Science.gov

Sample records for ag cadmium cd

  1. Cladding technique for development of Ag In Cd decoupler

    NASA Astrophysics Data System (ADS)

    Teshigawara, M.; Harada, M.; Saito, S.; Kikuchi, K.; Kogawa, H.; Ikeda, Y.; Kawai, M.; Kurishita, H.; Konashi, K.

    2005-08-01

    To develop a Ag (silver)-In (indium)-Cd (cadmium) alloy decoupler, a method is needed to bond the decoupler between two plates of the Al alloy (A6061-T6). We found that a better HIP condition was temperature, pressure and holding time at 803 K, 100 MPa and 1 h, respectively, for small test pieces ( ϕ 22 mm in diam. × 5 mm in height). Especially, a sandwich case (a Ag-In plate with thickness of 0.5 mm between two Ag-Cd plates with thickness of 1.25 mm) gave easier (or better) bonding results. Though a hardened layer is found in the bonding layer, the rupture strength of the bonding layer is more than 30 MPa, which is higher than the design stress in our application.

  2. Enhanced thermoelectric performance of CdO : Ag nanocomposites.

    PubMed

    Gao, Linjie; Wang, Shufang; Liu, Ran; Zha, Xinyu; Sun, Niefeng; Wang, Shujie; Wang, Jianglong; Fu, Guangsheng

    2016-07-26

    CdO : Ag nanocomposites with metallic Ag nanoparticles embedded in the polycrystalline CdO matrix were synthesized by the solid-state reaction method. The addition of Ag led to increased grain boundaries of CdO and created numerous CdO/Ag interfaces. By incorporating Ag into the CdO matrix, the power factor was increased which was probably due to the carrier energy filtering effect induced by the enhanced energy-dependent scattering of electrons. In addition, reduced thermal conductivity was also achieved by stronger phonon scattering from grain boundaries, CdO/Ag interfaces and Ag nanoparticles. These concomitant effects resulted in enhanced ZT values for all CdO : Ag nanocomposites, demonstrating that the strategy of introducing metallic Ag nanoparticles into the CdO host was very effective in optimizing the thermoelectric performance. PMID:27411573

  3. Assessment of cadmium (Cd) concentration in arable soil in China.

    PubMed

    Zhang, Xiuying; Chen, Dongmei; Zhong, Taiyang; Zhang, Xiaomin; Cheng, Min; Li, Xinhui

    2015-04-01

    Cadmium (Cd) concentration in arable soil has drawn broad public attention due to its direct effect on Cd concentration in food. However, there have been few studies of surveying Cd accumulation on the national scale in China. This paper collected 486 studies of Cd concentrations in Chinese arable soil. The results showed that the average Cd concentration was 0.27 mg/kg, higher than its background value, indicating that Cd had been introduced into arable soil by human activity. The Cd concentrations in areas of mining and smelting, urban areas, and areas irrigated by wastewater were obviously higher than that in remote areas. Spatially, Cd concentrations were lower in the north than those in the south, and many hotspots existed throughout China due to mining and smelting activities. Most Cd in the arable soil were accumulated from external sources in all investigated provinces except Ningxia Hui Autonomous Region. PMID:25483971

  4. Development of aluminum (Al5083)-clad ternary Ag In Cd alloy for JSNS decoupled moderator

    NASA Astrophysics Data System (ADS)

    Teshigawara, M.; Harada, M.; Saito, S.; Oikawa, K.; Maekawa, F.; Futakawa, M.; Kikuchi, K.; Kato, T.; Ikeda, Y.; Naoe, T.; Koyama, T.; Ooi, T.; Zherebtsov, S.; Kawai, M.; Kurishita, H.; Konashi, K.

    2006-09-01

    To develop Ag (silver)-In (indium)-Cd (cadmium) alloy decoupler, a method is needed to bond the decoupler between Al alloy (Al5083) and the ternary Ag-In-Cd alloy. We found that a better HIP condition was temperature, pressure and holding time at 803 K, 100 MPa and 10 min. for small test pieces ( ϕ22 mm in dia. × 6 mm in height). Hardened layer due to the formation of AlAg 2 was found in the bonding layer, however, the rupture strength of the bonding layer is more than 30 MPa, the calculated design stress. Bonding tests of a large size piece (200 × 200 × 30 mm 3), which simulated the real scale, were also performed according to the results of small size tests. The result also gave good bonding and enough required-mechanical-strength.

  5. Elastic Constants of the β1-AgCd Alloy

    NASA Astrophysics Data System (ADS)

    Matsuo, Yoshie; Makita, Tomoko; Suzuki, Toshiharu; Nagasawa, Akira

    1981-04-01

    The elastic constants of single crystal of β1-AgCd alloy with 47.9± 0.1 at.%Cd have been measured in a temperature range between 180 K and 360 K, using a ultrasonic pulse-cho overlapping method. It is found that with increasing temperature, the elastic constants CL{=}(C11+C12+2C44)/2 and C44 decrease linearly but C'{=}(C11-C12)/2 increases. In addition, this alloy shows a high elastic anisotropy in comparison with other Ag-based β1-phase alloys such as AgMg and AgZn.

  6. Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2.

    PubMed

    Zeng, Chao; Ramos-Ruiz, Adriana; Field, Jim A; Sierra-Alvarez, Reyes

    2015-05-01

    Cadmium telluride (CdTe) and cadmium selenide (CdSe) are increasingly being applied in photovoltaic solar cells and electronic components. A major concern is the public health and ecological risks associated with the potential release of toxic cadmium, tellurium, and/or selenium species. In this study, different tests were applied to investigate the leaching behavior of CdTe and CdSe in solutions simulating landfill leachate. CdTe showed a comparatively high leaching potential. In the Toxicity Characteristic Leaching Procedure (TCLP) and Waste Extraction Test (WET), the concentrations of cadmium released from CdTe were about 1500 and 260 times higher than the regulatory limit (1 mg/L). In contrast, CdSe was relatively stable and dissolved selenium in both leaching tests was below the regulatory limit (1 mg/L). Nonetheless, the regulatory limit for cadmium was exceeded by 5- to 6- fold in both tests. Experiments performed under different pH and redox conditions confirmed a marked enhancement in CdTe and CdSe dissolution both at acidic pH and under aerobic conditions. These findings are in agreement with thermodynamic predictions. Taken as a whole, the results indicate that recycling of decommissioned CdTe-containing devices is desirable to prevent the potential environmental release of toxic cadmium and tellurium in municipal landfills. PMID:25710599

  7. New chalcogenide glasses in the CdTe-AgI-As{sub 2}Te{sub 3} system

    SciTech Connect

    Kassem, M.; Le Coq, D.; Boidin, R.; Bychkov, E.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Determination of the glass-forming region in the pseudo-ternary CdTe-AgI-As{sub 2}Te{sub 3} system. Black-Right-Pointing-Pointer Characterization of macroscopic properties of the new CdTe-AgI-As{sub 2}Te{sub 3} glasses. Black-Right-Pointing-Pointer Characterization of the total conductivity of CdTe-AgI-As{sub 2}Te{sub 3} glasses. Black-Right-Pointing-Pointer Comparison between the selenide and telluride equivalent systems. -- Abstract: Chalcogenide glasses in the pseudo-ternary CdTe-AgI-As{sub 2}Te{sub 3} system were synthesized and the glass-forming range was determined. The maximum content of CdTe in this glass system was found to be equal to 15 mol.%. The macroscopic characterizations of samples have consisted in Differential Scanning Calorimetry, density, and X-ray diffraction measurements. The cadmium telluride addition does not generate any significant change in the glass transition temperature but the resistance of binary AgI-As{sub 2}Te{sub 3} glasses towards crystallisation is estimated to be decreasing on the base of {Delta}T = T{sub x} - T{sub g} parameter. The total electrical conductivity {sigma} was measured by complex impedance spectroscopy. First, the CdTe additions in the (AgI){sub 0.5}(As{sub 2}Te{sub 3}){sub 0.5} host glass, (CdTe){sub x}(AgI){sub 0.5-x/2}(As{sub 2}Te{sub 3}){sub 0.5-x/2} lead to a conductivity decrease at x {<=} 0.05. Then, the behaviour is reversed at 0.05 {<=} x {<=} 0.15. The obtained results are discussed by comparison with the equivalent selenide system.

  8. Extranuclear dynamics of 111Ag(→111Cd) doped in AgI nanoparticles

    NASA Astrophysics Data System (ADS)

    Sato, W.; Mizuuchi, R.; Irioka, N.; Komatsuda, S.; Kawata, S.; Taoka, A.; Ohkubo, Y.

    2014-08-01

    Dynamic behavior of the extranuclear field relative to the 111Ag(→111Cd) probe nucleus introduced in a superionic conductor silver iodide (AgI) was investigated by means of the time-differential perturbed angular correlation technique. For poly-N-vinyl-2-pyrrolidone (PVP)-coated AgI nanoparticles, we observed nuclear spin relaxation of the probe at room temperature. This result signifies that Ag+ ions in the polymer-coated sample make hopping motion from site to site at this low temperature. The activation energy for the dynamic motion was successfully estimated to be 46(10) meV. The first atomic-level observation of the temperature-dependent dynamic behavior of Ag+ ions in the polymer-coated AgI is reported.

  9. Photoluminescence and upconversion on Ag/CdTe quantum dots

    NASA Astrophysics Data System (ADS)

    Ragab, A. E.; Gadallah, A.-S.; Mohamed, M. B.; Azzouz, I. M.

    2014-11-01

    Different sizes of aqueous CdTe QDs have been prepared by microwave via controlling the temperature and time of irradiation. To study the plasmonic effect on CdTe QDs, Silver NPs were prepared by using a chemical reduction method. Structure characterization of the nanocrystals (Ag NPs and CdTe QDs) was determined by transmission electron microscopy “TEM”. For optical characterization, the absorption and photolumincence (PL) spectra were measured. It has been found that there are two opposite behaviors (quenching and enhancement) in the fluorescence spectra based on the spectral coupling strength between Ag NPs and CdTe QDs. When there is strong overlapping, PL enhancement of CdTe QDs has been observed. On the other hand, when the overlapping is weak, the PL quenching was predominant at all Ag NPS concentrations. Input-output PL intensity dependence was also studied. Upconversion photoluminescence with low excitation intensity was observed in our CdTe QDs with a standard spectrofluorometer at excitation wavelength of 800 nm. Thermally assisted surface state mechanism has been proposed to be responsible for the upconverion process.

  10. Updating the alternate material selection system for cadmium (AMSS-Cd)

    SciTech Connect

    Decker, P.; Hartline, C.

    1999-07-01

    Cadmium is currently used in many military applications to provide corrosion protection. Since it has been identified as a hazardous material, cadmium has been targeted for complete removal from Army weapon systems. Unfortunately, there is no drop-in replacement for cadmium. Users must choose from a variety of alternatives to suit their specific needs. Because of these needs, the US Army Tank-Automotive and Armaments Command's (TACOM) Tank-Automotive Research, Development, and Engineering Center (TARDEC) created an Alternate Material Selection System for Cadmium (AMSS-Cd) to assist in the selection of alternative materials. The original version of the AMSS-Cd was created from available physical and performance data. Some areas were found where information is unavailable. TACOM-TARDEC sponsored three projects over the past year to update the AMSS-Cd where information is needed. These efforts included (1) evaluating cadmium replacements on electrical connectors, (2) evaluating cadmium alternatives for fastener applications, and (3) testing to discover possible chromate conversion coating replacements to enhance the performance of cadmium alternatives. This paper will present an overview of the AMSS-Cd and it's use. The paper will also discuss the corrosion control aspects of Cadmium and Cadmium alternatives in more detail.

  11. Synthesis, characterizations and anti-bacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method

    NASA Astrophysics Data System (ADS)

    Sivakumar, S.; Venkatesan, A.; Soundhirarajan, P.; Khatiwada, Chandra Prasad

    2015-02-01

    In the present study, synthesized pure and Ag (1%, 2%, and 3%) doped Cadmium Oxide (CdO) nanoparticles by chemical precipitation method. Then, the synthesized products were characterized by thermo gravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy, Ultra violet-Vis diffused reflectance spectroscopy (UV-Vis-DRS), Scanning electron microscopy (SEM), Energy dispersive X-rays (EDX) spectroscopy, and anti-bacterial activities, respectively. The transition temperatures and phase transitions of Cd(OH)2 to CdO at 400 °C was confirmed by TG-DTA analysis. The XRD patterns show the cubic shape and average particle sizes are 21, 40, 34, and 37 nm, respectively for pure and Ag doped samples. FT-IR study confirmed the presence of CdO and Ag at 677 and 459 cm-1, respectively. UV-Vis-DRS study shows the variation on direct and indirect band gaps. The surface morphologies and elemental analysis have been confirmed from SEM and with EDX. In addition, the synthesized products have been characterized by antibacterial activities against Gram-positive and negative bacteria. Further, the present investigation suggests that CdO nanoparticles have the great potential applications on various industrial and medical fields of research.

  12. Development of CdO-graphite-Ag coatings for gas bearings to 427 C

    NASA Technical Reports Server (NTRS)

    Bhushan, B.

    1981-01-01

    Graphite is one of the most commonly known lubricants. Its effectiveness in a range between room temperature (RT) and 540 C is reportedly improved by adding cadmium oxide. CdO-graphite powder in a gas carrier has been used in numerous applications that rely on dry lubrication. A coating of this composition was developed and successfully tested in foil air bearings for long periods up to a temperature of 427 C and at a normal contacting load (during starting and stopping) of 14 kPa based on bearing projected area. The addition of ultra-fine silver to the CdO-graphite has improved the coating endurance. At 427 C, the CdO-graphite-Ag coating performed better than CdO-graphite without silver, both for extended periods at 14 kPa loading and for limited periods at 35 kPa. At 288 C, the coating was tested for an extended period up to 28 kPa and has also successfully completed high-speed shock tests to an acceleration level of 100g.

  13. Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag) in the southeastern Atlantic and the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Boye, M.; Wake, B. D.; Lopez Garcia, P.; Bown, J.; Baker, A. R.; Achterberg, E. P.

    2012-08-01

    Comprehensive synoptic datasets (surface water down to 4000 m) of dissolved cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb) and silver (Ag) are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu and Ag display nutrient-like profiles similar to silicic acid, and of Cd similar to phosphate. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs may have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However, uptake by dino- and nano-flagellates may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P), yielding lower Cd / P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd uptake induced by iron-limiting conditions in these high-nutrient-low-chlorophyll waters

  14. Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag) in the southeastern Atlantic and the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Boye, M.; Wake, B. D.; Lopez Garcia, P.; Bown, J.; Baker, A. R.; Achterberg, E. P.

    2012-03-01

    Comprehensive synoptic datasets (surface water down to 4000 m) of dissolved cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb) and silver (Ag) are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu, Ag, and of Cd display nutrient-like profiles similar to silicic acid, and phosphate, respectively. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water-masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs appeared to have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However uptake by dino- and nano-flagelattes may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P), yielding lower Cd/P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd-uptake induced by iron-limiting conditions in these High-Nutrient Low

  15. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films.

    PubMed

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates. PMID:25483981

  16. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films

    NASA Astrophysics Data System (ADS)

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates.

  17. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum.

    PubMed

    Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Andrades-Moreno, Luis

    2010-12-15

    The potential of the extreme halophyte Arthrocnemum macrostachyum was examined to determine its tolerance and ability to accumulate cadmium for phytoremediation purposes. A glasshouse experiment was designed to investigate the effect of cadmium from 0 to 1.35 mmol l(-1) on the growth and the photosynthetic apparatus of A. macrostachyum by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined ash, cadmium, calcium, copper, iron, manganese, magnesium, phosphorous, sodium, and zinc concentrations, and C/N ratio. A. macrostachyum demonstrated hypertolerance to cadmium stress; it did not show phytotoxicity at shoot concentration as high as 70 mg kg(-1). The bioaccumulator factors exceeded the critical value (1.0) for all Cd treatments, and the transport factors indicated that this species has higher ability to transfer Cd from roots to shoots at lower Cd concentrations. At 1.35 mmol l(-1) Cd A. macrostachyum showed 25% biomass reduction after a month of treatment. Long-term effects of cadmium on the growth were mainly determined by variations in net photosynthetic rate (P(N)). Reductions in P(N) could be accounted by higher dark respiration and lower pigment concentrations. Finally, A. macrostachyum has the basic characteristics of a Cd-hyperaccumulator and may be useful for restoring Cd-contaminated sites. PMID:20832167

  18. Estimation of Thickness and Cadmium Composition Distributions in HgCdTe Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Mouzali, S.; Lefebvre, S.; Rommeluère, S.; Ferrec, Y.; Primot, J.

    2016-09-01

    Mercury cadmium telluride (HgCdTe) is one of the most commonly used material systems for infrared detection. The performance of infrared focal-plane arrays (IRFPAs) based on this material is limited by several noise sources. In this paper, we focus on the fixed pattern noise, which is related to disparities between the spectral responses of pixels. In our previous work, we showed that spectral nonuniformities in a HgCdTe IRFPA were caused by inhomogeneities of thickness and cadmium composition in the HgCdTe layer, using an optical description of the pixel structure. We propose to use this bidimensional dependence combined with experimental spectral responses to estimate disparities of thickness and cadmium composition in a specific HgCdTe-based IRFPA. The estimation methods and the resulting maps are presented, highlighting the accuracy of this nondestructive method.

  19. Estimation of Thickness and Cadmium Composition Distributions in HgCdTe Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Mouzali, S.; Lefebvre, S.; Rommeluère, S.; Ferrec, Y.; Primot, J.

    2016-05-01

    Mercury cadmium telluride (HgCdTe) is one of the most commonly used material systems for infrared detection. The performance of infrared focal-plane arrays (IRFPAs) based on this material is limited by several noise sources. In this paper, we focus on the fixed pattern noise, which is related to disparities between the spectral responses of pixels. In our previous work, we showed that spectral nonuniformities in a HgCdTe IRFPA were caused by inhomogeneities of thickness and cadmium composition in the HgCdTe layer, using an optical description of the pixel structure. We propose to use this bidimensional dependence combined with experimental spectral responses to estimate disparities of thickness and cadmium composition in a specific HgCdTe-based IRFPA. The estimation methods and the resulting maps are presented, highlighting the accuracy of this nondestructive method.

  20. Cadmium Stabilization Efficiency and Leachability by CdAl4O7 Monoclinic Structure.

    PubMed

    Su, Minhua; Liao, Changzhong; Chuang, Kui-Hao; Wey, Ming-Yen; Shih, Kaimin

    2015-12-15

    This study investigated the stabilization efficiencies of using an aluminum-rich precursor to incorporate simulated cadmium-bearing waste sludge and evaluated the leaching performance of the product phase. Cadmium oxide and γ-alumina mixtures with various Cd/Al molar ratios were fired at 800-1000 °C for 3 h. Cadmium could be crystallochemically incorporated by γ-alumina into CdAl4O7 monoclinic phase and the reaction was strongly controlled by the treatment temperature. The crystal structure details of CdAl4O7 were solved and refined with the Rietveld refinement method. According to the structural refinement results, the stabilization efficiencies were quantified and expressed as a transformation ratio (TR) with optimized processing parameters. The preferred treatment temperature was found to be 950 °C for mixtures with a Cd/Al molar ratio of 1/4, as its TR value indicated the cadmium incorporation was nearly completed after a 3 h treatment scheme. Constant-pH leaching tests (CPLT) were conducted by comparing the leachability of the CdO and CdAl4O7 phases in a pH 4.0 environment. A remarkable reduction in cadmium leachability could be achieved via monoclinic CdAl4O7 structure formation to effectively stabilize hazardous cadmium in the waste stream. The CPLT and X-ray photoelectron spectroscopy (XPS) results suggested incongruent dissolution behavior during the leaching of the CdAl4O7 phase. PMID:26512873

  1. Frequency dependent electrical properties of nano-CdS/Ag junctions

    NASA Astrophysics Data System (ADS)

    Mohanta, D.; Choudhury, A.

    2005-05-01

    Polymer embedded cadmium sulfide nanoparticles/quantum dots were synthesized by a chemical route using polyvinyl alcohol (lmw) as the desired matrix. In an attempt to measure the electrical properties of nano-CdS/Ag samples, we propose that contribution from surface traps are mainly responsible in determining the I˜ V and C˜ V characteristics in high frequency ranges. To be specific, beyond 1.2 MHz, the carrier injection from the trap centers of the embedded quantum dots is ensured by large current establishment even at negative biasing condition of the junction. The unexpected nonlinear signature of C˜ V response is believed to be due to the fact that while trying to follow very high signal frequency (at least 10-3 of recombination frequency), there is complete abruptness in carrier trapping (charging) or/and detrapping (decay) in a given CdS nanoparticle assembly. The frequency dependent unique role of the trap carriers certainly find application in nanoelectronic devices at a desirable frequency of operation.

  2. Electrochemically Deposited Cadmium Electrode for Sealed Ni-cd Cells

    NASA Technical Reports Server (NTRS)

    Houston, W. H.; Edgar, T. A.

    1984-01-01

    An investigation into the work on electrochemical cadmium deposition processes is describred. A beaker impregnation system is constructed to investigate the practical limits of loading and the effect of various process parameters. Reasonably high loadings of cadmium are obtained and the process appears amenable to tight control and the production of uniform consistent electrodes. A pilot impregnation facility is built to further investigate electrodeposition processes. Both the inert anode and consummable anode processes are investigated. Results of this evaluation and an analysis of associated problems are presented.

  3. Structural and chemical properties of highly oriented cadmium sulfide (CdS) cauliflower films

    NASA Astrophysics Data System (ADS)

    Vemuri, R. S.; Gullapalli, S. K.; Zubia, D.; McClure, J. C.; Ramana, C. V.

    2010-08-01

    Cadmium sulfide (CdS) films have been produced by sputter-deposition varying the sputtering-power ( P) in the range of 60-120 W. The crystal structure, morphology and chemical quality of the CdS films has been investigated employing X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray spectrometry (EDS). Structural characterization indicates that all the CdS layers exhibit cauliflower morphology. Highly oriented, single phase hexagonal-CdS films can be produced at P = 75-105 W while the films at other power contain mixed phases. Characterization using XPS and EDS indicate that the CdS layers are nearly stoichiometric at P = 75-105 W, at which point S-deficiency is induced resulting in Cd-rich-CdS layers.

  4. Uptake and excretion of cadmium, cdEDTA, and zinc by Macoma balthica

    SciTech Connect

    McLeese, D.W.; Ray, S.

    1984-01-01

    The accumulation of cadmium from sea water by marine invertebrates has been studied. Chelation of Cd with ethylenediaminetetraacetic acid (EDTA) was reported to double the rate of Cd uptake and the final tissue concentration in mussels. The physicochemical properties of Cd and Zn are similar and it has been suggested that the two elements are biologically antagonistic. When both Cd and Zn are present, the level of Cd is reduced in polychaete worms and bivalve molluscs. In contrast, the level of Cd remained fairly constant for most tissues of P. montagui exposed to Cd at a constant level and to Zn at different levels. Because of the contrasting results concerning the effects of Cd and Zn combined, and of chelated Cd, this study was undertaken to determine if exposure to Cd and Zn in combination affects uptake and excretion of either element by the deposit-feeding mollusc, Macoma balthica. In addition, the effects of Cd complexed with EDTA and the chemical form of Cd on uptake of Cd in M. Balthica were examined.

  5. Kinetics of sulfuric acid leaching of cadmium from Cd-Ni zinc plant residues.

    PubMed

    Safarzadeh, Mohammad Sadegh; Moradkhani, Davood; Ojaghi-Ilkhchi, Mehdi

    2009-04-30

    Cd-Ni filtercakes are produced continuously at the third purification step in the electrolytic production of zinc in the National Iranian Lead and Zinc Company (NILZ) in northwestern Iran. In this research, the dissolution kinetics of cadmium from Cd-Ni residues produced in NILZ plant has been investigated. Hence, the effects of temperature, sulfuric acid concentration, particle size and stirring speed on the kinetics of cadmium dissolution in sulfuric acid were studied. The dissolution kinetics at 25-55 degrees C and tcadmium and sulfate ions through the porous region of alloying layer (Cd(5)Ni, Cd(2)Ni(1.9) and Cd(10)Cu(3)) as the rate determining step. This finding is in accordance with the apparent activation energy (E(a)) of 13.363 kJ/mol and a linear relationship between the rate constant and the reciprocal of squared particle size. Arrhenius constant was calculated as 6.3942 min(-1). The order of reaction with respect to sulfuric acid concentration, solid/liquid ratio and particle size were also achieved. The rate of reaction at first 5 min based on diffusion-controlled process can be expressed by a semi-empirical equation as:It was determined that the dissolution rate increased with increasing sulfuric acid concentration and decreasing particle size. PMID:18755541

  6. Magnum(R) NiCd advanced nickel-cadmium battery cells

    NASA Technical Reports Server (NTRS)

    Scoles, Darren

    1995-01-01

    The Power Systems Department of Eagle-Picher Industries, Inc., located in Colorado Springs, Colorado, had developed a long-life advanced Nickel-Cadmium battery cell for aerospace applications. This battery cell, known as the MAGNUM NiCd cell, offers significant life expectancy increase over traditional NiCd battery cells. In addition, it offers significant cost reduction from the Super NiCd battery cell (developed by Hughes Aircraft Company and manufactured by the Power Systems Department of Eagle-Picher Industries, Inc.).

  7. Accumulation and localization of cadmium in potato (Solanum tuberosum) under different soil Cd levels.

    PubMed

    Chen, Zhifan; Zhao, Ye; Gu, Lei; Wang, Shuifeng; Li, Yongliang; Dong, Fangli

    2014-06-01

    Phytoavailability and uptake mechanism of Cd in edible plant tissues grown on metal polluted agricultural soils has become a growing concern worldwide. Uptake, transport, accumulation and localization of cadmium in potato organs under different soil Cd levels were investigated using inductively-coupled plasma mass spectrometry and energy dispersive X-ray microanalysis. Results indicated that Cd contents in potato organs increased with increasing soil Cd concentrations, and the order of Cd contents in different organs was leaves > stems/roots > tubers. Root-to-stem Cd translocation coefficients ranged from 0.89 to 1.81. Cd localization in potato tissues suggested that leaves and stems should be the main compartment of Cd storage and uptake. Although low concentrations of Cd migrated from the root to tuber, Cd accumulation in the tuber exceeded the standard for food security. Therefore, the planting of potato plants in farmland containing Cd should be closely evaluated due to its potential to present health risks. PMID:24682567

  8. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator.

    PubMed

    Sun, Yuebing; Zhou, Qixing; Wang, Lin; Liu, Weitao

    2009-01-30

    Recently, researchers are becoming interested in using hyperaccumulators for decontamination of heavy metal polluted soils, whereas few species that hyperaccumulate cadmium (Cd) has been identified in the plant kingdom. In this study, the physiological mechanisms at the seedling stage and growth responses and Cd uptake and accumulation at flowering and mature stages of Bidens pilosa L. under Cd treatments were investigated. At the seedling stage, when soil Cd was lower than 16mgkg(-1), the plant did not show obvious symptom of phytoxicity, and the alterations of chlorophyll (CHL), superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), and soluble protein (SP) did not have significant differences when compared with the control. At the flowering and mature stages, under low Cd treatments (Cd could facilitate plant growth, resulting in 3.9-11.0% and 5.9-13.8%, respectively, increase in shoots dry biomass compared with the control. The Cd concentrations in stems, leaves and shoots exceeded 100mgkg(-1) when soil Cd was at 8mgkg(-1), and they were positively correlated with Cd concentration in soils, the bioaccumulation factor (BF) and translocation factor (TF) values were all greater than 1.0. Thus, it is clear that B. pilosa has the basic characteristics of a Cd-hyperaccumulator. All the results elementarily indicated that B. pilosa is a potential Cd-hyperaccumulating plant. PMID:18513866

  9. Metal arsonate polymers of Cd, Zn, Ag and Pb supported by 4-aminophenylarsonic acid

    SciTech Connect

    Lesikar-Parrish, Leslie A.; Neilson, Robert H.; Richards, Anne F.

    2013-02-15

    The coordination preferences of 4-aminophenylarsonic acid, 4-NH{sub 2}C{sub 6}H{sub 4}AsO{sub 3}H{sub 2}, (p-arsanilic acid) with CdCl{sub 2}{center_dot}2.5H{sub 2}O, ZnCl{sub 2}, Ag(SO{sub 3}CF{sub 3}) and Pb(NO{sub 3}){sub 2} have been investigated affording five new metal arsonate polymers. The reaction between 4-aminophenylarsonic acid and CdCl{sub 2}{center_dot}2.5H{sub 2}O resulted in a one-dimensional polymer, [{l_brace}Cd(4-NH{sub 3}C{sub 6}H{sub 4}AsO{sub 3}H)(Cl){sub 2}{r_brace}(H{sub 2}O){sub 2}]{sub n}, 1, in which the polymeric chain is propagated by bridging chlorides. Exchange of CdCl{sub 2} for ZnCl{sub 2} afforded [{l_brace}Zn{sub 2}(4-NH{sub 3}C{sub 6}H{sub 4}AsO{sub 3})(Cl){sub 2}{r_brace}(H{sub 2}O){sub 2}(Cl)]{sub n}, 2, featuring interlinked 6- and 8-membered [Zn-O-As] ring systems. The reaction of Ag(SO{sub 3}CF{sub 3}) with 4-aminophenylarsonic acid, afforded polymeric 3, [Ag(4-NH{sub 2}C{sub 6}H{sub 4}AsO{sub 3}H)(4-NH{sub 2}C{sub 6}H{sub 4}AsO{sub 3}H{sub 2})]{sub n} where coordination of the amino group to the silver center is observed and [{l_brace}Ag{sub 2}(4-NH{sub 3}C{sub 6}H{sub 4}AsO{sub 3}H)(4-NH{sub 3}C{sub 6}H{sub 4}AsO{sub 3})({mu}2-SO{sub 3}CF{sub 3}){sub 2}{r_brace}(SO{sub 3}CF{sub 3}){sub 2}]{sub n}, 4. By comparison, the reaction of p-arsanilic acid with Pb(NO{sub 3}){sub 2} yielded a polymeric chain [Pb(4-NH{sub 3}C{sub 6}H{sub 4}AsO{sub 3}H)(NO{sub 3}){sub 2}]{sub n}, 5 of similar topology to 1. The structures of 1-5 have been indiscriminately characterized by single crystal X-ray diffraction and their composition supported by relevant spectroscopic techniques. A comparison of the structural features of these polymers is used to determine the coordination preference of the ligand and factors influencing structural motifs, for example, the role of the anion. - Graphical abstract: The reaction of 4-aminophenylarsonic acid, 4-NH{sub 2}C{sub 6}H{sub 4}AsO{sub 3}H{sub 2}, with cadmium, zinc, silver, and lead have resulted in

  10. Electrostatic assembles and optical properties of Au CdTe QDs and Ag/Au CdTe QDs

    NASA Astrophysics Data System (ADS)

    Yang, Dongzhi; Wang, Wenxing; Chen, Qifan; Huang, Yuping; Xu, Shukun

    2008-09-01

    Au-CdTe and Ag/Au-CdTe assembles were firstly investigated through the static interaction between positively charged cysteamine-stabilized CdTe quantum dots (QDs) and negatively charged Au or core/shell Ag/Au nano-particles (NCs). The CdTe QDs synthesized in aqueous solution were capped with cysteamine which endowed them positive charges on the surface. Both Au and Ag/Au NCs were prepared through reducing precursors with gallic acid obtained from the hydrolysis of natural plant poly-phenols and favored negative charges on the surface of NCs. The fluorescence spectra of CdTe QDs exhibited strong quenching with the increase of added Au or Ag/Au NCs. Railey resonance scattering spectra of Au or Ag/Au NCs increased firstly and decreased latter with the concentration of CdTe QDs, accompanied with the solution color changing from red to purple and colorless at last. Experimental results on the effects of gallic acid, chloroauric acid tetrahydrate and other reagents demonstrated the static interaction occurred between QDs and NCs. This finding reveals the possibilities to design and control optical process and electromagnetic coupling in hybrid structures.

  11. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F.

    PubMed

    Qiu, Rong-Liang; Zhao, Xuan; Tang, Ye-Tao; Yu, Fang-Ming; Hu, Peng-Jie

    2008-12-01

    A hydroponic experiment was carried out to study the effect of cadmium (Cd) on growth, Cd accumulation, lipid peroxidation, reactive oxygen species (ROS) content and antioxidative enzymes in leaves and roots of Arabis paniculata F., a new Cd hyperaccumuator found in China. The results showed that 22-89 microM Cd in solution enhanced the growth of A. paniculata after three weeks, with 21-27% biomass increase compared to the control. Cd concentrations in shoots and roots increased with increasing Cd supply levels, and reached a maximum of 1662 and 8670 mg kg(-1) Cd dry weight at 178 microM Cd treatment, respectively. In roots, 22-89 microM Cd reduced the content of malondialdehyde (MDA), superoxide (O(2)(-1)) and H(2)O(2) as well as the activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR). In leaves, the contents of MDA, O(2)(-1) and H(2)O(2) remained unaffected by 22-89 microM Cd, while 178 microM Cd treatment significantly increased the MDA content, 69.5% higher than that of the control; generally, the activities of SOD, catalase (CAT), GPX and APX showed an increasing pattern with increasing Cd supply levels. Our present work concluded that A. paniculata has a great capability of Cd tolerance and accumulation. Moderate Cd treatment (22-89 microM Cd) alleviated the oxidative stress in roots, while higher level of Cd addition (178 microM) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system. PMID:18992910

  12. Development of Novel Cadmium-Free AgInS2 Semiconductor Nanoparticles.

    PubMed

    Yang, Wentao; Gong, Xiaoqun; Chang, Jin

    2016-03-01

    AgInS2 (AIS) semiconductor nanoparticles as the novel alternatives to cadmium- or lead-containing semiconductors have attracted much attention both on the theory and application research, based on their tunable fluorescence emission wavelengths, high photostability and low toxicity of chemical composition. The bandgap of AIS nanoparticles can be adjusted from 1.54 to 2.03 eV, which makes AIS nanocrystalline suitable for applications in solar energy conversion. Moreover, the fluorescence emission wavelengths can be tuned in the near-infrared regions, and thus make it the next-generation low-toxicity materials for the applications in bioimaging. In this review, the research progress of the AIS nanoparticles is summarized, including synthetic methods, properties and the possibilities to influence their shape and crystallographic structure. Furthermore, we discuss the potential applications of this novel material in photocatalysis, solar energy conversion and biological area. PMID:27455616

  13. Cd-Resistant Strains of B. cereus S5 with Endurance Capacity and Their Capacities for Cadmium Removal from Cadmium-Polluted Water

    PubMed Central

    Wu, Huiqing; Wu, Qingping; Wu, Guojie; Gu, Qihui; Wei, Linting

    2016-01-01

    The goal of this study was to identify Cd-resistant bacterial strains with endurance capacity and to evaluate their ability to remove cadmium ions from cadmium-polluted water. The Bacillus cereusS5 strain identified in this study had the closest genetic relationship with B. cereus sp. Cp1 and performed well in the removal of Cd2+ions from solution. The results showed that both the live and dead biomasses of the Cd2+-tolerant B. cereus S5 strain could absorb Cd2+ ions in solution but that the live biomass of the B. cereus S5 strain outperformed the dead biomass at lower Cd2+concentrations. An analysis of the cadmium tolerance genes of B. cereus S5 identified ATPase genes that were associated with cadmium tolerance and involved in the ATP pumping mechanism. The FTIR spectra revealed the presence of amino, carboxyl and hydroxyl groups on the pristine biomass and indicated that the cadmium ion removal ability was related to the structure of the strain. The maximum absorption capacity of the B. cereus S5 strain in viable spore biomass was 70.16 mg/g (dry weight) based on a pseudo-second-order kinetic model fit to the experimental data. The Langmuir and Langmuir-Freundlich isotherm adsorption models fit the cadmium ion adsorption data well, and the kinetic curves indicated that the adsorption rate was second-order. For Cd2+ concentrations (mg/L) of 1–109 mg/L, good removal efficiency (>80%) was achieved using approximately 3.48–10.3 g/L of active spore biomass of the B. cereus S5 strain. A cadmium-tolerant bacteria-activated carbon-immobilized column could be used for a longer duration and exhibited greater treatment efficacy than the control column in the treatment of cadmium-polluted water. In addition, a toxicity assessment using mice demonstrated that the biomass of the B. cereus S5 strain and its fermentation products were non-toxic. Thus, the isolated B. cereus S5 strain can be considered an alternative biological adsorbent for use in emergency responses to

  14. Influence of Ag doping concentration on structural and optical properties of CdS thin film

    SciTech Connect

    Kumar, Pragati; Saxena, Nupur; Gupta, Vinay; Agarwal, Avinash

    2015-05-15

    This work shows the influence of Ag concentration on structural properties of pulsed laser deposited nanocrystalline CdS thin film. X-ray photoelectron spectroscopy (XPS) studies confirm the dopant concentration in CdS films and atomic concentration of elements. XPS studies show that the samples are slightly sulfur deficient. GAXRD scan reveals the structural phase transformation from cubic to hexagonal phase of CdS without appearance of any phase of CdO, Ag{sub 2}O or Ag{sub 2}S suggesting the substitutional doping of Ag ions. Photoluminescence studies illustrate that emission intensity increases with increase in dopant concentration upto 5% and then decreases for higher dopant concentration.

  15. Loading Ag nanoparticles on Cd(II) boron imidazolate framework for photocatalysis

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zhang, De-Xiang; Chen, Shumei; Wen, Tian

    2016-05-01

    An amine-functionalized Cd(II) boron imidazolate framework (BIF-77) with three-dimensional open structure has been successfully synthesized, which can load Ag nanoparticles (NPs) for photocatalytic degradation of methylene blue (MB).

  16. Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata.

    PubMed

    Ying, Rong-Rong; Qiu, Rong-Liang; Tang, Ye-Tao; Hu, Peng-Jie; Qiu, Hao; Chen, Hong-Ru; Shi, Tai-Hong; Morel, Jean-Louis

    2010-01-15

    To better understand the photosynthesis under stress, the effect of cadmium on carbon assimilation and chloroplast ultrastructure of a newly found Zn/Cd hyperaccumulator Picris divaricata in China was investigated in solution culture. The shoot and root Cd concentrations increased with increase in Cd supply, reaching maxima of 1109 and 5604mgkg(-1) dry weight at 75microM Cd, respectively. As Cd supply to P. divaricata increased, the shoot and root dry weight, leaf water content (except 75microM Cd), concentrations of chlorophyll a and b, chlorophyll a/b ratio and the concentration of carotenoids were not depressed at high Cd. However, the stomatal conductance, transpiration rate, net photosynthetic rate and intercellular CO(2) concentration were significantly affected when the Cd concentration reached 10, 10, 25 and 75microM, respectively. Meanwhile, carbonic anhydrase (CA; EC 4.2.1.1) activity and Rubisco (EC 4.1.1.39) content reached maxima in the presence of 50 and 5microM Cd, respectively. In addition, CA activity correlated positively with shoot Cd in plants treated with Cd at a range of 0-50microM. Moreover, the activities of NADP(+)-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13), Rubisco and fructose-1, 6-bisphosphatase (EC 3.1.3.11) were not significantly suppressed by increased Cd supply. Although the mesophyll cell size was reduced, chloroplast ultrastructure remained intact at the highest Cd treatment. Our finding revealed that P. divaricata chloroplast and the enzymes of carbon assimilation tolerate high levels of Cd, demonstrating its potential in possible application in phytoremediation. PMID:19683362

  17. Fish bioturbation of cadmium-contaminated sediments: Factors affecting Cd availability to Daphnia magna

    SciTech Connect

    Wall, S.B.; La Point, T.W.; Isely, J.J.

    1996-03-01

    Benthic fish bioturbation of contaminated sediments is thought to enhance exposure and, potentially, bioaccumulation into planktonic organisms. Exposures were conducted with cadmium-spiked sediment, 1.0 mg/kg nominal concentrations, and koi carp (Cyprinus carpio). Daphnia magna were placed in aquaria with and without fish for 6 d and Cd bioaccumulation was measured every 48 h. Koi carp bioturbation increased mean total suspended solids (TSS) in two trials from 0.001 mg/L to 44.4 mg/L and 19.2 mg/L to 762.4 mg/L. Mean aqueous Cd concentrations increased from1.4 {micro}g/L to 2.8 {micro}g/L, and from 1.6 {micro}g/L to 13.2 {micro}g/L. Cadmium binding capacity increased from 28.9 {micro}g/L to 169.8 {micro}g/L in with-fish treatments when compared to controls. However, Daphnia magna body burdens did not increase. Mean Cd residues of daphnids exposed with fish, 9.2 {micro}g/g, were not statistically different from without-fish exposures, 8.0 {micro}g/g. Body burdens slightly decreased in the first trial after the with-fish treatment, 9.4 {micro}g/g to 8.3 {micro}g/g. Fish size was partially correlated with TSS and aqueous Cd concentrations and TSS positively correlated with binding capacity. Because increased TSS in the with-fish treatment resulted in increased binding capacity, it is probable that cadmium bioavailability decreased. Although koi carp were capable of remobilizing Cd from sediment, Cd bioaccumulation into Daphnia magna was not significant.

  18. Cd-rich and Te-rich low-temperature photoluminescence in cadmium telluride

    SciTech Connect

    Albin, D. S. Kuciauskas, D.; Ma, J.; Metzger, W. K.; Burst, J. M.; Moutinho, H. R.; Dippo, P. C.

    2014-03-03

    Low-temperature photoluminescence emission spectra were measured in cadmium telluride (CdTe) samples in which composition was varied to promote either Cd or Te-rich stoichiometry. The ability to monitor stoichiometry is important, since it has been shown to impact carrier recombination. Te-rich samples show transitions corresponding to acceptor-bound excitons (∼1.58 eV) and free-electron to acceptor transitions (∼1.547 eV). In addition to acceptor-bound excitons, Cd-rich samples show transitions assigned to donor-bound excitons (1.591 eV) and Te vacancies at 1.552 eV. Photoluminescence is a noninvasive way to monitor stoichiometric shifts induced by post-deposition anneals in polycrystalline CdTe thin films deposited by close-spaced sublimation.

  19. Effects of grafting on the cadmium accumulation characteristics of the potential Cd-hyperaccumulator Solanum photeinocarpum.

    PubMed

    Lin, Lijin; Yang, Daiyu; Wang, Xun; Liao, Ming'an; Wang, Zhihui; Lv, Xiulan; Tang, Fuyi; Liang, Dong; Xia, Hui; Lai, Yunsong; Tang, Yi

    2016-02-01

    The effects of grafting on the cadmium (Cd) accumulation characteristics of the potential Cd-hyperaccumulator Solanum photeinocarpum were studied under Cd stress in our experiment. Four treatments were used in the experiment: ungrafted (UG), self-rooted grafting by the same S. photeinocarpum seedling (SG), self-rooted grafting by two different development stages of S. photeinocarpum seedlings (DG), and grafting on the rootstock of wild potato (PG). SG and DG decreased the root, scion stem, leaf, whole shoot, and whole plant biomasses compared with UG, but increased the rootstock stem biomass, while only PG increased the root and whole plant biomasses. SG and DG increased the Cd contents in the different organs of S. photeinocarpum compared with UG, while PG decreased the Cd content compared with UG. The Cd extraction by the whole plant of S. photeinocarpum was ranked as DG > SG > UG > PG. Additionally, the antioxidant enzyme activities in SG and DG were enhanced compared with UG, while that of PG was reduced compared with UG. The grafting increased the DNA methylation levels and changed the methylation patterns of S. photeinocarpum compared with UG. Therefore, SG and DG can increase the Cd accumulation in S. photeinocarpum, which can be used for the phytoremediation of Cd-contaminated soil. PMID:26739012

  20. Development of radiopure cadmium tungstate crystal scintillators from enriched {sup 106}Cd and {sup 116}Cd to search for double beta decay

    SciTech Connect

    Danevich, F. A.; Boiko, R. S.; Chernyak, D. M.; Kobychev, V. V.; Kropivyansky, B. N.; Mokina, V. M.; Nikolaiko, A. S.; Poda, D. V.; Podviyanuk, R. B.; Tretyak, V. I.; Barabash, A. S.; Konovalov, S. I.; Umatov, V. I.; Belli, P.; Bernabei, R.; D'Angelo, S.; Brudanin, V. B.; Cappella, F.; Incicchitti, A.; Caracciolo, V.; and others

    2013-08-08

    Cadmium tungstate crystal scintillators enriched in {sup 106}Cd up to 66% ({sup 106}CdWO{sub 4}) and in {sup 116}Cd up to 82% ({sup 116}CdWO{sub 4}) have been developed. The low radioactive contamination of the crystals measured on the level of ≤ 1.5 mBq/kg ({sup 40}K), ≤ 0.005 - 0.012 mBq/kg ({sup 226}Ra), 0.04 - 0.07 mBq/kg ({sup 228}Th) allows to carry out high sensitivity experiments to search for double beta processes in {sup 106}Cd and {sup 116}Cd.

  1. Metabolism in the rat of cadmium biocomplexes from edible mussels exposed to /sup 109/CdCl/sub 2/

    SciTech Connect

    Marafante, E.; Nolan, C.; Lorenzon, G.

    1985-04-01

    The metabolism in the rat of /sup 109/Cd biocomplexes present in the tissues of the edible mussel Mytilus galloprovincialis, previously exposed to /sup 109/CdCl/sub 2/, was studied. The tissue distribution and binding of /sup 109/Cd were compared to those caused by an equal dose of /sup 109/Cd as CdCl2 or rat liver Cd-metallothionein. Administration of mussel /sup 109/Cd to rats resulted in an initial accumulation of /sup 109/Cd in the kidneys due to the presence of /sup 109/Cd-metallothionein, which constituted 25% of the /sup 109/Cd in the tissues of the mussels. Other /sup 109/Cd biocomplexes present in the mussel tissues were metabolized in the rat in a way similar to that of inorganic cadmium, i.e., initial accumulation in the liver. These findings indicate that the ingestion of seafood rich in metallothionein may give rise to a faster increase of renal cadmium levels than the consumption of a similar amount of inorganic cadmium.

  2. Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa.

