Au/AgICSD nanodimer is stable in physiological conditions for in vivo applications. Au/AgICSD nanodimer exhibited higher contrast enhancement in both CT and PAI for dual-modality imaging. Moreover, transferrin functionalized Au/AgICSD nanodimer showed specific binding to the tumor cells that have a high level of expression of the transferrin receptor. Conclusions: The developed Au/AgICSD nanodimer can be used as a potential biomarker targeted dual-modal contrast agent for both or combined CT and PAI molecular imaging.« less

  9. Cu, Ag, Au: Electrical Resistivity Along their Melting Boundaries

    NASA Astrophysics Data System (ADS)

    Secco, R.; Littleton, J. A. H.; Berrada, M.; Ezenwa, I.; Yong, W.

    2017-12-01

    Electrical resistivity of Cu, Ag and Au was measured at pressures up to 5 GPa and temperatures up to 300 K above melting in a 1000-ton cubic anvil press. Two W/Re thermocouples placed at opposite ends of the wire sample served as T probes as well as 4-wire resistance electrodes in a switched circuit. A polarity switch was also used to remove any bias associated with current flow and voltage measurement using thermocouple legs. Examination of the composition of recovered and sectioned samples was carried out using electron microprobe analyses. Melting temperatures at high pressures were determined from the large jump in resistivity on heating at constant pressure and these agree well with previous experimental and theoretical phase diagram studies. With increasing P and T, electrical resistivity behavior in these noble metals is consistent with 1atm data. The resistivity values at the melting temperature of Cu and Ag decrease with increasing high pressure and Au seems to behave similarly. The results are compared to prediction by Stacey and Anderson (PEPI, 2001).

  10. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands.

    PubMed

    Wang, Yu; Su, Haifeng; Xu, Chaofa; Li, Gang; Gell, Lars; Lin, Shuichao; Tang, Zichao; Häkkinen, Hannu; Zheng, Nanfeng

    2015-04-08

    An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.e., phenylalkynyl, 2-pyridylthiolate, and chloride) was revealed on the surface of metal nanoclusters. Similar to thiolates, alkynyls bind linearly to surface Au atoms using their σ-bonds, leading to the formation of two types of surface staple units (PhC≡C-Au-L, L = PhC≡C(-) or 2-pyridylthiolate) on the cluster. The co-presence of three different surface ligands allows the site-specific surface and functional modification of the cluster. The lability of PhC≡C(-) ligands on the cluster was demonstrated, making it possible to keep the metal core intact while removing partial surface capping. Moreover, it was found that ligand exchange on the cluster occurs easily to offer various derivatives with the same metal core but different surface functionality and thus different solubility.

  11. Controlled preparation of M(Ag, Au)/TiO2 through sulfydryl-assisted method for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Xia, Hongbo; Wu, Suli; Bi, Jiajie; Zhang, Shufen

    2017-11-01

    Here a simple and effective method was explored to fabricate M/TiO2 (M = Ag, Au) composites, which required neither pre-treatment of TiO2 nor any additives as reducing agent. Using amorphous TiO2 spheres functionalized with SH groups as starting materials, the noble metallic ions (Ag, Au) can be adsorbed by TiO2 due to their special affinity with SH groups, which is beneficial to the uniform dispersion of metallic ions on the surface of TiO2. Then the adsorbed ions were reduced to form noble metal nanoparticles by heating process (95 °C) directly without additive as reduction agent. Meanwhile, the amorphous TiO2 was transformed into anatase phase during the heating process. Thus, the transformation of TiO2 along with the reduction of noble metallic ions (Ag, Au) was simultaneously carried out by heating. The XRD patterns proved the formation of anatase TiO2 after heating. The characterizations of XPS and TEM proved the formation of Ag and Au nanoparticles on the surface of TiO2. The element mapping indicated that Ag nanoparticles are dispersed uniformly on the surface of TiO2. The photocatalytic activity of the composites has been investigated by the degradation of methyl orange under visible light irradiation. The results showed that when Ag/TiO2 (2.8 wt%) was used as photocatalyst, about 98% of the MO molecules were degraded in 70 min.

  12. Temperature dependent dielectric properties of Au/ZnO/n-Si heterojuntion

    NASA Astrophysics Data System (ADS)

    Kocyigit, Adem; Orak, İkram; Turut, Abdulmecit

    2018-03-01

    Owing to importance of ZnO in electronics, Au/ZnO/n-type Si device was fabricated to investigate its dielectric properties by aid of capacitance-conductance-voltage measurements. While the ZnO thin film layer on the n-type Si was formed by atomic layer deposition (ALD) technique, the rectifying and ohmic contacts were obtained by thermal evaporation. The surface morphology of ZnO thin film was characterized using atomic force microscopy (AFM) to show its compatibility as interfacial layer in the Au/ZnO/n-type Si device. The dielectric properties of the device were examined in terms of dielectric parameters such as dielectric constant (ɛ‧), dielectric loss (ɛ″), loss tangent (tan δ), the real and imaginary parts of electric modulus (M ‧ and M ″) and ac electrical conductivity (σ) depending on applied voltages (from -1 to 2 V) and temperatures (from 140 K to 360 K) ranges. The results have revealed that interfacial polarization and charge carriers are the important parameters to affect the dielectric properties of the device with changing temperature. The device can be used at wide range temperatures for diode applications.

  13. Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications

    NASA Astrophysics Data System (ADS)

    Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.

    2016-02-01

    Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.

  14. Biogenic synthesis of Ag-Au-In decorated on rGO nanosheet and its antioxidant and biological activities

    NASA Astrophysics Data System (ADS)

    Hazarika, Moushumi; Sonowal, Shashanka; Saikia, Indranirekha; Boruah, Purna K.; Das, Manash R.; Tamuly, Chandan

    2017-09-01

    Au-Ag-In-rGO nanocomposite was synthesized using fruit extract of Zanthoxylum rhetsa which is an eco-friendly, simple and green method. It was characterized by UV-visible, FT-IR, XRD, XPS, EDX, TEM technique. The antioxidant capacity of the nanocomposite was evaluated in presence of AgNO3, HAuCl4 and InCl3 solution respectively at 25 °C. The results showed significant antioxidant activity in presence of 1  ×  10-5 mM AgNO3 solution. The antibacterial activity of Au-Ag-In-rGO nanoparticles was carried out against the gram  -ve bacteria Pseudomonas aeruginosa, Escherichia coli and gram  +ve bacteria Staphylococcus aureus and Bacillus cereus. The bacterial growth kinetics was studied. The bacterial strain E. coli and S. aureus showed complete inhibition at concentration 100 µg ml-1. The activity is more effective in case of Au-Ag-In-rGO compared to GO.

  15. ZnO-Ag core shell nanocomposite formed by green method using essential oil of wild ginger and their bactericidal and cytotoxic effects

    NASA Astrophysics Data System (ADS)

    Azizi, Susan; Mohamad, Rosfarizan; Rahim, Raha Abdul; Moghaddam, Amin Boroumand; Moniri, Mona; Ariff, Arbakariya; Saad, Wan Zuhainis; Namvab, Farideh

    2016-10-01

    In this paper, a novel green method for fabrication of zinc oxide-silver (ZnO-Ag) core-shell nanocomposite using essential oil of ginger (EO-G) is reported. The EO-G played two significant roles in the synthesis process: it could act as a reaction media for the formation of ZnO and reduce Ag+ to Ag0. The bioformed ZnO-Ag nanocomposite was compared with pure biosynthesized ZnO-NPs and characterized by UV-vis spectroscopy, TEM, EDX, XRD and FTIR. The characterization results confirmed that Ag-NPs had been embedded in ZnO hexagonal nanoparticles. Six Gram positive and negative pathogens were used to investigate the antibacterial effects of these samples. Ag-doping improves the bactericidal activity of ZnO-NPs. In vitro cytotoxicity studies on Vero cells, a dose dependent toxicity with non-toxic effect of concentration below 100 μg/mL was shown for ZnO-Ag nanocomposite. The biosynthesized ZnO-Ag nanocomposites were found to be comparable to those obtained from the conventional methods using hazardous materials which can be an excellent alternative for the synthesis of ZnO-Ag using biomass.

  16. Thermal-induced SPR tuning of Ag-ZnO nanocomposite thin film for plasmonic applications

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.

    2018-05-01

    The formation of silver (Ag) nanoparticles in a ZnO matrix were successfully synthesized by RF-magnetron sputtering at room temperature. As prepared Ag-ZnO nanocomposite (NCs) thin films were annealed in vacuum at three different temperatures of 300 °C, 400 °C and 500 °C, respectively. The structural modifications for as-deposited and annealed films were estimated by X-ray diffraction and TEM techniques. The crystalline behavior preferably along the c-axis of the hexagonal wurtzite structure was observed in as-deposited Ag-ZnO film and improved significantly with increasing the annealing temperature. The crystallite size of as-deposited film was measured to be 13.6 nm, and increases up to 28.5 nm at higher temperatures. The chemical composition and surface structure of the as-deposited films were estimated by X-ray photoelectron spectroscopy. The presence of Ag nanoparticles with average size of 8.2 ± 0.2 nm, was confirmed by transmission electron microscopy. The strong surface plasmon resonance (SPR) band was observed at the wavelength of ∼565 nm for as-deposited film and a remarkable red shift of ∼22 nm was recorded after the annealing treatment as confirmed by UV-visible spectroscopy. Atomic force microscopy confirmed the grain growth from 60.38 nm to 79.42 nm for as-deposited and higher temperature annealed film respectively, with no significant change in the surface roughness. Thermal induced modifications such as disordering and lattice defects in Ag-ZnO NCs thin films were carried out by Raman spectroscopy. High quality Ag-ZnO NCs thin films with minimum strain and tunable optical properties could be useful in various plasmonic applications.

  17. Ferritin-mediated biomimetic synthesis of bimetallic Au-Ag nanoparticles on graphene nanosheets for electrochemical detection of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Jiku; Ni, Pengjuan; Li, Zhuang

    2015-03-01

    We demonstrated a biomimetic green synthesis of bimetallic Au-Ag nanoparticles (NPs) on graphene nanosheets (GNs). The spherical protein, ferritin (Fr), was bound onto GNs and served as the template for the synthesis of GN/Au-Ag nanohybrids. The created GN/Au-Ag nanohybrids were further utilized to fabricate a non-enzymatic amperometric biosensor for the sensitive detection of hydrogen peroxide (H2O2), and this biosensor displayed high performances to determine H2O2 with a detection limit of 20.0 × 10-6 M and a linear detection range from 2.0 μM to 7.0 mM.

  18. Wetting reaction of Sn-Ag based solder systems on Cu substrates plated with Au and/or Pd layer

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Li, Jian; Vandentop, G. J.; Choi, W. J.; Tu, K. N.

    2001-05-01

    The wetting behavior of SnAg based Pb-free solders on Cu and Cu substrates plated with Au, Pd, and Au/Pd thin films have been studied. The wetting angle and kinetics of interfacial reaction were measured. The Au-plated substrates exhibit better wetting than the Pd-plated substrates. In the case of SnAg on Pd-plated Cu, SEM observation revealed that the solder cap was surrounded by an innerring of Cu-Sn compound and an outer ring of Pd-Sn compound. This implies that the molten SnAg solder had removed the Pd and wetted the Cu directly in the equilibrium state. The effects of pre-doping Cu in the SnAg solder on wetting behavior were also investigated. We found that wettability decreases with increasing Cu content in the solder. We also observed that the SnAgCu solders have a lower Cu consumption rate than the SnAg solder.

  19. Centrality and collision system dependence of antiproton production from p+A to Au+Au collisions at AGS energies

    NASA Technical Reports Server (NTRS)

    Sako, H.; Ahle, L.; Akiba, Y.; Ashktorab, K.; Baker, M. D.; Beavis, D.; Britt, H. C.; Chang, J.; Chasman, C.; Chen, Z.; hide

    1997-01-01

    Antiproton production in heavy ion collisions reflects subtle interplay between initial production and absorption by nucleons. Because the AGS energies (10--20 A(center-dot)GeV/c) are close to the antiproton production threshold, antiproton may be sensitive to cooperative processes such as QGP and hadronic multi-step processes. On the other hand, antiproton has been proposed as a probe of baryon density due to large N(anti N) annihilation cross sections. Cascade models predict the maximum baryon density reaches about 10 times the normal nucleus density in central Au+Au collisions, where the strong antiproton absorption is expected. In this paper, the authors show systematic studies of antiproton production from p+A to Au+Au collisions.

  20. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    NASA Astrophysics Data System (ADS)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing

    2016-12-01

    We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol-gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl2, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  1. Low-Temperature Preparation of Ag-Doped ZnO Nanowire Arrays, DFT Study, and Application to Light-Emitting Diode.

    PubMed

    Pauporté, Thierry; Lupan, Oleg; Zhang, Jie; Tugsuz, Tugba; Ciofini, Ilaria; Labat, Frédéric; Viana, Bruno

    2015-06-10

    Doping ZnO nanowires (NWs) by group IB elements is an important challenge for integrating nanostructures into functional devices with better and tuned performances. The growth of Ag-doped ZnO NWs by electrodeposition at 90 °C using a chloride bath and molecular oxygen precursor is reported. Ag acts as an electrocatalyst for the deposition and influences the nucleation and growth of the structures. The silver atomic concentration in the wires is controlled by the additive concentration in the deposition bath and a content up to 3.7 atomic % is reported. XRD analysis shows that the integration of silver enlarges the lattice parameters of ZnO. The optical measurements also show that the direct optical bandgap of ZnO is reduced by silver doping. The bandgap shift and lattice expansion are explained by first principle calculations using the density functional theory (DFT) on the silver impurity integration as an interstitial (Ag(i)) and as a substitute of zinc atom (Ag(Zn)) in the crystal lattice. They notably indicate that Ag(Zn) doping forms an impurity band because of Ag 4d and O 2p orbital interactions, shifting the Fermi level toward the valence band. At least, Ag-doped ZnO vertically aligned nanowire arrays have been epitaxially grown on GaN(001) substrate. The heterostructure has been inserted in a light emitting device. UV-blue light emission has been achieved with a low emission threshold of 5 V and a tunable red-shifted emission spectrum related to the bandgap reduction induced by silver doping of the ZnO emitter material.

  2. Mechanical Characteristics, In Vitro Degradation, Cytotoxicity, and Antibacterial Evaluation of Zn-4.0Ag Alloy as a Biodegradable Material

    PubMed Central

    Li, Ping; Schille, Christine; Schweizer, Ernst; Rupp, Frank; Heiss, Alexander; Legner, Claudia; Klotz, Ulrich E.; Geis-Gerstorfer, Jürgen

    2018-01-01

    Zn-based biodegradable metallic materials have been regarded as new potential biomaterials for use as biodegradable implants, mainly because of the ideal degradation rate compared with those of Mg-based alloys and Fe-based alloys. In this study, we developed and investigated a novel Zn-4 wt % Ag alloy as a potential biodegradable metal. A thermomechanical treatment was applied to refine the microstructure and, consequently, to improve the mechanical properties, compared to pure Zn. The yield strength (YS), ultimate tensile strength (UTS) and elongation of the Zn-4Ag alloy are 157 MPa, 261 MPa, and 37%, respectively. The corrosion rate of Zn-4Ag calculated from released Zn ions in DMEM extracts is approximately 0.75 ± 0.16 μg cm–2 day–1, which is higher than that of pure Zn. In vitro cytotoxicity tests showed that the Zn-4Ag alloy exhibits acceptable toxicity to L929 and Saos-2 cells, and could effectively inhibit initial bacteria adhesion. This study shows that the Zn-4Ag exhibits excellent mechanical properties, predictable degradation behavior, acceptable biocompatibility, and effective antibacterial properties, which make it a candidate biodegradable material. PMID:29518938

  3. Synthesis of Ag and Au nanoparticles embedded in carbon film: Optical, crystalline and topography analysis

    NASA Astrophysics Data System (ADS)

    Gholamali, Hediyeh; Shafiekhani, Azizollah; Darabi, Elham; Elahi, Seyed Mohammad

    2018-03-01

    Atomic force microscopy (AFM) images give valuable information about surface roughness of thin films based on the results of power spectral density (PSD) through the fast Fourier transform (FFT) algorithms. In the present work, AFM data are studied for silver and gold nanoparticles (Ag NPs a-C: H and Au NPs a-C: H) embedded in amorphous hydrogenated carbon films and co-deposited on glass substrate via of RF-Sputtering and RF-Plasma Enhanced Chemical Vapor Deposition methods. Here, the working gas is acetylene and the targets are Ag and Au. While time and power are constant, the only variable parameter in this study is initial pressure. In addition, the crystalline structure of Ag NPs a-C: H and Au NPs a-C: H are studied using X-ray diffraction (XRD). UV-visible spectrophotometry will also investigate optical properties and localized surface plasmon resonance (LSPR) of samples.

  4. Structural analysis of the epitaxial interface Ag/ZnO in hierarchical nanoantennas.

    PubMed

    Sanchez, John Eder; Santiago, Ulises; Benitez, Alfredo; Yacamán, Miguel José; González, Francisco Javier; Ponce, Arturo

    2016-10-10

    Detectors, photo-emitter, and other high order radiation devices work under the principle of directionality to enhance the power of emission/transmission in a particular direction. In order to understand such directionality, it is important to study their coupling mechanism of their active elements. In this work, we present a crystalline orientation analysis of ZnO nanorods grown epitaxially on the pentagonal faces of silver nanowires. The analysis of the crystalline orientation at the metal-semiconductor interface (ZnO/Ag) is performed with precession electron diffraction under assisted scanning mode. In addition, high resolution X-ray diffraction on a Bragg-Brentano configuration has been used to identify the crystalline phases of the arrangement between ZnO rods and silver nanowires. The work presented herein provides a fundamental knowledge to understand the metal-semiconductor behavior related to the receiving/transmitting mechanisms of ZnO/Ag nanoantennas.

  5. New insights into the formation mechanism of Ag, Au and AgAu nanoparticles in aqueous alkaline media: alkoxides from alcohols, aldehydes and ketones as universal reducing agents.

    PubMed

    Gomes, Janaina F; Garcia, Amanda C; Ferreira, Eduardo B; Pires, Cleiton; Oliveira, Vanessa L; Tremiliosi-Filho, Germano; Gasparotto, Luiz H S

    2015-09-07

    In this report we present new insights into the formation mechanism of Ag, Au and AgAu nanoparticles with alcohols, aldehydes and ketones in alkaline medium at room temperature. We selected methanol, ethanol, glycerol, formaldehyde, acetaldehyde and acetone to demonstrate their capability of reducing gold and silver ions under the above-mentioned conditions. We showed that the particles are also formed with potassium tert-butoxide in the absence of hydroxides. Our results strongly suggest that alkoxides, formed from any molecule containing a hydroxyl or a functional group capable of generating them in alkaline medium, are the actual and universal reducing agent of silver and gold ions, in opposition to the currently accepted mechanisms. The universality of the reaction mechanism proposed in this work may impact on the production of noble nanoparticles with simple chemicals normally found in standard laboratories.

  6. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals.

    PubMed

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-22

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I-III-VI semiconductor nanocrystals (NCs), such as CuInS 2 and AgInS 2 . However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS 2 and AgInS 2 /ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS 2 and AgInS 2 /ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility [Formula: see text] of AgInS 2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  7. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-01

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I–III–VI semiconductor nanocrystals (NCs), such as CuInS2 and AgInS2. However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS2 and AgInS2/ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS2 and AgInS2/ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility {χ }(3) of AgInS2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  8. Large enhancement of UV luminescence emission of ZnO nanoparticles by coupling excitons with Ag surface plasmons

    NASA Astrophysics Data System (ADS)

    Kuiri, Probodh K.; Pramanik, Subhamay

    2018-04-01

    For an emitter based on bandgap emission, defect mediated emission has always been considered as the most important loss. Here, a novel approach which can overcome such emission loss is proposed using films of ZnO nanoparticles (NPs) on Ag NPs embedded in silica. The effects of the size of Ag NPs on the enhancement of ultra-violet (UV) photoluminescence (PL) of ZnO NPs for such a system have been studied. For the ZnO NPs without Ag NPs, two emission bands have been seen: one in the UV region and the other one in the visible region. This UV PL emission intensity has been seen to increase significantly with a drastic reduction of the visible PL emission intensity in the case of the sample containing ZnO NPs on silica embedded Ag NPs. A linear increase in UV emission with increase in the size of Ag NPs has been found. For the largest size of Ag NPs (˜10 nm, considered in the present study), the PL emission enhancement becomes about 4 times higher than that of sample without Ag NPs. The observed enhancement of the UV PL emission was caused by coupling between spontaneous emission in ZnO and surface plasmons of Ag. The larger Ag NPs provided a larger scattering cross section in coupling surface plasmons to light leading to an increase in UV emission. Thus, it is possible to convert the useless defect emission to the useful excitonic emission with a large enhancement factor.

  9. Enhancement of durability of NIR emission of Ag2S@ZnS QDs in water

    NASA Astrophysics Data System (ADS)

    Karimipour, M.; Bagheri, M.; Molaei, M.

    2017-11-01

    Stability of Ag2S@ZnS QDs in water is a crucial concern for their application in biology. In this work, both physical sustainability and emission stability of Ag2S QDs were enhanced using parameter optimization of a pulsed microwave irradiation (MI) method up to 105 days after their preparation. UV-Vis and photoluminescence spectroscopies depicted an absorption and emission about 817 nm and 878 nm, respectively. X-ray diffraction (XRD) analysis showed a growth of Ag2S acanthite phase. Transmission Electron Microscopy (TEM) images revealed a clear formation of Ag2S@ZnS core-shell structure.

  10. UV sensing using film bulk acoustic resonators based on Au/n-ZnO/piezoelectric-ZnO/Al structure.

    PubMed

    Bian, Xiaolei; Jin, Hao; Wang, Xiaozhi; Dong, Shurong; Chen, Guohao; Luo, J K; Deen, M Jamal; Qi, Bensheng

    2015-03-16

    A new type of ultraviolet (UV) light sensor based on film bulk acoustic wave resonator (FBAR) is proposed. The new sensor uses gold and a thin n-type ZnO layer deposited on the top of piezoelectric layer of FBAR to form a Schottky barrier. The Schottky barrier's capacitance can be changed with UV light, resulting in an enhanced shift in the entire FBAR's resonant frequency. The fabricated UV sensor has a 50 nm thick n-ZnO semiconductor layer with a carrier concentration of ~ 10(17) cm(-3). A large frequency downshift is observed when UV light irradiates the FBAR. With 365 nm UV light of intensity 1.7 mW/cm(2), the FBAR with n-ZnO/Au Schottky diode has 250 kHz frequency downshift, much larger than the 60 kHz frequency downshift in a conventional FBAR without the n-ZnO layer. The shift in the new FBAR's resonant frequency is due to the junction formed between Au and n-ZnO semiconductor and its properties changes with UV light. The experimental results are in agreement with the theoretical analysis using an equivalent circuit model of the new FBAR structure.

  11. Two Homologous Intermetallic Phases in the Na-Au-Zn System with Sodium Bound in Unusual Paired Sites within 1D Tunnels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, Saroj L.; Lin, Qisheng; Corbett, John D.

    The Na-Au-Zn system contains the two intermetallic phases Na(0.97(4))Au(2)Zn(4)(I) and Na(0.72(4))Au(2)Zn(2)(II) that are commensurately and incommensurately modulated derivatives of K(0.37)Cd(2), respectively. Compound I crystallizes in tetragonal space group P4/mbm (No. 127), a = 7.986(1) Å, c = 7.971(1) Å, Z = 4, as a 1 × 1 × 3 superstructure derivative of K(0.37)Cd(2)(I4/mcm). Compound II is a weakly incommensurate derivative of K(0.37)Cd(2) with a modulation vector q = 0.189(1) along c. Its structure was solved in superspace group P4/mbm(00g)00ss, a = 7.8799(6) Å, c = 2.7326(4) Å, Z = 2, as well as its average structure in P4/mbm with themore » same lattice parameters.. The Au-Zn networks in both consist of layers of gold or zinc squares that are condensed antiprismatically along c ([Au(4/2)Zn(4)Zn(4)Au(4/2)] for I and [Au(4/2)Zn(4)Au(4/2)] for II) to define fairly uniform tunnels. The long-range cation dispositions in the tunnels are all clearly and rationally defined by electron density (Fourier) mapping. These show only close, somewhat diffuse, pairs of opposed, ≤50% occupied Na sites that are centered on (I)(shown) or between (II) the gold squares. Tight-binding electronic structure calculations via linear muffin-tin-orbital (LMTO) methods, assuming random occupancy of ≤ ∼100% of nonpaired Na sites, again show that the major Hamilton bonding populations in both compounds arise from the polar heteroatomic Au-Zn interactions. Clear Na-Au (and lesser Na-Zn) bonding is also evident in the COHP functions. These two compounds are the only stable ternary phases in the (Cs,Rb,K,Na)-Au-Zn systems, emphasizing the special bonding and packing requirements in these sodium structures« less

  12. Effect of Au irradiation energy on ejection of ZnS nanoparticles from ZnS film

    NASA Astrophysics Data System (ADS)

    Kuiri, P. K.; Ghatak, J.; Joseph, B.; Lenka, H. P.; Sahu, G.; Mahapatra, D. P.; Tripathi, A.; Kanjilal, D.; Mishra, N. C.

    2007-01-01

    ZnS films deposited on Si have been irradiated with Au ions at 35 keV, 2, and 100 MeV. Sputtered particles, collected on catcher foils during irradiation, were analyzed using transmission electron microscopy. For the case of 35 keV Au irradiation, no nanoparticle (NP) could be observed on the catcher foil. However, NPs 2-7 nm in size, have been observed on the catcher foils for MeV irradiations at room temperature. For particle sizes ≥3 nm, the distributions could be fitted to power law decays with decay exponents varying between 2 and 3.5. At 2 MeV, after correction for cluster breakup effects, the decay exponent has been found to be close to 2, indicating shock waves induced ejection to be the dominant mechanism. The corrected decay exponent for the 100 MeV Au irradiation case has been found to be about 2.6. Coulomb explosion followed by thermal spike induced vaporization of ZnS seems to be the dominant mechanism regarding material removal at such high energy. In such a case the evaporated material can cool down going into the fragmentation region forming clusters.

  13. Growth mechanism, surface and optical properties of ZnO nanostructures deposited on various Au-seeded thickness obtained by mist-atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afaah, A. N., E-mail: afaahabdullah@yahoo.com; Aadila, A., E-mail: aadilaazizali@gmail.com; Asib, N. A. M., E-mail: amierahasib@yahoo.com

    2016-07-06

    In this paper, growth mechanisms of ZnO nanostructures on non-seeded glass, 6 nm and 12 nm Au seed layer obtained by mist-atomization was proposed. ZnO films were successfully deposited on glass substrate with different thickness of Au seed layer i.e. 6 nm and 12 nm. The surface and optical properties of the prepared samples were investigated using Field emission scanning electron microscopy (FESEM) and photoluminescence (PL). FESEM micrograph show that ZnO nanostructure deposited on 6 nm Au seed layer has uniform formation and well distributed. From PL spectroscopy, the UV emission shows that ZnO deposited on 6 nm Au seedmore » layer has the more intense UV intensity which proved that high crystal quality of nanostructured ZnO deposited on 6 nm Au seed layer.« less

  14. Growth and characterization of ZnO multipods on functional surfaces with different sizes and shapes of Ag particles

    NASA Astrophysics Data System (ADS)

    A, Kamalianfar; S, A. Halim; Mahmoud Godarz, Naseri; M, Navasery; Fasih, Ud Din; J, A. M. Zahedi; Kasra, Behzad; K, P. Lim; A Lavari, Monghadam; S, K. Chen

    2013-08-01

    Three-dimensional ZnO multipods are successfully synthesized on functional substrates using the vapor transport method in a quartz tube. The functional surfaces, which include two different distributions of Ag nanoparticles and a layer of commercial Ag nanowires, are coated onto silicon substrates before the growth of ZnO nanostructures. The structures and morphologies of the ZnO/Ag heterostructures are investigated using X-ray diffraction and field emission scanning electron microscopy. The sizes and shapes of the Ag particles affect the growth rates and initial nucleations of the ZnO structures, resulting in different numbers and shapes of multipods. They also influence the orientation and growth quality of the rods. The optical properties are studied by photoluminescence, UV-vis, and Raman spectroscopy. The results indicate that the surface plasmon resonance strongly depends on the sizes and shapes of the Ag particles.

  15. Super low threshold plasmonic WGM lasing from an individual ZnO hexagonal microrod on an Au substrate for plasmon lasers.

    PubMed

    Dong, H M; Yang, Y H; Yang, G W

    2015-03-05

    We demonstrate an individual ZnO hexagonal microrod on the surface of an Au substrate which can become new sources for manufacturing miniature ZnO plasmon lasers by surface plasmon polariton coupling to whispering-gallery modes (WGMs). We also demonstrate that the rough surface of Au substrates can acquire a more satisfied enhancement of ZnO emission if the surface geometry of Au substrates is appropriate. Furthermore, we achieve high Q factor and super low threshold plasmonic WGM lasing from an individual ZnO hexagonal microrod on the surface of the Au substrate, in which Q factor can reach 5790 and threshold is 0.45 KW/cm(2) which is the lowest value reported to date for ZnO nanostructures lasing, at least 10 times smaller than that of ZnO at the nanometer. Electron transfer mechanisms are proposed to understand the physical origin of quenching and enhancement of ZnO emission on the surface of Au substrates. These investigations show that this novel coupling mode holds a great potential of ZnO hexagonal micro- and nanorods for data storage, bio-sensing, optical communications as well as all-optic integrated circuits.

  16. Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria.

    PubMed

    Wang, Jia; Huang, Qifei; Li, Ting; Xin, Baoping; Chen, Shi; Guo, Xingming; Liu, Changhao; Li, Yuping

    2015-08-15

    A few studies have focused on release of valuable/toxic metals from Pb/Zn smelting slag by heterotrophic bioleaching using expensive yeast extract as an energy source. The high leaching cost greatly limits the practical potential of the method. In this work, autotrophic bioleaching using cheap sulfur or/and pyrite as energy matter was firstly applied to tackle the smelting slag and the bioleaching mechanisms were explained. The results indicated autotrophic bioleaching can solubilize valuable/toxic metals from slag, yielding maximum extraction efficiencies of 90% for Zn, 86% for Cd and 71% for In, although the extraction efficiencies of Pb, As and Ag were poor. The bioleaching performance of Zn, Cd and Pb was independent of leaching system, and leaching mechanism was acid dissolution. A maximum efficiency of 25% for As was achieved by acid dissolution in sulfursulfur oxidizing bacteria (S-SOB), but the formation of FeAsO4 reduced extraction efficiency in mixed energy source - mixed culture (MS-MC). Combined works of acid dissolution and Fe(3+) oxidation in MS-MC was responsible for the highest extraction efficiency of 71% for In. Ag was present in the slag as refractory AgPb4(AsO4)3 and AgFe2S3, so extraction did not occur. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Au 329–xAg x(SR) 84 Nanomolecules: Plasmonic Alloy Faradaurate-329

    DOE PAGES

    Kumara, Chanaka; Zuo, Xiaobing; Cullen, David A.; ...

    2015-08-10

    Though significant progress has been made to improve the monodispersity of larger (>10 nm) alloy metal nanoparticles, there still exists a significant variation in nanoparticle composition, ranging from ±1000s of atoms. Here in this paper, for the first time, we report the synthesis of atomically precise (±0 metal atom variation) Au 329–xAg x(SCH 2CH 2Ph) 84 alloy nanomolecules. The composition was determined using high resolution electrospray ionization mass spectrometry. In contrast to larger (>10 nm) Au–Ag nanoparticles, the surface plasmon resonance (SPR) peak does not show a major shift, but a minor ~10 nm red-shift, upon increasing silver content. Themore » intensity of the SPR peak also varies in an intriguing manner, where a dampening is observed with medium silver incorporation, and a significant sharpening is observed upon higher Ag content. The report outlines (a) an unprecedented advance in nanoparticle mass spectrometry of high mass at atomic precision; and (b) the unexpected optical behavior of Au–Ag alloys in the region where nascent SPR emerges; specifically, in this work, the SPR-like peak does not show a major ~100 nm blue-shift with Ag alloying of Au 329 nanomolecules, as shown to be common in larger nanoparticles.« less

  18. Ag nanodots decorated SiO2 coated ZnO core-shell nanostructure with enhanced luminescence property as potential imaging agent

    NASA Astrophysics Data System (ADS)

    Gupta, Jagriti; Barick, K. C.; Hassan, P. A.; Bahadur, Dhirendra

    2018-04-01

    Ag decorated silica coated ZnO nanocomposite (Ag@SiO2@ZnO NCs) has been synthesized by soft chemical approach. The physico-chemical properties of Ag@SiO2@ZnO NCs are investigated by various sophisticated characterization techniques such as X-ray diffraction, Transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible absorption and photoluminescent spectroscopy. X-ray diffraction confirms the phase formation of ZnO and Ag in nanocomposite. TEM micrograph clearly shows that Ag nanodots are well decorated over silica coated ZnO NCs. The photoluminescent study reveals the enhancement in the photoluminance property when the Ag nanodots are decorated over silica coated ZnO nanocomposite due to an electromagnetic coupling between excitons and plasmons. Furthermore, the photoluminescent property is an important tool for bio-imaging application, reveal that NCs give green and red emission after excitation with 488 and 535 nm. Therefore, low cytotoxicity and excellent fluorescence stability in vitro makes it a more suitable material for both cellular imaging and therapy for biomedical applications.

  19. ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light.

    PubMed

    Saravanan, R; Karthikeyan, N; Gupta, V K; Thirumal, E; Thangadurai, P; Narayanan, V; Stephen, A

    2013-05-01

    Degradation of model organic dye and industry effluent was studied using different weight percentages of Ag into ZnO as a catalyst. In this study, the catalysts were prepared by thermal decomposition method, which was employed for the first time in the preparation of ZnO/Ag nanocomposite catalysts. The physical and chemical properties of the prepared samples were studied using various techniques. The specific surface area, which plays an important role in the photocatalytic degradation, was studied using BET analysis and 10 wt.% Ag into ZnO showed the best degrading efficiency. The optical absorption (UV-vis) and emission (PL) properties of the samples were studied and results suggest better photocatalytic properties for 10 wt.% Ag sample compared to other samples. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  20. Localized surface plasmon resonance properties of symmetry-broken Au-ITO-Ag multilayered nanoshells

    NASA Astrophysics Data System (ADS)

    Lv, Jingwei; Mu, Haiwei; Lu, Xili; Liu, Qiang; Liu, Chao; Sun, Tao; Chu, Paul K.

    2018-06-01

    The plasmonic properties of symmetry-broken Au-ITO-Ag multilayered nanoshells by shell cutting are studied by the finite element method. The influence of the polarization of incident light and geometrical parameters on the plasmon resonances of the multilayered nanoshells are investigated. The polarization-dependent multiple plasmon resonances appear from the multilayered nanoshells due to symmetry breaking. In nanostructures with a broken symmetry, the localized surface plasmon resonance modes are enhanced resulting in higher order resonances. According to the plasmon hybridization theory, these resonance modes and greater spectral tunability derive from the interactions of an admixture of both primitive and multipolar modes between the inner Au core and outer Ag shell. By changing the radius of the Au core, the extinction resonance modes of the multilayered nanoshells can be easily tuned to the near-infrared region. To elucidate the symmetry-broken effects of multilayered nanoshells, we link the geometrical asymmetry to the asymmetrical distributions of surface charges and demonstrate dipolar and higher order plasmon modes with large associated field enhancements at the edge of the Ag rim. The spectral tunability of the multiple resonance modes from visible to near-infrared is investigated and the unique properties are attractive to applications including angularly selective filtering to biosensing.

  1. Pulsed electrodeposition of two-dimensional Ag nanostructures on Au(111).

    PubMed

    Borissov, D; Tsekov, R; Freyland, W

    2006-08-17

    One-step pulsed potential electrodeposition of Ag on Au(111) in the underpotential deposition (UPD) region has been studied in 0.5 mM Ag2SO4 + 0.1 M H2SO4 aqueous electrolyte at various pulse durations from 0.2 to 500 ms. Evolution of the deposited Ag nanostructures was followed by in situ scanning tunneling microscopy (STM) and by measurement of the respective current transients. At short pulse durations a relatively high number density (4 x 10(11) cm(-2)) of two-dimensional Ag clusters with a narrow size and distance distribution is observed. They exhibit a remarkably high stability characterized by a dissolution potential which lies about 200 mV more anodically than the typical potential of Ag-(1 x 1) monolayer dissolution. To elucidate the underlying nucleation and growth mechanism, two models have been considered: two-dimensional lattice incorporation and a newly developed coupled diffusion-adsorption model. The first one yields a qualitative description of the current transients, whereas the second one is in nearly quantitative agreement with the experimental data. In this model the transformation of a Ag-(3 x 3) into a Ag-(1 x 1) structure indicated in the cyclic voltammogram (peaks at 520 vs 20 mV) is taken into account.

  2. Investigation of the growth and in situ heating transmission electron microscopy analysis of Ag2S-catalyzed ZnS nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Jung Han; Kim, Jong Gu; Song, Junghyun; Bae, Tae-Sung; Kim, Kyou-Hyun; Lee, Young-Seak; Pang, Yoonsoo; Oh, Kyu Hwan; Chung, Hee-Suk

    2018-04-01

    We investigated the semiconductor-catalyzed formation of semiconductor nanowires (NWs) - silver sulfide (Ag2S)-catalyzed zinc sulfide (ZnS) NWs - based on a vapor-liquid-solid (VLS) growth mechanism through metal-organic chemical vapor deposition (MOCVD) with a Ag thin film. The Ag2S-catalyzed ZnS NWs were confirmed to have a wurtzite structure with a width and length in the range of ∼30 nm to ∼80 nm and ∼1 μm, respectively. Using extensive transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) analyses from plane and cross-sectional viewpoints, the ZnS NWs were determined to have a c-axis, [0001] growth direction. In addition, the catalyst at the top of the ZnS NWs was determined to consist of a Ag2S phase. To support the Ag2S-catalyzed growth of the ZnS NWs by a VLS reaction, an in situ heating TEM experiment was conducted from room temperature to 840 °C. During the experiment, the melting of the Ag2S catalyst in the direction of the ZnS NWs was first observed at approximately 480 °C along with the formation of a carbon (C) shell. Subsequently, the Ag2S catalyst melted completely into the ZnS NWs at approximately 825 °C. As the temperature further increased, the Ag2S and ZnS NWs continuously melted and vaporized up to 840 °C, leaving only the C shell behind. Finally, a possible growth mechanism was proposed based on the structural and chemical investigations.

  3. Effect of Different Activated Carbon as Carrier on the Photocatalytic Activity of Ag-N-ZnO Photocatalyst for Methyl Orange Degradation under Visible Light Irradiation

    PubMed Central

    Chen, Xiaoqing; Gao, Zhenzhen; Ye, Bang-Ce

    2017-01-01

    In order to enhance the photodegradation of methyl orange (MO) by ZnO under visible light irradiation, ZnO nanoparticles co-doped with Ag and N and supported on activated carbon (AC) with different properties were synthesized through the sol-gel method. The prepared photocatalysts were characterized in terms of the structure and properties through X-ray diffraction, N2 adsorption-desorption, ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, photoluminescence, and electron spin resonance. The photocatalytic activities of these photocatalysts followed the order: Ag-N-ZnO/ACs > Ag-N-ZnO > N, or Ag single-doped ZnO > commercial ZnO. This result was attributed to the small particle size, large surface area, narrow band gap, and high charge separation of Ag-N-ZnO/ACs. The Ag-N-ZnO/coconut husk activated carbon (Ag-N-ZnO/CHAC) exhibited the highest degradation efficiency of 98.82% for MO under visible light irradiation. This outcome was due to the abundant pore structure of Ag-N-ZnO/CHAC, resulting in stronger adsorption than that of other Ag-N-ZnO/ACs. Moreover, the degradation of MO on photocatalysis followed first order kinetics. The reactive species ·OH and ·O2− played more important roles in the photocatalytic degradation of MO over composite photocatalyst. Ag-N-ZnO/CHAC photocatalyst exhibited higher photocatalytic activity than unsupported Ag-N-ZnO after five recycling runs. PMID:28872593

  4. Effect of Different Activated Carbon as Carrier on the Photocatalytic Activity of Ag-N-ZnO Photocatalyst for Methyl Orange Degradation under Visible Light Irradiation.

    PubMed

    Chen, Xiaoqing; Wu, Zhansheng; Gao, Zhenzhen; Ye, Bang-Ce

    2017-09-05

    In order to enhance the photodegradation of methyl orange (MO) by ZnO under visible light irradiation, ZnO nanoparticles co-doped with Ag and N and supported on activated carbon (AC) with different properties were synthesized through the sol-gel method. The prepared photocatalysts were characterized in terms of the structure and properties through X-ray diffraction, N₂ adsorption-desorption, ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, photoluminescence, and electron spin resonance. The photocatalytic activities of these photocatalysts followed the order: Ag-N-ZnO/ACs > Ag-N-ZnO > N, or Ag single-doped ZnO > commercial ZnO. This result was attributed to the small particle size, large surface area, narrow band gap, and high charge separation of Ag-N-ZnO/ACs. The Ag-N-ZnO/coconut husk activated carbon (Ag-N-ZnO/CHAC) exhibited the highest degradation efficiency of 98.82% for MO under visible light irradiation. This outcome was due to the abundant pore structure of Ag-N-ZnO/CHAC, resulting in stronger adsorption than that of other Ag-N-ZnO/ACs. Moreover, the degradation of MO on photocatalysis followed first order kinetics. The reactive species ·OH and ·O₂ - played more important roles in the photocatalytic degradation of MO over composite photocatalyst. Ag-N-ZnO/CHAC photocatalyst exhibited higher photocatalytic activity than unsupported Ag-N-ZnO after five recycling runs.

  5. A photoelectrochemical immunosensor for detection of α-fetoprotein based on Au-ZnO flower-rod heterostructures

    NASA Astrophysics Data System (ADS)

    Han, Zhizhong; Luo, Min; Chen, Li; Chen, Jinghua; Li, Chunyan

    2017-04-01

    In this work, a novel label free photoelectrochemical (PEC) immunosensor has been developed for the detection of α-fetoprotein (AFP). The immunosensor was based on Au-ZnO flower-rods (FRs) heterostructure, where Au nanoparticles (NPs) were firstly electrodeposited by cyclic voltammetry methods. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Mott-Schottky plot (MS), UV-vis diffuse reflectance spectrum and fluorescence emission spectrum were used for the characterizations of Au-ZnO FRs. The results demonstrated that Au NPs not only obviously enhanced the visible light absorption of ZnO FRs due to surface plasmon resonance (SPR) but also improved the separation of photo-generated electron-hole pairs. Therefore, the photocurrent of Au-ZnO FRs was increased under simulated sunlight. The photocurrent was reduced after the specific antibody-antigen immune reaction. And the photocurrent decrement was linear with the logarithm of AFP antigen concentration in the range from 0.005 ng mL-1 to 50 ng mL-1 with a low detection limit of 0.56 pg mL-1 (S/N = 3). The PEC immunosensor also exhibited high anti-interference property and acceptable stability. This work would provide a promising photoelectrochemical strategy for the detection of other proteins in clinical diagnosis.