    PubMed

    Kamran, Muhammad Aqeel; Syed, Jabir Hussain; Eqani, Syed Ali Musstjab Akber Shah; Munis, Muhammad Farooq Hussain; Chaudhary, Hassan Javed

    2015-06-01

    Microbe-assisted phyto-remediation approach is widely applied and appropriate choice to reduce the environmental risk of heavy metals originated from contaminated soils. The present study was designed to screen out the nested belongings of Eruca sativa plants and Pseudomonas putida (ATCC 39213) at varying cadmium (Cd) levels and their potential to deal with Cd uptake from soils. We carried out pot trial experiment by examining the soil containing E. sativa seedlings either treated with P. putida and/or untreated plants subjected to three different levels (ppm) of Cd (i.e., 150, 250, and 500). In all studied cases, we observed an increase in Cd uptake for E. sativa plants inoculated with P. putida than those of un-inoculated plants. Cd toxicity was assessed by recording different parameters including stunted shoot growth, poor rooting, and Cd residual levels in the plants that were not inoculated with P. putida. Significant difference (p < 0.05) of different growth parameters for inoculated vs non-inoculated plants was observed at all given treatments. However, among the different treatments, E. sativa exhibited increased values for different growth parameters (except proline contents) at lower Cd levels than those of their corresponding higher levels, shoot length (up to 27 %), root length (up to 32 %), whole fresh plant (up to 40 %), dry weight (up to 22 %), and chlorophyll contents (up to 26 %). Despite the hyperaccumulation of Cd in whole plant of E. sativa, P. putida improved the plant growth at varying levels of Cd supply than those of associated non-inoculated plants. Present results indicated that inoculation with P. putida enhanced the Cd uptake potential of E. sativa and favors the healthy growth under Cd stress. PMID:25592913

  3. Cadmium-sulfide crystallites in Cd-(. gamma. EC) sub n G peptide complexes from tomato. [Lycopersicon esculentum

    SciTech Connect

    Reese, R.N.; White, C.A.; Winge, D.R. Univ. of Utah, Salt Lake City )

    1992-01-01

    Hydroponically grown tomato plants (Lycopersicon esculentum P. Mill cv Golden Boy) exposed to 100 micromolar cadmium sulfate produced metal-({gamma}EC){sub n}G peptide complexes containing acid-labile sulfur. The properties of the complexes resemble those of the cadmium-({gamma}EC){sub n}G peptide complexes from Schizo-saccharomyces pombe and Candida glabrata known to contain a cadmium sulfide crystallite core. The crystallite is stabilized by a sheath of peptides of general structure ({gamma}Glu-Cys){sub n}-Gly. The cadmium-peptide complexes of tomato contained predominantly peptides of n{sub 3}, n{sub 4}, and n{sub 5}. Spectroscopic analyses indicated that the tomato cadmium-sulfide-peptide complex contained CdS crystallite core particles smaller than 2.0 nanometers in diameter.

  4. Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil.

    PubMed

    Suksabye, Parinda; Pimthong, Apinya; Dhurakit, Prapai; Mekvichitsaeng, Phenjun; Thiravetyan, Paitip

    2016-01-01

    Cadmium (Cd) contaminated in rice grains is a serious problem because most Asians consume rice on a daily basis. Rice grown in Cd-contaminated soil normally did not have high concentration of Cd. However, soil samples used in this study had high concentrations of Cd. The purpose of this study was to clearly see the effects of biochar and microorganism addition in rice growing in Cd-contaminated soil. The initial Cd concentration in Cd-contaminated soil used in this study was about 650 mg kg(-1). Cadmium concentration in rice plants grown in Cd-contaminated soil with the addition of 1% (w/w) different biochars such as sawdust fly ash (SDFA), bagasse fly ash (BGFA), and rice husk ash (RHA) was investigated. The results showed that SDFA was the best biochar in terms of reducing cadmium accumulation in rice grains when compared to BGFA and RHA under the same conditions. In addition, rice plants grown in Cd-contaminated soil with the addition of various nonpathogenic microorganisms, such as Pseudomonas aeruginosa, Bacillus subtilis, and Beauveria bassiana were also studied. The results showed that the addition of 2% (v/v) microorganisms can reduce Cd accumulation in grains. It was found that grains obtained from Cd-contaminated soil with the addition of P. aeruginosa had the lowest cadmium concentration compared to the ones from soil amended with other strains. This was due to the fact that P. aeruginosa adsorbed more Cd itself into its cells than other strains. The rice plants grown in Cd-contaminated soil with the addition of biochars and microorganisms were also compared. The results showed that adding 2% (v/v) microorganisms seemed to reduce Cd accumulation in rice grains better than adding 1% (w/w) biochars. In addition, the amounts of calcium and magnesium in rice grains and the dry weight of plant in Cd-contaminated soil amended with P. aeruginosa were the highest in comparison to other microorganisms, biochars, and the soil without any amendments (Cd

  5. Self-regulated route to ternary hybrid nanocrystals of Ag-Ag2S-CdS with near-infrared photoluminescence and enhanced photothermal conversion

    NASA Astrophysics Data System (ADS)

    Zhu, Guoxing; Bao, Chunlin; Liu, Yuanjun; Shen, Xiaoping; Xi, Chunyan; Xu, Zheng; Ji, Zhenyuan

    2014-09-01

    Developing hybrid nanocrystals is a hot topic in materials science. Herein, a ternary hybrid nanocrystal, Ag-Ag2S-CdS, combining near infrared emission and photothermal conversion properties was demonstrated. The ternary Ag-Ag2S-CdS hybrid nanocrystals with cubic shape and uniform size were synthesized by a simple one-pot and one-step colloidal method. The growth process is self-regulated with the formation order of Ag2S, Ag, and CdS, sequentially. The formation of Ag originates from the partial reduction of Ag2S, while the formation of CdS is through an Ag2S catalytic mechanism based on its superionic feature. The obtained ternary hybrid nanocrystals show near infrared emission and photothermal conversion properties in a lab-on-a-particle system. Importantly, an enhanced effect is observed for the photothermal conversion, which is mainly due to the presence of heterointerfaces among the crystals. This work will not only advance the synthesis chemistry of multi-component hybrid nanocrystals but also provide a possible route for the design of advanced multi-model materials used in bio-related fields.Developing hybrid nanocrystals is a hot topic in materials science. Herein, a ternary hybrid nanocrystal, Ag-Ag2S-CdS, combining near infrared emission and photothermal conversion properties was demonstrated. The ternary Ag-Ag2S-CdS hybrid nanocrystals with cubic shape and uniform size were synthesized by a simple one-pot and one-step colloidal method. The growth process is self-regulated with the formation order of Ag2S, Ag, and CdS, sequentially. The formation of Ag originates from the partial reduction of Ag2S, while the formation of CdS is through an Ag2S catalytic mechanism based on its superionic feature. The obtained ternary hybrid nanocrystals show near infrared emission and photothermal conversion properties in a lab-on-a-particle system. Importantly, an enhanced effect is observed for the photothermal conversion, which is mainly due to the presence of

  6. Catalytic solid substrate-room-temperature phosphorimetry detection for trace cadmium with Cd2+ -3.5-generation polyamidoamine dendrimer-Tween-80 complex.

    PubMed

    Liu, Jia-Ming; Wang, Hong-Xin; Lin, Li-Ping; Lin, Shao-Qin; Lin, Xuan; Cai, Wen-Lian; Lin, Chang-Qing; Li, Zhi-Ming

    2012-01-01

    3.5-Generation polyamidoamine dendrimers (3.5-G-D) emitted strong and stable room-temperature phosphorescence (RTP) on filter paper when Pb2+ was used as a heavy atom perturber. The RTP signal of 3.5-G-D was sharply enhanced upon the formation of 3.5-G-D-Tween-80 micelle compound. The complex Cd2+ -3.5-G-D-Tween-80, generated in the coordination reaction between Cd2+ and the tertiary amidocyanogen on the outer layer of 3.5-G-D in 3.5-G-D-Tween-80 micelle compound, could catalyze KBrO3 to oxidize 3.5-G-D in 3.5-G-D-Tween-80, which caused the sharp quenching of the RTP signal of the system. The phosphorescence intensity change (ΔI(p) ) of the system had a linear relationship with the content of Cd2+. Thus a new catalytic solid substrate-room-temperature phosphorimetry (SS-RTP) for the determination of trace cadmium has been established. This highly selective and sensitive method has been applied to determine trace cadmium in biological samples with a limit of detection (LD) of 1.2 ag per spot (when the sample volume was 0.4 μL per spot, the corresponding concentration was 3.0 × 10(-15)  g mL(-1) ), the results agreeing with those obtained by atomic absorption spectrometry. The mechanism of catalytic SS-RTP for the determination of trace cadmium was also discussed. PMID:22021248

  7. Morphological and physiological changes exhibited by a Cd-resistant Dictyosphaerium chlorelloides strain and its cadmium removal capacity.

    PubMed

    Bartolomé, M C; Cortés, A A; Sánchez-Fortún, A; Garnica-Romo, M G; Sánchez-Carrillo, S; Sánchez-Fortún, Sebastián

    2016-12-01

    Changes induced on freshwater microalga Dictyosphaerium chlorelloides (Dc(wt)) acclimated in the laboratory until their survival in culture media enriched with cadmium 100 µM have been studied. Cadmium removal by living cells of this Cd-resistant (Dc(CdR100)) strain was tested in cultures exposed to 100 µM Cd during 30 days. Cell dimensions were measured under light microscopy, and cell growth was studied. Photosynthetic yield (ΦPSII) was analyzed and the photosynthetic oxygen development and respiration response was obtained. Results show that Dc(CdR100) strain exhibited significant cell morphology changes in comparison to Dc(wt) cells, which affected both surface area and cell biovolume. Malthusian fitness analysis showed that Dc(CdR100) strain living in Cd-enriched culture had developed a lower capacity of nearly 50% growth, and its photosynthetic oxygen development and respiration response were significantly reduced in both light and dark photosynthetic phases. Dc(CdR100) strain showed a very high capacity to remove cadmium from the aquatic environment (over 90%), although most of the removed heavy metal (≈70%) is adhered to the cell wall. These specific characteristics of Dc(CdR100) cells suggest the possibility of using this strain in conjunction with Dc(wt) strain as bioelements into a dual-head biosensor, and in bioremediation processes on freshwater polluted with Cd. PMID:27222159

  8. An evaluation of potentially useful separator materials for nickel-cadmium (Ni-Cd] satellite batteries

    NASA Technical Reports Server (NTRS)

    Baker, H. A.; Toner, S. D.; Cuthrell, W. F.

    1974-01-01

    An evaluation intended to determine the potential suitability and probable efficacy of a group of separator materials for use in nickel-cadmium (Ni-Cd) satellite batteries was carried out. These results were obtained using test procedures established in an earlier evaluation of other separator materials, some of which were used in experimental battery cells subjected to simulated use conditions. The properties that appear to be most important are: high electrolyte absorptivity, good electrolyte retention, low specific resistivity, rapid wettability and low resistance to air permeation. Wicking characteristics and wet-out time seem to be more important with respect to the initial filling of the battery with the electrolyte.

  9. Ag adsorption on Cd-terminated CdS (0 0 0 1) and S-terminated CdS (0 0 0 1-bar) surfaces: First-principles investigations

    SciTech Connect

    Ma, Yandong; Dai, Ying; Wei, Wei; Liu, Xianghong; Huang, Baibiao

    2011-04-15

    First-principles calculations are performed to study the adsorption of Ag at Cd-terminated CdS (0 0 0 1) and S-terminated CdS (0 0 0 1-bar) surfaces as a function of Ag coverage. Our results reveal that Ag adsorption at Cd-terminated (0 0 0 1) has a large binging energy than at S-terminated (0 0 0 1-bar) surface. For Ag adsorption at Cd-terminated (0 0 0 1) surface, T4 structure is more favorable and the Ag-Cd bond posses an ionic-like character. While for Ag adsorption at S-terminated (0 0 0 1-bar) surface, the H3 structure is most stable and the bonding between Ag-S is covalent. It is found that the magnitude and the sign of surface dipole moment are partly determined by the difference between the electronegativities of Ag and the host atom bonding with Ag. The adsorption energy changes as a function of Ag coverage. In addition, related properties of Ag cluster adsorption at Cd-terminated (0 0 0 1) surface are also discussed. -- Graphical abstract: We studied the adsorption of Ag at Cd-terminated CdS (0 0 0 1) and S-terminated CdS (0 0 0 1-bar) surfaces as a function of Ag coverage by means of the first-principles calculations. In addition, related properties of Ag cluster adsorption at Cd-terminated (0 0 0 1) surface are also discussed. Our ab initio calculations are useful complement to the intense experimental studies for Ag-CdS interface. Display Omitted Research highlights: {yields} Ag adsorption effects on electronic structure and associated physics properties of CdS is systemically studied. {yields} The surface dipole moment is partly determined by the difference between the electronegativities of silver and the host atom bonding with silver. {yields} The characteristic of Ag cluster (Ag{sub 2}, Ag{sub 4}, and Ag{sub 7}) adsorption on the CdS (0 0 0 1) surface is discussed.

  10. Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells

    SciTech Connect

    Tang, Song; Cai, Qingsong; Chibli, Hicham; Allagadda, Vinay; Nadeau, Jay L.; Mayer, Gregory D.

    2013-10-15

    Increasing use of quantum dots (QDs) makes it necessary to evaluate their toxicological impacts on aquatic organisms, since their contamination of surface water is inevitable. This study compares the genotoxic effects of ionic Cd versus CdTe nanocrystals in zebrafish hepatocytes. After 24 h of CdSO{sub 4} or CdTe QD exposure, zebrafish liver (ZFL) cells showed a decreased number of viable cells, an accumulation of Cd, an increased formation of reactive oxygen species (ROS), and an induction of DNA strand breaks. Measured levels of stress defense and DNA repair genes were elevated in both cases. However, removal of bulky DNA adducts by nucleotide excision repair (NER) was inhibited with CdSO{sub 4} but not with CdTe QDs. The adverse effects caused by acute exposure of CdTe QDs might be mediated through differing mechanisms than those resulting from ionic cadmium toxicity, and studying the effects of metallic components may be not enough to explain QD toxicities in aquatic organisms. - Highlights: • Both CdSO{sub 4} and CdTe QDs lead to cell death and Cd accumulation. • Both CdSO{sub 4} and CdTe QDs induce cellular ROS generation and DNA strand breaks. • Both CdSO{sub 4} and CdTe QDs induce the expressions of stress defense and DNA repair genes. • NER repair capacity was inhibited with CdSO{sub 4} but not with CdTe QDs.

  11. Temperature dependence measurements for Cadmium Telluride (CdTe) solar cells

    NASA Astrophysics Data System (ADS)

    Duarte, Fernanda; Wang, Weining

    2015-03-01

    Traditional silicon (Si)-based solar cells have been studied broadly and have already reached their maximum efficiency. However, their cost is relatively high, preventing them from being widely used. Unlike Si-based solar cells, Cadmium Telluride (CdTe) solar cells are considerably cheap, yet the record efficiency is still lower than that of traditional silicon-based solar cells. More studies are needed to understand and improve the efficiency of CdTe solar cells. In this work, we report our studies of the temperature dependence of CdTe solar cell parameters using the temperature-varying apparatus designed and built by us in-house. This temperature-varying apparatus will be incorporated with a solar cell testing station in order to measure the solar cell parameters while varying the temperature. The solar cell parameters will be measured at different temperatures (with a 100 K temperature range), and the effects of temperature on the open-circuit voltage, short-circuit current and efficiency of the solar cells will be reported. These results allow us to further understand the physics of CdTe solar cells and shine light on how to improve the efficiency of CdTe solar cells.

  12. Optimization of Cadmium (CD(2+)) removal from aqueous solutions by novel biosorbent.

    PubMed

    Mahmoud, Alaa El Din; Fawzy, Manal; Radwan, Ahmed

    2016-06-01

    In this research, dead leaves of a common ornamental plant, Dracaena draca known also as dragon tree was used as a biosorbent for the removal of Cadmium (Cd(2+)) from aqueous solutions using a full 2(3) factorial experimental design. Three factors were investigated at two different levels, metal ion concentration (X = 10 and 100 ppm), hydrogen ion concentration (Ph = 2 and 7) and biomass dose (BD = 0.1 and 0.5g). Experiments were carried out in duplicates with 50 ml of Cd(2+) solutions at room temperature. When comparing observed values (experimental) with calculated values (model), they were set closely together that allowed suggesting a normal distribution where (R(2) = 0.9938). A characterization of the biosorbent was done by pHzpc and SEM-EDAX. Results also showed that the most significant effect for Cd(2+) biosorption was ascribed to (X). The interaction effects of (pH BD) and (X pH) were found to have significant influence on Cd(2+) removal efficiency. The highest Cd(2+) removal percentage attained by 79.60% at X = 10 ppm, pH = 7 and BD = 0.5g. The reusability of the biosorbent was tested in three desorption cycles and the regeneration efficiency was above 99.7%. PMID:26375406

  13. Enhanced visible light photocatalytic performance of ZnO nanowires integrated with CdS and Ag2S.

    PubMed

    Chen, Chienhua; Li, Zhengcao; Lin, Hehnan; Wang, Guojing; Liao, Jiecui; Li, Mingyang; Lv, Shasha; Li, Wei

    2016-02-18

    A series of ZnO-CdS-Ag2S ternary nanostructures with different amounts of Ag2S were prepared using simple and low-cost successive ionic layer adsorption and reaction (SILAR) and a chemical precipitation method. The ZnO nanowires, with a diameter of ∼100 nm and a length of ∼1 μm, were modified by coating CdS and Ag2S. CdS has a high absorption coefficient and can efficiently match with the energy levels of ZnO, which can enhance the light absorption ability of the nanostructures. In addition, Ag2S with a narrow band gap was used as the main light absorber and played an important role in increasing the light absorption in the visible light region. The photocatalytic activity of the ZnO-CdS-Ag2S ternary nanostructures was investigated using the degradation of methyl orange (MO) in an aqueous solution under visible light. The ZnO-CdS-Ag2S ternary nanostructures were found to be more efficient than ZnO nanowires, ZnO-CdS nanowires, and ZnO-Ag2S nanowires. There is 7.68 times more photocatalytic activity for MO degradation in terms of the rate constant for ZnO-CdS-Ag2S 15-cycle ternary nanostructure compared to the as-grown ZnO. Furthermore, the effect of the amount of Ag2S and CdS on the ZnO surface on the photocatalytic activity was analyzed. The superior photo-absorption properties and photocatalytic performance of the ZnO-CdS-Ag2S ternary nanostructures can be ascribed to the heterostructure, which enhanced the separation of the photo-induced electron-hole pairs. In addition, visible light could be absorbed by ZnO-CdS-Ag2S ternary nanostructures rather than by ZnO. PMID:26815888

  14. Hybrid density functional studies of cadmium vacancy in CdTe

    NASA Astrophysics Data System (ADS)

    Xu, Run; Xu, Hai-Tao; Tang, Min-Yan; Wang, Lin-Jun

    2014-07-01

    The intrinsic defect of cadmium vacancy (VCd) in cadmium telluride (CdTe) has been studied by first-principles calculations using potentials with both the screened hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE) approximation and the generalized gradient approximation of the Perdew—Burke—Ernzerhof form (PBE-GGA). Both results show that the Td structure of the VCd defect for different charges is the most stable structure as compared with the distorted C3v structure with one hole localized at one of the four nearest Te atoms. This indicates that the John—Teller distortion (C3v) structure may be unstable in bulk CdTe crystal. The reason likely lies in the delocalized resonance nature of the t2 state of the VCd defect. Moreover, the formation energy obtained by the HSE method is about 0.6-0.8 eV larger than that obtained by the PBE method. The transition levels calculated by the PBE method and the HSE method are similar and well consistent with the experimental results.

  15. To study the effect of doping concentration of silver on structural and optical properties of cadmium oxide (CdO) nanostructure

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Sharma, Ashwani; Parmar, R.; Dahiya, S.; Kishor, N.

    2016-05-01

    The present work deals with study of structural and optical properties of Silver (Ag) doped Cadmium oxide (CdO) nanostructured synthesized by Chemical Co-precipitation Techniques followed by calcinations at small temperature. The doping concentrations were changing from 0.1 to 10 at% respectively. Structural analysis study of these calcined materials is carried out by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy(TEM). The optical properties of calcined samples were investigating by Fourier transformation infrared (FTIR)spectroscopy, UV-Visible Spectroscopy (UV-Vis). The structural properties analysis results revels that crystallite size are in the range of nano region and TEM results are quite in accordance with XRD results.

  16. Cadmium(II) complex formation with selenourea and thiourea in solution: an XAS and 113Cd NMR study.

    PubMed

    Jalilehvand, Farideh; Amini, Zahra; Parmar, Karnjit

    2012-10-15

    The complexes formed in methanol solutions of Cd(CF(3)SO(3))(2) with selenourea (SeU) or thiourea (TU), for thiourea also in aqueous solution, were studied by combining (113)Cd NMR and X-ray absorption spectroscopy. At low temperature (~200 K), distinct (113)Cd NMR signals were observed, corresponding to CdL(n)(2+) species (n = 0-4, L = TU or SeU) in slow ligand exchange. Peak integrals were used to obtain the speciation in the methanol solutions, allowing stability constants to be estimated. For cadmium(II) complexes with thione (C═S) or selone (C═Se) groups coordinated in Cd(S/Se)O(5) or Cd(S/Se)(2)O(4) (O from MeOH or CF(3)SO(3)(-)) environments, the (113)Cd chemical shifts were quite similar, within 93-97 ppm and 189-193 ppm, respectively. However, the difference in the chemical shift for the Cd(SeU)(4)(2+) (578 pm) and Cd(TU)(4)(2+) (526 ppm) species, with CdSe(4) and CdS(4) coordination, respectively, shows less chemical shielding for the coordinated Se atoms than for S, in contrast to the common trend with increasing shielding in the following order: O > N > Se > S. In solutions dominated by mono- and tetra-thiourea/selenourea complexes, their coordination and bond distances could be evaluated by Cd K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. At ~200 K and high excess of thiourea, a minor amount (up to ~30%) of [Cd(TU)(5-6)](2+) species was detected by an upfield shift of the (113)Cd NMR signal (up to 423 ppm) and an amplitude reduction of the EXAFS oscillation. The amount was estimated by fitting linear combinations of simulated EXAFS spectra for [Cd(TU)(4)](2+) and [Cd(TU)(6)](2+) complexes. At room temperature, [Cd(TU)(4)](2+) was the highest complex formed, also in aqueous solution. Cd L(3)-edge X-ray absorption near edge structure (XANES) spectra of cadmium(II) thiourea solutions in methanol were used to follow changes in the CdS(x)O(y) coordination. The correlations found from the current and previous studies between (113

  17. Cadmium(II) Complex Formation with Selenourea and Thiourea in Solution: An XAS and 113Cd NMR Study

    PubMed Central

    Jalilehvand, Farideh; Amini, Zahra; Parmar, Karnjit

    2012-01-01

    The complexes formed in methanol solutions of Cd(CF3SO3)2 with selenourea (SeU) or thiourea (TU), for thiourea also in aqueous solution, were studied by combining 113Cd NMR and X-ray absorption spectroscopy. At low temperature (~200 K) distinct 113Cd NMR signals were observed, corresponding to CdLn2+ species (n = 0 - 4, L = TU or SeU) in slow ligand exchange. Peak integrals were used to obtain the speciation in the methanol solutions, allowing stability constants to be estimated. For cadmium(II) complexes with thione (C=S) or selone (C=Se) groups coordinated in Cd(S/Se)O5 or Cd(S/Se)2O4 (O from MeOH or CF3SO3-) environments the 113Cd chemical shifts were quite similar, within 93-97 ppm and 189 – 193 ppm, respectively. However, the difference in the chemical shift for the Cd(SeU)42+ (578 pm) and Cd(TU)42+ (526 ppm) species, with CdSe4 and CdS4 coordination, respectively, shows less chemical shielding for the coordinated Se atoms than for S, in contrast to the common trend with increasing shielding in the order: O > N > Se >S. In solutions dominated by mono- and tetra-thiourea / selenourea complexes, their coordination and bond distances could be evaluated by Cd K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. At ~200 K and high excess of thiourea a minor amount (up to ~30%) of [Cd(TU)5-6]2+ species was detected by an upfield shift of the 113Cd NMR signal (up to 423 ppm) and an amplitude reduction of the EXAFS oscillation. The amount was estimated by fitting linear combinations of simulated EXAFS spectra for [Cd(TU)4]2+ and [Cd(TU)6]2+ complexes. At room temperature, [Cd(TU)4]2+ was the highest complex formed, also in aqueous solution. Cd L3-edge X-ray absorption near edge structure (XANES) spectra of cadmium(II) thiourea solutions in methanol were used to follow changes in the CdSxOy coordination at room temperature. The correlations found from the current and previous studies between 113Cd NMR chemical shifts and different Cd(II) coordination

  18. Cadmium

    Integrated Risk Information System (IRIS)

    Cadmium ; CASRN 7440 - 43 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  19. Facile Synthesis of Cadmium-Free Zn-In-S:Ag/ZnS Nanocrystals for Bio-Imaging

    PubMed Central

    Xuan, Tong-Tong; Liu, Jia-Qing; Yu, Cai-Yan; Xie, Rong-Jun; Li, Hui-Li

    2016-01-01

    High quality cadmium-free Zn-In-S:Ag doped-nanocrystals (d-NCs) were synthesized via a simple one-step noninjection route using silver nitrate, indium acetate, zinc acetate, oleylamine, S powder and 1-dodecanethiol as starting materials in an organic phase. The size and optical properties can be effectively tailored by controlling the reaction time, reaction temperature, Ag+ dopant concentration, and the molar ratio of In to Zn. The photoluminescence wavelength of as-prepared Zn-In-S:Ag NCs covered a broad visible range from 458 nm to 603 nm. After being passivated by protective ZnS shell, the photoluminescence quantum yield (PLQY) of Zn-In-S:Ag+ /ZnS was greatly improved to 43.5%. More importantly, the initial high PLQY of the obtained core/shell d-NCs in organic media can be preserved when being transferred into the aqueous media via ligand exchange. Finally, high quality Zn-In-S:Ag+ /ZnS d-NCs in aqueous phase were applied as bio-imaging agents for identifying living KB cells. PMID:27074820

  20. Facile Synthesis of Cadmium-Free Zn-In-S:Ag/ZnS Nanocrystals for Bio-Imaging.

    PubMed

    Xuan, Tong-Tong; Liu, Jia-Qing; Yu, Cai-Yan; Xie, Rong-Jun; Li, Hui-Li

    2016-01-01

    High quality cadmium-free Zn-In-S:Ag doped-nanocrystals (d-NCs) were synthesized via a simple one-step noninjection route using silver nitrate, indium acetate, zinc acetate, oleylamine, S powder and 1-dodecanethiol as starting materials in an organic phase. The size and optical properties can be effectively tailored by controlling the reaction time, reaction temperature, Ag(+) dopant concentration, and the molar ratio of In to Zn. The photoluminescence wavelength of as-prepared Zn-In-S:Ag NCs covered a broad visible range from 458 nm to 603 nm. After being passivated by protective ZnS shell, the photoluminescence quantum yield (PLQY) of Zn-In-S:Ag(+) /ZnS was greatly improved to 43.5%. More importantly, the initial high PLQY of the obtained core/shell d-NCs in organic media can be preserved when being transferred into the aqueous media via ligand exchange. Finally, high quality Zn-In-S:Ag(+) /ZnS d-NCs in aqueous phase were applied as bio-imaging agents for identifying living KB cells. PMID:27074820

  1. Facile Synthesis of Cadmium-Free Zn-In-S:Ag/ZnS Nanocrystals for Bio-Imaging

    NASA Astrophysics Data System (ADS)

    Xuan, Tong-Tong; Liu, Jia-Qing; Yu, Cai-Yan; Xie, Rong-Jun; Li, Hui-Li

    2016-04-01

    High quality cadmium-free Zn-In-S:Ag doped-nanocrystals (d-NCs) were synthesized via a simple one-step noninjection route using silver nitrate, indium acetate, zinc acetate, oleylamine, S powder and 1-dodecanethiol as starting materials in an organic phase. The size and optical properties can be effectively tailored by controlling the reaction time, reaction temperature, Ag+ dopant concentration, and the molar ratio of In to Zn. The photoluminescence wavelength of as-prepared Zn-In-S:Ag NCs covered a broad visible range from 458 nm to 603 nm. After being passivated by protective ZnS shell, the photoluminescence quantum yield (PLQY) of Zn-In-S:Ag+ /ZnS was greatly improved to 43.5%. More importantly, the initial high PLQY of the obtained core/shell d-NCs in organic media can be preserved when being transferred into the aqueous media via ligand exchange. Finally, high quality Zn-In-S:Ag+ /ZnS d-NCs in aqueous phase were applied as bio-imaging agents for identifying living KB cells.

  2. Cadmium in the waters off South Morocco: Nature of particles hosting Cd and insights into the mechanisms fractionating Cd from phosphate

    NASA Astrophysics Data System (ADS)

    Waeles, Matthieu; Planquette, Hélène; Afandi, Imane; Delebecque, Nina; Bouthir, Fatimazohra; Donval, Anne; Shelley, Rachel U.; Auger, Pierre-Amaël.; Riso, Ricardo D.; Tito de Morais, Luis

    2016-05-01

    In this study, we report the distributions of total dissolvable cadmium and particulate cadmium from 27 stations in southern Moroccan coastal waters (22°N-30°N), which is part of the North-West African upwelling system. These distributions were predominantly controlled by upwelling of the North Atlantic Central Waters (NACWs) and uptake by primary production. Atmospheric inputs and phosphogypsum slurry inputs from the phosphate industry at Jorf Lasfar (33°N), recently estimated as an important source of dissolved cadmium (240 t Cd yr-1), are at best of minor importance for the studied waters. Our study provides new insights into the mechanisms fractionating cadmium from phosphate. In the upper 30 m, the anomalies observed in terms of Cd:P ratios in both the particulate and total dissolvable fractions were related to an overall preferential uptake of phosphate. We show that the type of phytoplanktonic assemblage (diatoms versus dinoflagellates) is also a determinant of the fractionation intensity. In subsurface waters (30-60 m), a clear preferential release of P (versus Cd) was observed indicating that remineralization in Oxygen Minimum Zones is a key process in sequestering Cd.

  3. Cadmium-sulfide crystallites in Cd-. gamma. -glutamyl peptide complexes from Lycopersicon and Daucus

    SciTech Connect

    Reese, R.N. ); Winge, D.R. )

    1989-04-01

    Hydroponically-grown tomato plants (Lycopersicon esculentum P. Mill. cv stone) and suspension-cultured carrot cells (Daucus carota L.) exposed to 100 {mu}M cadmium salts produced metal-{gamma}-glutamyl peptide complexes containing acid labile sulfur. The properties of the complexes resemble the Cd-{gamma}-glutamyl complexes from Schizosaccharomyces pombe and Candida glabrata, known to contain a CdS crystallite core. The crystallite core is stabilized by a coating of peptides of the general structure ({gamma}-Glu-Cys){sub n}-Gly. The Cd-peptide complexes contain predominantly peptides of n{sub 2}, n{sub 3}, n{sub 4} and n{sub 3}desGly. Zn-peptide complexes were also isolated from carrot cultures grown in MS medium supplemented with 2 mM Zn and cysteine. Results of preliminary characterization of these complexes are consistent with the presence of a colloidal particle similar to that of the Cd-complexes.

  4. Probing metabolic stability of CdSe nanoparticles: alkaline extraction of free cadmium from liver and kidney samples of rats exposed to CdSe nanoparticles.

    PubMed

    Arslan, Zikri; Ates, Mehmet; McDuffy, Wanaki; Agachan, M Sabri; Farah, Ibrahim O; Yu, W William; Bednar, Anthony J

    2011-08-15

    Cadmium selenide nanoparticles (CdSe NPs) exhibit novel optoelectronic properties for potential biomedical applications. However, their metabolic stability is not fully understood because of the difficulties in measurement of free Cd from biological tissues of exposed individuals. In this study, alkaline dissolution with tetramethylammonium hydroxide (TMAH) is demonstrated for selective determination of free Cd and intact NPs from liver and kidney samples of animals that were exposed to thiol-capped CdSe NPs. Aqueous suspensions of CdSe NPs (3.2 nm) were used to optimize the conditions for extracting free Cd without affecting NPs. Nanoparticles were found to aggregate when heated in TMAH without releasing any significant Cd to solution. Performance of the method in discriminating free Cd and intact NPs were verified by Dogfish Liver (DOLT-4) certified reference material. The samples from the animals were digested in 4 mL TMAH at 70°C to extract free Cd followed by analysis of aqueous phase by ICP-MS. Both liver and kidney contained significant levels of free Cd. Total Cd was higher in the liver, while kidney accumulated mostly free Cd such that up to 47.9% of total Cd in the kidney was free Cd when NPs were exposed to UV-light before injection. PMID:21700388

  5. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method.

    PubMed

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-12-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor-Ag2S (0.9 eV) quantum dots (QDs)-in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields. PMID:26428017

  6. CD226 as a genetic adjuvant to enhance immune efficacy induced by Ag85A DNA vaccination.

    PubMed

    Li, Yan; Yang, Fangli; Zhu, Junfeng; Sang, Lixuan; Han, Xue; Wang, Danan; Shan, Fengping; Li, Shengjun; Sun, Xun; Lu, Changlong

    2015-03-01

    Antigen-85A (Ag85A) is one of the major proteins secreted by Mycobacterium tuberculosis. Many studies on animal models have shown that vaccination with the recombinant Ag85A-DNA or Ag85A protein induces powerful immune response. However, these vaccines cannot generate sufficient protective immunity in the systemic compartment. CD226, a member of the immunoglobulin superfamily, is expressed in the majority of NK cells, T cells, monocytes, and platelets, and can be served as a co-stimulator that contributes to multiple innate and adaptive responses. However, there has been no study where either CD226 protein or DNA has been used as an adjuvant for vaccine development. The aim of this study was to develop a novel Ag85A DNA vaccine with CD226 as the genetic adjuvant to increase the immune efficacy induced by Ag85A. Oral vaccination with pcDNA3.1-Ag85A-CD226 DNA induced potent immune responses in mice. CD226 was an effective genetic adjuvant that improved the immune efficacy induced by Ag85A and enhanced the activity of cytotoxic T lymphocytes (CTL) and NK cells in mice. Th1 dominant cytokines (i.e. IL-2, IFN-γ and TNF-α), cellular immunity (i.e. CD4(+)IFN-γ(+)T cells and CD8(+)IFN-γ(+)T cells in splenocytes) and MLNs were also significantly elevated by pcDNA3.1-Ag85A-CD226 DNA vaccination. Our results suggest that CD226 is an effective adjuvant to enhance the immune efficacy induced by Ag85A. Our findings provide a new strategy for the development of a DNA vaccine co-expressing Ag85A and CD226. PMID:25582686

  7. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-10-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor—Ag2S (0.9 eV) quantum dots (QDs)—in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

  8. Development of highly sensitive cadmium iondashselective electrodes by titration method and its application to cadmium ion determination in industrial waste water.

    PubMed

    Ito, S; Asano, Y; Wada, H

    1997-04-01

    Characteristics of cadmium iondashselective electrode made cadmium sulphide (CdS)-silver sulphide (Ag(2)S) mixture were studied. CdS-Ag(2)S mixtures were obtained by gas/solid-phase reaction between silver-cadmium mixed powder and hydrogen sulphide gas (dry method) and by ionic reaction between cadmium-silver mixed ions and sulphide ion (wet method). As a result, it was found that the CdS-Ag(2)S mixture had to be made in the condition of excess existence of sulfur and had better regulate the excess sulfur quantity minimum, for the CdS-Ag(2)S pressed membrane gave a good Nernstian response against the cadmium ion concentration change. As the best way, CdS-Ag(2)S mixture was obtained by adding sulphide ion solution to 5 mol% cadmium ion and 95 mol% silver ion mixed solution while measuring silver sulphide (Ag(2)S) electrode potential as an indicator electrode. According to the reaction was stopped when the potential variation from the initial potential in the sulphide ion solution reached at 87-116 mV which the sulphide ion concentration became 10(-3) - 10(-4) of the initial concentration, the cadmium ion membrane pressed diameter of 8 mm and thickness of 2 mm showed a Nernstian response from 10(-8) to 10(-1) M of cadmium ion concentration. Furthermore, aiming to its application for industrial waste water, masking buffer for interfering metal ions such as lead ion (Pb(2+)) and copper ion (Cu(2+)), which were possibly coexisted and to adjust total ionic strength and pH of sample was developed. The present Cd(2+) iondashselective electrode was applied to the determination of Cd(2+) in the industrial waste water. The good regression line with correlation factor of 0.984 was obtained compared with the conventional atomic absorption spectroscopy. PMID:18966791

  9. High frequency of circulating HBcAg-specific CD8 T cells in hepatitis B infection: a flow cytometric analysis

    PubMed Central

    Matsumura, S; Yamamoto, K; Shimada, N; Okano, N; Okamoto, R; Suzuki, T; Hakoda, T; Mizuno, M; Higashi, T; Tsuji, T

    2001-01-01

    Viral antigen-specific T cells are important for virus elimination. We studied the hepatitis B virus (HBV)-specific T cell response using flow cytometry. Three phases of HBV infection were studied: Group A, HBeAg (+) chronic hepatitis; Group B, HBeAb (+) HBV carrier after seroconversion; and Group C, HBsAb (+) phase. Peripheral T cells were incubated with recombinant HB core antigen (HBcAg), and intracytoplasmic cytokines were analysed by flow cytometry. HBcAg-specific CD4 and CD8 T cells were identified in all three groups and the number of IFN-γpositive T cells was greater than TNF-α-positive T cells. The frequency of IFN-γ-positive CD4 and CD8 T cells was highest in Group C, compared with Groups A and B. No significant difference in the HBcAg-specific T cell response was observed between Group A and Group B. The HBcAg-specific CD8 T cell response was diminished by CD4 depletion, addition of antibody against human leucocyte antigen (HLA) class I, class II or CD40L. Cytokine-positive CD8 T cells without HBcAg stimulation were present at a high frequency (7 of 13 cases) in Group B, but were rare in other groups. HBcAg-specific T cells can be detected at high frequency by a sensitive flow cytometric analysis, and these cells are important for controlling HBV replication. PMID:11472405

  10. Hydrometallurgical route to recover nickel, cobalt and cadmium from spent Ni-Cd batteries

    NASA Astrophysics Data System (ADS)

    Fernandes, Aline; Afonso, Julio Carlos; Bourdot Dutra, Achilles Junqueira

    2012-12-01

    In this work a hydrometallurgical route to recover nickel, cobalt and cadmium after leaching spent Ni-Cd batteries with hydrochloric acid was investigated. Co(II) and Cd(II) were both recovered by solvent extraction. Cd(II) was first extracted (99.7 wt.%) with pure tri-n-butylphosphate (TBP), in the original leachate acidity (5.1 mol L-1), in two stages at 25 °C with an aqueous/organic (A/O) phase ratio = 1 v/v. The Co(II) present in the raffinate (free acidity 4.1 mol L-1) was extracted with Alamine 336 or Alamine 304 (10 vol.% in kerosene) at 25 °C with an A/O ratio = 1 in two stages. 97.5 wt.% of Co(II) was extracted using Alamine 336 while only 90.4 wt.% was extracted in the case of Alamine 304. Ni(II) was isolated from the raffinate as oxalate after addition of ammonium oxalate at pH 2.

  11. Preparation, characterization, and bacteriostasis of AgNP-coated β-CD grafting cellulose beads.

    PubMed

    Wang, Ting; Li, Bin; Lin, Li

    2013-03-01

    A novel functional material of β-cyclodextrin (β-CD) grafting cellulose beads containing immobilized silver nanoparticles (AgNPs) is presented in this paper. The morphology was characterized by scanning electron microscopy, energy-dispersive X-ray, and X-ray photoelectron spectroscopy. Phenolphthalein probe molecule technique was used to detect the activity of the grafting β-CD, and the results demonstrated that the deposition of AgNPs had no influence on its encapsulation ability. Acid resistance of the AgNPs on the bead material was studied by atomic absorption spectrometry. The stability of the AgNPs was enhanced due to the grafting of β-CD. Tube dilution method was applied to study the bacteriostatic effect, and the minimal inhibitory doses of the novel material against Escherichia coli and Staphylococcus aureus were 12.5 and 25 mg, respectively. The minimal bactericidal doses for the two bacteria were 25 and 25 mg, respectively. PMID:23340866

  12. Magnesium and cadmium containing Heusler phases REPd2Mg, REPd2Cd, REAg2Mg, REAu2Mg and REAu2Cd

    NASA Astrophysics Data System (ADS)

    Johnscher, Michael; Stein, Sebastian; Niehaus, Oliver; Benndorf, Christopher; Heletta, Lukas; Kersting, Marcel; Höting, Christoph; Eckert, Hellmut; Pöttgen, Rainer

    2016-02-01

    Twenty-eight new Heusler phases REPd2Mg, REPd2Cd, REAg2Mg, REAu2Mg and REAu2Cd with different rare earth elements were synthesized from the elements in sealed niobium ampoules in a water-cooled sample chamber of an induction furnace. The samples were characterized by powder X-ray diffraction. The cell volumes show the expected lanthanide contraction. The structures of YPd2Cd, GdPd2Cd, GdAu2Cd, Y1.12Ag2Mg0.88 and GdAg2Mg were refined based on single crystal diffractometer data. The magnetic properties were determined for fifteen phase pure samples. LuAu2Mg is a weak Pauli paramagnet with a susceptibility of 1.0(2) × 10-5 emu mol-1 at room temperature. The remaining samples show stable trivalent rare earth ions and most of them order magnetically at low temperatures. The ferromagnet GdAg2Mg shows the highest ordering temperature of TC = 98.3 K. 113Cd and 89Y MAS NMR spectra of YAu2Cd and YPd2Cd confirm the presence of unique crystallographic sites. The resonances are characterized by large Knight shifts, whose magnitude can be correlated with electronegativity trends.

  13. Extraction and isolation of the salidroside-type metabolite from zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance.

    PubMed

    Xing, Yan; Peng, Hong-yun; Li, Xia; Zhang, Meng-xi; Gao, Ling-ling; Yang, Xiao-e

    2012-10-01

    The active metabolite in the post-harvested biomass of zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance from phytoextraction is of great interest in China. The current study demonstrates that a salidroside-type metabolite can be yielded from the Zn/Cd hyperaccumulator S. alfredii biomass by means of sonication/ethanol extraction and macroporous resin column (AB-8 type) isolation. The concentrations of Zn and Cd in the salidroside-type metabolite were below the limitation of the national standards. PMID:23024051

  14. Extraction and isolation of the salidroside-type metabolite from zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance*

    PubMed Central

    Xing, Yan; Peng, Hong-yun; Li, Xia; Zhang, Meng-xi; Gao, Ling-ling; Yang, Xiao-e

    2012-01-01

    The active metabolite in the post-harvested biomass of zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance from phytoextraction is of great interest in China. The current study demonstrates that a salidroside-type metabolite can be yielded from the Zn/Cd hyperaccumulator S. alfredii biomass by means of sonication/ethanol extraction and macroporous resin column (AB-8 type) isolation. The concentrations of Zn and Cd in the salidroside-type metabolite were below the limitation of the national standards. PMID:23024051

  15. Magnetic hyperfine interactions on Cd sites of the rare-earth cadmium compounds R Cd (R =Ce , Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er)

    NASA Astrophysics Data System (ADS)

    Cavalcante, F. H. M.; Leite Neto, O. F. L. S.; Saitovitch, H.; Cavalcante, J. T. P. D.; Carbonari, A. W.; Saxena, R. N.; Bosch-Santos, B.; Pereira, L. F. D.; Mestnik-Filho, J.; Forker, M.

    2016-08-01

    This paper reports the investigation of the magnetic hyperfine field Bh f in a series of rare-earth (R ) cadmium intermetallic compounds R Cd and GdCd2 measured by perturbed angular correlation (PAC) spectroscopy using 111In/111Cd as probe nuclei at Cd sites as well as first-principles calculations of Bh f at Cd sites in the studied compounds. Vapor-solid state reaction of R metals with Cd vapor and the 111In radioisotope was found to be an appropriate route of doping rare-earth cadmium compounds with the PAC probe 111In/111Cd. The observation that the hyperfine parameters depend on details of the sample preparation provides information on the phase preference of diffusing 111In in the rare-earth cadmium phase system. The 111Cd hyperfine field has been determined in the compounds R Cd for the R constituents Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er, in several cases as a function of temperature. For most R constituents, the temperature dependence Bh f(T ) of 111Cd:R Cd is consistent with ferromagnetic order of the compound. DyCd, however, presents a remarkable anomaly: a finite magnetic hyperfine field is observed only in the temperature interval 35 K ≤ T ≤ 80 K which indicates a transition from ferromagnetic order to a spin arrangement where all 4 f -induced contributions to the magnetic hyperfine field at the Cd site cancel. First-principles calculation results for DyCd show that the (π , π , 0) antiferromagnetic configuration is energetically more favorable than the ferromagnetic. The approach used in the calculations to simulate the R Cd system successfully reproduces the experimental values of Bh f at Cd sites and shows that the main contribution to Bh f comes from the valence electron polarization. The de Gennes plot of the hyperfine field Bh f of 111Cd:R Cd vs the 4 f -spin projection (g -1 )J reflects a decrease of the strength of indirect 4 f -4 f exchange across the R series. Possible mechanisms are discussed and the experimental results indicate that

  16. A series of inorganic-organic hybrid cadmium borates with novel Cd-centred [Cd@B14O20(OH)6](2-) clusters.

    PubMed

    Wei, Qi; Zhang, Ya-Jun; Song, Ying; Yang, Guo-Yu; Zou, Xiaodong

    2016-09-21

    Four novel inorganic-organic hybrid cadmium borates, namely [EAH]2{(py)2Cd@[B14O20-(OH)6]} (1, py = pyridine, EA = ethylamine), [PAH]2{(py)2Cd@[B14O20(OH)6]} (2, PA = propylamine), [pyH]2{(py)2Cd@[B14O20(OH)6]} (3) and {(AImH)2Cd@[B14O20(OH)6]} (4, AIm = 1-(3-aminopropyl)imidazole) have been solvothermally synthesized and characterized by elemental analysis, thermogravimetric analysis, IR spectroscopy, UV-Vis-NIR spectroscopy, fluorescence spectroscopy, powder X-ray diffraction, and single-crystal X-ray diffraction, respectively. They represent the first hybrid cadmium borates that exhibit 3D supramolecular open-frameworks with different topologies. All the networks are formed by the unprecedented Cd-centred cluster [Cd@B14O20(OH)6](2-), and further link each other via a multipoint H-bond system. UV-Vis-NIR spectral investigation reveals that these borates are wide-band-gap semiconductors. Moreover, they display strong fluorescence emission around 430 nm, making them excellent candidates for optoelectronic applications as blue materials. PMID:27523170

  17. Properties of reactively sputtered oxygenated cadmium sulfide (CdS:O) and their impact on CdTe solar cell performance

    SciTech Connect

    Meysing, Daniel M. Wolden, Colin A.; Griffith, Michelle M.; Mahabaduge, Hasitha; Pankow, Joel; Reese, Matthew O.; Burst, James M.; Rance, William L.; Barnes, Teresa M.

    2015-03-15

    Oxygenated cadmium sulfide (CdS:O) is commonly used as the n-type window layer in high-performance CdTe heterojunction solar cells. This layer is deposited by reactive sputtering, but the optimal amount of oxygen in the sputtering ambient is highly dependent on the specific system and process employed. In this work, the intrinsic properties of CdS:O were measured as a function of the oxygen content (0%–10%) in the sputtering ambient and correlated to device performance with the goal of better defining optimal CdS:O properties for CdTe solar cells. Optimal performance was found using CdS:O films that contained ∼40 at. % oxygen as measured by Rutherford backscattering spectrometry. X-ray photoelectron spectroscopy confirmed these results and showed that oxygen is incorporated primarily as oxygenated sulfur compounds (SO{sub x}). Device efficiency improved from 10.5% using CdS to >14% with CdS:O due largely to increases in short-circuit current density as well as a modest improvement in open-circuit voltage. The transparency of the CdS:O films was well correlated with observed improvements in blue quantum efficiency with increasing oxygen content. The optical bandgap of as-deposited CdS:O was identified as a simple metric for process optimization and transfer, with 2.8 eV being ideal for the device architecture employed.