  6. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Fei; Hou, Xiangshu; Xu, Kun

    2015-10-01

    Glucose is a key energy substance in diverse biology and closely related to the life activities of the organism. To develop a simple and sensitive method for glucose detection is extremely urgent but still remains a key challenge. Herein, we report a colorimetric glucose sensor in a homogeneous system based on DNA-embedded core-shell Au@Ag nanoparticles. In this assay, a glucose substrate was first catalytically oxidized by glucose oxidase to produce H2O2 which would further oxidize and gradually etch the outer silver shell of Au@Ag nanoparticles. Afterwards, the solution color changed from yellow to red and the surface plasmon resonance (SPR) band of Au@Ag nanoparticles declined and red-shifted from 430 to 516 nm. Compared with previous silver-based glucose colorimetric detection strategies, the distinctive SPR band change is superior to the color variation, which is critical to the high sensitivity of this assay. Benefiting from the outstanding optical property, robust stability and well-dispersion of the core-shell Au@AgNPs hybrid, this colorimetric assay obtained a detection limit of glucose as low as 10 nM, which is at least a 10-fold improvement over other AgNPs-based procedures. Moreover, this optical biosensor was successfully employed to the determination of glucose in fetal bovine serum.

  7. UV sensing using film bulk acoustic resonators based on Au/n-ZnO/piezoelectric-ZnO/Al structure

    PubMed Central

    Bian, Xiaolei; Jin, Hao; Wang, Xiaozhi; Dong, Shurong; Chen, Guohao; Luo, J. K.; Deen, M. Jamal; Qi, Bensheng

    2015-01-01

    A new type of ultraviolet (UV) light sensor based on film bulk acoustic wave resonator (FBAR) is proposed. The new sensor uses gold and a thin n-type ZnO layer deposited on the top of piezoelectric layer of FBAR to form a Schottky barrier. The Schottky barrier's capacitance can be changed with UV light, resulting in an enhanced shift in the entire FBAR's resonant frequency. The fabricated UV sensor has a 50 nm thick n-ZnO semiconductor layer with a carrier concentration of ~ 1017 cm−3. A large frequency downshift is observed when UV light irradiates the FBAR. With 365 nm UV light of intensity 1.7 mW/cm2, the FBAR with n-ZnO/Au Schottky diode has 250 kHz frequency downshift, much larger than the 60 kHz frequency downshift in a conventional FBAR without the n-ZnO layer. The shift in the new FBAR's resonant frequency is due to the junction formed between Au and n-ZnO semiconductor and its properties changes with UV light. The experimental results are in agreement with the theoretical analysis using an equivalent circuit model of the new FBAR structure. PMID:25773146

  8. Influence of plasmon coupling on the photoluminescence of ZnS/Ag nanoparticles obtained by laser irradiation in liquid

    NASA Astrophysics Data System (ADS)

    Moos, Rafaela; Graff, Ismael L.; de Oliveira, Vinicius S.; Schreiner, Wido H.; Bezerra, Arandi G.

    2017-10-01

    We investigate the photoluminescence, optical absorption and structural properties of ZnS submitted to laser irradiation in water and isopropyl alcohol. Nanoparticles were produced by irradiating micro-sized ZnS particles dispersed in both liquids, with and without the addition of Ag nanoparticles, taking advantage of the laser-assisted fragmentation effect. When ZnS microparticles are irradiated either in pure water or isopropyl alcohol a considerable size reduction is achieved (from micra to few nanometers). The photoluminescence of these nanoparticles mainly occurs in the UV, centered at 350 nm, and with smaller intensity in the visible, centered at 600 nm. Irradiation of ZnS microparticles dispersed in colloidal silver triggers a reaction between both materials, modifying its optical absorption and photoluminescent properties. After irradiation of ZnS in alcohol containing Ag nanoparticles, a giant increase of the UV photoluminescence is observed. Interestingly, when the irradiation is performed in aqueous Ag nanoparticles colloids, the photoluminescence suffers a red-shift towards the violet-blue. The data show that core-shell (Ag-ZnO) nanostructures are formed after irradiation and the visible emission likely originates from the ZnO shell grown around silver nanoparticles. The presence of Ag nanoparticles in the liquid medium promotes a stronger absorption of the laser beam during irradiation due to the coupling with the surface plasmon resonance, fostering intense reactions among ZnS, Ag nanoparticles, and the liquid medium. Our study shows that with a simple change of the liquid medium wherein the irradiation is conducted the photoluminescence can be tuned from UV to visible and core-shell nanostructures can be obtained.

  9. Manipulating the optical properties of dual implanted Au and Zn nanoparticles in sapphire

    NASA Astrophysics Data System (ADS)

    Epie, E. N.; Scott, D.; Chu, W. K.

    2017-11-01

    We have synthesized and manipulated the optical properties of metallic nanoparticles (NPs) by using a combination of low-energy high-fluence dual implantation and thermal annealing. We demonstrated that by implanting Zn before Au, the resulting absorption peak is enormously blue-shifted by 120 nm with respect to that of Au-only implanted samples. This magnitude of optical shift is not characteristic of unalloyed Au and to the best of our knowledge cannot be attributed to NP size change alone. On the other hand, the absorption peak for samples implanted with Au followed by Zn is blue-shifted about 20 nm. Additionally, by carefully annealing all implanted samples, both NP size distribution and corresponding optical properties can be further modified in a controlled manner. We attribute these behaviours to nanoalloy formation. This work provides a direct method for synthesizing and manipulating both the plasmonic and structural properties of metallic alloy NP in various transparent dielectrics for diverse applications.

  10. Structural transformation and photoluminescence modification of AgInS2 nanoparticles induced by ZnS shell formation

    NASA Astrophysics Data System (ADS)

    Hamanaka, Yasushi; Yukitoki, Daichi; Kuzuya, Toshihiro

    2015-09-01

    AgInS2 nanoparticles were capped by ZnS via a widely used procedure to fabricate core/shell nanoparticles with highly efficient luminescence. The nanoparticle structures were investigated by ultrahigh-resolution analytical electron microscopy. We found that Zn-Ag-In-S nanoparticles were created by ZnS capping at ˜480 K, which suggests that the luminescence enhancement reported for such core/shell nanoparticles is not caused by the passivation of surface defects by ZnS shells but by Zn doping. Quasi-core/shell nanoparticles could be obtained by ZnS capping without heating. However, their luminescence efficiency remained unchanged, indicating that surface passivation was ineffective when ZnS shells were formed at room temperature.

  11. Controllable synthesis of dual emissive Ag:InP/ZnS quantum dots with high fluorescence quantum yield

    NASA Astrophysics Data System (ADS)

    Yang, Wu; He, Guoxing; Mei, Shiliang; Zhu, Jiatao; Zhang, Wanlu; Chen, Qiuhang; Zhang, Guilin; Guo, Ruiqian

    2017-11-01

    Dual emissive Cd-free quantum dots (QDs) are in great demand for various applications. However, their synthesis has been faced with challenges. Here, we demonstrate the dual emissive Ag:InP/ZnS core/shell QDs with the excellent photoluminescence quantum yield (PL QY) up to 75% and their PL dependence on the reaction temperature, reaction time, the different ZnX2 (X = I, Cl, and Br) precursors, the ratio of In/Zn and the Ag dopant concentration. The as-prepared Ag:InP/ZnS QDs exhibit dual emission with one peak position of about 492 nm owing to the intrinsic emission, and the other peak position of about 575 nm resulting from Ag-doped emission. These dual emissive QDs are integrated with the commercial GaN-based blue LEDs, and the simulation results show that the Ag:InP/ZnS QDs-based white LEDs could realize bright natural white-lights with the luminous efficacy (LE) of 94.2-98.4 lm/W, the color rendering index (CRI) of 82-83 and the color quality scale (CQS) of 82-83 at different correlated color temperatures (CCT). This unique combination of the above properties makes this new class of dual emissive QDs attractive for white LED applications.

  12. Au/ZnS core/shell nanocrystals as an efficient anode photocatalyst in direct methanol fuel cells.

    PubMed

    Chen, Wei-Ta; Lin, Yin-Kai; Yang, Ting-Ting; Pu, Ying-Chih; Hsu, Yung-Jung

    2013-10-04

    Au/ZnS core/shell nanocrystals with controllable shell thicknesses were synthesized using a cysteine-assisted hydrothermal method. Incorporating Au/ZnS nanocrystals into the traditional Pt-catalyzed half-cell reaction led to a 43.3% increase in methanol oxidation current under light illumination, demonstrating their promising potential for metal/semiconductor hybrid nanocrystals as the anode photocatalyst in direct methanol fuel cells.

  13. Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Ievtushenko, A.; Karpyna, V.; Eriksson, J.; Tsiaoussis, I.; Shtepliuk, I.; Lashkarev, G.; Yakimova, R.; Khranovskyy, V.

    2018-05-01

    ZnO films and nanostructures were deposited on Si substrates by MOCVD using single source solid state zinc acetylacetonate (Zn(AA)) precursor. Doping by silver was realized in-situ via adding 1 and 10 wt. % of Ag acetylacetonate (Ag(AA)) to zinc precursor. Influence of Ag on the microstructure, electrical and optical properties of ZnO at temperature range 220-550 °C was studied by scanning, transmission electron and Kelvin probe force microscopy, photoluminescence and four-point probe electrical measurements. Ag doping affects the ZnO microstructure via changing the nucleation mode into heterogeneous and thus transforming the polycrystalline films into a matrix of highly c-axis textured hexagonally faceted nanorods. Increase of the work function value from 4.45 to 4.75 eV was observed with Ag content increase, which is attributed to Ag behaviour as a donor impurity. It was observed, that near-band edge emission of ZnO NS was enhanced with Ag doping as a result of quenching deep-level emission. Upon high doping of ZnO by Ag it tends to promote the formation of basal plane stacking faults defect, as it was observed by HR TEM and PL study in the case of 10 wt.% of Ag. Based on the results obtained, it is suggested that NS deposition at lower temperatures (220-300 °C) is more favorable for p-type doping of ZnO.

  14. Novel multifunctional graphene sheets with encased Au/Ag nanoparticles for advanced electrochemical analysis of organic compounds.

    PubMed

    Pruneanu, Stela; Biris, Alexandru R; Pogacean, Florina; Lazar, Diana Mihaela; Ardelean, Stefania; Watanabe, Fumyia; Dervishi, Enkeleda; Biris, Alexandru S

    2012-11-12

    This work is the first presentation of the synthesis of few-layer graphene decorated with gold and silver nanoparticles (Gr-Au-Ag) by chemical vapor deposition over a catalytic system formed of bimetallic Au-Ag nanoclusters supported on MgO and with methane used as the source of carbon. The sheetlike morphology of the graphene nanostructures, with mean sizes in the range of hundreds of nanometers, was observed by high-resolution electron microscopy. The distinctive feature found in all the samples was the regular rectangular or square shapes. This multi-component organic-inorganic nanomaterial was used to modify a platinum substrate and subsequently employed for the detection of carbamazepine, an anti-convulsion drug. UV/Vis spectroscopy revealed that a strong hypochromism occurred over time, after mixing solutions of graphene-Au-Ag with carbamazepine. This can be attributed to π-π stacking between the aromatic groups of the two compounds. Linear sweep voltammetry (LCV) provided evidence that the modified platinum substrate presented a significant electrocatalytic reaction toward the oxidation of carbamazepine. The intensity of the current was found to increase by up to 2.5 times, and the oxidation potential shifted from +1.5 to +1.35 V(Ag/AgCl) in comparison with the unmodified electrode. Electrochemical impedance spectroscopy (EIS) was further used to thoroughly assess the activity of the platinum electrode that was modified by the deposition of the Gr-Au-Ag composites in the presence of various concentrations of carbamazepine. The experimental EIS records were used for the generation of an equivalent electrical circuit, based on the charge-transfer resistance (R(ct)), Warburg impedance (Z(D)), solution resistance (R(s)), and a constant phase element (CPE) that characterizes the non-ideal interface capacitive responses. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Influence of Cu, Au and Ag on structural and surface properties of bioactive coatings based on titanium.

    PubMed

    Wojcieszak, D; Mazur, M; Kalisz, M; Grobelny, M

    2017-02-01

    In this work influence of copper, silver and gold additives on structural and surface properties of biologically active thin films based on titanium have been described. Coatings were prepared by magnetron sputtering method. During each process metallic discs (targets) - Ti and the additive (Cu, Ag or Au) were co-sputtered in argon atmosphere. Structural investigation of as-deposited coatings was performed with the aid of XRD and SEM/EDS method. It was found that all prepared thin films were homogenous. Addition of Cu, Ag and Au resulted in nanocrystalline structure. Moreover, influence of these additives on hardness and antibacterial activity of titanium coatings was also studied. Ti-Cu, Ti-Ag and Ti-Au films had lower hardness as-compared to Ti. According to AAS results the difference of their activity was related to the ion migration process. It was found that Ti-Ag and Ti-Au coatings had biocidal effect related to direct contact of their surface with microorganisms. In the case of Ti-Cu antimicrobial activity had direct and indirect nature due to efficient ion migration process from the film surface to the surrounding environment. Functional features of coatings such as wettability and corrosion resistance were also examined and included in the comprehensive analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Carbon dot-Au(i)Ag(0) assembly for the construction of an artificial light harvesting system.

    PubMed

    Jana, Jayasmita; Aditya, Teresa; Pal, Tarasankar

    2018-03-06

    Artificial light harvesting systems (LHS) with inorganic counterparts are considered to be robust as well as mechanistically simple, where the system follows the donor-acceptor principle with an unchanged structural pattern. Plasmonic gold or silver nanoparticles are mostly chosen as inorganic counterparts to design artificial LHS. To capitalize on its electron accepting capability, Au(i) has been considered in this work for the synergistic stabilization of a system with intriguingly fluorescing silver(0) clusters produced in situ. Thus a stable fluorescent Au(i)Ag(0) assembly is generated with electron accepting capabilities. On the other hand, carbon dots have evolved as new fluorescent probes due to their unique physicochemical properties. Utilizing the simple electronic behavior of carbon dots, an electronic interaction between the fluorescent Au(i)Ag(0) and a carbon dot has been investigated for the construction of a new artificial light harvesting system. This coinage metal assembly allows surface energy transfer where it acts as an acceptor, while the carbon dot behaves as a good donor. The energy transfer efficiency has been calculated experimentally to be significant (81.3%) and the Au(i)Ag(0)-carbon dot assembly paves the way for efficient artificial LHS.

  17. A novel surface plasmon resonance biosensor based on the PDA-AgNPs-PDA-Au film sensing platform for horse IgG detection

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhang, Di; Deng, Xinyu; Sun, Ying; Wang, Xinghua; Ma, Pinyi; Song, Daqian

    2018-02-01

    Herein we report a novel polydopamine-silver nanoparticle-polydopamine-gold (PDA-AgNPs-PDA-Au) film based surface plasmon resonance (SPR) biosensor for horse IgG detection. The PDA-AgNPs-PDA-Au film sensing platform was built on Au-film via layer-by-layer self-assembly. Ag ion was reduced in situ to AgNPs in presence of PDA. The top PDA layer can prevent AgNPs from being oxidized and connect with antibody via Schiff alkali reaction directly. The morphology and thickness of the modified gold film were characterized using scanning electron microscope and Talystep. Experimental results show that the PDA-AgNPs-PDA-Au film sensing platform is stable, regenerative and sensitive for horse IgG detection. The detection limit of horse IgG obtained with the present biosensor is 0.625 μg mL- 1, which is 2-fold and 4-fold lower than that obtained with biosensor based on PDA modified Au film and conventional biosensor based on MPA, respectively. Furthermore, when challenged to real serum samples, our sensor exhibited excellent specificity to horse IgG, suggesting its potential for industrial application.

  18. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.

    PubMed

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-07-01

    Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine-iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO+HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420°C and 60min for Au and Pd, and 410°C and 30min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO+HL)-treated PCBs with iodine-iodide system were leaching time of 120min (90min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10g/mL (1:8g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine-iodide leaching process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures.

    PubMed

    Yang, Huayan; Wang, Yu; Huang, Huaqi; Gell, Lars; Lehtovaara, Lauri; Malola, Sami; Häkkinen, Hannu; Zheng, Nanfeng

    2013-01-01

    Noble metal nanoparticles stabilized by organic ligands are important for applications in assembly, site-specific bioconjugate labelling and sensing, drug delivery and medical therapy, molecular recognition and molecular electronics, and catalysis. Here we report crystal structures and theoretical analysis of three Ag44(SR)30 and three Au12Ag32(SR)30 intermetallic nanoclusters stabilized with fluorinated arylthiols (SR=SPhF, SPhF2 or SPhCF3). The nanocluster forms a Keplerate solid of concentric icosahedral and dodecahedral atom shells, protected by six Ag2(SR)5 units. Positive counterions in the crystal indicate a high negative charge of 4(-) per nanoparticle, and density functional theory calculations explain the stability as an 18-electron superatom shell closure in the metal core. Highly featured optical absorption spectra in the ultraviolet-visible region are analysed using time-dependent density functional perturbation theory. This work forms a basis for further understanding, engineering and controlling of stability as well as electronic and optical properties of these novel nanomaterials.

  20. Electronic structures and nonlinear optical properties of trinuclear transition metal clusters M-(mu-S)-M' (M = Mo, W; M' = Cu, Ag, Au).

    PubMed

    Chen, Xihua; Wu, Kechen; Snijders, Jaap G; Lin, Chensheng

    2003-01-27

    A series of trinuclear metal clusters MS4(M'PPh3)2(M'PPh3) (M = Mo, W; M' = Cu, Ag, Au) have been studied using the density functional theory (DFT) method. The static polarizabilities and hyperpolarizabilities of the model clusters have been calculated using the finite-field (F-F) method. The model clusters, divided into two groups, are alike in the structure of two fragments of rhombic units M-(mu-S)2-M' (M = Mo, W; M' = Cu, Ag, Au), perpendicular to each other, which are joined by sharing the bridge metal M. It is the charge transfer from one of these moieties to the other in these characteristic sulfido-transitional metal cores that is responsible for the polarizabilities and hyperpolarizabilities. This kind of electronic delocalization, different from that of the planar pi-system, is interesting and warrants further investigation. The structural effects on properties are important. In these models, considerable third-order nonlinearities are exhibited. The element substitution effect of Mo and W is weak, while that of Cu and Ag is relatively substantial. An overall order is gamma xxxx(Mo-Ag) > gamma xxxx(W-Ag) > gamma xxxx(Mo-Au) > gamma xxxx(W-Au) > gamma xxxx (Mo-Cu) > gamma xxxx(W-Cu) and gamma av(Mo-Ag) approximately gamma av(W-Ag) > gamma av(Mo-Au) approximately gamma av(W-Au) approximately gamma av (Mo-Cu) approximately gamma av(W-Cu).

  1. Tailoring the Hydrothermal Synthesis of Stainless Steel Wire Sieve-Supported Ag-Doped ZnO Nanowires to Optimize Their Photo-catalytic Activity

    NASA Astrophysics Data System (ADS)

    Jing, W. X.; Shi, J. F.; Xu, Z. P.; Jiang, Z. D.; Wei, Z. Y.; Zhou, F.; Wu, Q.; Cui, Q. B.

    2018-03-01

    Batches of un-doped and Ag-doped ZnO nanowires (ZnONWs) were prepared hydrothermally on stainless steel wire sieves at varied Zn2+ concentrations of the growth solution and at different Ag+ concentrations of the silver nitrate solution. Methylene blue solution was degraded with these as-prepared ZnONWs in the presences of ultraviolet irradiation. It is found that both the processing parameters greatly affect the surface textures, wettability, and photo-activity of the ZnONWs. The latter synthesizing parameter is optimized only after the former one has been finely regulated. The un-doped and Ag-doped ZnONWs at Zn2+ concentration of 75 mM of the growth solution and at Ag+ concentration of3 mM of the silver nitrate solution both produce Gaussian rough surfaces and in each batch are most hydrophilic. Therefore, in the related batch the contacting surface area of the catalyst is the largest, the hydroxyl radicals attached on the top ends of corresponding ZnONWs the most, and the catalytic activity of these catalysts the optimal. Besides these, the latter synthesizing parameter affects the photo-activity of Ag-doped ZnONWs more significantly than the former one does that of un-doped ZnONWs.

  2. Optical transmission larger than 1 (T>1) through ZnS -SiO2/AgOx/ZnS-SiO2 sandwiched thin films

    NASA Astrophysics Data System (ADS)

    Wei, Jingsong; Xiao, Mufei

    2006-09-01

    Optical transmission through flat media should be smaller than 1. However, we have observed optical transmission up to T =1.18. The samples were ZnS -SiO2/AgOx/ZnS-SiO2 sandwiched thin films on glass substrate. The supertransmission could only be observed in the near field. We attribute the supertransmission to the lateral propagation relayed by the laser activated and decomposed Ag nanoparticles.

  3. Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine.

    PubMed

    Chen, Xianlan; Zhang, Guowei; Shi, Ling; Pan, Shanqing; Liu, Wei; Pan, Hiabo

    2016-08-01

    The formation of nitrogen-doped (N-doped) graphene uses hydrothermal method with urea as reducing agent and nitrogen source. The surface elemental composition of the catalyst was analyzed through XPS, which showed a high content of a total N species (7.12at.%), indicative of the effective N-doping, present in the form of pyridinic N, pyrrolic N and graphitic N groups. Moreover, Au nanoparticles deposited on ZnO nanocrystals surface, forming Au/ZnO hybrid nanocatalysts, undergo a super-hydrophobic to super-hydrophilic conversion. Herein, we present Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene sheets through sonication technique of the Au/ZnO/N-doped graphene hybrid nanostructures. The as-prepared Au/ZnO/N-doped graphene hybrid nanostructure modified glassy carbon electrode (Au/ZnO/N-doped graphene/GCE) was first employed for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and acetaminophen (AC). The oxidation over-potentials of AA, DA and AC decreased dramatically, and their oxidation peak currents increased significantly at Au/ZnO/N-doped graphene/GCE compared to those obtained at the N-doped graphene/GCE and bare CCE. The peak separations between AA and DA, DA and AC, and AC and AA are large up to 195, 198 and 393mV, respectively. The calibration curves for AA, DA and AC were obtained in the range of 30.00-13.00×10(3), 2.00-0.18×10(3) and 5.00-3.10×10(3)μM, respectively. The detection limits (S/N=3) were 5.00, 0.40 and 0.80μM for AA, DA and AC, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Observation of ZnS nanoparticles sputtered from ZnS films under 2 MeV Au irradiation

    NASA Astrophysics Data System (ADS)

    Kuiri, P. K.; Joseph, B.; Ghatak, J.; Lenka, H. P.; Sahu, G.; Acharya, B. S.; Mahapatra, D. P.

    2006-07-01

    ZnS nanoparticles have been observed on catcher foils due to 2 MeV Au ion irradiation of ZnS films thermally evaporated on Si(1 0 0) substrates. The structure and size distribution of nanoclusters collected were studied using transmission electron microscopy for irradiation fluences in the range of 1 × 10 11-1 × 10 15 ions cm -2. The nanoclusters were found to have a hexagonal wurtzite structure. Optical absorption measurements on similarly deposited ZnS on silica glass indicate the film to be also composed of hexagonal wurtzite ZnS. Based on this and available data we argue that the observed nanoparticles on the catcher foils are the results of shock waves induced emission of material chunks with the same atomic coordination as in the target.

  5. Interfacial surfactant competition and its impact on poly(ethylene oxide)/Au and poly(ethylene oxide)/Ag nanocomposite properties

    PubMed Central

    Seyhan, Merve; Kucharczyk, William; Yarar, U Ecem; Rickard, Katherine; Rende, Deniz; Baysal, Nihat; Bucak, Seyda; Ozisik, Rahmi

    2017-01-01

    The structure and properties of nanocomposites of poly(ethylene oxide), with Ag and Au nanoparticles, surface modified with a 1:1 (by volume) oleylamine/oleic acid mixture, were investigated via transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), infrared spectroscopy, dynamic mechanical analysis, and static mechanical testing. Results indicated that there was more oleylamine on Ag nanoparticles but more oleic acid on Au nanoparticles. This difference in surfactant populations on each nanoparticle led to different interfacial interactions with poly(ethylene oxide) and drastically influenced the glass transition temperature of these two nanocomposite systems. Almost all other properties were found to correlate strongly with dispersion and distribution state of Au and Ag nanoparticles, such that the property in question changed direction at the onset of agglomeration. PMID:28461744

  6. High performance and reusable SERS substrates using Ag/ZnO heterostructure on periodic silicon nanotube substrate

    NASA Astrophysics Data System (ADS)

    Lai, Yi-Chen; Ho, Hsin-Chia; Shih, Bo-Wei; Tsai, Feng-Yu; Hsueh, Chun-Hway

    2018-05-01

    Surface-enhanced Raman scattering (SERS) substrate with a higher surface area, enhanced light harvesting, multiple hot spots and strong electromagnetic field enhancements would exhibit enhanced Raman signals. Herein, the Ag nanoparticle/ZnO nanowire heterostructure decorated periodic silicon nanotube (Ag@ZnO@SiNT) substrate was proposed and fabricated. The proposed structure employed as SERS-active substrate was examined, and the results showed both the high performance in terms of high sensitivity and good reproducibility. Furthermore, the Ag@ZnO@SiNT substrate demonstrated the self-cleaning performance through the photocatalytic degradation of probed molecules upon UV-irradiation. The results showed that the proposed nanostructure had high performance, good reproducibility and reusability, and it is a promising SERS-active substrate for molecular sensing and cleaning.

  7. Thermosensitive polymer stabilized core-shell AuNR@Ag nanostructures as "smart" recyclable catalyst

    NASA Astrophysics Data System (ADS)

    Li, Dongxiang; Liu, Na; Gao, Yuanyuan; Lin, Weihong; Li, Chunfang

    2017-11-01

    Core-shell AuNR@Ag nanostructures were synthesized and surface-grafted with thermosensitive poly( N-isopropylacrylamide) to enhance stability and endow stimuli-responsive property. The AuNR cores showed average dimensions of 8-nm diameter and 33-nm length, while the anisotropic silver shells displayed 1-2 nm thin side and maximal 8 nm fat side. The obtained polymer-stabilized AuNR@Ag nanostructures as catalysts showed normal Arrhenius change of apparent rate constant, k app, in catalyzed reaction between 20 and 30 °C, but displayed a decrease of k app with respect to the temperature increasing between 32.5-40 °C, showing self-inhibition of the observed catalytic activity. Such "smart" self-inhibition of catalytic activity at enhanced temperature can be attributed to the thermosensitive response of the grafted polymer molecules and should be significant to control the reaction rate and avoid superheat for exothermic reactions. Such polymer-stabilized nanocatalyst also could be recovered and reused in the catalytic system. [Figure not available: see fulltext.

  8. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO 2

    DOE PAGES

    Wang, Congjun; Ranasingha, Oshadha; Natesakhawat, Sittichai; ...

    2013-01-01

    Plasmonic excitation of Au nanoparticles attached to the surface of ZnO catalysts using low power 532 nm laser illumination leads to significant heating of the catalyst and the conversion of CO 2 and H 2 reactants to CH 4 and CO products. Temperature-calibrated Raman spectra of ZnO phonons show that intensity-dependent plasmonic excitation can controllably heat Au–ZnO from 30 to ~600 °C and simultaneously tune the CH 4 : CO product ratio. The laser induced heating and resulting CH 4 : CO product distribution agrees well with predictions from thermodynamic models and temperature-programmed reaction experiments indicating that the reaction ismore » a thermally driven process resulting from the plasmonic heating of the Au-ZnO. The apparent quantum yield for CO 2 conversion under continuous wave (cw) 532 nm laser illumination is 0.030%. The Au-ZnO catalysts are robust and remain active after repeated laser exposure and cycling. The light intensity required to initiate CO 2 reduction is low ( ~2.5 x 10 5 W m -2) and achievable with solar concentrators. Our results illustrate the viability of plasmonic heating approaches for CO 2 utilization and other practical thermal catalytic applications.« less

  9. Aqueous synthesis of high bright and tunable near-infrared AgInSe2-ZnSe quantum dots for bioimaging.

    PubMed

    Che, Dongchen; Zhu, Xiaoxu; Wang, Hongzhi; Duan, Yourong; Zhang, Qinghong; Li, Yaogang

    2016-02-01

    Efficient synthetic methods for near-infrared quantum dots with good biophysical properties as bioimaging agents are urgently required. In this work, a simple and fast synthesis of highly luminescent, near-infrared AgInSe2-ZnSe quantum dots (QDs) with tunable emissions in aqueous media is reported. This method avoids high temperature and pressure and organic solvents to directly generate water-dispersible AgInSe2-ZnSe QDs. The photoluminescence emission peak of the AgInSe2-ZnSe QDs ranged from 625 to 940nm, with quantum yields up to 31%. The AgInSe2-ZnSe QDs with high quantum yield, near-infrared and low cytotoxic could be used as good cell labels, showing great potential applications in bio-imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Ag{sub 3}PO{sub 4}/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000; Wang, Mingliang, E-mail: wangmlchem@263.net

    2013-01-15

    Graphical abstract: The free OH radicals generated in the VB of ZnO play the primary role in the visible-light photocatalytic degradation of RhB in Ag{sub 3}PO{sub 4}/ZnO system. The accumulated electrons in the CB of Ag{sub 3}PO{sub 4} can be transferred to O{sub 2} adsorbed on the surface of the composite semiconductors and H{sub 2}O{sub 2} yields. H{sub 2}O{sub 2} reacts with electrons in succession to produce active ·OH to some extent. Display Omitted Highlights: ► Efficient visible-light-sensitized Ag{sub 3}PO{sub 4}/ZnO composites were successfully prepared. ► Effect of Ag{sub 3}PO{sub 4} content on the catalytic activity of Ag{sub 3}PO{sub 4}/ZnOmore » is studied in detail. ► Rate constant of RhB degradation over Ag{sub 3}PO{sub 4}(3.0 wt.%)/ZnO is 3 times that of Ag{sub 3}PO{sub 4}. ► The active species in RhB degradation are examined by adding a series of scavengers. ► Visible light degradation mechanism of RhB over Ag{sub 3}PO{sub 4}/ZnO is systematically studied. -- Abstract: The efficient visible-light-sensitized Ag{sub 3}PO{sub 4}/ZnO composites with various weight percents of Ag{sub 3}PO{sub 4} were prepared by a facile ball milling method. The photocatalysts were characterized by XRD, DRS, SEM, EDS, XPS, and BET specific area. The ·OH radicals produced during the photocatalytic reaction was detected by the TA–PL technique. The photocatalytic property of Ag{sub 3}PO{sub 4}/ZnO was evaluated by photocatalytic degradation of Rhodamine B under visible light irradiation. Significantly, the results revealed that the photocatalytic activity of the composites was much higher than that of pure Ag{sub 3}PO{sub 4} and ZnO. The rate constant of RhB degradation over Ag{sub 3}PO{sub 4}(3.0 wt.%)/ZnO is 3 times that of single-phase Ag{sub 3}PO{sub 4}. The optimal percentage of Ag{sub 3}PO{sub 4} in the composite is 3.0 wt.%. It is proposed that the ·OH radicals produced in the valence band of ZnO play the leading role in the photocatalytic

  11. Two-dimensional ZnO ultrathin nanosheets decorated with Au nanoparticles for effective photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jin; You, Ning; Yu, Zhe

    Two-dimensional (2D) materials, especially the inorganic 2D nanosheets (NSs), are of particular interest due to their unique structural and electronic properties, which are favorable for photoelectronic applications such as photocatalysis. Here, we design and fabricate the ultrathin 2D ZnO NSs decorated with Au nanoparticles (AuNPs), though molecular modelling 2D hydrothermal growth and followed by surface modification are used as an effective photocatalyst for photocatalytic organic dye degradation and hydrogen production. The ultrathin 2D nature enables ultrahigh atom ratio near surface to proliferate the active sites, and the Au plasmon plays a promoting role in the visible-light absorption and photogenerated chargemore » separation, thus integrating the synergistic benefits to boost the redox reactions at catalyst/electrolyte interface. The AuNPs-decorated ZnO NSs yield the impressive photocatalytic activities such as the dye degradation rate constant of 7.69 × 10{sup −2} min{sup −1} and the hydrogen production rate of 350 μmol h{sup −1} g{sup −1}.« less

  12. Porphyry Cu-Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran

    NASA Astrophysics Data System (ADS)

    Maghsoudi, A.; Yazdi, M.; Mehrpartou, M.; Vosoughi, M.; Younesi, S.

    2014-01-01

    The Mirkuh Ali Mirza Cu-Au porphyry system in East Azerbaijan Province is located on the western part of the Cenozoic Alborz-Azerbaijan volcanic belt. The belt is also an important Cu-Mo-Au metallogenic province in northwestern Iran. The exposed rocks in the study area consist of a volcaniclastic sequence, subvolcanic rocks and intermediate to mafic lava flows of Neogene age. The volcanic rocks show a typical subduction-related magmatic arc geological and geochemical signature, with low concentration of Nb, Ta, and Ti. Mineralization is hosted by Neogene dacitic tuff and porphyritic dacite situated at the intersections of northeast and northwest faults. Field observations, alteration zonation, geochemical haloes and isotopic data of the Mirkuh Ali Mirza magmatic complex show similarities with typical convergent margin Cu-Au porphyry type deposits. The following features confirm the classic model for Cu-Au porphyry systems: (a) close spatial association with high-K calcalkaline to shoshonitic rock related to post-collision extensional setting (b) low grade Cu (0.57%) (c) stockworks as well as disseminated sulfides (c) zonality of the alteration patterns from intense phyllic at the center to outward weak-phyllic, argillic, and propylitic (d) the presence of a pyritic halo (e) accompanied by sheeted veins and low-sulfidation epithermal gold (f) mineralization spatially associated with intersection of structures, (g) genetically related to diorite porphyry stocks at depth (h) geochemical zonation of (Cu ± Au ± Ag ± Bi) → (Cu + Mo ± Bi ± Au ± Pb ± Zn ± As) → (Au + Mo ± Pb ± Zn) → (As + Ag + Sb + Mn + Ba + Pb + Zn + Hg) → Hg from center to outwards (i) The range of sulfur isotopic values is approximately zero (interpreted to have magmatic source) and similar to other subduction-related porphyry Cu deposits.

  13. Ag nanoparticle-ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach

    NASA Astrophysics Data System (ADS)

    Li, Zhou; Tang, Haoying; Yuan, Weiwei; Song, Wei; Niu, Yongshan; Yan, Ling; Yu, Min; Dai, Ming; Feng, Siyu; Wang, Menghang; Liu, Tengjiao; Jiang, Peng; Fan, Yubo; Wang, Zhong Lin

    2014-04-01

    A new approach for fabrication of a long-term and recoverable antimicrobial nanostructure/textile hybrid without increasing the antimicrobial resistance is demonstrated. Using in situ synthesized Ag nanoparticles (NPs) anchored on ZnO nanowires (NWs) grown on textiles by a ‘dip-in and light-irradiation’ green chemical method, we obtained ZnONW@AgNP nanocomposites with small-size and uniform Ag NPs, which have shown superior performance for antibacterial applications. These new Ag/ZnO/textile antimicrobial composites can be used for wound dressings and medical textiles for topical and prophylactic antibacterial treatments, point-of-use water treatment to improve the cleanliness of water and antimicrobial air filters to prevent bioaerosols accumulating in ventilation, heating, and air-conditioning systems.

  14. Optical spectroscopy of arrays of Ag-Au nanoparticles obtained by vacuum-thermal evaporation

    NASA Astrophysics Data System (ADS)

    Gromov, D. G.; Mel'nikov, I. V.; Savitskii, A. I.; Trifonov, A. Yu.; Redichev, E. N.; Astapenko, V. A.

    2017-03-01

    The possibility of creating irregular arrays of bimetallic Ag-Au nanoparticles is investigated. The ability to manipulate their optical properties based on the simple engineering processes of thermal spraying followed by low-temperature annealing is demonstrated.

  15. Comment on ``(Au-Ag)144(SR)60 alloy nanomolecules'' by C. Kumara and A. Dass, Nanoscale, 2011, 3, 3064

    NASA Astrophysics Data System (ADS)

    Barcaro, Giovanni; Sementa, Luca; Fortunelli, Alessandro; Stener, Mauro

    2015-04-01

    A recent paper in this journal reported the synthesis and characterization via electrospray ionization mass spectroscopy and UV-vis spectroscopy of (Au-Ag)144(SR)60 alloy nanomolecules with different compositions, ranging from 1 : 0 to 1 : 0.75 Au : Ag ratios. The UV-vis spectra of such systems were found to exhibit absorption peaks at 310 nm, 425 nm and 560 nm, interpreted as reminiscent of the silver surface plasmon resonance band due to simple atomic replacement of Au by Ag atoms in a fixed structural framework. On the basis of a comparison of experimentally observed and theoretically simulated optical absorption spectra, we conclude that the experimental situation must be more complicated, and that further work is needed to achieve atomistic insight into these fascinating systems.

  16. SERS-active ZnO/Ag hybrid WGM microcavity for ultrasensitive dopamine detection

    NASA Astrophysics Data System (ADS)

    Lu, Junfeng; Xu, Chunxiang; Nan, Haiyan; Zhu, Qiuxiang; Qin, Feifei; Manohari, A. Gowri; Wei, Ming; Zhu, Zhu; Shi, Zengliang; Ni, Zhenhua

    2016-08-01

    Dopamine (DA) is a potential neuro modulator in the brain which influences a variety of motivated behaviors and plays a key role in life science. A hybrid ZnO/Ag microcavity based on Whispering Gallery Mode (WGM) effect has been developed for ultrasensitive detection of dopamine. Utilizing this effect of structural cavity mode, a Raman signal of R6G (5 × 10-3 M) detected by this designed surface-enhanced Raman spectroscopy (SERS)-active substrate was enhanced more than 10-fold compared with that of ZnO film/Ag substrate. Also, this hybrid microcavity substrate manifests high SERS sensitivity to rhodamine 6 G and detection limit as low as 10-12 M to DA. The Localized Surface Plasmons of Ag nanoparticles and WGM-enhanced light-matter interaction mainly contribute to the high SERS sensitivity and help to achieve a lower detection limit. This designed SERS-active substrate based on the WGM effect has the potential for detecting neurotransmitters in life science.

  17. Synthesis and properties of Ag/ZnO/g-C3N4 ternary micro/nano composites by microwave-assisted method

    NASA Astrophysics Data System (ADS)

    Zhang, Zijie; Li, Xuexue; Chen, Haitao; Shao, Gang; Zhang, Rui; Lu, Hongxia

    2018-01-01

    Ag/ZnO/g-C3N4 ternary micro/nanocomposites, as novel visible-light-driven photocatalysts, were prepared by a simple and convenient microwave-assisted method. The resulting ternary structure micro/nano composites were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy and infrared radiation techniques to examine its phase structure, valence state, morphological, thermal and optical properties. Well crystallized Ag/ZnO/g-C3N4 ternary micro/nano composites were synthesized under microwave-radiation for 15 min with the output of 240 W. Further experiments indicated Ag(5.0mol%)/ZnO/g-C3N4 photocatalyst in degradation of methylene blue exhibited an outstanding photocatalytic activity and its reaction rate constant (k, 0.0084 min-1) is 7.5, 2.4 2.9 and 3.5 times higher than that of monolithic ZnO (k, 0.0011 min-1), ZnO/g-C3N4(k, 0.0035 min-1), Ag(5 mol%)/ZnO(k, 0.0029 min-1) and Ag(5mol%)/g-C3N4 (k, 0.0024 min-1) respectively. Finally, a possible photocatalytic mechanism of Ag/ZnO/g-C3N4 photocatalyst in degradation process was proposed. This work provides a feasible strategy to synthesize an efficient ZnO-based photocatalyst which combines structure and properties of different dimensional components and made this ternary system an exciting candidate for sunlight-driven photocatalytic water treatment.

  18. Adsorption of squaraine molecules to Au(111) and Ag(001) surfaces

    NASA Astrophysics Data System (ADS)

    Luft, Maike; Groß, Boris; Schulz, Matthias; Lützen, Arne; Schiek, Manuela; Nilius, Niklas

    2018-02-01

    The adsorption of anilino squaraines, an important chromophore for the use in organic solar cells, to Ag(001) and Au(111) has been studied with scanning tunneling microscopy. Self-assembly into square building blocks with eight molecules per unit cell is revealed on the Ag surface, while no ordering effects occur on gold. The squaraine-silver interaction is mediated by the carbonyl and hydroxyl oxygens located in the center of the molecule. The intermolecular coupling, on the other hand, is governed by hydrogen bonds formed between the terminal isobutyl groups and oxygen species of adjacent molecules. The latter gets maximized by rotating the molecules by a few degrees against a perfect square alignment. A similar molecular pattern does not form on Au(111) due to symmetry mismatch. Moreover, the high electronegativity of gold reduces the directing effect of oxygen-metal bonds that trigger the ordering process on silver. As a consequence, only frustrated three-fold symmetric units that do not expand into an ordered molecular network are present on the gold surface.

  19. The photovoltaic performance of Ag2S quantum dots-sensitized solar cells using plasmonic Au nanoparticles/TiO2 working electrodes

    NASA Astrophysics Data System (ADS)

    Badawi, Ali; Mostafa, Nasser Y.; Al-Hosiny, Najm M.; Merazga, Amar; Albaradi, Ateyyah M.; Abdel-Wahab, F.; Atta, A. A.

    2018-06-01

    The photovoltaic performance of silver sulfide (Ag2S) quantum dots-sensitized solar cells (QDSSCs) using different concentrations (0, 0.05, 0.1, 0.3 and 0.5 wt.%) of plasmonic Au nanoparticles (NPs)/titania (TiO2) electrodes has been investigated. Ag2S quantum dots (QDs) were adsorbed onto the Au NPs/titania electrodes using the successive ionic layer adsorption and reaction (SILAR) deposition technique. The morphological properties of the Au NPs and the prepared titania electrodes were characterized using transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The energy-dispersive X-ray (EDX) spectra of the bare titania and Ag2S QDs-sensitized titania electrodes were recorded. The optical properties of the prepared Ag2S QDs-sensitized titania electrodes were measured using a UV-visible spectrophotometer. The estimated energy band gap of Ag2S QDs-sensitized titania electrodes is 1.96 eV. The photovoltaic performance of the assembled Ag2S QDSSCs was measured under 100 mW/cm2 solar illumination. The optimal photovoltaic parameters were obtained as follows: open circuit voltage Voc = 0.50 V, current density Jsc = 3.18 mA/cm2, fill factor (FF) = 0.35 and energy conversion efficiency η = 0.55% for 0.3 wt.% of Au NPs/titania electrode. These results are attributed to the enhancement in the absorption and decrease in the electron-hole pairs recombination rate. The open circuit voltage decay (OCVD) measurements of the assembled Ag2S QDSSCs were measured. The calculated electron lifetime (τ) in Ag2S QDSSCs with Au NPs/titania electrodes is at least one order of magnitude more than that with bare titania electrode. The cut-on-cut-off cycles of the solar illumination measurements show the rapid sensitivity and good reproducibility of the assembled Ag2S QDSSCs.

  20. Nano-scaled Pt/Ag/Ni/Au contacts on p-type GaN for low contact resistance and high reflectivity.

    PubMed

    Kwon, Y W; Ju, I C; Kim, S K; Choi, Y S; Kim, M H; Yoo, S H; Kang, D H; Sung, H K; Shin, K; Ko, C G

    2011-07-01

    We synthesized the vertical-structured LED (VLED) using nano-scaled Pt between p-type GaN and Ag-based reflector. The metallization scheme on p-type GaN for high reflectance and low was the nano-scaled Pt/Ag/Ni/Au. Nano-scaled Pt (5 A) on Ag/Ni/Au exhibited reasonably high reflectance of 86.2% at the wavelength of 460 nm due to high transmittance of light through nano-scaled Pt (5 A) onto Ag layer. Ohmic behavior of contact metal, Pt/Ag/Ni/Au, to p-type GaN was achieved using surface treatments of p-type GaN prior to the deposition of contact metals and the specific contact resistance was observed with decreasing Pt thickness of 5 A, resulting in 1.5 x 10(-4) ohms cm2. Forward voltages of Pt (5 A)/Ag/Ni contact to p-type GaN showed 4.19 V with the current injection of 350 mA. Output voltages with various thickness of Pt showed the highest value at the smallest thickness of Pt due to its high transmittance of light onto Ag, leading to high reflectance. Our results propose that nano-scaled Pt/Ag/Ni could act as a promising contact metal to p-type GaN for improving the performance of VLEDs.

  1. Selective divalent cobalt ions detection using Ag2O3-ZnO nanocones by ICP-OES method for environmental remediation.

    PubMed

    Rahman, Mohammed M; Khan, Sher Bahadar; Marwani, Hadi M; Asiri, Abdullah M

    2014-01-01

    Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg-1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results.

  2. Coexistence of bipolar and unipolar resistive switching behaviors in the double-layer Ag/ZnS-Ag/CuAlO2/Pt memory device

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Xu, Haiyang; Wang, Zhongqiang; Yu, Hao; Ma, Jiangang; Liu, Yichun

    2016-01-01

    The coexistence of uniform bipolar and unipolar resistive-switching (RS) characteristics was demonstrated in a double-layer Ag/ZnS-Ag/CuAlO2/Pt memory device. By changing the compliance current (CC) from 1 mA to 10 mA, the RS behavior can be converted from the bipolar mode (BRS) to the unipolar mode (URS). The temperature dependence of low resistance states further indicates that the CFs are composed of the Ag atoms and Cu vacancies for the BRS mode and URS mode, respectively. For this double-layer structure device, the thicker conducting filaments (CFs) will be formed in the ZnS-Ag layer, and it can act as tip electrodes. Thus, the formation and rupture of these two different CFs are located in the CuAlO2 layer, realizing the uniform and stable BRS and URS.

  3. Synthesis of a ternary Ag/RGO/ZnO nanocomposite via microwave irradiation and its application for the degradation of Rhodamine B under visible light.

    PubMed

    Surendran, Divya Kollikkara; Xavier, Marilyn Mary; Viswanathan, Vandana Parakkal; Mathew, Suresh

    2017-06-01

    Reduced graphene oxide supporting plasmonic photocatalyst (Ag) on ZnO has been synthesized via a facile two-step microwave synthesis using RGO/ZnO and AgNO 3 . First step involves fabrication of RGO/ZnO via microwave irradiation. The nanocomposites were characterized by X-ray diffraction analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Ag/RGO/ZnO shows enhanced photoactivity under visible light for the degradation of Rhodamine B. Enhanced charge separation and migration have been assigned using UV-vis diffuse reflectance spectra, photoluminescence spectra, electrochemical impedance spectra, and TCSPC analysis. The improved photoactivity of Ag/RGO/ZnO can be ascribed to the prolonged lifetime of photogenerated electron-hole pairs and effective interfacial hybridization between RGO and Ag with ZnO nanoparticles. Ag nanoparticles can absorb visible light via surface plasmon resonance to enhance photocatalytic activity.

  4. Label-free sensitive luminescence biosensor for immunoglobulin G based on Ag6Au6 ethisterone cluster-estrogen receptor α aggregation and graphene.

    PubMed

    Chen, Nannan; Guo, Wenjing; Lin, Zhixiang; Wei, Qiaohua; Chen, Guonan

    2018-08-01

    A specific and label-free "on-off-on" luminescence biosensor based on a novel heterometallic cluster [Ag 6 Au 6 (ethisterone) 12 ]-estrogen receptor α (Ag 6 Au 6 Eth-ERα) aggregation utilizing graphene oxide (GO) as a quencher to lead a small background signal was firstly constructed to detect immunoglobulin G (IgG) with a simple process and high selectivity. The efficient photoluminescent (PL) Ag 6 Au 6 Eth-ERα aggregation is strongly quenched by GO. In the presence of IgG, the PL of this system will be restored, and perceivable by human eyes under UV lamp excitation (365 nm). The quenching mechanism of GO on Ag 6 Au 6 Eth-ERα and enhancement mechanism of IgG on Ag 6 Au 6 Eth-ERα-GO were investigated in detail. Under the optimum conditions, the biosensor for high sensitive IgG detection expressed a wider linear range of 0.0078-10 ng/mL and a lower detection limit of 0.65 pg/mL with good stability and repeatability, which provided a new approach for label-free IgG detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Mixed Phytochemicals Mediated Synthesis of Multifunctional Ag-Au-Pd Nanoparticles for Glucose Oxidation and Antimicrobial Applications.

    PubMed

    Rao, K Jagajjanani; Paria, Santanu

    2015-07-01

    The growing awareness toward the environment is increasing commercial demand for nanoparticles by green route syntheses. In this study, alloy-like Ag-Au-Pd trimetallic nanoparticles have been prepared by two plants extracts Aegle marmelos leaf (LE) and Syzygium aromaticum bud extracts (CE). Compositionally different Ag-Au-Pd nanoparticles with an atomic ratio of 5.26:2.16:1.0 (by LE) and 11.36:13.14:1.0 (by LE + CE) of Ag:Au:Pd were easily synthesized within 10 min at ambient conditions by changing the composition of phytochemicals. The average diameters of the nanoparticles by LE and LE + CE are ∼8 and ∼11 nm. The catalytic activity of the trimetallic nanoparticles was studied, and they were found to be efficient catalysts for the glucose oxidation process. The prepared nanoparticles also exhibited efficient antibacterial activity against a model Gram-negative bacteria Escherichia coli. The catalytic and antimicrobial properties of these readymade trimetallic nanoparticles have high possibility to be utilized in diverse fields of applications such as health care to environmental.

  6. Reduction of Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} by Fe{sup II}/Fe{sup III} hydroxysulfate green rust.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Loughlin, E. J.; Kelly, S. D.; Kemner, K. M.

    Green rusts are mixed Fe{sup II}/Fe{sup III} hydroxides that are found in many suboxic environments where they are believed to play a central role in the biogeochemical cycling of iron. X-ray absorption fine structure analysis of hydroxysulfate green rust suspensions spiked with aqueous solutions of AgCH{sub 3}COO, AuCl{sub n}(OH){sub 4-n}, CuCl{sub 2}, or HgCl{sub 2} showed that Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} were readily reduced to Ag{sup 0}, Au{sup 0}, Cu{sup 0}, and Hg{sup 0}. Imaging of the resulting solids from the Ag{sup I}-, Au{sup III}-, and Cu{sup II}-amended green rust suspensions by transmission electron microscopymore » indicated the formation of submicron-sized particles of Ag{sup 0}, Au{sup 0}, and Cu{sup 0}. The facile reduction of Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} to Ag{sup 0}, Au{sup 0}, Cu{sup 0}, and Hg{sup 0}, respectively, by green rust suggests that the presence of green rusts in suboxic soils and sediments can have a significant impact on the biogeochemistry of silver, gold, copper, and mercury, particularly with respect to their mobility.« less

  7. Synthesis of Ag-ZnO with multiple rods (multipods) morphology and its application in the simultaneous photo-catalytic degradation of methyl orange and methylene blue.

    PubMed

    Arab Chamjangali, M; Bagherian, G; Javid, A; Boroumand, S; Farzaneh, N

    2015-11-05

    In this study, the photo-decolorization of a mixture of methylene blue (MB) and methyl orange (MO) was investigated using Ag-ZnO multipods. The photo-catalyst used, ZnO multipods, was successfully synthesized. The surface of ZnO microstructure was modified by deposition of different amounts of Ag nanoparticles (Ag NPs) using the photo-reduction method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis and atomic absorption spectroscopy. The photo-catalytic efficiency of Ag-ZnO is mainly controlled by the amount of Ag NPs deposited on the ZnO surface. The results obtained suggest that Ag-ZnO containing 6.5% Ag NPs, has the highest photo-catalytic performance in the simultaneous photo-degradation of dyes at a shorter time. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Ionic liquid-assisted photochemical synthesis of ZnO/Ag2O heterostructures with enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zhao, Shuo; Zhang, Yiwei; Zhou, Yuming; Zhang, Chao; Fang, Jiasheng; Sheng, Xiaoli

    2017-07-01

    ZnO/Ag2O heterostructures have been successfully fabricated using ionic liquids (ILs) as templates by a simple photochemical route. The influence of the type of ionic liquid and synthetic method on the morphology of ZnO, as well as the photocatalytic activity for the degradation of Rhodamine B (RhB), tetracycline (TC) and ciprofloxacin (CIP) under ultraviolet and visible light irradiation was studied. The samples were characterized by XRD, SEM, TEM, PL and UV-vis DRS. The results established that the type of ionic liquid and synthetic method played an important role in the growth of ZnO nanoparticles. And as-fabricated ZnO/Ag2O materials exhibited self-assembled flower-like architecture whose size was about 3 μm. Moreover, as-prepared ZnO/Ag2O exhibited the enhanced photocatalytic activity than ZnO sample, which may be due to the special structure, heterojunction, enhanced adsorption capability of dye, the improved separation rate of photogenerated electron-hole pairs. According to the results of radical trapping experiments, it can be found that •OH and h+ were the main active species for the photocatalytic degradation of RhB. It is valuable to develop this facile route preparing the highly dispersive flower-like ZnO/Ag2O materials, which can be beneficial for environmental protection.

  9. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electricmore » field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.« less

  10. Effect of Ag and Cu Contents on the Age Hardning Behavior of Al-Zn-Mg Alloys

    NASA Astrophysics Data System (ADS)

    Watanabe, Katsumi; Kawabata, Tokimasa; Ikeno, Susumu; Yoshida, Tomoo; Murakami, Satoshi; Matsuda, Kenji

    Al-Zn-Mg alloy has been known as one of the aluminum alloys with the good age-hardening ability and the high strength among commercial aluminum alloys. The mechanical property of the limited ductility, however, is required to further improvement. In this work, three alloys, which were added Cu or Ag into the Al-Zn-Mg-Si alloy, were prepared to compare the effect of the additional elements on the aging behavior. The content of Ag and Cu were 0.2 at.% and 0.2at.%, respectively. The age-hardening behavior and microstructures of those alloys were investigated by hardness measurement, high resolution transmission electron microscope (HRTEM) and selected area electron diffraction (SAED) technique. Ag or Cu added alloy showed higher peak hardness than Ag or Cu free alloy. According to addition of Ag or Cu, the number density of the precipitates increased than Ag or Cu free alloy.

  11. Electrochemical route to the synthesis of ZnO microstructures: its nestlike structure and holding of Ag particles

    NASA Astrophysics Data System (ADS)

    Ding, Ling; Zhang, Ruixue; Fan, Louzhen

    2013-02-01

    A simple and facile electrochemical route was developed for the shape-selective synthesis of large-scaled series of ZnO microstructures, including petal, flower, sphere, nest and clew aggregates of ZnO laminas at room temperature. This route is based on sodium citrate-directed crystallization. In the system, sodium citrate can greatly promote ZnO to nucleate and directly grow by selectively capping the specific ZnO facets because of its excellent adsorption ability. The morphology of ZnO is tuned by readily adjusting the concentration of sodium citrate and the electrodeposition time. Among the series structures, the remarkable ZnO nestlike structure can be used as a container to hold not only the interlaced ZnO laminas but also Ag nanoparticles in the center. The special heterostructures of nestlike ZnO holding Ag nanoparticles were found to display the superior properties on the surface-enhanced Raman scattering. This work has signified an important methodology to produce a wide assortment of desired microstructures of ZnO.

  12. Geology, S-Pb isotopes, and 40Ar/39Ar geochronology of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet: implications for multiple mineralization events at Zhaxikang

    NASA Astrophysics Data System (ADS)

    Sun, Xiang; Zheng, Youye; Pirajno, Franco; McCuaig, T. Campbell; Yu, Miao; Xia, Shenlan; Song, Qingjie; Chang, Huifang

    2018-03-01

    Several Au, Sb, Sb-Au, Pb-Zn, and Sb-Pb-Zn-Ag deposits are present throughout the North Himalaya in southern Tibet, China. The largest Sb-Pb-Zn-Ag deposit is Zhaxikang (18 Mt at 0.6 wt% Sb, 2.0 wt% Pb, 3.5 wt% Zn, and 78 g/t Ag). Zhaxikang veins are hosted within N-S trending faults, which crosscut the Early-Middle Jurassic Ridang Formation consisting of shale interbedded with sandstone and limestone deposited on a passive continental margin. Ore paragenesis indicates that Zhaxikang mineralization occurred in two main phases composed of six total stages. The initial phase was characterized by assemblages of fine-grained Mn-Fe carbonate + arsenopyrite + pyrite + sphalerite (stage 1), followed by relatively coarse-grained Mn-Fe carbonate + Fe-rich sphalerite + galena + pyrite (stage 2). The second phase was marked by assemblages of quartz + pyrite + Fe-poor sphalerite and Ag-rich galena + tetrahedrite + sericite (stage 3), quartz + Sb-Pb sulfosalt minerals mainly composed of boulangerite and jamesonite (stage 4), quartz + stibnite ± cinnabar (stage 5), and quartz ± calcite (stage 6). Sulfides of stage 2 have δ34SV-CDT of 8.4-12.0‰, 206Pb/204Pb ratios of 19.648 to 19.659, 207Pb/204Pb ratios of 15.788 to 15.812, and 208Pb/204Pb ratios of 40.035 to 40.153. Sulfides of stage 3 have similar δ34SV-CDT of 6.1-11.2‰ and relatively more radiogenic lead isotopes (206Pb/204Pb = 19.683-19.792). Stage 4 Sb-Pb sulfosalt minerals have δ34SV-CDT of 5.0-7.2‰ and even more radiogenic lead (206Pb/204Pb = 19.811-19.981). By contrast, stibnite of stage 5 has δ34SV-CDT of 4.5-7.8‰ and less radiogenic lead (206Pb/204Pb = 18.880-18.974). Taken together with the geological observations that the Pb-Zn-bearing Mn-Fe carbonate veins were crosscut by various types of quartz veins, sphalerite and galena of stage 2 underwent dissolution and remobilization, and that Sb-Pb(-Fe) sulfosalts formed at the expense of Pb from stage 2 galena and of Fe from stage 2 sphalerite, we argue that

  13. The origin of Ag-Au-S-Se minerals in adularia-sericite epithermal deposits: constraints from the Broken Hills deposit, Hauraki Goldfield, New Zealand

    NASA Astrophysics Data System (ADS)

    Cocker, Helen A.; Mauk, Jeffrey L.; Rabone, Stuart D. C.

    2013-02-01

    The 7.1 Ma Broken Hills adularia-sericite Au-Ag deposit is currently the only producing rhyolite-hosted epithermal deposit in the Hauraki Goldfield of New Zealand. The opaque minerals include pyrite, electrum, acanthite (Ag2S), sphalerite, and galena, which are common in other adularia-sericite epithermal deposits in the Hauraki Goldfield and elsewhere worldwide. Broken Hills ores also contain the less common minerals aguilarite (Ag4SeS), naumannite (Ag2Se), petrovskaite (AuAgS), uytenbogaardtite (Ag3AuS2), fischesserite (Ag3AuSe2), an unnamed silver chloride (Ag2Cl), and unnamed Ag ± Au minerals. Uytenbogaardtite and petrovskaite occur with high-fineness electrum. Broken Hills is the only deposit in the Hauraki Goldfield where uytenbogaardtite and petrovskaite have been identified, and these phases appear to have formed predominantly from unmixing of a precursor high-temperature phase under hypogene conditions. Supergene minerals include covellite, chalcocite, Au-rich electrum, barite, and a variety of iron oxyhydroxide minerals. Uytenbogaardtite can form under supergene and hypogene conditions, and textural relationships between uytenbogaardtite and associated high-fineness electrum may be similar in both conditions. Distinguishing the likely environment of formation rests principally on identification of other supergene minerals and documenting their relationships with uytenbogaardtite. The presence of aguilarite, naumannite, petrovskaite, and fischesserite at Broken Hills reflects a Se-rich mineral assemblage. In the Hauraki Goldfield and the western Great Basin, USA, Se-rich minerals are more abundant in provinces that are characterized by bimodal rhyolite-andesite volcanism, but in other epithermal provinces worldwide, the controls on the occurrences of Se-bearing minerals remain poorly constrained, in spite of the unusually high grades associated with many Se-rich epithermal deposits.

  14. Catalysis by Nanostructures: Methane, Ethylene Oxide, and Propylene Oxide Synthesis on Ag, Cu or Au Nanoclusters

    DTIC Science & Technology

    2008-02-07

    22 nm) were prepared by reducing a Au salt, and encapsulating the Au nanoparticles formed in a polymer33 . A variety of high area oxides (TiO 2, ZnO ...Morphologies Utilizing a Combinatorial Electrochemistry Methodology. Ph. D. dissertation, Chemical Engineering, University of California, Santa Barbara (2004

  15. Sulfonated poly(ether ether ketone)/poly(vinyl alcohol) sensitizing system for solution photogeneration of small Ag, Au, and Cu crystallites.

    PubMed

    Korchev, A S; Shulyak, T S; Slaten, B L; Gale, W F; Mills, G

    2005-04-28

    Illumination of air-free aqueous solutions containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol) with 350 nm light results in benzophenone ketyl radicals of the polyketone. The polymer radicals form with a quantum yield 0.02 and decay with a second-order rate constant 6 orders of magnitude lower than that of typical alpha-hydroxy radicals. Evidence is presented that the polymeric benzophenone ketyl radicals reduce Ag+, Cu2+, and AuCl4- to metal particles of nanometer dimensions. Decreases in the reduction rates with increasing Ag(I), Cu(II), and Au(III) concentrations are explained using a kinetic model in which the metal ions quench the excited state of the polymeric benzophenone groups, which forms the macromolecular radicals. Quenching is fastest for Ag+, whereas Cu2+ and AuCl4- exhibit similar rate constants. Particle formation becomes more complex as the number of equivalents needed to reduce the metal ions increases; the Au(III) system is an extreme case where the radical reactions operate in parallel with secondary light-initiated and thermal reduction channels. For each metal ion, the polymer-initiated photoreactions produce crystallites possessing distinct properties, such as a very strong plasmon in the Ag case or the narrow size distribution exhibited by Au particles.

  16. Amino-functionalized sub-40 nm ultrathin Ag/ZnO transparent electrodes for flexible polymer dispersed liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Huang, Jinhua; Lu, Yuehui; Wu, Wenxuan; Li, Jia; Zhang, Xianpeng; Zhu, Chaoting; Yang, Ye; Xu, Feng; Song, Weijie

    2017-11-01

    Various flexible transparent conducting electrodes (FTCEs) have been studied for promising applications in flexible optoelectronic devices, but there are still challenges in achieving higher transparency and conductivity, lower thickness, better mechanical flexibility, and lower preparation temperatures. In this work, we prepared a sub-40 nm Ag(9 nm)/ZnO(30 nm) FTCE at room temperature, where each layer played a relatively independent role in the tailoring of the optoelectronic properties. A continuous and smooth 9-nm Ag thin film was grown on amino-functionalized glass and polyethylene terephthalate (PET) substrates to provide good conductivity. A 30-nm ZnO cladding, as an antireflection layer, further improved the transmittance while hardly affecting the conductivity. The room-temperature grown sub-40 nm Ag/ZnO thin films on PET substrate exhibited a transmittance of 88.6% at 550 nm and a sheet resistance of 7.6 Ω.sq-1, which were superior to those of the commercial ITO. The facile preparation benefits the integration of FTCEs into various flexible optoelectronic devices, where the excellent performance of the sub-40 nm Ag/ZnO FTCEs in a flexible polymer dispersed liquid crystal device was demonstrated. Sub-40 nm Ag/ZnO FTCEs that have the characteristics of simple structure, room-temperature preparation, and easily tailored optoelectronic properties would provide flexible optoelectronic devices with more degrees of freedom.

  17. Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Bechambi, Olfa; Chalbi, Manel; Najjar, Wahiba; Sayadi, Sami

    2015-08-01

    Ag-doped ZnO photocatalysts with different Ag molar content (0.0, 0.5, 1.0, 2.0 and 4.0%) were prepared via hydrothermal method. The X-ray diffraction (XRD), Nitrogen physisorption at 77 K, Fourier transformed infrared spectroscopy (FTIR), UV--Visible spectroscopy, Photoluminescence spectra (PL) and Raman spectroscopy were used to characterize the structural, textural and optical properties of the samples. The results showed that Ag-doping does not change the average crystallite size with the Ag low content (≤1.0%) but slightly decreases with Ag high content (>1.0%). The specific surface area (SBET) increases with the increase of the Ag content. The band gap values of ZnO are decreased with the increase of the Ag doping level. The results of the photocatalytic degradation of bisphenol A (BPA) and nonylphenol (NP) in aqueous solutions under UV irradiation and in the presence of hydrogen peroxide (H2O2) showed that silver ions doping greatly improved the photocatalytic efficiency of ZnO. The TOC conversion BPA and NP are 72.1% and 81.08% respectively obtained using 1% Ag-doped ZnO. The enhancement of photocatalytic activity is ascribed to the fact that the modification of ZnO with an appropriate amount of Ag can increase the separation efficiency of the photogenerated electrons-holes in ZnO. The antibacterial activity of the catalysts which uses Escherichia coli as a model for Gram-negative bacteria confirmed that Ag-doped ZnO possessed more antibacterial activity than the pure ZnO.

  18. Selective Divalent Cobalt Ions Detection Using Ag2O3-ZnO Nanocones by ICP-OES Method for Environmental Remediation

    PubMed Central

    Rahman, Mohammed M.; Khan, Sher Bahadar; Marwani, Hadi M.; Asiri, Abdullah M.

    2014-01-01

    Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg−1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results. PMID:25464507

  19. One-pot ultrasonic-assisted method for preparation of Ag/AgCl sensitized ZnO nanostructures as visible-light-driven photocatalysts

    NASA Astrophysics Data System (ADS)

    Naghizadeh-Alamdari, Sara; Habibi-Yangjeh, Aziz; Pirhashemi, Mahsa

    2015-02-01

    Ultrasonic-assisted method was applied for preparation of Ag/AgCl sensitized ZnO nanostructures by one-pot procedure in water without using any post preparation treatments. The resultant nanocomposites were characterized by XRD, EDX, SEM, DRS, XPS, BET, and PL techniques. In the nanocomposites, ZnO and AgCl have wurtzite hexagonal and cubic crystalline phases, respectively and their surface morphologies remarkably change with increasing mole fraction of silver chloride. The EDX and XPS techniques show that the prepared samples are extremely pure. Ability of the nanocomposites for absorption of visible-light irradiation enhanced with increasing AgCl content. Photocatalytic examination of the nanocomposites was carried out using aqueous solution of methylene blue under visible-light irradiation. The degradation rate constant on the nancomposite rapidly increases with mole fraction of silver chloride up to 0.237. Enhancing activity of the nanocomposite was attributed to its ability for absorbing visible light and separation of electron-hole pairs. Furthermore, influence of ultrasonic irradiation time, calcination temperature, catalyst weight, pH of solution, and scavengers of reactive species on the degradation activity was investigated and the results were discussed. Finally, the photocatalyst has good activity after five successive cycles.

  20. Photoelectrochemical detection of alpha-fetoprotein based on ZnO inverse opals structure electrodes modified by Ag2S nanoparticles

    PubMed Central

    Jiang, Yandong; Liu, Dali; Yang, Yudan; Xu, Ru; Zhang, Tianxiang; Sheng, Kuang; Song, Hongwei

    2016-01-01

    In this work, a new photoelectrochemical biosensor based on Ag2S nanoparticles (NPs) modified macroporous ZnO inverse opals structure (IOs) was developed for sensitive and rapid detection of alpha fetal protein (AFP). Small size and uniformly dispersed Ag2S NPs were prepared using the Successive Ionic Layer Adsorption And Reaction (SILAR) method, which were adsorbed on ZnO IOs surface and frame work as matrix for immobilization of AFP. The composite structure of ZnO/Ag2S expanded the scope of light absorption to long wavelength, which can make full use of the light energy. Meanwhile, an effective matching of energy levels between the conduction bands of Ag2S and ZnO are beneficial to the photo-generated electrons transfer. The biosensors based on FTO (fluorine-doped tinoxide) ZnO/Ag2S electrode showed enough sensitivity and a wide linear range from 0.05 ng/mL to 200 ng/mL with a low detection limit of 8 pg/mL for the detection of AFP. It also exhibited high reproducibility, specificity and stability. The proposed method was potentially attractive for achieving excellent photoelectrochemical biosensor for detection of other proteins. PMID:27922086

  1. Cytidine-directed rapid synthesis of water-soluble and highly yellow fluorescent bimetallic AuAg nanoclusters.

    PubMed

    Zhang, Yuanyuan; Jiang, Hui; Ge, Wei; Li, Qiwei; Wang, Xuemei

    2014-09-16

    Fluorescent gold/silver nanoclusters templated by DNA or oligonucleotides have been widely reported since DNA or oligonucleotides could be designed to position a few metal ions at close proximity prior to their reduction, but nucleoside-templated synthesis is more challenging. In this work, a novel type of strategy taking cytidine (C) as template to rapid synthesis of fluorescent, water-soluble gold and silver nanoclusters (C-AuAg NCs) has been developed. The as-prepared C-AuAg NCs have been characterized by UV-vis absorption spectroscopy, fluorescence, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and inductively coupled plasma mass spectroscopy (ICP-MS). The characterizations demonstrate that C-AuAg NCs with a diameter of 1.50 ± 0.31 nm, a quantum yield ∼9%, and an average lifetime ∼6.07 μs possess prominent fluorescence properties, good dispersibility, and easy water solubility, indicating the promising application in bioanalysis and biomedical diagnosis. Furthermore, this strategy by rapid producing of highly fluorescent nanoclusters could be explored for the possible recognition of some disease-related changes in blood serum. This raises the possibility of their promising application in bioanalysis and biomedical diagnosis.

  2. Room-temperature H2S Gas Sensor Based on Au-doped ZnFe2O4 Yolk-shell Microspheres.

    PubMed

    Yan, Yin; Nizamidin, Patima; Turdi, Gulmira; Kari, Nuerguli; Yimit, Abliz

    2017-01-01

    Room-temperature type H 2 S sensing devices that use Au-doped ZnFe 2 O 4 yolk-shell microspheres as the active material have been fabricated using a solvothermal method as well as subsequent annealing and a chemical etching process. The samples are characterized using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the doping of Au does not change the spinel structure of the products, which were yolk-shell microspheres, while the particle size varied with the Au doping concentration. Also, the as-fabricated sensor device exhibited excellent selectivity toward H 2 S gas at the room temperature; the gas-sensing property of 2 wt% Au-doped ZnFe 2 O 4 microspheres was the best. The Au-doped ZnFe 2 O 4 yolk-shell microspheres can be promising as a sensing material for H 2 S gas detecting at room temperature.

  3. Study of the effects of MeV Ag, Cu, Au, and Sn implantation on the optical properties of LiNbO3

    NASA Technical Reports Server (NTRS)

    Williams, E. K.; Ila, D.; Sarkisov, S.; Curley, M.; Poker, D. B.; Hensley, D. K.; Borel, C.

    1998-01-01

    The authors present the results of characterization of linear absorption and nonlinear refractive index of Au, Ag, Cu and Sn ion implantation into LiNbO3. Ag was implanted at 1.5 MeV to fluences of 2 to 17 x 17(exp 16)/sq cm at room temperature. Au and Cu were implanted to fluences of 5 to 20 x 10(exp 16)/sq cm at an energy of 2.0 MeV. Sn was implanted to a fluence of 1.6 x 10(exp 17)/sq cm at 160 kV. Optical absorption spectrometry indicated an absorption peak for the Au implanted samples after heat treatment at 1,000 C at approx. 620 nm. The Ag implanted samples absorption peaks shifted from approx. 450 nm before heat treatment to 550 nm after 500 C for 1h. Heat treatment at 800 C returned the Ag implanted crystals to a clear state. Cu nanocluster absorption peaks disappears at 500 C. No Sn clusters were observed by optical absorption or XRD. The size of the Ag and Au clusters as a function of heat treatment were determined from the absorption peaks. The Ag clusters did not change appreciably in size with heat treatment. The Au clusters increased from 3 to 9 nm diameter upon heat treatment at 1000 C. TEM analysis performed on a Au implanted crystal indicated the formation of Au nanocrystals with facets normal to the c-axis. Measurements of the nonlinear refractive indices were carried out using the Z-scan method with a tunable dye laser pumped by a frequency doubled mode-locked Nd:YAG laser. The dye laser had a 4.5 ps pulse duration time and 76 MHz pulse repetition rate (575 nm).

  4. Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces

    NASA Astrophysics Data System (ADS)

    Krajczewski, Jan; Kołątaj, Karol; Pietrasik, Sylwia; Kudelski, Andrzej

    2018-03-01

    One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl4- and Ag+ ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate).

  5. Transparent capacitors with hybrid ZnO:Al and Ag nanowires as electrodes.

    PubMed

    Zhang, Guozhen; Wu, Hao; Wang, Xiao; Wang, Ti; Liu, Chang

    2016-03-11

    Transparent conducting films with a composite structure of AlZnO-Ag nanowires (AgNWs) have been prepared by atomic layer deposition. The sheet resistance was reduced from 120 to 9 Ω when the AgNW networks were involved. Transparent capacitors with Al2O3-TiO2-Al2O3 dielectrics were fabricated on the composite electrodes and demonstrated a capacitance density of 10.1 fF μm(-2), which was significantly higher than that of capacitors with AlZnO electrodes (8.8 fF μm(-1)). The capacitance density remained almost unchanged in a broad frequency range from 3 kHz to 1 MHz. Moreover, a low leakage current density of 2.4 × 10(-7) A cm(-2) at 1 V was achieved. Transparent and flexible capacitors were also fabricated using the composite electrodes, and demonstrated an improved bendability. The transparent capacitors showed an average optical transmittance over 70% in the visible range, and thus open the door to practical applications in transparent integrated circuits.

  6. Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices

    NASA Astrophysics Data System (ADS)

    Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan

    2017-02-01

    Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.

  7. Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices

    PubMed Central

    Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan

    2017-01-01

    Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors. PMID:28155913

  8. Comparative study on thermodynamic characteristics of AgCuZnSn brazing alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Li, Shuai; Peng, Jin

    2018-01-01

    AgCuZnSn brazing alloys were prepared based on the BAg50CuZn filler metal through electroplating diffusion process, and melting alloying method. The thermodynamics of phase transformations of those fillers were analyzed by non-isothermal differentiation and integration methods of thermal analysis kinetics. In this study, it was demonstrated that as the Sn content increased, the reaction fractional integral curves of AgCuZnSn fillers from solid to liquid became straighter at the endothermic peak. Under the same Sn contents, the reaction fractional integral curve of the Sn-plated filler metal was straighter, and the phase transformation activation energy was higher compared to the traditional silver filler metal. At the 7.2 wt% Sn content, the activation energies and pre-exponential factors of the two fillers reached the maximum, then the phase transformation rate equations of the Sn-plated silver filler and the traditional filler were determined as: k = 1.41 × 1032exp(-5.56 × 105/RT), k = 7.29 × 1020exp(-3.64 × 105/RT), respectively.

  9. Autoclave mediated one-pot-one-minute synthesis of AgNPs and Au-Ag nanocomposite from Melia azedarach bark extract with antimicrobial activity against food pathogens.

    PubMed

    Pani, Alok; Lee, Joong Hee; Yun, Soon-Ii

    2016-01-01

    The increasing use of nanoparticles and nanocomposite in pharmaceutical and processed food industry have increased the demand for nontoxic and inert metallic nanostructures. Chemical and physical method of synthesis of nanostructures is most popular in industrial production, despite the fact that these methods are labor intensive and/or generate toxic effluents. There has been an increasing demand for rapid, ecofriendly and relatively cheaper synthesis of nanostructures. Here, we propose a strategy, for one-minute green synthesis of AgNPs and a one-pot one-minute green synthesis of Au-Ag nanocomposite, using Melia azedarach bark aqueous extract as reducing agent. The hydrothermal mechanism of the autoclave technology has been successfully used in this study to accelerate the nucleation and growth of nano-crystals. The study also presents high antimicrobial potential of the synthesized nano solutions against common food and water born pathogens. The multistep characterization and analysis of the synthesized nanomaterial samples, using UV-visible spectroscopy, ICP-MS, FT-IR, EDX, XRD, HR-TEM and FE-SEM, also reveal the reaction dynamics of AgNO3, AuCl3 and plant extract in synthesis of the nanoparticles and nanocomposite. The antimicrobial effectiveness of the synthesized Au-Ag nanocomposite, with high gold to silver ratio, reduces the dependency on the AgNPs, which is considered to be environmentally more toxic than the gold counterpart. We hope that this new strategy will change the present course of green synthesis. The rapidity of synthesis will also help in industrial scale green production of nanostructures using Melia azedarach.

  10. Effect of thione primers on adhesive bonding between an indirect composite material and Ag-Pd-Cu-Au alloy.

    PubMed

    Imai, Hideyuki; Koizumi, Hiroyasu; Shimoe, Saiji; Hirata, Isao; Matsumura, Hideo; Nikawa, Hiroki

    2014-01-01

    The current study evaluated the effect of primers on the shear bond strength of an indirect composite material joined to a silverpalladium-copper-gold (Ag-Pd-Cu-Au) alloy (Castwell). Disk specimens were cast from the alloy and were air-abraded with alumina. Eight metal primers were applied to the alloy surface. A light-polymerized indirect composite material (Solidex) was bonded to the alloy. Shear bond strength was determined both before and after the application of thermocycling. Two groups primed with Metaltite (thione) and M. L. Primer (sulfide) showed the greatest post-thermocycling bond strength (8.8 and 6.5 MPa). The results of the X-ray photoelectron spectroscopic (XPS) analysis suggested that the thione monomer (MTU-6) in the Metaltite primer was strongly adsorbed onto the Ag-Pd-Cu-Au alloy surface even after repeated cleaning with acetone. The application of either the thione (MTU-6) or sulfide primer is effective for enhancing the bonding between a composite material and Ag-Pd-Cu-Au alloy.

  11. Effect of Ag doping on the properties of ZnO thin films for UV stimulated emission

    NASA Astrophysics Data System (ADS)

    Razeen, Ahmed S.; Gadallah, A.-S.; El-Nahass, M. M.

    2018-06-01

    Ag doped ZnO thin films have been prepared using sol-gel spin coating method, with different doping concentrations. Structural and morphological properties of the films have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Thin films have been optically pumped and stimulated emission has been observed with strong peaks in the UV region. The UV stimulated emission is found to be due to exciton-exciton scattering, and Ag doping promoted this process by increasing the excitons concentrations in the ZnO lattice. Output-input intensity relation and peak emission, FWHM, and quantum efficiency relations with pump intensity have been reported. The threshold for which stimulated emission started has been evaluated to be about 18 MW/cm2 with quantum efficiency of about 58.7%. Mechanisms explaining the role of Ag in enhancement of stimulated emission from ZnO thin films have been proposed.

  12. A first principles study of the properties of Al:ZnO and its adhesion to Ag in an optical coating

    NASA Astrophysics Data System (ADS)

    Lin, Zheshuai; Bristowe, Paul D.

    2009-07-01

    A first principles density functional study of the atomistic properties of Al:ZnO and its adhesion to Ag is presented. Optical coatings often contain interfaces between ZnO (0001) and Ag (111) layers whose bonding can be improved by incorporating small amounts of Al into the ZnO but the underlying strengthening mechanism remains unclear. It is assumed that Al relaxes the internal compressive stress in the film but the situation is complicated by the presence of hydrogen and/or water which can adsorb on the ZnO surface during fabrication of the coating. Hydrogen and/or water are known to weaken the Ag/ZnO interface particularly when it is O terminated. In this paper it is shown that aluminum substitutes on Zn sites in ZnO and this does indeed reduce the internal stress in the layer under compression. However, it is also shown that Al segregates to the ZnO surface when it is O terminated (but not Zn terminated) and this reduces the propensity for hydrogen adsorption. Thus by eliminating some of the hydrogen from the ZnO surface which is more likely to be O terminated than Zn terminated under ambient conditions, the strength of the Ag/ZnO interface can be increased. The effect of aluminum incorporation into the ZnO layer is therefore twofold: it relaxes the residual stresses in the coating and also improves the chemical bonding at the metal/oxide interface by removing the weakening effects of gaseous adsorption. The changes in interfacial bonding are explained in terms of an electron redistribution and compensation model.

  13. Oxidation of palladium on Au(111) and ZnO(0001) supports

    DOE PAGES

    Lallo, J.; Tenney, S. A.; Kramer, A.; ...

    2014-10-21

    The oxidation of supported Pd-deposits on Au(111) and ZnO(0001) single crystals has been studied by x- ray photoemission spectroscopy (XPS). Oxidation has been carried out ex-situ in a high-pressure cell with subsequent vacuum-transfer and characterization by XPS in ultrahigh vacuum (UHV), as well as using in-situ characterization by synchrotron based near-ambient pressure XPS. On Au(111) alloying of Pd with the substrate competes with oxidation and only sufficiently thick Pd films have been found to oxidize. For Pd on ZnO the oxidation conditions depend on the amount of deposited Pd. Thicker Pd deposits behave similar to bulk Pd, while thinner filmsmore » oxidize already at lower temperatures. Interestingly, for very small amounts of Pd, in-situ XPS shows full oxidation at room temperature and at less than 0.6 mbar O₂ pressure. This indicates a lowering of the kinetic barriers for oxidation of very small supported Pd-clusters. The formed oxide is, however, not stable in UHV and a slow reduction is observed. The instability of this oxide indicates that the Pd-oxide formed at the interface to ZnO may have different chemical properties compared to bulk PdO or surface oxides on Pd.« less

  14. Beet juice utilization: Expeditious green synthesis of nobel metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves

    EPA Science Inventory

    Metal nanoparticles of Ag, Au, Pt, and Pd were prepared in aqueous solutions via a rapid microwave-assisted green method using beet juice, an abundant sugar-rich agricultural produce, served as both a reducing and a capping reagent. The Ag nanoparticles with capping prepared by b...

  15. Enhanced Dibutyl Phthalate Sensing Performance of a Quartz Crystal Microbalance Coated with Au-Decorated ZnO Porous Microspheres

    PubMed Central

    Zhang, Kaihuan; Fan, Guokang; Hu, Ruifen; Li, Guang

    2015-01-01

    Noble metals addition on nanostructured metal oxides is an attractive way to enhance gas sensing properties. Herein, hierarchical zinc oxide (ZnO) porous microspheres decorated with cubic gold particles (Au particles) were synthesized using a facile hydrothermal method. The as-prepared Au-decorated ZnO was then utilized as the sensing film of a gas sensor based on a quartz crystal microbalance (QCM). This fabricated sensor was applied to detect dibutyl phthalate (DBP), which is a widely used plasticizer, and its coating load was optimized. When tested at room temperature, the sensor exhibited a high sensitivity of 38.10 Hz/ppb to DBP in a low concentration range from 2 ppb to 30 ppb and the calculated theoretical detection limit is below 1 ppb. It maintains good repeatability as well as long-term stability. Compared with the undecorated ZnO based QCM, the Au-decorated one achieved a 1.62-time enhancement in sensitivity to DBP, and the selectivity was also improved. According to the experimental results, Au-functionalized ZnO porous microspheres displayed superior sensing performance towards DBP, indicating its potential use in monitoring plasticizers in the gaseous state. Moreover, Au decoration of porous metal oxide nanostructures is proved to be an effective approach for enhancing the gas sensing properties and the corresponding mechanism was investigated. PMID:26343661

  16. Real-time wetting dynamics and interfacial chemistry in low-melting 57Bi-42Sn-1Ag solder paste on Ni-Au

    NASA Astrophysics Data System (ADS)

    Bozack, M. J.

    2004-11-01

    We report the observation of real-time, in situ, wetting and spreading dynamics for 57Bi-42Sn-1Ag solder paste on Ni-Au surfaces during melting in a scanning electron microscope. The 57Bi-42Sn-1Ag is a low melting (139 °C) Pb-free eutectic alloy currently under consideration by automobile manufacturers for use in instrument displays. We find that, while there is excellent wetting of 57Bi-42Sn-1Ag solder paste on Ni-Au, there is almost no spreading. A large amount of Bi segregates to the surface of 57Bi-42Sn-1Ag solder balls during the sintering process. At melting, excessive flux outgassing and pooling are observed, several melted solder balls float on top of the flux, and substantial elemental segregation occurs during the first minutes of wetting. Neither Ni nor Au fully intermixes throughout the alloy at the interface within seconds of wetting. Bi does not move outward with the expanding alloy front. This combination of detrimental effects forms voids in the solder paste, contributes to low reliability of solder joints, and complicates the materials science at the solder-substrate interface as shown by Auger electron spectroscopy. Reliability work in progress (3000 cycles) shows that 57Bi-42Sn-1Ag on Ni-Au is less reliable than eutectic Sn-37Pb on Ni-Au for 2512 chip resistors cycled from -40 to 125 °C.

  17. 3D ZnO/Ag Surface-Enhanced Raman Scattering on Disposable and Flexible Cardboard Platforms

    PubMed Central

    Pimentel, Ana; Araújo, Andreia; Águas, Hugo; Martins, Rodrigo; Fortunato, Elvira

    2017-01-01

    In the present study, zinc oxide (ZnO) nanorods (NRs) with a hexagonal structure have been synthesized via a hydrothermal method assisted by microwave radiation, using specialized cardboard materials as substrates. Cardboard-type substrates are cost-efficient and robust paper-based platforms that can be integrated into several opto-electronic applications for medical diagnostics, analysis and/or quality control devices. This class of substrates also enables highly-sensitive Raman molecular detection, amiable to several different operational environments and target surfaces. The structural characterization of the ZnO NR arrays has been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical measurements. The effects of the synthesis time (5–30 min) and temperature (70–130 °C) of the ZnO NR arrays decorated with silver nanoparticles (AgNPs) have been investigated in view of their application for surface-enhanced Raman scattering (SERS) molecular detection. The size and density of the ZnO NRs, as well as those of the AgNPs, are shown to play a central role in the final SERS response. A Raman enhancement factor of 7 × 105 was obtained using rhodamine 6 G (R6G) as the test analyte; a ZnO NR array was produced for only 5 min at 70 °C. This condition presents higher ZnO NR and AgNP densities, thereby increasing the total number of plasmonic “hot-spots”, their volume coverage and the number of analyte molecules that are subject to enhanced sensing.

  18. Synthesis and characterization of Zn(O,OH)S and AgInS2 layers to be used in thin film solar cells

    NASA Astrophysics Data System (ADS)

    Vallejo, W.; Arredondo, C. A.; Gordillo, G.

    2010-11-01

    In this paper AgInS2 and Zn(O,OH)S thin films were synthesized and characterized. AgInS2 layers were grown by co-evaporation from metal precursors in a two-step process, and, Zn(O,OH)S thin films were deposited from chemical bath containing thiourea, zinc acetate, sodium citrate and ammonia. X-ray diffraction measurements indicated that AgInS2 thin films grown with chalcopyrite structure, and the as-grown Zn(O,OH)S thin films were polycrystalline. It was also found that the AgInS2 films presented p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and energy band-gap Eg of about 1.95 eV, Zn(O,OH),S thin films presented Eg of about 3.89 eV. Morphological analysis showed that under this synthesis conditions Zn(O,OH),S thin films coated uniformly the absorber layer. Additionally, the Zn(O,OH)S kinetic growth on AgInS2 layer was studied also. Finally, the results suggest that these layers possibly could be used in one-junction solar cells and/or as top cell in a tandem solar cell.

  19. Plasmonic Behavior of Ag/Dielectric Nanowires and the Effect of Geometry

    DTIC Science & Technology

    2009-07-01

    in- cluding random Ga2O3 nanowires, ZnO nanowires, as well as Au lines produced by e-beam lithography. The growth of the Ga2O3 nanowires was achieved...PLASMONIC PROPERTIES As discussed above, we have developed a SERS substrate, consisting of Ga2O3 nanowire core/Ag metal sheath nano- structures, which have...signal. As is evident, the nanowire composites are about two orders of magnitude more sensitive than the Mesophotonics substrate. Since these Ga2O3 /Ag

  20. Long life, low cost, rechargeable AgZn battery for non-military applications

    NASA Astrophysics Data System (ADS)

    Brown, Curtis C.