  18. Cadmium uptake and sequestration kinetics in individual leaf cell protoplasts of the Cd/Zn hyperaccumulator Thlaspi caerulescens.

    PubMed

    Leitenmaier, Barbara; Küpper, Hendrik

    2011-02-01

    Hyperaccumulators store accumulated metals in the vacuoles of large leaf epidermal cells (storage cells). For investigating cadmium uptake, we incubated protoplasts obtained from leaves of Thlaspi caerulescens (Ganges ecotype) with a Cd-specific fluorescent dye. A fluorescence kinetic microscope was used for selectively measuring Cd-uptake and photosynthesis in different cell types, so that physical separation of cell types was not necessary. Few minutes after its addition, cadmium accumulated in the cytoplasm before its transport into the vacuole. This demonstrated that vacuolar sequestration is the rate-limiting step in cadmium uptake into protoplasts of all leaf cell types. During accumulation in the cytoplasm, Cd-rich vesicle-like structures were observed. Cd uptake rates into epidermal storage cells were higher than into standard-sized epidermal cells and mesophyll cells. This shows that the preferential heavy metal accumulation in epidermal storage cells, previously observed for several metals in intact leaves of various hyperaccumulator species, is due to differences in active metal transport and not differences in passive mechanisms like transpiration stream transport or cell wall adhesion. Combining this with previous studies, it seems likely that the transport steps over the plasma and tonoplast membranes of leaf epidermal storage cells are driving forces behind the hyperaccumulation phenotype. PMID:20880204

  19. Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens.

    PubMed

    Ó Lochlainn, Seosamh; Bowen, Helen C; Fray, Rupert G; Hammond, John P; King, Graham J; White, Philip J; Graham, Neil S; Broadley, Martin R

    2011-01-01

    Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea.A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS™ clones with insert sizes ∼20-40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs.Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter β-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue.This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor >40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae. PMID:21423774

  20. Tandem Quadruplication of HMA4 in the Zinc (Zn) and Cadmium (Cd) Hyperaccumulator Noccaea caerulescens

    PubMed Central

    Ó Lochlainn, Seosamh; Bowen, Helen C.; Fray, Rupert G.; Hammond, John P.; King, Graham J.; White, Philip J.; Graham, Neil S.; Broadley, Martin R.

    2011-01-01

    Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea. A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS™ clones with insert sizes ∼20–40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs. Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter β-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue. This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor >40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae. PMID:21423774

  1. Cadmium (II) removal mechanisms in microbial electrolysis cells.

    PubMed

    Colantonio, Natalie; Kim, Younggy

    2016-07-01

    Cadmium is a toxic heavy metal, causing serious environmental and human health problems. Conventional methods for removing cadmium from wastewater are expensive and inefficient for low concentrations. Microbial electrolysis cells (MECs) can simultaneously treat wastewater, produce hydrogen gas, and remove heavy metals with low energy requirements. Lab-scale MECs were operated to remove cadmium under various electric conditions: applied voltages of 0.4, 0.6, 0.8, and 1.0 V; and a fixed cathode potential of -1.0 V vs. Ag/AgCl. Regardless of the electric condition, rapid removal of cadmium was demonstrated (50-67% in 24 h); however, cadmium concentration in solution increased after the electric current dropped with depleted organic substrate under applied voltage conditions. For the fixed cathode potential, the electric current was maintained even after substrate depletion and thus cadmium concentration did not increase. These results can be explained by three different removal mechanisms: cathodic reduction; Cd(OH)2 precipitation; and CdCO3 precipitation. When the current decreased with depleted substrates, local pH at the cathode was no longer high due to slowed hydrogen evolution reaction (2H(+)+2e(-)→H2); thus, the precipitated Cd(OH)2 and CdCO3 started dissolving. To prevent their dissolution, sufficient organic substrates should be provided when MECs are used for cadmium removal. PMID:26970043

  2. Phytoavailability of Cadmium (Cd) to Pak Choi (Brassica chinensis L.) Grown in Chinese Soils: A Model to Evaluate the Impact of Soil Cd Pollution on Potential Dietary Toxicity

    PubMed Central

    Yang, Xiaoe; Xiao, Wendan; Stoffella, Peter J.; Saghir, Aamir; Azam, Muhammad; Li, Tingqiang

    2014-01-01

    Food chain contamination by soil cadmium (Cd) through vegetable consumption poses a threat to human health. Therefore, an understanding is needed on the relationship between the phytoavailability of Cd in soils and its uptake in edible tissues of vegetables. The purpose of this study was to establish soil Cd thresholds of representative Chinese soils based on dietary toxicity to humans and develop a model to evaluate the phytoavailability of Cd to Pak choi (Brassica chinensis L.) based on soil properties. Mehlich-3 extractable Cd thresholds were more suitable for Stagnic Anthrosols, Calcareous, Ustic Cambosols, Typic Haplustalfs, Udic Ferrisols and Periudic Argosols with values of 0.30, 0.25, 0.18, 0.16, 0.15 and 0.03 mg kg−1, respectively, while total Cd is adequate threshold for Mollisols with a value of 0.86 mg kg−1. A stepwise regression model indicated that Cd phytoavailability to Pak choi was significantly influenced by soil pH, organic matter, total Zinc and Cd concentrations in soil. Therefore, since Cd accumulation in Pak choi varied with soil characteristics, they should be considered while assessing the environmental quality of soils to ensure the hygienically safe food production. PMID:25386790

  3. Phytoavailability of cadmium (Cd) to Pak choi (Brassica chinensis L.) grown in Chinese soils: a model to evaluate the impact of soil Cd pollution on potential dietary toxicity.

    PubMed

    Rafiq, Muhammad Tariq; Aziz, Rukhsanda; Yang, Xiaoe; Xiao, Wendan; Stoffella, Peter J; Saghir, Aamir; Azam, Muhammad; Li, Tingqiang

    2014-01-01

    Food chain contamination by soil cadmium (Cd) through vegetable consumption poses a threat to human health. Therefore, an understanding is needed on the relationship between the phytoavailability of Cd in soils and its uptake in edible tissues of vegetables. The purpose of this study was to establish soil Cd thresholds of representative Chinese soils based on dietary toxicity to humans and develop a model to evaluate the phytoavailability of Cd to Pak choi (Brassica chinensis L.) based on soil properties. Mehlich-3 extractable Cd thresholds were more suitable for Stagnic Anthrosols, Calcareous, Ustic Cambosols, Typic Haplustalfs, Udic Ferrisols and Periudic Argosols with values of 0.30, 0.25, 0.18, 0.16, 0.15 and 0.03 mg kg-1, respectively, while total Cd is adequate threshold for Mollisols with a value of 0.86 mg kg-1. A stepwise regression model indicated that Cd phytoavailability to Pak choi was significantly influenced by soil pH, organic matter, total Zinc and Cd concentrations in soil. Therefore, since Cd accumulation in Pak choi varied with soil characteristics, they should be considered while assessing the environmental quality of soils to ensure the hygienically safe food production. PMID:25386790

  4. Complete genome sequence of the Streptomyces sp. strain CdTB01, a bacterium tolerant to cadmium.

    PubMed

    Zhou, Geng; Yang, Hui; Zhou, Hui; Wang, Chong; Fu, Fuhua; Yu, Ye; Lu, Xiangyang; Tian, Yun

    2016-07-10

    Streptomyces sp. Strain CdTB01, which is tolerant to high concentrations of heavy metals, particularly cadmium, was isolated from soil contaminated with heavy metals. Two contigs with total genome size of 10.19Mb were identified in the whole genome sequencing and assembly, and numerous homologous genes known to be involved in heavy metal resistance were found in the genome. PMID:27165503

  5. Microbial toxicity of ionic species leached from the II-VI semiconductor materials, cadmium telluride (CdTe) and cadmium selenide (CdSe).

    PubMed

    Ramos-Ruiz, Adriana; Zeng, Chao; Sierra-Alvarez, Reyes; Teixeira, Luiz H; Field, Jim A

    2016-11-01

    This work investigated the microbial toxicity of soluble species that can potentially be leached from the II-VI semiconductor materials, cadmium telluride and cadmium selenide. The soluble ions tested included: cadmium, selenite, selenate, tellurite, and tellurate. Their toxicity towards the acetoclastic and hydrogen-consuming trophic groups in a methanogenic consortium as well as towards a bioluminescent marine bacterium, Aliivibrio fischeri (Microtox(®) test), was assessed. The acetoclastic methanogenic activity was the most affected as evidenced by the low 50% inhibiting concentrations (IC50) values obtained of 8.6 mg L(-1) for both cadmium and tellurite, 10.2 mg L(-1) for tellurate, and 24.1 mg L(-1) for selenite. Both tellurium oxyanions caused a strong inhibition of acetoclastic methanogenesis at low concentrations, each additional increment in concentration provided progressively less inhibition increase. In the case of the hydrogenotrophic methanogenesis, cadmium followed by selenite caused the greatest inhibition with IC50 values of 2.9 and 18.0 mg L(-1), respectively. Tellurite caused a moderate effect as evidenced by a 36.8% inhibition of the methanogenic activity at the highest concentration tested, and a very mild effect of tellurate was observed. Microtox(®) analyses showed a noteworthy inhibition of cadmium, selenite, and tellurite with 50% loss in bioluminescence after 30 min of exposure of 5.5, 171.1, and 458.6 mg L(-1), respectively. These results suggest that the leaching of cadmium, tellurium and selenium ions from semiconductor materials can potentially cause microbial toxicity. PMID:27494313

  6. Accumulation and tolerance characteristics of cadmium in Chlorophytum comosum: a popular ornamental plant and potential Cd hyperaccumulator.

    PubMed

    Wang, Youbao; Yan, Aolei; Dai, Jie; Wang, NanNan; Wu, Dan

    2012-01-01

    The effects on the growth, physiological indexes and the cadmium (Cd) accumulation in Chlorophytum comosum under Cd stress were examined by pot-planting. The results showed that the tolerance index (TI) of C. comosum were all above 100 in soil Cd concentration of 100 mg kg(-1). The O(2˙)⁻ production rate and electrical conductivity of C. comosum were significantly positively correlated to Cd adding-concentration while the MDA content increased and had significant differences with the control. The activities of SOD, CAT, and POD all rose significantly in lower Cd concentration and the Cd threshold of them were around 10, 50 and 20 mg kg(-1), respectively. The Cd in C. comosum root and aboveground part reached 1,522 and 865·5 mg kg(-1), respectively, in Cd concentration of soil up to 200 mg kg(-1). For the advantages of high tolerance, high accumulation, and high ornamental value, C. comosum may have tremendous application value in the treatment of Cd-contaminated soils. PMID:21625926

  7. Approaching the N=82 shell closure with mass measurements of Ag and Cd isotopes

    SciTech Connect

    Breitenfeldt, M.; Baruah, S.; Rosenbusch, M.; Schweikhard, L.; Borgmann, Ch.; Boehm, Ch.; George, S.; Audi, G.; Lunney, D.; Minaya-Ramirez, E.; Naimi, S.; Beck, D.; Dworschak, M.; Herfurth, F.; Savreux, R.; Yazidjian, C.; Blaum, K.; Cakirli, R. B.; Casten, R. F.; Delahaye, P.

    2010-03-15

    Mass measurements of neutron-rich Cd and Ag isotopes were performed with the Penning trap mass spectrometer ISOLTRAP. The masses of {sup 112,114-124}Ag and {sup 114,120,122-124,126,128}Cd, determined with relative uncertainties between 2x10{sup -8} and 2x10{sup -7}, resulted in significant corrections and improvements of the mass surface. In particular, the mass of {sup 124}Ag was previously unknown. In addition, other masses that had to be inferred from Q values of nuclear decays and reactions have now been measured directly. The analysis includes various mass differences, namely the two-neutron separation energies, the applicability of the Garvey-Kelson relations, double differences of masses deltaV{sub pn}, which give empirical proton-neutron interaction strengths, as well as a comparison with recent microscopic calculations. The deltaV{sub pn} results reveal that for even-even nuclides around {sup 132}Sn the trends are similar to those in the {sup 208}Pb region.

  8. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Hahm, Eunil; Jeong, Daham; Cha, Myeong Geun; Choi, Jae Min; Pham, Xuan-Hung; Kim, Hyung-Mo; Kim, Hwanhee; Lee, Yoon-Sik; Jeong, Dae Hong; Jung, Seunho; Jun, Bong-Hyun

    2016-05-01

    We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs. The assembled Ag NPs on silica NPs were confirmed by TEM and the presence of β-CD dimer on Ag@SiO2 was confirmed by UV-vis and attenuated total reflection-Fourier transform infrared spectroscopy. The β-CD dimer@Ag@SiO2 NPs were used as SERS substrate for detecting perylene, a PAH, directly and in a wide linearity range of 10‑7 M to 10‑2 M with a low detection limit of 10‑8 M. Also, the β-CD dimer@Ag@SiO2 NPs exhibited 1000-fold greater sensitivity than Ag@SiO2 NPs in terms of their perylene detection limit. Furthermore, we demonstrated the possibility of detecting various PAH compounds using the β-CD dimer@Ag@SiO2 NPs as a multiplex detection tool. Various PAH compounds with the NPs exhibited their distinct SERS bands by the ratio of each PAHs. This approach of utilizing the assembled structure and the ligands to recognize target has potential for use in sensitive analytical sensors.

  9. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Hahm, Eunil; Jeong, Daham; Cha, Myeong Geun; Choi, Jae Min; Pham, Xuan-Hung; Kim, Hyung-Mo; Kim, Hwanhee; Lee, Yoon-Sik; Jeong, Dae Hong; Jung, Seunho; Jun, Bong-Hyun

    2016-01-01

    We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs. The assembled Ag NPs on silica NPs were confirmed by TEM and the presence of β-CD dimer on Ag@SiO2 was confirmed by UV-vis and attenuated total reflection-Fourier transform infrared spectroscopy. The β-CD dimer@Ag@SiO2 NPs were used as SERS substrate for detecting perylene, a PAH, directly and in a wide linearity range of 10(-7) M to 10(-2) M with a low detection limit of 10(-8) M. Also, the β-CD dimer@Ag@SiO2 NPs exhibited 1000-fold greater sensitivity than Ag@SiO2 NPs in terms of their perylene detection limit. Furthermore, we demonstrated the possibility of detecting various PAH compounds using the β-CD dimer@Ag@SiO2 NPs as a multiplex detection tool. Various PAH compounds with the NPs exhibited their distinct SERS bands by the ratio of each PAHs. This approach of utilizing the assembled structure and the ligands to recognize target has potential for use in sensitive analytical sensors. PMID:27184729

  10. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Hahm, Eunil; Jeong, Daham; Cha, Myeong Geun; Choi, Jae Min; Pham, Xuan-Hung; Kim, Hyung-Mo; Kim, Hwanhee; Lee, Yoon-Sik; Jeong, Dae Hong; Jung, Seunho; Jun, Bong-Hyun

    2016-01-01

    We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs. The assembled Ag NPs on silica NPs were confirmed by TEM and the presence of β-CD dimer on Ag@SiO2 was confirmed by UV-vis and attenuated total reflection-Fourier transform infrared spectroscopy. The β-CD dimer@Ag@SiO2 NPs were used as SERS substrate for detecting perylene, a PAH, directly and in a wide linearity range of 10−7 M to 10−2 M with a low detection limit of 10−8 M. Also, the β-CD dimer@Ag@SiO2 NPs exhibited 1000-fold greater sensitivity than Ag@SiO2 NPs in terms of their perylene detection limit. Furthermore, we demonstrated the possibility of detecting various PAH compounds using the β-CD dimer@Ag@SiO2 NPs as a multiplex detection tool. Various PAH compounds with the NPs exhibited their distinct SERS bands by the ratio of each PAHs. This approach of utilizing the assembled structure and the ligands to recognize target has potential for use in sensitive analytical sensors. PMID:27184729

  11. Metal-Semiconductor Hybrid Aerogels: Evolution of Optoelectronic Properties in a Low-Dimensional CdSe/Ag Nanoparticle Assembly.

    PubMed

    Nahar, Lamia; Esteves, Richard J Alan; Hafiz, Shopan; Özgür, Ümit; Arachchige, Indika U

    2015-10-27

    Hybrid nanomaterials composed of metal-semiconductor components exhibit unique properties in comparison to their individual counterparts, making them of great interest for optoelectronic applications. Theoretical and experimental studies suggest that interfacial interactions of individual components are of paramount importance to produce hybrid electronic states. The direct cross-linking of nanoparticles (NPs) via controlled removal of the surfactant ligands provides a route to tune interfacial interactions in a manner that has not been thoroughly investigated. Herein, we report the synthesis of CdSe/Ag heteronanostructures (aerogels) via oxidation induced self-assembly of thiol-coated NPs and the evolution of optical properties as a function of composition. Three hybrid systems were investigated, where the first and second excitonic energies of CdSe were matched with plasmonic energy of Au or Ag NPs and Ag hollow NPs. Physical characterization of the aerogels suggests the presence of an interconnected network of hexagonal CdSe and cubic Ag NPs. The optical properties of hybrids were systematically examined through UV-vis, photoluminescence (PL), and time-resolved (TR) PL spectroscopic studies that indicate the generation of alternate radiative decay pathways. A new emission (640 nm) from CdSe/Ag aerogels emerged at Ag loading as low as 0.27%, whereas absorption band tailing and PL quenching effects were observed at higher Ag and Au loading, respectively. The TRPL decay time of the new emission (∼600 ns) is markedly different from those of the band-edge (1.83 ± 0.03 ns) and trap-state (1190 ± 120 ns) emission maxima of phase pure CdSe, supporting the existence of alternate radiative relaxation pathways in sol-gel derived CdSe/Ag hybrids. PMID:26389642

  12. Synthesis, crystal structure and optical properties of two new layered cadmium iodates: Cd(IO{sub 3})X (X=Cl, OH)

    SciTech Connect

    Yang, Bing-Ping Mao, Jiang-Gao

    2014-11-15

    Systematic explorations of new compounds in the cadmium iodate system by hydrothermal reactions led to two layered iodates, namely, Cd(IO{sub 3})X (X=Cl, OH). Cd(IO{sub 3})Cl crystallizes in the orthorhombic space group Cmca (No. 64) whereas Cd(IO{sub 3})(OH) crystallizes in the orthorhombic space group Pnma (No. 62). Cd(IO{sub 3})Cl displays a unique double layered structure composed of {sup 1}{sub ∞}[Cd−O{sub 3}Cl]{sub n} chains. Cadmium octahedrons form a 1D chain along the a-axis through edge sharing, and such chains are further interconnected via IO{sub 3} groups to form a special double layer on (020) plane. Cd(IO{sub 3})(OH) also exhibits a layered structure that is composed of cadmium cations, IO{sub 3} groups and hydroxyl ions. Within a layer, chains of CdO{sub 6} edge-shared octahedra are observed along the b-axis. And these chains are connected by IO{sub 3} groups into a layer parallel to the bc plane. Spectroscopic characterizations, elemental analysis, and thermogravimetric analysis for the reported two compounds are also presented. - Graphical abstract: Two new layered cadmium iodates Cd(IO{sub 3})X (X=Cl, OH) are reported. Cd(IO{sub 3})Cl features a unique double layered structure whereas Cd(IO{sub 3})(OH) displays an ordinary layered structure. - Highlights: • Two new layered cadmium iodates Cd(IO{sub 3})X (X=Cl, OH) are reported. • Cd(IO{sub 3})Cl features a unique double layered structure. • Cd(IO{sub 3})(OH) displays an ordinary layered structure. • The spectroscopic and thermal properties have been studied in detail.

  13. Whole-body aerosol exposure of cadmium chloride (CdCl2) and tetrabromobisphenol A (TBBPA) induced hepatic changes in CD-1 male mice.

    PubMed

    Chen, Yuanhong; Hu, Yabing; Liu, Shuyun; Zheng, Huiying; Wu, Xiaojuan; Huang, Zhengyu; Li, Hao; Peng, Baoqi; Long, Jinlie; Pan, Bishu; Huang, Changjiang; Dong, Qiaoxiang

    2016-11-15

    Cadmium (Cd) and tetrabromobisphenol A (TBBPA) are two prevalent contaminants in e-waste recycling facilities. However, the potential adversely health effect of co-exposure to these two types of pollutants in an occupational setting is unknown. In this study, we investigated co-exposure of these two pollutants on hepatic toxicity in CD-1 male mice through a whole-body aerosol inhalation route. Specifically, mice were exposed to solvent control (5% DMSO), Cd (8μg/m(3)), TBBPA (16μg/m(3)) and Cd/TBBPA mixture for 8h/day and 6days a week for 60 days. Hepatic changes include increased organ weight, focal necrosis, and elevated levels of liver enzymes in serum. These changes were most severe in mice exposed to TBBPA, followed by Cd/TBBPA mixture and Cd. These chemicals also led to suppressed antioxidant defensive mechanisms and increased oxidative stress. Further, these chemicals induced gene expression of apoptosis-related genes, activated genes encoding for phase I detoxification enzymes and inhibited genes encoding for phase II detoxification enzymes. These findings indicate that the hepatic damages induced by subchronic aerosol exposure of Cd and TBBPA may result from the oxidative damages caused by excessive ROS production when these chemicals were metabolized in the liver. PMID:27415598

  14. Hydrothermal syntheses and characterization of two novel luminescent Cadmium(II) frameworks: From 1D infinite triple Cd-(trz)-Cd bridges to a rare I2O0 network with 2D Cd-Br-Cd inorganic connectivity

    NASA Astrophysics Data System (ADS)

    Liu, Shi Xin; Li, Jian Hui; Wang, You You; Wu, Xiang Xia; Huo, Jian Zhong; Ding, Bin; Wang, Xiu Guang; Zhu, Zhao Zhou; Xia, Jun

    2015-05-01

    Using the 4-substituted-1,2,4-triazole derivate ligand 4-p-tolyl-1,2,4-triazole (L), two novel luminescent Cadmium(II) frameworks, namely {[Cd(μ2-L)3]·(NO3)2·L}n (1) and [Cd1.5(μ2-L)(μ2-Br)2(μ3-Br)]n (2) have been isolated under hydrothermal conditions. The structural analysis reveals that 1 presents a one-dimensional (1D) chain structural motif containing novel infinite triple Cd-(trz)-Cd bridges (triply trz-bridged M-M species). While 2 presents a rare I2O0 type framework, in which the infinite 2D Cd-Br-Cd inorganic connectivity with a 4-connected Kagome topology can be observed. The FT-IR, PXRD and thermal stabilities of 1-2 have investigated. The solid-state photo-luminescent spectra of organic ligand L and 1-2 also have been measured indicating strong emission bands.

  15. Orientational disorder in sodium cadmium trifluoride trihydrate, NaCdF{sub 3}.3H{sub 2}O

    SciTech Connect

    Smith, Robert W. . E-mail: robertsmith@mail.unomaha.edu; Mar, Arthur; Liu Jianjun; Schnell, Stan; Hardy, John R.

    2006-03-09

    Attempts to synthesize the hypothetical anhydrous fluoroperovskite NaCdF{sub 3}, which has been predicted to be stable, resulted instead in a hydrated fluoride of nominal composition NaCdF{sub 3}.3H{sub 2}O. It decomposes to sodium fluoride, cadmium fluoride, and water at 60deg. C. Its structure has been determined by single-crystal X-ray diffraction. Na{sub 0.92(2)}Cd{sub 1.08}F{sub 3.08}.2.92H{sub 2}O crystallizes in the cubic space group Fm3-bar m with a=8.2369(4)A and Z=4. The structure is based on the NaSbF{sub 6}-type (an ordered variant of the ReO{sub 3}-type) and features tilted sodium- and cadmium-centred octahedra that are linked by shared vertices to form a three-dimensional network. Substitutional disorder occurs on the nonmetal site, which is occupied by both F and O atoms, and on one of the metal sites, which is occupied by 92% Na and 8% Cd. A four-fold orientational disorder of the tilted octahedra is manifested as partial occupancy (25%) of the nonmetal site. A scheme to synthesize the anhydrous fluoride is presented.

  16. Metal coordination study at Ag and Cd sites in crown thioether complexes through DFT calculations and hyperfine parameters.

    PubMed

    do Nascimento, Rafael R; Lima, Filipe C D A; Gonçalves, Marcos B; Errico, Leonardo A; Rentería, Mario; Petrilli, Helena M

    2015-04-01

    Structural and electronic properties of [C12H24S6X], [C13H26S6OX], and [C14H28S6OX] (X: Ag(+), Cd(2+)) crown thioether complexes were investigated within the framework of the density functional theory (DFT) using the projector augmented wave (PAW) method. The theoretical results were compared with time-differential perturbed γ-γ angular correlations (TDPAC) experiments reported in the literature using the (111)Ag→(111)Cd probe. In the case of X=Ag(+), a refinement of the structure was performed and the predicted equilibrium structures compared with available X-ray diffraction experimental data. Structural distortions induced by replacing Ag(+) with Cd(2+) were investigated as well as the electric-field gradient (EFG) tensor at the Cd(2+) sites. Our results suggest that the EFG at Cd(2+) sites corresponds to the Ag(+) coordination sphere structure, i.e., before the structural relaxations of the molecule with X=Cd(2+) are completed. The results are discussed in terms of the characteristics of the TDPAC (111)Ag→(111)Cd probe and the time window of the measurement, and provide an interesting tool with which to probe molecular relaxations. PMID:25814377

  17. CdS and AgBr sensitized eriochrome black T (EBT) dye solar cells

    NASA Astrophysics Data System (ADS)

    Sharma, G. D.; Dube, D. C.; Mathur, S. C.

    1985-11-01

    The photovoltaic and rectification properties of CdS- and AgBr-sensitized Eriochrome Black T dye solar cells have been studied. The dependence of the short-circuit current and the open-circuit voltage on light intensity and electrode material are examined and the variations with electrode material are explained on the basis of the built-in potential developed at the metal-semiconductor interface. Conversion efficiency, fill factor, diode factor and reverse saturation current are also calculated for each cell.

  18. Volume dependence of Anderson hybridization in cubic CeCd and CeAg

    SciTech Connect

    Monachesi, P. ); Andreani, L.C. ); Continenza, A. ); McMahan, A.K. )

    1993-05-15

    We have undertaken a first-principles theoretical study of the Anderson hybridization in cubic CeCd and CeAg as a function of volume reduction. We present results for the hybridization width [Delta]([epsilon]) in both the [ital J]=5/2 multiplet and in the [Gamma][sub 8], [Gamma][sub 7] crystal field states of the [ital f][sup 1] Ce configuration. We also calculate the hybridization contribution to the magnetic transition temperature. This is found to increase with pressure but is smaller than the experimental values, indicating that the Coulomb exchange contribution to the magnetic coupling is not negligible in these compounds.

  19. Volume dependence of Anderson hybridization in cubic CeCd and CeAg

    SciTech Connect

    Monachesi, P.; Continenza, A. . Dipt. di Fisica); Andreani, L.C. ); McMahan, A.K. )

    1992-09-01

    We have undertaken a first-principles theoretical study of the Anderson hybridization in cubic CeCd and CeAg as a function of volume reduction. We present results for the hybridization width [Delta]([epsilon]) in both the J = 5/2 multiplet and in the [Gamma][sub 8], [Gamma][sub 7] crystal field states of the f[sup 1] Ce configuration. We also calculate the hybridization contribution to the magnetic transition temperature. This is found to increase with pressure but is smaller than the experimental values, indicating that the Coulomb exchange contribution to the magnetic coupling is not negligible in these compounds.

  20. Volume dependence of Anderson hybridization in cubic CeCd and CeAg

    SciTech Connect

    Monachesi, P.; Continenza, A.; Andreani, L.C.; McMahan, A.K.

    1992-09-01

    We have undertaken a first-principles theoretical study of the Anderson hybridization in cubic CeCd and CeAg as a function of volume reduction. We present results for the hybridization width {Delta}({epsilon}) in both the J = 5/2 multiplet and in the {Gamma}{sub 8}, {Gamma}{sub 7} crystal field states of the f{sup 1} Ce configuration. We also calculate the hybridization contribution to the magnetic transition temperature. This is found to increase with pressure but is smaller than the experimental values, indicating that the Coulomb exchange contribution to the magnetic coupling is not negligible in these compounds.

  1. Cadmium (Cd) Localization in Tissues of Cotton (Gossypium hirsutum L.), and Its Phytoremediation Potential for Cd-Contaminated Soils.

    PubMed

    Chen, Zhifan; Zhao, Ye; Fan, Lidong; Xing, Liteng; Yang, Yujie

    2015-12-01

    Phytoremediation using economically valuable, large biomass, non-edible plants is a promising method for metal-contaminated soils. This study investigated cotton's tolerance for Cd and remediation potential through analyzing Cd bioaccumulation and localization in plant organs under different soil Cd levels. Results showed cotton presents good tolerance when soil Cd concentration ≤20.26 mg kg(-1). Cotton had good Cd accumulation ability under low soil Cd levels (<1.26 mg kg(-1)), with a TF value (the ratio of Cd concentration in stem to root) above 1. Energy dispersive X-ray microanalysis indicated cotton leaf transpiration played a key role in extracting soil Cd, while roots and stems were the main compartments of Cd storage. Cd complexation to other organic constituents in root and stem cell sap could be a primary detoxifying strategy. Therefore, cotton is a potential candidate for phytoremediation of Cd-contaminated soils. PMID:26419249

  2. Effects of cadmium particle size on properties of sintered CdS/CdTe thin film solar cells

    NASA Astrophysics Data System (ADS)

    Kim, D. S.; Im, H. B.

    Transparent CdS films with low electrical resistivity have been prepared by coating a CdS slurry on a glass substrate followed by sintering in nitrogen. CdTe slurries consisting of Te powder, Cd powders of various particle sizes, and an appropriate amount of propylene glycol were coated on the sintered CdS films and were sintered in nitrogen to prepare sintered CdS/CdTe solar cells. The efficiency of a sintered CdS/CdTe solar cell increases with increasing Cd particle size up to 3-4 microns and then decreases with a further increase in the Cd particle size. The microstructures of the sintered CdTe layer and of the cross-section of the CdS/CdTe solar cell show that the structures are the most compact in a solar cell which started with a Cd particle size of 3-4 microns. A sintered CdS/CeTe solar cell that was fabricated by using a Cd powder with an average particle size of about 4 microns shows a solar efficiency of 12 percent when measured under a solar intensity of 80 mW/sq cm.

  3. Cadmium ion adsorption controls the growth of CdS nanoparticles on layered montmorillonite and calumit surfaces

    SciTech Connect

    Dekany, I.; Turi, L.; Galbacs, G.; Fendler, J.H.

    1999-05-15

    Adsorption isotherms have been determined for the intercalation of cadmium ions (Cd{sup 2+}) into layered hydrophobized montmorillonite (HDP-M) and calumit (DBS-C) sheets dispersed in ethanol (1)-cyclohexane (2) mixtures. The amount of Cd{sup 2+} adsorbed depended strongly on the composition of the binary liquid; at an ethanol mole fraction of 0.05 (x{sub 1} = 0.05), 95% of the added Cd{sup 2+} is located in the ethanolic nanoreactor at the HDP-M (or DBS-C) surface. CdS nanoparticles have been generated in situ in ethanolic nanoreactors at the HDP-M and DBS-C surfaces. Absorption spectrophotometric measurements provided information on the number of CdS nanoparticles formed and on their absorption edges, bandgaps, and mean diameters. Good correlations have been obtained between the adsorption isotherms and the size (and the amount) of the CdS formed. X-ray diffractometry established that CdS nanoparticles stretched the HDP-M and DBS-C lamellas unevenly upon intercalation.

  4. Influence of reactive sulfide (AVS) and supplementary food on Ag, Cd and Zn bioaccumulation in the marine polychaete Neanthes arenaceodentata

    USGS Publications Warehouse

    Lee, J.-S.; Lee, B.-G.; Yoo, H.; Koh, C.-H.; Luoma, S.N.

    2001-01-01

    A laboratory bioassay determined the relative contribution of various pathways of Ag, Cd and Zn bioaccumulation in the marine polychaete Neanthes arenaceodentata exposed to moderately contaminated sediments. Juvenile worms were exposed for 25 d to experimental sediments containing 5 different reactive sulfide (acid volatile sulfides, AVS) concentrations (1 to 30 ??mol g-1), but with constant Ag, Cd, and Zn concentrations of 0.1, 0.1 and 7 ??mol g-1, respectively. The sediments were supplemented with contaminated food (TetraMin??) containing 3 levels of Ag-Cd-Zn (uncontaminated, 1?? or 5??1 metal concentrations in the contaminated sediment). The results suggest that bioaccumulation of Ag, Cd and Zn in the worms occurred predominantly from ingestion of contaminated sediments and contaminated supplementary food. AVS or dissolved metals (in porewater and overlying water) had a minor effect on bioaccumulation of the 3 metals in most of the treatments. The contribution to uptake from the dissolved source was most important in the most oxic sediments, with maximum contributions of 8% for Ag, 30% for Cd and 20% for Zn bioaccumulation. Sediment bioassays where uncontaminated supplemental food is added could seriously underestimate metal exposures in an equilibrated system; N. arenaceodentata feeding on uncontaminated food would be exposed to 40-60% less metal than if the food source was equilibrated (as occurs in nature). Overall, the results show that pathways of metal exposure are dynamically linked in contaminated sediments and shift as external geochemical characteristics and internal biological attributes vary.

  5. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies.

    PubMed

    de la Rosa, Guadalupe; Peralta-Videa, Jose R; Montes, Milka; Parsons, Jason G; Cano-Aguilera, Irene; Gardea-Torresdey, Jorge L

    2004-06-01

    Cadmium is a heavy metal, which, even at low concentrations, can be highly toxic to the growth and development of both plants and animals. Plant species vary extensively in their tolerance to excess cadmium in a growth medium and very few cadmium-tolerant species have been identified. In this study, tumbleweed plants (Salsola kali) grown in an agar-based medium with 20 mgl(-1) of Cd(II) did not show phytotoxicity, and their roots had the most biomass (4.5 mg) (P < 0.05) compared to the control plants (2.7 mg) as well as other treated plants. These plants accumulated 2696, 2075, and 2016 mg Cd kg(-1) of dry roots, stems, and leaves, respectively. The results suggest that there is no restricted cadmium movement in tumbleweed plants. In addition, the amount of Cd found in the dry leaf tissue suggests that tumbleweed could be considered as potential cadmium hyperaccumulating species. X-ray absorption spectroscopy studies demonstrated that in roots, cadmium was bound to oxygen while in stems and leaves, the metal was attached to oxygen and sulfur groups. This might imply that some small organic acids are responsible for Cd transport from roots to stems and leaves. In addition, it might be possible that the plant synthesizes phytochelatins in the stems, later coordinating the absorbed cadmium for transport and storage in cell structures. Thus, it is possible that in the leaves, Cd either exists as a Cd-phytochelatin complex or bound to cell wall structures. Current studies are being performed in order to elucidate the proposed hypothesis. PMID:15081756

  6. Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P.

    PubMed

    Sasakura, C; Suzuki, K T

    1998-09-01

    The interaction between transition metals (Ag+, Cd2+ and Hg2+) and selenium (Se) in the bloodstream was studied in vitro by means of the HPLC--inductively coupled argon plasma-mass spectrometry (ICP MS) method. Transition metal ions and selenide (produced in vitro from selenite in the presence of glutathione) or sulfide (Na2S) formed a (metal-Se/S) complex, which then bound to a plasma protein, selenoprotein P (Sel P), to form a ternary complex, (metal-Se/S)-Sel P. The molar ratios of metals to Se were 1:1 for Hg/Se and Cd/Se, but either 1:1 or 2:1 for Ag/Se, depending on the ratio of their doses. The results indicate that the interaction between transition metals and Se occurs through the general mechanism, i.e., transition metal ions and selenide form the unit complex (metal-Se)n, and then the complex binds to selenoprotein P to form the ternary complex ¿(metal-Se)n¿m--seleno-protein P in the bloodstream. PMID:9833321

  7. Availability of sediment-bound Cd, Co, and Ag to mussels

    SciTech Connect

    Gagnon, C.; Fisher, N.S.

    1995-12-31

    Ingested sediment is one potentially important source of metals for benthic organisms. The influence of physical and chemical properties of oxidized sediments on the bioavailability of metals to marine filter feeders is largely unknown. The authors examined the relative importance of specific sedimentary components that may exert control on the uptake of Cd, Co, and Ag in the mussel Mytilus edulis. Iron and manganese oxides, montmorillonite clay, silica, and natural sediment particles were triple labeled with the gamma emitters {sup 109}Cd, {sup 57}Co, and {sup 110m}Ag. Some particles were also coated with fulvic acid (FA) to simulate the influence of organic coating on metal bioavailability. Metals associated with FA-coated particles were generally absorbed by mussels to a greater extent than metals associated with uncoated particles. Desorption experiments with labeled particles at pH 5 were performed in parallel to simulate the behavior of food-bound metals in the acidic gut of bivalves. High correlations (r > 0.97) between the amount of desorbed metal under these conditions and the assimilation efficiency for metals from FA-coated particles were noted among coated particles but not uncoated particles (r < 0.6). These results suggest that the relation between metal partitioning to sediments and biological availability of the metal is not obvious, since the organic coatings and the acidic digestion process influence assimilation of sediment-bound metals.

  8. [Effect of Ryegrass and Arbuscular Mycorrhizal on Cd Absorption by Varieties of Tomatoes and Cadmium Forms in Soil].

    PubMed

    Chen, Yong-qin; Jiang, Ling; Xu, Wei-hong; Chi, Sun-lin; Chen, Xu-gen; Xie, Wen-wen; Xiong, Shi- juan; Zhang, Jin-zhong; Xiong, Zhi-ting

    2015-12-01

    Field trial was carried out to investigate the effects of ryegrass and arbuscular mycorrhizal single or compound treatment to two varieties of tomato ("Defu mm-8" and "Luobeiqi") on the plant growth, concentrations and accumulations of Cd as well as the impact on microorganisms, enzyme activities, pH and Cd forms in soil when exposed to Cd (5.943 mg · kg⁻¹). The results showed that dry weights of fruit, root, stem, leaf and plant significantly increased by single or compound treatment of ryegrass and arbuscular mycorrhizal by 14.1%-38.4% and 4.2%-18.3%, 20.9%-31.5% and 8.4%-10.3%, 13.0%-16.8% and 3.0%-9.5%, 10.7%- 16.8% and 2.7%-7.6%, 14.3%-36.6% and 4.5%-16.8%, respectively. The amounts of bacteria, fungi, actinomycetes of soil and the activities of urease, invertase, acid phosphatase, catalase in soil were increased by single or compound treatment of ryegrass and arbuscular mycorrhizal, and the soil microorganism amounts and enzyme activities significantly differed between the two varieties of tomato and treatments (P < 0.05). Soil pH was increased by single or compound treatment of ryegrass and arbuscular mycorrhizal, while the concentrations of EXC-Cd, CAB-Cd, Fe-Mn-Cd and total Cd in soil were decreased, and the total Cd content was decreased by 16.9%-27.8%. Cadmium concentrations in fruit, leaf, stem and root of both varieties were significantly decreased by 6.9%-40.9%, 5.7%-40.1%, 4.6%-34.7% and 9.8%-42.4%, respectively. Cadmium accumulations in tomato were in order of leaf > stem > root > fruit. Comparing the two tomato varieties, Cd concentrations and Cd accumulations in fruit and plant were in order of "Luobeiqi" < "Defu mm-8" in the presence or absence of single or compound treatment of ryegrass and arbuscular mycorrhizal. PMID:27012004

  9. Subcellular distribution of cadmium in two aquatic invertebrates: change over time and relationship to Cd assimilation and loss by a predatory insect.

    PubMed

    Dubois, Maï'tée; Hare, Landis

    2009-01-15

    We set out to determine if the efficiency of cadmium (Cd) assimilation and loss by a freshwater predator (the alderfly Sialis velata) differs when it is exposed, for various lengths of time, to Cd in either an insect (Chironomus riparius) or a worm (Tubifex tubifex). Prey were exposed to Cd in sediments for up to 28 days and then fractionated to measure Cd distributions in their cells. Cadmium subcellular distributions varied little over time for a given preytype but differed substantially between the two prey species; for example, the cytosol comprised a larger proportion of Cd in the insect (76%) than in the worm (34%). The predator assimilated proportionally more Cd from the insect (72%) than from the worm (46%) and these assimilation efficiencies were similar to the proportion of prey Cd that would theoretically be available to it (cytosolic Cd + organelle Cd). However, measurements of Cd in the predator's feces confirmed that to obtain an exact 1:1 relationship between predator assimilation efficiency and prey subcellular distribution we had to assume that approximately 50% of the Cd associated with the organelle fraction of T. tubifex was unavailable for digestion by the predator. Losses of Cd from the predator also varied depending on the type of prey that were the source of its Cd. PMID:19238964

  10. Band bending at Al, In, Ag, and Pt interfaces with CdTe and ZnTe (110)

    NASA Technical Reports Server (NTRS)

    Wahi, A. K.; Miyano, K.; Carey, G. P.; Chiang, T. T.; Lindau, I.

    1990-01-01

    UV and X-ray photoelectron spectroscopic methods are presently used to study the band-bending behavior and interfacial chemistry of Al, In, Ag, and Pt overlayers on vacuum-cleaved p-CdTe and p-ZnTe (110). All four metals are found to yield Schottky barriers on CdTe and ZnTe. The metal-induced gap states model prediction of a difference in barrier heights for two semiconductors which is dependent on their band lineup is borne out by the results for Ag, Pt, and Al, but not for In. Reaction and intermixing for Al, Ag, and Pt overlayers on CdTe and ZnTe indicate that these interfaces are not ideal.

  11. Liver Toxicity of Cadmium Telluride Quantum Dots (CdTe QDs) Due to Oxidative Stress in Vitro and in Vivo

    PubMed Central

    Zhang, Ting; Hu, Yuanyuan; Tang, Meng; Kong, Lu; Ying, Jiali; Wu, Tianshu; Xue, Yuying; Pu, Yuepu

    2015-01-01

    With the applications of quantum dots (QDs) expanding, many studies have described the potential adverse effects of QDs, yet little attention has been paid to potential toxicity of QDs in the liver. The aim of this study was to investigate the effects of cadmium telluride (CdTe) QDs in mice and murine hepatoma cells alpha mouse liver 12 (AML 12). CdTe QDs administration significantly increased the level of lipid peroxides marker malondialdehyde (MDA) in the livers of treated mice. Furthermore, CdTe QDs caused cytotoxicity in AML 12 cells in a dose- and time-dependent manner, which was likely mediated through the generation of reactive oxygen species (ROS) and the induction of apoptosis. An increase in ROS generation with a concomitant increase in the gene expression of the tumor suppressor gene p53, the pro-apoptotic gene Bcl-2 and a decrease in the anti-apoptosis gene Bax, suggested that a mitochondria mediated pathway was involved in CdTe QDs’ induced apoptosis. Finally, we showed that NF-E2-related factor 2 (Nrf2) deficiency blocked induced oxidative stress to protect cells from injury induced by CdTe QDs. These findings provide insights into the regulatory mechanisms involved in the activation of Nrf2 signaling that confers protection against CdTe QDs-induced apoptosis in hepatocytes. PMID:26404244

  12. The influence of long-term fertilization on cadmium (Cd) accumulation in soil and its uptake by crops.

    PubMed

    Wang, Qingyun; Zhang, Jiabao; Zhao, Bingzi; Xin, Xiuli; Zhang, Congzhi; Zhang, Hailin

    2014-09-01

    Continuous application of organic and inorganic fertilizers can affect soil and food quality with respect to heavy metal concentrations. The risk of cadmium (Cd) contamination in a long-term (over 20 years) experimental field in North China with an annual crop rotation of winter wheat and summer maize was investigated. The long-term experiment had a complete randomized block design with seven fertilizer treatments and four replications. The seven fertilizer treatments were (1) organic compost (OM), (2) half organic compost plus half chemical fertilizer (OM + NPK), (3) NPK fertilizer (NPK), (4-6) chemical fertilizers without one of the major nutrients (NP, PK, and NK), and (7) an unamended control (CK). Soil samples from 0 to 20 cm were collected in 1989, 1999, and 2009 to characterize Cd and other soil properties. During the past 20 years, various extents of Cd accumulation were observed in the soil, and the accumulation was mainly affected by atmospheric dry and wet deposition and fertilization. In 2009, the average Cd concentration in the soil was 148 ± 15 μg kg(-1) and decreased in the order of NPK ≈ OM + NKP ≈ PK > NP ≈ NK > OM ≈ CK. Sequential extraction of Cd showed that the acid-soluble fraction (F1, 32 ± 7 %) and the residual fraction (F4, 31 ± 5 %) were the dominant fractions of Cd in the soil, followed by the reducible fraction (F2, 22 ± 5 %) and oxidizable fraction (F3, 15 ± 6 %). The acid-soluble Cd fraction in the soil and Cd accumulation in the crops increased with soil plant available K. Fraction F3 was increased by soil organic C (SOC) and crop yields, but SOC reduced the uptake of soil Cd by crops. The long-term P fertilization resulted in more Cd buildup in the soil than other treatments, but the uptake of Cd by crops was inhibited by the precipitation of Cd with phosphate in the soil. Although soil Cd was slightly increased over the 20 years of intensive crop production, both soil and grain/kernel Cd concentrations were still

  13. Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles.

    PubMed

    Ayano, Hiroyuki; Miyake, Masaki; Terasawa, Kanako; Kuroda, Masashi; Soda, Satoshi; Sakaguchi, Toshifumi; Ike, Michihiko

    2014-05-01

    Bacteria capable of synthesizing CdSe from selenite and cadmium ion were enriched from a soil sample. After repeated transfer of the soil-derived bacterial cultures to a new medium containing selenite and cadmium ion 42 times (during 360 days), an enrichment culture that can simultaneously remove selenite and cadmium ion (1 mM each) from the liquid phase was obtained. The culture's color became reddish-brown, indicating CdSe nanoparticle production, as confirmed by energy-dispersive x-ray spectra (EDS). As a result of isolation operations, the bacterium that was the most responsible for synthesizing CdSe, named Pseudomonas sp. RB, was obtained. Transmission electron microscopy and EDS revealed that this strain accumulated nanoparticles (10-20 nm) consisting of selenium and cadmium inside and on the cells when cultivated in the same medium for the enrichment culture. This report is the first describing isolation of a selenite-reducing and cadmium-resistant bacterium. It is useful for CdSe nanoparticle synthesis in the simple one-vessel operation. PMID:24216457

  14. Transcriptomic changes during maize roots development responsive to Cadmium (Cd) pollution using comparative RNAseq-based approach

    SciTech Connect

    Peng, Hua; He, Xiujing; Gao, Jian; Ma, Haixia; Zhang, Zhiming; Shen, Yaou; Pan, Guangtang; Lin, Haijian

    2015-09-04

    The heavy metal cadmium (Cd), acts as a widespread environmental contaminant, which has shown to adversely affect human health, food safety and ecosystem safety in recent years. However, research on how plant respond to various kinds of heavy metal stress is scarcely reported, especially for understanding of complex molecular regulatory mechanisms and elucidating the gene networks of plant respond to Cd stress. Here, transcriptomic changes during Mo17 and B73 seedlings development responsive to Cd pollution were investigated and comparative RNAseq-based approach in both genotypes were performed. 115 differential expression genes (DEGs) with significant alteration in expression were found co-modulated in both genotypes during the maize seedling development; of those, most of DGEs were found comprised of stress and defense responses proteins, transporters, as well as transcription factors, such as thaumatin-like protein, ZmOPR2 and ZmOPR5. More interestingly, genotype-specific transcriptional factors changes induced by Cd stress were found contributed to the regulatory mechanism of Cd sensitivity in both different genotypes. Moreover, 12 co-expression modules associated with specific biological processes or pathways (M1 to M12) were identified by consensus co-expression network. These results will expand our understanding of complex molecular mechanism of response and defense to Cd exposure in maize seedling roots. - Highlights: • Transcriptomic changes responsive to Cd pollution using comparative RNAseq-based approach. • 115 differential expression genes (DEGs) were found co-modulated in both genotypes. • Most of DGEs belong to stress and defense responses proteins, transporters, transcription factors. • 12 co-expression modules associated with specific biological processes or pathways. • Genotype-specific transcriptional factors changes induced by Cd stress were found.