    1996-03-01

    Of the rechargeable (secondary) battery systems with mature technology, the silver oxide-zinc system (AgZn) safely offers the highest power and energy (watts and watt hours) per unit of volume and mass. As a result they have long been used for aerospace and defense applications where they have also proven their high reliability. In the past, the expense associated with the cost of silver and the resulting low production volume have limited their commercial application. However, the relative low cost of silver now make this system feasible in many applications where high energy and reliability are required. One area of commercial potential is power for a new generation of sophisticated, portable medical equipment. AgZn batteries have recently proven ``enabling technology'' for power critical, advanced medical devices. By extending the cycle calendar life to the system (offers both improved performance and lower operating cost), a combination is achieved which may enable a wide range of future electrical devices. Other areas where AgZn batteries have been used in nonmilitary applications to provide power to aid in the development of commercial equipment have been: (a) Electrically powered vehicles; (b) Remote sensing in nuclear facilities; (c) Special effects equipment for movies; (d) Remote sensing in petroleum pipe lines; (e) Portable computers; (f) Fly by wire systems for commercial aircraft; and (g) Robotics. However none of these applications have progressed to the level where the volume required will significantly lower cost.

  1. Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces.

    PubMed

    Krajczewski, Jan; Kołątaj, Karol; Pietrasik, Sylwia; Kudelski, Andrzej

    2018-03-15

    One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl 4 - and Ag + ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Influences of Silver and Zinc Contents in the Stannite Ag2ZnSnS4 Photoelectrodes on Their Photoelectrochemical Performances in the Salt-Water Solution.

    PubMed

    Cheng, Kong-Wei; Hong, Shu-Wei

    2018-06-13

    The multicomponent metal sulphide (stannite Ag2ZnSnS4) samples were grown onto the conductive metal oxide coated glass substrates by using the sulfurization of co-sputtering silver-zinc-tin precursors. Several [Ag]/[Zn+Sn] and [Zn]/[Sn] ratios were set in the metal precursors to investigate their influences on the crystal phases, microstructures and physical properties of the stannite Ag2ZnSnS4 samples. The results of the crystal phases and compositions of samples showed that the stannite Ag2ZnSnS4 phase can be obtained using the two-step sulfurization process, which maintained the silver-zinc-tin precursors at 160C for 1 hour and then kept them at 450oC for 30 minutes under sulfur/nitrogen atmosphere. N-type stannite Ag2ZnSnS4 samples with the carrier concentrations of 5.54x1012 - 9.11x1012 cm-3 can be obtained. High resistivities of Ag2ZnSnS4 samples were observed due to the low values of carrier concentration. Increasing the silver content in the sample can improve its PEC performance due to the decrease in the sample resistivity. The ratio of [Ag]/[Zn+Sn] kept at 0.8 and ratio of [Zn]/[Sn] set at 0.90 in the stannite Ag2ZnSnS4 sample had the highest photoelectrochemical performance of 0.31 mA.cm-2 with the potential set at 1.23 V vs. relative hydrogen electrode applied on the sample because of it having the lowest charge transfer resistance in electrolyte.

  3. One Dimensional Coordination Polymer of Zn(II) for Developing Multifunctional Nanoparticles.

    PubMed

    Agarwal, Rashmi A

    2017-10-16

    A variety of nanoparticles (NPs) including Ag, Au, Pd, Cr and mixed Cu/Fe have been synthesized in a non-activated (without solvent removal) one dimensional coordination polymer (CP) of Zn(II) via two different mechanisms, acid formation and redox activity of the framework. Main driving force to grow these NPs within the cavities of CP is the presence of free oxygens of one of the monodentate carboxylate groups of BDC ligand. These free oxygens act as anchoring sites for the metal ions of the metal precursors. Chemical and physical characteristics of the NPs within the framework have been evaluated by the high resolution transmission electron microscopic (HRTEM) images. Excluding Ag(0) and Pd(0) other NPs are present as combinations of their elemental as well as oxide forms (Au/Au 2 O 3 , Cr/Cr 2 O 3 /CrO 2 and Cu/Cu 2 O, Fe/FeO). Synthesized Ag NPs within the framework show remarkable antibacterial efficacy at extremely low concentrations. Ag, Au and Cu/Fe NPs show ferromagnetic properties within the framework at room temperature. This polymer has potential to sequester highly toxic Cr(VI) to non toxic Cr(0), Cr(III) and Cr(IV) species.

  4. Seed-induced growth of flower-like Au-Ni-ZnO metal-semiconductor hybrid nanocrystals for photocatalytic applications.

    PubMed

    Chen, Yuanzhi; Zeng, Deqian; Cortie, Michael B; Dowd, Annette; Guo, Huizhang; Wang, Junbao; Peng, Dong-Liang

    2015-03-25

    The combination of metal and semiconductor components in nanoscale to form a hybrid nanocrystal provides an important approach for achieving advanced functional materials with special optical, magnetic and photocatalytic functionalities. Here, a facile solution method is reported for the synthesis of Au-Ni-ZnO metal-semiconductor hybrid nanocrystals with a flower-like morphology and multifunctional properties. This synthetic strategy uses noble and magnetic metal Au@Ni nanocrystal seeds formed in situ to induce the heteroepitaxial growth of semiconducting ZnO nanopyramids onto the surface of metal cores. Evidence of epitaxial growth of ZnO{0001} facets on Ni {111} facets is observed on the heterojunction, even though there is a large lattice mismatch between the semiconducting and magnetic components. Adjustment of the amount of Au and Ni precursors can control the size and composition of the metal core, and consequently modify the surface plasmon resonance (SPR) and magnetic properties. Room-temperature superparamagnetic properties can be achieved by tuning the size of Ni core. The as-prepared Au-Ni-ZnO nanocrystals are strongly photocatalytic and can be separated and re-cycled by virtue of their magnetic properties. The simultaneous combination of plasmonic, semiconducting and magnetic components within a single hybrid nanocrystal furnishes it multifunctionalities that may find wide potential applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Template free synthesis of ZnO/Ag2O nanocomposites as a highly efficient visible active photocatalyst for detoxification of methyl orange.

    PubMed

    Kadam, Abhijit; Dhabbe, Rohant; Gophane, Anna; Sathe, Tukaram; Garadkar, Kalyanrao

    2016-01-01

    A simple and effective route for the synthesis of ZnO/Ag2O nanocomposites with different weight ratios (4:1 to 4:4) have been successfully obtained by combination of thermal decomposition and precipitation technique. The structure, composition, morphology and optical properties of the as-prepared ZnO/Ag2O composites were characterized by XRD, FT-IR, EDS, SEM, TEM, UV-Vis DRS and PL, respectively. The photocatalytic performance of the photocatalysts was evaluated towards the degradation of a methyl orange (MO) under UV and visible light. More specifically, the results showed that the photocatalytic activity with highest rate constant of MO degradation over ZnO/Ag2O (4:2) nanocomposites is more than 22 and 4 times than those of pure ZnO and Ag2O under visible light irradiation, respectively. An improved photocatalytic activity was attributed to the formation of heterostructure between Ag2O and ZnO, the strong visible light absorption and more separation efficiency of photoinduced electron-hole pairs. Moreover, the ZnO/Ag2O (4:2) nanocomposite showed excellent stability towards the photodegradation of MO under visible light. Finally, a possible mechanism for enhanced charge separation and photodegrdation is proposed. Genotoxicity of MO before and after photodegradation was also evaluated by simple comet assay technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Electrochemical route to the synthesis of ZnO microstructures: its nestlike structure and holding of Ag particles

    PubMed Central

    2013-01-01

    Abstract A simple and facile electrochemical route was developed for the shape-selective synthesis of large-scaled series of ZnO microstructures, including petal, flower, sphere, nest and clew aggregates of ZnO laminas at room temperature. This route is based on sodium citrate-directed crystallization. In the system, sodium citrate can greatly promote ZnO to nucleate and directly grow by selectively capping the specific ZnO facets because of its excellent adsorption ability. The morphology of ZnO is tuned by readily adjusting the concentration of sodium citrate and the electrodeposition time. Among the series structures, the remarkable ZnO nestlike structure can be used as a container to hold not only the interlaced ZnO laminas but also Ag nanoparticles in the center. The special heterostructures of nestlike ZnO holding Ag nanoparticles were found to display the superior properties on the surface-enhanced Raman scattering. This work has signified an important methodology to produce a wide assortment of desired microstructures of ZnO. PACS 81 Materials science 81.07.-b nanoscale materials and structures Fabrication Characterization 81.15.-z Methods of deposition of films Coatings Film growth and epitaxy. PMID:23414592

  7. Luminophores of tunable colors from ternary Ag-In-S and quaternary Ag-In-Zn-S nanocrystals covering the visible to near-infrared spectral range.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Kotwica, Kamil; Ostrowski, Andrzej; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam

    2017-01-04

    Ternary Ag-In-S or quaternary Ag-In-Zn-S nanocrystals were prepared from simple precursors (silver nitrate, indium(iii) chloride, zinc stearate in a mixture of DDT and ODE) by injecting a solution of elemental sulfur into OLA. Ternary nanocrystals were modified by depositing either a ZnS or a CdS shell, yielding type I and type II core/shell systems exhibiting photoluminescence QY in the range of 12-16%. Careful optimization of the reaction conditions allowed alloyed quaternary Ag-In-Zn-S nanocrystals exhibiting tunable photoluminescence in the spectral range of 520-720 nm with a QY of 48% and 59% for green and red radiations, respectively, to be obtained. 1 H NMR analysis of the nanocrystal organic shell, after dissolution of its inorganic core, indicated that surfacial sulfur atoms were covalently bonded to aliphatic chains whereas surfacial cations were coordinated by amines and carboxylate anions. No thiol-type ligands were detected. Transfer of the prepared nanocrystals to water could be achieved in one step by exchanging the initial ligands for 11-mercaptoundecanoic ones resulting in a QY value of 31%. A new Ag-In-Zn-S nanocrystal preparation method was elaborated in which indium and zinc salts of fatty acids were used as cation precursors and DDT was replaced by thioacetamide. This original DDT-free method enabled similar tuning of the photoluminescence properties of the nanocrystals as in the previous method; however the measured photoluminescence QYs were three times lower. Hence, further optimization of the new method is required.

  8. The enhancing of Au-Ag-Te content in tellurium-bearing ore mineral by bio-oxidation-leaching

    NASA Astrophysics Data System (ADS)

    Kim, PyeongMan; Kim, HyunSoo; Myung, EunJi; Kim, YoonJung; Lee, YongBum; Park*, CheonYoung

    2015-04-01

    The purpose of this study is to enhance the content of valuable metals such as Au-Ag-Te in tellurium-bearing minerals by bio-oxidation-leaching. It was confirmed that pyrite, chalcopyrite, sphalerite and galena were produced together with tellurium-bearing minerals including hessite, sylvanite and tellurobismuthite from ore minerals and concentrates through microscopic observation and SEM/EDS analysis. In a bio-oxidation-leaching experiment, with regard to Au, Ag, Te, Cu and Fe, the changes in the amount of leaching and the content of leaching residues were compared and analyzed with each other depending on the adaptation of an indigenous microbe identified as Acidithiobacillus ferrooxidans. As a result of the experiment, the Au-Ag-Te content in tellurium-bearing ore mineral was enhanced in the order of physical oxidation leaching, physical/non-adaptive bio-oxidation-leaching and physical/adaptive biological leaching. It suggests that the bio-oxidation-leaching using microbes adapted in tellurium-bearing ore mineral can be used as a pre-treatment and a main process in a recovery process of valuable metals. "This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2013R1A1A2004898)"

  9. Reference Data for the Density, Viscosity, and Surface Tension of Liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn Eutectic Alloys

    NASA Astrophysics Data System (ADS)

    Dobosz, Alexandra; Gancarz, Tomasz

    2018-03-01

    The data for the physicochemical properties viscosity, density, and surface tension obtained by different experimental techniques have been analyzed for liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn eutectic alloys. All experimental data sets have been categorized and described by the year of publication, the technique used to obtain the data, the purity of the samples and their compositions, the quoted uncertainty, the number of data in the data set, the form of data, and the temperature range. The proposed standard deviations of liquid eutectic Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn alloys are 0.8%, 0.1%, 0.5%, 0.2%, and 0.1% for the density, 8.7%, 4.1%, 3.6%, 5.1%, and 4.0% for viscosity, and 1.0%, 0.5%, 0.3%, N/A, and 0.4% for surface tension, respectively, at a confidence level of 95%.

  10. Microleakage and antibacterial properties of ZnO and ZnO:Ag nanopowders prepared via a sol-gel method for endodontic sealer application

    NASA Astrophysics Data System (ADS)

    Shayani Rad, M.; Kompany, A.; Khorsand Zak, A.; Javidi, M.; Mortazavi, S. M.

    2013-09-01

    One of the most important problems in dentistry is the microleakage, whether apical or coronal, which may cause failure of root canal therapy. The aim of this study is to prepare suitable sealer to decrease the microleakage of the root canals as well as having good antibacterial property. Pure ZnO and ZnO:Ag nanopowders were synthesized via sol gel method using gelatin as polymerization agent calcined at different temperatures of 500, 600, and 700 °C for 8 h. The prepared samples were characterized using X-ray diffraction and transition electron microscopy. The microleakage and antibacterial properties of the prepared samples were investigated and compared with zinc oxide eugenol (ZOE) and epoxy resin sealer (AH26), which are commonly used in dentistry as sealers. The results showed that the synthesized pure ZnO and ZnO:Ag nanopowders exhibit better microleakage and antibacterial properties in comparison with ZOE and AH26 sealers, and therefore are more suitable filling materials to be used as sealer in root canal treatment.

  11. Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes

    DOEpatents

    Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

    2014-04-01

    A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

  12. Insights into the proteomic response of soybean towards Al₂O₃, ZnO, and Ag nanoparticles stress.

    PubMed

    Hossain, Zahed; Mustafa, Ghazala; Sakata, Katsumi; Komatsu, Setsuko

    2016-03-05

    Understanding the complex mechanisms involved in plant response to nanoparticles is indispensable in assessing the impact of nano-pollutants on environment. The present study compares the phytotoxicity of three different metal-based nanoparticles (Al2O3, ZnO, and Ag) in soybean seedling at proteome level. Plant growth, rigidity of roots, and root cell viability were markedly affected by ZnO- and Ag-NPs stress; while, Al2O3-NPs challenged soybean maintained normal seedling growth like control. Moreover, severe oxidative burst was evident in ZnO-NPs and Ag-NPs treatments. Gel-free proteomic analysis of NPs stressed soybean roots revealed 104 commonly changed proteins primarily associated with secondary metabolism, cell organization, and hormone metabolism. Oxidation-reduction cascade related genes, such as GDSL motif lipase 5, SKU5 similar 4, galactose oxidase, and quinone reductase were up-regulated in Al2O3-NPs challenged roots and down-regulated in ZnO- and Ag-NPs treatments. In comparison to root, 16 common proteins were found to be significantly changed in leaves of NPs exposed soybean that were predominantly associated to photosystem and protein degradation. The proteomic findings suggest that high abundance of proteins involved in oxidation-reduction, stress signaling, hormonal pathways related to growth and development might be the principal key for optimum growth of soybean under Al2O3-NPs stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. ZIF-8 derived hexagonal-like α-Fe2O3/ZnO/Au nanoplates with tunable surface heterostructures for superior ethanol gas-sensing performance

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Li, Hui; Ma, Qian; Che, Quande; Wang, Junpeng; Wang, Gang; Yang, Ping

    2018-05-01

    A series of hexagonal-like α-Fe2O3/ZnO/Au nanoplate heterostructures with tunable morphologies and superior ethanol gas-sensing performance were successfully synthesized via the facile multi-step reaction processes. Hexagonal-like α-Fe2O3 nanoplates with uniform size around 150 nm are employed as new sensor substrates for loading the well-distributed ZnO and Au nanoparticles with adjustable size distribution on the different surfaces. Brunauer-EmmeQ-Teller (BET) surface areas of α-Fe2O3 and α-Fe2O3/ZnO samples are evaluated to be 37.94 and 61.27 m2/g, respectively, while α-Fe2O3/ZnO/Au composites present the highest value of 79.08 m2/g. These α-Fe2O3-based functional materials can exhibit outstanding sensing properties to ethanol. When the ethanol concentration is 100 ppm, the response value of α-Fe2O3/ZnO/Au composites can reach up to 170, which is 14.6 and 80.3 times higher than that of α-Fe2O3/ZnO and pure α-Fe2O3, respectively. The recycling stability and long-time effectiveness can be availably maintained within 30 days, as well as the response and recovery times are shortened to 4 and 5 s, respectively. Significantly, the response value of α-Fe2O3/ZnO/Au composite is still up to 63 at an operating temperature of 280 °C even though the ethanol concentration decreases to 10 ppm. The enhanced gas sensing mechanism would be focused on the synergistic effects of phase compositions, surface heterogeneous structures, large specific surface area, and the selective depositions of Au nanoparticles in α-Fe2O3/ZnO/Au sensors. The synergistic effect of different surface heterostructures referring to α-Fe2O3/Au and α-Fe2O3/ZnO/Au and their novel electron transport processes on the surfaces are first investigated and discussed in details. It is expected that hexagonal-like α-Fe2O3/ZnO/Au nanoplate heterostructures with excellent sensing performance can be the promising highly-sensitive materials in the actual application for monitoring and detecting ethanol.

  14. Real-time ab initio KMC simulation of the self-assembly and sintering of bimetallic epitaxial nanoclusters: Au + Ag on Ag(100).

    PubMed

    Han, Yong; Liu, Da-Jiang; Evans, James W

    2014-08-13

    Far-from-equilibrium shape and structure evolution during formation and post-assembly sintering of bimetallic nanoclusters is extremely sensitive to the periphery diffusion and intermixing kinetics. Precise characterization of the many distinct local-environment-dependent diffusion barriers is achieved for epitaxial nanoclusters using density functional theory to assess interaction energies both with atoms at adsorption sites and at transition states. Kinetic Monte Carlo simulation incorporating these barriers then captures structure evolution on the appropriate time scale for two-dimensional core-ring and intermixed Au-Ag nanoclusters on Ag(100).

  15. Real-Time Ab Initio KMC Simulation of the Self-Assembly and Sintering of Bimetallic Epitaxial Nanoclusters: Au + Ag on Ag(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yong; Liu, Da-Jiang; Evans, James W

    2014-08-13

    Far-from-equilibrium shape and structure evolution during formation and post-assembly sintering of bimetallic nanoclusters is extremely sensitive to the periphery diffusion and intermixing kinetics. Precise characterization of the many distinct local-environment-dependent diffusion barriers is achieved for epitaxial nanoclusters using density functional theory to assess interaction energies both with atoms at adsorption sites and at transition states. Kinetic Monte Carlo simulation incorporating these barriers then captures structure evolution on the appropriate time scale for two-dimensional core-ring and intermixed Au-Ag nanoclusters on Ag(100).

  16. Equilibrium, kinetics and mechanism of Au3+, Pd2+ and Ag+ ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin.

    PubMed

    Wang, Zhongmin; Li, Xiaojuan; Liang, Haijun; Ning, Jingliang; Zhou, Zhide; Li, Guiyin

    2017-10-01

    In this study, a novel bio-adsorbent (PT-GO) was prepared by functionalization persimmon tannin (PT) with graphene oxide (GO) and the effective adsorption behaviors of Au 3+ , Pd 2+ and Ag + ions from aqueous solution was investigated. The PT-GO was characterized by Fourier transform infrared spectrometer (FTIR), scanning electronic microscope (SEM), thermogravimetric analysis (TGA) and Zeta potential. Many influence factors such as pH value, bio-adsorbent dosage, initial concentration of metal ions and contact time were optimized. The maximum adsorption capacity for Au 3+ , Pd 2+ and Ag + was 1325.09mg/g, 797.66mg/g and 421.01mg/g, respectively. The equilibrium isotherm for the adsorption of Au 3+ and Ag + on PT-GO were found to obey the Langmuir model, while the Freundlich model fitted better for Pd 2+ . The adsorption process of Au 3+ , Pd 2+ presented relatively fast adsorption kinetics with pseudo-second-order equation as the best fitting model, while the pseudo-first-order kinetic model was suitable for describing the adsorption of Ag + . Combination of ion exchange, electrostatic interaction and physical adsorption was the mechanism for adsorption of Au 3+ , Pd 2+ and Ag + onto PT-GO bio-adsorbent. Therefore, the PT-GO bio-adsorbent would be an ideal adsorbent for removal of precious metal ions and broaden the potential applications of persimmon tannin in environmental research. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Enhanced photocatalytic activity and characterization of magnetic Ag/BiOI/ZnFe2O4 composites for Hg0 removal under fluorescent light irradiation

    NASA Astrophysics Data System (ADS)

    Li, Chengwei; Zhang, Anchao; Zhang, Lixiang; Song, Jun; Su, Sheng; Sun, Zhijun; Xiang, Jun

    2018-03-01

    A series of magnetic Ag/BiOI/ZnFe2O4 hybrids synthesized via hydrothermal process, subsequent deposition-precipitation and photoreduction method were employed to remove elemental mercury (Hg0) under fluorescent light irradiation. The effects of Ag content, fluorescent light irradiation, reaction temperature, pH value, flue gas composition, anions and photocatalyst dosage on Hg0 removal were investigated in detail. The as-synthesized photocatalysts were characterized using N2 adsorption-desorption, XRD, SEM, TEM, HRTEM, XPS, VSM, DRS, ESR, PL and photocurrent response. The results showed that the ternary Ag/BiOI/ZnFe2O4 hybrids possessed enhanced visible-light-responsive photocatalytic performances for Hg0 removal. Ag/BiOI/ZnFe2O4 photocatalyst could be easily recovered from the reaction solution by an extra magnet and was stable in the process of Hg0 removal. Lower content of Ag was highly dispersed on the surface of BiOI/ZnFe2O4, while higher content of Ag would result in some aggregations and/or the blockages of micropore. In comparison to BiOI/ZnFe2O4, Ag deposited BiOI/ZnFe2O4 material showed lower recombination rate of electron-hole pairs. The superior Hg0 oxidation removal could correspond to good match of BiOI and ZnFe2O4, excellent fluidity and surface plasmon resonance effect of Ag0 nanoparticles, which led to higher separation efficiency of photogenerated electrons and holes, thereby enhancing the hybrids' photocatalytic activity.

  18. Different behaviors in the transformation of PATP adsorbed on Ag or Au nanoparticles investigated by surface-enhanced Raman spectroscopy - A study of the effects from laser energy and annealing

    NASA Astrophysics Data System (ADS)

    Xu, Jian-Fang; Luo, Shi-Yi; Liu, Guo-Kun

    2015-05-01

    In order to explore the key role of surface plasmon resonance (SPR) and active 3O2 for the chemical transformation to 4,4-dimercaptoazobenzene (DMAB) from p-aminothiophenol (PATP) adsorbed on Ag or Au NPs, we systematically investigated the laser wavelength and temperature dependent surface-enhanced Raman spectra of PATP capped Ag and Au NPs. DMAB can be easily observed at the 514.5 nm laser for Ag NPs but at the 632.8 nm laser for Au NPs, indicating that a suitable energy level is necessary for the formation of DMAB. The tendency is consistent with the wavelength dependent SPR properties of Ag or Au NPs accordingly. With the energy provided by annealing, the transformation of PATP to DMAB is much easier on Ag NPs at a lower temperature, and more DMAB can be observed at the same temperature, compared to the case of Au NPs under the same condition. It is mainly due to the active 3O2 on Ag surfaces could be more easily formed than that on Au surfaces.

  19. In Situ Fabrication of 3D Ag@ZnO Nanostructures for Microfluidic Surface-Enhanced Raman Scattering Systems

    PubMed Central

    2015-01-01

    In this work, we develop an in situ method to grow highly controllable, sensitive, three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrates via an optothermal effect within microfluidic devices. Implementing this approach, we fabricate SERS substrates composed of Ag@ZnO structures at prescribed locations inside microfluidic channels, sites within which current fabrication of SERS structures has been arduous. Conveniently, properties of the 3D Ag@ZnO nanostructures such as length, packing density, and coverage can also be adjusted by tuning laser irradiation parameters. After exploring the fabrication of the 3D nanostructures, we demonstrate a SERS enhancement factor of up to ∼2 × 106 and investigate the optical properties of the 3D Ag@ZnO structures through finite-difference time-domain simulations. To illustrate the potential value of our technique, low concentrations of biomolecules in the liquid state are detected. Moreover, an integrated cell-trapping function of the 3D Ag@ZnO structures records the surface chemical fingerprint of a living cell. Overall, our optothermal-effect-based fabrication technique offers an effective combination of microfluidics with SERS, resolving problems associated with the fabrication of SERS substrates in microfluidic channels. With its advantages in functionality, simplicity, and sensitivity, the microfluidic-SERS platform presented should be valuable in many biological, biochemical, and biomedical applications. PMID:25402207

  20. Visualization of plasmon-enhanced photocarrier generation in ZnO/Ag nanogratings (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gwon, Minji; Sohn, Ahrum; Cho, Yunae; Kim, Dong-Wook

    2017-03-01

    ZnO has attracted growing research attention as a strong candidate material for various optoelectronic device applications. It is important to understand and control the interactions between surface plasmons (SPs) and charge carriers in metal-ZnO hybrid nanostructures to improve the optical characteristics. In this work, we fabricated ZnO/Ag nanogratings using patterned polymer and Si templates. Excitation of the surface plasmon polaritons (SPPs) well explained the optical reflectance and photoluminescence spectra of the ZnO/Ag nanogratings [1,2]. Nanoscopic mapping of surface photovoltage (SPV), i.e., changes in the surface potential under illumination, obtained by Kelvin probe force microscopy (KPFM) enabled us to investigate the local behaviors of the photo-generated carriers. The magnitude and relaxation time of the measured SPV depended on the wavelength and polarization of the incident light [3]. This showed that the SP excitation in the nanogratings directly affected the creation and recombination processes of the charge carriers. All of these results suggested that SPV measurements using KPFM should be very useful for studying the SP effects in metal/semiconductor hybrid nanostructures. References [1] Gwon et al., Opt. Express 19, 5895 (2011). [2] Gwon et al., ACS Appl. Mater. Interfaces. 6, 8602 (2014). [3] Gwon et al., Sci. Rep. 5, 16727; doi: 10.1038/srep16727 (2015).

  1. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China

    NASA Astrophysics Data System (ADS)

    Zhai, Degao; Liu, Jiajun; Cook, Nigel J.; Wang, Xilong; Yang, Yongqiang; Zhang, Anli; Jiao, Yingchun

    2018-04-01

    The Bianjiadayuan Ag-Pb-Zn deposit (4.81 Mt. @157.4 g/t Ag and 3.94% Pb + Zn) is located in the Great Hinggan Range Pb-Zn-Ag-Cu-Mo-Sn-Fe polymetallic metallogenic belt, NE China. Vein type Pb-Zn-Ag ore bodies are primarily hosted by slate, adjacent to a Sn ± Cu ± Mo mineralized porphyry intrusion. The deposit is characterized by silver-rich ores with Ag grades up to 3000 g/t. Four primary paragenetic sequences are recognized: (I) arsenopyrite + pyrite + quartz, (II) main sulfide + quartz, (III) silver-bearing sulfosalt + quartz, and (IV) boulangerite + calcite. A subsequent supergene oxidation stage has also been identified. Hydrothermal alteration consists of an early episode of silicification, two intermediate episodes (propylitic and phyllic), and a late argillic episode. Silver mineralization primarily belongs to the late paragenetic sequence III. Freibergite is the dominant and most important Ag-mineral in the deposit. Detailed ore mineralogy of Bianjiadayuan freibergite reveals evidence of chemical heterogeneity down to the microscale. Silver-rich sulfosalts in the late paragenetic sequence III are largely derived from a series of retrograde and solid-state reactions that redistribute Ag via decomposition and exsolution during cooling, illustrating that documentation of post-mineralization processes is essential for understanding silver ore formation. Sulfur and lead isotope compositions of sulfides, and comparison with those of local various geological units, indicate that the ore-forming fluids, lead, and other metals have a magmatic origin, suggesting a close genetic association between the studied Ag-Pb-Zn veins and the local granitic intrusion. Fluid cooling coupled with decreases in fO2 and fS2 are the factors inferred to have led to a decrease of silver solubility in the hydrothermal fluid, and successively promoted extensive Ag deposition.

  2. Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance

    PubMed Central

    Fang, Fang; Bai, Lu; Song, Dongsheng; Yang, Hongping; Sun, Xiaoming; Sun, Hongyu; Zhu, Jing

    2015-01-01

    Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10–30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion) and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications. PMID:26287205

  3. Enhanced photoelectric performance in self-powered UV detectors based on ZnO nanowires with plasmonic Au nanoparticles scattered electrolyte

    NASA Astrophysics Data System (ADS)

    Zeng, Yiyu; Ye, Zhizhen; Lu, Bin; Dai, Wei; Pan, Xinhua

    2016-04-01

    Vertically aligned ZnO nanowires (NWs) were grown on a fluorine-doped tin-oxide-coated glass substrate by a hydrothermal method. Au nanoparticles were well dispersed in the mixed solution of ethanol and deionized water. A simple self-powered ultraviolet detector based on solid-liquid heterojunction was fabricated, utilizing ZnO NWs as active photoanode and such prepared mixed solution as electrolyte. The introduction of Au nanoparticles results in considerable improvements in the responsivity and sensitivity of the device compared with the one using deionized water as electrolyte, which is attributed to the enhanced light harvesting by Au nanoparticles.

  4. Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C electrodes.

    PubMed

    López-González, B; Dector, A; Cuevas-Muñiz, F M; Arjona, N; Cruz-Madrid, C; Arana-Cuenca, A; Guerra-Balcázar, M; Arriaga, L G; Ledesma-García, J

    2014-12-15

    A hybrid glucose microfluidic fuel cell composed of an enzymatic cathode (Laccase/ABTS/C) and an inorganic anode (AuAg/C) was developed and tested. The enzymatic cathode was prepared by adsorption of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Laccase on Vulcan XC-72, which act as a redox mediator, enzymatic catalyst and support, respectively. The Laccase/ABTS/C composite was characterised by Fourier Transform Infrared (FTIR) Spectroscopy, streaming current measurements (Zeta potential) and cyclic voltammetry. The AuAg/C anode catalyst was characterised by Transmission electron microscopy (TEM) and cyclic voltammetry. The hybrid microfluidic fuel cell exhibited excellent performance with a maximum power density value (i.e., 0.45 mW cm(-2)) that is the highest reported to date. The cell also exhibited acceptable stability over the course of several days. In addition, a Mexican endemic Laccase was used as the biocathode electrode and evaluated in the hybrid microfluidic fuel cell generating 0.5 mW cm(-2) of maximum power density. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Performance analyses of Schottky diodes with Au/Pd contacts on n-ZnO thin films as UV detectors

    NASA Astrophysics Data System (ADS)

    Varma, Tarun; Periasamy, C.; Boolchandani, Dharmendar

    2017-12-01

    In this paper, we report fabrication and performance analyses of UV detectors based on ZnO thin film Schottky diodes with Au and Pd contacts. RF magnetron sputtering technique has been used to deposit the nano-crystalline ZnO thin film, at room temperature. Characterization techniques such as XRD, AFM and SEM provided valuable information related to the micro-structural & optical properties of the thin film. The results show that the prepared thin film has good crystalline orientation and minimal surface roughness, with an optical bandgap of 3.1 eV. I-V and C-V characteristics were evaluated that indicate non-linear behaviour of the diodes with rectification ratios (IF/IR) of 19 and 427, at ± 4 V, for Au/ZnO and Pd/ZnO Schottky diodes, respectively. The fabricated Schottky diodes when exposed to a UV light of 365 nm wavelength, at an applied bias of -2 V, exhibited responsivity of 10.16 and 22.7 A/W, for Au and Pd Schottky contacts, respectively. The Pd based Schottky photo-detectors were found to exhibit better performance with superior values of detectivity and photoconductive gain of 1.95 × 1010 cm Hz0.5/W & 77.18, over those obtained for the Au based detectors which were observed to be 1.23 × 1010 cm Hz0.5/W & 34.5, respectively.

  6. 120 MeV Ag ion induced effects in Au/HfO2/Si MOSCAPs

    NASA Astrophysics Data System (ADS)

    Manikanthababu, N.; Prajna, K.; Pathak, A. P.; Rao, S. V. S. Nageswara

    2018-05-01

    HfO2/Si thinfilms were deposited by RF sputtering technique. 120 MeV Ag ion irradiation has been used to study the electrical properties of Au/HfO2/Si MOSCAPs. SHI (120 MeV Ag) induced annealing, defects creation and intermixing effects on the electrical properties of these systems have been studied. Here, we have observed that the high electronic excitation can cause a significant reduction of leakage currents in these MOSCAP devices. Various quantum mechanical tunneling phenomenon has been observed from the I-V characteristics.

  7. Theoretical investigation of geometries, stabilities, electronic and optical properties for advanced Ag{sub n}@(ZnO){sub 42} (n=6-18) hetero-nanostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hai-Xia; Department of Physics, National University of Singapore, 117542; Wang, Xiao-Xu

    The structural properties of Ag{sub n}@(ZnO){sub 42} (n=6-18) core-shell nanoparticles have been investigated by the first principles calculations, and the core-shell nanostructure with n=13 is proved to be the most stable one for the first time. Ag{sub 13}@(ZnO){sub 42} core-shell nanostructure possesses higher chemistry activity and shows a red shift phenomenon in the light of the absorption spectrum compare to the (ZnO){sub 48}, this can be confirmed by the calculated electron structure. The visible-light could be absorbed by Ag{sub 13}@(ZnO){sub 42} to improve the photo-catalysis of (ZnO){sub 48} nanostructure. Our results show good agreement with experiments.

  8. Influence of reactive sulfide (AVS) and supplementary food on Ag, Cd and Zn bioaccumulation in the marine polychaete Neanthes arenaceodentata

    USGS Publications Warehouse

    Lee, J.-S.; Lee, B.-G.; Yoo, H.; Koh, C.-H.; Luoma, S.N.

    2001-01-01

    A laboratory bioassay determined the relative contribution of various pathways of Ag, Cd and Zn bioaccumulation in the marine polychaete Neanthes arenaceodentata exposed to moderately contaminated sediments. Juvenile worms were exposed for 25 d to experimental sediments containing 5 different reactive sulfide (acid volatile sulfides, AVS) concentrations (1 to 30 ??mol g-1), but with constant Ag, Cd, and Zn concentrations of 0.1, 0.1 and 7 ??mol g-1, respectively. The sediments were supplemented with contaminated food (TetraMin??) containing 3 levels of Ag-Cd-Zn (uncontaminated, 1?? or 5??1 metal concentrations in the contaminated sediment). The results suggest that bioaccumulation of Ag, Cd and Zn in the worms occurred predominantly from ingestion of contaminated sediments and contaminated supplementary food. AVS or dissolved metals (in porewater and overlying water) had a minor effect on bioaccumulation of the 3 metals in most of the treatments. The contribution to uptake from the dissolved source was most important in the most oxic sediments, with maximum contributions of 8% for Ag, 30% for Cd and 20% for Zn bioaccumulation. Sediment bioassays where uncontaminated supplemental food is added could seriously underestimate metal exposures in an equilibrated system; N. arenaceodentata feeding on uncontaminated food would be exposed to 40-60% less metal than if the food source was equilibrated (as occurs in nature). Overall, the results show that pathways of metal exposure are dynamically linked in contaminated sediments and shift as external geochemical characteristics and internal biological attributes vary.

  9. Ion irradiation synthesis of Ag-Au bimetallic nanospheroids in SiO2 glass substrate with tunable surface plasmon resonance frequency

    NASA Astrophysics Data System (ADS)

    Meng, Xuan; Shibayama, Tamaki; Yu, Ruixuan; Takayanagi, Shinya; Watanabe, Seiichi

    2013-08-01

    Ag-Au bimetallic nanospheroids with tunable localized surface plasmon resonance (LSPR) were synthesized by 100 keV Ar-ion irradiation of 30 nm Ag-Au bimetallic films deposited on SiO2 glass substrates. A shift of the LSPR peaks toward shorter wavelengths was observed up to an irradiation fluence of 1.0 × 1017 cm-2, and then shifted toward the longer wavelength because of the increase of fragment volume under ion irradiation. Further control of LSPR frequency over a wider range was realized by modifying the chemical components. The resulting LSPR frequencies lie between that of the pure components, and an approximate linear shift of the LSPR toward the longer wavelength with the Au concentration was achieved, which is in good agreement with the theoretical calculations based on Gans theory. In addition, the surface morphology and compositions were examined with a scanning electron microscope equipped with an energy dispersive spectrometer, and microstructural characterizations were performed using a transmission electron microscope. The formation of isolated photosensitive Ag-Au nanospheroids with a FCC structure partially embedded in the SiO2 substrate was confirmed, which has a potential application in solid-state devices.

  10. Role of Dispersion in Metallophilic Hg···M Interactions (M = Cu, Ag, Au) within Coinage Metal Complexes of Bis(6-diphenylphosphinoacenaphth-5-yl)mercury.

    PubMed

    Hupf, Emanuel; Kather, Ralf; Vogt, Matthias; Lork, Enno; Mebs, Stefan; Beckmann, Jens

    2016-11-07

    The previously reported bis(6-diphenylphosphinoacenaphth-5-yl)mercury (1) was used as ligand for the preparation of the copper(I) complexes, 1·CuCl and [1·Cu(NCMe)]BF 4 , which were characterized by multinuclear NMR spectroscopy and X-ray crystallography. DFT calculations employing topological analysis of the electron and electron pair densities within the AIM and ELI-D space-partitioning schemes revealed significant metallophilic Hg···Cu interactions. Evaluation of noncovalent bonding aspects according to the noncovalent interaction (NCI) index was applied not only for the Cu complexes 1·CuCl and [1·Cu(NCMe)]BF 4 but also for the previously reported Ag and Au complexes, namely, [1·MCl] (M = Ag, Au) and [1·M(NCMe) n ] + (M = Ag, n = 2; M = Au, n = 0), and facilitated the assignment of attractive dispersive Hg···M interactions with the Hg···Cu contacts being comparable to the Hg···Ag but weaker than the Hg···Au interactions. The localization of the attractive noncovalent bonding regions increases in the order Cu < Ag < Au.

  11. Effect of impurities on the mechanical and electronic properties of Au, Ag, and Cu monatomic chain nanowires

    NASA Astrophysics Data System (ADS)

    Çakır, D.; Gülseren, O.

    2011-08-01

    In this study, we have investigated the interaction of various different atomic and molecular species (H, C, O, H2, and O2) with the monatomic chains of Au, Ag, and Cu via total-energy calculations using the plane-wave pseudopotential method based on density functional theory. The stability, energetics, mechanical, and electronic properties of the clean and contaminated Au, Ag, and Cu nanowires have been presented. We have observed that the interaction of H, C, or O atoms with the monatomic chains are much stronger than the one of H2 or O2 molecules. The atomic impurities can easily be incorporated into these nanowires; they form stable and strong bonds with these one-dimensional structures when they are inserted in or placed close to the nanowires. Moreover, the metal-atomic impurity bond is much stronger than the metal-metal bond. Upon elongation, the nanowires contaminated with atomic impurities usually break from the remote metal-metal bond. We have observed both metallic and semiconducting contaminated nanowires depending on the type of impurity, whereas all clean monatomic chains of Au, Cu, and Ag exhibit metallic behavior. Our findings indicate that the stability and the electronic properties of these monatomic chains can be tuned by using appropriate molecular or atomic additives.

  12. Tunable Catalysis of Water to Peroxide with Anionic, Cationic, and Neutral Atomic Au, Ag, Pd, Rh, and Os

    NASA Astrophysics Data System (ADS)

    Suggs, K.; Kiros, F.; Tesfamichael, A.; Felfli, Z.; Msezane, A. Z.

    2015-05-01

    Fundamental anionic, cationic, and neutral atomic metal predictions utilizing density functional theory calculations validate the recent discovery identifying the interplay between Regge resonances and Ramsauer-Townsend minima obtained through complex angular momentum analysis as the fundamental atomic mechanism underlying nanoscale catalysis. Here we investigate the optimization of the catalytic behavior of Au, Ag, Pd, Rh, and Os atomic systems via polarization effects and conclude that anionic atomic systems are optimal and therefore ideal for catalyzing the oxidation of water to peroxide, with anionic Os being the best candidate. The discovery that cationic systems increase the transition energy barrier in the synthesis of peroxide could be important as inhibitors in controlling and regulating catalysis. These findings usher in a fundamental and comprehensive atomic theoretical framework for the generation of tunable catalytic systems. The ultimate aim is to design giant atomic catalysts and sensors, in the context of the recently synthesized tri-metal Ag@Au@Pt and bimetal Ag@Au nanoparticles for greatly enhanced plasmonic properties and improved chemical stability for chemical and biological sensing. Research was supported by U.S. DOE Office of Basic Energy Sciences.

  13. Invoking Direct Exciton-Plasmon Interactions by Catalytic Ag Deposition on Au Nanoparticles: Photoelectrochemical Bioanalysis with High Efficiency.

    PubMed

    Ma, Zheng-Yuan; Xu, Fei; Qin, Yu; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-04-19

    In this work, direct exciton-plasmon interactions (EPI) between CdS quantum dots (QDs) and Ag nanoparticles (NPs) were invoked ingeniously by catalytic Ag deposition on Au NPs for the stimulation of high efficient damping effect toward the excitonic responses in CdS QDs, on the basis of which a novel photoelectrochemical (PEC) bioanalytical format was achieved for sensitive microRNA detection. Specifically, upon the configurational change from the hairpin probe DNA to the "Y"-shaped ternary conjugate consisting of the original probe DNA, assistant DNA, and the target microRNA, the alkaline phosphatase (ALP) catalytic chemistry would then trigger the transition of the interparticle interplay from the CdS QDs-Au NPs to the CdS QDs-Ag NPs systems for the microRNA detection due to the dependence of the photocurrent quenching on the target concentration. This work not only provided a unique method for EPI generation among the PEC nanosystems but also offered a versatile and general protocol for future PEC bioanalysis development.

  14. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  15. Spectroscopic properties of Arx-Zn and Arx-Ag+ (x = 1,2) van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Oyedepo, Gbenga A.; Peterson, Charles; Schoendorff, George; Wilson, Angela K.

    2013-03-01

    Potential energy curves have been constructed using coupled cluster with singles, doubles, and perturbative triple excitations (CCSD(T)) in combination with all-electron and pseudopotential-based multiply augmented correlation consistent basis sets [m-aug-cc-pV(n + d)Z; m = singly, doubly, triply, n = D,T,Q,5]. The effect of basis set superposition error on the spectroscopic properties of Ar-Zn, Ar2-Zn, Ar-Ag+, and Ar2-Ag+ van der Waals complexes was examined. The diffuse functions of the doubly and triply augmented basis sets have been constructed using the even-tempered expansion. The a posteriori counterpoise scheme of Boys and Bernardi and its generalized variant by Valiron and Mayer has been utilized to correct for basis set superposition error (BSSE) in the calculated spectroscopic properties for diatomic and triatomic species. It is found that even at the extrapolated complete basis set limit for the energetic properties, the pseudopotential-based calculations still suffer from significant BSSE effects unlike the all-electron basis sets. This indicates that the quality of the approximations used in the design of pseudopotentials could have major impact on a seemingly valence-exclusive effect like BSSE. We confirm the experimentally determined equilibrium internuclear distance (re), binding energy (De), harmonic vibrational frequency (ωe), and C1Π ← X1Σ transition energy for ArZn and also predict the spectroscopic properties for the low-lying excited states of linear Ar2-Zn (X1Σg, 3Πg, 1Πg), Ar-Ag+ (X1Σ, 3Σ, 3Π, 3Δ, 1Σ, 1Π, 1Δ), and Ar2-Ag+ (X1Σg, 3Σg, 3Πg, 3Δg, 1Σg, 1Πg, 1Δg) complexes, using the CCSD(T) and MR-CISD + Q methods, to aid in their experimental characterizations.

  16. Mineralogy, alteration patterns, geochemistry, and fluid properties of the Ag-Au epithermal deposit Nová Baňa, Slovakia

    NASA Astrophysics Data System (ADS)

    Majzlan, Juraj; Berkh, Khulan; Kiefer, Stefan; Koděra, Peter; Fallick, Anthony E.; Chovan, Martin; Bakos, František; Biroň, Adrián; Ferenc, Štefan; Lexa, Jaroslav

    2018-02-01

    In this contribution, we report new data on mineralogy, alteration patterns, geochemistry, fluid properties and source of fluids for the deposit Nová Baňa, one of the smaller epithermal deposits in the Middle Miocene Štiavnica andesite stratovolcano (Western Carpathians, Slovakia). Ore veins and the associated rocks were studied in samples from outcrops and old mines, grab samples, and bore holes from the central part of the deposit (ore structures Althandel, Jozef, Jakub, Vavrinec), northern part (Freischurf), SE part (Gupňa) and SW part (Šibeničný vrch). Pervasive hydrothermal alteration transformed the rock-forming minerals into a mixture of adularia and fine-grained quartz, with lesser amount of pyrite, Ti oxides and Fe oxides. This assemblage was further altered to omnipresent interstratified illite/smectite that was used in this study as a geothermometer, corroborating the results from the fluid inclusion work. Ore minerals comprise predominantly pyrite, sphalerite, galena but all sulfides are relatively sparse in the samples studied. Minerals of precious metals are electrum, Ag-tetrahedrite, acanthite, members of the polybasite-pearceite and pyrargyrite-proustite solid solution, and rare miargyrite, Hg-Ag tetrahedrite, and diaphorite. In the central part, we have found also some stibnite. In the SE part of the deposit, acanthite, uytenbogaardtite, and petrovskaite occur and seem to be related to supergene enrichment of the ores. In bulk ore samples, Zn usually dominates over Pb and Cu. The average Ag:Au ratio for the entire deposit is 64:1. The concentrations of precious metals in the grab samples reach maxima of 50 ppm Au and 570 ppm Ag in the SE part and 116 ppm Au and 1110 ppm Ag in the central part of the deposit. Fluid inclusions show signs of trapping of a heterogeneous fluid. In the central, northern and SE parts of the deposit, homogenization temperatures of 190-260 °C and consistently low salinities of <5 wt% NaCl eq were recorded. In the SW

  17. Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging.

    PubMed

    Lai, Pei-Yu; Huang, Chih-Ching; Chou, Tzung-Han; Ou, Keng-Liang; Chang, Jia-Yaw

    2017-03-01

    Here, we present the microwave-assisted synthesis of In 2 S 3 /ZnS core/shell quantum dots (QDs) co-doped with Ag + and Mn 2+ (referred to as AgMn:In 2 S 3 /ZnS). Ag + altered the optical properties of the host QDs, whereas the spin magnetic moment (S=5/2) of Mn 2+ efficiently induced the longitudinal relaxation of water protons. To the best of our knowledge, this is the first report of the aqueous synthesis of color-tunable AgMn:In 2 S 3 /ZnS core/shell QDs with magnetic properties. The synthetic procedure is rapid, facile, reproducible, and scalable. The obtained QDs offered a satisfactory quantum yield (45%), high longitudinal relaxivity (6.84s -1 mM -1 ), and robust photostability. In addition, they exhibited excellent stability over a wide pH range (5-12) and high ionic strength (0.15-2.0M NaCl). As seen by confocal microscopy and magnetic resonance imaging, AgMn:In 2 S 3 /ZnS conjugated to hyaluronic acid (referred to as AgMn:In 2 S 3 /ZnS@HA) efficiently and specifically targeted cluster determinant 44, a receptor overexpressed on cancer cells. Moreover, AgMn:In 2 S 3 /ZnS@HA showed negligible cytotoxicity in vitro and in vivo, rendering it a promising diagnostic probe for dual-modal imaging in clinical applications. In this manuscript, we reported a facial and rapid method to prepare In 2 S 3 /ZnS core/shell quantum dots (QDs) co-doped with Ag + and Mn 2+ (referred to as AgMn:In 2 S 3 /ZnS). Ag + dopants were used to alter the optical properties of the In 2 S 3 host, whereas Mn 2+ co-dopants with their unpaired electrons provided paramagnetic properties. The emission wavelength of the core/shell QDs could be tuned from 550 to 743nm with a maximum PL quantum yield of 45%. The resulting core/shell QDs also maintained a stable emission in aqueous solution at broad ranges of pH (5-12) and ionic strength (0.15-2.0M NaCl), as well as a high photostability under continuous irradiation. In vivo cytotoxicity experiments showed that up to 500μg/mL AgMn:In 2 S 3 /Zn

  18. Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets.

    PubMed

    Meng, Fanli; Zheng, Hanxiong; Sun, Yufeng; Li, Minqiang; Liu, Jinhuai

    2017-06-22

    It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA). Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs)-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI) was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs) sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrum (EDS), respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge.

  19. Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets

    PubMed Central

    Zheng, Hanxiong; Sun, Yufeng; Li, Minqiang; Liu, Jinhuai

    2017-01-01

    It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA). Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs)-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI) was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs) sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrum (EDS), respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge. PMID:28640226

  20. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2013-07-01

    In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths. The power conversion efficiency (PCE) of DSCs is enhanced by 16% from 5.26% to 6.09% by incorporating 2.38 wt% Au-Ag alloy popcorn NPs. Moreover, by adding a scattering layer on the exterior of the counter electrode, the popcorn NPs demonstrate an even stronger ability to increase the PCE by 32% from 5.94% to 7.85%, which results from the more efficient excitation of the LSP mode on the popcorn NPs.

  1. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles.

    PubMed

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2013-01-01

    In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths. The power conversion efficiency (PCE) of DSCs is enhanced by 16% from 5.26% to 6.09% by incorporating 2.38 wt% Au-Ag alloy popcorn NPs. Moreover, by adding a scattering layer on the exterior of the counter electrode, the popcorn NPs demonstrate an even stronger ability to increase the PCE by 32% from 5.94% to 7.85%, which results from the more efficient excitation of the LSP mode on the popcorn NPs.

  2. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles

    PubMed Central

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2013-01-01

    In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths. The power conversion efficiency (PCE) of DSCs is enhanced by 16% from 5.26% to 6.09% by incorporating 2.38 wt% Au-Ag alloy popcorn NPs. Moreover, by adding a scattering layer on the exterior of the counter electrode, the popcorn NPs demonstrate an even stronger ability to increase the PCE by 32% from 5.94% to 7.85%, which results from the more efficient excitation of the LSP mode on the popcorn NPs. PMID:23817586

  3. Crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure

    PubMed Central

    Chen, Tao; Yang, Sha; Chai, Jinsong; Song, Yongbo; Fan, Jiqiang; Rao, Bo; Sheng, Hongting; Yu, Haizhu; Zhu, Manzhou

    2017-01-01

    We report the first noble metal nanocluster with a formula of Au4Ag13(DPPM)3(SR)9 exhibiting crystallization-induced emission enhancement (CIEE), where DPPM denotes bis(diphenylphosphino)methane and HSR denotes 2,5-dimethylbenzenethiol. The precise atomic structure is determined by x-ray crystallography. The crystalline state of Au4Ag13 shows strong luminescence at 695 nm, in striking contrast to the weak emission of the amorphous state and hardly any emission in solution phase. The structural analysis and the density functional theory calculations imply that the compact C–H⋯π interactions significantly restrict the intramolecular rotations and vibrations and thus considerably enhance the radiative transitions in the crystalline state. Because the noncovalent interactions can be easily modulated via varying the chemical environments, the CIEE phenomenon might represent a general strategy to amplify the fluorescence from weakly (or even non-) emissive nanoclusters. PMID:28835926

  4. Structural and optical properties of DC magnetron sputtered ZnO films on glass substrate and their modification by Ag ions implantation

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Afzal, Naveed; Amjad, U.; Jabbar, S.; Hussain, T.; Hussnain, A.

    2017-07-01

    This work is focused on investigating the effects of deposition time and Ag ions implantation on structural and optical properties of ZnO film. The ZnO film was prepared on glass substrate by pulsed DC magnetron sputtering of pure Zn target in reactive oxygen environment for 2 h, 3 h, 4 h and 5 h respectively. X-ray diffraction results revealed polycrystalline ZnO film whose crystallinity was improved with increase of the deposition time. The morphological features indicated agglomeration of smaller grains into larger ones by increasing the deposition time. The UV-vis spectroscopy analysis depicted a small decrease in the band gap of ZnO from 3.36 eV to 3.27 eV with increase of deposition time. The Ag ions implantation in ZnO films deposited for 5 h on glass was carried out by using Pelletron Accelerator at different ions fluences ranging from 1  ×  1011 ions cm-2 to 2  ×  1012 ions cm-2. XRD patterns of Ag ions implanted ZnO did not show significant change in crystallite size by increasing ions fluence from 1  ×  1011 ions cm-2 to 5  ×  1011 ions cm-2. However, with further increase of the ions fluence, the crystallite size was decreased. The band gap of Ag ions implanted ZnO indicated anomalous variations with increase of the ions fluence.

  5. The effects of gamma irradiation on electrical characteristics of Zn/ZnO/n-Si/Au-Sb structure

    NASA Astrophysics Data System (ADS)

    Salari, M. Abdolahpour; Güzeldir, B.; Saǧlam, M.

    2018-02-01

    In this research, we have investigated the electrical characteristics of Zn/ZnO/n-Si/Au-Sb structure before and after 60Co gamma (γ)-ray source irradiation with the total dose range of 0-500 kGy at room temperature. Electrical measurements of this structure have been performed using current-voltage (I-V) and capacitance-voltage (C-V) techniques. Experimental results show that the values of the ideality factor obtained from I-V measurements increased and the values of the barrier height obtained from reverse-bias C-V measurements decreased after gamma-irradiation. The results show that the main effect of the radiation is the generation of laterally inhomogeneous defects near the semiconductor surface.

  6. Structural and superionic properties of Ag+-rich ternary phases within the AgI-MI2 systems

    NASA Astrophysics Data System (ADS)

    Hull, S.; Keen, D. A.; Berastegui, P.

    2002-12-01

    The effects of temperature on the crystal structure and ionic conductivity of the compounds Ag2CdI4, Ag2ZnI4 and Ag3SnI5 have been investigated by powder diffraction and impedance spectroscopy techniques. varepsilon-Ag2CdI4 adopts a tetragonal crystal structure under ambient conditions and abrupt increases in the ionic conductivity are observed at 407(2), 447(3) and 532(4) K, consistent with the sequence of transitions varepsilon-Ag2CdI 4 rightarrow beta-Ag2CdI 4 + beta-AgI + CdI2 rightarrow alpha-AgI + CdI2 rightarrow alpha-Ag2CdI4. Hexagonal beta-Ag2CdI4 is metastable at ambient temperature. The ambient-temperature beta phase of Ag2ZnI4 is orthorhombic and the structures of beta-Ag2CdI4 and beta-Ag2ZnI4 can, respectively, be considered as ordered derivatives of the wurtzite (beta) and zincblende (gamma) phases of AgI. On heating Ag2ZnI4, there is a 12-fold increase in ionic conductivity at 481(1) K and a further eightfold increase at 542(3) K. These changes result from decomposition of beta-Ag2ZnI4 into alpha-AgI + ZnI2, followed by the appearance of superionic alpha-Ag2ZnI4 at the higher temperature. The hexagonal crystal structure of alpha-Ag2ZnI4 is a dynamically disordered counterpart to the beta modification. Ag3SnI5 is only stable at temperatures in excess of 370(3) K and possesses a relatively high ionic conductivity (sigma approx 0.19Omega-1 cm-1 at 420 K) due to dynamic disorder of the Ag+ and Sn2+ within a cubic close packed I- sublattice. The implications of these findings for the wider issue of high ionic conductivity in AgI-MI2 compounds is discussed, with reference to recently published studies of Ag4PbI6 and Ag2HgI4 and new data for the temperature dependence of the ionic conductivity of the latter compound.

  7. Au nanoparticles-ZnO composite nanotubes using natural silk fibroin fiber as template for electrochemical non-enzymatic sensing of hydrogen peroxide.

    PubMed

    Chen, Liangliang; Xu, Xiaolong; Cui, Feng; Qiu, Qianying; Chen, Xiaojun; Xu, Jinzhong

    2018-05-23

    A novel electrochemical sensor based on the composite of gold nanoparticles/zinc oxide nanotube (AuNPs/ZnO-NTs) was constructed and its application as hydrogen peroxide (H 2 O 2 ) non-enzymatic sensor was investigated. ZnO-NTs were prepared by a biomineralization strategy in which silk fibroin fiber (SFF) was used as template, and thus the ZnO-NTs inherited the advantages of SFF such as mechanical stability, flexible biomimetic morphology and biocompatibility. The AuNPs/ZnO-NTs was further prepared by the electrostatic absorption of AuNPs onto the surface of ZnO-NTs, and found to be capable to catalyze the reduction of H 2 O 2 . The working potential was 0.05 V, which was far higher than those in literatures, indicating the strong anti-interference ability in the real application. The catalytic current was linearly proportional in the concentration range of 1 μM-3.0 mM with a sensitivity of 1336.7 μA mM -1  cm -2 . The detection limit was estimated to be 0.1 μM (S/N = 3). Such a high sensitivity was attributed to the electrocatalytic property of ZnO and high electron transfer ability of AuNPs/ZnO-NTs structure. Moreover, the final detection results of H 2 O 2 in real samples showed the acceptable accuracy compared with the traditional potassium permanganate titration, exhibiting the prospect to be used as an applicable sensor in actual detections. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Mechanical, structural and thermal properties of Ag-Cu and ZnO reinforced polylactide nanocomposite films.

    PubMed

    Ahmed, Jasim; Arfat, Yasir Ali; Castro-Aguirre, Edgar; Auras, Rafael

    2016-05-01

    Plasticized polylactic acid (PLA) based nanocomposite films were prepared by incorporating polyethylene glycol (PEG) and two selected nanoparticles (NPs) [silver-copper (Ag-Cu) alloy (<100 nm) and zinc oxide (ZnO) (<50 and <100 nm)] through solvent casting method. Incorporation of Ag-Cu alloy into the PLA/PEG matrix increased the glass transition temperature (Tg) significantly. The crystallinity of the nanocomposites (NCs) was significantly influenced by NP incorporation as evidenced from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. The PLA nanocomposite reinforced with NPs exhibited much higher tensile strength than that of PLA/PEG blend. Melt rheology of NCs exhibited a shear-thinning behavior. The mechanical property drastically reduced with a loading of NPs, which is associated with degradation of PLA. SEM micrographs exhibited that both Ag-Cu alloy and ZnO NPs were dispersed well in the PLA film matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility.

    PubMed

    Xiang, Yiming; Li, Jun; Liu, Xiangmei; Cui, Zhenduo; Yang, Xianjin; Yeung, K W K; Pan, Haobo; Wu, Shuilin

    2017-10-01

    Poly(lactic-co-glycolic acid)/Ag/ZnO nanorods coating were successfully prepared on the surface of Ti metallic implants using a hydrothermal method and subsequent spin-coating of mixtures of poly(lactic-co-glycolic acid) and silver nanoparticles. The poly(lactic-co-glycolic acid)/Ag/ZnO nanorods coating exhibited excellent antibacterial efficacy of over 96% against both Staphylococcus aureus and Escherichia coli when the initial content of Ag nanoparticles was over 3wt%. In addition, the release of both silver and zinc could last for over a hundred days due to the enwrapping of poly(lactic-co-glycolic acid). Proliferation of mouse calvarial cells exhibited minimal cytotoxicity on the poly(lactic-co-glycolic acid)/Ag/ZnO coating with an initial content of Ag nanoparticles of 1wt% and 3wt%, while it inhibited cell proliferation once this value was increased to 6wt%. The results revealed that this poly(lactic-co-glycolic acid)/Ag/ZnO composite could provide a long-lasting antibacterial approach and good cytocompatibility, thus exhibiting considerable potential for biomedical application in orthopedic and dental implants with excellent self-antibacterial activity and good biocompatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells.

    PubMed

    Lu, Luyao; Luo, Zhiqiang; Xu, Tao; Yu, Luping

    2013-01-09

    This article describes a cooperative plasmonic effect on improving the performance of polymer bulk heterojunction solar cells. When mixed Ag and Au nanoparticles are incorporated into the anode buffer layer, dual nanoparticles show superior behavior on enhancing light absorption in comparison with single nanoparticles, which led to the realization of a polymer solar cell with a power conversion efficiency of 8.67%, accounting for a 20% enhancement. The cooperative plasmonic effect aroused from dual resonance enhancement of two different nanoparticles. The idea was further unraveled by comparing Au nanorods with Au nanoparticles for solar cell application. Detailed studies shed light into the influence of plasmonic nanostructures on exciton generation, dissociation, and charge recombination and transport inside thin film devices.

  11. Template-free synthesis of porous ZnO/Ag microspheres as recyclable and ultra-sensitive SERS substrates

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Xu, Chunxiang; Lu, Junfeng; Zhu, Zhu; Zhu, Qiuxiang; Manohari, A. Gowri; Shi, Zengliang

    2018-01-01

    The porous structured zinc oxide (ZnO) microspheres decorated with silver nanoparticles (Ag NPs) have been fabricated as surface-enhanced Raman scattering (SERS) substrate for ultra-sensitive, highly reproducible and stable biological/chemical sensing of various organic molecules. The ZnO microspheres were hydrothermally synthesized without any template, and the Ag NPs decorated on microspheres via photochemical reaction in situ, which provided stable Ag/ZnO contact to achieve a sensitive SERS response. It demonstrates a higher enhancement factor (EF) of 2.44 × 1011 and a lower detection limit of 10-11 M-10-12 M. This porous SERS substrate could also be self-cleaned through a photocatalytic process and then further recycled for the detection of same or different molecules, such as phenol red (PhR), dopamine (DA) and glucose (GLU) with ultra-low concentration and it possessed a sensitive response. The excellent performances are attributed to morphology of porous microspheres, hybrid structure of semiconductor/metal and corresponding localized field enhancement of surface plasmons. Therefore, it is expected to design the recyclable ultra-sensitive SERS sensors for the detection of biological molecules and organic pollutant monitoring.

  12. Carbon Dioxide Electroreduction using a Silver-Zinc Alloy [CO 2 Electroreduction on a Ag-Zn Alloy

    DOE PAGES

    Hatsukade, Toru; Kuhl, Kendra P.; Cave, Etosha R.; ...

    2017-02-20

    We report on CO 2 electroreduction activity and selectivity of a polycrystalline AgZn foil in aqueous bicarbonate electrolyte. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements show that the alloy foil was slightly enriched in zinc both at the surface and in the bulk, with a surface alloy composition of 61.3±5.4 at % zinc and with Ag 5Zn 8 as the most prominent bulk phase. AgZn is active for CO 2 reduction; CO is the main product, likely due to the weak CO binding energy of the surface, with methane and methanol emerging as minor products. Compared to puremore » silver and pure zinc foils, enhancements in activity and selectivity for methane and methanol are observed. A five-fold increase is observed in the combined partial current densities for methane and methanol at –1.43 V vs. the reversible hydrogen electrode (RHE), representing a four- to six-fold increase in faradaic efficiency. Here, such enhancements indicate the existence of a synergistic effect between silver and zinc at the surface of the alloy that contributes to the enhanced formation of further reduced products.« less

  13. Development of neutron-monitor detector using liquid organic scintillator coupled with 6Li + ZnS(Ag) Sheet.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Takahashi, Fumiaki

    2004-01-01

    A phoswitch-type detector has been developed for monitoring neutron doses in high-energy accelerator facilities. The detector is composed of a liquid organic scintillator (BC501A) coupled with ZnS(Ag) sheets doped with 6Li. The dose from neutrons with energies above 1 MeV is evaluated from the light output spectrum of the BC501A by applying the G-function, which relates the spectrum to the neutron dose directly. The dose from lower energy neutrons, on the other hand, is estimated from the number of scintillations emitted from the ZnS(Ag) sheets. Characteristics of the phoswitch-type detector were studied experimentally in some neutron fields. It was found from the experiments that the detector has an excellent property of pulse-shape discrimination between the scintillations of BC501A and the ZnS(Ag) sheets. The experimental results also indicate that the detector is capable of reproducing doses from thermal neutrons as well as neutrons with energies from one to several tens of megaelectronvolts (MeV).

  14. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.

    PubMed

    Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo

    2013-10-01

    Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Chemical trend of superconducting transition temperature in hole-doped delafossite of CuAlO2, AgAlO2 and AuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-12-01

    We have performed the first-principles calculations about the superconducting transition temperature Tc of hole-doped delafossite CuAlO2, AgAlO2 and AuAlO2. Calculated Tc are about 50 K (CuAlO2), 40 K (AgAlO2) and 3 K(AuAlO2) at maximum in the optimum hole-doping concentration. The low Tc of AuAlO2 is attributed to the weak electron-phonon interaction caused by the low covalency and heavy atomic mass.

  16. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    PubMed Central

    Liu, Jing; Chen, Yushan; Cai, Haoyuan; Chen, Xiaoyi; Li, Changwei; Yang, Cheng-Fu

    2015-01-01

    In this study, the nanosphere lithography (NSL) method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA) numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz) and 1.68 (SF5 glass), the nanoparticle arrays would have better refractive index sensitivity (RIS) and figure of merit (FOM). Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.

  17. STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers

    NASA Astrophysics Data System (ADS)

    Schubert, Ina; Sigle, Wilfried; van Aken, Peter A.; Trautmann, Christina; Toimil-Molares, Maria Eugenia

    2015-03-01

    Surface plasmon coupling in nanowires separated by small gaps generates high field enhancements at the position of the gap and is thus of great interest for sensing applications. It is known that the nanowire dimensions and in particular the symmetry of the structures has strong influence on the plasmonic properties of the dimer structure. Here, we report on multipole surface plasmon coupling in symmetry-broken AuAg nanowire dimers. Our dimers, consisting of two nanowires with different lengths and separated by gaps of only 10 to 30 nm, were synthesized by pulsed electrochemical deposition in ion track-etched polymer templates. Electron energy-loss spectroscopy in scanning transmission electron microscopy allows us to resolve up to nine multipole order surface plasmon modes of these dimers spectrally separated from each other. The spectra evidence plasmon coupling between resonances of different multipole order, resulting in the generation of additional plasmonic modes. Since such complex structures require elaborated synthesis techniques, dimer structures with complex composition, morphology and shape are created. We demonstrate that finite element simulations on pure Au dimers can predict the generated resonances in the fabricated structures. The excellent agreement of our experiment on AuAg dimers with finite integration simulations using CST microwave studio manifests great potential to design complex structures for sensing applications.

  18. Optimization of {sup 6}LiF:ZnS(Ag) Scintillator Light Yield Using Geant4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yehuda-Zada, Y.; Ben-Gurion University; Pritchard, K.

    2015-07-01

    Neutrons provide an effective tool to probe materials structure. Neutron diffraction is a method to determine the atomic and magnetic structure of a material based on neutron scattering. By this method a collimated incident beam of thermal neutrons heat the examined sample and based on the obtained diffraction pattern information on the structure of the material is provided. Research for developing a novel cold neutron detector for Chromatic Analysis Neutron Diffractometer Or Reflectometer (CANDOR) is underway at the NIST center for neutron research. The system unique design is aimed to provide over ten times fold faster analysis of materials thanmore » conventional system. In order to achieve the fast analysis a large number of neutron detectors is required. A key design constraint for this detector is the thickness of the neutron sensitive element. This is met using {sup 6}LiF:ZnS(Ag) scintillation material with embedded wavelength shifting (WLS) fibers conducting scintillation light to silicon photomultiplier photo-sensors. The detector sensitivity is determined by both the neutron capture probability ({sup 6}Li density) and the detectable light output produced by the ZnS(Ag) ionization, the latter of which is hindered by the fluorescence absorption of the scintillation light by the ZnS. Tradeoffs between the neutron capture probability, stimulated light production and light attenuation for determining the optimal stoichiometry of the {sup 6}LiF and ZnS(Ag) as well as the volume ratio of scintillator and fiber. Simulations performed using the GEANT4 Monte Carlo package were made in order to optimize the detector design. GEANT4 enables the investigation of the neutron interaction with the detector, the ionization process and the light transfer process following the nuclear process. The series of conversions required for this detector were modelled: - A cold neutron enters the sensor and is captured by {sup 6}Li in the scintillator mixture ({sup 6}Li (n,α) {sup

  19. Instrument-Free and Autonomous Generation of H2O2 from Mg-ZnO/Au Hybrids for Disinfection and Organic Pollutant Degradations

    NASA Astrophysics Data System (ADS)

    Park, Seon Yeong; Jung, Yeon Wook; Hwang, Si Hyun; Jang, Gun Hyuk; Seo, Hyunseon; Kim, Yu-Chan; Ok, Myoung-Ryul

    2018-03-01

    We proposed a new hybrid system that autonomously generates H2O2 without any instrument or external energy source, such as light. Electrons formed during spontaneous degradation process of Mg were conveyed to ZnO/Au oxygen-reduction-reaction nanocatalysts, and these transferred electrons converted O2 molecules in aqueous solution into H2O2. Autonomously released H2O2 from Mg-ZnO/Au hybrids effectively killed 97% of Escherichia coli cells within 1 h. Moreover, Mg-ZnO/Au nanohybrids could gradually degrade methylene blue over time with Fe2+. We believe our approach utilizing degradable metals and catalytic metal oxides in mesoporous-film form can be a promising method in the field of environment remediation.

  20. Instrument-Free and Autonomous Generation of H2O2 from Mg-ZnO/Au Hybrids for Disinfection and Organic Pollutant Degradations

    NASA Astrophysics Data System (ADS)

    Park, Seon Yeong; Jung, Yeon Wook; Hwang, Si Hyun; Jang, Gun Hyuk; Seo, Hyunseon; Kim, Yu-Chan; Ok, Myoung-Ryul

    2018-05-01

    We proposed a new hybrid system that autonomously generates H2O2 without any instrument or external energy source, such as light. Electrons formed during spontaneous degradation process of Mg were conveyed to ZnO/Au oxygen-reduction-reaction nanocatalysts, and these transferred electrons converted O2 molecules in aqueous solution into H2O2. Autonomously released H2O2 from Mg-ZnO/Au hybrids effectively killed 97% of Escherichia coli cells within 1 h. Moreover, Mg-ZnO/Au nanohybrids could gradually degrade methylene blue over time with Fe2+. We believe our approach utilizing degradable metals and catalytic metal oxides in mesoporous-film form can be a promising method in the field of environment remediation.

  1. Removal of dibutyl phthalate from aqueous environments using a nanophotocatalytic Fe, Ag-ZnO/VIS-LED system: modeling and optimization.

    PubMed

    Akbari-Adergani, B; Saghi, M H; Eslami, A; Mohseni-Bandpei, A; Rabbani, M

    2018-06-01

    An (Fe, Ag) co-doped ZnO nanostructure was synthesized by a simple chemical co-precipitation method and used for the degradation of dibutyl phthalate (DBP) in aqueous solution under visible light-emitting diode (LED) irradiation. (Fe, Ag) co-doped ZnO nanorods were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, UV-VIS diffuse reflectance spectroscopy, elemental mapping, Field emission scanning electron microscopy, transmission electron microscope and Brunauer-Emmett-Teller surface area analysis. A Central Composite Design was used to optimize the reaction parameters for the removal of DBP by the (Fe, Ag) co-doped ZnO nanorods. The four main reaction parameters optimized in this study were the following: pH, time of radiation, concentration of the nanorods and initial DBP concentration. The interaction between the four parameters was studied and modeled using the Design Expert 10 software. A maximum reduction of 95% of DBP was achieved at a pH of 3, a photocatalyst concentration of 150 mg L -1 and a DBP initial DBP concentration of 15 mg L -1 . The results showed that the (Fe, Ag) co-doped ZnO nanorods under low power LED irradiation can be used as an effective photocatalyst for the removal of DBP from aqueous solutions.

  2. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.

    PubMed

    Wang, Chaoguang; Wu, Xuezhong; Dong, Peitao; Chen, Jian; Xiao, Rui

    2016-12-15

    Paraquat (PQ) pollutions are ultra-toxic to human beings and hard to be decomposed in the environment, thus requiring an on-site detection strategy. Herein, we developed a robust and rapid PQ sensing strategy based on the surface-enhanced Raman scattering (SERS) technique. A hybrid SERS substrate was prepared by grafting the Au@Ag core-shell nanoparticles (NPs) on the Au film over slightly etched nanoparticles (Au FOSEN). Hotspots were engineered at the junctions as indicated by the finite difference time domain calculation. SERS performance of the hybrid substrate was explored using p-ATP as the Raman probe. The hybrid substrate gives higher enhancement factor comparing to either the Au FOSEN substrate or the Au@Ag core-shell NPs, and exhibits excellent reproducibility, homogeneity and stability. The proposed SERS substrates were prepared in batches for the practical PQ sensing. The total analysis time for a single sample, including the pre-treatment and measurement, was less than 5min with a PQ detection limit of 10nM. Peak intensities of the SERS signal were plotted as a function of the PQ concentrations to calibrate the sensitivity by fitting the Hill's equation. The plotted calibration curve showed a good log-log linearity with the coefficient of determination of 0.98. The selectivity of the sensing proposal was based on the "finger print" Raman spectra of the analyte. The proposed substrate exhibited good recovery when it applied to real water samples, including lab tap water, bottled water, and commercially obtained apple juice and grape juice. This SERS-based PQ detection method is simple, rapid, sensitive and selective, which shows great potential in pesticide residue and additives abuse monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes.

    PubMed

    Yao, Yung-Chi; Yang, Zu-Po; Hwang, Jung-Min; Chuang, Yi-Lun; Lin, Chia-Ching; Haung, Jing-Yu; Chou, Chun-Yang; Sheu, Jinn-Kong; Tsai, Meng-Tsan; Lee, Ya-Ju

    2016-02-28

    ZnO nanorods (NRs) and Ag nanoparticles (NPs) are known to enhance the luminescence of light-emitting diodes (LEDs) through the high directionality of waveguide mode transmission and efficient energy transfer of localized surface plasmon (LSP) resonances, respectively. In this work, we have demonstrated Ag NP-incorporated n-ZnO NRs/p-GaN heterojunctions by facilely hydrothermally growing ZnO NRs on Ag NP-covered GaN, in which the Ag NPs were introduced and randomly distributed on the p-GaN surface to excite the LSP resonances. Compared with the reference LED, the light-output power of the near-band-edge (NBE) emission (ZnO, λ = 380 nm) of our hybridized structure is increased almost 1.5-2 times and can be further modified in a controlled manner by varying the surface morphology of the surrounding medium of the Ag NPs. The improved light-output power is mainly attributed to the LSP resonance between the NBE emission of ZnO NRs and LSPs in Ag NPs. We also observed different behaviors in the electroluminescence (EL) spectra as the injection current increases for the treatment and reference LEDs. This observation might be attributed to the modification of the energy band diagram for introducing Ag NPs at the interface between n-ZnO NRs and p-GaN. Our results pave the way for developing advanced nanostructured LED devices with high luminescence efficiency in the UV emission regime.

  4. Enhanced performances of dye-sensitized solar cells based on Au-TiO2 and Ag-TiO2 plasmonic hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Ran, Huili; Fan, Jiajie; Zhang, Xiaoli; Mao, Jing; Shao, Guosheng

    2018-02-01

    Novel double-layer films were prepared and applied to dye-sensitized solar cells (DSSCs) using commercial TiO2 nanoparticles as a bonding underlayer and noble metal (Au and Ag) nanoparticles (NP) and nanowires (NW) incorporated to hybrid TiO2 composites, consisting of 3 dimensional (3D) hierarchical microspheres, 3D hollow spheres, 2 dimensional (2D) nanosheets and commercial P25 nanoparticles, as multifunctional light scattering overlayer. The influence of Au NP, Ag NP, Au NW, and Ag NW on of microstructures of the film electrodes and the photovoltaic (PV) performances of DSSCs was investigated. The result revealed that the ranges and intensity of sunlight absorption, the photo capture ability for dye molecules of the hybrid nanocomposite film electrodes, and the photoelectric conversion efficiency (PCE) of the cells were all significantly enhanced due to the plasmonic effect of the noble metal nanostructures. All composite DSSCs with noble metal nanostructures have higher PCE than the pure TiO2 solar cell. This is attributed the improved electron transport of the noble metal nanostructures, and the improvement of light absorption because of their local surface plasmon resonance (LSPR) effect. Under optical conditions, a PCE of 5.74% was obtained in the TiO2-AgNW DSSC, representing a 25.3% enhancement compared to a reference solar cell based on pure TiO2 film (4.58%). The main reason of the advancement is the improved electron transport of AgNW, the light absorption enhancement on account of the LSPR effect of AgNW, and increased light scattering due to the incorporation of the large one dimensional AgNWs within the photo-anode.

  5. Facile, one-pot and scalable synthesis of highly emissive aqueous-based Ag,Ni:ZnCdS/ZnS core/shell quantum dots with high chemical and optical stability

    NASA Astrophysics Data System (ADS)

    Sahraei, Reza; Soheyli, Ehsan; Faraji, Zahra; Soleiman-Beigi, Mohammad

    2017-11-01

    We report here on a one-pot, mild and low cost aqueous-based synthetic route for the preparation of colloidally stable and highly luminescent dual-doped Ag,Ni:ZnCdS/ZnS core/shell quantum dots (QDs). The pure dopant emission of the Ni-doped core/shell QDs was found to be highly affected by the presence of a second dopant ion (Ag+). Results showed that the PL emission intensity increases while its peak position experiences an obvious blue shift with an increase in the content of Ag+ ions. Regarding the optical observations, we provide a simple scheme for absorption-recombination processes of the carriers through impurity centers. To obtain optimum conditions with a better emission characteristic, we also study the effect of different reaction parameters, such as refluxing temperature, the pH of the core and shell solution, molar ratio of the dopant ions (Ni:(Zn+Cd) and Ag:(Zn+Cd)), and concentration of the core and shell precursors. Nonetheless, the most effective parameter is the presence of the ZnS shell in a suitable amount to eliminate surface trap states and enhance their emission intensity. It can also improve the bio-compatibility of the prepared QDs by restricting the Cd2+ toxic ions inside the core of the QDs. The present suggested route also revealed the remarkable optical and chemical stability of the colloidal QDs which establishes them as a decent kind of nano-scale structure for light emitting applications, especially in biological technologies. The suggested process also has the potential to be scaled-up while maintaining the emission characteristics and structural quality necessary for industrial applications in optoelectronic devices.

  6. Relationship between the Porco, Bolivia, Ag-Zn-Pb-Sn deposit and the Porco Caldera

    USGS Publications Warehouse

    Cunningham, C.G.

    1994-01-01

    The Porco Ag-Zn-Pb-Sn deposit, a major Ag producer in the 16th century and currently the major Zn producer in Bolivia, consists of a swarm of fissure-filling veins in the newly recognized Porco caldera. The caldera measures 5 km by 3 km and formed in response to the eruption of the 12 Ma crystal-rich dacitic Porco Tuff. The mineralization is associated with, and is probably genetically related to, the 8.6 Ma Huayna Porco stock. The Porco deposit consists of steeply dipping irregular and curvilinear veins that cut the intracaldera Porco Tuff about 1 km east of the Huayna Porco stock. Most of the veins are aligned along the structural margin (ring fracture) of the caldera. The ore deposit is zoned around the Huayna Porco stock. The primary Ag minerals are most abundant in the upper parts of the viens. Fluid inclusions in sphalerite stalactites have homogenization temperatures of about 225??C and salinities of about 8 wt% NaCl equiv. The stalactites and the presence of sparse vapor-rich inclusions suggest deposition of sphalerite under boiling conditions. -from Authors

  7. Synthesis and characterization of Ag doped ZnS quantum dots for enhanced photocatalysis of Strychnine asa poison: Charge transfer behavior study by electrochemical impedance and time-resolved photoluminescence spectroscopy.

    PubMed

    Gupta, Vinod Kumar; Fakhri, Ali; Azad, Mona; Agarwal, Shilpi

    2018-01-15

    In this study, the photocatalytic degradation of Strychnine was investigated by ZnS quantum dots and doped with silver in UV systems. ZnS and Ag-ZnS quantum dots were synthesized by chemical method and characterized by powder X-ray diffraction, transmission electron microscopy, UV-vis spectra and photoluminescence. The charge transfer process on the semicon-ductor/electrolyte interface was investigated via electrochemical impedance spectroscopy (EIS) and time-resolved photoluminescence. The average diameters of ZnS and Ag doped ZnS QDs were 3.0-5.0nm and 3.0-5.3nm, respectively. The band gap of ZnS and Ag-ZnS QDs was computed as 3.47 and 3.1eV, respectively. The surface area values of ZnS and Ag-ZnS QDs have been found as 78.25 and 89.54m 2 /g, respectively. The influences of key operating parameters such as initial pH, catalyst dosage, UV radiation intensity, reaction time as well as the effect of initial Strychnine concentration on mineralization extents were studied. The results of the study showed that the maximum removal efficiency of Strychnine had been achieved by un-doped and Ag-doped ZnS QDs at radiation intensity of 100W/m 2 , at time of 60min, pH of 3 and initial Strychnine concentration of 20mg/ml. Also the observations clearly showed that the photocatalysis process with Ag doped ZnS QDs are more effective than un-doped ZnS QDs. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Synthesis of ZnGa2O4 Hierarchical Nanostructure by Au Catalysts Induced Thermal Evaporation

    PubMed Central

    2010-01-01

    In this paper, ZnGa2O4 hierarchical nanostructures with comb-like morphology are fabricated by a simple two-step chemical vapor deposition (CVD) method: first, the Ga2O3 nanowires were synthesized and employed as templates for the growth of ZnGa2O4 nanocombs; then, the as-prepared Ga2O3 nanowires were reacted with ZnO vapor to form ZnGa2O4 nanocombs. Before the reaction, the Au nanoparticles were deposited on the surfaces of Ga2O3 nanowires and used as catalysts to control the teeth growth of ZnGa2O4 nanocombs. The as-prepared ZnGa2O4 nanocombs were highly crystallized with cubic spinel structure. From the photoluminescence (PL) spectrum, a broad band emission in the visible light region was observed of as-prepared ZnGa2O4 nanocombs, which make it promising application as an optical material. PMID:20802787

  9. Color-Tunable ZnO/GaN Heterojunction LEDs Achieved by Coupling with Ag Nanowire Surface Plasmons.

    PubMed

    Yang, Liu; Wang, Yue; Xu, Haiyang; Liu, Weizhen; Zhang, Cen; Wang, Chunliang; Wang, Zhongqiang; Ma, Jiangang; Liu, Yichun

    2018-05-09

    Color-tunable light-emitting devices (LEDs) have a great impact on our daily life. Herein, LEDs with tunable electroluminescence (EL) color were achieved via introducing Ag nanowires surface plasmons into p-GaN/n-ZnO film heterostructures. By optimizing the surface coverage density of coated Ag nanowires, the EL color was changed continuously from yellow-green to blue-violet. Transient-state and temperature-variable fluorescence emission characterizations uncovered that the spontaneous emission rate and the internal quantum efficiency of the near-UV emission were increased as a consequence of the resonance coupling interaction between Ag nanowires surface plasmons and ZnO excitons. This effect induces the selective enhancement of the blue-violet EL component but suppresses the defect-related yellow-green emission, leading to the observed tunable EL color. The proposed strategy of introducing surface plasmons can be further applied to many other kinds of LEDs for their selective enhancement of EL intensity and effective adjustment of the emission color.

  10. Adjustable coordination of a hybrid phosphine-phosphine oxide ligand in luminescent Cu, Ag and Au complexes.

    PubMed

    Dau, Thuy Minh; Asamoah, Benjamin Darko; Belyaev, Andrey; Chakkaradhari, Gomathy; Hirva, Pipsa; Jänis, Janne; Grachova, Elena V; Tunik, Sergey P; Koshevoy, Igor O

    2016-09-28

    A potentially tridentate hemilabile ligand, PPh2-C6H4-PPh(O)-C6H4-PPh2 (P(3)O), has been used for the construction of a family of bimetallic complexes [MM'(P(3)O)2](2+) (M = M' = Cu (1), Ag (2), Au (3); M = Au, M' = Cu (4)) and their mononuclear halide congeners M(P(3)O)Hal (M = Cu (5-7), Ag (8-10)). Compounds 1-10 have been characterized in the solid state by single-crystal X-ray diffraction analysis to reveal a variable coordination mode of the phosphine-oxide group of the P(3)O ligand depending on the preferable number of coordination vacancies on the metal center. According to the theoretical studies, the interaction of the hard donor P[double bond, length as m-dash]O moiety with d(10) ions becomes less effective in the order Cu > Ag > Au. 1-10 exhibit room temperature luminescence in the solid state, and the intensity and energy of emission are mostly determined by the nature of metal atoms. The photophysical characteristics of the monometallic species were compared with those of the related compounds M(P(3))Hal (11-16) with the non-oxidized ligand P(3). It was found that in the case of the copper complexes 5-7 the P(3)O hybrid ligand introduces effective non-radiative pathways of the excited state relaxation leading to poor emission, while for the silver luminophores the P[double bond, length as m-dash]O group leads mainly to the modulation of luminescence wavelength.

  11. Femtosecond Laser Fabricated Ag@Au and Cu@Au Alloy Nanoparticles for Surface Enhaned Raman Spectrosocpy Based Trace Explosives Detection

    NASA Astrophysics Data System (ADS)

    Sree Satya Bharati, Moram; Byram, Chandu; Soma, Venugopal R.

    2018-03-01

    Herein we present results from our detailed studies on the fabrication of Ag@Au and Cu@Au alloy nanoparticles (NPs) using the femtosecond laser ablation in liquid technique. The NPs were obtained by ablating the pure Ag, Cu targets (bulk) in HAuCl4 (5 mM) solution. The absorption properties of the obtained NPs colloids were characterized using UV-Visible absorption spectrometer and their size, shape, and crystallinity were investigated using the XRD, FESEM and TEM techniques. The fabricated NPs were utilized for sensing of explosive molecules such as 2, 4, 6-trinitrophenol (PA), 2, 4-dinitrotoluene (DNT) and a common dye methylene blue (MB) using the surface enhanced Raman spectroscopy (SERS) technique. The detection limit in terms of weight was as low as few nano-grams in the case of nitroaromatic explosive compounds (PA, DNT) and few picograms in the case of a common dye molecule (MB). Typical enhancement factors achieved were estimated to be 104, 105 and 107, respectively, for PA, DNT, and MB. The significance of the present work lies in exploring the performance of the prepared NPs being used as SERS substrates for explosives detection using a portable Raman instrument. Such capability enables one to carry the spectrometer to the point of interest in the field and evaluate any hazardous samples within a short period of time.