  15. Hybrid Au-CdSe and Ag-CdSe nanoflowers and core-shell nanocrystals via one-pot heterogeneous nucleation and growth.

    PubMed

    AbouZeid, Khaled M; Mohamed, Mona B; El-Shall, M Samy

    2011-12-01

    A general approach, based on heterogeneous nucleation and growth of CdSe nanostructures on Au or Ag nanocrystals, for the synthesis of Au-CdSe and Ag-CdSe hybrid nanostructures is developed. The new approach provides a versatile one-pot route for the synthesis of hybrid nanoflowers consisting of a gold or silver core and multipod CdSe rods or an intact CdSe shell with controlled thickness, depending on the nucleation and growth parameters. At lower growth temperatures such as 150 °C, the CdSe clusters are adsorbed on the surface of the metal cores in their surface defects, then multiple arms and branches form, resulting in nanoflower-shaped hybrid structures. Increasing the size of the metal core through the choice of the reducing and capping agents results in an improvement of the interface between the metal and CdSe domains, producing core-shell structures. The growth temperature appears to be the most important factor determining the nature of the interface between the metal and CdSe domains. At relatively high temperatures such as 300 °C, the formation of large, faceted Au cores creates preferential growth sites for the CdSe nanocrystalline shell, thus resulting in well-defined Au-CdSe core-shell structures with large interfaces between the Au and CdSe domains. The present approach is expected to foster systematic studies of the electronic structures and optical properties of the metal-semiconductor hybrid materials for potential applications in photovoltaic and nanoelectronic devices. PMID:21994186

  16. Cadmium sulfate application to sludge-amended soils: II. Extraction of Cd, Zn, and Ma from solid phases

    SciTech Connect

    Mahler, R.J. ); Ryan, J.A. )

    1988-01-01

    Cadmium, Zn and Mn in eleven paired soils (one which had a history of sludge application and a control from adjacent land where sludge had not been used) were partitioned into five fractions: exchangeable, adsorbed, organically bound, carbonate bound and sulfide, by the use of KNO{sub 3}, H{sub 2}O, NaHO, EDTA and HNO{sub 3}, respectively. The data indicate that the major portion of the total metals was found in the carbonate, sulfide and organic fractions. Addition of CaCO{sub 3} caused an increase in the exchangeable + soluble fractions of added Cd in the soils, but had little effect on native or sludge derived Cd.

  17. Low-energy electron elastic scattering from Mn, Cu, Zn, Ni, Ag, and Cd atoms

    SciTech Connect

    Felfli, Z.; Msezane, A. Z.; Sokolovski, D.

    2011-05-15

    Electron elastic total cross sections (TCSs) for ground and excited Mn, Cu, Zn, Ni, Ag, and Cd atoms have been investigated in the electron-impact energy range 0 {<=}E{<=} 1 eV. The near-threshold TCSs for both the ground and excited states of these atoms are found to be characterized by Ramsauer-Townsend minima, shape resonances, and extremely sharp resonances corresponding to the formation of stable bound negative ions. The recently developed Regge-pole methodology where the crucial electron-electron correlations are embedded is employed for the calculations. From close scrutiny of the imaginary parts of the complex angular momenta, we conclude that these atoms form stable weakly bound ground and excited negative ions as Regge resonances through slow electron collisions. The extracted electron binding energies from the elastic TCSs of these atoms are contrasted with the available experimental and theoretical values.

  18. Photocatalytic activity of CdS and Ag2S quantum dots deposited on poly(amidoamine) functionalized carbon nanotubes

    PubMed Central

    Neelgund, Gururaj M.; Oki, Aderemi

    2011-01-01

    Two novel ternary nanocatalysts, f-MWCNTs-CdS and f-MWCNTs-Ag2S were successfully constructed by covalent grafting of fourth generation (G4) hyperbranched, crosslinked poly(amidoamine) (PAMAM) to carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) and subsequent deposition of CdS or Ag2S quantum dots (QDs). The structural transformation, surface potential, and morphology of functionalized MWCNTs (f-MWCNTs) and nanocatalysts were characterized by UV-vis spectrophotometer, Fourier transform infrared spectroscopy, powder X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, scanning electron microscopy and energy dispersive spectroscopy. Transmission electron microscopy reveals the effective anchoring of QDs on f-MWCNTs. The catalytic activity of nanocatalysts was evaluated by photodegradation of methyl orange under illumination of UV light. The coupling of MWCNTs, PAMAM and CdS or Ag2S QDs significantly enhanced the catalytic efficiency of nanocatalysts. The rate constants for degradation of methyl orange in presence of nanocatalysts were calculated using the Langmuir-Hinshelwood model. Overall, the excellence in photodegradation was accomplished by hybridizing f-MWCNTs with CdS or Ag2S PMID:22267895

  19. Relationship between cadmium, zinc, Cd-peptide, and organic acid in tobacco suspension cells

    SciTech Connect

    Krotz, R.M.; Evangelou, B.P.; Wagner, G.J. )

    1989-10-01

    Responses of tobacco (Nicotiana tabacum) suspension cells to Cd and Zn were studied in the presence and absence of ligand of Cd-peptide in order to understand the role of this peptide versus other mechanisms in Cd and Zn accumulation and accommodation in plants. With 45 micromolar Cd and 300 micromolar Zn (non-growth-inhibiting levels), metals appeared rapidly within cells, and intracellular Cd and Zn reached medium concentrations after 6 to 10 hours. Cd-peptide was observed in response to Cd after 2 hours, but this form only accounted for {approximately}30% of soluble Cd after 24 hours. Peptide was not observed in cells exposed to 300 micromolar Zn for up to 7 days. Organic acid-to-metal stoichiometry indicated that endogenous organic acid content of cells was more than sufficient to complex absorbed metals and no evidence was found for stimulation of organic acid biosynthesis by Cd or Zn. Metal-complexing potential of organic acids for Cd and Zn versus endogenous cations is discussed as is vacuolar-extravacuolar distribution of metals. The absence of Cd-peptide does not limit Cd-accumulation in the system studied. Results suggest that tobacco suspension cells accommodte the presence of non-growth-inhibiting and growth-inhibiting levels of Cd and Zn by sequestration in the vacuole as complexes with endogenous organic acids and that this may be a principal means for accommodation of Cd as well as Zn in the presence and absence of Cd-peptide.

  20. Cadmium Manganese Telluride (Cd1-xMnxTe): A potential material for room-temperature radiation detectors

    SciTech Connect

    Hossain, A.; Cui, Y.; Bolotnikov, A.; Camarda, G.; Yang, G.; Kim, K-H.; Gul, R.; Xu, L.; Li, L.; Mycielski, A.; and James, R.B.

    2010-07-11

    Cadmium Manganese Telluride (CdMnTe) recently emerged as a promising material for room-temperature X- and gamma-ray detectors. It offers several potential advantages over CdZnTe. Among them is its optimal tunable band gap ranging from 1.7-2.2 eV, and its relatively low (< 50%) content of Mn compared to that of Zn in CdZnTe that assures this favorable band-gap range. Another important asset is the segregation coefficient of Mn in CdTe that is approximately unity compared to 1.35 for Zn in CdZnTe, so ensuring the homogenous distribution of Mn throughout the ingot; hence, a large-volume stoichiometric yield is attained. However, some materials issues primarily related to the growth process impede the production of large, defect-free single crystals. The high bond-ionicity of CdMnTe entails a higher propensity to crystallize into a hexagonal structure rather than to adopt the expected zinc-blend structure, which is likely to generate twins in the crystals. In addition, bulk defects generate in the as-grown crystals due to the dearth of high-purity Mn, which yields a low-resistivity material. In this presentation, we report on our observations of such material defects in current CdMnTe materials, and our evaluation of its potential as an alternative detector material to the well-known CdZnTe detectors. We characterized the bulk defects of several indium- and vanadium-doped Cd1-xMnxTe crystals by using several advanced techniques, viz., micro-scale mapping, white-beam x-ray diffraction/reflection topography, and chemical etching. Thereafter, we fabricated some detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Our experimental results indicate that CdMnTe materials could well prove to become a viable alternative in the near future.

  1. Synthesis and properties of new CdSe-AgI-As{sub 2}Se{sub 3} chalcogenide glasses

    SciTech Connect

    Kassem, M.; Le Coq, D.; Fourmentin, M.; Hindle, F.; Bokova, M.; Cuisset, A.; Masselin, P.; Bychkov, E.

    2011-02-15

    Research highlights: {yields} Determination of the glass-forming region in the pseudo-ternary CdSe-AgI-As{sub 2}Se{sub 3} system. {yields} Characterization of macroscopic properties of the new CdSe-AgI-As{sub 2}Se{sub 3} glasses. {yields} Far infrared transmission of chalcogenide glasses. {yields} Characterization of the total conductivity of CdSe-AgI-As{sub 2}Se{sub 3} glasses. -- Abstract: The glass-forming region in the pseudo-ternary CdSe-AgI-As{sub 2}Se{sub 3} system was determined. Measurements including differential scanning calorimetry (DSC), density, and X-ray diffraction were performed. The effect resulting from the addition of CdSe or AgI has been highlighted by examining three series of different base glasses. The characteristic temperatures of the glass samples, including glass transition (T{sub g}), crystallisation (T{sub x}), and melting (T{sub m}) temperatures are reported and used to calculate their {Delta}T = T{sub x} - T{sub g} and their Hruby, H{sub r} = (T{sub x} - T{sub g})/(T{sub m} - T{sub x}), criteria. Evolution of the total electrical conductivity {sigma} and the room temperature conductivity {sigma}{sub 298} was also studied. The terahertz transparency domain in the 50-600 cm{sup -1} region was pointed for different chalcogenide glasses (ChGs) and the potential of the THz spectroscopy was suggested to obtain structural information on ChGs.

  2. Decorating CdTe QD-Embedded Mesoporous Silica Nanospheres with Ag NPs to Prevent Bacteria Invasion for Enhanced Anticounterfeit Applications.

    PubMed

    Gao, Yangyang; Dong, Qigeqi; Lan, Shi; Cai, Qian; Simalou, Oudjaniyobi; Zhang, Shiqi; Gao, Ge; Chokto, Harnoode; Dong, Alideertu

    2015-05-13

    Quantum dots (QDs) as potent candidates possess advantageous superiority in fluorescence imaging applications, but they are susceptible to the biological circumstances (e.g., bacterial environment), leading to fluorescence quenching or lose of fluorescent properties. In this work, CdTe QDs were embedded into mesoporous silica nanospheres (m-SiO2 NSs) for preventing QD agglomeration, and then CdTe QD-embedded m-SiO2 NSs (m-SiO2/CdTe NSs) were modified with Ag nanoparticles (Ag NPs) to prevent bacteria invasion for enhanced anticounterfeit applications. The m-SiO2 NSs, which serve as intermediate layers to combine CdTe QDs with Ag NPs, help us establish a highly fluorescent and long-term antibacterial system (i.e., m-SiO2/CdTe/Ag NSs). More importantly, CdTe QD-embedded m-SiO2 NSs showed fluorescence quenching when they encounter bacteria, which was avoided by attaching Ag NPs outside. Ag NPs are superior to CdTe QDs for preventing bacteria invasion because of the structure (well-dispersed Ag NPs), size (small diameter), and surface charge (positive zeta potentials) of Ag NPs. The plausible antibacterial mechanisms of m-SiO2/CdTe/Ag NSs toward both Gram-positive and Gram-negative bacteria were established. As for potential applications, m-SiO2/CdTe/Ag NSs were developed as fluorescent anticounterfeiting ink for enhanced imaging applications. PMID:25901940

  3. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits

    PubMed Central

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-01-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538

  4. Transcriptome sequencing and differential gene expression analysis in Viola yedoensis Makino (Fam. Violaceae) responsive to cadmium (Cd) pollution

    SciTech Connect

    Gao, Jian; Luo, Mao; Zhu, Ye; He, Ying; Wang, Qin; Zhang, Chun

    2015-03-27

    Viola yedoensis Makino is an important Chinese traditional medicine plant adapted to cadmium (Cd) pollution regions. Illumina sequencing technology was used to sequence the transcriptome of V. yedoensis Makino. We sequenced Cd-treated (VIYCd) and untreated (VIYCK) samples of V. yedoensis, and obtained 100,410,834 and 83,587,676 high quality reads, respectively. After de novo assembly and quantitative assessment, 109,800 unigenes were finally generated with an average length of 661 bp. We then obtained functional annotations by aligning unigenes with public protein databases including NR, NT, SwissProt, KEGG and COG. In addition, 892 differentially expressed genes (DEGs) were investigated between the two libraries of untreated (VIYCK) and Cd-treated (VIYCd) plants. Moreover, 15 randomly selected DEGs were further validated with qRT-PCR and the results were highly accordant with the Solexa analysis. This study firstly generated a successful global analysis of the V. yedoensis transcriptome and it will provide for further studies on gene expression, genomics, and functional genomics in Violaceae. - Highlights: • A de novo assembly generated 109,800 unigenes and 5,4479 of them were annotated. • 31,285 could be classified into 26 COG categories. • 263 biosynthesis pathways were predicted and classified into five categories. • 892 DEGs were detected and 15 of them were validated by qRT-PCR.

  5. Cadmium-free sugar-chain-immobilized fluorescent nanoparticles containing low-toxicity ZnS-AgInS2 cores for probing lectin and cells.

    PubMed

    Shinchi, Hiroyuki; Wakao, Masahiro; Nagata, Nonoka; Sakamoto, Masaya; Mochizuki, Eiko; Uematsu, Taro; Kuwabata, Susumu; Suda, Yasuo

    2014-02-19

    Sugar chains play a significant role in various biological processes through sugar chain-protein and sugar chain-sugar chain interactions. To date, various tools for analyzing sugar chains biofunctions have been developed. Fluorescent nanoparticles (FNPs) functionalized with carbohydrate, such as quantum dots (QDs), are an attractive imaging tool for analyzing carbohydrate biofunctions in vitro and in vivo. Most FNPs, however, consist of highly toxic elements such as cadmium, tellurium, selenium, and so on, causing problems in long-term bioimaging because of their cytotoxicity. In this study, we developed cadmium-free sugar-chain-immobilized fluorescent nanoparticles (SFNPs) using ZnS-AgInS2 (ZAIS) solid solution nanoparticles (NPs) of low or negligible toxicity as core components, and investigated their bioavailability and cytotoxicity. SFNPs were prepared by mixing our originally developed sugar-chain-ligand conjugates with ZAIS/ZnS core/shell NPs. In binding experiments with lectin, the obtained ZAIS/ZnS SFNPs interacted with an appropriate lectin to give specific aggregates, and their binding interaction was visually and/or spectroscopically detected. In addition, these SFNPs were successfully utilized for cytometry analysis and cellular imaging in which the cell was found to possess different sugar-binding properties. The results of the cytotoxicity assay indicated that SFNPs containing ZAIS/ZnS have much lower toxicity than those containing cadmium. These data strongly suggest that our designed SFNPs can be widely utilized in various biosensing applications involved in carbohydrates. PMID:24437371

  6. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice.

    PubMed

    Gao, Lei; Chang, Jiadong; Chen, Ruijie; Li, Hubo; Lu, Hongfei; Tao, Longxing; Xiong, Jie

    2016-12-01

    Iron (Fe) is essential for rice growth and humans consuming as their staple food but is often deficient because of insoluble Fe(III) in soil for rice growth and limited assimilation for human bodies, while cadmium (Cd) is non-essential and toxic for rice growth and humans if accumulating at high levels. Over-accumulated Cd can cause damage to human bodies. Selecting and breeding Fe-rich but Cd-free rice cultivars are ambitious, challenging and meaningful tasks for researchers. Although evidences show that the mechanisms of Fe/Cd uptake and accumulation in rice are common to some extent as a result of similar entry routes within rice, an increasing number of researchers have discovered distinct mechanisms between Fe/Cd uptake and accumulation in rice. This comprehensive review systematically elaborates and compares cellular mechanisms of Fe/Cd uptake and accumulation in rice, respectively. Mechanisms for maintaining Fe homeostasis and Cd detoxicification are also elucidated. Then, effects of different fertilizer management on Fe/Cd accumulation in rice are discussed. Finally, this review enumerates various approaches for reducing grain Cd accumulation and enhancing Fe content in rice. In summary, understanding of discrepant cellular mechanisms of Fe/Cd accumulation in rice provides guidance for cultivating Fe-fortified rice and has paved the way to develop rice that are tolerant to Cd stress, aiming at breeding Fe-rich but Cd-free rice. PMID:27502932

  7. Particulate contacts to Si and CdTe: Al, Ag, Hg-Cu-Te, and Sb-Te

    NASA Astrophysics Data System (ADS)

    Schulz, Douglas L.; Ribelin, Rosine; Curtis, Calvin J.; Ginley, David S.

    1999-03-01

    Our team has been investigating the use of particle-based contacts in both Si and CdTe solar cell technologies. First, in the area of contacts to Si, powders of Al and Ag prepared by an electroexplosion process have been characterized by transmission electron microscopy (TEM), TEM elemental determination X-ray spectroscopy (TEM-EDS), and TEM electron diffraction (TEM-ED). These Al and Ag particles were slurried and tested as contacts to p- and n-type silicon wafers, respectively. Linear current-voltage (I-V) was observed for Ag on n-type Si, indicative of an ohmic contact, whereas the Al on p-type Si sample was non-ideal. A wet-chemical surface treatment was performed on one Al sample and TEM-EDS indicated a substantial decrease in the O contaminant level. The treated Al on p-type Si films exhibited linear I-V after annealing. Second, in the area of contacts to CdTe, particles of Hg-Cu-Te and Sb-Te have been applied as contacts to CdTe/CdS/SnO2 heterostructures prepared by the standard NREL protocol. First, Hg-Cu-Te and Sb-Te were prepared by a metathesis reaction. After CdCl2 treatment and NP etch of the CdTe layer, particle contacts were applied. The Hg-Cu-Te contacted cells exhibited good electrical characteristics, with Voc>810 mV and efficiencies > 11.5% for most cells. Although Voc>800 mV were observed for the Sb-Te contacted cells, efficiencies in these devices were limited to 9.1% presumably by a large series resistance (>20 Ω) observed in all samples.

  8. Efficient visible-light photocatalytic activity by band alignment in mesoporous ternary polyoxometalate-Ag2S-CdS semiconductors

    NASA Astrophysics Data System (ADS)

    Kornarakis, I.; Lykakis, I. N.; Vordos, N.; Armatas, G. S.

    2014-07-01

    Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster anions with different reduction potentials, such as PW12O403-, SiW12O404- and PMo12O403-, were employed as electron acceptors in these ternary heterojunction photocatalysts. Characterization by small-angle X-ray scattering, X-ray diffraction, transmission electron microscopy and N2 physisorption measurements showed hexagonal arrays of POM-Ag2S-CdS hybrid nanorods with large internal BET surface areas and uniform mesopores. The Keggin structure of the incorporated POM clusters was also verified by elemental X-ray spectroscopy microanalysis, infrared and diffuse-reflectance ultraviolet-visible spectroscopy. These new porous materials were implemented as visible-light-driven photocatalysts, displaying exceptional high activity in aerobic oxidation of various para-substituted benzyl alcohols to the corresponding carbonyl compounds. Our experiments show that the spatial separation of photogenerated electrons and holes at CdS through the potential gradient along the CdS-Ag2S-POM interfaces is responsible for the increased photocatalytic activity.Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster

  9. Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb).

    PubMed

    Tipping, Edward; Lofts, Stephen

    2015-04-01

    The Windermere humic aqueous model using the toxicity function (WHAM-FTOX ) describes cation toxicity to aquatic organisms in terms of 1) accumulation by the organism of metabolically active protons and metals at reversible binding sites, and 2) differing toxic potencies of the bound cations. Cation accumulation (νi , in mol g(-1) ) is estimated through calculations with the WHAM chemical speciation model by assuming that organism binding sites can be represented by those of humic acid. Toxicity coefficients (αi ) are combined with νi to obtain the variable FTOX (= Σ αi νi ) which, between lower and upper thresholds (FTOX,LT , FTOX,UT ), is linearly related to toxic effect. Values of αi , FTOX,LT , and FTOX,LT are obtained by fitting toxicity data. Reasonable fits (72% of variance in toxic effect explained overall) were obtained for 4 large metal mixture acute toxicity experiments involving daphnids (Cu, Zn, Cd), lettuce (Cu, Zn, Ag), and trout (Zn, Cd, Pb). Strong nonadditive effects, most apparent in results for tests involving Cd, could be explained approximately by purely chemical competition for metal accumulation. Tentative interpretation of parameter values obtained from these and other experimental data suggests the following order of bound cation toxicity: H < Al < (Cu Zn Pb UO2 ) < (Cd Ag). Another trend is a strong increase in Cd toxicity relative to that of Zn as organism complexity increases (from bacteria to fish). PMID:25318827

  10. CD209 (DC-SIGN) -336A>G promoter polymorphism and severe acute respiratory syndrome in Hong Kong Chinese.

    PubMed

    Chan, Kelvin Yuen Kwong; Xu, Mei-Shu; Ching, Johannes Chi Yun; So, Thomas Man Kit; Lai, Sik-To; Chu, Chung-Ming; Yam, Loretta Y C; Wong, Andrew T Y; Chung, Pui Hong; Chan, Vera Sau Fong; Lin, Chen Lung Steve; Sham, Pak Chung; Leung, Gabriel M; Peiris, Joseph S M; Khoo, Ui-Soon

    2010-07-01

    CD209 (DC-SIGN) is an important C-type lectin which acts a receptor of many pathogens. The single nucleotide polymorphism (SNP) -336A>G in the CD209 promoter has been demonstrated to regulate promoter activity and to be associated with several important infectious diseases, such as human immunodeficiency virus-1 (HIV-1), Mycobacterium tuberculosis, and Dengue fever. CD209 facilitates severe acute respiratory syndrome (SARS)-coronavirus spike protein-bearing pseudotype driven infection of permissive cells in vitro. In keeping with previously published findings, our in vitro studies confirmed that this SNP modulates gene promoter activity. Genetic association analysis of this SNP with clinico-pathologic outcomes in 824 serologic confirmed SARS patients showed that the -336AG/GG genotype SARS patients was associated with lower standardized lactate-dehydrogenase (LDH) levels compared with the -336AA patients (p = 0.014, odds ratio = 0.40). High LDH levels are known to be an independent predictor for poor clinical outcome, probably related to tissue destruction from immune hyperactivity. Hence, SARS patients with the CD209 -336 AA genotype carry a 60% chance of having a poorer prognosis. This association is in keeping with the role of CD209 in modulating immune response to viral infection. The relevance of these findings for other infectious diseases and inflammatory conditions would be worth investigating. PMID:20359516

  11. Geochemical Transformation of Cadmium (Cd) from Creek to Paddy Fields in W Thailand

    NASA Astrophysics Data System (ADS)

    Kosolsaksakul, Peerapat; Graham, Margaret; Farmer, John

    2013-04-01

    Extensive Cd contamination of paddy soils in Tak Province, western Thailand, a consequence of Zn mining activities, was first established in 2005 and medical studies showed that the health of local communities was being impaired. Mae Tao, Tak Province, comprising many paddy fields and irrigation canals, has been selected for this study of the geochemical transformation of Cd from the contamination source in the mountainous region to the east of the study site through the community irrigation system to the paddy soils. The aim of this research is to (i) investigate the geochemical transformation of Cd as it is transported from the main irrigation creek through the canals and to the paddy fields, (ii) assess the availability of Cd to rice plants, which may be affected by both chemical and physical factors, and (iii) trial some practical treatments to minimise Cd concentrations in rice grains. Soils, irrigation canal sediments and water samples were collected during the dry season and at the onset of the rainy season. Rice samples were collected at harvesting time and samples of soil fertiliser were also obtained. Water samples were filtered, ultrafiltered and analysed by ICP-MS whilst sub-samples of dried, ground soils and sediments were first subjected to micro-wave assisted acid digestion (modified US EPA method 3052). XRD and SEM-EDX methods were used for mineralogical characterisation and selective chemical extractions have assisted in the characterisation of solid phase Cd associations. Soil Cd concentrations were in the range 2.5-87.6 µg g-1, with higher values being obtained for fields furthest from the main creek. Although current irrigation water Cd inputs are low (mean 1.9 μg L-1; flood period), high loads of suspended particles still contribute additional Cd (4.2-9.8 µg L-1) to the paddy fields. For bioavailability assessment by a 3-step BCR sequential extraction, 70-90% Cd was in the exchangeable; HOAc-extractable fraction. That indicated that most of

  12. Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria.

    PubMed

    Wang, Jia; Huang, Qifei; Li, Ting; Xin, Baoping; Chen, Shi; Guo, Xingming; Liu, Changhao; Li, Yuping

    2015-08-15

    A few studies have focused on release of valuable/toxic metals from Pb/Zn smelting slag by heterotrophic bioleaching using expensive yeast extract as an energy source. The high leaching cost greatly limits the practical potential of the method. In this work, autotrophic bioleaching using cheap sulfur or/and pyrite as energy matter was firstly applied to tackle the smelting slag and the bioleaching mechanisms were explained. The results indicated autotrophic bioleaching can solubilize valuable/toxic metals from slag, yielding maximum extraction efficiencies of 90% for Zn, 86% for Cd and 71% for In, although the extraction efficiencies of Pb, As and Ag were poor. The bioleaching performance of Zn, Cd and Pb was independent of leaching system, and leaching mechanism was acid dissolution. A maximum efficiency of 25% for As was achieved by acid dissolution in sulfursulfur oxidizing bacteria (S-SOB), but the formation of FeAsO4 reduced extraction efficiency in mixed energy source - mixed culture (MS-MC). Combined works of acid dissolution and Fe(3+) oxidation in MS-MC was responsible for the highest extraction efficiency of 71% for In. Ag was present in the slag as refractory AgPb4(AsO4)3 and AgFe2S3, so extraction did not occur. PMID:25996622

  13. Properties of RF sputtered cadmium telluride (CdTe) thin films: Influence of deposition pressure

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. R.; Pawbake, A. S.; Waykar, R. G.; Rondiya, S. R.; Jadhavar, A. A.; Pandharkar, S. M.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-04-01

    Influence of deposition pressure on structural, morphology, electrical and optical properties of CdTe thin films deposited at low substrate temperature (100°C) by RF magnetron sputtering was investigated. The formation of CdTe was confirmed by low angle XRD and Raman spectroscopy. The low angle XRD analysis revealed that the CdTe films have zinc blende (cubic) structure with crystallites having preferred orientation in (111) direction. Raman spectra show the longitudinal optical (LO) phonon mode peak ˜ 165.4 cm-1 suggesting high quality CdTe film were obtained over the entire range of deposition pressure studied. Scanning electron microscopy analysis showed that films are smooth, homogenous, and crack-free with no evidence of voids. The EDAX data revealed that CdTe films deposited at low deposition pressure are high-quality stoichiometric. However, for all deposition pressures, films are rich in Cd relative to Te. The UV-Visible spectroscopy analysis show the blue shift in absorption edge with increasing the deposition pressure while the band gap show decreasing trend. The highest electrical conductivity was obtained for the film deposited at deposition pressure 1 Pa which indicates that the optimized deposition pressure for our sputtering unit is 1 Pa. Based on the experimental results, these CdTe films can be useful for the application in the flexible solar cells and other opto-electronic devices.

  14. Chapter 1.19: Cadmium Telluride Photovoltaic Thin Film: CdTe

    SciTech Connect

    Gessert, T. A.

    2012-01-01

    The chapter reviews the history, development, and present processes used to fabricate thin-film, CdTe-based photovoltaic (PV) devices. It is intended for readers who are generally familiar with the operation and material aspects of PV devices but desire a deeper understanding of the process sequences used in CdTe PV technology. The discussion identifies why certain processes may have commercial production advantages and how the various process steps can interact with each other to affect device performance and reliability. The chapter concludes with a discussion of considerations of large-area CdTe PV deployment including issues related to material availability and energy-payback time.

  15. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population).

    PubMed

    Küpper, Hendrik; Kochian, Leon V

    2010-01-01

    We investigated changes in mineral nutrient uptake and cellular expression levels for metal transporter genes in the cadmium (Cd)/zinc (Zn) hyperaccumulator, Thlaspi caerulescens during whole plant and leaf ontogenesis under different long-term treatments with Zn and Cd. Quantitative mRNA in situ hybridization (QISH) revealed that transporter gene expression changes not only dependent on metal nutrition/toxicity, but even more so during plant and leaf development. The main mRNA abundances found were: ZNT1, mature leaves of young plants; ZNT5, young leaves of young plants; MTP1 (= ZTP1 = ZAT), young leaves of both young and mature plants. Surprisingly different cellular expression patterns were found for ZNT1 and ZNT5, both belonging to the ZIP family of transition metal transporters: ZNT1, photosynthetic mesophyll and bundle sheath cells; ZNT5, nonphotosynthetic epidermal metal storage cells and bundle sheath cells. Thus, ZNT1 may function in micronutrient nutrition while ZNT5 may be involved in metal storage associated with hyperaccumulation. Cadmium inhibited the uptake of Zn, iron (Fe) and manganese (Mn), probably by competing for transporters or by interfering with the regulation of transporter gene expression. Cadmium-induced changes in cellular expression for ZNT1, ZNT5 and MTP1 could also be part of plant acclimatization to Cd toxicity. Defence against Cd toxicity involved enhanced uptake of magnesium (Mg), calcium (Ca) and sulphur (S). PMID:19843304

  16. Effects of morphology, diameter and periodic distance of the Ag nanoparticle periodic arrays on the enhancement of the plasmonic field absorption in the CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Kohnehpoushi, Saman; Eskandari, Mehdi; Ahmadi, Vahid; Yousefirad, Mansooreh; Nabavi, Elham

    2016-09-01

    In this work, the numerical calculations of plasmonic field absorption of Ag nanoparticles (Ag NPs) periodic arrays in the CdSe quantum dot (QD) film are investigated by the three-dimensional finite difference time domain (FDTD). Diameter (D), periodic distance (P), and morphology effects of Ag NPs are investigated on the improvement of the plasmonic field absorption in CdSe QD film. Results show that plasmonic field absorption in CdSe QD film is enhanced with reduction of D of Ag NPs until 5 nm and reduces thereafter. It is observed that with raising D of Ag NPs, optimum plasmonic field absorption in CdSe QD film is shifted toward the higher P. Moreover, with varying morphology of Ag NPs from spherical to cylindrical, cubic, ringing and pyramid, the plasmonic field absorption is considerably enhanced in CdSe QD film and position of quadrupole plasmon mode (QPPM) is shifted toward further wavelength. For cylindrical Ag NPs, the QPPM intensity increased with raising height (H) until 15 nm and reduces thereafter.

  17. Synthesis, characterization and evaluation of the photocatalytic performance of Ag-CdMoO{sub 4} solar light driven plasmonic photocatalyst

    SciTech Connect

    Adhikari, Rajesh; Malla, Shova; Gyawali, Gobinda; Sekino, Tohru; Lee, Soo Wohn

    2013-09-01

    Graphical abstract: - Highlights: • Ag-CdMoO{sub 4} solar light driven photocatalyst was successfully synthesized. • Photocatalyst exhibited strong absorption in the visible region. • Photocatalytic activity was significantly enhanced. • Enhanced activity was caused by the SPR effect induced by Ag nanoparticles. - Abstract: Ag-CdMoO{sub 4} plasmonic photocatalyst was synthesized in ethanol/water mixture by photo assisted co-precipitation method at room temperature. As synthesized powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) surface area analyzer. Photocatalytic activity was evaluated by performing the degradation experiment over methylene blue (MB) and indigo carmine (IC) as model dyes under simulated solar light irradiation. The results revealed that the Ag-CdMoO{sub 4} showed the higher photocatalytic performance as compared to CdMoO{sub 4} nanoparticles. Dispersion of Ag nanoparticles over the surface of CdMoO{sub 4} nanoparticles causes the surface plasmon resonance (SPR) and enhances the broad absorption in the entire visible region of the solar spectrum. Hence, dispersion of Ag nanoparticles over CdMoO{sub 4} nanoparticles could be the better alternative to enhance the absorption of visible light by scheelite crystal family for effective photocatalysis.

  18. Structural features of AgCaCdMg{sub 2}(PO{sub 4}){sub 3} and AgCd{sub 2}Mg{sub 2}(PO{sub 4}){sub 3}, two new compounds with the alluaudite-type structure, and their catalytic activity in butan-2-ol conversion

    SciTech Connect

    Kacimi, Mohammed; Ziyad, Mahfoud; Hatert, Frederic . E-mail: fhatert@ulg.ac.be

    2005-04-20

    AgCaCdMg{sub 2}(PO{sub 4}){sub 3} and AgCd{sub 2}Mg{sub 2}(PO{sub 4}){sub 3}, two new compounds with the alluaudite-type structure, were synthesized by a solid state reaction in air at 750 deg. C. The X-ray powder diffraction pattern of AgCaCdMg{sub 2}(PO{sub 4}){sub 3} indicates the presence of small amounts of (Ca, Mg){sub 3}(PO{sub 4}){sub 2} with the whitlockite structure, as impurity, whereas AgCd{sub 2}Mg{sub 2}(PO{sub 4}){sub 3} is constituted by pure alluaudite. The Rietveld refinements of the X-ray powder diffraction patterns indicate an ordered cationic distribution for AgCd{sub 2}Mg{sub 2}(PO{sub 4}){sub 3}, with Ag on A(2)', Cd on A(1) and M(1), and Mg on M(2), whereas a disordered distribution of Cd and Ca between the A(1) and M(1) sites is observed for AgCaCdMg{sub 2}(PO{sub 4}){sub 3}. The catalytic properties of these compounds has been measured in reaction of butan-2-ol dehydrogenation. In the absence of oxygen, both samples exhibit poor dehydrogenation activity. All samples displayed no dehydration activity. Introduction of oxygen into the feed changed totally the catalytic behavior of the catalysts. The production of methyl ethyl ketone increases with time on stream and the reaction temperature. AgCaCdMg{sub 2}(PO{sub 4}){sub 3} is more efficient than AgCd{sub 2}Mg{sub 2}(PO{sub 4}){sub 3}.

  19. Protection associated with a TB vaccine is linked to increased frequency of Ag85A-specific CD4(+) T cells but no increase in avidity for Ag85A.

    PubMed

    Metcalfe, Hannah J; Steinbach, Sabine; Jones, Gareth J; Connelley, Tim; Morrison, W Ivan; Vordermeier, Martin; Villarreal-Ramos, Bernardo

    2016-08-31

    There is a need to improve the efficacy of Bacille Calmette-Guérin (BCG) vaccination against tuberculosis in humans and cattle. Previously, we found boosting BCG-primed cows with recombinant human type 5 adenovirus expressing antigen 85A (Ad5-85A) increased protection against Mycobacterium bovis infection compared to BCG vaccination alone. The aim of this study was to decipher aspects of the immune response associated with this enhanced protection. We compared BCG-primed Ad5-85A-boosted cattle with BCG-vaccinated cattle. Polyclonal CD4(+) T cell libraries were generated from pre-boost and post-boost peripheral blood mononuclear cells - using a method adapted from Geiger et al. (2009) - and screened for antigen 85A (Ag85A) specificity. Ag85A-specific CD4(+) T cell lines were analysed for their avidity for Ag85A and their Ag85A epitope specificity was defined. Boosting BCG with Ad5-85A increased the frequencies of post-boost Ag85A-specific CD4(+) T cells which correlated with protection (reduced pathology). Boosting Ag85A-specific CD4(+) T cell responses did not increase their avidity. The epitope specificity was variable between animals and we found no clear evidence for a post-boost epitope spreading. In conclusion, the protection associated with boosting BCG with Ad5-85A is linked with increased frequencies of Ag85A-specific CD4(+) T cells without increasing avidity or widening of the Ag85A-specific CD4(+) T cell repertoire. PMID:27498622

  20. Cadmium sorption, influx, and efflux at the mesophyll layer of leaves from ecotypes of the Zn/Cd hyperaccumulator Thlaspi caerulescens.

    PubMed

    Ebbs, Stephen D; Zambrano, M Clemencia; Spiller, Shawna M; Newville, Matthew

    2009-01-01

    Differential sorption and transport characteristics of the leaf mesophyll layer of the Prayon and Ganges ecotypes of the hyperaccumulator Thlaspi caerulescens were examined. (109)Cd influx and efflux experiments were conducted with leaf sections, and X-ray absorption near edge structure (XANES) data were collected from leaves as a general comparison of in vivo cadmium (Cd) coordination. There were modest differences in cell wall sorption of Cd between ecotypes. There were obvious differences in time- and concentration-dependent Cd influx, including a greater V(MAX) for Prayon but a lower K(M) for Ganges for concentration-dependent Cd uptake and a notably greater Cd uptake by Ganges leaf sections at 1000 microm Cd. Leaf sections of Prayon had a greater Cd efflux than Ganges. The XANES spectra from the two ecotypes suggested differences in Cd coordination. The fundamental differences observed between the two ecotypes may reflect differential activity and/or expression of plasma membrane and tonoplast transporters. More detailed study of these transporters and the in vivo coordination of Cd are needed to determine the contribution of these processes to metal homeostasis and tolerance. PMID:19054336

  1. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell.

    PubMed

    Kumar, P Naresh; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-04-21

    A novel photoanode architecture with plasmonic silver (Ag) nanostructures embedded in titania (TiO2), which served as the wide band gap semiconducting support and CdS quantum dots (QDs), as light absorbers, is presented. Ag nanostructures were prepared by a polyol method and are comprised of clumps of nanorods, 15-35 nm wide, interspersed with globular nanoparticles and they were characterized by a face centered cubic lattice. Optimization of Ag nanostructures was achieved on the basis of a superior power conversion efficiency (PCE) obtained for the cell with a Ag/TiO2/CdS electrode encompassing a mixed morphology of Ag nano-rods and particles, relative to analogous cells with either Ag nanoparticles or Ag nanorods. Interfacial charge transfer kinetics was unraveled by fluorescence quenching and lifetime studies. Ag nanostructures improve the light harvesting ability of the TiO2/CdS photoanode via (a) plasmonic and scattering effects, which induce both near- and far-field enhancements which translate to higher photocurrent densities and (b) charging effects, whereby, photoexcited electron transfer from TiO2 to Ag is facilitated by Fermi level equilibration. Owing to the spectacular ability of Ag nanostructures to increase light absorption, a greatly increased PCE of 4.27% and a maximum external quantum efficiency of 55% (at 440 nm) was achieved for the cell based on Ag/TiO2/CdS, greater by 42 and 66%, respectively, compared to the TiO2/CdS based cell. In addition, the liquid S(2-) electrolyte was replaced by a S(2-) gel containing fumed silica, and the redox potential, conductivity and p-type conduction of the two were deduced to be comparable. Although the gel based cells showed diminished solar cell performances compared to their liquid counterparts, nonetheless, the Ag/TiO2/CdS electrode continued to outperform the TiO2/CdS electrode. Our studies demonstrate that Ag nanostructures effectively capture a significant chunk of the electromagnetic spectrum and aid QD

  2. Estrogen-like effects of diet-derived cadmium differ from those of orally administered CdCl(2) in the ERE-luc estrogen reporter mouse model.

    PubMed

    Ramachandran, Balaji; Mäkelä, Sari; Cravedi, Jean-Pierre; Berglund, Marika; Håkansson, Helen; Damdimopoulou, Pauliina; Maggi, Adriana

    2011-04-25

    Cadmium (Cd), an environmental and dietary contaminant, has been described to mimic the effects of 17β-estradiol (E(2)) in selected model systems when studied as an inorganic salt. However, inorganic Cd salts do not represent the main form of Cd exposure in general human populations. The aims of this study were to compare the estrogen-like effects and the bioavailability of dietary Cd to inorganic CdCl(2). Adult ovariectomized ERE-luc reporter mice were administered two bread based diets containing different concentrations of Cd (17.57 and 49.22μg/kg, corresponding to oral intakes of 1.8 and 5.1μg/kg body weight (bw) per day, respectively), inorganic CdCl(2) (1μg/kg bw per day by gavage) or E(2) (5μg/kg bw per day pellet) for 21 days. The effects on estrogen signaling were investigated by studying the uterine weights, luciferase activation, and expression of endogenous estrogen target genes. The uterine weight was significantly increased by both CdCl(2) and E(2) but not by the Cd containing diets. All treatments modulated the expression of luciferase and the endogenous estrogen target genes; however, there was no consistent overlap between the responses triggered by the bread diets and the responses stimulated by CdCl(2) or E(2). Oral exposure to Cd was calculated and the concentrations in liver and kidneys quantified to estimate the amount of absorbed Cd retained in tissues. The results suggest significantly lower absorption and/or tissue retention of dietary Cd compared to CdCl(2) following oral exposure. Altogether, our results support previous reports on in vivo estrogenicity of CdCl(2) but do not suggest the same activity for diet bound Cd. This study calls for caution when extrapolating results from pure compound studies (e.g. estrogenicity of CdCl(2)) to dietary exposure scenarios (e.g. estrogenicity of diet bound Cd). Further basic research is needed on the mechanisms of interaction between Cd and the estrogen signaling, biologically active species of

  3. Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting107Cd tracer

    PubMed Central

    2011-01-01

    Background Rice is a major source of dietary intake of cadmium (Cd) for populations that consume rice as a staple food. Understanding how Cd is transported into grains through the whole plant body is necessary for reducing rice Cd concentrations to the lowest levels possible, to reduce the associated health risks. In this study, we have visualized and quantitatively analysed the real-time Cd dynamics from roots to grains in typical rice cultivars that differed in grain Cd concentrations. We used positron-emitting107Cd tracer and an innovative imaging technique, the positron-emitting tracer imaging system (PETIS). In particular, a new method for direct and real-time visualization of the Cd uptake by the roots in the culture was first realized in this work. Results Imaging and quantitative analyses revealed the different patterns in time-varying curves of Cd amounts in the roots of rice cultivars tested. Three low-Cd accumulating cultivars (japonica type) showed rapid saturation curves, whereas three high-Cd accumulating cultivars (indica type) were characterized by curves with a peak within 30 min after107Cd supplementation, and a subsequent steep decrease resulting in maintenance of lower Cd concentrations in their roots. This difference in Cd dynamics may be attributable to OsHMA3 transporter protein, which was recently shown to be involved in Cd storage in root vacuoles and not functional in the high-Cd accumulating cultivars. Moreover, the PETIS analyses revealed that the high-Cd accumulating cultivars were characterized by rapid and abundant Cd transfer to the shoots from the roots, a faster transport velocity of Cd to the panicles, and Cd accumulation at high levels in their panicles, passing through the nodal portions of the stems where the highest Cd intensities were observed. Conclusions This is the first successful visualization and quantification of the differences in whole-body Cd transport from the roots to the grains of intact plants within rice

  4. Synthesis and characterization of a cadmium bipyridinium compound (CdCl{sub 4})(N,N'-dimethyl-2,2'-bipyridinium)

    SciTech Connect

    Luo, Hui; Zhu, Li-Cheng; Wang, Qi

    2015-12-15

    A cadmium bipyridinium compound (CdCl{sub 4})(N,N'-dimethyl-2,2'-bipyridinium), in which the (N,N'-dimethyl-2,2'-bipyridinium){sup 2+} moieties were generated in situ, has been prepared via solvothermal reactions and structurally characterized with single crystal X-ray diffraction method. Fluorescence measurement revealed a broad and strong emission band in the blue region.

  5. Effect of adherent bacteria and bacterial extracellular polymers upon assimilation by Macoma balthica of sediment-bound Cd, Zn and Ag

    USGS Publications Warehouse

    Harvey, Ronald W.; Luoma, Samuel N.

    1985-01-01

    Effects of adherent bacteria and bacterial extracellular polymer (exopolymer) upon uptake of particle-bound Cd, Zn and Ag by the deposit-feeding clam Macoma balthica were studied in the laboratory. Amorphous iron oxyhydroxide and unaltered and alkaline-extracted sediments were used as model particulates in separate, controlled deposit-feeding experiments. In general, amounts of metal taken up from ingested particles varied dramatically with the nature of the particle surface. Ingestion of contaminated iron oxide particles did not contribute to overall uptake of Cd and Ag in feeding clams, but accounted for 89 to 99% of total Zn uptake. Exopolymer adsorbed on iron oxide particles caused an increase in the biological availability of particle-bound metals in the order Ag>Cd>Zn, whereas adherent bacteria up to 3.2 X 1011 g-1 had no effect upon amounts of metal taken up from ingested particulates. At the higher Cd and Ag concentrations employed (3.6 X 10-7M), feeding rates declined with increasing amounts of iron oxide-bound exopolymer, suggesting behavioral avoidance due to increased metal availability. Much of the Cd (57 %) taken up by clams feeding on unaltered estuarine sediments originated from particulates, even though particle/solute distribution of Cd (86%) was similar to that in experiments with iron oxide particles. Uptake of Cd from alkalineextracted sediments was insignificant, as it was from unamended iron oxide. However, addition of exopolymer (10 mgg-1 sediment) caused a restoration nn bioavailability of sediment-bound Cd.

  6. The potential effect of metallothionein 2A - 5 A/G single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels

    SciTech Connect

    Kayaalti, Zeliha Aliyev, Vugar; Soeylemezoglu, Tuelin

    2011-10-01

    Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins. Because of their rich thiol groups, MTs bind to the biologically essential metals and perform these metals' homeostatic regulations; absorb the heavy metals and assist with their transportation and extraction. The aim of this study was to investigate the association between the metallothionein 2A (MT2A) core promoter region - 5 A/G single nucleotide polymorphism (SNP) and Cd, Pb, Zn and Cu levels in the blood samples. MT2A polymorphism was determined by the standard polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique using the 616 blood samples and the genotype frequencies were found as 86.6% homozygote typical (AA), 12.8% heterozygote (AG) and 0.6% homozygote atypical (GG). Metal levels were analyzed by dual atomic absorption spectrophotometer system and the average levels of Cd, Pb, Zn and Cu in the blood samples were 1.69 {+-} 1.57 ppb, 30.62 {+-} 14.13 ppb, 0.98 {+-} 0.49 ppm and 1.04 {+-} 0.45 ppm, respectively. As a result; highly statistically significant associations were detected between the - 5 A/G core promoter region SNP in the MT2A gene and Cd, Pb and Zn levels (p = 0.004, p = 0.012 and p = 0.002, respectively), but no association was found with Cu level (p = 0.595). Individuals with the GG genotype had statistically lower Zn level and higher Cd and Pb levels in the blood samples than individuals with AA and AG genotypes. This study suggests that having the GG genotype individuals may be more sensitive for the metal toxicity and they should be more careful about protecting their health against the toxic effects of the heavy metals. - Highlights: > MT2A -5A/G SNP has strong effect on the Cd, Pb and Zn levels in the blood. > MT2A GG individuals should be more careful for their health against metal toxicity. > This SNP might be considered as a biomarker for risk of disease related to metals.

  7. Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver of the rat: effects on the oxidative stress.

    PubMed

    Jihen, El Heni; Imed, Messaoudi; Fatima, Hammouda; Abdelhamid, Kerkeni

    2009-07-01

    Cadmium (Cd) is a very harmful environmental pollutant that transfers between various levels of the food chain. To study the protective effect of Se and Zn on Cd-induced oxidative stress in livers, male rats received either, tap water, Cd, Cd+Zn, Cd+Se or Cd+Zn+Se in their drinking water, for 35 days. The activities of total superoxide dismutase (SOD), copper, zinc-superoxide dismutase (CuZn SOD), glutathione peroxidase (GPx) and catalase (CAT), malondialdehyde (MDA) level and the ratio of CuZn SOD to GPx activity, were determined in the liver. Exposure to Cd lowered total SOD, CuZn SOD, GPx and CAT activities, while it increased MDA level and the ratio of CuZn SOD to GPx activity, in the organ studied. With Se or Zn administration during exposure to Cd, only partial corrective effects on Cd-induced oxidative stress in the liver have been observed, while Se and Zn together assured a more efficient protection of the organ against the observed oxidative stress. PMID:19201025

  8. Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils.

    PubMed

    Wang, Quanzhen; Gu, Muyu; Ma, Xiaomin; Zhang, Hongjuan; Wang, Yafang; Cui, Jian; Gao, Wei; Gui, Jing

    2015-11-01

    Soil pollution with heavy metals is an increasingly serious threat to the environment, food security, and human health. Therefore, it is urgent to develop economic and highly efficient soil restoration technology for environmental improvement; phytoremediation is an option that is safe, has low cost, and is environmentally friendly. However, in selecting hyperaccumulators or tolerant plants, theories and operation technologies for optimal restoration should be satisfied. In this study, the switchgrass growth response and performance of phytoextraction under the coupling effect of Cd and pH were investigated by evaluating seed germination, seedling growth, and the Cd content in the plant to evaluate the potential use of switchgrass as a phytoremediation plant in cadmium contaminated soil. This study conducted three sets of independent experiments with five levels of Cd concentrations, including two orthogonal matrix designs of combining Cd with pH values. The results showed that switchgrass was germinated well under all treatments (Cd concentration of 0-500 μM), but the seedling growth was significantly affected by Cd and pH, as shown by multivariate regression analyses. Hormesis was found during the growth of switchgrass plants exposed to low Cd concentrations under hydroponic conditions, and switchgrass plants were capable of developing with a Cd concentration of 100-175 μM and pH of 4.1-5.9. Mild acidic conditions can enhance the ability of Cd to accumulate in switchgrass. Switchgrass was moderately tolerant to Cd and may be used as a phytoremediation plant for Cd-contaminated soils in the future. Our results also suggest that hormetic effects should be taken into consideration in the phytoremediation of Cd-contaminated soils. We discuss the physiological and biochemical mechanisms contributing to the effective application of the plant for the phytoremediation of Cd-contaminated soils. PMID:26092360

  9. Material and detector properties of cadmium manganese telluride (Cd1-xMnxTe) crystals grown by the modified floating-zone method

    DOE PAGESBeta

    Hossain, A.; Gu, G. D.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Roy, U. N.; Yang, G.; Liu, T.; Zhong, R.; Schneelock, J.; et al

    2014-12-24

    We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd1-xMnxTe; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd1-xMnxTe crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Thus, our experimental results show that CMT crystals grown by the modified floating zone method apparently are free from Te inclusions. However,more » we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe.« less

  10. Material and detector properties of cadmium manganese telluride (Cd1-xMnxTe) crystals grown by the modified floating-zone method

    NASA Astrophysics Data System (ADS)

    Hossain, A.; Gu, G. D.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Roy, U. N.; Yang, G.; Liu, T.; Zhong, R.; Schneeloch, J.; James, R. B.

    2015-06-01

    We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd1-xMnxTe; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd1-xMnxTe crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Our experimental results show that CMT crystals grown by the modified floating zone method apparently are free from Te inclusions. However, we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe.

  11. The synthesis and structure of a cadmium complex of dimorpholinodithioacetylacetonate and its use as single source precursor for CdS thin films or nanorods.

    PubMed

    Ramasamy, Karthik; Malik, Mohammad A; O'Brien, Paul; Raftery, James

    2009-03-28

    A facile method for the preparation of dimorpholides of dithioacetylacetonate is described together with a X-ray single crystal structure of the ligand and of [Cd(msacmsac)(2)(NO(3))(2)] (msacmsac = dimorpholinodithioacetylacetonate). The cadmium complex has been used as a single source precursor for the deposition of the CdS thin films by the aerosol assisted chemical vapour deposition (AACVD) method or as nanorods by thermolysis in oleylamine. The thin films and nanorods were characterized by electronic spectra (UV-Vis), photoluminescence (PL), X-ray diffraction (XRD), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). To the best of our knowledge [Cd(msacmsac)(2)(NO(3))(2)] is the first complex in its class to be used as a single source precursor to deposit CdS thin films or nanoparticles. PMID:19274298

  12. Early genotoxic effects in gill cells and haemocytes of Dreissena polymorpha exposed to cadmium, B[a]P and a combination of B[a]P and Cd.

    PubMed

    Vincent-Hubert, Françoise; Arini, Adeline; Gourlay-Francé, Catherine

    2011-07-14

    The aim of this study was to assess the genotoxic potential of environmentally relevant concentrations of Cd on the zebra mussel, an important freshwater sentinel organism, and to determine the stability of DNA damage in gill cells and haemocytes. The oxidative DNA damage and the co-genotoxicity of Cd in combination with B[a]P were investigated. We measured DNA damage in haemocytes and gill cells of zebra mussels exposed for 11 days to a constant concentration of Cd (10μg/L), B[a]P (10μg/L) or the two combined chemicals (10μg/L+1μg/L). Enzymatic dissociation of gills with dispase gave the lower percentage DNA in tail, compared with collagenase/dispase or collagenase. Bioaccumulation of cadmium in the soft tissues of mussels exposed to CdCl(2) or CdCl(2)+B[a]P increased in a time-dependent manner indicating that both exposures were effective. Cd (10μg/L) is genotoxic only during the first 3 days of exposure in gill cells, while in haemocytes the genotoxicity of Cd was observed later. B[a]P (10μg/L) induced an early increase of DNA damage in gill cells (after 10h and 1 day), while in both gill cells and haemocytes, B[a]P caused a marked increase of DNA damage after 3 days of exposure. The Cd+B[a]P mixture decreased the DNA-damaging effect of Cd and B[a]P in both cell types. Cd induced an increase of DNA damage in Fpg-treated slides, indicating that Cd contributed to oxidative DNA damage. Cadmium induced a cytogenetic effect in gill cells, assessed by the number of micronuclei, throughout the duration of the exposure, while B[a]P did not induce any cytogenetic effect. B[a]P, Cd and Cd+B[a]P induced a transient increase in the number of bi-nucleated cells. Our data clearly show that gills are more sensitive to Cd and B[a]P, which makes them more suitable for future bio-monitoring studies. PMID:21453782

  13. Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings.

    PubMed

    Chen, Huize; Gong, Yan; Han, Rong

    2014-01-01

    Nanoparticles (NPs) are becoming increasingly widespread in the environment. Free cadmium ions released from commonly used NPs under ultraviolet-B (UV-B) radiation are potentially toxic to living organisms. With increasing levels of UV-B radiation at the Earth's surface due to the depletion of the ozone layer, the potential additive effect of NPs and UV-B radiation on plants is of concern. In this study, we investigated the synergistic effect of CdTe quantum dots (CdTe-QDs), a common form of NP, and UV-B radiation on wheat seedlings. Graded doses of CdTe-QDs and UV-B radiation were tested, either alone or in combination, based on physical characteristics of 5-day-old seedlings. Treatments of wheat seedlings with either CdTe-QDs (200 mg/L) or UV-B radiation (10 KJ/m(2)/d) induced the activation of wheat antioxidant enzymes. CdTe-QDs accumulation in plant root cells resulted in programmed cell death as detected by DNA laddering. CdTe-QDs and UV-B radiation inhibited root and shoot growth, respectively. Additive inhibitory effects were observed in the combined treatment group. This research described the effects of UV-B and CdTe-QDs on plant growth. Furthermore, the finding that CdTe-QDs accumulate during the life cycle of plants highlights the need for sustained assessments of these interactions. PMID:25329900

  14. Electronic Properties of MoSi2-Type Hf2X Intermetallic Compounds (X=Pd, Ag, Cd)

    NASA Astrophysics Data System (ADS)

    Yaar, I.; Maytal-Beck, S.; Berant, Z.

    2001-11-01

    The Hf z coordinate and the value of the electric field gradient (efg) main component (V zz ), were calculated for three Hf2X compounds (X = Pd, Ag, Cd) on a first-principle basis, using the full potential linear augmented plane wave (LAPW) method. Exchange and correlation effects were treated either by the local spine density approximation (LSDA) or by the more advanced generalized gradient approximation (GGA). The calculated V zz values, in the Hf site, were in very good agreement with available 181Hf TDPAC experimental results.

  15. CdS-Nanowires Flexible Photo-detector with Ag-Nanowires Electrode Based on Non-transfer Process

    PubMed Central

    Pei, Yanli; Pei, Ruihan; Liang, Xiaoci; Wang, Yuhao; Liu, Ling; Chen, Haibiao; Liang, Jun

    2016-01-01

    In this study, UV-visible flexible resistivity-type photo-detectors were demonstrated with CdS-nanowires (NWs) percolation network channel and Ag-NWs percolation network electrode. The devices were fabricated on Mixed Cellulose Esters (MCE) membrane using a lithographic filtration method combined with a facile non-transfer process. The photo-detectors demonstrated strong adhesion, fast response time, fast decay time, and high photo sensitivity. The high performance could be attributed to the high quality single crystalline CdS-NWs, encapsulation of NWs in MCE matrix and excellent interconnection of the NWs. Furthermore, the sensing performance was maintained even the device was bent at an angle of 90°. This research may pave the way for the facile fabrication of flexible photo-detectors with high performances. PMID:26899726

  16. CdS-Nanowires Flexible Photo-detector with Ag-Nanowires Electrode Based on Non-transfer Process

    NASA Astrophysics Data System (ADS)

    Pei, Yanli; Pei, Ruihan; Liang, Xiaoci; Wang, Yuhao; Liu, Ling; Chen, Haibiao; Liang, Jun

    2016-02-01

    In this study, UV-visible flexible resistivity-type photo-detectors were demonstrated with CdS-nanowires (NWs) percolation network channel and Ag-NWs percolation network electrode. The devices were fabricated on Mixed Cellulose Esters (MCE) membrane using a lithographic filtration method combined with a facile non-transfer process. The photo-detectors demonstrated strong adhesion, fast response time, fast decay time, and high photo sensitivity. The high performance could be attributed to the high quality single crystalline CdS-NWs, encapsulation of NWs in MCE matrix and excellent interconnection of the NWs. Furthermore, the sensing performance was maintained even the device was bent at an angle of 90°. This research may pave the way for the facile fabrication of flexible photo-detectors with high performances.

  17. CdS-Nanowires Flexible Photo-detector with Ag-Nanowires Electrode Based on Non-transfer Process.

    PubMed

    Pei, Yanli; Pei, Ruihan; Liang, Xiaoci; Wang, Yuhao; Liu, Ling; Chen, Haibiao; Liang, Jun

    2016-01-01

    In this study, UV-visible flexible resistivity-type photo-detectors were demonstrated with CdS-nanowires (NWs) percolation network channel and Ag-NWs percolation network electrode. The devices were fabricated on Mixed Cellulose Esters (MCE) membrane using a lithographic filtration method combined with a facile non-transfer process. The photo-detectors demonstrated strong adhesion, fast response time, fast decay time, and high photo sensitivity. The high performance could be attributed to the high quality single crystalline CdS-NWs, encapsulation of NWs in MCE matrix and excellent interconnection of the NWs. Furthermore, the sensing performance was maintained even the device was bent at an angle of 90°. This research may pave the way for the facile fabrication of flexible photo-detectors with high performances. PMID:26899726

  18. Bright white-light emission from Ag/SiO2/CdS-ZnS core/shell/shell plasmon couplers.

    PubMed

    Liao, Chen; Tang, Luping; Gao, Xiaoqin; Xu, Ruilin; Zhang, Huichao; Yu, Yongya; Lu, Changgui; Cui, Yiping; Zhang, Jiayu

    2015-12-28

    Well-defined plasmon couplers (PCs) that comprise a Ag core overcoated with a SiO(2) shell with controlled thickness, followed by a monolayer of CdS-ZnS core-shell quantum dots (QDs) were synthesized to modify the emission from trap-rich CdS-ZnS QDs by adjusting the distance between the QDs and Ag nanoparticles (NPs). When the thickness of the SiO(2) shell was 10 nm, because the shell could effectively suppress the non-radiative energy transfer from the semiconductor QDs to the metal NPs and the localized surface plasmon resonance (LSPR) of the Ag NPs spectrally matched the emission peak of the CdS-ZnS QDs to bring about strong plasmon coupling, optimum enhancements of the surface state emission (SSE) (17 times) and band-edge emission (BEE) (4 times) were simultaneously realized and the SSE to BEE intensity ratio was increased to 55%. As a result, a bright white-light source with 1931 Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.32, 0.34) was realized by the superposition of the two emissions. The experimental results from Ag/SiO(2)/CdSe-ZnS and the Ag/SiO(2)/CdS:Mn-ZnS core/shell/shell PCs indicated that suppressing the non-radiative decay rate (k(nr)) was the underlying mechanism for plasmon coupling fluorescence enhancement. PMID:26592756

  19. Bright white-light emission from Ag/SiO2/CdS-ZnS core/shell/shell plasmon couplers

    NASA Astrophysics Data System (ADS)

    Liao, Chen; Tang, Luping; Gao, Xiaoqin; Xu, Ruilin; Zhang, Huichao; Yu, Yongya; Lu, Changgui; Cui, Yiping; Zhang, Jiayu

    2015-12-01

    Well-defined plasmon couplers (PCs) that comprise a Ag core overcoated with a SiO2 shell with controlled thickness, followed by a monolayer of CdS-ZnS core-shell quantum dots (QDs) were synthesized to modify the emission from trap-rich CdS-ZnS QDs by adjusting the distance between the QDs and Ag nanoparticles (NPs). When the thickness of the SiO2 shell was 10 nm, because the shell could effectively suppress the non-radiative energy transfer from the semiconductor QDs to the metal NPs and the localized surface plasmon resonance (LSPR) of the Ag NPs spectrally matched the emission peak of the CdS-ZnS QDs to bring about strong plasmon coupling, optimum enhancements of the surface state emission (SSE) (17 times) and band-edge emission (BEE) (4 times) were simultaneously realized and the SSE to BEE intensity ratio was increased to 55%. As a result, a bright white-light source with 1931 Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.32, 0.34) was realized by the superposition of the two emissions. The experimental results from Ag/SiO2/CdSe-ZnS and the Ag/SiO2/CdS:Mn-ZnS core/shell/shell PCs indicated that suppressing the non-radiative decay rate (knr) was the underlying mechanism for plasmon coupling fluorescence enhancement.

  20. Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties.

    PubMed

    Guo, Zheng; Li, Minqiang; Liu, Jinhuai

    2008-06-18

    Highly porous cadmium oxide (CdO) nanowires have been prepared by calcining the hydroxy- and carbonate-containing cadmium compound precursor nanowires. The large-scale precursor nanowires were synthesized through a hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize and analyze the as-synthesized precursor nanowires as well as the calcined products. It was revealed that the wire-like morphology of the precursor was fundamentally retained during the process of calcination and the CdO nanowires obtained were polycrystalline with highly porous structures. In order to illustrate the formation mechanism of the porous structures, the morphology and composition evolutions of the precursor nanowires under different stages of the calcining process were further investigated via SEM, x-ray diffraction (XRD) and infrared (IR) absorbance spectroscopy. Gas sensing has been explored for the sensor device fabricated with highly porous CdO nanowires, which demonstrates that it has good response owing to its special structures and great selectivity to NO(x). Furthermore, the UV-visible and photoluminescence spectra of highly porous CdO nanowires have also been investigated. PMID:21825823

  1. Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties

    NASA Astrophysics Data System (ADS)

    Guo, Zheng; Li, Minqiang; Liu, Jinhuai

    2008-06-01

    Highly porous cadmium oxide (CdO) nanowires have been prepared by calcining the hydroxy- and carbonate-containing cadmium compound precursor nanowires. The large-scale precursor nanowires were synthesized through a hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize and analyze the as-synthesized precursor nanowires as well as the calcined products. It was revealed that the wire-like morphology of the precursor was fundamentally retained during the process of calcination and the CdO nanowires obtained were polycrystalline with highly porous structures. In order to illustrate the formation mechanism of the porous structures, the morphology and composition evolutions of the precursor nanowires under different stages of the calcining process were further investigated via SEM, x-ray diffraction (XRD) and infrared (IR) absorbance spectroscopy. Gas sensing has been explored for the sensor device fabricated with highly porous CdO nanowires, which demonstrates that it has good response owing to its special structures and great selectivity to NOx. Furthermore, the UV-visible and photoluminescence spectra of highly porous CdO nanowires have also been investigated.

  2. Comparing Gene Expression during Cadmium Uptake and Distribution: Untreated versus Oral Cd-Treated Wild-Type and ZIP14 Knockout Mice

    PubMed Central

    Jorge-Nebert, Lucia F.; Gálvez-Peralta, Marina; Landero Figueroa, Julio; Somarathna, Maheshika; Hojyo, Shintaro; Fukada, Toshiyuki; Nebert, Daniel W.

    2015-01-01

    The nonessential metal cadmium (Cd) is toxic only after entering the cell. Proteins possibly relevant to intracellular Cd accumulation include the divalent metal transporter-1 (DMT1) and all 14 zinc-like iron-like protein (ZIP) importers, 10 zinc transporter (ZnT) exporters, and metallothionein chaperones MT1 and MT2. Comparing oral Cd-treated ZIP14 knockout (KO) with wild-type (WT) mice, we predicted Cd uptake and distribution would be diminished in the KO—because ZIP14 is very highly expressed in GI tract and liver; this was indeed observed for Cd content in liver. However, the reverse was found in kidney and lung from 6 or 12 h through 10 days of Cd exposure; at these times, Cd accumulation was unexpectedly greater in KO than WT mice; mRNA levels of the 27 above-mentioned genes were thus examined in proximal small intestine (PSI) versus kidney to see if these paradoxical effects could be explained by substantial alterations in any of the other 26 genes. PSI genes highly expressed in untreated WT animals included seven ZIP and five ZnT transporters, DMT1, MT1, and MT2; kidney genes included 11 ZIP and 7 ZnT transporters, DMT1, MT1, and MT2. Over 10 days of oral Cd, a bimodal response was seen for Cd content in PSI and for various mRNAs; initially, acute effects caused by the toxic metal; subsequently, the up- or down-regulation of important genes presumably to combat the sustained adversity. These data underscore the complex interplay between the gastrointestinal tract and renal proteins that might be relevant to Cd uptake and distribution in animals exposed to oral Cd. PMID:25294218

  3. A field-scale study of cadmium phytoremediation in a contaminated agricultural soil at Mae Sot District, Tak Province, Thailand: (1) Determination of Cd-hyperaccumulating plants.

    PubMed

    Khaokaew, Saengdao; Landrot, Gautier

    2015-11-01

    The cadmium (Cd) phytoremediation capabilities of Gynura pseudochina, Chromolaena odorata, Conyza sumatrensis, Crassocephalum crepidioides and Nicotiana tabacum were determined by conducting in-situ experiments in a highly Cd-contaminated agricultural field at Mae Sot District, Tak Province, Thailand. Most of these five plant species, which are commonly found in Thailand, previously demonstrated Cd-hyperaccumulating capacities under greenhouse conditions. This study represented an important initial step in determining if any of these plants could, under field-conditions, effectively remove Cd from the Mae Sot contaminated fields, which represent a health threat to thousands of local villagers. All plant species had at least a 95% survival rate on the final harvest day. Additionally, all plant species, except C. odorata, could hyperaccumulate the extractable Cd amounts present in the soil, based on their associated Bioaccumulation Factor (BAF), Translocation Factor (TF), and background Vegetation Factor (VF). Therefore, the four Cd-hyperaccumulating plant species identified in this study may successfully treat a majority of contaminated fields at Mae Sot, as it was previously reported that Cd amounts present in a number of these soils were mostly available. PMID:25454203

  4. Fourier transform infrared and Raman spectra, and AB initio calculations for cadmium(II)-cysteinate glycinate complex [Cd(Cys)(Gly)].

    PubMed

    Ramos, Joanna Maria; Faget O, Grisset; Felcman, Judith; Téllez S, Claudio A

    2008-12-15

    The cysteinate glycinate cadmium(II) complex was synthesized and structural analysis was carried out using the following methods: determination of the C, H, N, S and O contents, thermogravimetry, infrared and Raman spectra. The most probable structure for the complex at a minimum of energy was calculated by the density functional theory (DFT):B3LYP/3-21G quantum mechanical method. The infrared and Raman spectra were analyzed and bands assigned through the DFT procedures, the stabilization energy being equal to: E(RB+HF-LYP)= -6442.67784a.u. Features of the infrared and Raman spectra confirm theoretical structural prediction with respect to the metal-ligand bonds: Cd-O, Cd-S and Cd-N. Full assignment of the vibrational spectra was also supported by a carefully analysis of the distorted geometries generated by the normal modes. PMID:18534901

  5. Static quadrupole moments of 106Agm and 109Agm and the electric field gradient of Ag in Zn and Cd

    NASA Astrophysics Data System (ADS)

    Berkes, I.; Hlimi, B.; Marest, G.; Sayouty, E. H.; Coussement, R.; Hardeman, F.; Put, P.; Scheveneels, G.

    1984-12-01

    Low temperature nuclear orientation of 106Agm and 110Agm in Zn and Fe and level mixing resonances on 109Agm have been measured in order to deduce Q and Vzz values. A fourth-order resonance in 109AgmZn has been found with a full width at half maximum of 1.9 × 10-9 eV, and Vzz(AgCd)Vzz(AgZn)=1.0064(34) was deduced. The electric quadrupole moments found in the literature, reevaluated for Sternheimer correction Q(108Agm)=+1.32(7) b and Q(110Agm)=+1.44(10) b, are used for the calibration of Vzz and yield Q(106Agm)=+1.11(11) b, Q(109Agm)=(+)0.97(11) b, and Vzz(AgZn)=+4.2(5)×1017 V/cm2. Furthermore, μ(106Agm)=(+)3.82(8)μN and several δ(E 2M 1) mixing ratios in 106Pd are also determined. The quadrupole moments are in good agreement with Yukawa-plus-exponential macroscopic model and folded-Yukawa microscopic model calculations. The particle states can be described in terms of deformed Nilsson orbitals or three valence-proton holes coupled to a quadrupole vibrator.

  6. Primary Effusion Lymphoma Cell Death Induced by Bortezomib and AG 490 Activates Dendritic Cells through CD91

    PubMed Central

    Cirone, Mara; Di Renzo, Livia; Lotti, Lavinia Vittoria; Conte, Valeria; Trivedi, Pankaj; Santarelli, Roberta; Gonnella, Roberta; Frati, Luigi; Faggioni, Alberto

    2012-01-01

    To understand how cytotoxic agent-induced cancer cell death affects the immune system is of fundamental importance to stimulate immune response to counteract the high mortality due to cancer. Here we compared the immunogenicity of Primary Effusion Lymphoma (PEL) cell death induced by anticancer drug Bortezomib (Velcade) and Tyrphostin AG 490, a Janus Activated Kinase 2/signal trasducer and activator of transcription-3 (JAK2/STAT3) inhibitor. We show that both treatments were able to induce PEL apoptosis with similar kinetics and promote dendritic cells (DC) maturation. The surface expression of molecules involved in immune activation, namely calreticulin (CRT), heat shock proteins (HSP) 90 and 70 increased in dying cells. This was correlated with DC activation. We found that PEL cell death induced by Bortezomib was more effective in inducing uptake by DC compared to AG 490 or combination of both drugs. However the DC activation induced by all treatments was completely inhibited when these cells were pretreated with a neutralizing antiboby directed against the HSP90/70 and CRT common receptor, CD91. The activation of DC by Bortezomib and AG 490 treated PEL cells, as seen in the present study, might have important implications for a combined chemo and immunotherapy in such patients. PMID:22412839

  7. Evaluation of low-cadmium ZnCdSeS alloyed quantum dots for remote phosphor solid-state lighting technology.

    PubMed

    Siffalovic, Peter; Badanova, Dominika; Vojtko, Andrej; Jergel, Matej; Hodas, Martin; Pelletta, Marco; Sabol, Dusan; Macha, Marek; Majkova, Eva

    2015-08-10

    We report on the possibility to enhance color rendering of commercially available remote phosphor light-emitting diode modules by using low-cadmium content ZnCdSeS alloyed quantum dots. The employed numerical simulations showed that the color-rendering index of 90+ at the color-correlated temperature of 3200 K can be achieved by application of a single layer of quantum dots onto a neutral-white remote phosphor substrate. The experimental results fully support the numerical calculations, thus revealing the only limiting factor in achieving a higher photometric performance: the self-absorption effect in quantum dots. The presented low-cadmium content quantum dots allow a price-effective upgrade of already existing remote phosphor solid-state lighting technology toward a higher color-rendering capability. PMID:26368381

  8. High-Performance Fully Nanostructured Photodetector with Single-Crystalline CdS Nanotubes as Active Layer and Very Long Ag Nanowires as Transparent Electrodes.

    PubMed

    An, Qinwei; Meng, Xianquan; Sun, Pan

    2015-10-21

    Long and single-crystalline CdS nanotubes (NTs) have been prepared via a physical evaporation process. A metal-semiconductor-metal full-nanostructured photodetector with CdS NTs as active layer and Ag nanowires (NWs) of low resistivity and high transmissivity as electrodes has been fabricated and characterized. The CdS NTs-based photodetectors exhibit high performance, such as lowest dark currents (0.19 nA) and high photoresponse ratio (Ilight/Idark ≈ 4016) (among CdS nanostructure network photodetectors and NTs netwok photodetectors reported so far) and very low operation voltages (0.5 V). The photoconduction mechanism, including the formation of a Schottky barrier at the interface of Ag NW and CdS NTs and the effect of oxygen adsorption process on the Schottky barrier has also been provided in detail based on the studies of CdS NTs photodetector in air and vacuum. Furthermore, CdS NTs photodetector exhibits an enhanced photosensitivity as compared with CdS NWs photodetector. The enhancement in performance is dependent on the larger surface area of NTs adsorbing more oxygen in air and the microcavity structure of NTs with higher light absorption efficiency and external quantum efficiency. It is believed that CdS NTs can potentially be useful in the designs of 1D CdS-based optoelectronic devices and solar cells. PMID:26457660

  9. Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: a potential Cd-hyperaccumulator and As-excluder Bidens pilosa L.

    PubMed

    Sun, Yue-bing; Zhou, Qi-xing; Liu, Wei-tao; An, Jing; Xu, Zhi-qiang; Wang, Lin

    2009-06-15

    Joint effects of arsenic (As) and cadmium (Cd) on the growth of Bidens pilosa L. and its uptake and accumulation of As and Cd were investigated using the field pot-culture experiment. The results showed that single Cd (Cd, there was an antagonistic effect on the growth of the plant. The concentrations of As and Cd accumulated in tissues of the plant increased with an increase of As and Cd in soils. In particular, the levels of Cd in stems and leaves reached 103.0 and 110.0 mg kg(-1), respectively, when soil Cd was 10 mg kg(-1). Furthermore, the BF and TF values of Cd were greater than 1.0. However, the highest content of As in roots of the plant was only 13.5 mg kg(-1) when soil As was at a high level, i.e. 125 mg kg(-1), and the TF values of As were less than 0.1, indicating that B. pilosa can be considered as a potential Cd hyperaccumulator and As excluder. The presence of As had inhibitory effects on Cd absorption by the plant, in particular, the accumulation of Cd in stems, leaves and shoots decreased significantly, with 42.8-53.1, 49.3-66.4 and 37.6-59.5%, respectively, reduction when the level of soil As was up to 125 mg kg(-1) compared with that under no addition of As. Whereas, when Cd was added to soils, it could facilitate As accumulation in tissues of the plants and the As concentrations in shoots increased with increasing Cd spiked in soils. The interactive effects of Cd and As may be potential for phytoremediation of Cd and/or As contamination soils. PMID:19070954

  10. Selective Facet Reactivity During Cation Exchange in Cadmium Sulfide Nanorods

    SciTech Connect

    Sadtler, Bryce; Demchenko, Denis; Zheng, Haimei; Hughes, Steven; Merkle, Maxwell; Dahmen, Ulrich; Wang, Lin-Wang; Alivisatos, A. Paul

    2008-12-18

    The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper I (Cu+) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu2S) grows inwards from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver I (Ag+) exchange in CdS nanorods where non-selective nucleation of silver sulfide (Ag2S) occurs. From interface formation energies calculated for several models of epitaxialconnections between CdS and Cu2S or Ag2S, we infer the relative stability of each interface during the nucleation and growth of Cu2S or Ag2S within the CdS nanorods. The epitaxial connections of Cu2S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. However, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.

  11. Characterization of CdS thin film in high efficient CdS/CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Tsuji, Miwa; Aramoto, Tetsuya; Ohyama, Hideaki; Hibino, Takeshi; Omura, Kuniyoshi

    2000-06-01

    Cadmium sulfide (CdS) thin film is the most commonly used window material for high-efficient cadmium telluride (CdTe) thin-film photovoltaic devices. High-efficient CdS/CdTe solar cells have been developed using ultra-thin CdS films having a thickness of below 0.1 μm. CdS film is deposited on transparent conductive oxide (TCO) film coated glass substrates by the metal organic chemical vapor deposition (MOCVD) technique, CdTe film is subsequently deposited by the close-spaced sublimation (CSS) technique. Finally, carbon and Ag-In electrodes are fabricated by the screen printing and sintering method. Cell performance depends primarily on the electrical and optical properties of CdS film, and hence we started to develop higher quality CdS film and found out clear differences between high- and low-quality CdS films from various analyses: SEM, AFM, SIMS, TDS and FT-IR. As a result of controlling qualities of CdS films, photovoltaic conversion efficiency of 10.5% has been achieved for a size of 1376 cm 2 of the solar module under air mass (AM) 1.5 conditions by the Japan Quality Assurance Organization (JQA).

  12. AGS67E, an Anti-CD37 Monomethyl Auristatin E Antibody–Drug Conjugate as a Potential Therapeutic for B/T-Cell Malignancies and AML: A New Role for CD37 in AML

    PubMed Central

    Pereira, Daniel S.; Guevara, Claudia I.; Jin, Liqing; Mbong, Nathan; Verlinsky, Alla; Hsu, Ssucheng J.; Aviña, Hector; Karki, Sher; Abad, Joseph D.; Yang, Peng; Moon, Sung-Ju; Malik, Faisal; Choi, Michael Y.; An, Zili; Morrison, Kendall; Challita-Eid, Pia M.; Doñate, Fernando; Joseph, Ingrid B.J.; Kipps, Thomas J.; Dick, John E.; Stover, David R.

    2015-01-01

    CD37 is a tetraspanin expressed on malignant B cells. Recently, CD37 has gained interest as a therapeutic target. We developed AGS67E, an antibody–drug conjugate that targets CD37 for the potential treatment of B/T-cell malignancies. It is a fully human monoclonal IgG2 antibody (AGS67C) conjugated, via a protease-cleavable linker, to the microtubule-disrupting agent mono-methyl auristatin E (MMAE). AGS67E induces potent cytotoxicity, apoptosis, and cell-cycle alterations in many non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL) cell lines and patient-derived samples in vitro. It also shows potent antitumor activity in NHL and CLL xenografts, including Rituxan-refractory models. During profiling studies to confirm the reported expression of CD37 in normal tissues and B-cell malignancies, we made the novel discovery that the CD37 protein was expressed in T-cell lymphomas and in AML. AGS67E bound to >80% of NHL and T-cell lymphomas, 100% of CLL and 100% of AML patient-derived samples, including CD34+CD38− leukemic stem cells. It also induced cytotoxicity, apoptosis, and cell-cycle alterations in AML cell lines and antitumor efficacy in orthotopic AML xenografts. Taken together, this study shows not only that AGS67E may serve as a potential therapeutic for B/T-cell malignancies, but it also demonstrates, for the first time, that CD37 is well expressed and a potential drug target in AML. PMID:25934707

  13. Ag nanoclusters could efficiently quench the photoresponse of CdS quantum dots for novel energy transfer-based photoelectrochemical bioanalysis.

    PubMed

    Zhang, Ling; Sun, Yue; Liang, Yan-Yu; He, Jian-Ping; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-11-15

    Herein the influence of ultrasmall Ag nanoclusters (Ag NCs) against CdS quantum dots (QDs) in a photoelectrochemical (PEC) nanosystem was exploited for the first time, based on which a novel PEC bioanalysis was successfully developed via the efficient quenching effect of Ag NCs against the CdS QDs. In a model system, DNA assay was achieved by using molecular beacon (MB) probes anchored on a CdS QDs modified electrode, and the MB probes contain two segments that can hybridize with both target DNA sequence and the label of DNA encapsulated Ag NCs. After the MB probe was unfolded by the target DNA sequence, the labels of oligonucleotide encapsulated Ag NCs would be brought in close proximity to the CdS QDs electrode surface, and efficient photocurrent quenching of QDs could be resulted from an energy transfer process that originated from NCs. Thus, by monitoring the attenuation in the photocurrent signal, an elegant and sensitive PEC DNA bioanalysis could be accomplished. The developed biosensor displayed a linear range from 1.0pM to 10nM and the detection limit was experimentally found to be of 0.3pM. This work presents a feasible signaling principle that could act as a common basis for general PEC bioanalysis development. PMID:27315518

  14. Bioconcentration of Ag, Cd, Co, Mn and Zn in the Mangrove Oyster (Crassostrea gasar) and Preliminary Human Health Risk Assessment: A Radiotracer Study.

    PubMed

    Kuranchie-Mensah, Harriet; Teyssié, Jean-Louis; Oberhänsli, François; Tumnoi, Yutthana; Pouil, Simon; Warnau, Michel; Metian, Marc

    2016-09-01

    Bioaccumulation kinetics of five dissolved metals were determined in the mangrove oyster Crassostrea gasar, using corresponding radiotracers ((54)Mn, (57)Co, (65)Zn, (109)Cd and (110m)Ag). Additionally, their bioaccessibility to human consumers was estimated. Results indicated that over a 14-day exposure (54)Mn and (57)Co were linearly concentrated in oysters whereas (109)Cd, (65)Zn and (110m)Ag were starting to saturate (steady-state not reached). Whole-body concentration factors at 14 days (CF14d in toto) ranged from 187 ± 65 to 629 ± 179 with the lowest bioconcentration capacity for Co and the highest for Ag. Depuration kinetics were best described by a double-exponential model with associated biological half-lives ranging from 26 days (Ag) to almost 8 months (Zn and Cd). Bioaccessible fraction of the studied elements was estimated using in vitro digestions, which suggested that oysters consumed seasoned with lemon enhanced the accessibility of Cd, Mn and Zn to human consumers, but not Ag and Co. PMID:27194421

  15. Plasmon enhanced CdS-quantum dot sensitized solar cell using ZnO nanorods array deposited with Ag nanoparticles as photoanode

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Ahmadi, V.; Yousefi rad, M.; Kohnehpoushi, S.

    2015-04-01

    CdS-quantum dot sensitized solar cell using ZnO nanorods (ZnO NRs) array deposited with Ag nanoparticles (Ag NPs) as photoanode was fabricated. Light absorption effect of Ag NPs on improvement of the cell performance was investigated. Performance improvement of metal nanoparticles (MNPs) was controlled by the structure design and architecture. Different decorations and densities of Ag NPs were utilized on the photoanode. Results showed that using 5% Ag NPs in the photoanode results in the increased efficiency, fill factor, and circuit current density from 0.28% to 0.60%, 0.22 to 0.29, and 2.18 mA/cm2 to 3.25 mA/cm2, respectively. Also, incident photon-to-current efficiencies (IPCE) results showed that cell performance improvement is related to enhanced absorption in the photoanode, which is because of the surface plasmonic resonance and light scattering of Ag NPs in the photoanode. Measurements of electrochemical impedance spectroscopy revealed that hole transfer kinetics increases with introduction of Ag NPs into photoanode. Also, it is shown that chemical capacitance increases with introduction of Ag NPs. Such increase can be attributed to the surface palsmonic resonance of Ag NPs which leads to absorption of more light in the photoanode and generation of more photoelectron in the photoanode.

  16. Enhanced DSSCs efficiency via Cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@PVP)

    PubMed Central

    Amiri, Omid; Salavati-Niasari, Masoud; Bagheri, Samira; Yousefi, Amin Termeh

    2016-01-01

    This paper describes cooperate the co-absorbance (CdS QDs) and the plasmonic core-shell nanoparticles (Ag@PVP) of dye synthesized solar cells in which CdS QDs and Ag@PVP are incorporated into the TiO2 layer. Cooperative nanoparticles show superior behavior on enhancing light absorption in comparison with reference cells. Cooperated DSSC exhibits the best performance with the power conversion efficiency of 7.64% which is superior to that of the free–modified DSSC with the PCE of 5%. Detailed studies offer an effective approach to enhance the efficiency of dye synthesized solar cells. PMID:27143126

  17. Enhanced DSSCs efficiency via Cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@PVP).

    PubMed

    Amiri, Omid; Salavati-Niasari, Masoud; Bagheri, Samira; Yousefi, Amin Termeh

    2016-01-01

    This paper describes cooperate the co-absorbance (CdS QDs) and the plasmonic core-shell nanoparticles (Ag@PVP) of dye synthesized solar cells in which CdS QDs and Ag@PVP are incorporated into the TiO2 layer. Cooperative nanoparticles show superior behavior on enhancing light absorption in comparison with reference cells. Cooperated DSSC exhibits the best performance with the power conversion efficiency of 7.64% which is superior to that of the free-modified DSSC with the PCE of 5%. Detailed studies offer an effective approach to enhance the efficiency of dye synthesized solar cells. PMID:27143126

  18. Enhanced DSSCs efficiency via Cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@PVP)

    NASA Astrophysics Data System (ADS)

    Amiri, Omid; Salavati-Niasari, Masoud; Bagheri, Samira; Yousefi, Amin Termeh

    2016-05-01

    This paper describes cooperate the co-absorbance (CdS QDs) and the plasmonic core-shell nanoparticles (Ag@PVP) of dye synthesized solar cells in which CdS QDs and Ag@PVP are incorporated into the TiO2 layer. Cooperative nanoparticles show superior behavior on enhancing light absorption in comparison with reference cells. Cooperated DSSC exhibits the best performance with the power conversion efficiency of 7.64% which is superior to that of the free–modified DSSC with the PCE of 5%. Detailed studies offer an effective approach to enhance the efficiency of dye synthesized solar cells.

  19. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.

    PubMed

    van de Mortel, Judith E; Schat, Henk; Moerland, Perry D; Ver Loren van Themaat, Emiel; van der Ent, Sjoerd; Blankestijn, Hetty; Ghandilyan, Artak; Tsiatsiani, Styliani; Aarts, Mark G M

    2008-03-01

    Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd and zinc (Zn) are examined, with the main aim to determine the differences in gene expression between the Cd-tolerant Zn-hyperaccumulator T. caerulescens and the Cd-sensitive non-accumulator Arabidopsis. This comparative transcriptional analysis emphasized the role of genes involved in lignin, glutathione and sulphate metabolism. Furthermore the transcription factors MYB72 and bHLH100 were studied for their involvement in metal homeostasis, as they showed an altered expression after exposure to Cd. The Arabidopsis myb72 knockout mutant was more sensitive to excess Zn or iron (Fe) deficiency than wild type, while Arabidopsis transformants overexpressing bHLH100 showed increased tolerance to high Zn and nickel (Ni) compared to wild-type plants, confirming their role in metal homeostasis in Arabidopsis. PMID:18088336

  20. Phase- and shape-controlled synthesis of cadmium hydroxyl chloride microstructures via an ammonia-assisted conversion of 1D CdQCl (Q=quinoline) complex microwires

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Ni, Yonghong; Hong, Jianming

    2013-11-01

    In this paper we reported a NH3·H2O-assisted solvothermal route for successful synthesis of cadmium hydroxyl chlorides (Cdx(OH)yClz) microstructures with different phases and shapes, employing 1D CdQCl (Q=quinoline) complex microwires as the precursor. Experiments contained two processes: firstly, CdQCl complex microwires with 500-600 nm in diameter and several hundreds of micrometers in length were prepared by the complexation between CdCl2·2.5H2O and quinoline at room temperature; then, CdQCl microwires were solvothermally treated at 150 °C for 10 h in the presences of different amounts of NH3·H2O to produce Cdx(OH)yClz microstructures with various phases and shapes. The as-obtained precursor and Cdx(OH)yClz microstructures were characterized by scanning electron microscopy, transmission electron microscopy, Infrared spectrometry and X-ray powder diffraction. Experiments showed that hexagonal Cd(OH)Cl was obtained from water-methanol system, while rhombohedral Cd4(OH)5Cl3 from methanol system. Also, it was found that the shapes of Cdx(OH)yClz could be tuned by the amounts of NH3·H2O. Furthermore, the UV diffuse reflection and photoluminescence spectra of the precursor and Cdx(OH)yClz were also investigated.

  1. Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil.

    PubMed

    Huang, Fei; Dang, Zhi; Guo, Chu-Ling; Lu, Gui-Ning; Gu, Roy R; Liu, Hong-Juan; Zhang, Hui

    2013-07-01

    The present study investigated the biosorption capacity of live and dead cells of Bacillus cereus RC-1 for Cd(II). The biosorption characteristics were investigated as a function of initial pH, contact time, and initial cadmium concentration. Equilibrium biosorption was modeled using Langmuir, Freundlich and Redlich-Peterson isotherm equations. It was found that the maximum biosorption capacities calculated from Langmuir isotherm were 31.95 mg/g and 24.01 mg/g for dead cells and live cells, respectively. The kinetics of the biosorption was better described by pseudo-second order kinetic model. Desorption efficiency of biosorbents was investigated at various pH values. These results indicated that dead cells have higher Cd(II) biosorption capacity than live cells. Furthermore, zeta potential, transmission electron microscopy (TEM), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX), and Fourier transform infrared spectroscopy (FTIR) studies were carried out to understand the differences in the Cd(II) biosorption behavior for the both biosorbents. The bioaccumulation of Cd(II) by B. cereus RC-1 was found to depend largely on extracellular biosorption rather than intracellular accumulation. Based on the above studies, dead biomass appears to be a more efficient biosorbent for the removal of Cd(II) from aqueous solution. PMID:23466537

  2. Surface enhanced Raman scattering, natural bond orbitals and Mulliken atomic charge distribution in the normal modes of diethyldithiocarbamate cadmium (II) complex, [Cd(DDTC)2

    NASA Astrophysics Data System (ADS)

    Téllez Soto, C. A.; Costa, A. C.; Versiane, O.; Lemma, T.; Machado, N. C. F.; Mondragón, M. A.; Martin, A. A.

    2015-07-01

    Theoretical and experimental bands have been assigned to the Fourier Transform Infrared (FT-IR) and FT-Raman spectra of the bis(diethyldithiocarbamate)Cd(II) complex, abbreviated as ([Cd(DDTC)2]). The calculations and spectral interpretation have been based on the DFT/B3LYP method, infrared and Raman second derivative spectra, and band deconvolution analysis to assist in the assignment of observed fundamentals. This study validated the unusual pseudo tetrahedral molecular structure formed around the Cd(II) cation. Surface-enhanced Raman scattering (SERS) was used to determine the interactions of the normal-modes of the diethyldithiocarbamate cadmium (II) complex on nano-structured silver surfaces. Natural bond orbital (NBO) analysis was also carried out to study the Cd(II) hybridization causing the pseudo tetrahedral geometry of the framework of the [Cd(DDTC)2] complex, and to confirm the charge transfer mechanisms through second order perturbation theory analysis of the Fox Matrix. In order to find out the electronic dispersion of the Mulliken atomic charges (MAC) in the normal modes, we calculated the MAC for each normal mode and correlated these values with the SERS effect. Experimental UV-Vis spectra were obtained and charge transfer bands were assigned. Good agreement between the calculated and experimental values for the vibrational and UV-Vis spectra was obtained.

  3. Surface enhanced Raman scattering, natural bond orbitals and Mulliken atomic charge distribution in the normal modes of diethyldithiocarbamate cadmium (II) complex, [Cd(DDTC)₂].

    PubMed

    Soto, C A Téllez; Costa, A C; Versiane, O; Lemma, T; Machado, N C F; Mondragón, M A; Martin, A A

    2015-07-01

    Theoretical and experimental bands have been assigned to the Fourier Transform Infrared (FT-IR) and FT-Raman spectra of the bis(diethyldithiocarbamate)Cd(II) complex, abbreviated as ([Cd(DDTC)2]). The calculations and spectral interpretation have been based on the DFT/B3LYP method, infrared and Raman second derivative spectra, and band deconvolution analysis to assist in the assignment of observed fundamentals. This study validated the unusual pseudo tetrahedral molecular structure formed around the Cd(II) cation. Surface-enhanced Raman scattering (SERS) was used to determine the interactions of the normal-modes of the diethyldithiocarbamate cadmium (II) complex on nano-structured silver surfaces. Natural bond orbital (NBO) analysis was also carried out to study the Cd(II) hybridization causing the pseudo tetrahedral geometry of the framework of the [Cd(DDTC)2] complex, and to confirm the charge transfer mechanisms through second order perturbation theory analysis of the Fox Matrix. In order to find out the electronic dispersion of the Mulliken atomic charges (MAC) in the normal modes, we calculated the MAC for each normal mode and correlated these values with the SERS effect. Experimental UV-Vis spectra were obtained and charge transfer bands were assigned. Good agreement between the calculated and experimental values for the vibrational and UV-Vis spectra was obtained. PMID:25813176

  4. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  5. Zinc Fertilization Plus Liming to Reduce Cadmium Uptake by Romaine Lettuce on Cd-Mineralized Lockwood Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lockwood shaly loam (Pachic Argixerolls) and similar Cd mineralized soils derived from marine shale in California contain higher Cd levels and higher Cd:Zn ratios than uncontaminated US soils, and produce leafy vegetables with considerably higher Cd than is normal for US lettuce. Previous work by B...

  6. Cd - Np (Cadmium - Neptunium)

    NASA Astrophysics Data System (ADS)

    Predel, B.

    This document is part of Volume 12 Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys', Subvolume B 'B - Ba … Cu - Zr, Supplement to Subvolumes IV/5B, IV/5C and IV/5D', of Landolt-Börnstein - Group IV 'Physical Chemistry'.

  7. Cd - U (Cadmium - Uranium)

    NASA Astrophysics Data System (ADS)

    Predel, B.