  12. The fabrication and photoelectrocatalytic study of composite ZnSe/Au/TiO2 nanotube films

    NASA Astrophysics Data System (ADS)

    Zhang, Guowei; Miao, Hui; Wang, Yongbo; Zhang, Dekai; Fan, Jun; Han, Tongxin; Mu, Jianglong; Hu, Xiaoyun

    2017-05-01

    In this paper, anatase TiO2 nanotube (NT) film photoelectrodes are successfully fabricated by a simple and effective hydrothermal method. Subsequently, an aqueous-phase processing technique is adopted to construct highly dispersed ZnSe quantum dots (QDs) on Au/TiO2 NT films prepared by microwave-assisted chemical reduction, which formed composite ZnSe/Au/TiO2 NT film systems (ZATs) with excellent performance in photoelectrocatalytic (PEC) applications. The morphology and performance of as-obtained ZATs were investigated based on various characterizations. The investigation revealed that as-obtained ZATs not only greatly extend spatial separation of charges and restrain the recombination rate of photogenerated electron-hole pairs, but also improve the efficiency to use visible light and display a wide and strong absorption in the visible light region ranging from 400 nm to 800 nm. Moreover, we observe a larger fluorescence quenching of ZATs compared with that of pure TiO2 NT films and binary composites. Experimental results indicate that the photocurrent densities of pure TiO2, 0.8 Au/TiO2, 60 min ZnSe/TiO2, and ZATs are 0.020 mA cm-2, 0.032 mA cm-2, 0.037 mA cm-2 and 0.070 mA cm-2, respectively, which is approximately 2-3.5 times higher than that of pure TiO2 NT films and binary compound photoelectrodes. Additionally, experimental results suggest that the as-prepared ZATs photoelectrode has exhibited considerable stability and significantly increased PEC activity for the degradation of methylene blue (MB) in distilled water under 100 mW cm-2 xenon lamp irradiation. The degradation efficiency on MB of 45 min ZnSe/0.8 Au/TiO2 NT films approaches 91%; however, the counterpart of TiO2 NT films is less than 10%. Eventually, the mechanism for the improvement of the PEC performance of ZATs is discussed to point out that ZATs display prominent charges transport performance, and a stepwise band alignment structure is built up in its photoelectrode, which indicates

  13. Possible Mesozoic age of Ellenville Zn-Pb-Cu(Ag) deposit, Shawangunk Mountains, New York

    USGS Publications Warehouse

    Friedman, J.D.; Conrad, J.E.; McKee, E.H.; Mutschler, F.E.; Zartman, R.E.

    1994-01-01

    Ore textures, epithermal open-space filling of Permian structures of the Alleghanian orogeny, and largely postorogenic mineralization of the Ellenville, New York, composite Zn-Pb-Cu(Ag) vein system, provide permissive evidence for post-Permian mineralization. Isochron ages determined by 40Ar/39Ar laser-fusion techniques for K-bearing liquid inclusions in main-stage quartz from the Ellenville deposit additionally suggest a Mesozoic time of mineralization, associated with extensional formation of the Newark basin. The best 40Ar/39Ar total-fusion age range is 165 ?? 30 to 193 ?? 35 Ma. The Mesozoic 40Ar/39Ar age agrees with that of many other dated northern Appalachian Zn-Pb-Cu(Ag) deposits with near-matching lead isotope ratios, and adds new evidence of Jurassic tectonism and mineralization as an overprint to Late Paleozoic tectonism at least as far north as Ellenville (lat. 41??43???N). ?? 1994 Springer-Verlag.

  14. LED Die-Bonded on the Ag/Cu Substrate by a Sn-BiZn-Sn Bonding System

    NASA Astrophysics Data System (ADS)

    Tang, Y. K.; Hsu, Y. C.; Lin, E. J.; Hu, Y. J.; Liu, C. Y.

    2016-12-01

    In this study, light emitting diode (LED) chips were die-bonded on a Ag/Cu substrate by a Sn-BixZn-Sn bonding system. A high die-bonding strength is successfully achieved by using a Sn-BixZn-Sn ternary system. At the bonding interface, there is observed a Bi-segregation phenomenon. This Bi-segregation phenomenon solves the problems of the brittle layer-type Bi at the joint interface. Our shear test results show that the bonding interface with Bi-segregation enhances the shear strength of the LED die-bonding joints. The Bi-0.3Zn and Bi-0.5Zn die-bonding cases have the best shear strength among all die-bonding systems. In addition, we investigate the atomic depth profile of the deposited Bi-xZn layer by evaporating Bi-xZn E-gun alloy sources. The initial Zn content of the deposited Bi-Zn alloy layers are much higher than the average Zn content in the deposited Bi-Zn layers.

  15. Enhanced flexibility and electron-beam-controlled shape recovery in alumina-coated Au and Ag core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Vlassov, Sergei; Polyakov, Boris; Vahtrus, Mikk; Mets, Magnus; Antsov, Mikk; Oras, Sven; Tarre, Aivar; Arroval, Tõnis; Lõhmus, Rünno; Aarik, Jaan

    2017-12-01

    The proper choice of coating materials and methods in core-shell nanowire (NW) engineering is crucial to assuring improved characteristics or even new functionalities of the resulting composite structures. In this paper, we have reported electron-beam-induced reversible elastic-to-plastic transition in Ag/Al2O3 and Au/Al2O3 NWs prepared by the coating of Ag and Au NWs with Al2O3 by low-temperature atomic layer deposition. The observed phenomenon enabled freezing the bent core-shell NW at any arbitrary curvature below the yield strength of the materials and later restoring its initially straight profile by irradiating the NW with electrons. In addition, we demonstrated that the coating efficiently protects the core material from fracture and plastic yield, allowing it to withstand significantly higher deformations and stresses in comparison to uncoated NW.

  16. Toehold-mediated DNA displacement-based surface-enhanced Raman scattering DNA sensor utilizing an Au-Ag bimetallic nanodendrite substrate.

    PubMed

    Kim, Saetbyeol; Tran Ngoc, Huan; Kim, Joohoon; Yoo, So Young; Chung, Hoeil

    2015-07-23

    A simple and sensitive surface enhanced Raman scattering (SERS)-based DNA sensor that utilizes the toehold-mediated DNA displacement reaction as a target-capturing scheme has been demonstrated. For a SERS substrate, Au-Ag bimetallic nanodendrites were electrochemically synthesized and used as a sensor platform. The incorporation of both Ag and Au was employed to simultaneously secure high sensitivity and stability of the substrate. An optimal composition of Ag and Au that satisfied these needs was determined. A double-strand composed of 'a probe DNA (pDNA)' complementary to 'a target DNA (tDNA)' and 'an indicator DNA tagged with a Raman reporter (iDNA)' was conjugated on the substrate. The conjugation made the reporter molecule close to the surface and induced generation of the Raman signal. The tDNA released the pre-hybridized iDNA from the pDNA via toehold-mediated displacement, and the displacement of the iDNA resulted in the decrease of Raman intensity. The variation of percent intensity change was sensitive and linear in the concentration range from 200fM to 20nM, and the achieved limit of detection (LOD) was 96.3fM, superior to those reported in previous studies that adopted different signal taggings based on such as fluorescence and electrochemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Genesis of Middle Miocene Yellowstone hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Saunders, J. A.; Unger, D. L.; Kamenov, G. D.; Fayek, M.; Hames, W. E.; Utterback, W. C.

    2008-09-01

    Epithermal deposits with bonanza Au-Ag veins in the northern Great Basin (NGB) are spatially and temporally associated with Middle Miocene bimodal volcanism that was related to a mantle plume that has now migrated to the Yellowstone National Park area. The Au-Ag deposits formed between 16.5 and 14 Ma, but exhibit different mineralogical compositions, the latter due to the nature of the country rocks hosting the deposits. Where host rocks were primarily of meta-sedimentary or granitic origin, adularia-rich gold mineralization formed. Where glassy rhyolitic country rocks host veins, colloidal silica textures and precious metal-colloid aggregation textures resulted. Where basalts are the country rocks, clay-rich mineralization (with silica minerals, adularia, and carbonate) developed. Oxygen isotope data from quartz (originally amorphous silica and gels) from super-high-grade banded ores from the Sleeper deposit show that ore-forming solutions had δ 18O values up to 10‰ heavier than mid-Miocene meteoric water. The geochemical signature of the ores (including their Se-rich nature) is interpreted here to reflect a mantle source for the “epithermal suite” elements (Au, Ag, Se, Te, As, Sb, Hg) and that signature is preserved to shallow crustal levels because of the similar volatility and aqueous geochemical behavior of the “epithermal suite” elements. A mantle source for the gold in the deposits is further supported by the Pb isotopic signature of the gold ores. Apparently the host rocks control the mineralization style and gangue mineralogy of ores. However, all deposits are considered to have derived precious metals and metalloids from mafic magmas related to the initial emergence of the Yellowstone hotspot. Basalt-derived volatiles and metal(loid)s are inferred to have been absorbed by meteoric-water-dominated geothermal systems heated by shallow rhyolitic magma chambers. Episodic discharge of volatiles and metal(loid)s from deep basaltic magmas mixed with

  18. Surface structural evolution of AuAg/TiO2 catalyst in the transformation of benzyl alcohol to sodium benzoate

    NASA Astrophysics Data System (ADS)

    Cui, Yuanyuan; Wang, Ying; Fan, Kangnian; Dai, Wei-Lin

    2013-08-01

    A series of AuAg/TiO2 catalysts calcined at different temperatures were used for single-pot, solvent-free synthesis of sodium benzoate and benzoic acid through the green oxidation of benzyl alcohol. The best catalytic performance, which produced a sodium benzoate yield of up to 85%, was obtained over the AuAg/TiO2 catalyst calcined at 623 K. Systematic characterizations including BET, XRD, TEM, XPS, and UV-vis DRS and ICP were carried out to investigate the influence of calcined temperature on the structural evolution of the bimetallic AuAg/TiO2 catalysts. TEM images showed that both low (473 K) and high calcinations temperatures (973 K) resulted in larger particles. The smallest particles (8.2 nm) were obtained at 623 K. This decrease in particle size may have been induced by the re-dispersion and interaction of the bimetallic species. XRD and XPS results showed that proper calcination temperature (623 K) could promote interactions between the bimetallic particles and the TiO2 support as well as the dispersion of active bimetallic species. The higher catalytic performance of the 623 K calcined catalyst could be attributed to the smaller particle size and the synergetic interaction between nano-bimetallic gold and silver species.

  19. Insights into the genesis of the epithermal Au-Ag mineralization at Rio Blanco in the Cordillera Occidental of southwestern Ecuador: Constraints from U-Pb and Ar/Ar geochronology

    NASA Astrophysics Data System (ADS)

    Bineli Betsi, Thierry; Ponce, Miguel; Chiaradia, Massimo; Ulianov, Alex; Camacho, Alfredo

    2017-12-01

    The genesis of the Au-Ag mineralization at Rio Blanco in the Cordillera Occidental (Western Cordillera) of southwest of Ecuador is here constrained. This was done by investigating the temporal and by inference the genetic relationship between the Au-Ag mineralization and the spatially associated magmatic host rocks using zircon U-Pb [chemical abrasion (CA) IDTIMS and laser ablation (LA) ICPMS] and adularia 40Ar/39Ar geochronology. Whereas volcanics hosting the Au-Au mineralization range in age from 37.35 ± 0.30 to 33.09 ± 0.20 Ma (Late Eocene-Early Oligocene), the spatially associated intrusions are of at least two discontinuous phases of magmatism and these include: (i) Late Eocene intrusions that range in age from 35.77 ± 0.19 to 36.03 ± 0.19 Ma, and; (ii) Miocene intrusions of 15.58 ± 0.04 Ma. The 40Ar/39Ar age of adularia from a Bonanza Au (334 g/t)-Ag (2060 g/t)-bearing epithermal vein is bracketed between 14.3 and 14.9 Ma. The temporal relationship between adularia and by inference mineralization and the spatially associated rocks therefore rules out any temporal link between the Late Eocene-Early Oligocene Rio Blanco Formation, but rather favors a possible genetic relationship between the Rio Blanco Au-Ag mineralization and the Miocene intrusions. The determined Rio Blanco Au-Ag mineralization age is consistent with the established Oligocene-Miocene period of ore deposits in Ecuador and coincides with the extensional tectonic event, which developed intramontane basins in southern Ecuador.

  20. Tunable energy transfer from d 10 heterobimetallic dicyanide(I) donor ions to terbium(III) acceptor ions in luminescent Tb[Ag xAu 1- x(CN) 2] 3 ( x = 0 → 1)

    NASA Astrophysics Data System (ADS)

    Lu, Haiyan; Yson, Renante; Ford, James; Tracy, Henry J.; Carrier, Alora B.; Keller, Aaron; Mullin, Jerome L.; Poissan, Michelle J.; Sawan, Samuel; Patterson, Howard H.

    2007-07-01

    We report on the heterobimetallic system, Tb[Ag xAu 1- x(CN) 2] 3 ( x = 0 → 1), in which sensitization of terbium luminescence occurs by energy transfer from [Ag xAu 1- x(CN) 2] - donor excited states. The donor states have energies which are tunable and dependent on the Ag/Au stoichiometric ratio. We report on their use as donor systems with Tb(III) ions as acceptor ions in energy transfer studies. Luminescence results show that the mixed metal dicyanides with the higher silver loading have a better energy transfer efficiency than the pure Ag(CN)2- and Au(CN)2- donors. The better energy transfer efficiency is due to the greater overlap between the donor emission and acceptor excitation.

  1. Au-embedded ZnO/NiO hybrid with excellent electrochemical performance as advanced electrode materials for supercapacitor.

    PubMed

    Zheng, Xin; Yan, Xiaoqin; Sun, Yihui; Bai, Zhiming; Zhang, Guangjie; Shen, Yanwei; Liang, Qijie; Zhang, Yue

    2015-02-04

    Here we design a nanostructure by embedding Au nanoparticles into ZnO/NiO core-shell composites as supercapacitors electrodes materials. This optimized hybrid electrodes exhibited an excellent electrochemical performance including a long-term cycling stability and a maximum specific areal capacitance of 4.1 F/cm(2) at a current density of 5 mA/cm(2), which is much higher than that of ZnO/NiO hierarchical materials (0.5 F/cm(2)). Such an enhanced property is attributed to the increased electro-electrolyte interfaces, short electron diffusion pathways and good electrical conductivity. Apart from this, electrons can be temporarily trapped and accumulated at the Fermi level (EF') because of the localized schottky barrier at Au/NiO interface in charge process until fill the gap between ZnO and NiO, so that additional electrons can be released during discharge. These results demonstrate that suitable interface engineering may open up new opportunities in the development of high-performance supercapacitors.

  2. Simultaneous Detection and Removal of Formaldehyde at Room Temperature: Janus Au@ZnO@ZIF-8 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Li, Zhiwei; Zhou, Jian; Fang, Hong; He, Xiang; Jena, Puru; Zeng, Jing-Bin; Wang, Wei-Ning

    2018-03-01

    The detection and removal of volatile organic compounds (VOCs) are of great importance to reduce the risk of indoor air quality concerns. This study reports the rational synthesis of a dual-functional Janus nanostructure and its feasibility for simultaneous detection and removal of VOCs. The Janus nanostructure was synthesized via an anisotropic growth method, composed of plasmonic nanoparticles, semiconductors, and metal organic frameworks (e.g., Au@ZnO@ZIF-8). It exhibits excellent selective detection to formaldehyde (HCHO, as a representative VOC) at room temperature over a wide range of concentrations (from 0.25 to 100 ppm), even in the presence of water and toluene molecules as interferences. In addition, HCHO was also found to be partially oxidized into non-toxic formic acid simultaneously with detection. The mechanism underlying this technology was unraveled by both experimental measurements and theoretical calculations: ZnO maintains the conductivity, while ZIF-8 improves the selective gas adsorption; the plasmonic effect of Au nanorods enhances the visible-light-driven photocatalysis of ZnO at room temperature. [Figure not available: see fulltext.

  3. Simultaneous Detection and Removal of Formaldehyde at Room Temperature: Janus Au@ZnO@ZIF-8 Nanoparticles

    DOE PAGES

    Wang, Dawei; Li, Zhiwei; Zhou, Jian; ...

    2017-10-09

    The detection and removal of volatile organic compounds (VOCs) are of great importance to reduce the risk of indoor air quality concerns. Our study reports the rational synthesis of a dual-functional Janus nanostructure and its feasibility for simultaneous detection and removal of VOCs. The Janus nanostructure was synthesized via an anisotropic growth method, composed of plasmonic nanoparticles, semiconductors, and metal organic frameworks (e.g., Au@ZnO@ZIF-8). It exhibits excellent selective detection to formaldehyde (HCHO, as a representative VOC) at room temperature over a wide range of concentrations (from0.25 to 100 ppm), even in the presence of water and toluene molecules as interferences.more » Additionally, HCHOwas also found to be partially oxidized into non-toxic formic acid simultaneously with detection. The mechanism underlying this technology was unraveled by both experimental measurements and theoretical calculations: ZnO maintains the conductivity, while ZIF-8 improves the selective gas adsorption; the plasmonic effect of Au nanorods enhances the visible-light-driven photocatalysis of ZnO at room temperature.« less

  4. Simultaneous Detection and Removal of Formaldehyde at Room Temperature: Janus Au@ZnO@ZIF-8 Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dawei; Li, Zhiwei; Zhou, Jian

    The detection and removal of volatile organic compounds (VOCs) are of great importance to reduce the risk of indoor air quality concerns. Our study reports the rational synthesis of a dual-functional Janus nanostructure and its feasibility for simultaneous detection and removal of VOCs. The Janus nanostructure was synthesized via an anisotropic growth method, composed of plasmonic nanoparticles, semiconductors, and metal organic frameworks (e.g., Au@ZnO@ZIF-8). It exhibits excellent selective detection to formaldehyde (HCHO, as a representative VOC) at room temperature over a wide range of concentrations (from0.25 to 100 ppm), even in the presence of water and toluene molecules as interferences.more » Additionally, HCHOwas also found to be partially oxidized into non-toxic formic acid simultaneously with detection. The mechanism underlying this technology was unraveled by both experimental measurements and theoretical calculations: ZnO maintains the conductivity, while ZIF-8 improves the selective gas adsorption; the plasmonic effect of Au nanorods enhances the visible-light-driven photocatalysis of ZnO at room temperature.« less

  5. The Shear Strength and Fracture Behavior of Sn-Ag- xSb Solder Joints with Au/Ni-P/Cu UBM

    NASA Astrophysics Data System (ADS)

    Lee, Hwa-Teng; Hu, Shuen-Yuan; Hong, Ting-Fu; Chen, Yin-Fa

    2008-06-01

    This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag- xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.

  6. LSPR Tuning from 470 to 800 nm and Improved Stability of Au-Ag Nanoparticles Formed by Gold Deposition and Rebuilding in the Presence of Poly(styrenesulfonate).

    PubMed

    Cathcart, Nicole; Chen, Jennifer I L; Kitaev, Vladimir

    2018-01-16

    Stability and precise control over functional properties of metal nanoparticles remain a challenge for the realization of prospective applications. Our described process of shell formation and rebuilding can address both these challenges. Template silver nanoparticles (AgNPs) stabilized by poly(styrenesulfonate) are first transformed with gold deposition, after which the resulting shell rebuilds with the replaced silver. The shell formation and rebuilding are accompanied by large shifts in localized surface plasmon resonance (LSPR) peak position, which enables LSPR tuning in a range from 470 to 800 nm. Furthermore, chemical stability of Au-AgNPs is significantly improved compared to AgNPs due to gold stability. Silver templates of different shapes and sizes were demonstrated to transform to AuAg composite NPs to further extend the accessible LSPR range tuning. Stabilization of template AgNPs with poly(styrenesulfonate), in contrast to commonly used poly(vinylpyrrolidone), was found to be a key factor for shell rebuilding. The developed Au-AgNPs were shown to be advantageous for surface plasmon resonance (SPR) detection and surface-enhanced Raman spectroscopy (SERS) owing to their tunable LSPR and enhanced stability.

  7. Internally consistent database for sulfides and sulfosalts in the system Ag 2S-Cu 2S-ZnS-Sb 2S 3-As 2S 3

    NASA Astrophysics Data System (ADS)

    Sack, Richard O.

    2000-11-01

    An updated thermodynamic database for Ag 2S-Cu 2S-ZnS-Sb 2S 3-As 2S 3 sulfides and sulfosalts applicable to temperatures above 119°C is developed to calculate phase relations for polybasite-pearceite- and fahlore-bearing assemblages. It is based on pre-existing and new constraints on activity-composition, Ag-Cu and As-Sb partitioning, and other relations, and on experiments (200-300°C, evacuated silica tubes) conducted to define the stability of the polybasite-pearceite [(Ag 1- x,Cu x) 16(Sb 1- y,As y) 2S 11] + ZnS sphalerite assemblage with respect to assemblages containing (Ag,Cu) 2S sulfides coexisting with (Cu, Ag) 10Zn 2(Sb,As) 4S 13 fahlore sulfosalts. It was found that the thermodynamics of mixing of bcc- and hcp-(Ag,Cu) 2S solutions, which are fast-ion conductors, may be described by using site multiplicities of metals α Ag,Cu > 2 and temperature-dependent regular solution parameters. We obtained estimates for the Gibbs energies of formation for Ag 16Sb 2S 11 and Cu 16Sb 2S 11 polybasite endmembers from the simple sulfides (Ag 2S, Cu 2S, and Sb 2S 3) of -30.79 and -4.07 kJ/gfw at 200°C, and -32.04 and -0.59 kJ/gfw at 400°C, respectively, that are about one half kJ/gfw more positive and about 6 kJ/gfw more negative than those estimated by Harlov and Sack (1995b). The corresponding estimates for formation energies of Ag 10Zn 2Sb 4S 13 and Cu 10Zn 2Sb 4S 13 fahlores (-20.29 and -105.29 kJ/gfw at 200°C and -23.72 and -105.76 kJ/gfw at 400°C) are comparable to, and roughly 110 kJ/gfw more positive than, the corresponding estimates of Ebel and Sack (1994). We also determined that the Gibbs energies of the As-Sb exchange reactions: 1/4Ag 10Zn2Sb4S13+1/2Ag 16As2S11=1/2Ag 16Sb2S11+1/4Ag 10Zn2As4S13Sb-fahlorepearceitepolybasiteAs-fahlore and Ag3SbS3+1/2Ag 16As2S11=1/2Ag 16Sb2S11+Ag3AsS3pyrargyritepearceitepolybasiteproustite are, respectively, 8.75 and 0.40 kJ/gfw in the range 150-350°C, and these predictions are consistent with As-Sb partitioning relations

  8. The structural, electronic and optical properties of Au-ZnO interface structure from the first-principles calculation

    NASA Astrophysics Data System (ADS)

    Huo, Jin-Rong; Li, Lu; Cheng, Hai-Xia; Wang, Xiao-Xu; Zhang, Guo-Hua; Qian, Ping

    2018-03-01

    The interface structure, electronic and optical properties of Au-ZnO are studied using the first-principles calculation based on density functional theory (DFT). Given the interfacial distance, bonding configurations and terminated surface, we built the optimal interface structure and calculated the electronic and optical properties of the interface. The total density of states, partial electronic density of states, electric charge density and atomic populations (Mulliken) are also displayed. The results show that the electrons converge at O atoms at the interface, leading to a stronger binding of interfaces and thereby affecting the optical properties of interface structures. In addition, we present the binding energies of different interface structures. When the interface structure of Au-ZnO gets changed, furthermore, varying optical properties are exhibited.

  9. Cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles: a highly efficient SERS substrate for pesticide detection

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Zhao, Aiwu; Wang, Dapeng; Wang, Jin; Chen, Ping; Sun, Henghui

    2018-04-01

    As a novel surface-enhanced Raman spectroscopic (SERS) nanocomposite, cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles (NPs) were synthesized for the first time. Cube-like α-Fe2O3 NPs with uniform size were achieved by optimizing reaction temperature and time. Firstly, the cube-like Fe3O4@SiO2 with good dispersity was achieved by calcining α-Fe2O3@SiO2 NPs in hydrogen atmosphere at 360 °C for 2.5 h, followed by self-assembling a PEI shell via sonication. Furthermore, the Au@Ag particles were densely assembled on the Fe3O4@SiO2 NPs to form the Fe3O4@SiO2@Au@Ag composite structure via strong Ag-N interaction. The obtained nanocomposites exhibited an excellent SERS behavior, reflected by the low detection of limit (p-ATP) at the 5 × 10-14 M level. Moreover, these nanocubes were used for the detection of thiram, and the detection limit can reach 5 × 10-11 M. Meanwhile, the U.S. Environmental Protection Agency specifies that the residue in fruit must be lower than 7 ppm. Hence, the resulting substrate with high SERS activity has great practical potential applications in the rapid detection of chemical, biological, and environment pollutants with a simple portable Raman instrument at trace level.

  10. Anti p and anti Lambda production in Si + Au collisions at the AGS

    NASA Technical Reports Server (NTRS)

    Wu, Yue-Dong

    1996-01-01

    (anti (ital p)) and (anti (Lambda)) production in central Si + Au collisions has been measured by E589 at the BNL-AGS. Preliminary (ital m)(sub (perpendicular)) spectra are presented for (anti (ital p))'s and (anti (Lambda))'s. The (ital dn/dy) distribution for (anti (ital p))'s is also presented. Based on the (anti (ital p)) and (anti (Lambda)) measurements, (anti (Lambda))/(anti (ital p)) ratios are calculated in the rapidity range of 1.1-1.5.

  11. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure

    PubMed Central

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-01-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area. PMID:26965713

  12. Photocatalytic degradation of acid blue 74 in water using Ag-Ag2O-Zno nanostuctures anchored on graphene oxide

    NASA Astrophysics Data System (ADS)

    Umukoro, Eseoghene H.; Peleyeju, Moses G.; Ngila, Jane C.; Arotiba, Omotayo A.

    2016-01-01

    Water pollution due to industrial effluents from industries which utilize dyes in the manufacturing of their products has serious implications on aquatic lives and the general environment. Thus, there is need for the removal of dyes from wastewater before being discharged into the environment. In this study, a nanocomposite consisting of silver, silver oxide (Ag2O), zinc oxide (ZnO) and graphene oxide (GO) was synthesized, characterized and photocatalytically applied in the degradation (and possibly mineralization) of organic pollutants in water treatment process. The Ag-Ag2O-ZnO nanostructure was synthesized by a co-precipitation method and calcined at 400 °C. It was functionalized using 3-aminopropyl triethoxysilane and further anchored on carboxylated graphene oxide via the formation of an amide bond to give the Ag-Ag2O-ZnO/GO nanocomposite. The prepared nanocomposite was characterized by UV-Vis diffuse reflectance spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), energy dispersive X-ray spectrometry (EDX), Fourier transformed infrared spectroscopy (FTIR), and Raman spectroscopy. The applicability of Ag-Ag2O-ZnO/GO nanocomposite as a photocatalyst was investigated in the photocatalytic degradation of acid blue 74 dye under visible light irradiation in synthetic wastewater containing the dye. The results indicated that Ag-Ag2O-ZnO/GO nanocomposite has a higher photocatalytic activity (90% removal) compared to Ag-Ag2O-ZnO (85% removal) and ZnO (75% removal) respectively and thus lends itself to application in water treatment, where the removal of organics is very important.

  13. Toward a modular multi-material nanoparticle synthesis and assembly strategy via bionanocombinatorics: bifunctional peptides for linking Au and Ag nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Beverly D.; Palafox-Hernandez, J. Pablo; Li, Yue

    Materials-binding peptides represent a unique avenue towards controlling the shape and size of nanoparticles (NPs) grown under aqueous conditions. Here, employing a bionanocombinatorics approach, two such materials-binding peptides were linked at either end of a photoswitchable spacer, forming a multi-domain materials-binding molecule to control the in situ synthesis and organization of Ag and Au NPs under ambient conditions. These multi-domain molecules retained the peptides’ ability to nucleate, grow, and stabilize Ag and Au NPs in aqueous media. Disordered co-assemblies of the two nanomaterials were observed by TEM imaging of dried samples after sequential growth of the two metals, and showedmore » a clustering behavior that was not observed without both metals and the linker molecules. While TEM evidence indicated the formation of AuNP/AgNP assemblies upon drying, SAXS analysis indicated that no extended assemblies existed in solution, suggesting that sample drying plays an important role in facilitating NP clustering. Molecular simulations and experimental data revealed tunable materials-binding based upon the isomerization state of the photoswitchable unit and metal employed. This work is a first step in generating externally actuated biomolecules with specific material-binding properties that could be used as the building blocks to achieve multi-material switchable NP assemblies.« less

  14. Growth of Au and ZnS nanostructures via engineered peptide and M13 bacteriophage templates.

    PubMed

    Chung, Sungwook; Chung, Woo-Jae; Wang, Debin; Lee, Seung-Wuk; De Yoreo, James J

    2018-04-25

    We demonstrate directed nucleation of Au and ZnS patterns on templates comprised of functional peptides and an M13 bacteriophage. We discuss the control over nucleation in terms of the interplay between enhanced ion binding and reduced interfacial energy resulting from the presence of the templates.

  15. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2017-07-01

    The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.

  16. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays

    PubMed Central

    Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu

    2017-01-01

    The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to

  17. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays.

    PubMed

    Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu

    2017-04-03

    The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to

  18. Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces

    NASA Astrophysics Data System (ADS)

    Ambrosio, M. J.; Thumm, U.

    2018-04-01

    Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.

  19. Molecular layers of ZnPc and FePc on Au(111) surface: Charge transfer and chemical interaction

    NASA Astrophysics Data System (ADS)

    Ahmadi, Sareh; Shariati, M. Nina; Yu, Shun; Göthelid, Mats

    2012-08-01

    We have studied zinc phthalocyanine (ZnPc) and iron phthalocyanine (FePc) thick films and monolayers on Au(111) using photoelectron spectroscopy and x-ray absorption spectroscopy. Both molecules are adsorbed flat on the surface at monolayer. ZnPc keeps this orientation in all investigated coverages, whereas FePc molecules stand up in the thick film. The stronger inter-molecular interaction of FePc molecules leads to change of orientation, as well as higher conductivity in FePc layer in comparison with ZnPc, which is reflected in thickness-dependent differences in core-level shifts. Work function changes indicate that both molecules donate charge to Au; through the π-system. However, the Fe3d derived lowest unoccupied molecular orbital receives charge from the substrate when forming an interface state at the Fermi level. Thus, the central atom plays an important role in mediating the charge, but the charge transfer as a whole is a balance between the two different charge transfer channels; π-system and the central atom.

  20. Exploiting multi-function Metal-Organic Framework nanocomposite Ag@Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing.

    PubMed

    Dong, Sheying; Zhang, Dandan; Suo, Gaochao; Wei, Wenbo; Huang, Tinglin

    2016-08-31

    A novel multi-function Metal-Organic Framework composite Ag@Zn-TSA (zinc thiosalicylate, Zn(C7H4O2S), Zn-TSA) was synthesized as highly efficient immobilization matrixes of myoglobin (Mb)/glucose oxidase (GOx) for electrochemical biosensing. The electrochemical biosensors based on Ag@Zn-TSA composite and ionic liquid (IL) modified carbon paste electrode (CPE) were fabricated successfully. Furthermore, the properties of the sensors were discussed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometric current-time curve, respectively. The results showed the proposed biosensors had wide linear response to hydrogen peroxide (H2O2) in the range of 0.3-20,000 μM, to nitrite (NO2(-)) for 1.3 μM-1660 μM and 2262 μM-1,33,000 μM, to glucose for 2.0-1022 μM, with a low detection limit of 0.08 μM for H2O2, 0.5 μM for NO2(-), 0.8 μM for glucose. The values of the apparent heterogeneous electron transfer rate constant (ks) for Mb and GOx were estimated as 2.05 s(-1) and 2.45 s(-1), respectively. Thus, Ag@Zn-TSA was a kind of ideal material as highly efficient immobilization matrixes for sensitive electrochemical biosensing. In addition, this work indicated that MOF nanocomposite had a great potential for constructing wide range of sensing interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Synthesis of graphenized Au/ZnO plasmonic nanocomposites for simultaneous sunlight mediated photo-catalysis and anti-microbial activity.

    PubMed

    Juneja, Subhavna; Madhavan, Ashwathi Asha; Ghosal, Anujit; Ghosh Moulick, Ranjita; Bhattacharya, Jaydeep

    2018-04-05

    Sunlight mediated photo-degradation and anti-bacterial activity of hetero junctioned plasmonic binary (Au/ZnO, RGO/ZnO) and ternary (RGO/Au/ZnO) nanocomposites (NC) have been reported. Higher photo-charge carrier generation, increased charge separation, improved active sites for catalysis, enhanced LSPR and larger photo-response regions have been achieved. Decoration with Au nanoparticles (ca. 11 ± 3 and 48 ± 5 nm) and RGO of ZnO (3D/1D) microstructures (aspect ratio 15.18) provides ternary NCs an edge over mono/bi component catalysts. The ternary NC have shown improved dye degradation capacity with 100% efficiency (5 μM MB solution) and average adsorption degradation capacity (Q°) of 83.34 mg/g within 30 min of sunlight exposure (900 ± 30 Wm -2 ). Elaborated studies by varying reaction parameters like initial dye concentration, contact time, type of NCs and initial loading of NCs reveals pseudo first order degradation kinetics. 100% microbial killing of Gram positive S.aureus strain with 60 μg/ml of NC using sunlight as activator has proven the simultaneous multiple functionality of the NC. Further, facile green one pot hydrothermal synthesis with water as reaction medium, absence of photo-corrosion of NCs, regeneration ability (ca. 90% for 10 μM solution) of NCs, projects a broader potential application of the synthesized NCs and could reduce the continuous requirement of such material, limiting the environmental toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Nanobiophotonics for molecular imaging of cancer: Au- and Ag-based Epidermal Growth Factor receptor (EGFR) specific nanoprobes

    NASA Astrophysics Data System (ADS)

    Lucas, Leanne J.; Hewitt, Kevin C.

    2012-03-01

    Our aim is to create and validate a novel SERS-based nanoprobe for optical imaging of the epidermal growth factor receptor (EGFR). Gold and silver nanoparticles (Au/AgNPs) of various sizes were synthesized and coupled to epidermal growth factor (EGF) via a short ligand, α-lipoic acid (206 g/mol), which binds strongly to both Au and Ag nanoparticles via its disulfide end group. We used carbodiimide chemistry to couple EGF to α-lipoic acid. These nanoprobes were tested for binding affinity using Enzyme Linked ImmunoSorbent Assay (ELISA) and, in-vitro, using EGFRoverexpressing A431 cells. The nanoprobes show excellent EGFR-specific binding. Time of Flight Mass Spectrometry demonstrate the carbodiimide based linking of the carboxylic acid end-group of α-lipoic acid to one or more of the three (terminal, or 2 lysine) amine groups on EGF. ELISA confirms that the linked EGF is active by itself, and following conjugation with gold or silver nanoparticles. Compared with bare nanoparticles, UV-Vis spectroscopy of Ag-based nanoprobes exhibit significant plasmon red-shift, while there was no discernable shift for Au-based ones. Dark field microscopy shows abundant uptake by EGFR overexpressing A431 cells, and serves to further confirm the excellent binding affinity. Nanoprobe internalization and consequent aggregation is thought to be the basis of enhanced light scattering in the dark field images, supporting the notion that these nanoprobes should provide excellent SERS signals at all nanoprobe sizes. In summary, novel EGFR-specific nanoprobes have been synthesized and validated by standard assay and in cell culture for use as SERS optical imaging probes.

  3. The Tuscarora Au-Ag district: Eocene volcanic-hosted epithermal deposits in the Carlin gold region, Nevada

    USGS Publications Warehouse

    Castor, S.B.; Boden, D.R.; Henry, C.D.; Cline, J.S.; Hofstra, A.H.; McIntosh, W.C.; Tosdal, R.M.; Wooden, J.P.

    2003-01-01

    The Tuscarora mining district contains the oldest and the only productive Eocene epithermal deposits in Nevada. The district is a particularly clear example of association of low-sulfidation deposits with igneous activity and structure, and it is unusual in that it consists of two adjoining but physically and chemically distinct types of low-sulfidation deposits. Moreover, Tuscarora deposits are of interest because they formed contemporaneously with nearby, giant Carlin-type gold deposits. The Tuscarora deposits formed within the 39.9 to 39.3 Ma Tuscarora volcanic field, along and just outside the southeastern margin of the caldera-like Mount Blitzen volcanic center. Both deposit types formed at 39.3 Ma, contemporaneous with the only major intrusive activity in the volcanic field. No deposits are known to have formed during any of the intense volcanic phases of the field. Intrusions were the apparent heat source, and structures related to the Mount Blitzen center were conduits for hydrothermal circulation. The ore-forming fluids interacted dominantly with Eocene igneous rocks. The two deposit types occur in a northern silver-rich zone that is characterized by relatively high Ag/Au ratios (110-150), narrow alteration zones, and quartz and carbonate veins developed mostly in intrusive dacite, and in a southern gold-rich zone that is typified by relatively low Ag/Au ratios (4-14), more widespread alteration, and quartz-fissure and stockwork veins commonly developed in tuffaceous sedimentary rocks. The deposit types have similar fluid inclusion and Pb and S isotope characteristics but different geochemical signatures. Quartz veins from both zones have similar thermal and paragenetic histories and contain fluid inclusions that indicate that fluids cooled from between 260?? and 230??C to less than 200??C. Fluid boiling may have contributed to precious-metal deposition. Veins in both zones have relatively high As and Sb and low Bi, Te, and W. The silver zone has high Ca

  4. Involvement of magmatic fluids at the Laloki and Federal Flag massive sulfide Cu-Zn-Au-Ag deposits, Astrolabe mineral district, Papua New Guinea: sulfur isotope evidence

    NASA Astrophysics Data System (ADS)

    Noku, Shadrach K.; Espi, Joseph O.; Matsueda, Hiroharu

    2015-01-01

    We present the first sulfur (S) isotope data of sulfides, sulfates, pyrite in host mudstone, and bulk sulfur of gabbroic rocks from the Laloki and Federal Flag massive Cu-Zn-Au-Ag deposits in the Astrolabe mineral district, Papua New Guinea. Early-stage pyrite-marcasite, chalcopyrite, and sphalerite from Laloki display wide range of δ34S values from -4.5 to +7.0 ‰ ( n = 16). Late-stage pyrite, chalcopyrite, and sphalerite have restricted δ34S values of -1.9 to +4.7 ‰ ( n = 16). The mineralizing stage these correspond to had moderately saline (5.9-8.4 NaCl eq. wt%) mineralizing fluids of possible magmatic origin. A single analysis of late-stage barite has a value of δ34S +17.9 ‰, which is likely similar to coexisting seawater sulfate. Pyrite from the foot-wall mudstone at Laloki has very light δ34S values of -36.1 to -33.8 ‰ ( n = 2), which suggest an organic source for S. Pyrite-marcasite and chalcopyrite from Federal Flag show δ34S values of -2.4 to -1.9 ‰ ( n = 2), consistent with a magmatic origin, either leached from intrusive magmatic rocks or derived from magmatic-hydrothermal fluids. The very narrow range and near-zero δ34S values (-1.0 to +0.6 ‰) of bulk gabbroic samples is consistent with mantle-derived magmatic S. Sulfur isotope characteristics of sulfides and sulfates are, however, very similar to base metal sulfide accumulations associated with modern volcanic arcs and sedimented mid-ocean ridges. The most reasonable interpretation is that the range of the sulfide and sulfate δ34S values from both Laloki and Federal Flag massive sulfide deposits is indicative of the complex interaction of magmatic fluids, seawater, gabbroic rocks, and mudstone.

  5. Geochemistry and statistical analyses of porphyry system and epithermal veins at Hizehjan in northwestern Iran

    NASA Astrophysics Data System (ADS)

    Radmard, Kaikhosrov; Zamanian, Hassan; Hosseinzadeh, Mohamad Reza; Khalaji, Ahmad Ahmadi

    2017-12-01

    Situated about 130 km northeast of Tabriz (northwest Iran), the Mazra'eh Shadi deposit is in the Arasbaran metallogenic belt (AAB). Intrusion of subvolcanic rocks, such as quartz monzodiorite-diorite porphyry, into Eocene volcanic and volcano-sedimentary units led to mineralisation and alteration. Mineralisation can be subdivided into a porphyry system and Au-bearing quartz veins within andesite and trachyandesite which is controlled by fault distribution. Rock samples from quartz veins show maximum values of Au (17100 ppb), Pb (21100 ppm), Ag (9.43ppm), Cu (611ppm) and Zn (333 ppm). Au is strongly correlated with Ag, Zn and Pb. In the Au-bearing quartz veins, factor group 1 indicates a strong correlation between Au, Pb, Ag, Zn and W. Factor group 2 indicates a correlation between Cu, Te, Sb and Zn, while factor group 3 comprises Mo and As. Based on Spearman correlation coefficients, Sb and Te can be very good indicator minerals for Au, Ag and Pb epithermal mineralisation in the study area. The zoning pattern shows clearly that base metals, such as Cu, Pb, Zn and Mo, occur at the deepest levels, whereas Au and Ag are found at higher elevations than base metals in boreholes in northern Mazra'eh Shadi. This observation contrasts with the typical zoning pattern caused by boiling in epithermal veins. At Mazra'eh Shadi, quartz veins containing co-existing liquid-rich and vapour-rich inclusions, as strong evidence of boiling during hydrothermal evolution, have relatively high Au grades (up to 813 ppb). In the quartz veins, Au is strongly correlated with Ag, and these elements are in the same group with Fe and S. Mineralisation of Au and Ag is a result of pyrite precipitation, boiling of hydrothermal fluids and a pH decrease.

  6. Disinfection of the Water Borne Pathogens Escherichia coli and Staphylococcus aureus by Solar Photocatalysis Using Sonochemically Synthesized Reusable Ag@ZnO Core-Shell Nanoparticles.

    PubMed

    Das, Sourav; Ranjana, Neha; Misra, Ananyo Jyoti; Suar, Mrutyunjay; Mishra, Amrita; Tamhankar, Ashok J; Lundborg, Cecilia Stålsby; Tripathy, Suraj K

    2017-07-10

    Water borne pathogens present a threat to human health and their disinfection from water poses a challenge, prompting the search for newer methods and newer materials. Disinfection of the Gram-negative bacterium Escherichia coli and the Gram-positive coccal bacterium Staphylococcus aureus in an aqueous matrix was achieved within 60 and 90 min, respectively, at 35 °C using solar-photocatalysis mediated by sonochemically synthesized Ag@ZnO core-shell nanoparticles. The efficiency of the process increased with the increase in temperature and at 55 °C the disinfection for the two bacteria could be achieved in 45 and 60 min, respectively. A new ultrasound-assisted chemical precipitation technique was used for the synthesis of Ag@ZnO core-shell nanoparticles. The characteristics of the synthesized material were established using physical techniques. The material remained stable even at 400 °C. Disinfection efficiency of the Ag@ZnO core-shell nanoparticles was confirmed in the case of real world samples of pond, river, municipal tap water and was found to be better than that of pure ZnO and TiO₂ (Degussa P25). When the nanoparticle- based catalyst was recycled and reused for subsequent disinfection experiments, its efficiency did not change remarkably, even after three cycles. The sonochemically synthesized Ag@ZnO core-shell nanoparticles thus have a good potential for application in solar photocatalytic disinfection of water borne pathogens.

  7. Super-high color rendering properties of color temperature tunable white LEDs based on high quality InP/ZnS quantum dots via myristic acid passivation and Ag doping

    NASA Astrophysics Data System (ADS)

    Yang, Wu; Zhang, Wanlu; Zhang, Guilin; Zhu, Jiatao; He, Guoxing; Guo, Ruiqian

    2018-07-01

    We reported two types of tunable white LEDs (WLEDs) based on high quality the single emissive InP/ZnS quantum dots (QDs) and the dual emissive Ag:InP/ZnS QDs via myristic acid (MA) passivation and Ag doping. The WLEDs with three color InP/ZnS QDs could realize color rendering indices (CRIs) of 97-98, color quality scales (CQSs) of 94-98, and limited luminous efficacies (LLEs) of 238-246 lm/W at correlated color temperatures (CCTs) of 2700 K to 6500 K, and the WLEDs with dual emissive Ag:InP/ZnS and red emissive InP/ZnS QDs could realize CRIs of 90-93, CQSs of 90-93, and LLEs of 223-242 lm/W at CCTs of 2700 K to 4000 K. Finally, their luminous efficacies were estimated.