    This document is part of Volume 12 Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys', Subvolume B 'B - Ba … Cu - Zr, Supplement to Subvolumes IV/5B, IV/5C and IV/5D', of Landolt-Börnstein - Group IV 'Physical Chemistry'.

  8. A study on dependence of the structural, optical and electrical properties of cadmium lead sulphide thin films on Cd/Pb ratio

    SciTech Connect

    Nair, Sinitha B. E-mail: anithakklm@gmail.com; Abraham, Anitha E-mail: anithakklm@gmail.com; Philip, Rachel Reena; Pradeep, B.; Shripathi, T. E-mail: vganesancsr@gmail.com; Ganesan, V. E-mail: vganesancsr@gmail.com

    2014-10-15

    Cadmium Lead Sulphide thin films with systematic variation in Cd/Pb ratio are prepared at 333K by CBD, adjusting the reagent-molarity, deposition time and pH. XRD exhibits crystalline-amorphous transition as Cd% exceeds Pb%. AFM shows agglomeration of crystallites of size ∼50±5 nm. EDAX assess the composition whereas XPS ascertains the ternary formation, with binding energies of Pb4f{sub 7/2} and 4f{sub 5/2}, Cd3d{sub 5/2} and 3d{sub 3/2} and S2p at 137.03, 141.606, 404.667, 412.133 and 160.218 eV respectively. The optical absorption spectra reveal the variance in the direct allowed band gaps, from 1.57eV to 2.42 eV as Cd/Pb ratio increases from 0.2 to 2.7, suggesting possibility of band gap engineering in the n-type films.

  9. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions.

    PubMed

    Nowicka, Beatrycze; Pluciński, Bartosz; Kuczyńska, Paulina; Kruk, Jerzy

    2016-08-01

    Acclimation to heavy metal-induced stress is a complex phenomenon. Among the mechanisms of heavy metal toxicity, an important one is the ability to induce oxidative stress, so that the antioxidant response is crucial for providing tolerance to heavy metal ions. The effect of chronic stress induced by ions of five heavy metals, Ag, Cu, Cr (redox-active metals) Cd, Hg (nonredox-active metals) on the green microalga Chlamydomonas reinhardtii was examined at two levels - the biochemical (content of photosynthetic pigments and prenyllipid antioxidants, lipid peroxidation) and the physiological (growth rate, photosynthesis and respiration rates, induction of nonphotochemical quenching of chlorophyll fluorescence). The expression of the genes which encode the enzymes participating in the detoxification of reactive oxygen species (APX1, CAT1, FSD1, MSD1) was measured. The other gene measured was one required for plastoquinone and α-tocopherol biosynthesis (VTE3). The application of heavy metal ions partly inhibited growth and biosynthesis of chlorophyll. The growth inhibition was accompanied by enhanced lipid peroxidation. An increase in the content of prenyllipid antioxidants was observed in cultures exposed to Cr2O7(2-), Cd(2+) (α- and γ-tocopherol and plastoquinone) and Cu(2+) (only tocopherols). The induction of nonphotochemical quenching was enhanced in cultures exposed to Cu(2+), Cr2O7(2-) and Cd(2+), as compared to the control. Chronic heavy metal-induced stress led to changes in gene expression dependent on the type and concentration of heavy metal ions. The up-regulation of antioxidant enzymes was usually accompanied by the up-regulation of the VTE3 gene. PMID:27104807

  10. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.

    PubMed

    Sun, Yuebing; Zhou, Qixing; Diao, Chunyan

    2008-03-01

    Remediation of heavy metal contaminated sites using hyperaccumulators presents a promising alternative to current environmental methodologies. In the pot-culture experiment, the effects of Cd, and Cd-As on the growth and its accumulation in the Cd-hyperaccumulator (Solanum nigrum L.) were determined. No reduction in plant height and shoot dry biomass was noted when the plants were grown at Cd concentration of Cd in the stems increased from 122 to 387 mg/kg with increasing Cd, with the Cd transfer factor and bioaccumulation factor being >1.0. The plant can be classified as a Cd-hyperaccumulator. Growing in the presence of 10 mg/kg Cd and 50 mg/kg As, the plant height and shoot dry matter yields did not decrease significantly (p>0.05) compared to that at 10 mg/kg Cd, however the stem Cd content increased by 28%. It was also observed that S. nigrum used exclusion strategy to reduce As uptake in the roots and restricted translocation into the shoots, resulting in As contents of the plant being root>leaf>stem>seed. The Cd accumulation capacity coupled with its relatively high As tolerance ability could make it useful for phytoremediation of sites co-contaminated by Cd and As. PMID:17719774

  11. Metal (Ag, Cd, Cu, Ni, Tl, and Zn) Binding to Cytosolic Biomolecules in Field-Collected Larvae of the Insect Chaoborus.

    PubMed

    Rosabal, Maikel; Mounicou, Sandra; Hare, Landis; Campbell, Peter G C

    2016-03-15

    We characterized the biomolecules involved in handling cytosolic metals in larvae of the phantom midge (Chaoborus) collected from five mining-impacted lakes by determining the distribution of Ag, Cd, Cu, Ni, Tl, and Zn among pools of various molecular weights (HMW: high molecular weight, >670-40 kDa; MMW: medium molecular weight, 40-<1.3 kDa; LMW: low molecular weight, <1.3 kDa). Appreciable concentrations of nonessential metals were found in the potentially metal-sensitive HMW (Ag and Ni) and LMW (Tl) pools, whereas the MMW pool, which includes metallothioneins (MTs) and metallothionein-like proteins and peptides (MTLPs), appears to be involved in Ag and Cd detoxification. Higher-resolution fractionation of the heat-stable protein (HSP) fraction revealed further differences in the partitioning of nonessential metals (i.e., Ag = Cd ≠ Ni ≠ Tl). These results provide unprecedented details about the metal-handling strategies employed by a metal-tolerant, freshwater animal in a field situation. PMID:26886407

  12. Cluster formation in Ag{sub 2}O-P{sub 2}O{sub 5}-CdCl{sub 2} glass system

    SciTech Connect

    Das, S.S.; Singh, N.B.

    2008-11-03

    Ag{sub 2}O-P{sub 2}O{sub 5} and Ag{sub 2}O-P{sub 2}O{sub 5}-20 wt% CdCl{sub 2} glasses were prepared by melt quenching method and characterized with the help of several experimental techniques. Powder X-ray diffraction study indicated that the glasses are amorphous in nature. DSC studies showed that CdCl{sub 2} doped glass is chemically more durable. Electrical conductivity and ionic transference number measurements have shown that both the glasses are ionic conductors with Ag{sup +} ions as the charge carriers. The electrical conductivity of the doped glass is found to be higher than the undoped one. Structures of the glasses have been proposed on the basis of IR spectral analysis. From SEM studies it has been inferred that addition of 20 wt% CdCl{sub 2} modifies the morphology of Ag{sub 2}O-P{sub 2}O{sub 5} glass and in its presence formation of clusters composed of nanofibers occur.

  13. Fabrication and characterization of ZnO@CdS core-shell nanostructure using acetate precursors: XRD, FESEM, DRS, FTIR studies and effects of cadmium ion concentration on band gap

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad Hossein; Rahmati, Mohammad Hossein

    2014-12-01

    ZnO@CdS core-shell nano-structure has been synthesized using zinc acetate dihydrate, and cadmium acetate dihydrate as simple precursors in a water-ethanol matrix without using any surfactant, ligand or chelating agents. The effect of different concentrations of cadmium acetate and sodium sulfide on optical and electronic properties of ZnO@CdS core-shell was investigated. The morphology and structure of the ZnO@CdS core-shell nano-structures have been confirmed by field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) measurements. The results showed that the ZnO@CdS core-shell nano-structure is mixed cubic and hexagonal structures. FESEM results showed the mono-dispersed and uniform size of 39 nm. Optical properties were studied by UV-visible diffuse reflectance spectroscopy (DRS) technique and the results showed that band gaps of ZnO@CdS core-shell nanocomposites were red shifted by increasing the cadmium concentration. FTIR spectrum of ZnO@CdS core-shell nano-structure showed a band at 482 cm-1 correlated to Znsbnd O bond and a band at 630 cm-1 due to the stretching frequency of Cdsbnd S bond.

  14. An ultrasensitive label-free electrochemical immunosensor based on signal amplification strategy of multifunctional magnetic graphene loaded with cadmium ions

    PubMed Central

    Li, Faying; Li, Yueyun; Dong, Yunhui; Jiang, Liping; Wang, Ping; Liu, Qing; Liu, Hui; Wei, Qin

    2016-01-01

    Herein, a novel and ultrasensitive label-free electrochemical immunosensor was proposed for quantitative detection of human Immunoglobulin G (IgG). The amino functionalized magnetic graphenes nanocomposites (NH2-GS-Fe3O4) were prepared to bond gold and silver core-shell nanoparticles (Au@Ag NPs) by constructing stable Au-N and Ag-N bond between Au@Ag NPs and -NH2. Subsequently, the Au@Ag/GS-Fe3O4 was applied to absorb cadmium ion (Cd2+) due to the large surface area, high conductivity and exceptional adsorption capability. The functional nanocomposites of gold and silver core-shell magnetic graphene loaded with cadmium ion (Au@Ag/GS-Fe3O4/Cd2+) can not only increase the electrocatalytic activity towards hydrogen peroxide (H2O2) but also improve the effective immobilization of antibodies because of synergistic effect presented in Au@Ag/GS-Fe3O4/Cd2+, which greatly extended the scope of detection. Under the optimal conditions, the proposed immunosensor was used for the detection of IgG with good linear relation in the range from 5 fg/mL to 50 ng/mL with a low detection limit of 2 fg/mL (S/N = 3). Furthermore, the proposed immunosensor showed high sensitivity, special selectivity and long-term stability, which had promising application in bioassay analysis. PMID:26880596

  15. Cadmium biosorption by Saccharomyces cerevisiae

    SciTech Connect

    Volesky, B.; May, H.; Holan, Z.R. )

    1993-04-01

    Cadmium uptake by nonliving and resting cells of Saccharomyces cerevisiae obtained from aerobic or anaerobic cultures from pure cadmium-bearing solutions was examined. The highest cadmium uptake exceeding 70 mg Cd/g was observed with aerobic baker's yeast biomass from the exponential growth phase. Nearly linear sorption isotherms featured by higher sorbing resting cells together with metal deposits localized exclusively in vacuoles indicate the possibility of a different metal-sequestering mechanism when compared to dry nonliving yeasts which did not usually accumulate more than 20 mg Cd/g. The uptake of cadmium was relatively fast, 75% of the sorption completed in less than 5 min.

  16. Cadmium-catalyzed surface growth of single-walled carbon nanotubes with high efficiency

    SciTech Connect

    Qian, Yong; Lu, Shunbao; Gao, Fenglei

    2011-06-15

    Graphical abstract: The Cd nanocatalysts, prepared using a diblock copolymer templating method, were uniformly spaced over a large deposition area with an average diameter of 1.9 nm and narrow size distribution. By using the normal-heating method, high density SWNTs can be generated. Research highlights: {yields} We demonstrate that cadmium (Cd) can catalyze the growth of SWNTs with high efficiency. {yields} The PVP capped-Cd nanocatalysts were uniformly spaced over a large deposition area with an average diameter of 1.9 nm. {yields} By using the normal-heating and fast-heating method, random and horizontally aligned arrays of SWNTs can be generated. {yields} The high percentage of SWNTs with Ag deposition from Cd indicates that the SWNTs have better conductivity and structural uniformity. -- Abstract: We demonstrate that cadmium (Cd) can catalyze the growth of single-walled carbon nanotubes (SWNTs) with high efficiency. The Cd nanocatalysts, prepared using a diblock copolymer templating method, were uniformly spaced over a large deposition area with an average diameter of 1.9 nm and narrow size distribution. By using the normal-heating and fast-heating method, random and horizontally aligned arrays of SWNTs can be generated. The density of the SWNTs can be altered by the chemical vapor deposition conditions. The morphology and microstructure of the SWNTs characterized by scanning electron microscopy, Raman spectroscopy, atomic force microscopy, and high-resolution transmission electron microscopy revealed that the grown nanotubes do not have carbonaceous particles and have good crystallinity. In addition, after careful check with superlong nanotubes 735 out of 790 nanotubes were found to be deposited with Ag (93%) and only 7% SWNTs without Ag deposition. While for superlong SWNT arrays from Fe, 32% long SWNTs without Ag deposition was found, the high percentage of SWNTs with Ag deposition from Cd indicates that the SWNTs have better conductivity and better

  17. Cation ordering and physicochemical characterization of the quaternary diamond-like semiconductor Ag{sub 2}CdGeS{sub 4}

    SciTech Connect

    Brunetta, Carl D.; Minsterman, William C.; Lake, Charles H.; Aitken, Jennifer A.

    2012-03-15

    The quaternary diamond-like semiconductor, Ag{sub 2}CdGeS{sub 4}, was synthesized via high-temperature solid-state synthesis as well as structurally and physicochemically characterized. Single crystal X-ray diffraction provided a model for Ag{sub 2}CdGeS{sub 4} in the orthorhombic, noncentrosymmetric space group Pna2{sub 1} with a=13.7415(8) A, b=8.0367(5) A and c=6.5907(4) A, in contrast to a previously published model in Pmn2{sub 1} from the Rietveld analysis of laboratory X-ray powder diffraction data. The Pna2{sub 1} space group is supported by the Rietveld analysis of synchrotron X-ray powder diffraction data. Differential thermal analysis suggests that Ag{sub 2}CdGeS{sub 4} exists in two polymorphs. Optical diffuse reflectance UV/vis/NIR spectroscopy indicates that the orange compound is a semiconductor with a band gap of 2.32 eV. Optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and inductively coupled plasma optical emission spectroscopy were used to further characterize the material. - Graphical abstract: The structure of the diamond-like semiconductor Ag{sub 2}CdGeS{sub 4} has been solved and refined in the orthorhombic noncentrosymmetric space group Pna2{sub 1}. A view down the a-axis shows that all MS{sub 4} tetrahedra are pointing in the same direction along the c-axis. The structure can be derived from that of lonsdaleite. Highlights: Black-Right-Pointing-Pointer The structure of Ag{sub 2}CdGeS{sub 4} is solved from single crystal X-ray diffraction. Black-Right-Pointing-Pointer The structure is supported by the Rietveld analysis of synchrotron diffraction data. Black-Right-Pointing-Pointer Ag{sub 2}CdGeS{sub 4} is a semiconductor with an optical band gap of 2.32 eV. Black-Right-Pointing-Pointer Additional characterization is reported.

  18. Fourier-transform infrared and Raman spectra, and ab initio calculations for cadmium-n-di-iso-propylphosphorylguanidine-di-chloride (CdDPGCl2) complex.

    PubMed

    Téllez, Claudio A; Hollauer, Eduardo; Felcman, Judith; Lopes, Damiana C N; Cattapan, Renata A

    2002-07-01

    Cadmium-n-di-isopropylphosphorylguanidine-di-chloride (CdDPGCl2) was synthesized in the solid phase and characterized previously. The Fourier transform infrared and Raman spectra of (CdDPGCl2) in the solid state were recorded and analyzed. Emphasis was placed on the vibrational assignment of the [(O2P=O-[CdCl2]-HN=C) fragment of the complete molecular structure. With the aim of assisting the vibrational assignment of the experimental spectra, a comparison with the spectra of N-di-isopropylphosphorylguanidine ligand was carried out and ab initio calculations have been performed with several effective core potentials and valence basis sets (Hay-Wadt (HW) and Stevens-Basch-Krauss (SBK)). Due to our limited computational resources, hydrogen atoms replaced the isopropyl groups. The calculated geometrical parameters showed excellent agreement with the experimental, as well as the RHF/MP2 calculated infrared wave numbers, when compared to the IR/Raman experimental wave numbers. PMID:12164485

  19. Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber

    PubMed Central

    2014-01-01

    Cadmium sulfide (CdS) and silver sulfide (Ag2S) nanocrystals are deposited on the titanium dioxide (TiO2) nanocrystalline film on indium tin oxide (ITO) substrate to prepare CdS/Ag2S/TiO2/ITO photoelectrodes through a new method known as the molecular precursor decomposition method. The Ag2S is interposed between the TiO2 nanocrystal film and CdS nanocrystals as an energy barrier layer and a light absorber. As a consequence, the energy conversion efficiency of the CdS/Ag2S/TiO2/ITO electrodes is significantly improved. Under AM 1.5 G sunlight irradiation, the maximum efficiency achieved for the CdS(4)/Ag2S/TiO2/ITO electrode is 3.46%, corresponding to an increase of about 150% as compared to the CdS(4)/TiO2/ITO electrode without the Ag2S layer. Our experimental results show that the improved efficiency is mainly due to the formation of Ag2S layer that may increase the light absorbance and reduce the recombination of photogenerated electrons with redox ions from the electrolyte. PMID:25411566

  20. Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition.

    PubMed

    Kumar, Neetesh; Dutta, Viresh

    2014-11-15

    This paper investigates fabrication of surfactant free CdS nanoparticles (NPs) and application in the fabrication of P3HT:CdS and PCPDTBT:CdS bulk-heterojunction hybrid solar cells using high-throughput, large-area, low cost spray deposition technique. Both the hybrid active layers and hole transport layers are deposited by spray technique. The CdS/Poly(3-hexylthiophene-2,5-diyl) (P3HT) and CdS/Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) hybrid devices are fabricated by spray deposition process at optimized conditions (i.e. film thickness, spray solution volume, distance between sample and spray nozzle, substrate temperature, etc.). The power conversion efficiency of η=0.6% and 1.02% is obtained for P3HT:CdS and PCPDTBT:CdS hybrid devices, respectively. Spray coating holds significant promise as a technique capable of fabricating large-area, high performance hybrid solar cells. PMID:25203909

  1. Cadmium resistance in Drosophila: a small cadmium binding substance

    SciTech Connect

    Jacobson, K.B.; Williams, M.W.; Richter, L.J.; Holt, S.E.; Hook, G.J.; Knoop, S.M.; Sloop, F.V.; Faust, J.B.

    1985-01-01

    A small cadmium-binding substance (CdBS) has been observed in adult Drosophila melanogaster that were raised for their entire growth cycle on a diet that contained 0.15 mM CdCl/sub 2/. Induction of CdBS was observed in strains that differed widely in their sensitivity of CdCl/sub 2/. This report describes the induction of CdBS and some of its characteristics. 17 refs., 4 figs., 1 tab.

  2. Cadmium accumulation and tolerance of Macleaya cordata: a newly potential plant for sustainable phytoremediation in Cd-contaminated soil.

    PubMed

    Nie, Jian; Liu, Yunguo; Zeng, Guangming; Zheng, Bohong; Tan, Xiaofei; Liu, Huan; Xie, Jieli; Gan, Chao; Liu, Wei

    2016-05-01

    Heavy metal pollution is a major concern of the public due to their threats to the safety of food chains. A 60-day pot experiment was conducted using Macleaya cordata as plant material to investigate the phytoremediation potential and anti-oxidative responses of M. cordata under different Cd stress. Significant growth inhibition phenomenon and toxic symptoms were not detected in the experiment. The high biomass of the plant provided high accumulation capacity for Cd with an average dry weight of 3.6 g. The maximum extraction amount of Cd was 393 μg·plant(-1), suggesting that this species had potential for phytoremediation of Cd-contaminated soil. A slight increase of chlorophyll (CHL) content was observed in Cd10 treatment. The plant was confirmed to have relatively high tolerance to the Cd stress on the basis of tolerance indexes (TI), relative water content, and CHLa/CHLb ratio. M. cordata could maintain high level of superoxide dismutase (SOD) activity under Cd stress, indicating strong tolerance capacity for reactive oxygen species (ROS) in plant cells. Catalase (CAT) activity show a certain range of decline in the experiment compare to the control. And peroxidase (POD) activity in leaves changed irregularly when compared to the control. The malondialdehyde (MDA) content increased as Cd concentration elevated compared to the control. In addition, as an inedible crop with relatively high economic value, M. cordata have shown the advantage of high biomass and high tolerance under Cd stress, which can provide a new plant resource for sustainable phytoremediation. PMID:26875820

  3. Characterization of cadmium manganese telluride (Cd1-xMnxTe) crystals grown by floating zone method

    NASA Astrophysics Data System (ADS)

    Hossain, A.; Gu, G. D.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Gul, R.; Roy, U. N.; Yang, G.; Liu, T.; Zhong, R.; Schneeloch, J.; James, R. B.

    2014-09-01

    Recently, Cadmium Manganese Telluride (CMT) emerged as a promising material for roomtemperature X- and gamma-ray detectors. However, our studies revealed several material defects primarily related to growth processes that are impeding the production of large single crystals with high resistivity and high mobility-lifetime product. In this work, we characterized various defects in materials grown by the floating zone method, including twins, Te inclusions, and dislocations, using our unique facilities. We also fabricated detectors from selected CMT crystals and tested their performance. This paper discusses our detailed findings on the material's properties and the performance of fabricated CMT detectors.

  4. Cadmium amido alkoxide and alkoxide precursors for the synthesis of nanocrystalline CdE (E=S,Se, Te).

    SciTech Connect

    Boyle, Timothy J.; Avilucea, Gabriel; Bunge, Scott D.; Alam, Todd Michael; Headley, Thomas Jeffrey; Holland, Gregory P.

    2004-12-01

    The synthesis and characterization of a family of alternative precursors for the production of CdE nanoparticles (E = S, Se, and Te) is reported. The reaction of Cd(NR{sub 2}){sub 2} where NR{sub 2} = N(SiMe{sub 3}){sub 2} with n HOR led to the isolation of the following: n = 1 [Cd({mu}-OCH{sub 2}CMe{sub 3})(NR{sub 2})(py)]{sub 2} (1, py = pyridine), Cd[({mu}-OC{sub 6}H{sub 3}(Me){sub 2}-2,6){sub 2}Cd(NR{sub 2})(py)]{sub 2} (2), [Cd({mu}-OC{sub 6}H{sub 3}(CHMe{sub 2}){sub 2}-2,6)(NR{sub 2})(py)]{sub 2} (3), [Cd({mu}-OC{sub 6}H{sub 3}(CMe{sub 3}){sub 2}-2,6)(NR{sub 2})(py)]{sub 2} (4), [Cd({mu}-OC{sub 6}H{sub 2}(NH{sub 2}){sub 3}-2,4,6)(NR{sub 2})(py)]{sub 2} (5), and n = 2 [Cd({mu}-OC{sub 6}H{sub 3}(Me){sub 2}-2,6)(OC{sub 6}H{sub 3}(Me){sub 2}-2,6)(py){sub 2}]{sub 2} (6), and [Cd({mu}-OC{sub 6}H{sub 3}(CMe{sub 3}){sub 2}-2,6)(OC{sub 6}H{sub 3}(CMe{sub 3}){sub 2}-2,6)(THF)]{sub 2} (7). For all but 2, the X-ray crystal structures were solved as discrete dinuclear units bridged by alkoxide ligands and either terminal -NR{sub 2} or -OR ligands depending on the stoichiometry of the initial reaction. For 2, a trinuclear species was isolated using four {mu}-OR and two terminal -NR{sub 2} ligands. The coordination of the Cd metal center varied from 3 to 5 where the higher coordination numbers were achieved by binding Lewis basic solvents for the less sterically demanding ligands. These complexes were further characterized in solution by {sup 1}H, {sup 13}C, and {sup 113}Cd NMR along with solid-state {sup 113}Cd NMR spectroscopy. The utility of these complexes as 'alternative precursors' for the controlled preparation of nanocrystalline CdS, CdSe, and CdTe was explored. To synthesize CdE nanocrystals, select species from this family of compounds were individually heated in a coordinating solvent (trioctylphosphine oxide) and then injected with the appropriate chalcogenide stock solution. Transmission electron spectroscopy and UV-vis spectroscopy were used to characterize

  5. Chelating agents and cadmium intoxication

    SciTech Connect

    Shinobu, L.A.

    1985-01-01

    A wide range of conventional chelating agents have been screened for (a) antidotal activity in acute cadmium poisoning and (b) ability to reduce aged liver and kidney deposits of cadmium. Chelating agents belonging to the dithiocarbamate class have been synthesized and tested in both the acute and chronic modes of cadmium intoxication. Several dithiocarbamates, not only provide antidotal rescue, but also substantially decrease the intracellular deposits of cadmium associated with chronic cadmium intoxication. Fractionating the cytosol from the livers and kidneys of control and treated animals by Sephadex G-25 gel filtration clearly demonstrates that the dithiocarbamates are reducing the level of metallothionein-bound cadmium. However, the results of cell culture (Ehrlich ascites) studies designed to investigate the removal of cadmium from metallothionein and subsequent transport of the resultant cadmium complex across the cell membrane were inconclusive. In other in vitro investigations, the interaction between isolated native Cd, Zn-metallothionein and several chelating agents was explored. Ultracentrifugation, equilibrium dialysis, and Sephadex G-25 gel filtration studies have been carried out in an attempt to determine the rate of removal of cadmium from metallothionein by these small molecules. Chemical shifts for the relevant cadmium-dithiocarbamate complexes have been determined using natural abundance Cd-NMR.

  6. Neutron Capture by Cadmium: Thermal Cross Sections and Resonance Integrals of ^106,108,110,112,114,116Cd

    NASA Astrophysics Data System (ADS)

    Gicking, Allison M.; Krane, Kenneth S.

    2011-10-01

    The neutron capture cross sections of the stable, even-mass Cd isotopes (A = 106, 108, 110, 112, 114, and 116) have been previously measured in sources of natural abundance or low enrichment, often making the results uncertain owing to the large absorption cross section of naturally occurring ^113Cd. Ambiguities in values of the isomeric branching ratios have also contributed to uncertainties in previous results. We have remeasured the Cd neutron capture cross sections using samples of greater than 90% isotopic enrichment irradiated in the OSU TRIGA reactor. Gamma-ray emission spectra were analyzed to determine the effective resonance integrals and thermal cross sections leading to eight radioactive ground and isomeric states in the Cd isotopes.

  7. CADMIUM AS A RESPIRATORY TOXICANT

    EPA Science Inventory

    Cadmium is a major respiratory toxicant as evidenced by numerous human and animal studies. Controlled animal inhalation studies provide supporting evidence to the associations observed in epidemiological studies that Cd has the potential to cause lung fibrosis, emphysema, cancer,...

  8. Cadmium stannate selective optical films for solar energy applications

    NASA Technical Reports Server (NTRS)

    Haacke, G.

    1975-01-01

    Efforts concentrated on reducing the electrical sheet resistance of sputtered cadmium stannate films, installing and testing equipment for spray coating experiments, and sputter deposition of thin cadmium sulfide layers onto cadmium stannate electrodes. In addition, single crystal silicon wafers were coated with cadmium stannate. Work also continued on the development of the backwall CdS solar cell.

  9. Cadmium migration in aerospace nickel cadmium cells

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1976-01-01

    The effects of temperature, the nature of separator material, charge and discharge, carbonate contamination, and the mode of storage are studied with respect to the migration of active material from the negative toward the positive plate. A theoretical model is proposed which takes into account the solubility of cadmium in various concentrations of hydroxide and carbonate at different temperatures, the generation of the cadmiate ion, Cd(OH)3(-), during discharge, the migration of the cadmiate ion and particulate Cd(OH)2 due to electrophoretic effects and the movement of electrolyte in and out of the negative plate and, finally, the recrystallization of cadmiate ion in the separator as Cd(OH)2. Application of the theoretical model to observations of cadmium migration in cycled cells is also discussed.

  10. The cadmium-mercaptoacetic acid complex contributes to the genotoxicity of mercaptoacetic acid-coated CdSe-core quantum dots.

    PubMed

    Tang, Weikun; Fan, Junpeng; He, Yide; Huang, Bihai; Liu, Huihui; Pang, Daiwen; Xie, Zhixiong

    2012-01-01

    Quantum dots (QDs) have many potential clinical and biological applications because of their advantages over traditional fluorescent dyes. However, the genotoxicity potential of QDs still remains unclear. In this paper, a plasmid-based system was designed to explore the genotoxic mechanism of QDs by detecting changes in DNA configuration and biological activities. The direct chemicobiological interactions between DNA and mercaptoacetic acid-coated CdSecore QDs (MAA-QDs) were investigated. After incubation with different concentrations of MAA-QDs (0.043, 0.13, 0.4, 1.2, and 3.6 μmol/L) in the dark, the DNA conversion of the covalently closed circular (CCC) DNA to the open circular (OC) DNA was significantly enhanced (from 13.9% ± 2.2% to 59.9% ± 12.8%) while the residual transformation activity of plasmid DNA was greatly decreased (from 80.7% ± 12.8% to 13.6% ± 0.8%), which indicated that the damages to the DNA structure and biological activities induced by MAA-QDs were concentration-dependent. The electrospray ionization mass spectrometry data suggested that the observed genotoxicity might be correlated with the cadmium-mercaptoacetic acid complex (Cd-MAA) that is formed in the solution of MAA-QDs. Circular dichroism spectroscopy and transformation assay results indicated that the Cd-MAA complex might interact with DNA through the groove-binding mode and prefer binding to DNA fragments with high adenine and thymine content. Furthermore, the plasmid transformation assay could be used as an effective method to evaluate the genotoxicities of nanoparticles. PMID:22679373

  11. Density functional theory (DFT) study of the gas-phase decomposition of the Cd[((i)Pr)2PSSe] 2 single-source precursor for the CVD of binary and ternary cadmium chalcogenides.

    PubMed

    Opoku, Francis; Asare-Donkor, Noah Kyame; Adimado, Anthony A

    2014-11-01

    The chemistry of group II-VI semiconductors has spurred considerable interest in decomposition reaction mechanisms and has been exploited for various technological applications. In this work, computational chemistry was employed to investigate the possible gas-phase decomposition pathways of the mixed Cd[((i)Pr)2PSSe]2 single-source precursor for the chemical vapour deposition of cadmium chalcogenides as thin films. The geometries of the species involved were optimised by employing density functional theory at the MO6/LACVP* level. The results indicate that the steps that lead to CdS formation on the singlet potential energy surface are favoured kinetically over those that lead to CdSe and ternary CdSe(x)S(1-x) formation. On the doublet PES, the steps that lead to CdSe formation are favoured kinetically over those that lead to CdS and CdSe(x)S(1-x) formation. However, thermodynamically, the steps that lead to ternary CdSe(x)S(1-x) formation are more favourable than those that lead to CdSe and CdS formation on both the singlet and the doublet PESs. Density functional theory calculations revealed that the first steps exhibit huge activation barriers, meaning that the thermodynamically favourable process takes a very long time to initiate. PMID:25338817

  12. A combined theoretical and experimental study of chelidamate cadmium (II) complex, [Cd2(dpa)2(chel)2]⋅2[Cd(dpa)(chel)]⋅6H2O.

    PubMed

    Vural, Hatice; Uçar, Ibrahim

    2014-11-01

    A new chelidamate complex of Cd (II) ion, [Cd2(dpa)2(chel)2]⋅2[Cd(dpa)(chel)]⋅6H2O [(chel: chelidamate or 4-hydroxypyridine-2,6-dicarboxylate, dpa: di (2-picolyl)amine)] was synthesized and characterized by spectroscopic (UV-Vis and FT-IR spectroscopy) and structural (single-crystal X-ray diffraction) methods. Quantum chemical calculations were carried out by using Hartree Fock (HF) and Density Functional Theory (DFT)/B3LYP methods Stuttgart/Dresden (SDD) basis set. The asymmetric unit of the title compound contains two symmetry unrelated monomeric units, one dimeric unit and six water molecules of crystallization. The geometries around the Cd (II) metal centers in the units can be described as distorted octahedral for the monomeric units and distorted monocapped trigonal prism for the dimeric unit. The electronic structure of the complex was calculated using time dependent DFT (TD-DFT) method with polarizable continuum model (PCM). Molecular stability and bond strength were investigated by applying natural bond orbital analysis (NBO). The computed frequencies were compared with experimental frequencies. PMID:25456672

  13. A combined theoretical and experimental study of chelidamate cadmium (II) complex, [Cd2(dpa)2(chel)2]ṡ2[Cd(dpa)(chel)]ṡ6H2O

    NASA Astrophysics Data System (ADS)

    Vural, Hatice; Uçar, İbrahim

    2015-02-01

    A new chelidamate complex of Cd (II) ion, [Cd2(dpa)2(chel)2]ṡ2[Cd(dpa)(chel)]ṡ6H2O [(chel: chelidamate or 4-hydroxypyridine-2,6-dicarboxylate, dpa: di (2-picolyl)amine)] was synthesized and characterized by spectroscopic (UV-Vis and FT-IR spectroscopy) and structural (single-crystal X-ray diffraction) methods. Quantum chemical calculations were carried out by using Hartree Fock (HF) and Density Functional Theory (DFT)/B3LYP methods Stuttgart/Dresden (SDD) basis set. The asymmetric unit of the title compound contains two symmetry unrelated monomeric units, one dimeric unit and six water molecules of crystallization. The geometries around the Cd (II) metal centers in the units can be described as distorted octahedral for the monomeric units and distorted monocapped trigonal prism for the dimeric unit. The electronic structure of the complex was calculated using time dependent DFT (TD-DFT) method with polarizable continuum model (PCM). Molecular stability and bond strength were investigated by applying natural bond orbital analysis (NBO). The computed frequencies were compared with experimental frequencies.

  14. Fluorometric sensing of ultralow As(III) concentrations using Ag doped hollow CdS/ZnS bi-layer nanoparticles.

    PubMed

    Boxi, Siddhartha Sankar; Paria, Santanu

    2015-12-21

    Arsenic poisoning from drinking water has been an important global issue in recent years. Because of the high level toxicity of arsenic to human health, an easy, inexpensive, low level and highly selective detection technique is of great importance to take any early precautions. This study reports the synthesis of Ag doped hollow CdS/ZnS bi-layer (Ag-h-CdS/ZnS) nanoparticles for the easy fluorometric determination of As(iii) ions in the aqueous phase. The hollow bi-layer structures were synthesized by a sacrificial core method using AgBr as the sacrificial core and the core was removed by dissolution in an ammonium hydroxide solution. The synthesized nanoparticles were characterized using different instrumental techniques. A good linear relationship was obtained between fluorescence quenching intensity and As(iii) concentration in the range of 0.75-22.5 μg L(-1) at neutral pH with a limit of detection as low as 0.226 μg L(-1). PMID:26541652

  15. Studies of the spin Hamiltonian parameters and defect structures for Ag2+ in NaF and CsCdF3 crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Juan; Wu, Shao-Yi; Ding, Chang-Chun; Hu, Xian-Fen; He, Jia-Jun

    2016-03-01

    The spin Hamiltonian parameters (g factors g//, g⊥, hyperfine structure constants A//, A⊥ and superhyperfine parameters Az‧, Ax‧ and Ay‧) and defect structures for Ag2+ in NaF and CsCdF3 crystals are theoretically studied using the improved perturbation formulas of these quantities for a 4d9 ion in a tetragonally elongated octahedron. The contributions from both the crystal-field and charge transfer mechanisms are taken into account, and the relevant model parameters are quantitatively obtained from the cluster approach in a consistent way. The impurity centers are found to undergo the relative tetragonal elongations of about 9.4% and 8.2% for Ag2+ in NaF and CsCdF3, respectively, along the C4 axis due to the Jahn-Teller effect. By employing the few adjustable parameters, the calculated spin Hamiltonian parameters based on the above uniform formulas and the local tetragonal elongation distortions agree well with the experimental data. Despite dominant ionicity of the hosts, the charge transfer contributions are actually important to the spin Hamiltonian parameters (e.g., about 20% for the g-shifts) due to strong covalency of impurity Ag2+.

  16. Metals (Ag(+) , Cd(2+) , Cr(6+) ) affect ATPase activity in the gill, kidney, and muscle of freshwater fish Oreochromis niloticus following acute and chronic exposures.

    PubMed

    Atli, Gülüzar; Canli, Mustdafa

    2013-12-01

    Freshwater fish Oreochromis niloticus were individually acutely exposed to different concentrations (0, 0.1, 0.5, 1.0, and 1.5 μg/mL) of Cd(2+) , Cr(6+) , and Ag(+) for 96 h and 0.05 μg/mL concentration of the same metals for different periods (0, 5, 10, 20, and 30 days) chronically. Following each experimental protocol, Na(+) /K(+) -ATPase, Mg(2+) -ATPase, and Ca(2+) -ATPase activities were measured in the gill, kidney, and muscle of O. niloticus. In vitro experiments were also performed to determine the direct effects of metal ions (0, 0.1, 0.5, 1.0, and 1.5 μg/mL) on ATPases. Except Ag(+) , none of the metals caused fish mortality within 30 days. Silver killed all the fishes within 16 days. Metal exposures generally decreased Na(+) /K(+) -ATPase and Ca(2+) -ATPase activities in the tissues of O. niloticus, although there were some fluctuations in Mg(2+) -ATPase activity. Ag(+) and Cd(2+) were found to be more toxic to ATPase activities than Cr(6+) . It was also observed that metal efficiency was higher in the gill than in the other tissues. Results indicated that the response of ATPases varied depending on metals, exposure types, and tissues. Because ATPases are sensitive to metal toxicity, their activity can give valuable data about fish physiology. Therefore, they may be used as a sensitive biomarker in environmental monitoring in contaminated waters. PMID:21901811

  17. Cadmium content of plants as affected by soil cadmium concentration

    SciTech Connect

    Lehoczky, E.; Szabados, I.; Marth, P.

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With the same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.

  18. Effects of metal-bearing nanoparticles (Ag, Au, CdS, ZnO, SiO2) on developing zebrafish embryos.

    PubMed

    Lacave, José María; Retuerto, Ander; Vicario-Parés, Unai; Gilliland, Douglas; Oron, Miriam; Cajaraville, Miren P; Orbea, Amaia

    2016-08-12

    Due to the increasing commercialization of consumer and industrial products containing nanoparticles (NPs), an increase in the introduction of these materials into the environment is expected. NP toxicity to aquatic organisms depends on multiple biotic and abiotic factors, resulting in an unlimited number of combinations impossible to test in practice. The zebrafish embryo model offers a useful screening tool to test and rank the toxicity of nanomaterials according to those diverse factors. This work aims to study the acute and sublethal toxicity of a set of metal-bearing NPs displaying different properties, in comparison to that of the ionic and bulk forms of the metals, in order to establish a toxicity ranking. Soluble NPs (Ag, CdS and ZnO) showed the highest acute and sublethal toxicity, with LC50 values as low as 0.529 mg Ag l(-1) for Ag NPs of 20 nm, and a significant increase in the malformation prevalence in embryos exposed to 0.1 mg Cd l(-1) of CdS NPs of ∼4 nm. For insoluble NPs, like SiO2 NPs, acute effects were not observed during early embryo development due to the protective effect of the chorion. But effects on larvae could be expected, since deposition of fluorescent SiO2 NPs over the gill lamella and excretion through the intestine were observed after hatching. In other cases, such as for gold NPs, the toxicity could be attributed to the presence of additives (sodium citrate) in the NP suspension, as they displayed a similar toxicity when tested separately. Overall, the results indicated that toxicity to zebrafish embryos depends primarily on the chemical composition and, thus, the solubility of the NPs. Other characteristics, such as size, played a secondary role. This was supported by the observation that ionic forms of the metals were always more toxic than the nano forms, and bulk forms were the least toxic to the developing zebrafish embryos. PMID:27363512

  19. Effects of metal-bearing nanoparticles (Ag, Au, CdS, ZnO, SiO2) on developing zebrafish embryos

    NASA Astrophysics Data System (ADS)

    María Lacave, José; Retuerto, Ander; Vicario-Parés, Unai; Gilliland, Douglas; Oron, Miriam; Cajaraville, Miren P.; Orbea, Amaia

    2016-08-01

    Due to the increasing commercialization of consumer and industrial products containing nanoparticles (NPs), an increase in the introduction of these materials into the environment is expected. NP toxicity to aquatic organisms depends on multiple biotic and abiotic factors, resulting in an unlimited number of combinations impossible to test in practice. The zebrafish embryo model offers a useful screening tool to test and rank the toxicity of nanomaterials according to those diverse factors. This work aims to study the acute and sublethal toxicity of a set of metal-bearing NPs displaying different properties, in comparison to that of the ionic and bulk forms of the metals, in order to establish a toxicity ranking. Soluble NPs (Ag, CdS and ZnO) showed the highest acute and sublethal toxicity, with LC50 values as low as 0.529 mg Ag l‑1 for Ag NPs of 20 nm, and a significant increase in the malformation prevalence in embryos exposed to 0.1 mg Cd l‑1 of CdS NPs of ∼4 nm. For insoluble NPs, like SiO2 NPs, acute effects were not observed during early embryo development due to the protective effect of the chorion. But effects on larvae could be expected, since deposition of fluorescent SiO2 NPs over the gill lamella and excretion through the intestine were observed after hatching. In other cases, such as for gold NPs, the toxicity could be attributed to the presence of additives (sodium citrate) in the NP suspension, as they displayed a similar toxicity when tested separately. Overall, the results indicated that toxicity to zebrafish embryos depends primarily on the chemical composition and, thus, the solubility of the NPs. Other characteristics, such as size, played a secondary role. This was supported by the observation that ionic forms of the metals were always more toxic than the nano forms, and bulk forms were the least toxic to the developing zebrafish embryos.

  20. Colloidal synthesis of monodispersed ZnS and CdS nanocrystals from novel zinc and cadmium complexes

    NASA Astrophysics Data System (ADS)

    Onwudiwe, Damian C.; Mohammed, Aliyu D.; Strydom, Christien A.; Young, Desmond A.; Jordaan, Anine

    2014-06-01

    Monodispersed spherical and hexagonal shaped ZnS and CdS nanocrystals respectively, have been synthesized using novel heteroleptic complexes of xanthate (S2CObu) and dithiocarbamate (S2CNMePh). The nanocrystals were prepared via colloidal route and stabilized in hexadecylamine (HDA). The morphology of the as-prepared nanocrystals was characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and powdered X-ray diffraction (p-XRD) analysis. An average diameter of 7.2 nm and 8.6 nm were obtained for the ZnS and CdS respectively. The optical properties of the nanoparticles studied by UV-vis and photoluminescence (PL) spectroscopy showed a blue shift in the absorption spectra, and band edge emission respectively.

  1. Cadmium-induced oxidative stress tolerance in cadmium resistant Aspergillus foetidus: its possible role in cadmium bioremediation.

    PubMed

    Chakraborty, Shatarupa; Mukherjee, Abhishek; Khuda-Bukhsh, Anisur Rahman; Das, Tapan Kumar

    2014-08-01

    Toxic effects of cadmium (Cd) were examined on a cadmium-resistant strain of Aspergillus foetidus isolated from wastewater. The Cd removal potential was analyzed. The results indicated that the strain could tolerate up to 25 mM and 63 mM Cd in liquid and solid Czapek-Dox media, respectively. It efficiently removed Cd from liquid growth media and industrial wastewater by mycelial biosorption. The strain produced oxalic acid for the purpose of Cd bioleaching as confirmed by the presence of cadmium oxalate crystals on the mycelial surface. Intracellular proline contents and the antioxidative enzyme activities increased up to a certain level to detoxify the overproduced free radicals. These data indicate that the strain has inherent mechanisms to grow in Cd contaminated environment, tolerate high Cd doses and high Cd uptake potential which are pre-requisite for acting as a suitable candidate for Cd bioremediation. PMID:24836877

  2. The effect of TiO{sub 2} and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice

    SciTech Connect

    Philbrook, Nicola A.; Winn, Louise M.; Afrooz, A.R.M. Nabiul; Saleh, Navid B.; Walker, Virginia K.

    2011-12-15

    In the last two decades, nanoparticles (NPs) have found applications in a wide variety of consumer goods. Titanium dioxide (TiO{sub 2}) and silver (Ag) NPs are both found in cosmetics and foods, but their increasing use is of concern due to their ability to be taken up by biological systems. While there are some reports of TiO{sub 2} and Ag NPs affecting complex organisms, their effects on reproduction and development have been largely understudied. Here, the effects of orally administered TiO{sub 2} or Ag NPs on reproduction and development in two different model organisms were investigated. TiO{sub 2} NPs reduced the developmental success of CD-1 mice after a single oral dose of 100 or 1000 mg/kg to dams, resulting in a statistically significant increase in fetal deformities and mortality. Similarly, TiO{sub 2} NP addition to food led to a significant progeny loss in the fruit fly, Drosophila, as shown by a decline in female fecundity. Ag NP administration resulted in an increase in the mortality of fetal mice. Similarly in Drosophila, Ag NP feeding led to a significant decrease in developmental success, but unlike TiO{sub 2} NP treatment, there was no decline in fecundity. The distinct response associated with each type of NP likely reflects differences in NP administration as well as the biology of the particular model. Taken together, however, this study warns that these common NPs could be detrimental to the reproductive and developmental health of both invertebrates and vertebrates.

  3. Influence of technological defects on the optical and photoelectric properties of AgCd{sub 2-x}Mn{sub x}GaSe{sub 4} alloys

    SciTech Connect

    Tretyak, A. P. Davydyuk, H. Ye.; Bozhko, V. V.; Bulatetska, L. V.; Parasyuk, O. V.

    2012-03-15

    The study is concerned with the photoelectric and optical properties of a AgCd{sub 2-x}Mn{sub x}GaSe{sub 4} alloy with a Mn {yields} Cd isovalent substitution. The positions of the photoconductivity and photoluminescence peaks are determined, and the band gap of the alloy is estimated, based on compositional analysis. The influence of technological defects on specific features of the alloy's photoelectric and optical properties is analyzed. It is established that the centers controlling the alloy crystals' photosensitivity are cation vacancies. The photoluminescence centers responsible for emission at awavelengths from 0.77 to 0.88 {mu}m (dependent on the relation between components in the alloy) are defect complexes consisting of cation and anion vacancies. A physically consistent model is proposed to interpret the effects observed in the alloy.

  4. Effect of mercury-silver alloy composition on the open-circuit voltage of cadmium/mercuric oxide cells

    SciTech Connect

    Kronenberg, M.L.; Stein, B.J.; Codd, B.P. )

    1994-10-01

    To minimize the migration of mercury droplets when discharging cadmium/mercuric oxide (Cd/HgO) cells, silver powder is often blended with HgO powder in the cathode to promote formation of a solid Hg-Ag alloy. Even though only high purity materials are used, open-circuit cell voltages are much higher than what is normally observed when Ag powder is not present. There is also a significant variation in the open-circuit voltage (OCV) of a given lot of Cd/HgO cells. The authors hypothesized that this high OCV and cell voltage variation is at least partially attributed to uncontrolled very small quantities of mercury present in the HgO. The potential variations arise from the reduced activity of mercury in the Hg-Ag alloy. The experiments that were carried out and reported here support this hypothesis.