  8. Stability of M 3S 3 complexes on fcc M(111) surfaces: M = Au, Ag, Cu, and Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Da-Jiang; Lee, Jiyoung; Windus, Theresa L.

    Density Functional Theory is utilized to assess the stability of metal (M)-sulfur (S) complexes adsorbed on fcc M(111) surfaces, specifically considering S-decorated planar M trimers, M 3S 3. Scanning Tunneling Microscopy studies have identified structures proposed to be Ni 3S 3 on Ni(111), and Au 3S 3 on Au(111). In addition, Cu 3S 3 on Cu(111) has been suggested to facilitate enhanced Cu surface mass transport. Our analysis considers M 3S 3 complexes for M = Au, Ag, Cu, and Ni, assessing key measures of stability on surfaces, and also comparing behavior with trends in gas-phase stability. These surface andmore » gas-phase analyses are systematically related within the framework of Hess’s law, which allows elucidation of various contributions to the overall energetics. In all cases, the adsorbed complex is stable relative to its separated constituents adsorbed on the terrace. However, only for Ag does one find a negative energy of formation from excess S on terraces and M extracted from kink sites along step edges, implying spontaneous complex formation for this pathway. We interpret various experimental observations in the context of our results for energetics.« less

  9. Stability of M 3S 3 complexes on fcc M(111) surfaces: M = Au, Ag, Cu, and Ni

    DOE PAGES

    Liu, Da-Jiang; Lee, Jiyoung; Windus, Theresa L.; ...

    2018-02-08

    Density Functional Theory is utilized to assess the stability of metal (M)-sulfur (S) complexes adsorbed on fcc M(111) surfaces, specifically considering S-decorated planar M trimers, M 3S 3. Scanning Tunneling Microscopy studies have identified structures proposed to be Ni 3S 3 on Ni(111), and Au 3S 3 on Au(111). In addition, Cu 3S 3 on Cu(111) has been suggested to facilitate enhanced Cu surface mass transport. Our analysis considers M 3S 3 complexes for M = Au, Ag, Cu, and Ni, assessing key measures of stability on surfaces, and also comparing behavior with trends in gas-phase stability. These surface andmore » gas-phase analyses are systematically related within the framework of Hess’s law, which allows elucidation of various contributions to the overall energetics. In all cases, the adsorbed complex is stable relative to its separated constituents adsorbed on the terrace. However, only for Ag does one find a negative energy of formation from excess S on terraces and M extracted from kink sites along step edges, implying spontaneous complex formation for this pathway. We interpret various experimental observations in the context of our results for energetics.« less

  10. Cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles: a highly efficient SERS substrate for detection of pesticide.

    PubMed

    Sun, Mei; Zhao, Aiwu; Wang, Dapeng; Wang, Jin; Chen, Ping; Sun, Henghui

    2018-02-09

    As a novel SERS nanocomposities, cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles have been synthesized for the first time. Cube-like α-Fe2O3 NPs with uniform size can be achieved by optimizing reaction temperature and time. Firstly, the cube-like Fe3O4@SiO2 with good dispersity were achieved by calcining α-Fe2O3@SiO2 NPs in hydrogen atmosphere at 360 °C for 2.5 h, followed by self-assembling PEI shell via sonication. Furthermore, the Au@Ag particles can be densely assembled on the Fe3O4@SiO2 NPs to form the Fe3O4@SiO2@Au@Ag composite structure via strong Ag-N interaction. The obtained nanocomposites exhibit an excellent surface-enhanced Raman (SERS) behavior, reflected from low detection of limit (p-ATP) at 5×10-14 M level. Moreover, these nanocubes are used for detection of thiram and the detection limit can reach up to 5×10-11 M, while the rule of U.S. Environmental Protection Agency specifies that the residue in fruit must be lower than 7 ppm. Hence, the resulting substrate with high SERS activity has great practical potential applications in rapid detection of chemical, biological and environment pollutants with a simple portable Raman instrument at trace level. © 2018 IOP Publishing Ltd.

  11. Role of electron-phonon coupling in finite-temperature dielectric functions of Au, Ag, and Cu

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Yang, Jia-Yue; Zhang, Shangyu; Liu, Linhua

    2017-09-01

    Realistic representation of finite temperature dielectric functions of noble metals is crucial in describing the optical properties of advancing applications in plasmonics and optical metamaterials. However, the atomistic origins of the temperature dependence of noble metals' dielectric functions still lack full explanation. In this paper, we implement electronic structure calculations as well as ellipsometry experiments to study the finite temperature dielectric functions of noble metals Au, Ag, and Cu. Theoretically, the intraband dielectric function is described by the Drude model, of which the important quantity electron lifetime is obtained by considering the electron-phonon, electron-electron, and electron-surface scattering mechanism. The electron-phonon coupling is key to determining the temperature dependence of electron lifetime and intraband dielectric function. For the interband dielectric function, it arises from the electronic interband transition. Due to the limitation of incorporating electron-phonon coupling into the interband transition scheme, the temperature dependence of the interband dielectric function is mainly determined by the thermal expansion effect. Experimentally, variable angle spectroscopic ellipsometry measures the dielectric functions of Au and Ag over the temperature range of 300-700 K and spectral range of 2-20 µm. Those experimental measurements are consistent with theoretical results and thus verify the theoretical models for the finite temperature dielectric function.

  12. Site Preference of Ternary Alloying Additions to AuTi

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Noebe, Ronald D.

    2006-01-01

    Atomistic modeling of the site substitution behavior of several alloying additions, namely. Na, Mg, Al, Si. Sc, V, Cr, Mn. Fe, Co, Ni, Cu, Zn, Y, Zr. Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, and Pt in B2 TiAu is reported. The 30 elements can be grouped according to their absolute preference for a specific site, regardless of concentration, or preference for available sites in the deficient sublattice. Results of large scale simulations are also presented, distinguishing between additions that remain in solution from those that precipitate a second phase.

  13. The Improvement of Ion Plated Ag and Au Film Adherence to Si3N4 and SiC Surfaces for Increased Tribological Performance

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1998-01-01

    A modified dc-diode plating system, utilizing a metallic screen cage as a cathode and referred as SCREEN CAGE ION PLATING (SCIP), is used to deposit Ag and Au lubricating films on Si3N4 and SiC surfaces. When deposition is performed in Ar or N2, glow discharge, the surface displays poor adhesive strength (less than 5 MPa). A dramatic increase in adhesive strength (less than 80 MPa) is achieved when plating is performed in a reactive 50% 02 + 50% Ar glow discharge. The excited/ionized oxygen species (O2(+)/O(+) in the glow discharge contribute to the oxidation of the Si3N4 or SiC surfaces as determined by X-ray Photoelectron Spectroscopy (XTS) depth profiling. The reactively sputter-oxidized S3N4 or SiC surfaces and the activated-oxidized-metastable Ag or Au species formed in the plasma cooperatively contribute to the increased adherence. As a result, the linear thermal expansion coefficient mismatch at the interface is reduced. These lubricating Ag and Au films under sliding conditions reduce the friction coefficient by a factor of 2-1/2 to 4.

  14. Biodynamic modelling of the accumulation of Ag, Cd and Zn by the deposit-feeding polychaete Nereis diversicolor: inter-population variability and a generalised predictive model.

    PubMed

    Kalman, J; Smith, B D; Riba, I; Blasco, J; Rainbow, P S

    2010-06-01

    Biodynamic parameters of the ragworm Nereis diversicolor from southern Spain and south England were experimentally derived to assess the inter-population variability of physiological parameters of the bioaccumulation of Ag, Cd and Zn from water and sediment. Although there were some limited variations, these were not consistent with the local metal bioavailability nor with temperature changes. Incorporating the biodynamic parameters into a defined biodynamic model, confirmed that sediment is the predominant source of Cd and Zn accumulated by the worms, accounting in each case for 99% of the overall accumulated metals, whereas the contribution of dissolved Ag to the total accumulated by the worm increased from about 27 to about 53% with increasing dissolved Ag concentration. Standardised values of metal-specific parameters were chosen to generate a generalised model to be extended to N. diversicolor populations across a wide geographical range from western Europe to North Africa. According to the assumptions of this model, predicted steady state concentrations of Cd and Zn in N. diversicolor were overestimated, those of Ag underestimated, but still comparable to independent field measurements. We conclude that species-specific physiological metal bioaccumulation parameters are relatively constant over large geographical distances, and a single generalised biodynamic model does have potential to predict accumulated Ag, Cd and Zn concentrations in this polychaete from a single sediment metal concentration.

  15. Secondary ion emission from Ti, V, Cu, Ag and Au surfaces under KeV Cs + irradiation

    NASA Astrophysics Data System (ADS)

    van der Heide, P. A. W.

    2005-02-01

    Low energy mono-atomic singly charged secondary ion emissions from Ti, V, Cu, Ag and Au substrates during the initial stages of sputtering with Cs + primary ions have been studied. With the exception of the Ag - secondary ions, all exhibited exponential like correlations with the Cs induced work function changes. This, along with the lack of variations in the valence band structure around the Fermi edge, is consistent with resonance charge transfer to/from states located at the Fermi edge. The insensitivity of Ag - to work function appears to stem from the dominance of a separate ion formation process, namely charge transfer into vacant 4d states in the sputtered population, which themselves appear to be produced through collective oscillations. A similar excitation-mediated process involving different levels also appears to be active in the formation of other negatively charged transition metal ions, albeit to a much lesser degree.

  16. Disinfection of the Water Borne Pathogens Escherichia coli and Staphylococcus aureus by Solar Photocatalysis Using Sonochemically Synthesized Reusable Ag@ZnO Core-Shell Nanoparticles

    PubMed Central

    Das, Sourav; Ranjana, Neha; Misra, Ananyo Jyoti; Suar, Mrutyunjay; Mishra, Amrita; Tripathy, Suraj K.

    2017-01-01

    Water borne pathogens present a threat to human health and their disinfection from water poses a challenge, prompting the search for newer methods and newer materials. Disinfection of the Gram-negative bacterium Escherichia coli and the Gram-positive coccal bacterium Staphylococcus aureus in an aqueous matrix was achieved within 60 and 90 min, respectively, at 35 °C using solar-photocatalysis mediated by sonochemically synthesized Ag@ZnO core-shell nanoparticles. The efficiency of the process increased with the increase in temperature and at 55 °C the disinfection for the two bacteria could be achieved in 45 and 60 min, respectively. A new ultrasound-assisted chemical precipitation technique was used for the synthesis of Ag@ZnO core-shell nanoparticles. The characteristics of the synthesized material were established using physical techniques. The material remained stable even at 400 °C. Disinfection efficiency of the Ag@ZnO core-shell nanoparticles was confirmed in the case of real world samples of pond, river, municipal tap water and was found to be better than that of pure ZnO and TiO2 (Degussa P25). When the nanoparticle- based catalyst was recycled and reused for subsequent disinfection experiments, its efficiency did not change remarkably, even after three cycles. The sonochemically synthesized Ag@ZnO core-shell nanoparticles thus have a good potential for application in solar photocatalytic disinfection of water borne pathogens. PMID:28698514

  17. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hwang, Jun-Dar; Chen, Hsin-Yu; Chen, Yu-Huang; Ho, Ting-Hsiu

    2018-07-01

    The rectifying characteristic of Au/ZnO Schottky diodes (SDs) was remarkably improved by introducing a NiO layer in-between the Au and ZnO layers. Compared with the Au/ZnO SDs, the introduction of the NiO layer significantly enhanced the rectification ratio from 1.38 to 1300, and reduced the ideality factor from 5.78 to 2.14. The NiO and ZnO layers were deposited on an indium-tin-oxide/glass substrate by radio-frequency magnetron sputtering. Secondary ion mass spectroscopy showed that Ni atoms diffused from NiO to ZnO, leading to a graded distribution of Ni in ZnO. X-ray diffraction demonstrated that the diffusion of Ni atoms increased the grain size and electron concentration of ZnO. X-ray photoelectron spectroscopy showed that the interstitial oxygen (Oi) atoms in NiO and ZnO compensated the oxygen vacancies (OV) at the NiO/ZnO interface; the amount of OV was significantly reduced, while Oi vanished at the interface. The band diagram revealed a potential drop in the bulk ZnO, owing to the graded distribution of Ni in ZnO, which accelerated the carriers, collected by the outer circuit. The carriers at the NiO/ZnO interface easily crossed over the barrier height, instead of being recombined by OV, owing to the lower amount of OV at the interface.

  18. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering.

    PubMed

    Hwang, Jun-Dar; Chen, Hsin-Yu; Chen, Yu-Hung; Ho, Ting-Hsiu

    2018-05-03

    The rectifying characteristic of Au/ZnO Schottky diodes (SDs) was remarkably improved by introducing a NiO layer in-between the Au and ZnO layers. Compared with the Au/ZnO SDs, the introduction of the NiO layer significantly enhanced the rectification ratio from 1.38 to 1,300, and reduced the ideality factor from 5.78 to 2.14. The NiO and ZnO layers were deposited on an indium-tin-oxide/glass substrate by radio-frequency magnetron sputtering. Secondary ion mass spectroscopy showed that Ni atoms diffused from NiO to ZnO, leading to a graded distribution of Ni in ZnO. X-ray diffraction demonstrated that the diffusion of Ni atoms increased the grain size and electron concentration of ZnO. X-ray photoelectron spectroscopy showed that the interstitial oxygen (Oi) atoms in NiO and ZnO compensated the oxygen vacancies (OV) at the NiO/ZnO interface; the amount of OV was significantly reduced, while Oi vanished at the interface. The band diagram revealed a potential drop in the bulk ZnO, owing to the graded distribution of Ni in ZnO, which accelerated the carriers, collected by the outer circuit. The carriers at the NiO/ZnO interface easily crossed over the barrier height, instead of being recombined by OV, owing to the lower amount of OV at the interface. © 2018 IOP Publishing Ltd.

  19. Development and operation of a 6LiF:ZnS(Ag)-scintillating plastic capture-gated detector

    NASA Astrophysics Data System (ADS)

    Wilhelm, K.; Nattress, J.; Jovanovic, I.

    2017-01-01

    We report on the design, construction, and operation of a capture-gated neutron detector based on a heterogeneous scintillating structure comprising two scintillator types. A flat, 500 μm thick sheet composed of a mixture of lithium-6-fluoride capture agent, 6LiF, and zinc sulfide phosphor, ZnS(Ag), is wrapped around scintillating polyvinyl toluene (PVT) in a form of cylinder. The 6LiF: ZnS(Ag) sheet uses an aluminum foil backing as a support for the scintillating material and as an optical reflector, and its optical properties have been characterized independently. The composite scintillator was tested using 252Cf, DD fusion, 137Cs, and 60Co sources. The intrinsic detection efficiency for neutrons from an unmoderated 252Cf source and rejection of gammas from 137Cs were measured to be 3.6 % and 10-6, respectively. A figure of merit for pulse shape discrimination of 4.6 was achieved, and capture-gated spectroscopic analysis is demonstrated.

  20. XPS and Ag L3-edge XANES characterization of silver and silver-gold sulfoselenides

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yuri L.; Pal'yanova, Galina A.; Tomashevich, Yevgeny V.; Vishnyakova, Elena A.; Vorobyev, Sergey A.; Kokh, Konstantin A.

    2018-05-01

    Gold and silver sulfoselenides are of interest as materials with high ionic conductivity and promising magnetoresistive, thermoelectric, optical, and other physico-chemical properties, which are strongly dependent on composition and structure. Here, we applied X-ray photoelectron spectroscopy and Ag L3 X-ray absorption near-edge structure (XANES) to study the electronic structures of low-temperature compounds and solid solutions Ag2SxSe1-x (0 < x < 1), AgAuS, and Ag3AuSxSe2-x (x = 0, 1, 2). Upon substitution of Se with S, a steady increase in the positive charge at Ag(I) sites and only minor changes in the local charge at chalcogen atoms were found from the photoelectron Ag 3d, S 2p, Se 3d, and Ag M4,5VV Auger spectra. The intensity of the Ag L3-edge peak, which is known to correlate with hole counts in the Ag 4d shell having a formal d10 configuration, was enhanced by 20-25% from Ag2Se to Ag2S and from Ag3AuSe2 to Ag3AuS2. The effect of gold is more pronounced, and the number of Ag d holes and the negative charge of S and Se notably decreased for Au-containing compounds; in particular, the Ag L3-edge peak is about 35% lower for AgAuS relative to Ag2S. At the same time, the Au 4f binding energy and, therefore, charge at Au(I) sites increase with increasing S content due to the transfer of electron density from Au to Ag atoms. It was concluded that the effects mainly originate from shortening of the metal-chalcogen and especially the Ausbnd Ag interatomic distances in substances having similar coordination geometry.

  1. Effect of adherent bacteria and bacterial extracellular polymers upon assimilation by Macoma balthica of sediment-bound Cd, Zn and Ag

    USGS Publications Warehouse

    Harvey, Ronald W.; Luoma, Samuel N.

    1985-01-01

    Effects of adherent bacteria and bacterial extracellular polymer (exopolymer) upon uptake of particle-bound Cd, Zn and Ag by the deposit-feeding clam Macoma balthica were studied in the laboratory. Amorphous iron oxyhydroxide and unaltered and alkaline-extracted sediments were used as model particulates in separate, controlled deposit-feeding experiments. In general, amounts of metal taken up from ingested particles varied dramatically with the nature of the particle surface. Ingestion of contaminated iron oxide particles did not contribute to overall uptake of Cd and Ag in feeding clams, but accounted for 89 to 99% of total Zn uptake. Exopolymer adsorbed on iron oxide particles caused an increase in the biological availability of particle-bound metals in the order Ag>Cd>Zn, whereas adherent bacteria up to 3.2 X 1011 g-1 had no effect upon amounts of metal taken up from ingested particulates. At the higher Cd and Ag concentrations employed (3.6 X 10-7M), feeding rates declined with increasing amounts of iron oxide-bound exopolymer, suggesting behavioral avoidance due to increased metal availability. Much of the Cd (57 %) taken up by clams feeding on unaltered estuarine sediments originated from particulates, even though particle/solute distribution of Cd (86%) was similar to that in experiments with iron oxide particles. Uptake of Cd from alkalineextracted sediments was insignificant, as it was from unamended iron oxide. However, addition of exopolymer (10 mgg-1 sediment) caused a restoration nn bioavailability of sediment-bound Cd.

  2. Ag-doping on ZnO support mediated by bio-analytes rich in ascorbic acid for photocatalytic degradation of dipyrone drug.

    PubMed

    Chelli, Venkatanarasimha Rao; Golder, Animes Kumar

    2018-05-28

    The analytes such as ascorbic acid (AA) present in Sechium edule were extracted (294 mg AA kg -1 fruit) in an aqueous media for its potential application for Ag-doping onto wurtzite ZnO. The bandgap of ZnO was decreased to 2.85 eV at the optimal Ag-loading of 1.18% (w/w) against 3.13 eV for the control catalyst without using the analytes and, the commercial AA only could reduce the bandgap to 2.91 eV. The saturation photo-electrochemical current density (46.68 mA cm -2 ) at E anode  ≥ 0.31 V vs. Ag/AgCl was almost double than pristine ZnO under visible light illumination (λ mean  = 525 nm, 18 K lux) and, the current density was insignificant in the dark. The doped catalyst exhibited the maximum 79.5% degradation (71% COD removal) of an anti-analgesic drug, dipyrone (100 μg L -1 dipyrone, catalyst 100 mg L -1 ) resulted from the formation of O 2 •- radical (g-factor of 2.002-2.008) and paramagnetic oxygen vacancies (g-factor of 2.020) and, no effect of dye-sensitization was noted. The highest quantum yield was found to be 34.7%. The catalyst loss was 6% after the fourth cycle and the dipyrone degradation was reduced to 70.8%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. NaEuF4/Au@Ag2S nanoparticles-based fluorescence resonant transfer DNA sensor for ultrasensitive detection of DNA energy.

    PubMed

    Liu, Yuhong; Zhao, Linlin; Zhang, Jin; Zhang, Jinzha; Zhao, Wenbo; Mao, Chun

    2016-12-01

    The work investigates a new fluorescence resonance energy transfer (FRET) system using NaEuF 4 nanoparticles (NPs) and Au@Ag 2 S NPs as the energy donor-acceptor pair for the first time. The NaEuF 4 /Au@Ag 2 S NPs-based FRET DNA sensor was constructed with NaEuF 4 NPs as the fluorescence (FL) donor and Au@Ag 2 S core-shell NPs as FL acceptor. In order to find the matching energy acceptor, the amount of AgNO 3 and Na 2 S were controlled in the synthesis process to overlap the absorption spectrum of energy acceptor with the emission spectrum of energy donors. The sensitivity of FRET-based DNA sensor can be enhanced and the self-absorption of ligand as well as the background of signals can be decreased because of Eu 3+ which owns large Stokes shifts and narrow emission bands due to f-f electronic transitions of 4f shell. We obtained the efficient FRET system by studying suitable distance between the donor and acceptor. Then the FRET-based DNA sensor was used for the design of specific and sensitive detection of target DNA and the quenching efficiency (ΔFL/F 0 , ΔFL=F-F 0 ) of FL was logarithmically related to the concentration of the target DNA, ranging from 100aM to 100pM. We can realize an ultrasensitive detection of target DNA with a detection limit of 32 aM. This proposed method was feasible to analyse target DNA in real samples with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Quantum tunneling in real space: Tautomerization of single porphycene molecules on the (111) surface of Cu, Ag, and Au.

    PubMed

    Kumagai, Takashi; Ladenthin, Janina N; Litman, Yair; Rossi, Mariana; Grill, Leonhard; Gawinkowski, Sylwester; Waluk, Jacek; Persson, Mats

    2018-03-14

    Tautomerization in single porphycene molecules is investigated on Cu(111), Ag(111), and Au(111) surfaces by a combination of low-temperature scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. It is revealed that the trans configuration is the thermodynamically stable form of porphycene on Cu(111) and Ag(111), whereas the cis configuration occurs as a meta-stable form. The trans → cis or cis → trans conversion on Cu(111) can be induced in an unidirectional fashion by injecting tunneling electrons from the STM tip or heating the surface, respectively. We find that the cis ↔ cis tautomerization on Cu(111) occurs spontaneously via tunneling, verified by the negligible temperature dependence of the tautomerization rate below ∼23 K. Van der Waals corrected DFT calculations are used to characterize the adsorption structures of porphycene and to map the potential energy surface of the tautomerization on Cu(111). The calculated barriers are too high to be thermally overcome at cryogenic temperatures used in the experiment and zero-point energy corrections do not change this picture, leaving tunneling as the most likely mechanism. On Ag(111), the reversible trans ↔ cis conversion occurs spontaneously at 5 K and the cis ↔ cis tautomerization rate is much higher than on Cu(111), indicating a significantly smaller tautomerization barrier on Ag(111) due to the weaker interaction between porphycene and the surface compared to Cu(111). Additionally, the STM experiments and DFT calculations reveal that tautomerization on Cu(111) and Ag(111) occurs with migration of porphycene along the surface; thus, the translational motion couples with the tautomerization coordinate. On the other hand, the trans and cis configurations are not discernible in the STM image and no tautomerization is observed for porphycene on Au(111). The weak interaction of porphycene with Au(111) is closest to the gas-phase limit and therefore the absence

  5. Quantum tunneling in real space: Tautomerization of single porphycene molecules on the (111) surface of Cu, Ag, and Au

    NASA Astrophysics Data System (ADS)

    Kumagai, Takashi; Ladenthin, Janina N.; Litman, Yair; Rossi, Mariana; Grill, Leonhard; Gawinkowski, Sylwester; Waluk, Jacek; Persson, Mats

    2018-03-01

    Tautomerization in single porphycene molecules is investigated on Cu(111), Ag(111), and Au(111) surfaces by a combination of low-temperature scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. It is revealed that the trans configuration is the thermodynamically stable form of porphycene on Cu(111) and Ag(111), whereas the cis configuration occurs as a meta-stable form. The trans → cis or cis → trans conversion on Cu(111) can be induced in an unidirectional fashion by injecting tunneling electrons from the STM tip or heating the surface, respectively. We find that the cis ↔ cis tautomerization on Cu(111) occurs spontaneously via tunneling, verified by the negligible temperature dependence of the tautomerization rate below ˜23 K. Van der Waals corrected DFT calculations are used to characterize the adsorption structures of porphycene and to map the potential energy surface of the tautomerization on Cu(111). The calculated barriers are too high to be thermally overcome at cryogenic temperatures used in the experiment and zero-point energy corrections do not change this picture, leaving tunneling as the most likely mechanism. On Ag(111), the reversible trans ↔ cis conversion occurs spontaneously at 5 K and the cis ↔ cis tautomerization rate is much higher than on Cu(111), indicating a significantly smaller tautomerization barrier on Ag(111) due to the weaker interaction between porphycene and the surface compared to Cu(111). Additionally, the STM experiments and DFT calculations reveal that tautomerization on Cu(111) and Ag(111) occurs with migration of porphycene along the surface; thus, the translational motion couples with the tautomerization coordinate. On the other hand, the trans and cis configurations are not discernible in the STM image and no tautomerization is observed for porphycene on Au(111). The weak interaction of porphycene with Au(111) is closest to the gas-phase limit and therefore the absence

  6. Modification of the internal surface of photonic crystal fibers with Ag and Au nanoparticles for application as sensor elements

    NASA Astrophysics Data System (ADS)

    Pidenko, Pavel S.; Borzov, Victor M.; Savenko, Olga A.; Skaptsov, Alexander A.; Skibina, Yulia S.; Goryacheva, Irina Yu.; Rusanova, Tatiana Yu.

    2017-03-01

    Photonic crystal fibers (PCFs) are one of the most promising materials for biosensors construction due to their unique optical properties. The modification of PCF by noble metal nanoparticles (NPs) provides the SPR and SERS signal detection where as the application amino group-containing compounds allows efficient binding of biomolecules. In this work the internal surface of glass hollow core photonic crystal fibers (HC-PCFs) has been modified Ag and Au nanoparticles using three different approaches. PCFs were treated by: 1) mixture of NPs and precursors for silanization (tetraethoxysilane (TEOS) and (3-aminopropyl)triethoxysilane (APTES)); 2) alternately deposition of polyelectrolytes and NPs, 3) mixture of chitosan with NPs. The shift of local maxima in the HC-PCF transmission spectrum has been selected as a signal for estimating the amount of NPs on the HC-PCF inner surface. The most efficient techniques were the chitosan application for Ag NPs and silanization for Au NPs. The obtaining PCFs could be useful for creating biosensitive elements.

  7. Metal dispersion and mobility in soils from the Lik Zn-Pb-Ag massive sulphide deposit, NW Alaska: Environmental and exploration implications

    USGS Publications Warehouse

    Kelley, K.D.; Kelley, D.L.

    2003-01-01

    The Lik deposit in northern Alaska is a largely unexposed shale-hosted Zn-Pb-Ag massive sulphide deposit that is underlain by continuous permafrost. Residual soils overlying the mineralized zone have element enrichments that are two to six times greater than baseline values. The most prominent elements are Ag, Mo, P, Se, Sr, V by total 4-acid digestion and Tl by a weak partial digestion (Enzyme Leach or EL) because they show multi-point anomalies that extend across the entire mineralized zone, concentration ranges are 0.5-2.6 ppm Ag, 4-26 ppm Mo, 0.1-0.3% P, 3-22 ppm Se, 90-230 ppm Sr, 170-406 ppm V, and 1.6-30 ppb Tl. Lead, Sb, and Hg are also anomalous (up to 178 ppm, 30 ppm, and 1.9 ppm, respectively), but all are characterized by single point anomalies directly over the mineralized zone, with only slightly elevated concentrations over the lower mineralized section. Zinc (total) has a consistent baseline response of 200 ppm, but it is not elevated in soils overlying the mineralized zone. However, Zn by EL shows a distinct single-point anomaly over the ore zone that suggests it was highly mobile and partly adsorbed on oxides or other secondary phases during weathering. In situ analyses (by laser ablation ICP-MS) of pyrite and sphalerite from drill core suggest that sphalerite is the primary residence for Ag, Cd, and Hg in addition to Zn, and pyrite contains As, Fe, Sb, and Tl. The level and degree of oxidation, and the proportion of reacting pyrite and carbonate minerals are two factors that affected the mobility and transport of metals. In oxidizing conditions, Zn is highly mobile relative to Hg and Ag, perhaps explaining the decoupling of Zn from the other sphalerite-hosted elements in the soils. Soils are acidic (to 3.9 pH) directly over the deposit due to the presence of acid-producing pyrite, but acid-neutralizing carbonate away from the mineralized zone yield soils that are near neutral. The soils therefore formed in a complex system involving oxidation and

  8. Diffusion across the modified polyethylene separator GX in the heat-sterilizable AgO-Zn battery

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1973-01-01

    Models of diffusion across an inert membrane have been studied using the computer program CINDA. The models were constructed to simulate various conditions obtained in the consideration of the diffusion of Ag (OH)2 ions in the AgO-Zn battery. The effects on concentrations across the membrane at the steady state and on the fluxout as a function of time were used to examine the consequences of stepwise reducing the number of sources of ions, of stepwise blocking the source and sink surfaces, of varying the magnitude of the diffusion coefficient for a uniform membrane, of varying the diffusion coefficient across the membrane, and of excluding volumes to diffusion.

  9. Structure reactivity relationships during N2O hydrogenation over Au-Ag alloys: A study by field emission techniques

    NASA Astrophysics Data System (ADS)

    Jacobs, Luc; Barroo, Cédric; Gilis, Natalia; Lambeets, Sten V.; Genty, Eric; Visart de Bocarmé, Thierry

    2018-03-01

    To make available atomic oxygen at the surface of a catalyst is the key step for oxidation reactions on Au-based catalysts. In this context, Au-Ag alloys catalysts exhibit promising properties for selective oxidation reactions of alcohols: low temperature activity and high selectivity. The presence of O(ads) and its effects on the catalytic reactivity is studied via the N2O dissociative adsorption and subsequent hydrogenation. Field emission techniques are particularly suited to study this reaction: Field Ion Microscopy (FIM) and Field Emission Microscopy (FEM) enable to image the extremity of sharp metallic tips, the size and morphology of which are close to those of one single catalytic particle. The reaction dynamics is studied in the 300-320 K temperature range and at a pressure of 3.5 × 10-3 Pa. The main results are a strong structure/reactivity relationship during N2O + H2 reaction over Au-8.8 at.%Ag model catalysts. Comparison of high-resolution FIM images of the clean sample and FEM images during reaction shows a sensitivity of the reaction to the local structure of the facets, independently of the used partial pressures of both N2O and H2. This suggests a localised dissociative adsorption step for N2O and H2 with the formation of a reactive interface around the {210} facets.

  10. Organic-inorganic Au/PVP/ZnO/Si/Al semiconductor heterojunction characteristics

    NASA Astrophysics Data System (ADS)

    Mokhtari, H.; Benhaliliba, M.

    2017-11-01

    The paper reports the fabrication and characterization of a novel Au/PVP/ZnO/Si/Al semiconductor heterojunction (HJ) diode. Both inorganic n type ZnO and organic polyvinyl pyrrolidone (PVP) layers have grown by sol-gel spin-coating route at 2000 rpm. The front and back metallic contacts are thermally evaporated in a vacuum at pressure of 10-6 Torr having a diameter of 1.5 mm and a thickness of 250 nm. The detailed analysis of the forward and reverse bias current-voltage characteristics has been provided. Consequently, many electronic parameters, such as ideality factor, rectification coefficient, carrier concentration, series resistance, are then extracted. Based upon our results a non-ideal diode behavior is revealed and ideality factor exceeds the unity (n > 4). A high rectifying (~4.6 × 10 4) device is demonstrated. According to Cheung-Cheung and Norde calculation models, the barrier height and series resitance are respectively of 0.57 eV and 30 kΩ. Ohmic and space charge limited current (SCLC) conduction mechanisms are demonstrated. Such devices will find applications as solar cell, photodiode and photoconductor.

  11. Substrate dependent hierarchical structures of RF sputtered ZnS films

    NASA Astrophysics Data System (ADS)

    Chalana, S. R.; Mahadevan Pillai, V. P.

    2018-05-01

    RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.

  12. White Light-Emitting Diodes Based on AgInS2/ZnS Quantum Dots with Improved Bandwidth in Visible Light Communication

    PubMed Central

    Ruan, Cheng; Zhang, Yu; Lu, Min; Ji, Changyin; Sun, Chun; Chen, Xiongbin; Chen, Hongda; Colvin, Vicki L.; Yu, William W.

    2016-01-01

    Quantum dot white light-emitting diodes (QD-WLEDs) were fabricated from green- and red-emitting AgInS2/ZnS core/shell QDs coated on GaN LEDs. Their electroluminescence (EL) spectra were measured at different currents, ranging from 50 mA to 400 mA, and showed good color stability. The modulation bandwidth of previously prepared QD-WLEDs was confirmed to be much wider than that of YAG:Ce phosphor-based WLEDs. These results indicate that the AgInS2/ZnS core/shell QDs are good color-converting materials for WLEDs and they are capable in visible light communication (VLC). PMID:28344270

  13. Ag-Decorated Localized Surface Plasmon-Enhanced Ultraviolet Electroluminescence from ZnO Quantum Dot-Based/GaN Heterojunction Diodes by Optimizing MgO Interlayer Thickness.

    PubMed

    Chen, Cheng; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhang, Wei; Liang, Renli; Dai, Jiangnan; Chen, Changqing

    2016-12-01

    We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness. The EL origination was investigated qualitatively in terms of photoluminescence (PL) results. Through analysis of the energy band structure of device and carrier transport mechanisms, it suggests that the EL enhancement is attributed to the increased rate of spontaneous emission and improved internal quantum efficiency induced by exciton-LSP coupling.

  14. Ag-Decorated Localized Surface Plasmon-Enhanced Ultraviolet Electroluminescence from ZnO Quantum Dot-Based/GaN Heterojunction Diodes by Optimizing MgO Interlayer Thickness

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhang, Wei; Liang, Renli; Dai, Jiangnan; Chen, Changqing

    2016-10-01

    We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness. The EL origination was investigated qualitatively in terms of photoluminescence (PL) results. Through analysis of the energy band structure of device and carrier transport mechanisms, it suggests that the EL enhancement is attributed to the increased rate of spontaneous emission and improved internal quantum efficiency induced by exciton-LSP coupling.

  15. Metallogeny of the Paramillos de Uspallata Pb-Zn-Ag vein deposit in the Cuyo Rift Basin, Argentina

    NASA Astrophysics Data System (ADS)

    Rubinstein, Nora A.; Carrasquero, Silvia I.; Gómez, Anabel L. R.; Ricchetti, Ana P. Orellano; D'Annunzio, María C.

    2018-05-01

    The Paramillos de Uspallata deposit, previously considered as genetically linked to a Miocene porphyry deposit, is located in the Mesozoic Cuyo Basin, which was formed during the beginning of the break-up of Gondwana. In the present study, both previous information and new geological, mineralogical, and isotopic data allowed outlining a new descriptive model for this deposit. Stratigraphic and structural controls allowed considering this deposit as contemporaneous with the Mesozoic rifting, with the mineralization resulting from a Pb-Zn stage followed by an Ag-Cu-Pb stage. The hydrothermal fluids were found to have low temperature and low to moderate salinity, and to result from the mixing between metamorphic and meteoric fluids, with the lead sourced by the igneous Paleozoic basement and the sulfur partly derived from a magmatic source. These characteristics allow describing Paramillos de Uspallata as Pb-Zn-Ag veins hosted in clastic sedimentary sequences genetically linked to a rift basin and redefining it as detachment-related mineralization.

  16. A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals.

    PubMed

    Chen, Peng; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Zhu, Dan; Zhong, Yuan; Cui, Yiping

    2014-10-01

    p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0∼14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.

  17. Ag+12 ion induced modifications of structural and optical properties of ZnO-PMMA nanocomposite films

    NASA Astrophysics Data System (ADS)

    Sharma, Sarla; Vyas, Rishi; Vijay, Y. K.

    2013-02-01

    The influence of swift heavy ion (SHI) irradiation on structural and photoluminescence (PL) properties of ZnO-PMMA nanocomposite films, prepared by solution casting method, was studied. The ZnO-PMMA nanocomposite films were irradiated using 120 MeV Ag+12 ions at different fluences varying from 1×1011 to 1×1013 ions/cm2. The intensity of the X-ray diffraction peaks is increased at the high fluence, without evolution of any new peak. A shift in absorption edge (i.e. shift in optical band gap) towards higher wavelength was observed after irradiation and PL from ZnO-PMMA nanocomposite films is found to increase up to a critical fluence and then found to be suppressed for higher fluence (1×1012 ion/cm2). The change in photoluminescence after irradiation can be attributed to the change in microstructure of PMMA matrix as well as the agglomeration of ZnO nanoparticles.

  18. CdS/CdSe quantum dots and ZnPc dye co-sensitized solar cells with Au nanoparticles/graphene oxide as efficient modified layer.

    PubMed

    Chen, Cong; Cheng, Yu; Jin, Junjie; Dai, Qilin; Song, Hongwei

    2016-10-15

    Co-sensitization by using two or more sensitizers with complementary absorption spectra to expand the spectral response range is an effective approach to enhance device performance of quantum dot sensitized solar cells (QDSSCs). To improve the light-harvesting in the visible/near-infrared (NIR) region, organic dye zinc phthalocyanine (ZnPc) was combined with CdS/CdSe quantum dots (QDs) for co-sensitized solar cells based on ZnO inverse opals (IOs) as photoanode. The resulting co-sensitized device shows an efficient panchromatic spectral response feature to ∼750nm and presents an overall conversion efficiency of 4.01%, which is superior to that of the individual ZnPc-sensitized solar cells and CdS/CdSe-sensitized solar cells. Meanwhile, an Au nanoparticles/graphene oxide (Au NPs/GO) composite layer was successfully prepared to modify Cu2S counter electrode for the co-sensitized solar cells. Reducing the carrier recombination process by GO and catalytic process of Au NPs leads to increased power conversion efficiency(PCE) from 4.01 to 4.60% and sustainable stability remains ∼85% of its original value after 60min light exposure. In this paper, introduction of the organic dyes as co-sensitizer and Au NPs/GO as counter electrode modified layer has been proved to be an effective route to improve the performance of QDSSCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Studies on electronic structure of interfaces between Ag and gelatin for stabilization of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Uchida, Takayuki

    2015-06-01

    Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst’s equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix.

  20. Episodic formation of the world-class Waihi epithermal Au-Ag vein system, Hauraki Goldfield, New Zealand

    USGS Publications Warehouse

    Gasston, Erin; Mauk, Jeffrey L.; Cosca, Michael A.; Morgan, Leah; Hall, Chris M.

    2017-01-01

    The world-class Waihi vein system in New Zealand has produced more than 248,400 kg Au and 1.43 million kg Ag. New high-precision 40Ar/39Ar dates of adularia from different veins show that some veins formed at different times (6.15 Ma Martha vs. 5.83 and 5.85 Ma Empire and Welcome, respectively), even though they have similar mineralogy. The Martha vein formed over a period of approximately 150,000 years. The Moonlight vein, which has a different ore mineral assemblage, appears to have formed over a longer time interval that spanned formation of the Martha, Welcome, and Empire veins. These dates suggest that some veins in the Waihi vein system formed relatively quickly during only part of the lifetime of the hydrothermal system, whereas other veins may have formed over longer periods of time. However, the Au endowment of the Martha vein exceeds the Au endowment of the Moonlight vein, indicating that the total lifetime of the vein-forming hydrothermal system does not determine metal endowment.

  1. Interaction of Au, Ag, and Bi ions with Ba2YCu3O(7-y) - Implications for superconductor applications

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Gaier, J. R.; Pouch, J. J.; Hambourger, P. D.

    1988-01-01

    Results are presented on the reactions of Au, Ag, and Bi ions with Ba2YCu3O(7-y) oxides and on the properties of the resultant materials. The results indicate that Au(3+) structural chemistry makes gold an excellent candidate for multiphase structures of the Ba2Y(Cu/1-x/Au/x/)3O(7-y)-type substituted superconductors. Silver is structurally and chemically compatible with the perovskite structure, but when it forms a second phase, it does so without the destruction of the superconducting phase, making silver a useful metal for metal/ceramic applications. On the other hand, bismuth was shown to degrade Tc phase or to form other phases, indicating that it may not be useful in applications with rare-earth-based superconductors.

  2. Highly recyclable and ultra-rapid catalytic reduction of organic pollutants on Ag-Cu@ZnO bimetal nanocomposite synthesized via green technology

    NASA Astrophysics Data System (ADS)

    Gangarapu, Manjari; Sarangapany, Saran; Suja, Devipriya P.; Arava, Vijaya Bhaskara Rao

    2018-04-01

    In this study, synthesis of Ag-Cu alloy bimetal nanoparticles anchored on high surface and porous ZnO using a facile, greener and low-cost aqeous bark extract of Aglaia roxburghiana for highly active, ultra-rapid and stable catalyst is performed. The nanocomposite was scrupulously characterized using UV-Vis spectrophotometer, X-ray diffraction, Raman spectrophotometer, high-resolution transmission electron microscope, selected area (electron) diffraction, scanning electron microscope with energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The catalytic activity of the green synthesized Ag-Cu bimetal nanocomposite was evaluated in the reduction of 4-nitrophenol (4-NP), methylene blue (MB) and rhodamine B (Rh B) dyes. The different types of dye exhibited very high and effective catalytic activity within few seconds. The theoretical investigations reveal that the unique synergistic effect of Ag-Cu nanoparticles and immobilization over ZnO assists in the reduction of 4-NP, MB and Rh B. Loading and leaching of metal nanoparticles were obtained using inductively coupled plasma atomic emission spectroscopy. Moreover, the stable and efficient recyclability of nanocomposite by centrifugation after completion of the reaction was demonstrated. The results lead to the design different possible bimetal on ZnO with boosting and an effective catalyst for the environmental applications.

  3. Synthesis of Two-Electron Bimetallic Cu-Ag and Cu-Au Clusters by using [Cu13 (S2 CNn Bu2 )6 (C≡CPh)4 ]+ as a Template.

    PubMed

    Silalahi, Rhone P Brocha; Chakrahari, Kiran Kumarvarma; Liao, Jian-Hong; Kahlal, Samia; Liu, Yu-Chiao; Chiang, Ming-Hsi; Saillard, Jean-Yves; Liu, C W

    2018-03-02

    Atomically precise Cu-rich bimetallic superatom clusters have been synthesized by adopting a galvanic exchange strategy. [Cu@Cu 12 (S 2 CN n Bu 2 ) 6 (C≡CPh) 4 ][CuCl 2 ] (1) was used as a template to generate compositionally uniform clusters [M@Cu 12 (S 2 CN n Bu 2 ) 6 (C≡CPh) 4 ][CuCl 2 ], where M=Ag (2), Au (3). Structures of 1, 2 and 3 were determined by single crystal X-ray diffraction and the results were supported by ESI-MS. The anatomies of clusters 1-3 are very similar, with a centred cuboctahedral cationic core that is surrounded by six di-butyldithiocarbamate (dtc) and four phenylacetylide ligands. The doped Ag and Au atoms were found to preferentially occupy the centre of the 13-atom cuboctahedral core. Experimental and theoretical analyses of the synthesized clusters revealed that both Ag and Au doping result in significant changes in cluster stability, optical characteristics and enhancement in luminescence properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Induced accumulation of Au, Ag and Cu in Brassica napus grown in a mine tailings with the inoculation of Aspergillus niger and the application of two chemical compounds.