  5. Antibacterial potential of rutin conjugated with thioglycolic acid capped cadmium telluride quantum dots (TGA-CdTe QDs)

    NASA Astrophysics Data System (ADS)

    Ananth, Devanesan Arul; Rameshkumar, Angappan; Jeyadevi, Ramachandran; Jagadeeswari, Sivanadanam; Nagarajan, Natarajan; Renganathan, Rajalingam; Sivasudha, Thilagar

    2015-03-01

    Quantum dots not only act as nanocarrier but also act as stable and resistant natural fluorescent bio markers used in various in vitro and in vivo photolabelling and biological applications. In this study, the antimicrobial potential of TGA-CdTe QDs and commercial phenolics (rutin and caffeine) were investigated against Escherichiacoli. UV absorbance and fluorescence quenching study of TGA-CdTe QDs with rutin and caffeine complex was measured by spectroscopic technique. QDs-rutin conjugate exhibited excellent quenching property due to the -OH groups present in the rutin structure. But the same time caffeine has not conjugated with QDs because of lacking of -OH group in its structure. Photolabelling of E. coli with QDs-rutin and QDs-caffeine complex was analyzed by fluorescent microscopic method. Microbe E. coli cell membrane damage was assessed by atomic force (AFM) and confocal microscopy. Based on the results obtained, it is suggested that QDs-rutin conjugate enhance the antimicrobial activity more than the treatment with QDs, rutin and caffeine alone.

  6. Antibacterial potential of rutin conjugated with thioglycolic acid capped cadmium telluride quantum dots (TGA-CdTe QDs).

    PubMed

    Ananth, Devanesan Arul; Rameshkumar, Angappan; Jeyadevi, Ramachandran; Jagadeeswari, Sivanadanam; Nagarajan, Natarajan; Renganathan, Rajalingam; Sivasudha, Thilagar

    2015-03-01

    Quantum dots not only act as nanocarrier but also act as stable and resistant natural fluorescent bio markers used in various in vitro and in vivo photolabelling and biological applications. In this study, the antimicrobial potential of TGA-CdTe QDs and commercial phenolics (rutin and caffeine) were investigated against Escherichiacoli. UV absorbance and fluorescence quenching study of TGA-CdTe QDs with rutin and caffeine complex was measured by spectroscopic technique. QDs-rutin conjugate exhibited excellent quenching property due to the -OH groups present in the rutin structure. But the same time caffeine has not conjugated with QDs because of lacking of -OH group in its structure. Photolabelling of E. coli with QDs-rutin and QDs-caffeine complex was analyzed by fluorescent microscopic method. Microbe E. coli cell membrane damage was assessed by atomic force (AFM) and confocal microscopy. Based on the results obtained, it is suggested that QDs-rutin conjugate enhance the antimicrobial activity more than the treatment with QDs, rutin and caffeine alone. PMID:25544184

  7. Mineral commodity profiles: Cadmium

    USGS Publications Warehouse

    Butterman, W.C.; Plachy, Jozef

    2004-01-01

    Overview -- Cadmium is a soft, low-melting-point metal that has many uses. It is similar in abundance to antimony and bismuth and is the 63d element in order of crustal abundance. Cadmium is associated in nature with zinc (and, less closely, with lead and copper) and is extracted mainly as a byproduct of the mining and processing of zinc. In 2000, it was refined in 27 countries, of which the 8 largest accounted for two-thirds of world production. The United States was the third largest refiner after Japan and China. World production in 2000 was 19,700 metric tons (t) and U.S. production was 1,890 t. In the United States, one company in Illinois and another in Tennessee refined primary cadmium. A Pennsylvania company recovered cadmium from scrap, mainly spent nickel-cadmium (NiCd) batteries. The supply of cadmium in the world and in the United States appears to be adequate to meet future industrial needs; the United States has about 23 percent of the world reserve base.

  8. NiCd battery electrodes, C-150

    NASA Technical Reports Server (NTRS)

    Holleck, G.; Turchan, M.; Hopkins, J.

    1972-01-01

    Electrodes for a nongassing negative limited nickel-cadmium cell are discussed. The key element is the development of cadmium electrodes with high hydrogen overvoltage. For this, the following electrode structures were manufactured and their physical and electrochemical characteristics were evaluated: (1) silver-sinter-based Cd electrodes, (2) Teflon-bonded Cd electrodes, (3) electrodeposited Cd sponge, and (4) Cd-sinter structures.

  9. Urinary cadmium and estimated dietary cadmium in the Women's Health Initiative.

    PubMed

    Quraishi, Sabah M; Adams, Scott V; Shafer, Martin; Meliker, Jaymie R; Li, Wenjun; Luo, Juhua; Neuhouser, Marian L; Newcomb, Polly A

    2016-05-01

    Cadmium, a heavy metal dispersed in the environment as a result of industrial and agricultural applications, has been implicated in several human diseases including renal disease, cancers, and compromised bone health. In the general population, the predominant sources of cadmium exposure are tobacco and diet. Urinary cadmium (uCd) reflects long-term exposure and has been frequently used to assess cadmium exposure in epidemiological studies; estimated dietary intake of cadmium (dCd) has also been used in several studies. The validity of dCd in comparison with uCd is unclear. This study aimed to compare dCd, estimated from food frequency questionnaires, to uCd measured in spot urine samples from 1,002 participants of the Women's Health Initiative. Using linear regression, we found that dCd was not statistically significantly associated with uCd (β=0.006, P-value=0.14). When stratified by smoking status, dCd was not significantly associated with uCd both in never smokers (β=0.006, P-value=0.09) and in ever smokers (β=0.003, P-value=0.67). Our results suggest that because of the lack of association between estimated dCd and measured uCd, dietary estimation of cadmium exposure should be used with caution in epidemiologic studies. PMID:26015077

  10. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification

    PubMed Central

    Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu

    2015-01-01

    Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2′-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation. PMID:26287170

  11. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification.

    PubMed

    Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu

    2015-01-01

    Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2'-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation. PMID:26287170

  12. First-principles study of the electronic and the magnetic properties of Cr-doped wurtzite cadmium sulfide (Cd1- x Cr x S, x = 12.5% and 6.25%)

    NASA Astrophysics Data System (ADS)

    Nabi, Azeem; Majid, Abdul

    2015-08-01

    The electronic and the magnetic properties of Cr-doped wurtzite cadmium sulfide (Cd1- x Cr x S) at different concentrations ( x = 12.5% and 6.25%) are investigated in the frame work of the generalized gradient approximation (GGA), its extension through on-site Hubbard U interactions (GGA+U), and the Tran Blaha modified Becke-Johnson (TB-mBJ) potential. The ferromagnetic exchange interactions between Cr-Cr atoms via S atoms are studied. The magnetic moments on these atoms are studied in detail by using different charge analysis techniques. The p-d hybridization reduces the local magnetic moment on Cr from its free space charge value and produces a small local magnetic moment on the nonmagnetic Cd and S host sites. Cr-doped CdS provides a half-metallic semiconductor.

  13. Novel fluorescent silver nanoparticles: sensitive and selective turn off sensor for cadmium ions

    NASA Astrophysics Data System (ADS)

    Makwana, Bharat A.; Vyas, Disha J.; Bhatt, Keyur D.; Darji, Savan; Jain, Vinod K.

    2016-04-01

    The synthesis of metal nanoparticles by eco-friendly and reliable processes is an important aspect in many fields. In this study, octamethoxy resorcin [4] arene tetrahydrazide (OMRTH)-reduced and stabilized silver nanoparticles were synthesized via a simple one-pot method. Synthesized silver nanoparticles were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM) and particle size analyzer (PSA). Furthermore, the application of OMRTH-AgNps as a simple, cost-effective and sensitive fluorescent sensor for rapid detection of cadmium was explored. Under optimum conditions, the fluorescence intensity of OMRTH-AgNps was inversely proportional to the cadmium concentration. Using OMRTH-AgNps as a selective and sensitive fluorescent probe, cadmium can be detected at a minimum concentration level of 10-8 M in a facile way of fluorescence quenching, i.e., by a "turn off" mechanism. The method has been successfully applied for determination of Cd[II] ions in groundwater and industrial effluent wastewater samples.

  14. Effect of the Concentration on the X-ray Luminescence Efficiency of a Cadmium Selenide/Zinc Sulfide (CdSe/ZnS) Quantum Dot Nanoparticle Solution

    NASA Astrophysics Data System (ADS)

    Valais, I.; Michail, C.; Nikolopoulos, D.; Fountzoula, C.; Bakas, A.; Yannakopoulos, P.; Fountos, G.; Panayiotakis, G.; Kandarakis, I.

    2015-09-01

    In the current study preliminary results on the luminescence efficiency (LE) of toluene dissolved Cadmium Selenide/Zinc Sulfide (CdSe/ZnS, Sigma-Aldrich, Lumidot 694622) quantum dot samples (QDs) after exposure to X-rays of variable radiation flux are shown. The distinctive influence of the weight over volume (w/v) concentration of the samples in LE was investigated. The light emission of the QDs was additionally measured after UV irradiation. The distribution of the emitted light was symmetrical with a maximum at 590 nm. The w/v concentration of the QDs varied between 7.1×10-5 mg/mL to 28.4×10-5 mg/mL. The samples were handled in a cubic 12.5×12.5×45mm3 quartz cuvette. Each sample was excited under X-ray irradiation, in the energy range from 50 to 130 kVp using a BMI General Medical Merate tube with rotating Tungsten anode and inherent filtration equivalent to 2 mm Al. The X-ray LE, induced by the 28.4×10-5 mg/mL QDs found higher, however, the distinction was vague in the highly concentrated samples. The maximum efficiency was obtained at the 90 kVp for QDs with 21.3×10-5 mg/mL w/v concentration. In the high energy range (120-130 kVp) all concentration levels exhibited comparable X-ray induced LE. The luminescence properties of the investigated QDs appear promising for X-ray detection applications.

  15. Influence of metal (Cd and Zn) waterborne exposure on radionuclide (134Cs, 110Ag, and 57Co) bioaccumulation by rainbow trout (Oncorhynchus mykiss): a field and laboratory study.

    PubMed

    Ausseil, Olivier; Adam, Christelle; Garnier-Laplace, Jacqueline; Baudin, Jean-Pierre; Casellas, Claude; Porcher, Jean-Marc

    2002-03-01

    Field and laboratory experiments were carried out to assess the influence of Cd and Zn on the contamination levels of 110Ag, 57Co, and 134Cs in rainbow trout. During a four-week prior exposure phase, two fish groups were held in tanks in the Lot River (France) at a reference (<0.05 microg Cd/L and 68 microg Zn/L) and at a polluted site (1.5 microg Cd/L and 152 microg Zn/L). During a subsequent phase, organisms were brought back to the laboratory, where the radionuclide accumulation and depuration were studied for 14 and 7 d, respectively. During this second phase, the water used in the experiments was brought back from the two sites on the Lot River in order to work under the same chemical conditions. The potential effect of chronic exposure to stable metals on several biomarkers has been explored: Plasma analysis indicated the disruption of certain variables linked to the energetic metabolism and to the maintenance of the ionic balance. In contrast, no significant disruption of the measured enzyme activities was observed. With regard to the bioaccumulation of radionuclides, concentrations in fish exposed to metals are much lower than those in fish from the control group. Various hypotheses are proposed to link fish metabolic profiles due to metal exposure to the radiocontamination of organisms. PMID:11878476

  16. FAS -670 A/G polymorphism may be associated with the depletion of CD4(+) T lymphocytes in HIV-1 infection.

    PubMed

    Hermes, Renata Bezerra; Santana, Bárbara Brasil; Lima, Sandra Souza; Neris Martins Feitosa, Rosimar; de Oliveira Guimarães Ishak, Marluísa; Ishak, Ricardo; Vallinoto, Antonio Carlos Rosário

    2015-10-01

    In this study, the polymorphisms in the FAS and FASL genes was investigated in a sample of 198 HIV-1-seropositive individuals and 191 seronegative controls to evaluate a possible association between polymorphisms and the infection. The identification of the A and G alleles of the FAS -670 polymorphism was accomplished through polymerase chain reaction assays followed by digestion with the restriction enzyme MvaI. The identification of the A and G alleles of the FAS -124 polymorphism and the T and delT alleles of the FAS -169 polymorphism were performed using the amplification-created restriction site method followed by restriction fragment length polymorphism reactions. The comparative analysis of allelic and genotypic frequencies between the groups did not reveal any significant differences. However, the quantitative analysis of CD4(+) T lymphocytes suggests that the G allele of the FAS -670 A/G polymorphism can be a protective factor against the depletion of these cells in the course of an HIV-1 infection. Polymorphisms in the FAS and FASL genes were not associated with the number of CD8(+) T lymphocytes or the plasma viral load. Our findings suggest that the FAS -670 polymorphism may be associated with apoptosis of CD4(+) T lymphocytes after infection by HIV-1. PMID:26429326

  17. Flowing Liquid Anode Atmospheric Pressure Glow Discharge as an Excitation Source for Optical Emission Spectrometry with the Improved Detectability of Ag, Cd, Hg, Pb, Tl, and Zn.

    PubMed

    Greda, Krzysztof; Swiderski, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-09-01

    A novel atmospheric pressure glow discharge generated in contact with a flowing liquid anode (FLA-APGD) was developed as the efficient excitation source for the optical emission spectrometry (OES) detection. Differences in the appearance and the electrical characteristic of the FLA-APGD and a conventional system operated with a flowing liquid cathode (FLC-APGD) were studied in detail and discussed. Under the optimal operating conditions for the FLA-APGD, the emission from the analytes (Ag, Cd, Hg, Pb, Tl, and Zn) was from 20 to 120 times higher as compared to the FLC-APGD. Limits of detections (LODs) established with a novel FLA-APGD system were on average 20 times better than those obtained for the FLC-APGD. A further improvement of the LODs was achieved by reducing the background shift interferences and, as a result, the LODs for Ag, Cd, Hg, Pb, Tl, and Zn were 0.004, 0.040, 0.70, 1.7, 0.035, and 0.45 μg L(-1), respectively. The precision of the FLA-APGD-OES method was evaluated to be within 2-5% (as the relative standard deviation of the repeated measurements). The method found its application in the determination of the content of Ag, Cd, Hg, Pb, Tl, and Zn in a certified reference material (CRM) of Lobster hepatopancreas (TORT-2), four brass samples as well as mineral water and tea leaves samples spiked with the analytes. In the case of brass samples, a reference method, i.e., inductively coupled plasma optical emission spectrometry (ICP-OES) was used. A good agreement between the results obtained with FLA-APGD-OES and the certified values for the CRM TORT-2 as well as the reference values obtained with ICP-OES for the brass samples was revealed, indicating the good accuracy of the proposed method. The recoveries obtained for the spiked samples of mineral water and tea leaves were within the range of 97.5-102%. PMID:27476678

  18. Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium.

    PubMed

    Hazama, Kenji; Nagata, Shinji; Fujimori, Tamaki; Yanagisawa, Shuichi; Yoneyama, Tadakatsu

    2015-06-01

    We examined the concentrations of metals (Cd, Zn, Cu, Fe and Mn) and potential metal-binding compounds [nicotianamine (NA), thiol compounds and citrate] in xylem and phloem saps from 4-week-old castor bean plants (Ricinus communis) treated with 0 (control), 0.1, 1.0, and 10 μM Cd for 3 weeks. Treatment with 0.1 and 1 μM Cd produced no visible damage, while 10 μM Cd retarded growth. Cadmium concentrations in both saps were higher than those in the culture solution at 0.1 μM, similar at 1.0 μM and lower at 10 μM. Cd at 10 μM reduced Cu and Fe concentrations in both saps. NA concentrations measured by capillary electrophoresis-mass spectrometry (MS) in xylem sap (20 μM) were higher than the Cu concentrations, and those in phloem sap (150 μM) were higher than those of Zn, Fe and Cu combined. Reduced glutathione concentrations differed in xylem and phloem saps (1-2 and 30-150 μM, respectively), but oxidized glutathione concentrations were similar. Phloem sap phytochelatin 2 concentration increased from 0.8 μM in controls to 8 μM in 10 μM Cd. Free citrate was 2-4 μM in xylem sap and 70-100 μM in phloem sap. Total bound forms of Cd in phloem and xylem saps from 1 μM Cd-treated plants were 54 and 8%, respectively. Treatment of phloem sap with proteinaseK reduced high-molecular compounds while increasing fractions of low-molecular Cd-thiol complexes. Zinc-NA, Fe-NA and Cu-NA were identified in the phloem sap fraction of control plants by electrospray ionization time-of-flight MS, and the xylem sap contained Cu-NA. PMID:25403762

  19. Cadmium telluride in tellurium—cadmium films consisting of ultradispersed particles

    NASA Astrophysics Data System (ADS)

    Tuleushev, Yu. Zh.; Volodin, V. N.; Migunova, A. A.; Lisitsyn, V. N.

    2015-08-01

    Solid solutions of tellurium in cadmium, cadmium in tellurium, and cadmium in cadmium telluride synthesized during sputtering are formed for the first time by ion-plasma sputtering and the codeposition of ultradispersed Te and Cd particle fluxes onto substrates moving with respect to the fluxes. This fact supports thermofluctuation melting and coalescence of small particles. The lattice parameter of cadmium telluride, which coexists with an amorphous solid solution of tellurium in cadmium in a coating, is smaller than the tabulated value and reaches it when the cadmium concentration in a coating increases to 70 at %. The lattice parameter of the fcc lattice of cadmium telluride increases with the cadmium concentration in a coating according to the linear relation a = 0.0002CCd + 0.6346 nm (where CCd is the cadmium concentration in the coating, at %), which is likely to indicate a certain broadening of the homogeneity area. The estimation of the particle size shows that the cadmium telluride grain size is 10-15 nm, which implies that the coatings are nanocrystalline. The absorption and transmission spectra of the tellurium—cadmium films at the fundamental absorption edge demonstrate that their energy gaps are larger than that of stoichiometric CdTe, which can be explained by the experimental conditions of crystal structure formation.

  20. A comparative computational study on hydrogen adsorption on the Ag(+), Cu(+), Mg(2+), Cd(2+), and Zn(2+) cationic sites in zeolites.

    PubMed

    Kozyra, Paweł; Piskorz, Witold

    2016-05-14

    In this article the interaction between H2 and Ag(+), Cu(+), Mg(2+), Cd(2+), and Zn(2+) cations in cluster models of several sizes has been studied computationally. Depending on the changes imposed by the adsorption process on the H2 molecule the activation can vary in a wide range - from only slight weakening of the H-H bond to complete dissociation of the H2 molecule. The NOCV (Natural Orbitals for Chemical Valence) analysis allowed for decomposition of the electron density distortion into contributions easier for interpretation. Three essential factors have been identified (i-iii). In the case of bare cations the main contribution is a donation from σH2 to the cation (i). When a zeolite framework surrounding the cation is introduced, it hinders σ-donation and enhances π-backdonation from the cation to the antibonding orbital of the molecule (ii). For Cu(i) and Ag(i) sites π-backdonation becomes dominant, while for Mg(ii), Cd(ii), and Zn(ii) cations, the σ-donation, albeit diminished, still remains a dominant contribution. Calculations showed that the localization and coordination of Zn(ii) have crucial influence on its interaction with H2. We identified a Zn(2+) position at which the H2 molecule dissociates - here the interaction between H2 and oxygen framework (iii) plays a crucial role. Based on the calculations the mechanism of H2 transformation has been proposed. Upon heterolytic dissociation of H2 the Zn(0) moiety and two OH groups can be formed. Eventually, in two elementary steps, the H2 molecule can be restored. In this case, the ability of the site to activate/dissociate hydrogen is caused by the low coordination number of the zinc cation and the geometry of the site which allows positively charged H2 to interact with framework oxygen what enhances the formation of OH and Z-O-(ZnH)(+) groups. PMID:27092373

  1. Fluorometric selective detection of fluoride ions in aqueous media using Ag doped CdS/ZnS core/shell nanoparticles.

    PubMed

    Boxi, Siddhartha Sankar; Paria, Santanu

    2016-01-14

    The presence of fluoride ions in drinking water plays an important role in human health. For that reason, maintaining the optimum concentration of fluoride ions in drinking water is essential, as both low and excess (above the permissible level) concentrations can cause different health problems, such as fluorosis, urolithiasis, kidney failure, cancer, and can even lead to death. So, development of a simple and low cost method for the detection of fluoride ions in water is highly desirable. In this study, a fluorometric method based on Ag-CdS/Ag-ZnS core/shell nanoparticles is developed for fluoride ion detection. The method was tested in aqueous solution at different pH values. The selectivity and sensitivity of the fluorescence probe was checked in the presence of other anions (Cl(-), Br(-), I(-), NO3(-) SO4(2-), HCO3(-), HPO4(2-), CH3COO(-), and H2PO4(-)) and found there is no significant interference of these associated ions. The fluoride ion concentration was varied in the range 190-22 800 μg L(-1) and a lower detection limit was obtained as 99.7 μg L(-1). PMID:26645767

  2. Photocatalytic removal of M(2+) (Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Ag(+)) over new catalyst CuCrO(2).

    PubMed

    Ketir, W; Bouguelia, A; Trari, M

    2008-10-30

    The metal ions M(2+) (Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Ag(+)) are potentially toxic. Their electro deposition has been carried out in aqueous air-equilibrated CuCrO(2) suspension upon visible illumination. The delafossite CuCrO(2) is p-type semiconductor characterized by a low band gap (1.28 eV) and a long-term chemical stability. The corrosion rate is found to be 10(-2) micromol m(-2)month(-1) in aqua regia. The oxide has been elaborated through nitrate route where the specific surface area is increased via the surface/bulk ratio. A correlation exists between the dark M(2+) adsorption, the redox potential of M(2+/0) couple and the conduction band of CuCrO(2) positioned at -1.06 V(SCE). Ag(+) cannot be photoreduced because of its positive potential located far above the valence band. By contrast, Zn(2+) is efficiently deposited due to the large driving force at the interface. The improved photoactivity of copper with a deposition percentage (90%) is attributed to the strong dark adsorption onto the surface catalyst. The results indicate a competitive effect with the water reduction; it has been observed that the M(2+) deposition goes parallel with the hydrogen evolution. Such behavior is attributed to the low H(2) over voltage when ultra fine aggregate of M islands are photodeposited onto CuCrO(2) substrate. PMID:18384943

  3. Cadmium in Jamaican Bush Teas

    PubMed Central

    Hoo Fung, LA; Rattray, VR; Lalor, GC

    2014-01-01

    Samples of Jamaican plants used as bush teas were collected from households in high soil-cadmium (Cd) areas of central Jamaica and analysed by graphite furnace atomic absorption spectrophotometry for total cadmium and for cadmium extractable with a hot water brew as prepared for human consumption to determine their contribution to dietary cadmium exposure. The concentrations ranged from < 0.03 to 6.85 μg/g for total Cd, between 1 and 15% of which was extracted with a hot water brew. One cup (200 ml) of the teas examined was found to contain < 0.04–1.18 μg of Cd and would contribute 0.1 – 0.3 μg of Cd to a person's dietary intake. This is significantly below the provisional tolerable weekly intake (PTWI) of 7 μg Cd/kg body weight established by the World Health Organization (WHO). While this suggests that bush tea consumption does not contribute significantly to the PTWI, some of the teas examined exceed the WHO recommendation of less than 0.3 mg/kg Cd for medicinal plants. PMID:25303189

  4. Cadmium in jamaican bush teas.

    PubMed

    Hoo Fung, L A; Rattray, V R; Lalor, G C

    2014-01-01

    Samples of Jamaican plants used as bush teas were collected from households in high soil-cadmium (Cd) areas of central Jamaica and analysed by graphite furnace atomic absorption spectrophotometry for total cadmium and for cadmium extractable with a hot water brew as prepared for human consumption to determine their contribution to dietary cadmium exposure. The concentrations ranged from < 0.03 to 6.85 µg/g for total Cd, between 1 and 15% of which was extracted with a hot water brew. One cup (200 ml) of the teas examined was found to contain < 0.04-1.18 µg of Cd and would contribute 0.1-0.3 µg of Cd to a person's dietary intake. This is significantly below the provisional tolerable weekly intake (PTWI) of 7 µg Cd/kg body weight established by the World Health Organization (WHO). While this suggests that bush tea consumption does not contribute significantly to the PTWI, some of the teas examined exceed the WHO recommendation of less than 0.3 mg/kg Cd for medicinal plants. PMID:25303189

  5. Synthesis, growth, characterization and crystal structure of zinc cadmium thiourea complex Zn0.625Cd1.375(CS(NH2)2)9.4(SO4)

    NASA Astrophysics Data System (ADS)

    Ramasamy, G.; Meenakshisundaram, Subbiah

    2013-08-01

    Single crystals of zinc cadmium thiourea complex Zn0.625Cd1.375(CS(NH2)2)9.4(SO4) (ZCTS) are grown by slow evaporation of aqueous solution containing zinc sulfate, cadmium sulfate and thiourea in the ratio 1:1:6. Crystal composition as determined by single crystal X-ray diffraction analysis reveals that it belongs to the monoclinic system with space group P21 and cell parameters are a=13.263(5) Å, b=11.886(5) Å, c=27.215(5) Å, α=γ=90.000(5)°, β=96.586(5)°, V=4262(3) Å3 and Z=2. The presence of zinc and cadmium in the final product is further confirmed by inductively coupled plasma (ICP), atomic absorption spectroscopy (AAS) and energy dispersive X-ray spectroscopy (EDS). The vibrational patterns in FT-IR are used for identifying the material and the thermal analysis by TG/DTA indicates the stability of the mixed crystal. The surface morphology changes of the mixed crystal are studied by scanning electron microscopy (SEM). High transmittance in the visible region is observed with a lower optical cut-off at ˜260 nm. The change in intensity patterns in XRD profiles indicates lattice distortion. The relative second harmonic generation (SHG) efficiency measurements reveal that the mixed crystal has a superior activity than that of tris(thiourea)zinc(II) sulfate (ZTS).

  6. Highly efficient blue-green quantum dot light-emitting diodes using stable low-cadmium quaternary-alloy ZnCdSSe/ZnS core/shell nanocrystals.

    PubMed

    Shen, Huaibin; Wang, Sheng; Wang, Hongzhe; Niu, Jinzhong; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Zheng, Ying; Li, Lin Song

    2013-05-22

    High-quality blue-green emitting ZnxCd(1-x)S(1-y)Se(y)/ZnS core/shell quantum dots (QDs) have been synthesized by a phosphine-free method. The quantum yields of as-synthesized ZnxCd(1-x)S(1-y)Se(y)/ZnS core/shell QDs can reach 50-75% with emissions between 450 and 550 nm. The emissions of such core/shell QDs are not susceptible to ligand loss through the photostability test. Blue-green light-emitting diodes (LEDs) based on the low-cadmium ZnxCd(1-x)S(1-y)Se(y)/ZnS core/shell QDs have been successfully demonstrated. Composite films of poly[9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenylamine] (TFB) and ZnO nanoparticle layers were chosen as the hole-transporting and the electron-transporting layers, respectively. Highly bright blue-green QD-based light-emitting devices (QD-LEDs) showing maximum luminance up to 10000 cd/m(2), in particular, the blue QD-LEDs show an unprecedentedly high brightness over 4700 cd/m(2) and peak external quantum efficiency (EQE) of 0.8%, which is the highest value ever reported. These results signify a remarkable progress in QD-LEDs and offer a practicable platform for the realization of QD-based blue-green display and lighting. PMID:23633527

  7. Murine strain differences and the effects of zinc on cadmium concentrations in tissues after acute cadmium exposure.

    PubMed

    King, L M; Anderson, M B; Sikka, S C; George, W J

    1998-10-01

    The role of strain differences in cadmium tissue distribution was studied using sensitive (129/J) and resistant (A/J) mice. These murine strains have previously been shown to differ in their susceptibility to cadmium-induced testicular toxicity. Cadmium concentration was measured in testis, epididymis, seminal vesicle, liver, and kidney at 24 h after cadmium chloride exposure (4, 10, and 20 micromol/kg CdCl2). The 129/J mice exhibited a significant increase in cadmium concentration in testis, epididymis, and seminal vesicle at all cadmium doses used, compared to A/J mice. However, cadmium concentrations in liver and kidney were not different between the strains, at any dose, indicating that cadmium uptake is similar in these organs at 24 h. These murine strains demonstrate similar hepatic and renal cadmium uptake but significantly different cadmium accumulation in the reproductive organs at 24 h. The mechanism of the protective effect of zinc on cadmium toxicity was studied by assessing the impact of zinc acetate (ZnAc) treatment on cadmium concentrations in 129/J mice after 24 h. Zinc pretreatment (250 micromol/kg ZnAc), given 24 h prior to 20 micromol/kg CdCl2 administration, significantly decreased the amount of cadmium in the testis, epididymis, and seminal vesicle of 129/J mice, and significantly increased the cadmium content of the liver after 24 h. Cadmium levels in the kidney were unaffected at this time. Zinc pretreatment also prevented the cadmium-induced decrease in testicular sperm concentration and epididymal sperm motility seen in 129/J mice. These findings suggest that the differences in the two murine strains may be attributed partly to the differential accumulation of cadmium in murine gonads. This may be caused by strain differences in the specificity of cadmium transport mechanisms. The protective role of zinc in cadmium-induced testicular toxicity in the sensitive strain may be due to an interference in the cadmium uptake by susceptible

  8. X-ray photoelectron spectroscopy study of the nucleation processes and chemistry of CdS thin films deposited by sublimation on different solar cell substrate materials

    SciTech Connect

    Espinos, J.P.; Martin-Concepcion, A.I.; Mansilla, C.; Yubero, F.; Gonzalez-Elipe, A.R.

    2006-07-15

    Cadmium sulfide has been deposited by evaporation on five different substrates: CdTe, ZnO, Ag, TiO{sub 2}, and partially reduced titanium oxide (i.e., TiO{sub 1.73}). The deposition rate and the evolution of the Cd/S ratio on the different substrates have been determined by x-ray photoelectron spectroscopy. The growth mode of the films has been also studied by analyzing the shape of the backgrounds behind the photoemission peaks (peak shape analysis). It has been found that, under completely equivalent conditions, the deposition efficiency (i.e., sticking coefficient) is large on CdTe and TiO{sub 1.73}, but very small on ZnO and TiO{sub 2}. Silver constitutes an intermediate situation characterized by a long induction period where the deposition rate is small and a later increase in deposition efficiency comparable to that on CdTe. For the initial stages of deposition, below an equivalent monolayer, it has been also found that the Cd/S ratio is smaller than unity on TiO{sub 1.73} and ZnO but larger than unity on CdTe and Ag substrates. For sufficiently long deposition times the Cd/S ratio on the surface reaches unity. Except for silver substrate, cadmium appears as Cd{sup 2+} and sulfur as S{sup -2} species at the initial stages of deposition. On the silver surface, cadmium adsorbs as Cd{sup 0} at low coverage. Peak shape analysis has shown that cadmium sulfide grows according to layer-by-layer mechanism (Frank-van de Merwe model) when the substrates are CdTe and TiO{sub 1.73}, but large particles are formed that do not cover the surface for ZnO and Ag substrates (Volmer-Weber growth model). These results are consistent with the different chemical affinities of the substrate towards the atoms of cadmium and sulfur produced during the evaporation of the cadmium sulfide.

  9. Subcellular partitioning of non-essential trace metals (Ag, As, Cd, Ni, Pb, and Tl) in livers of American (Anguilla rostrata) and European (Anguilla anguilla) yellow eels.

    PubMed

    Rosabal, Maikel; Pierron, Fabien; Couture, Patrice; Baudrimont, Magalie; Hare, Landis; Campbell, Peter G C

    2015-03-01

    We determined the intracellular compartmentalization of the trace metals Ag, As, Cd, Ni, Pb, and Tl in the livers of yellow eels collected from the Saint Lawrence River system in Canada (Anguilla rostrata) and in the area of the Gironde estuary in France (Anguilla anguilla). Differential centrifugation, NaOH digestion and thermal shock were used to separate eel livers into putative "sensitive" fractions (heat-denatured proteins, mitochondria and microsomes+lysosomes) and detoxified metal fractions (heat-stable peptides/proteins and granules). The cytosolic heat-stable fraction (HSP) was consistently involved in the detoxification of all trace metals. In addition, granule-like structures played a complementary role in the detoxification of Ni, Pb, and Tl in both eel species. However, these detoxification mechanisms were not completely effective because increasing trace metal concentrations in whole livers were accompanied by significant increases in the concentrations of most trace metals in "sensitive" subcellular fractions, that is, mitochondria, heat-denatured cytosolic proteins and microsomes+lysosomes. Among these "sensitive" fractions, mitochondria were the major binding sites for As, Cd, Pb, and Tl. This accumulation of non-essential metals in "sensitive" fractions likely represents a health risk for eels inhabiting the Saint Lawrence and Gironde environments. PMID:25635611

  10. Lactation-induced cadmium-binding proteins

    SciTech Connect

    Bhattacharyya, M.H.; Solaiman, D.; Garvey, J.S.; Miyazaki, W.Y.

    1987-01-01

    Previously we have demonstrated an increase during midlactation in /sup 109/Cd adsorption and increased retention by the duodenum, kidney, and mammary tissue of mouse dams receiving environmental levels of cadmium//sup 109/Cd via drinking water, with little change in /sup 109/Cd retention in liver and jejunum compared to nonpregnant controls. Results are reported here of a study of cadmium deposition during midlactation as associated with induction of metallothionein (MT). A cadmium/hemoglobin (Cd/Hb) assay and radioimmunoassay for MT which measures heat-stable cadmium binding capacity in tissues was used to determine MT concentrations in fractions of kidney, liver, duodenum, and jejunum from female mice. Both assays demonstrated clear lactation-induced increases in MT concentrations in liver, kidney, and duodenum, with MT concentrations falling rapidly to control levels after weaning. 4 refs., 1 tab.

  11. Atomic-level observation of Ag-ion hopping motion in AgI

    NASA Astrophysics Data System (ADS)

    Sato, W.; Komatsuda, S.; Mizuuchi, R.; Irioka, N.; Kawata, S.; Ohkubo, Y.

    2015-04-01

    Applicability of the 111mCd(→111Cd) and 111In(→111Cd) probes to the study of dynamics in polycrystalline silver iodide (AgI) was examined by means of the time-differential perturbed angular correlation technique. It was found that the 111mCd(→111Cd) probe occupies a unique site in γ-AgI and exhibits nuclear relaxation caused by dynamic perturbation arising from Ag + hopping motion in α-AgI; while the residential sites of 111In(→111Cd) vary, suggesting that 111In ions can not settle themselves in a fixed site in the AgI crystal structure. We here demonstrate that 111mCd(→111Cd) can be a potential nucleus to probe the Ag +-ion dynamic motion in α-AgI.

  12. Effect of Chlorella intake on Cadmium metabolism in rats.

    PubMed

    Shim, Jee Ae; Son, Young Ae; Park, Ji Min; Kim, Mi Kyung

    2009-01-01

    This study was performed to investigate the effect of chlorella on cadmium (Cd) toxicity in Cd- administered rats. Sixty male Sprague-Dawley rats (14 week-old) were blocked into 6 groups. Cadmium chloride was given at levels of 0 or 325 mg (Cd: 0, 160 ppm), and chlorella powder at levels of 0, 3 and 5%. Cadmium was accumulated in blood and tissues (liver, kidney and small intestine) in the Cd-exposed groups, while the accumulation of Cd was decreased in the Cd-exposed chlorella groups. Fecal and urinary Cd excretions were remarkably increased in Cd-exposed chlorella groups. Thus, cadmium retention ratio and absorption rate were decreased in the Cd exposed chlorella groups. Urinary and serum creatinine, and creatinine clearance were not changed in experimental animals. In addition, metallothionein (MT) synthesis in tissues was increased by Cd administration. The Cd-exposed chlorella groups indicated lower MT concentration compared to the Cd-exposed groups. Moreover, glomerular filtration rate (GFR) was not changed by dietary chlorella and Cd administration. According to the results above, this study could suggest that Cd toxicity can be alleviated by increasing Cd excretion through feces. Therefore, when exposed to Cd, chlorella is an appropriate source which counteracts heavy metal poisoning, to decrease the damage of tissues by decreasing cadmium absorption. PMID:20016697

  13. Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cadmium (Cd) loading in soil and the environment has been accelerated worldwide due to enhanced industrialization and intensified agricultural production, particularly in the developing countries. Soil Cd pollution, resulting from both anthropogenic and geogenic sources, has posed an increasing chal...

  14. Different behavior of Staphylococcus epidermidis in intracellular biosynthesis of silver and cadmium sulfide nanoparticles: more stability and lower toxicity of extracted nanoparticles.

    PubMed

    Rezvani Amin, Zohreh; Khashyarmanesh, Zahra; Fazly Bazzaz, Bibi Sedigheh

    2016-09-01

    Chemical reagents that are used for synthesis of nanoparticles are often toxic, while biological reagents are safer and cost-effective. Here, the behavior of Staphylococcus epidermidis (ATCC 12228) was evaluated for biosynthesis of silver nanoparticles (Ag-NPs) and cadmium sulfide nanoparticles (CdS-NPs) using TEM images intra- and extracellularly. The bacteria only biosynthesized the nanoparticles intracellularly and distributed Ag-NPs throughout the cytoplasm and on outside surface of cell walls, while CdS-NPs only formed in cytoplasm near the cell wall. A new method for purification of the nanoparticles was used. TEM images of pure CdS-NPs confirmed biosynthesis of agglomerated nanoparticles. Biosynthetic Ag-NPs were more stable against bright light and aggregation reaction than synthetic Ag-NPs (prepared chemically) also biosynthetic Ag-NPs displayed lower toxicity in in vitro assays. CdS-NPs indicated no toxicity in in vitro assays. Biosynthetic nanoparticles as product of the detoxification pathway may be safer and more stable for biosensors. PMID:27430507

  15. Cadmium intake and systemic exposure in postmenopausal women and age-matched men who smoke cigarettes.

    PubMed

    Ebert-McNeill, Andrea; Clark, Sara P; Miller, James J; Birdsall, Paige; Chandar, Manisha; Wu, Lucia; Cerny, Elizabeth A; Hall, Patricia H; Johnson, Maribeth H; Isales, Carlos; Chutkan, Norman; Bhattacharyya, Maryka H

    2012-11-01

    Mean blood cadmium (B-Cd) concentrations are two- to threefold higher in smokers than in nonsmokers. The basis for this phenomenon is not well understood. We conducted a detailed, multifaceted study of cadmium exposure in smokers. Groups were older smokers (62±4 years, n = 25, 20% male) and nonsmokers (62±3 years, n = 16, 31% male). Each subject's cigarettes were machine smoked, generating individually paired measures of inhaled cadmium (I-Cd) versus B-Cd; I-Cd and B-Cd were each evaluated three times, at monthly intervals. Urine cadmium (U-Cd) was analyzed for comparison. In four smokers, a duplicate-diet study was conducted, along with a kinetic study of plasma cadmium versus B-Cd. Female smokers had a mean B-Cd of 1.21ng Cd/ml, with a nearly 10-fold range (0.29-2.74ng Cd/ml); nonsmokers had a lower mean B-Cd, 0.35ng Cd/ml (p < 0.05), and narrower range (0.20-0.61ng Cd/ml). Means and ranges for males were similar. Estimates of cadmium amounts inhaled daily for our subjects smoking ≥ 20 cigarettes/day were far less than the 15 µg Cd reported to be ingested daily via diet. This I-Cd amount was too low to alone explain the 3.5-fold elevation of B-Cd in our smokers, even assuming greater cadmium absorption via lungs than gastrointestinal tract; cadmium accumulated in smokers' lungs may provide the added cadmium. Finally, B-Cd appeared to be linearly related to I-Cd values in 75% of smokers, whereas 25% had far higher B-Cd, implying a possible heterogeneity among smokers regarding circulating cadmium concentrations and potentially cadmium toxicity. PMID:22831969

  16. Material and detector properties of cadmium manganese telluride (Cd1-xMnxTe) crystals grown by the modified floating-zone method

    SciTech Connect

    Hossain, A.; Gu, G. D.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Roy, U. N.; Yang, G.; Liu, T.; Zhong, R.; Schneelock, J.; James, R. B.

    2014-12-24

    We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd1-xMnxTe; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd1-xMnxTe crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Thus, our experimental results show that CMT crystals grown by the modified floating zone method apparently are free from Te inclusions. However, we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe.

  17. Dietary assimilation of cadmium associated with bacterial exopolymer sediment coatings by the estuarine amphipod Leptocheirus plumulosus: Effects of Cd concentration and salinity

    USGS Publications Warehouse

    Schlekat, C.E.; Decho, Alan W.; Chandler, G.T.

    1999-01-01

    Bacterial extracellular substances (also known as exopolysaccharides, or EPS) may serve as vectors for trophic transfer of metals in benthic systems because these ubiquitous sediment coatings can sorb high concentrations of toxic metals, and because many benthic invertebrates assimilate EPS sediment coatings upon ingestion. We conducted 3 sets of experiments to determine the assimilative bioavailability of EPS-associated Cd to the benthic amphipod Leptocheirus plumulosus as a function of Cd concentration and salinity. Bioavailability was measured as L. plumulosus Cd assimilation efficiency (AE) from EPS-coated silica (EPS-Si) and from uncoated silica (NC-Si) using modified pulse-chase methods with the gamma-emitting radioisotope 109Cd. Cd AE was significantly greater from NC-Si than from EPS-Si at 7.5???, but not at 2.5 or 25???. Overall, Cd AE from EPS-Si was between 15.1 and 21.5%. Because EPS-Si sorbed more Cd than NC-Si, EPS coatings magnified the amount of Cd amphipods accumulated at each salinity by up to a factor of 10. Salinity did not directly affect Cd AE from EPS-Si, but because Cd-EPS partitioning increased with decreasing salinity, amphipods accumulated more Cd from EPS at the lowest Cd-EPS incubation salinity (2.5 ???) than at higher salinities (7.5 and 25 ???). Finally, Cd concentration in EPS exhibited an inverse relationship with Cd AE at 2.5 ???, but not at 25 ???. Specifically, Cd AE was 12 times greater at 1 compared with 10 ??g Cd ??g-1 EPS. Together, these results show that estuarine benthos can accumulate Cd from EPS sediment coatings, but that the degree to which this phenomenon occurs is dependent upon seawater salinity and Cd concentration in EPS.

  18. Solid-state synthesis, structure and properties of a novel open-framework cadmium selenite bromide: [Cd{sub 10}(SeO{sub 3}){sub 8}Br{sub 4}]·HBr·H{sub 2}O

    SciTech Connect

    Chen, Wen-Tong; Wang, Ming-Sheng; Wang, Guan-E; Chen, Hui-Fen; Guo, Guo-Cong

    2013-08-15

    A novel open-framework cadmium selenite bromide, [Cd{sub 10}(SeO{sub 3}){sub 8}Br{sub 4}]·HBr·H{sub 2}O (1), has been obtained by a solid-state reaction at 450 °C, and the structure has been determined by single-crystal X-ray diffraction analysis. Compound 1 crystallizes in Pbcm of the orthorhombic system: a=10.882(3), b=16.275(5), c=18.728(6) Å, V=3317(2) Å{sup 3}, R1/wR2=0.0411/0.0659. Compound 1 is characteristic of a novel 3-D open-framework structure, composing {sub ∞}{sup 2}[CdSeO{sub 3}] layers and the pillars of edge-shared CdO{sub 3}Br{sub 2} square pyramids. The lattice water molecules and the HBr molecules locate in the voids of the framework. Optical absorption spectrum of 1 reveals the presence of an optical gap of 1.65 eV. Solid-state photoluminescent study indicates that compound 1 exhibits strong violet emission. TG–DSC measurement shows that compound 1 is thermally stable up to 200 °C. - Graphical abstract: A metal selenite halide has been synthesized and features a 3-D open-framework structure, composing edge-shared CdO{sub 8} decahedra and pillars of edge-sharing pentahedra. UV–vis, TG–DSC and luminescent measurements are also reported. Highlights: • This paper reports a novel cadmium selenite bromide obtained by an intermediate-temperature solid-state reaction. • The title compound is characteristic of a novel 3-D open-framework structure, composing {sub ∞}{sup 2}[CdSeO{sub 3}] layers and the pillars of edge-shared CdO{sub 3}Br{sub 2} square pyramids. • The title compound is thermally stable up to 200 °C. • The title compound has an optical gap of 1.65 eV and exhibits strong violet emission.

  19. The relationship between cadmium in kidney and cadmium in urine and blood in an environmentally exposed population

    SciTech Connect

    Akerstrom, Magnus; Barregard, Lars; Lundh, Thomas; Sallsten, Gerd

    2013-05-01

    Introduction: Cadmium (Cd) is toxic to the kidney and a major part of the body burden occurs here. Cd in urine (U-Cd) and blood (B-Cd) are widely-used biomarkers for assessing Cd exposure or body burden. However, empirical general population data on the relationship between Cd in kidney (K-Cd), urine, and blood are scarce. Our objectives were to determine the relationship between cadmium in kidney, urine, and blood, and calculate the elimination half-time of Cd from the kidney. Methods: Kidney cortex biopsies, urine, and blood samples were collected from 109 living kidney donors. Cd concentrations were determined and the relationships between K-Cd, U-Cd, and B-Cd were investigated in regression models. The half-time of K-Cd was estimated from the elimination constant. Results: There was a strong association between K-Cd and U-Cd adjusted for creatinine (r{sub p} = 0.70, p < 0.001), while the association with B-Cd was weaker (r{sub p} = 0.44, p < 0.001). The relationship between K-Cd and U-Cd was nonlinear, with slower elimination of Cd at high K-Cd. Estimates of the K-Cd half-time varied between 18 and 44 years. A K-Cd of 25 μg/g corresponds to U-Cd of 0.42 μg/g creatinine in overnight urine (U-Cd/K-Cd ratio: about 1:60). Multivariate models showed Cd in blood and urinary albumin as determinants for U-Cd excretion. Discussion: In healthy individuals with low-level Cd exposure, there was a strong correlation between Cd in kidney and urine, especially after adjustment for creatinine. Urinary Cd was also affected by Cd in blood and urinary albumin. Previous estimates of the U-Cd/K-Cd ratio may underestimate K-Cd at low U-Cd. - Highlights: ► The first study of the relation between Cd in kidney, blood and urine at low U-Cd ► Simultaneous samples were collected from healthy kidney donors. ► There was a nonlinear relationship between cadmium in kidney and urine. ► Estimates of the kidney cadmium half-time were 18–44 years, depending on model used. ► Previous

  20. EFFECTS OF CADMIUM ON RENAL AGING: A CHRONIC CADMIUM FEEDING STUDY IN RATS

    EPA Science Inventory

    Cadmium (Cd) is known to accumulate preferentially in the renal proximal tubules. Animal and human autopsy studies have shown that damage to the renal proximal tubular cells is associated with toxicity from chronic Cd exposure. The present study was undertaken to determine if Cd ...

  1. PHOSPHORUS ALLEVIATION OF CADMIUM PHYTOTOXICITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hydroponic study was conducted under controlled environmental conditions to determine the effect of phosphate addition on cadmium (Cd) toxicity to soybean [Glycine max L. Cutiva perron] plants. Three weeks old soybean plants previously grown on perlite for two weeks and additional seven days on '...

  2. Effect of selenite and selenate on plant uptake of cadmium by maize (zea mays)

    SciTech Connect

    Shanker, K.; Mishra, S.; Srivastava, S.