    PubMed

    González-Valdez, Eduardo; Alarcón, Alejandro; Ferrera-Cerrato, Ronald; Vega-Carrillo, Héctor René; Maldonado-Vega, María; Salas-Luévano, Miguel Ángel; Argumedo-Delira, Rosalba

    2018-06-15

    This study evaluated the ability of Brassica napus for extracting gold (Au), silver (Ag) and copper (Cu) from a mine tailings, with the inoculation of two Aspergillus niger strains, and the application of ammonium thiocyanate (NH 4 SCN) or ammonium thiosulfate [(NH 4 ) 2 S 2 O 3 ]. After seven weeks of growth inoculated or non-inoculated plants were applied with 1 or 2 g kg -1 of either NH 4 SCN or (NH 4 ) 2 S 2 O 3 , respectively. Eight days after the application of the chemical compounds, plants were harvested for determining the total dry biomass, and the content of Au, Ag, and Cu in plant organs. Application of (NH 4 ) 2 S 2 O 3 or NH 4 SCN resulted in enhanced Au-accumulation in stems (447% and 507%, respectively), while either (NH 4 ) 2 S 2 O 3 +Aspergillus, or NH 4 SCN increased the Au-accumulation in roots (198.5% and 404%, respectively) when compared to the control. Treatments with (NH 4 ) 2 S 2 O 3 or (NH 4 ) 2 S 2 O 3 +Aspergillus significantly increased (P ≤ 0.001) the accumulation of Ag in leaves (677% and 1376%, respectively), while NH 4 SCN + Aspergillus, and (NH 4 ) 2 S 2 O 3 enhanced the accumulation in stems (7153% and 6717.5%). The Ag-accumulation in roots was stimulated by NH 4 SCN+ Aspergillus, and (NH 4 ) 2 S 2 O 3 + Aspergillus (132.5% and 178%, respectively), when compared to the control. The combination of NH 4 SCN+Aspergillus significantly enhanced the Cu-accumulation in leaves (228%); whereas NH 4 SCN+ Aspergillus, or (NH 4 ) 2 S 2 O 3 + Aspergillus resulted in greater accumulation of Cu in stems (1233.5% and 1580%, respectively) than the control. Results suggest that either NH 4 SCN or (NH 4 ) 2 S 2 O 3 (with or without Aspergillus) improved the accumulation of Au and Ag by B. napus. Accumulation of Au and Ag in plant organs overpassed the hyperaccumulation criterion (> 1 mg kg -1 of plant biomass); whereas Cu-accumulation in stems and roots also overpassed such criterion (> 1000 mg kg -1 ) by applying

  5. Anomalous photoelectric emission from Ag on zinc-phthalocyanine film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Senku, E-mail: senku@ele.kindai.ac.jp; Otani, Tomohiro; Fukuzawa, Ken

    2014-05-12

    Photoelectric emission from organic and metal thin films is generally observed with irradiation of photon energy larger than 4 eV. In this paper, however, we report photoelectric emission from Ag on a zinc-phthalocyanine (ZnPc) layer at a photon energy of 3.4 eV. The threshold energy for this photoelectric emission is much smaller than the work function of Ag estimated by conventional photoelectron spectroscopy. The photoelectric emission by low-energy photons is significant for Ag thicknesses of less than 1 nm. Photoelectron spectroscopy and morphological study of the Ag/ZnPc suggest that the anomalous photoelectric emission from the Ag surface is caused by a vacuum levelmore » shift at the Ag/ZnPc interface and by surface plasmons of the Ag nanoparticles.« less

  6. Polaronic transport in Ag-based quaternary chalcogenides

    NASA Astrophysics Data System (ADS)

    Wei, Kaya; Khabibullin, Artem R.; Stedman, Troy; Woods, Lilia M.; Nolas, George S.

    2017-09-01

    Low temperature resistivity measurements on dense polycrystalline quaternary chalcogenides Ag2+xZn1-xSnSe4, with x = 0, 0.1, and 0.3, indicate polaronic type transport which we analyze employing a two-component Holstein model based on itinerant and localized polaron contributions. Electronic structure property calculations via density functional theory simulations on Ag2ZnSnSe4 for both energetically similar kesterite and stannite structure types were also performed in order to compare our results to those of the compositionally similar but well known Cu2ZnSnSe4. This theoretical comparison is crucial in understanding the bonding that results in polaronic type transport for Ag2ZnSnSe4, as well as the structural and electronic properties of both crystal structure types. In addition to possessing this unique electronic transport, the thermal conductivity of Ag2ZnSnSe4 is low and decreases with increasing silver content. This work reveals unique structure-property relationships in materials that continue to be of interest for thermoelectric and photovoltaic applications.

  7. Frictional behavior and adhesion of Ag and Au films applied to aluminum oxide by oxygen-ion assisted Screen Cage Ion Plating (SCIP)

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.

    1994-01-01

    A modified dc-diode ion plating system, by utilizing a metallic screen cage as a cathode, is introduced for coating nonconductors such as ceramics. Screen cage ion plating (SCIP) is used to apply Ag and Au lubricating films on aluminum oxide surfaces. This process has excellent ability to coat around corners to produce three-dimensional coverage of the substrate. A dramatic increase in adhesion is achieved when plating is performed in a reactive 50 percent O2 - 50 percent Ar glow discharge compared to the adhesion when plating is performed in 100 percent Ar. The presence of oxygen ion assistance contributes to the excellent adhesion as measured in a pull-type adhesion tester. The Ag and Au film adhesion is significantly increased (less than 70MPa) and generally exceeds the cohesion of the substrate such that portions of the alumina are pulled out.

  8. A boron and gallium co-doped ZnO intermediate layer for ZnO/Si heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Lu, Yuanxi; Huang, Jian; Li, Bing; Tang, Ke; Ma, Yuncheng; Cao, Meng; Wang, Lin; Wang, Linjun

    2018-01-01

    ZnO (Zinc oxide)/Si (Silicon) heterojunctions were prepared by depositing n-type ZnO films on p-type single crystal Si substrates using magnetron sputtering. A boron and gallium co-doped ZnO (BGZO) high conductivity intermediate layer was deposited between aurum (Au) electrodes and ZnO films. The influence of the BGZO layer on the properties of Au/ZnO contacts and the performance of ZnO/Si heterojunctions was investigated. The results show an improvement in contact resistance by introducing the BGZO layer. Compared with the ZnO/Si heterojunction, the BGZO/ZnO/Si heterojunction exhibits a larger forward current, a smaller turn-on voltage and higher ratio of ultraviolet (UV) photo current/dark current.

  9. Development of a complex of instrumental nuclear-physical methods to detect PGE, Re, Au, and Ag in hard-to-analyze rocks and complex ores

    NASA Astrophysics Data System (ADS)

    Kolmogorov, Yu. P.; Mezentsev, N. A.; Mironov, A. G.; Parkhomenko, V. S.; Spiridonov, A. M.; Shaporenko, A. D.; Yusupov, T. S.; Zhmodik, S. M.; Zolotarev, K. V.; Anoshin, G. N.

    2009-05-01

    A system of methods to detect platinum group elements (PGE): Re, Au, and Ag in hard-to-analyze rocks and complex ores has been developed. It applies the SRXRF for Ru, Rh, Pd, and Ag and the INAA method for Os, Ir, Pt and Ag and implies mechanoactivation of probes to study. The results of measurement of standard samples of carbonaceous rocks and ores in order to PGE, gold, and silver confirm the possibility of detecting some of the above-listed elements with a detection limit of 10 ppb.

  10. Effect of ice-quenching on the change in hardness of a Pd-Au-Zn alloy during porcelain firing simulation.

    PubMed

    Shin, Hye-Jeong; Kim, Min-Jung; Kim, Hyung-Il; Kwon, Yong Hoon; Seol, Hyo-Joung

    2017-03-31

    This study examined the effect of ice-quenching after degassing on the change in hardness of a Pd-Au-Zn alloy during porcelain firing simulations. By ice-quenching after degassing, the specimens were softened due to homogenization without the need for an additional softening heat treatment. The lowered hardness by ice-quenching after degassing was recovered greatly from the first stage of porcelain firing process by controlling the cooling rate. The increase in hardness during cooling after porcelain firing was attributed to the precipitation of the f.c.t. PdZn phase containing Au, which caused severe lattice strain in the interphase boundary between the precipitates and matrix of the f.c.c. structure. The final hardness was slightly higher in the ice-quenched specimen than in the specimen cooled at stage 0 (the most effective cooling rate for alloy hardening) after degassing. This was attributed to the more active grain interior precipitation during cooling in the ice-quenched specimen after degassing.

  11. Matrix infrared spectroscopy and quantum-chemical calculations for the coinage-metal fluorides: comparisons of Ar-AuF, Ne-AuF, and Molecules MF2 and MF3.

    PubMed

    Wang, Xuefeng; Andrews, Lester; Brosi, Felix; Riedel, Sebastian

    2013-01-21

    The reactions of laser-ablated Au, Ag, and Cu atoms with F(2) in excess argon and neon gave new absorptions in the M-F stretching region of their IR spectra, which were assigned to metal-fluoride species. For gold, a Ng-AuF bond was identified in mixed neon/argon samples. However, this bonding was much weaker with AgF and CuF. Molecules MF(2) and MF(3) (M=Au, Ag, Cu) were identified from the isotopic distribution of the Cu and Ag atoms, comparison of the frequencies for three metal fluorides, and theoretical frequency calculations. The AuF(5) molecule was characterized by its strongest stretching mode and theoretical frequency calculations. Additional evidence was observed for the formation of the Au(2) F(6) molecule. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structural and plasmonic properties of noble metal doped ZnO nanomaterials

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok K.; Swart, H. C.; Kroon, R. E.

    2018-04-01

    Noble metal doped ZnO has been synthesized by the combustion method and the effect of different metals (Ag, Au, Pd) on the structural, morphological, optical, photoluminescence and localized surface plasmon resonance (LSPR) properties has been investigated. X-ray diffraction analysis revealed that the ZnO had a hexagonal wurtzite structure and the crystallite sizes were affected by the doping. The formation of noble metal nanoparticles (NPs) was investigated using transmission electron microscopy and diffuse reflectance spectra. The LSPR of the metallic NPs was predicted using Mie theory calculations. The absorption spectra were calculated using the Kubelka-Munk function and the optical bandgap varied from 3.06 to 3.18 eV for the different doping materials. The experimental results suggest that the origin of enhanced emission was due to direct interaction between the laser photons and the noble material NPs which in turn leads to photoemission transfer of electrons from the noble metals NPs to the conduction band of ZnO.

  13. The alloying effect and AgCl-directing growth for synthesizing a trimetallic nanoring with improved SERS

    NASA Astrophysics Data System (ADS)

    Han, Shuhua; Zhou, Guangju; Fu, Yunzhi; Ma, Ying; Xu, Li; Zou, Chao; Chen, Wei; Yang, Yun; Huang, Shaoming

    2015-12-01

    We report the synthesis of high quality trimetallic Au/Ag/Pt nanorings (TAAPNs) by using Au/Ag alloy decahedra (AAAD) as templates. The alloying effect and AgCl-directing growth have been investigated in detail during the formation of TAAPN. It was found that the doping of Ag in AAAD changes the surrounding environment of Au atoms and decreases the oxidization reduction potential (ORP) of [AuCl2]-/Au because of the alloying effect, resulting in the dissolved O2 molecules that serve as an effective etchant for oxidizing Au to Au(i). Ascorbic acid (AA) and chloroplatinic acid (H2PtCl6) are weak acids which can accelerate the etching by increasing the concentration of H+. The AgCl selectively absorbs on {100} of the decahedra and induces the preferential deposition of H2PtCl6 here via their complexing interaction. AA reduces Pt(iv) and Ag(i) to atoms which grow on {100} facets. The formed Pt/Ag layer changes the etching direction from along [100] to [111] and generates the TAAPN. Besides, it has been noted that the TAAPNs exhibit good Surface Enhanced Raman Scattering (SERS) performance.We report the synthesis of high quality trimetallic Au/Ag/Pt nanorings (TAAPNs) by using Au/Ag alloy decahedra (AAAD) as templates. The alloying effect and AgCl-directing growth have been investigated in detail during the formation of TAAPN. It was found that the doping of Ag in AAAD changes the surrounding environment of Au atoms and decreases the oxidization reduction potential (ORP) of [AuCl2]-/Au because of the alloying effect, resulting in the dissolved O2 molecules that serve as an effective etchant for oxidizing Au to Au(i). Ascorbic acid (AA) and chloroplatinic acid (H2PtCl6) are weak acids which can accelerate the etching by increasing the concentration of H+. The AgCl selectively absorbs on {100} of the decahedra and induces the preferential deposition of H2PtCl6 here via their complexing interaction. AA reduces Pt(iv) and Ag(i) to atoms which grow on {100} facets. The formed

  14. Smooth ZnO:Al-AgNWs Composite Electrode for Flexible Organic Light-Emitting Device.

    PubMed

    Wang, Hu; Li, Kun; Tao, Ye; Li, Jun; Li, Ye; Gao, Lan-Lan; Jin, Guang-Yong; Duan, Yu

    2017-12-01

    The high interest in organic light-emitting device (OLED) technology is largely due to their flexibility. Up to now, indium tin oxide (ITO) films have been widely used as transparent conductive electrodes (TCE) in organic opto-electronic devices. However, ITO films, typically deposited on glass are brittle and they make it difficult to produce flexible devices, restricting their use for flexible devices. In this study, we report on a nano-composite TCE, which is made of a silver nanowire (AgNW) network, combined with aluminum-doped zinc oxide (ZnO:Al, AZO) by atomic layer deposition. The AgNWs/AZO composite electrode on photopolymer substrate shows a low sheet resistance of only 8.6 Ω/sq and a high optical transmittance of about 83% at 550 nm. These values are even comparable to conventional ITO on glass. In addition, the electrodes also have a very smooth surface (0.31 nm root-mean-square roughness), which is flat enough to contact the OLED stack. Flexible OLED were built with AgNWs/AZO electrodes, which suggests that this approach can replace conventional ITO TCEs in organic electronic devices in the future.

  15. Smooth ZnO:Al-AgNWs Composite Electrode for Flexible Organic Light-Emitting Device

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Li, Kun; Tao, Ye; Li, Jun; Li, Ye; Gao, Lan-Lan; Jin, Guang-Yong; Duan, Yu

    2017-01-01

    The high interest in organic light-emitting device (OLED) technology is largely due to their flexibility. Up to now, indium tin oxide (ITO) films have been widely used as transparent conductive electrodes (TCE) in organic opto-electronic devices. However, ITO films, typically deposited on glass are brittle and they make it difficult to produce flexible devices, restricting their use for flexible devices. In this study, we report on a nano-composite TCE, which is made of a silver nanowire (AgNW) network, combined with aluminum-doped zinc oxide (ZnO:Al, AZO) by atomic layer deposition. The AgNWs/AZO composite electrode on photopolymer substrate shows a low sheet resistance of only 8.6 Ω/sq and a high optical transmittance of about 83% at 550 nm. These values are even comparable to conventional ITO on glass. In addition, the electrodes also have a very smooth surface (0.31 nm root-mean-square roughness), which is flat enough to contact the OLED stack. Flexible OLED were built with AgNWs/AZO electrodes, which suggests that this approach can replace conventional ITO TCEs in organic electronic devices in the future.

  16. Environment-resistive coating for the thin-film-based superconducting fault-current limiter Ag/Au-Ag/YBa 2Cu 3O 7/CeO 2/Al 2O 3

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Kondo, W.; Tsukada, K.; Sohma, M.; Yamaguchi, I.; Kumagai, T.; Manabe, T.; Arai, K.; Yamasaki, H.

    2010-02-01

    We have studied environment-resistive coatings (ERC) for the thin-film-based superconducting fault-current limiter (SFCL) Ag/Au-Ag/YBa 2Cu 3O 7/CeO 2/Al 2O 3. We evaluated nine candidate ERC materials by two accelerating-environment tests, and revealed that the shellac- and the fluorine-resin have a high environmental resistance. Especially, the shellac resin almost completely protected Jc of an element exposed to 60 °C saturated water vapor for 2 h (3.4->3.2 MA/cm 2). We also performed a practical operation test of SFCL using an element half covered by shellac, and found that the ERC does not diminish the current limiting properties similarly to the previous results of the Teflon-coated SFCL [1].

  17. Crystal structure and luminescence properties of silver in AgM(PO{sub 3}){sub 3} (M = Mg, Zn, Ba) polyphosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belharouak, I.; Parent, C.; Tanguy, B.

    1999-06-01

    The relationships between the crystal structures and the luminescent properties of the AgM(PO{sub 3}){sub 3} (M = Mg, Zn, Ba) polyphosphates are reported in comparison with those of AgPO{sub 3}. The structure of the magnesium and zinc phosphates is characterized by long polyphosphates chains connected to infinite chains of [AgO{sub 6}] and [MO{sub 6}] polyhedra sharing faces. The basic structural phosphate unit in AgBa(PO{sub 3}){sub 3} is a P{sub 3}O{sub 9} ring. Silver atoms are located in distorted octahedral sites. Two types of luminescent centers have been observed. The UV emission observed in all these materials is typical of isolatedmore » Ag{sup +} ions. The visible emission observed only in the zinc phosphate is probably the result of a silver-zinc association. 16 refs., 8 figs., 3 tabs.« less

  18. Contents of Ag and other metals in food-contact plastics with nanosilver or Ag ion and their migration into food simulants.

    PubMed

    Ozaki, Asako; Kishi, Eri; Ooshima, Tomoko; Hase, Atsushi; Kawamura, Yoko

    2016-09-01

    Six nanosilver-labelled products and five silver ion (Ag(+))-labelled products were investigated to measure the migration of Ag from food-contact plastics, including nanosilver into various food simulants. The products were obtained in Japanese markets in 2012. Zinc (Zn), another major antimicrobial agent, and three harmful metals, cadmium (Cd), lead (Pb) and arsenic (As), were also examined. Ag and Zn were detected in all six nanosilver products at concentrations of 21-200 and 8.4-140 mg kg(-1), respectively. These metals were also detected in all five Ag(+) products at the same level as nanosilver products. Cd, Pb and As were not detected in any sample. Migrations of Ag and Zn were highest in 4% acetic acid, but also observed in water and 20% ethanol. Big differences were not observed in the migration ratio between nanosilver products and Ag(+) products. The ultrafiltration experiments suggested that the Ag that migrated from nanosilver products into 4% acetic acid was in its ionic form, while that into water and 20% ethanol was in its nanoparticle form.

  19. Effect of Silver Dopants on the ZnO Thin Films Prepared by a Radio Frequency Magnetron Co-Sputtering System

    PubMed Central

    Liu, Fang-Cheng; Li, Jyun-Yong; Chen, Tai-Hong; Chang, Chun-How; Lee, Ching-Ting; Hsiao, Wei-Hua; Liu, Day-Shan

    2017-01-01

    Ag-ZnO co-sputtered films at various atomic ratios of Ag (Ag/(Ag + Zn) at.%) were prepared by a radio frequency magnetron cosputtering system, using the co-sputtered targets of Ag and ZnO. The activation of the Ag acceptors (AgZn) and the formation of the Ag aggregations (Ag0) in the ZnO matrix were investigated from XRD, Raman scattering, and XPS measurements. The Ag-ZnO co-sputtered film behaving like a p-type conduction was achievable after annealing at 350 °C under air ambient for 1 h. PMID:28773159

  20. Fermi Surface as a Driver for the Shape-Memory Effect in AuZn

    NASA Astrophysics Data System (ADS)

    Lashley, Jason

    2005-03-01

    Martensites are materials that undergo diffusionless, solid-state transitions. The martensitic transition yields properties that depend on the history of the material and if reversible can allow it to recover its previous shape after plastic deformation. This is known as the shape-memory effect (SME). We have succeeded in identifying the operative electronic mechanism responsible for the martensitic transition in the shape-memory alloy AuZn by using Fermi-surface measurements (de Haas-van Alphen oscillations) and band-structure calculations. Our findings suggest that electronic band structure gives rise to special features on the Fermi surface that is important to consider in the design of SME alloys.

  1. Structural and Solar Cell Properties of a Ag-Containing Cu2ZnSnS4 Thin Film Derived from Spray Pyrolysis.

    PubMed

    Nguyen, Thi Hiep; Kawaguchi, Takato; Chantana, Jakapan; Minemoto, Takashi; Harada, Takashi; Nakanishi, Shuji; Ikeda, Shigeru

    2018-02-14

    A silver (Ag)-incorporated kesterite Cu 2 ZnSnS 4 (CZTS) thin film was fabricated by a facile spray pyrolysis method. Crystallographic analyses indicated successful incorporation of various amounts of Ag up to a Ag/(Ag + Cu) ratio of ca. 0.1 into the crystal lattice of CZTS in a homogeneous manner without formation of other impurity compounds. From the results of morphological investigations, Ag-incorporated films had larger crystal grains than the CZTS film. The sample with a relatively low Ag content (Ag/(Ag + Cu) of ca. 0.02) had a compact morphology without appreciable voids and pinholes. However, an increase in the Ag content in the CZTS film (Ag/(Ag + Cu) ca. 0.10) induced the formation of a large number of pinholes. As can be expected from these morphological properties, the best sunlight conversion efficiency was obtained by the solar cell based on the film with Ag/(Ag + Cu) of ca. 0.02. Electrostructural analyses of the devices suggested that the Ag-incorporated film in the device achieved reduction in the amounts of unfavorable copper on zinc antisite defects compared to the bare CZTS film. Moreover, the use of a Ag-incorporated film improved band alignment at the CdS(buffer)-CZTS interface. These alterations should also contribute to enhancement of device properties.

  2. Partial substitution of Zn Effects on the Structural and Electrical Properties of High Temperature Hg0.95Ag0.05Ba2Ca2Cu3O8+δ Superconductors

    NASA Astrophysics Data System (ADS)

    Abed, Noor S.; Fathi, Sabah J.; Jassim, Kareem A.; Mahdi, Shatha H.

    2018-05-01

    The effect of the Ag partial substitution at Hg site in HgOδ layer and Zn partial substitution at Ca site in CaO layer on the structure,Tc,electrical properties, and oxygen content for Hg-1223 have been studied. Bulk polycrystalline Hg1-xAgxBa2Ca2-yZnyCu3O8+δ compound samples with x=0.05 and y=0.0, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3, are synthesized by a solid state reaction process. Structural properties are studied by using X-ray powder pattern, the high temperature phase superconductor (Hg-1223) of the tetragonal structure didn't change with the partial substitution of Zn and Ag ions, lattice parameters c,c/a are established to vary with Ag and Zn- substitution. The surface morphology has been studied by using atomic force microscopes (AFM), showed that all specimens have good crystalline and homogeneous surface. Also give a best nano size value is 75.72 nm at x=0.05 and y=0.3. Four probe technique is used to measure Tc. The Tc were found to be increases from 129 K to 147 K and oxygen content were found to be increases with increasing Zn. In addition, dielectric properties (dielectric constant, dielectric loss factor, and the alternating electrical conductivity) are characterized directly by relating with Ag and Zn concentration.

  3. Bipolar Ag-Zn battery

    NASA Astrophysics Data System (ADS)

    Giltner, L. John

    1994-02-01

    The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected

  4. Bipolar Ag-Zn battery

    NASA Technical Reports Server (NTRS)

    Giltner, L. John

    1994-01-01

    The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected

  5. X-ray Absorption Spectroscopy Combined with Time-Dependent Density Functional Theory Elucidates Differential Substitution Pathways of Au(I) and Au(III) with Zinc Fingers.

    PubMed

    Abbehausen, Camilla; de Paiva, Raphael Enoque Ferraz; Bjornsson, Ragnar; Gomes, Saulo Quintana; Du, Zhifeng; Corbi, Pedro Paulo; Lima, Frederico Alves; Farrell, Nicholas

    2018-01-02

    A combination of two elements' (Au, Zn) X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TD-DFT) allowed the elucidation of differential substitution pathways of Au(I) and Au(III) compounds reacting with biologically relevant zinc fingers (ZnFs). Gold L 3 -edge XAS probed the interaction of gold and the C-terminal Cys 2 HisCys finger of the HIV-1 nucleocapsid protein NCp7, and the Cys 2 His 2 human transcription factor Sp1. The use of model compounds helped assign oxidation states and the identity of the gold-bound ligands. The computational studies accurately reproduced the experimental XAS spectra and allowed the proposition of structural models for the interaction products at early time points. The direct electrophilic attack on the ZnF by the highly thiophilic Au(I) resulted in a linear P-Au-Cys coordination sphere after zinc ejection whereas for the Sp1, loss of PEt 3 results in linear Cys-Au-Cys or Cys-Au-His arrangements. Reactions with Au(III) compounds, on the other hand, showed multiple binding modes. Prompt reaction between [AuCl(dien)] 2+ and [Au(dien)(DMAP)] 3+ with Sp1 showed a partially reduced Au center and a final linear His-Au-His coordination. Differently, in the presence of NCp7, [AuCl(dien)] 2+ readily reduces to Au(I) and changes from square-planar to linear geometry with Cys-Au-His coordination, while [Au(dien)(DMAP)] 3+ initially maintains its Au(III) oxidation state and square-planar geometry and the same first coordination sphere. The latter is the first observation of a "noncovalent" interaction of a Au(III) complex with a zinc finger and confirms early hypotheses that stabilization of Au(III) occurs with N-donor ligands. Modification of the zinc coordination sphere, suggesting full or partial zinc ejection, is observed in all cases, and for [Au(dien)(DMAP)] 3+ this represents a novel mechanism for nucleocapsid inactivation. The combination of XAS and TD-DFT presents the first direct experimental

  6. Understanding the adsorption of CuPc and ZnPc on noble metal surfaces by combining quantum-mechanical modelling and photoelectron spectroscopy.

    PubMed

    Huang, Yu Li; Wruss, Elisabeth; Egger, David A; Kera, Satoshi; Ueno, Nobuo; Saidi, Wissam A; Bucko, Tomas; Wee, Andrew T S; Zojer, Egbert

    2014-03-07

    Phthalocyanines are an important class of organic semiconductors and, thus, their interfaces with metals are both of fundamental and practical relevance. In the present contribution we provide a combined theoretical and experimental study, in which we show that state-of-the-art quantum-mechanical simulations are nowadays capable of treating most properties of such interfaces in a quantitatively reliable manner. This is shown for Cu-phthalocyanine (CuPc) and Zn-phthalocyanine (ZnPc) on Au(111) and Ag(111) surfaces. Using a recently developed approach for efficiently treating van der Waals (vdW) interactions at metal/organic interfaces, we calculate adsorption geometries in excellent agreement with experiments. With these geometries available, we are then able to accurately describe the interfacial electronic structure arising from molecular adsorption. We find that bonding is dominated by vdW forces for all studied interfaces. Concomitantly, charge rearrangements on Au(111) are exclusively due to Pauli pushback. On Ag(111), we additionally observe charge transfer from the metal to one of the spin-channels associated with the lowest unoccupied π-states of the molecules. Comparing the interfacial density of states with our ultraviolet photoelectron spectroscopy (UPS) experiments, we find that the use of a hybrid functionals is necessary to obtain the correct order of the electronic states.

  7. New insights into micro/nanoscale combined probes (nanoAuger, μXPS) to characterize Ag/Au@SiO2 core-shell assemblies

    NASA Astrophysics Data System (ADS)

    Ledeuil, J. B.; Uhart, A.; Soulé, S.; Allouche, J.; Dupin, J. C.; Martinez, H.

    2014-09-01

    This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming electron signal (potentially affected by the topography of the material) during analysis. SEM experiments have unambiguously revealed the hollow-morphology of the metal core, while Auger spectroscopy observations showed chemical heterogeneity within the particles (as silver and gold are randomly found in the core ring). To our knowledge, this is the first time that Auger nano probe spectroscopy has been used and successfully optimized for the study of some complex metal/inorganic interfaces at such a high degree of resolution (~12 nm). Complementarily, XPS Au 4f and Ag 3d peaks were finally detected attesting the possibility of access to the whole chemistry of such nanostructured assemblies.This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming

  8. Use of ZnO:Tb down-conversion phosphor for Ag nanoparticle plasmon absorption using a He-Cd ultraviolet laser.

    PubMed

    Abbass, A E; Swart, H C; Kroon, R E

    2016-09-01

    Although noble metal nanoparticles (NPs) have attracted some attention for potentially enhancing the luminescence of rare earth ions for phosphor lighting applications, the absorption of energy by NPs can also be beneficial in biological and polymer applications where local heating is desired, e.g. photothermal applications. Strong interaction between incident laser light and NPs occurs only when the laser wavelength matches the NP plasmon resonance. Although lasers with different wavelengths are available and the NP plasmon resonance can be tuned by changing its size and shape or the dielectric medium (host material), in this work, we consider exciting the plasmon resonance of Ag NPs indirectly with a He-Cd UV laser using the down-conversion properties of Tb(3+) ions in ZnO. The formation of Ag NPs was confirmed by X-ray diffraction, transmission electron microscopy and UV-vis diffuse reflectance measurements. Radiative energy transfer from the Tb(3+) ions to the Ag NPs resulted in quenching of the green luminescence of ZnO:Tb and was studied by means of spectral overlap and lifetime measurements. The use of a down-converting phosphor, possibly with other rare earth ions, to indirectly couple a laser to the plasmon resonance wavelength of metal NPs is therefore successfully demonstrated and adds to the flexibility of such systems. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Feruvite from the Sullivan Pb-Zn-Ag deposit, British Columbia

    USGS Publications Warehouse

    Jiang, S.-Y.; Palmer, M.R.; McDonald, A.M.; Slack, J.F.; Leitch, C.H.B.

    1996-01-01

    Feruvite, an uncommon Ca- and Fe2+-rich tourmaline species, has been discovered in the footwall of the Sullivan Pb-Zn-Ag deposit (British Columbia) near gabbro sills and dikes. Its chemical composition varies according to occurrence: feruvite from the shallow footwall has lower Ca, higher Al, and higher X-site vacancies than that from the deep footwall. The major chemical substitution involved in the feruvite is the exchange vector CaMgO???-1Al-1(OH)-1. The most important factor controlling feruvite formation at Sullivan is likely the reaction of Fe-rich hydrothermal fluids with Ca-rich minerals in gabbro and host rocks. This reaction led to the breakdown of Ca-rich minerals (plagioclase and hornblende), with release of Ca to solution and its incorporation into feruvite. This process probably postdated the main stages of formation of fine-grained, intermediate schorl-dravite in the tourmalinite pipe in the footwall, and is attributed to postore intrusion of gabbro and associated albite-chlorite-pyrite alteration.

  10. Influence of Dopants in ZnO Films on Defects

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Xiao; Weng, Hui-Min; Zhang, Yang; Ma, Xing-Ping; Ye, Bang-Jiao

    2008-12-01

    The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique. The results show S that parameters meet SAl > Sun > SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films. Zinc vacancies are found in all ZnO films with different dopants. According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film. When Al atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films. The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.

  11. Noble gas data from Goldfield and Tonopah epithermal Au-Ag deposits, ancestral Cascades Arc, USA: Evidence for a primitive mantle volatile source

    USGS Publications Warehouse

    Manning, Andrew H.; Hofstra, Albert H.

    2017-01-01

    The He, Ne, and Ar isotopic composition of fluid inclusions in ore and gangue minerals were analyzed to determine the source of volatiles in the high-grade Goldfield and Tonopah epithermal Au-Ag deposits in southwestern Nevada, USA. Ar and Ne are mainly atmospheric, whereas He has only a minor atmospheric component. Corrected 3He/4He ratios (with atmospheric He removed) range widely from 0.05 to 35.8 times the air 3He/4He ratio (RA), with a median of 1.43 RA. Forty-one percent of measured 3He/4He ratios are ≥4 RA, corresponding to ≥50% mantle He assuming a mantle ratio of 8 RA. These results suggest that mafic magmas were part of the magmatic-hydrothermal system underlying Goldfield and Tonopah, and that associated mantle-sourced volatiles may have played a role in ore formation. The three highest corrected 3He/4He ratios of 17.0, 23.7, and 35.8 RAindicate a primitive mantle He source and are the highest yet reported for any epithermal-porphyry system and for the Cascades arc region. Compiled 3He/4He measurements from epithermal-porphyry systems in subduction-related magmatic arcs around the world (n = 209) display a statistically significant correlation between 3He/4He and Au-Ag grade. The correlation suggests that conditions which promote higher fluid inclusion 3He/4He ratios (abundance of mantle volatiles and focused upward volatile transport) have some relation to conditions that promote higher Au-Ag grades (focused flow of metal-bearing fluids and efficient chemical traps). Results of this and previous investigations of He isotopes in epithermal-porphyry systems are consistent with the hypothesis posed in recent studies that mafic magmas serve an important function in the formation of these deposits.

  12. Novel transparent high-performance AgNWs/ZnO electrodes prepared on unconventional substrates with 3D structured surfaces

    NASA Astrophysics Data System (ADS)

    Lan, Wei; Yang, Zhiwei; Zhang, Yue; Wei, Yupeng; Wang, Pengxiang; Abas, Asim; Tang, Guomei; Zhang, Xuetao; Wang, Junya; Xie, Erqing

    2018-03-01

    With the development of optoelectronic devices with three-dimensional (3D) structured surfaces, transparent electrodes that can be deposited on non-plane substrates have become increasingly important. In this paper, novel transparent silver nanowire (AgNWs)/ZnO film electrodes were uniformly prepared on treated 3D glass and PET substrates with a combination of spin-coating and heat-welding. The AgNWs/ZnO films show a transmittance of ∼88% and a sheet resistance of ∼10 Ω/sq. They are comparable with commercial ITO films. Furthermore, only a small in-plane resistance variation of ∼1 Ω/sq was measured using four-point probe mapping in films with a 10 cm × 10 cm area. These results confirm that these novel film electrodes are very uniform. Both electrical resistance and optical transmittance of the films remain mostly intact after 1000 bending cycles and tape peeling-tests with 10 cycles. The films show high thermal stability for more than one month at 80 °C. The strategy provides a new route for the design and fabrication of optoelectronic devices with 3D structured surfaces.

  13. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    PubMed

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  14. Hydrothermal Growth of ZnO Nanowires on UV-Nanoimprinted Polymer Structures.

    PubMed

    Park, Sooyeon; Moore, Sean A; Lee, Jaejong; Song, In-Hyouk; Farshchian, Bahador; Kim, Namwon

    2018-05-01

    Integration of zinc oxide (ZnO) nanowires on miniaturized polymer structures can broaden its application in multi-functional polymer devices by taking advantages of unique physical properties of ZnO nanowires and recent development of polymer microstructures in analytical systems. In this paper, we demonstrate the hydrothermal growth of ZnO nanowires on polymer microstructures fabricated by UV nanoimprinting lithography (NIL) using a polyurethane acrylate (PUA). Since PUA is a siloxane-urethane-acrylate compound containing the alpha-hydroxyl ketone, UV-cured PUA include carboxyl groups, which inhibit and suppress the nucleation and growth of ZnO nanowires on polymer structures. The presence of carboxyl groups in UV-cured PUA was substantiated by Fourier transform infrared spectroscopy (FTIR), and a Ag thin film was deposited on the nanoimprinted polymer structures to limit their inhibitive influence on the growth of ZnO nanowires. Furthermore, the naturally oxidized Ag layer (Ag2O) reduced crystalline lattice mismatches at the interface between ZnO-Ag during the seed annealing process. The ZnO nanowires grown on the Ag-deposited PUA microstructures were found to have comparable morphological characteristics with ZnO nanowires grown on a Si wafer.

  15. Interfacial Phenomena in Al/Al, Al/Cu, and Cu/Cu Joints Soldered Using an Al-Zn Alloy with Ag or Cu Additions

    NASA Astrophysics Data System (ADS)

    Pstruś, Janusz; Gancarz, Tomasz

    2014-05-01

    The studies of soldered joints were carried out in systems: Al/solder/Al, Al/solder/Cu, Cu/solder/Cu, where the solder was (Al-Zn)EUT, (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Ag and (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Cu addition. Brazing was performed at 500 °C for 3 min. The EDS analysis indicated that the composition of the layers starting from the Cu pad was CuZn, Cu5Zn8, and CuZn4, respectively. Wetting tests were performed at 500 °C for 3, 8, 15, and 30 min, respectively. Thickness of the layers and their kinetics of growth were measured based on the SEM micrographs. The formation of interlayers was not observed from the side of Al pads. On the contrary, dissolution of the Al substrate and migration of Al-rich particles into the bulk of the solder were observed.

  16. Nano-photo active cellulosic fabric through in situ phytosynthesis of star-like Ag/ZnO nanocomposites: Investigation and optimization of attributes associated with photocatalytic activity.

    PubMed

    Aladpoosh, Razieh; Montazer, Majid

    2016-05-05

    In this study, nano-photo active cellulosic fabric was prepared through in situ phytosynthesis of star-like Ag/ZnO nanocomposites using the ashes of Seidlitzia rosmarinus plants so-called Keliab. This is provided alkali media as a vital condition for synthesis of nanocomposites, further increasing the reduce-ability of cellulosic chains by activation of hydroxyl groups. The intermolecular dehydrolysis of intermediates ions under thermal and alkaline conditions leads to formation of Ag/ZnO heterostructure. Various analytical techniques were employed to confirm Ag/ZnO nanocomposites on the cotton fabric. The surface morphology, crystal phase and chemical structure of the treated fabrics were characterized by field emission and scanning electron microscopy (FE-SEM and SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX). Moreover, influence of precursors: silver nitrate, zinc acetate and Keliab solution on attributes associated with photocatalytic activities including self-cleaning, whiteness and wettability was investigated via central composite design (CCD). The treated cotton samples exhibited self-cleaning activities through methylene blue degradation under day-light exposure along with improved wettability and whiteness. The prepared sample in optimized conditions showed good antibacterial activities against Staphylococcus aureus and Escherichia coli with enhanced fabric tensile strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Measurement of antiproton annihilation on Cu, Ag and Au with emulsion films

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Huse, T.; Kawada, J.; Kellerbauer, A.; Kimura, M.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Rienaecker, B.; RØhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Vamosi, S.; Vladymyrov, M.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.

    2017-04-01

    The characteristics of low energy antiproton annihilations on nuclei (e.g. hadronization and product multiplicities) are not well known, and Monte Carlo simulation packages that use different models provide different descriptions of the annihilation events. In this study, we measured the particle multiplicities resulting from antiproton annihilations on nuclei. The results were compared with predictions obtained using different models in the simulation tools GEANT4 and FLUKA. For this study, we exposed thin targets (Cu, Ag and Au) to a very low energy antiproton beam from CERN's Antiproton Decelerator, exploiting the secondary beamline available in the AEgIS experimental zone. The antiproton annihilation products were detected using emulsion films developed at the Laboratory of High Energy Physics in Bern, where they were analysed at the automatic microscope facility. The fragment multiplicity measured in this study is in good agreement with results obtained with FLUKA simulations for both minimally and heavily ionizing particles.

  18. Long-range electron transfer in porphyrin-containing [2]-rotaxanes: tuning the rate by metal cation coordination.

    PubMed

    Andersson, Mikael; Linke, Myriam; Chambron, Jean-Claude; Davidsson, Jan; Heitz, Valérie; Hammarström, Leif; Sauvage, Jean-Pierre

    2002-04-24

    A series of [2]-rotaxanes has been synthesized in which two Zn(II)-porphyrins (ZnP) electron donors were attached as stoppers on the rod. A macrocycle attached to a Au(III)-porphyrin (AuP+) acceptor was threaded on the rod. By selective excitation of either porphyrin, we could induce an electron transfer from the ZnP to the AuP+ unit that generated the same ZnP*+-AuP* charge-transfer state irrespective of which porphyrin was excited. Although the reactants were linked only by mechanical or coordination bonds, electron-transfer rate constants up to 1.2x10(10) x s(-1) were obtained over a 15-17 A edge-to-edge distance between the porphyrins. The resulting charge-transfer state had a relatively long lifetime of 10-40 ns and was formed in high yield (>80%) in most cases. By a simple variation of the link between the reactants, viz. a coordination of the phenanthroline units on the rotaxane rod and ring by either Ag+ or Cu+, we could enhance the electron-transfer rate from the ZnP to the excited 3AuP+. We interpret our data in terms of an enhanced superexchange mechanism with Ag+ and a change to a stepwise hopping mechanism with Cu+, involving the oxidized Cu(phen)22+ unit as a real intermediate. When the ZnP unit was excited instead, electron transfer from the excited 1ZnP to AuP+ was not affected, or even slowed, by Ag+ or Cu+. We discuss this asymmetry in terms of the different orbitals involved in mediating the reaction in an electron- and a hole-transfer mechanism. Our results show the possibility to tune the rates of electron transfer between noncovalently linked reactants by a convenient modification of the link. The different effect of Ag+ and Cu+ on the rate with ZnP and AuP+ excitation shows an additional possibility to control the electron-transfer reactions by selective excitation. We also found that coordination of the Cu+ introduced an energy-transfer reaction from 1ZnP to Cu(phen)2+ (k = 5.1x10(9) x s(-1)) that proceeded in competition with electron

  19. Amperometric determination of total phenolic content in wine by laccase immobilized onto silver nanoparticles/zinc oxide nanoparticles modified gold electrode.

    PubMed

    Chawla, Sheetal; Rawal, Rachna; Kumar, Dheeraj; Pundir, Chandra Shekhar

    2012-11-01

    A method is described for construction of a highly sensitive amperometric biosensor for measurement of total phenolic compounds in wine by immobilizing laccase covalently onto nanocomposite of silver nanoparticles (AgNPs)/zinc oxide nanoparticles (ZnONPs) electrochemically deposited onto gold (Au) electrode. Scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy were applied for characterization of the surface morphology of the modified electrode, and cyclic voltammetry was used to investigate the electrochemical properties of the proposed electrode toward the oxidation of guaiacol. The linearity between the oxidation current and the guaiacol concentration was obtained in a range of 0.1 to 500μM with a detection limit of 0.05μM (signal-to-noise ratio (S/N)=3) and sensitivity of 0.71μAμM(-1)cm(-2). The electrode showed increased oxidation and reduced reduction current with the deposition of AgNPs/ZnONPs on it. R(CT) values of ZnONPs/Au, AgNPs/ZnONPs/Au, and laccase/AgNPs/ZnONPs/Au electrode were 220, 175, and 380Ω, respectively. The biosensor showed an optimal response within 8s at pH 6.0 (0.1M acetate buffer) and 35°C when operated at 0.22V against Ag/AgCl. Analytical recovery of added guaiacol was 98%. The method showed a good correlation (r=0.99) with the standard spectrophotometric method, with the regression equation being y=1.0053x-3.5541. The biosensor lost 25% of its initial activity after 200 uses over 5months. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Photocatalytic detoxification of Acid Red 18 by modified ZnO catalyst under sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Senthilraja, A.; Subash, B.; Dhatshanamurthi, P.; Swaminathan, M.; Shanthi, M.

    2015-03-01

    In this work, hybrid structured Bi-Au-ZnO composite was prepared by precipitation-decomposition method. This method is mild, economical and efficient. Bi-Au-ZnO was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrum (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL) and BET surface area measurements. Photocatalytic activity of Bi-Au-ZnO was evaluated by irradiating the Acid Red 18 (AR 18) dye solution under sun light. Heterostructured Bi-Au-ZnO photocatalyst showed higher photocatalytic activity than those of individual Bi-ZnO, Au-ZnO, bare ZnO, and TiO2-P25 at pH 11. The effects of operational parameters such as the amount of catalyst dosage, dye concentration, initial pH on photo mineralization of AR 18 dye have been analyzed. The mineralization of AR 18 has been confirmed by chemical oxygen demand (COD) measurements. A possible mechanism is proposed for the degradation of AR 18 under sun light. Finally, Bi-Au-ZnO heterojunction photocatalyst was more stable and could be easily recycled several times opening a new avenue for potential industrial applications.