    1996-03-01

    Selenium has been reported to confer tolerance to toxicity of heavy metals including cadmium, a highly toxic and non essential heavy metal, which enters the food chain via plant uptake from soils. Selenium reduces availability of cadmium to plants along with other aspects of its toxicokinetics. When plants are supplied with selenite, selenium concentrations in the xylem exudate are lower than selenate. Most of the selenate was transported as selenate and unidentified organic Se compounds. In contrast, Se distribution among various Se fractions within plants does not depend significantly on whether selenite or selenate was used. Selenium has a strong tendency to form complexes with heavy metals like Cd, Hg, Ag and Tl. It has been suggested that the protective effects of selenium are due to the formation of non toxic Se-metal complexes, although the mechanism by which this protective effect is exerted remains unclear. Studies on the effect of selenium (selenite) and cadmium additions to the soil on their concentrations in lettuce and wheat has indicated the role of selenite in reduction of cadmium uptake. The cletoxifying effect of sodium selenite on cadmium ion in the freshwater fish Potyacuthus cupanus has been reported. The discovery that an element like selenium counteracts the toxicity, chemical carcinogenesis and reduces the plant uptake of other toxic metals, highlights the possibility of existence of a Se-metal interaction mechanism in soil plant systems. The uptake and translocation of root-absorbed chromium supplied through irrigation in the trivalent and hexavalant states in various parts of the onion plant (Allium cepa) grown in soil and sand culture has been recently reported by us. In continuation of that, this preliminary report describes the effect of selenite and selenate pretreatment on the uptake of cadmium in the maize plant (Zea mays).

  3. Cadmium-113m as a biogeochemical tracer for cadmium in Lake Michigan

    SciTech Connect

    Dunn, D.L.

    1987-01-01

    The Lake Michigan watershed has been sampled for {sup 113m}Cd. This long-lived metastable isotope of cadmium allowed independent evaluation of cadmium distribution in this dynamic ecosystem. {sup 113m}Cd analysis was not hampered by contamination or loss. These are problems which have plagued stable cadmium measurements. Sensitivity and specificity were necessary concerns. {sup 113m}Cd has been preconcentrated from large samples in order to obtain sufficient activity for quantification. Specificity for the gross beta activity measured was secured in a rigorous ion exchange decontamination. Confirmation of the suspected {sup 113m}Cd beta source was checked by reverse tracer analysis and modified Feather analysis range-energy relationships. The {sup 113m}Cd activities confirm the expected semiconservative behavior for cadmium. This behavior manifests itself in a long residence time for cadmium in Lake Michigan. The inefficiency of outflow removal, the low sedimentation rate and the unquantified sediment resuspension and release of cadmium are factors contributing to this residence time. Steady state concentration of cadmium in Lake Michigan will increase if present input rates persist.

  4. Chelation of cadmium without increased renal cadmium deposition.

    PubMed Central

    Cherian, M G

    1984-01-01

    Cadmium (Cd) is mainly accumulated in liver and kidney bound to metallothionein (MT) and excreted very slowly from the body. In chronic exposure, Cd is gradually transported from liver to kidney; the renal toxic effects appear when renal Cd concentration exceeds the critical concentration. In order to prevent the Cd-induced renal disease, it is important to control the movement of Cd to the kidney and its renal deposition. However, the chelation of Cd from liver is difficult because of the high affinity of intracellular MT for Cd. A number of chelating agents containing both carboxyl and thiol groups were able to mobilize and excrete Cd more easily in a short time (1/2 hr) after Cd exposure than longer times (24 hr), after MT synthesis. The renal deposition of Cd increased on BAL (2,3-dimercaptopropanol) treatment a short time (1/2 hr) after Cd exposure. However, it was observed that if BAL was administered 24 hr after Cd exposure, it could mobilize Cd from hepatic MT and increase the biliary excretion of Cd without any increase in renal Cd concentration. Studies using a number of structurally related thiols (mono-, di- and trithiols) showed that the major structural requirement for in vivo chelation of Cd from intracellular MT were the vicinal thiol groups on an aliphatic chain, and lipophilicity. BAL was the most effective of all the compounds studied and it did not mobilize Cd to the kidney, when most of the intracellular Cd was bound to MT. Furthermore, a delayed treatment with BAL or DTPA (diethylenetriamine pentaacetic acid) after synthesis of MT resulted in an increase in fecal or urinary excretion of Cd in rat model experiment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6734559

  5. Thermally deposited Ag-doped CdS thin film transistors with high-k rare-earth oxide Nd{sub 2}O{sub 3} as gate dielectric

    SciTech Connect

    Gogoi, P.

    2013-03-15

    The performance of thermally deposited CdS thin film transistors doped with Ag has been reported. Ag-doped CdS thin films have been prepared using chemical method. High dielectric constant rare earth oxide Nd{sub 2}O{sub 3} has been used as gate insulator. The thin film trasistors are fabricated in coplanar electrode structure on ultrasonically cleaned glass substrates with a channel length of 50 {mu}m. The thin film transistors exhibit a high mobility of 4.3 cm{sup 2} V{sup -1} s{sup -1} and low threshold voltage of 1 V. The ON-OFF ratio of the thin film transistors is found as 10{sup 5}. The TFTs also exhibit good transconductance and gain band-width product of 1.15 Multiplication-Sign 10{sup -3} mho and 71 kHz respectively.

  6. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles

    SciTech Connect

    Yantasee, Wassana; Hongsirikarn, Kitiya; Warner, Cynthia L.; Choi, Daiwon; Sangvanich, Thanapon; Toloczko, Mychailo B.; Warner, Marvin G.; Fryxell, Glen E.; Addleman, Raymond S.; Timchalk, Chuck

    2008-03-01

    Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics including toxic metals. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) has been developed. The metal detection involves rapid collection of dispersed metal-bound nanoparticles from a sample solution at a magnetic or electromagnetic electrode, followed by the stripping voltammetry of the metal in acidic medium. The sensors were evaluated as a function of solution pH, the binding affinity of Pb to DMSA-Fe3O4, the ratio of nanoparticles per sample volume, preconcentration time, and Pb concentrations. The effect of binding competitions between the DMSA-Fe3O4 and urine constituents for Pb on the sensor responses was studied. After 90s of preconcentration in samples containing 25 vol.% of rat urine and 0.1 g/L of DMSA-Fe3O4, the sensor could detect background level of Pb (< 1 ppb) and yielded linear responses from 0 to 50 ppb of Pb, excellent reproducibility (%R.S.D of 5.3 for seven measurements of 30 ppb Pb), and Pb concentrations comparable to those measured by ICP-MS. The sensor could also simultaneously detect background levels (< 1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.

  7. Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis

    NASA Astrophysics Data System (ADS)

    Lacoue-Labarthe, T.; Martin, S.; Oberhänsli, F.; Teyssié, J.-L.; Markich, S.; Jeffree, R.; Bustamante, P.

    2009-05-01

    Cephalopods play a key role in many marine trophic networks and constitute alternative fisheries resources, especially given the ongoing decline in finfish stocks. Along the European coast, the eggs of the cuttlefish Sepia officinalis are characterized by an increasing permeability of the eggshell during development, which leads to selective accumulation of essential and non-essential elements in the embryo. Temperature and pH are two critical factors that affect the metabolism of marine organisms in the coastal shallow waters. In this study, we are testing the effects of pH and temperature through a crossed (3×2) laboratory experiment. Seawater pH showed a strong effect on the egg weight and non-significant impact on the hatchlings weight at the end of development implying egg swelling process and embryo growth disturbances. The lower pH of incubation seawater of eggs, the more the hatchlings accumulated 110m Ag in their tissues. The 109Cd CF decreased with increasing pH and 65Zn CF reached the maximal values pH 7.85, independent of temperature. Our results suggest that pH and temperature affected both the permeability properties of the eggshell and the embryo metabolism. To the best of our knowledge, this is one of the first studies on the ocean acidification and ocean warming consequences on the metal uptake in marine organisms, stimulating further interest to evaluate the likely ecotoxicological impact of the global change on the early-life stage of the cuttlefish.

  8. Histopathological changes in relation to cadmium concentration in horse kidneys

    SciTech Connect

    Elinder, C.G.; Jonsson, L.; Piscator, M.; Rahnster, B.

    1981-10-01

    Histopathological changes in kidney cortex, as observed by light microscopy, are related to cadmium concentration in kidney cortex from 69 normal Swedish horses. Cadmium concentrations in kidney ranged from 11 to 186 ..mu..g Cd/g wet wt with an average of 60 ..mu..g Cd/g, which is considerably higher than those normally found in humans. The microscopical changes were rated and related to cadmium concentrations in kidneys by dose-response curves. A relationship existed between frequency of morphological changes and cadmium concentration in the renal cortex. There was no obvious relationship between age and frequency of histopathological changes. This indicates that in horse kidneys morphological changes occur at cadmium concentrations which are lower than the tentative critical level for humans of 200 ..mu..g Cd/g. It is concluded that horses constitute a population at risk for environmental cadmium contamination.

  9. Historical perspectives on cadmium toxicology

    SciTech Connect

    Nordberg, Gunnar F.

    2009-08-01

    The first health effects of cadmium (Cd) were reported already in 1858. Respiratory and gastrointestinal symptoms occurred among persons using Cd-containing polishing agent. The first experimental toxicological studies are from 1919. Bone effects and proteinuria in humans were reported in the 1940's. After World War II, a bone disease with fractures and severe pain, the itai-itai disease, a form of Cd-induced renal osteomalacia, was identified in Japan. Subsequently, the toxicokinetics and toxicodynamics of Cd were described including its binding to the protein metallothionein. International warnings of health risks from Cd-pollution were issued in the 1970's. Reproductive and carcinogenic effects were studied at an early stage, but a quantitative assessment of these effects in humans is still subject to considerable uncertainty. The World Health Organization in its International Program on Chemical Safety, WHO/IPCS (1992) (Cadmium. Environmental Health Criteria Document 134, IPCS. WHO, Geneva, 1-280.) identified renal dysfunction as the critical effect and a crude quantitative evaluation was presented. In the 1990's and 2000 several epidemiological studies have reported adverse health effects, sometimes at low environmental exposures to Cd, in population groups in Japan, China, Europe and USA (reviewed in other contributions to the present volume). The early identification of an important role of metallothionein in cadmium toxicology formed the basis for recent studies using biomarkers of susceptibility to development of Cd-related renal dysfunction such as gene expression of metallothionein in peripheral lymphocytes and autoantibodies against metallothionein in blood plasma. Findings in these studies indicate that very low exposure levels to cadmium may give rise to renal dysfunction among sensitive subgroups of human populations such as persons with diabetes.

  10. Ion conduction in the Ag{sub 2}HgI{sub 4}-Cu{sub 2}HgI{sub 4} systems doped with Cd{sup 2+}, K{sup +}, and Na{sup +}

    SciTech Connect

    Nair, S.M.; Yahya, A.I.; Ahmad, A.

    1996-03-01

    Ion conductivities of face centered cubic Ag{sub 2}HgI{sub 4}-Cu{sub 2}HgI{sub 4} systems doped with Cd{sup 2+}, K{sup +}, and Na{sup +} were measured. In 67 mol% Ag{sub 2}HgI{sub 4} solid solution doped with Cd{sup 2+} ions, the phase transition occurs at a lower temperature than in the parent compounds and the system shows higher conductivity. The increase in conductivity is discussed in terms of vacancies produced. K{sup +} doped Ag{sub 2}HgI{sub 4} exhibits higher conductivity prior to the phase transition, which is attributed to lattice loosening. A decrease in conductivity is observed above 140{degrees}C. This is interpreted in terms of anion framework collapse. Na{sup +} doped Ag{sub 2}HgI{sub 4} shows high conductivity for the high temperature phase because of the small size of Na{sup +} ions. The activation energy for ionic motion for all the samples is calculated from the graph of log({delta}T) versus 1/T.

  11. Cadmium in the shore crab Carcinus maenas: seasonal variation in cadmium content and uptake and elimination of cadmium after administration via food.

    PubMed

    Bjerregaard, Poul; Bjørn, Lars; Nørum, Ulrik; Pedersen, Knud L

    2005-03-25

    The uptake and assimilation efficiency of cadmium administered via the food in the shore crab Carcinus maenas were investigated together with elimination kinetics and seasonal variations in cadmium content. The majority of shore crabs assimilated between 41 and 86% of the cadmium administered in their food. More than 90% of the cadmium taken up from food was retained in midgut gland. Elimination of cadmium after uptake from one meal of radioactively labelled soft parts of blue mussels could be described by a three-compartment model (percent 109Cd-retained = 64 x e(-0.001107 x t) + 25 x e(-0.0385 x t)+11 x e(-0.888 x t)). The biological half-life for cadmium in the most slowly exchanging compartment (containing 64% of the body burden) was 626 days. Groups of male and female shore crabs were collected from an uncontaminated site in the period May till October and the concentrations of cadmium in midgut gland and gills were determined. Male crabs had higher cadmium concentrations in the midgut gland in June and August (mean 2.7 microg Cd g(-1) dry weight) than they had in May, September and October (mean 1.7 microg Cd g(-1) dry weight). Females generally had slightly lower cadmium concentrations in the midgut gland than the males, except for a relatively high concentration in May. The cadmium concentrations in gills generally ranged between 0.3 and 0.5 microg Cd g(-1) dry weight) except for male values in October (mean 1 microg Cd g(-1) dry weight). Some of the seasonal changes in cadmium content of the crabs might plausibly be explained by changes in cadmium uptake from water, i.e. changes during the moult cycle and changes in cadmium uptake rates from water brought about by changes in ambient factors such as salinity and temperature. However, uptake of cadmium from water and transfer to the midgut gland take place at a rate that is two orders of magnitude too low to account for the increase in the cadmium concentrations in midgut gland in male crabs between May and

  12. RISK ASSESSMENT AND MANAGEMENT OF ENVIRONMENTAL CADMIUM

    EPA Science Inventory


    Cadmium consumed in foods grown on soils contaminated by industrial Cd+Zn discharge has caused renal tubular dysfunction in
    exposed humans in discrete situations. However, lack of understanding about environmental Cd has caused wide concern that general
    populations may...

  13. Metallothionein protection of cadmium toxicity

    SciTech Connect

    Klaassen, Curtis D. Liu, Jie; Diwan, Bhalchandra A.

    2009-08-01

    The discovery of the cadmium (Cd)-binding protein from horse kidney in 1957 marked the birth of research on this low-molecular weight, cysteine-rich protein called metallothionein (MT) in Cd toxicology. MT plays minimal roles in the gastrointestinal absorption of Cd, but MT plays important roles in Cd retention in tissues and dramatically decreases biliary excretion of Cd. Cd-bound to MT is responsible for Cd accumulation in tissues and the long biological half-life of Cd in the body. Induction of MT protects against acute Cd-induced lethality, as well as acute toxicity to the liver and lung. Intracellular MT also plays important roles in ameliorating Cd toxicity following prolonged exposures, particularly chronic Cd-induced nephrotoxicity, osteotoxicity, and toxicity to the lung, liver, and immune system. There is an association between human and rodent Cd exposure and prostate cancers, especially in the portions where MT is poorly expressed. MT expression in Cd-induced tumors varies depending on the type and the stage of tumor development. For instance, high levels of MT are detected in Cd-induced sarcomas at the injection site, whereas the sarcoma metastases are devoid of MT. The use of MT-transgenic and MT-null mice has greatly helped define the role of MT in Cd toxicology, with the MT-null mice being hypersensitive and MT-transgenic mice resistant to Cd toxicity. Thus, MT is critical for protecting human health from Cd toxicity. There are large individual variations in MT expression, which might in turn predispose some people to Cd toxicity.

  14. Anomalous biogeochemical behavior of cadmium in subantarctic surface waters: Mechanistic constraints from cadmium isotopes

    NASA Astrophysics Data System (ADS)

    Gault-Ringold, Melanie; Adu, Toyin; Stirling, Claudine H.; Frew, Russell D.; Hunter, Keith A.

    2012-08-01

    Cadmium, a highly toxic metal, exhibits a nutrient-type profile in the oceans that is closely correlated to that of the major nutrients phosphate and nitrate. Despite its complexity, the relationship between cadmium and phosphate has been used to infer historic phosphate utilization and biological controls on oceanic CO2 concentrations. Cadmium isotopes offer the potential to constrain the mechanisms controlling cadmium cycling in the oceans, reducing uncertainty associated with the cadmium paleonutrient proxy. Using techniques in double spiking and MC-ICPMS, we report seasonal Cd isotopic and concentration data along with major nutrients and other essential trace metal (Fe, Zn, and Co) concentrations from subantarctic surface waters. We show, for the first time, a 50-fold seasonal decrease in dissolved cadmium concentrations in subantarctic waters that is due to biological uptake. However, this drawdown in Cd is decoupled from phosphate and shows no coincident shift in cadmium isotopic composition. These data, along with the preferential removal of Cd from surface waters relative to Zn, imply that cadmium is supply-limited to phytoplankton and may have a more significant biological role in these low Zn subantarctic surface waters than in regions with higher Zn concentrations.

  15. The new insights into cadmium sensing

    PubMed Central

    Chmielowska-Bąk, Jagna; Gzyl, Jarosław; Rucińska-Sobkowiak, Renata; Arasimowicz-Jelonek, Magdalena; Deckert, Joanna

    2014-01-01

    Cadmium (Cd) is non-essential heavy metal, which in excess, exhibits deleterious effects to the most of the organisms. Mobilization of defense mechanisms against this toxic agent requires rapid activation of signaling pathways. The article presents recent advances in the research concerning cadmium signal transduction in plants. New insights into the involvement of reactive oxygen species (ROS), nitric oxide (NO), plant growth regulators, and Cd-induced protein modifications are reviewed. Moreover, the role of recently recognized Cd-associated signal elements, including micro RNAs and several cis- and trans-acting elements is discussed. PMID:24917871

  16. Field Evidence of Cadmium Phytoavailability Decreased Effectively by Rape Straw and/or Red Mud with Zinc Sulphate in a Cd-Contaminated Calcareous Soil

    PubMed Central

    Li, Bo; Yang, Junxing; Wei, Dongpu; Chen, Shibao; Li, Jumei; Ma, Yibing

    2014-01-01

    To reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, and corn straw in combination with zinc fertilization on Cd extractability and phytoavailability to spinach, tomato, Chinese cabbage and radish were investigated in a calcareous soil with added Cd at 1.5 mg kg−1. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments themselves from 26% to 70%, which resulted in marked decrease by approximately from 34% to 77% in Cd concentration in vegetables. The amendments plus Zn fertilization further decreased the Cd concentration in vegetables. Also cruciferous rape straw was more effective than gramineous corn straw. In all treatments, rape straw plus red mud combined with Zn fertilization was most effective in decreasing Cd phytoavailability in soils, and it is potential to be an efficient and cost-effective measure to ensure food safety for vegetable production in mildly Cd-contaminated calcareous soils. PMID:25303439

  17. Field evidence of cadmium phytoavailability decreased effectively by rape straw and/or red mud with zinc sulphate in a Cd-contaminated calcareous soil.

    PubMed

    Li, Bo; Yang, Junxing; Wei, Dongpu; Chen, Shibao; Li, Jumei; Ma, Yibing

    2014-01-01

    To reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, and corn straw in combination with zinc fertilization on Cd extractability and phytoavailability to spinach, tomato, Chinese cabbage and radish were investigated in a calcareous soil with added Cd at 1.5 mg kg-1. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments themselves from 26% to 70%, which resulted in marked decrease by approximately from 34% to 77% in Cd concentration in vegetables. The amendments plus Zn fertilization further decreased the Cd concentration in vegetables. Also cruciferous rape straw was more effective than gramineous corn straw. In all treatments, rape straw plus red mud combined with Zn fertilization was most effective in decreasing Cd phytoavailability in soils, and it is potential to be an efficient and cost-effective measure to ensure food safety for vegetable production in mildly Cd-contaminated calcareous soils. PMID:25303439

  18. Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis

    NASA Astrophysics Data System (ADS)

    Lacoue-Labarthe, T.; Martin, S.; Oberhänsli, F.; Teyssié, J.-L.; Markich, S.; Ross, J.; Bustamante, P.

    2009-11-01

    Cephalopods play a key role in many marine trophic networks and constitute alternative fisheries resources, especially given the ongoing decline in finfish stocks. Along the European coast, the eggs of the cuttlefish Sepia officinalis are characterized by an increasing permeability of the eggshell during development, which leads to selective accumulation of essential and non-essential elements in the embryo. Temperature and pH are two critical factors that affect the metabolism of marine organisms in the coastal shallow waters. In this study, we investigated the effects of pH and temperature through a crossed (3×2; pH 8.1 (pCO2, 400 ppm), 7.85 (900 ppm) and 7.6 (1400 ppm) at 16 and 19°C, respectively) laboratory experiment. Seawater pH showed a strong effect on the egg weight and non-significant impact on the weight of hatchlings at the end of development implying an egg swelling process and embryo growth disturbances. The lower the seawater pH, the more 110 mAg was accumulated in the tissues of hatchlings. The 109Cd concentration factor (CF) decreased with decreasing pH and 65Zn CF reached maximal values pH 7.85, independently of temperature. Our results suggest that pH and temperature affected both the permeability properties of the eggshell and embryonic metabolism. To the best of our knowledge, this is one of the first studies on the consequences of ocean acidification and ocean warming on metal uptake in marine organisms, and our results indicate the need to further evaluate the likely ecotoxicological impact of the global change on the early-life stages of the cuttlefish.

  19. Effects of warming on uptake and translocation of cadmium (Cd) and copper (Cu) in a contaminated soil-rice system under Free Air Temperature Increase (FATI).

    PubMed

    Ge, Li-Qiang; Cang, Long; Liu, Hui; Zhou, Dong-Mei

    2016-07-01

    Global warming has received growing attentions about its potential threats to human in recent, however little is known about its effects on transfer of heavy metals in agro-ecosystem, especially for Cd in rice. Pot experiments were conducted to evaluate Cd/Cu translocation in a contaminated soil-rice system under Free Air Temperature Increase (FATI). The results showed that warming gradually decreased soil porewater pH and increased water-soluble Cd/Cu concentration, reduced formation of iron plaque on root surface, and thus significantly increased total uptake of Cd/Cu by rice. Subsequently, warming significantly promoted Cd translocation from root to shoot, and increased Cd distribution percentage in shoot, while Cu was not significantly affected. Enhanced Cd uptake and translocation synergistically resulted in higher rice grain contamination with increasing concentration from 0.27 to 0.65 and 0.14-0.40 mg kg(-1) for Indica and Japonica rice, respectively. However increase of Cu in brown grain was only attributed to its uptake enhancement under warming. Our study provides a new understanding about the food production insecurity of heavy metal contaminated soil under the future global warming. PMID:27093634

  20. Accumulation of cadmium from the dissolved and particulate phases by the freshwater mussel, Elliptio complanata

    SciTech Connect

    Yankovich, T.

    1995-12-31

    The primary objective of the current study was to quantify cadmium accumulation by Elliptio complanata from suspended particulates relative to the dissolved phase. Results obtained from this study suggest that particle physico-chemical properties and their associated cadmium concentrations may play a role in cadmium bioaccumulation by E. complanata. This accumulation of cadmium is due to direct uptake from the particulate phase and/or accumulation of dissolved cadmium which has leached off particles. The importance of the particulate phase in cadmium uptake is related to the type of particle to which mussels are exposed. No significant cadmium bioaccumulation was observed when mussels consumed Cd-contaminated kaolinite or illite clay particles. Significant uptake was observed by mussels exposed to Cd-contaminated montmorillonite clay particles at high bound cadmium levels; however, the dissolved phase accounted for all observed Cd accumulation, suggesting that equilibrium partitioning into the aqueous phase represented the key route of cadmium uptake from clay particles. Cadmium uptake did not occur when mussels were exposed to natural sediment particles containing low organic carbon concentrations, but significant bioaccumulation was observed when mussels consumed Cd-contaminated sediments with relatively high organic carbon contents. Dissolved cadmium concentrations present in sediment suspensions with low and high organic carbon contents were similar, suggesting that the particulate phase was the source of cadmium uptake. These results indicate that particle processing and selective feeding behaviors by filter-feeding bivalves may play a key role in determining the relative importance of dissolved and particulate phases in cadmium bioaccumulation.

  1. Speciation and mobility of cadmium in straw and wood combustion fly ash.

    PubMed

    Hansen, H K; Pedersen, A J; Ottosen, L M; Villumsen, A

    2001-10-01

    Two fly ashes from biomass combustion have been analysed regarding cadmium speciation and mobility. A fly ash from straw combustion contained 10 mg Cd/kg dry matter, and around 50% of the cadmium was leachable in water. The possible main speciation of cadmium in this fly ash was CdCl2. When adding this fly ash to agricultural soil a threat for groundwater contamination and plant uptake is existing. A fly ash from wood chip combustion had 28.6 mg Cd/kg dry matter. In this fly ash, the cadmium was bound more heavily, with only small amounts of cadmium leached in mild extractants. A possible speciation of cadmium in this fly ash was as oxide or as CdSiO3. Long-term effects and accumulation of cadmium could be a problem when adding this fly ash to agricultural or forest soils. PMID:11572586

  2. Cadmium uptake by floating macrophytes.

    PubMed

    Maine, M A; Duarte, M V; Suñé, N L

    2001-08-01

    Cd uptake capacity of a group of floating macrophytes (Salvinia herzogii, Pistia stratiotes, Hydromistia stolonifera and Eichhornia crassipes) was determined in outdoors experiments during the lowest temperature period of the year. Although all studied species were highly efficient in the Cd uptake, Pistia stratiotes was selected for further research because of its superior performance and its higher average relative growth rate. Cadmium% removal by Pistia stratiotes was greater in the first 24 h of the experiments (63, 65, 72 and 74% of the added Cd for 1, 2, 4 and 6 mg Cd 1(-1), respectively). After 31 days of growth, Pistia statiotes efficiently removed Cd at the studied concentrations. The macrophyte was able to keep its capacity for Cd removal even though some toxicity symptoms appeared at 4 and 6 mg Cd 1(-1). The greater the initial concentration, the greater Cd bioaccumulation rates. The increase of Cd concentration in plant tissues occurred especially in roots and was linearly related to the quantity of Cd added. Cd sorption by roots is faster than translocation to the plant aerial part and it occurs mainly during the first 24h. PMID:11456161

  3. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    SciTech Connect

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona; and others

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.

  4. Syntheses, crystal structures and fluorescent properties of Cd(II), Hg(II) and Ag(I) coordination polymers constructed from 1H-1,2,4-triazole-1-acetic acid

    SciTech Connect

    Ding Degang; Xie Lixia; Fan Yaoting; Hou Hongwei; Xu Yan

    2009-06-15

    Three new d{sup 10} coordination polymers, namely [Cd(taa)Cl]{sub n}1, [Hg(taa)Cl]{sub n}2, and [Ag{sub 1.5}(taa)(NO{sub 3}){sub 0.5}]{sub n}3 (taa=1H-1,2,4-triazole-1-acatate anion) have been prepared and characterized by elemental analysis, IR, and single crystal X-ray diffraction. Compound 1 consists of two-dimensional layers constructed by carboxyl-linked helical chains, which are further linked through carboxyl group to generate a unique 3D open framework. Topological analysis reveals that the structure of 1 can be classified as an unprecedented (3,8)-connected network with the Schlaefli symbol (4.5{sup 2}){sub 2}(4{sup 2}.5{sup 8}.6{sup 14}.7{sup 3}.8). Compound 2 manifests a doubly interpenetrated decorated alpha-polonium cubic network with the Schlaefli symbol of (4{sup 10}.6{sup 2}.8{sup 3}). Compound 3 consists of 2D puckered layers made up of Ag centers and taa{sup -} bridges. In addition, all of these compounds are photoluminescent in the solid state with spectra that closely resemble those of the ligand precursor. - Graphical abstract: Three new compounds based on 1H-1,2,4-triazole-1-acetic acid and Cd(II), Hg(II) and Ag(I) salts display luminescent properties and may be potential candidates for luminescent materials.

  5. Cadmium minimization in wheat: A critical review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Abbas, Tahir; Zia-Ur-Rehman, Muhammad; Hannan, Fakhir; Keller, Catherine; Al-Wabel, Mohammad I; Ok, Yong Sik

    2016-08-01

    Cadmium (Cd) accumulation in wheat (Triticum aestivum L.) and its subsequent transfer to food chain is a major environmental issue worldwide. Understanding wheat response to Cd stress and its management for aiming to reduce Cd uptake and accumulation in wheat may help to improve wheat growth and grain quality. This paper reviewed the toxic effects, tolerance mechanisms, and management of Cd stress in wheat. It was concluded that Cd decreased germination, growth, mineral nutrients, photosynthesis and grain yield of wheat and plant response to Cd toxicity varies with cultivars, growth conditions and duration of stress applied. Cadmium caused oxidative stress and genotoxicity in wheat plants. Stimulation of antioxidant defense system, osmoregulation, ion homeostasis and over production of signalling molecules are important adaptive strategies of wheat under Cd stress. Exogenous application of plant growth regulators, inorganic amendments, proper fertilization, silicon, and organic, manures and biochar, amendments are commonly used for the reduction of Cd uptake in wheat. Selection of low Cd-accumulating wheat cultivars, crop rotation, soil type, and exogenous application of microbes are among the other agronomic practices successfully employed in reducing Cd uptake by wheat. These management practices could enhance wheat tolerance to Cd stress and reduce the transfer of Cd to the food chain. However, their long-term sustainability in reducing Cd uptake by wheat needs further assessment. PMID:27062345

  6. Removal of CdTe in acidic media by magnetic ion-exchange resin: a potential recycling methodology for cadmium telluride photovoltaic waste.

    PubMed

    Zhang, Teng; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste. PMID:25128764

  7. Interaction of cadmium with phosphate on goethite

    SciTech Connect

    Venema, P.; Hiemstra, T.; Riemsdijk, W.H. van

    1997-08-01

    Interactions between different ions are of importance in understanding chemical processes in natural systems. In this study simultaneous adsorption of phosphate and cadmium on goethite is studied in detail. The charge distribution (CD)-multisite complexation (MUSIC) model has been successful in describing extended data sets of cadmium adsorption and phosphate adsorption on goethite. In this study, the parameters of this model for these two data sets were combined to describe a new data set of simultaneous adsorption of cadmium and phosphate on goethite. Attention is focused on the surface speciation of cadmium. With the extra information that can be obtained from the interaction experiments, the cadmium adsorption model is refined. For a perfect description of the data, the singly coordinated surface groups at the 110 face of goethite were assumed to form both monodentate and bidentate surface species with cadmium. The CD-MUSIC model is able to describe data sets of both simultaneous and single adsorption of cadmium and phosphate with the same parameters. The model calculations confirmed the idea that only singly coordinated surface groups are reactive for specific ion binding.

  8. Cadmium-Induced Toxicity and the Hepatoprotective Potentials of Aqueous Extract of Jessiaea Nervosa Leaf

    PubMed Central

    Ibiam, Ama Udu; Ugwuja, Emmanuel Ike; Ejeogo, Christ; Ugwu, Okechukwu

    2013-01-01

    Purpose: Hepatoprotective potentials of Jussiaea nervosa leaf extract against Cadmium-induced hepatotoxicity were investigated. Methods: Forty albino rats were randomly assigned into groups A-G with 4 rats in each of the groups A-F. Group A served as control and were given feed only while rats in groups B-F were orally exposed to varying concentrations of cadmium for six weeks. Effects of cadmium were most significant at 12 mg/Kg body weight (BW), and this dose was used for subsequent test involving oral administration of Jussiaea nervosa leaf extracts. In this segment, group G (n= 16) was sub-divided into four: G1-G4, with each sub-group containing four rats. Rats in sub-group G1 were given cadmium and feed only and served as positive control. Rats in sub-groups G2, G3, and G4 were given cadmium and 20, 50 and 100g/kg BW of Jussiaea nervosa extract, respectively, for six weeks. Blood and liver were analysed using standard laboratory techniques and methods. Results: Liver function parameters (ALT, AST, ALP, bilirubin) were significantly (p<0.05) elevated in exposed rats in comparison to the controls, except for total protein and albumin, which were significantly decreased. Histopathological assessment reveals renal pathology in exposed rats in sharp contrast with the controls. Jussiaea nervosa extract however lowered the values of liver function parameters with 100mg/Kg BW dose producing the highest ameliorative effects. Similarly, the serum albumin and total protein significantly (p<0.05) improved with normal liver architecture. Conclusion: The results show the hepatoprotective potentials of Jussiaea nervosa extract against Cd toxicity. PMID:24312853

  9. Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils.

    PubMed

    Lan, Jichuan; Zhang, Shirong; Lin, Haichuan; Li, Ting; Xu, Xiaoxun; Li, Yun; Jia, Yongxia; Gong, Guoshu

    2013-05-01

    Chelant assisted phytoextraction has been proposed to enhance the efficiency of remediation. This study evaluated the effects of biodegradable ethylene diamine tetraacetate (EDDS), nitrilotriacetic (NTA) and anionic polyacrylamide (APAM) on the tolerance and uptake of Siegesbeckia orientalis L. at 10 and 100 mg kg(-1) Cd-contaminated soils. On the 80th and 90th days of transplanting, pots were treated with EDDS and NTA at 0 (control), 1 and 2 mmol kg(-1) soils, and APAM at 0 (control), 0.07 and 0.14 g kg(-1). Generally, the root and shoot biomass of S. orientalis in all treatments reduced not significantly compared with the control, and the activities of peroxidase and catalase in leaves generally increased by the application of chelants (P<0.05). The concentrations of Cd in the shoots were increased significantly by addition of all chelants. As a result, the Cd accumulation of S. orientalis under treatments with higher dosages of the three chelants on the 80th day were 1.40-2.10-fold and 1.12-1.25-fold compared to control at 10 and 100 mg kg(-1) Cd, respectively. Under the addition of 2 mmol kg(-1) NTA on the 80th day, the highest metal extraction ratio reached 1.2% and 0.4% at 10 and 100 mg kg(-1) Cd soils, respectively. Therefore, the applications of EDDS, NTA and APAM may provide more efficient choices in chemical-enhanced phytoextraction. PMID:23466280

  10. Reversibility of cadmium-induced health effects in rabbits

    SciTech Connect

    Nomiyama, K.; Nomiyama, H.

    1984-03-01

    Twenty-one male rabbits were divided into three groups: rabbits of two groups were given pelleted food containing cadmium chloride at a dose level of 300 ..mu..g Cd/g over periods of 44 or 19 weeks. Rabbits of the last group were given ordinary commercial pelleted food and served as controls. Cadmium increased urinary protein and amino acid by week 19 and increased it to a remarkably high level by week 44. After cessation of cadmium exposure, rabbits of the first group (44 weeks exposure group) showed only little recovery from cadmium health effects: proteinuria and aminoaciduria were slightly improved. Depressed hepatic functions were also slightly improved, but did not return to the control level in 24 weeks. Fat and bone metabolism also remained depressed below the control level. Anemia did not also readily recover. On the other hand, rabbits of the second group (19 weeks exposure) recovered from the effects of cadmium: proteinuria and aminoaciduria in most animals disappeared soon after the end of cadmium exposure, plasma GPT fell after 1 week, and hemoglobin and hematocrit returned to normal in 6-11 weeks. The above results show that after cessation of cadmium exposure, mild cadmium-induced health effects were reversible in a short period, while more severe effects were not readily reversible. High performance liquid chromatographic (HPLC) profiles of renal and hepatic cadmium-thionein (Cd-MT) during and after exposure to cadmium showed no correlation to the degree of cadmium health effects, and therefore, did not help to elucidate mechanisms of the recovery from cadmium-induced health effects, probably because cadmium not bound with metallothionein (non-MT-Cd) is responsible for inducing renal effects. 31 references, 4 figures.

  11. Concentration of Cadmium in Cacao Beans and its Relationship with Soil Cadmium in Southern Ecuador

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concentration of cadmium (Cd) in cacao (Theobroma cacao, L.) beans above a critical level (0.6 mg kg-1 established by the European Union) has raised concerns of safety in the consumption of cacao-based chocolate (dark chocolate). Currently, little is available regarding Cd concentration in soil,...

  12. COMPARATIVE HEPATOTOXICITY OF INHALED CADMIUM CHLORIDE AND CADMIUM OXIDE (JOURNAL VERSION)

    EPA Science Inventory

    The purpose of the study was to determine the toxicity of inhaled cadmium (Cd) on hepatic biochemical function. Male rats and rabbits were exposed for 2 hr to concentrations of 0.25, 0.45, and 4.5 mg Cd/cu m. Xenobiotic metabolizing enzymes, serum and liver enzymes, and histologi...

  13. Cadmium concentrations in tobacco and tobacco smoke

    SciTech Connect

    Scherer, G.; Barkemeyer, H.

    1983-02-01

    The amount of cadmium in tobacco depends on the variety and origin of the plant as well as on the analytical method used to determine cadmium. In the literature, cadmium concentrations in tobacco of between 0.5 and 5 ppm are reported. Modern German cigarette tobacco contains about 0.5-1.5 micrograms cadmium/cigarette. Of importance for the smoker is the amount of the metal in the mainstream smoke. The cadmium level in the mainstream smoke of modern cigarettes is reduced by means of filters and other construction features. The average Cd value of German filter cigarettes is less than 0.1 microgram/cigarette in mainstream smoke. An average daily intake of about 1 microgram cadmium by smoking 20 cigarettes can be calculated on the basis of an experimentally proved pulmonary retention rate of 50%. Pulmonary resorption rates relevant to uptake rates of cadmium by smoking are discussed. It can be assumed that cadmium uptake by smoking modern cigarettes has been reduced because of modifications in tobacco processing and cigarette construction in the last few decades.

  14. Temperature dependence of the fundamental band gap parameters in cadmium-rich ZnxCd1-xSe using photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gupta, Lalita; Rath, S.; Abbi, S. C.; Jain, F. C.

    2003-10-01

    Thin films of ternary ZnxCd1-xSe were deposited on GaAs (100) substrate using metalorganic- chemical-vapour-deposition (MOCVD) technique. Temperature dependence of the nearband- edge emission from these Cd-rich ZnxCd1-x Se (for x _ 0_025, 0.045) films has been studied using photoluminescence spectroscopy. Relevant parameters that describe temperature variation of the energy and broadening of the fundamental band gap have been evaluated using various models including the two-oscillator model, the Bose-Einstein model and the Varshni model. While all these models suffice to explain spectra at higher temperatures, the two-oscillator model not only explains low temperature spectra adequately but also provides additional information concerning phonon dispersion in these materials.

  15. Cadmium in wheat grain: its nature and fate after ingestion

    SciTech Connect

    Wagner, G.J.; Nulty, E.; LeFevre, M.

    1984-01-01

    Cadmium intake in humans derives primarily from vegetable foods, yet the extent to which the chemical form and dose of cadmium in such foods influences the fate and toxicity of this metal is poorly understood. We have compared the fate in mice of trace levels-approximating that in agriculturally produced grain-and high levels of cadmium supplied as wheat grain with that of cadmium supplied as CdCl/sub 2/. The amounts and forms of the metal in kidney and liver, target organs in cadmium accumulation, were compared. Results indicate that, in mice, cadmium orally administered as grain and that as CdCl/sub 2/ have a similar fate in terms of organ distribution and the nature of the Cd-forms in kidney and liver. A low dose of either form resulted in higher kidney versus liver cadmium. Preliminary characterization studies indicate that cadmium in wheat grain occurs primarily as an 11,000-dalton, aqueous-soluble complex, which is not inducible by cadmium. 23 references, 3 figures, 1 table.

  16. Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging.

    PubMed

    Deng, Dawei; Cao, Jie; Qu, Lingzhi; Achilefu, Samuel; Gu, Yueqing

    2013-04-14

    Exploring the synthesis and biomedical applications of biocompatible quantum dots (QDs) is currently one of the fastest growing fields of nanotechnology. Hence, in this work, we present a facile approach to produce water-soluble (cadmium-free) quaternary Zn-Ag-In-S (ZAIS) QDs. Their efficient photoluminescence (PL) emissions can be tuned widely in the range of 525-625 nm by controlling the size and composition of the QDs with the PL quantum yields (QYs) of 15-30%. These highly luminescent ZAIS QDs are less toxic due to the absence of highly toxic cadmium, and can be versatilely modified by a DHLA-PEG-based ligand. Importantly, after being modified by tumor cell-specific targeting ligands (e.g., folate and RGD peptide), the PEGylated quaternary QDs show potential applications in tumor cell imaging as a promising alternative for Cd-based QDs. PMID:23450151

  17. Effect of metallothionein core promoter region polymorphism on cadmium, zinc and copper levels in autopsy kidney tissues from a Turkish population

    SciTech Connect

    Kayaalti, Zeliha; Mergen, Goerkem; Soeylemezoglu, Tuelin

    2010-06-01

    Metallothioneins (MTs) are metal-binding, low molecular weight proteins and are involved in pathophysiological processes like metabolism of essential metals, metal ion homeostasis and detoxification of heavy metals. Metallothionein expression is induced by various heavy metals especially cadmium, mercury and zinc; MTs suppress toxicity of heavy metals by binding themselves to these metals. The aim of this study was to investigate the association between the - 5 A/G metallothionein 2A (MT2A) single nucleotide polymorphism (SNP) and Cd, Zn and Cu levels in the renal cortex from autopsy cases. MT2A core promoter region - 5 A/G SNP was analyzed by PCR-RFLP method using 114 autopsy kidney tissues and the genotype frequencies of this polymorphism were found as 87.7% homozygote typical (AA), 11.4% heterozygote (AG) and 0.9% homozygote atypical (GG). In order to assess the Cd, Zn and Cu levels in the same autopsy kidney tissues, a dual atomic absorption spectrophotometer system was used and the average levels of Cd, Zn and Cu were measured as 95.54 {+-} 65.58 {mu}g/g, 181.20 {+-} 87.72 {mu}g/g and 17.14 {+-} 16.28 {mu}g/g, respectively. As a result, no statistical association was found between the - 5 A/G SNP in the MT2A gene and the Zn and Cu levels in the renal cortex (p > 0.05), but considerably high accumulation of Cd was monitored for individuals having AG (151.24 {+-} 60.21 {mu}g/g) and GG genotypes (153.09 {mu}g/g) compared with individuals having AA genotype (87.72 {+-} 62.98 {mu}g/g) (p < 0.05). These results show that the core promoter region polymorphism of metallothionein 2A increases the accumulation of Cd in human renal cortex.

  18. Direct examination of cadmium bonding in rat tissues dosed with mine wastes and cadmium-containing solutions

    SciTech Connect

    Diacomanolis, V.; Ng, J. C.; Sadler, R.; Harris, H. H.; Nomura, M.; Noller, B. N.

    2010-06-23

    Direct examination by XANES and EXAFS of metal bonding in tissue can be demonstrated by examining cadmium uptake and bonding in animal tissue maintained at cryogenic temperatures. XANES at the K-edge of cadmium were collected at the Photon Factory Advanced Ring (PF-AR), NW10A beam line at KEK-Tsukuba-Japan. Rats fed with 1g mine waste containing 8-400 mg/kg cadmium per 200g body weight (b.w.) or dosed by oral gavage with either cadmium chloride solution alone (at 6 mg/kg b.w.) or in combination with other salts (As, Cu or Zn), 5 days/week for 6 weeks, had 0.1-7.5 and 8-86 mg/kg cadmium in the liver or kidney, respectively. Rats given intraperitoneally (ip) or intravenously (iv) 1-4 times with 1 mg/kg b.w. cadmium solution had 30-120 mg/kg cadmium in the liver or kidney. Tissues from rats were kept and transferred at cryogenic temperature and XANES were recorded at 20 K. The spectra for rat liver samples suggested conjugation of cadmium with glutathione or association with the sulfide bond (Cd-S) of proteins and peptides. EXAFS of rat liver fed by Cd and Zn solutions showed that Cd was clearly bound to S ligands with an inter-atomic distance of 2.54 A ring for Cd-S that was similar to cadmium sulfide with an inter-atomic distance of 2.52 A ring for Cd-S. Liver or kidney of rats fed with mine wastes did not give an edge in the XANES spectra indicating little uptake of cadmium by the animals. Longer and higher dosing regimen may be required in order to observe the same Cd-S bond in the rat tissue from mine wastes, including confirmation by EXAFS.

  19. Cadmium in zinc deposits: Economic geology of a polluting element

    SciTech Connect

    Schwartz, M.O.

    2000-05-01

    The chief host of cadmium in zinc deposits is sphalerite, the cadmium content of which depends on the type of deposit. Sphalerite from Mississippi Valley-type (MVT) deposits has high cadmium concentrations whereas sphalerite from exhalative deposits has low cadmium concentrations. The Cd content of sphalerite depends on the Cd/Zn ratio, ligand activities, and temperature of the ore-forming fluids. The combined effect of variation of temperature, pH, total activity of reduced sulfur, and activity of Cl{sup {minus}} cannot by itself account for either Cd depletion (exhalative deposits) or Cd enrichment (MVT deposits). Variations in the Cd/Zn ratio of the fluid have a significant effect in determining that of sphalerite. Basinal brines, which can be considered to be the recent equivalents of MVT fluids, have high Cd/Zn ratios, and active exhalative systems are characterized by low Cd/Zn ratios. Probably the differences in sphalerite composition between the different deposit types are less a function of temperature and ligand activities than Cd/Zn ratio of the ore-forming fluids. In the hydrothermal environment, the Cd/Zn ratio is generally not high enough to allow crystallization of cadmium sulfides (greenockite or hawleyite). The abundance of greenockite in the supergene alteration zone of hydrothermal zinc deposits can be explained on the basis of Zn scavenging by crystallizing smithsonite.

  20. Chemical speciation of cadmium: an approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated concentration of cadmium (Cd) in cacao beans has raised serious concerns about the safety of chocolate consumption. Accumulation of Cd cacao bean in southern Ecuador has been reported to relate soil contamination. In this study, soil fractionation was conducted to identify available Cd poo...

  1. Chemical speciation of cadmium: an approach to evaluate plant-available cadmium in ecuadorian soils under cacao production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated concentration of cadmium (Cd) in cacao beans has raised serious concerns about the safety of chocolate consumption. Accumulation of Cd cacao bean in southern Ecuador has been reported to relate soil contamination. In this study, soil fractionation was conducted to identify available Cd poo...

  2. CADMIUM IN BLOOD AND URINE AMONG SMOKERS AND NON-SMOKERS WITH HIGH CADMIUM INTAKE VIA FOOD

    EPA Science Inventory

    In New Zealand a species of oyster (Ostrea lutaria) consumed widely contains on an average 5 micro g Cd/g wet weight. In this study the cadmium intake and blood and urinary cadmium levels in a group of 78 people with a known high oyster consumption has been investigated. A second...

  3. EFFECTS OF CADMIUM ON THE REPRODUCTIVE AXIS OF JAPANESE MEDAKA

    EPA Science Inventory

    Cadmium (Cd) is a ubquitous element and a significant inorganic pollutant that has previously been found to bioaccumulate in reproductive organs of fish and disrupt important endocrine processes, especially those involved in synthesis, release and metabolism of hormones. Clearly,...

  4. Resistance to cadmium ions and formation of a cadmium-binding complex in various wild-type yeasts.

    PubMed

    Inouhe, M; Sumiyoshi, M; Tohoyama, H; Joho, M

    1996-04-01

    The resistance to cadmium ions (Cd-resistance) and possible formation of cadmium-binding complexes were examined in eight different wild-type yeasts. Saccharomyces exiguus, Pichia farinosa, Torulaspora delbrueckii and Schizosaccharomyces octosporus exhibited partial Cd-resistance, as compared to the Cd-resistant strain 301N and the Cu-resistant but Cd-sensitive strain X2180-1B of Saccharomyces cerevisiae. Saccharomyces carlsbergensis, Pichia mogii, Zygosaccharomyces rouxii and Kluyveromyces lactis were all Cd-sensitive. The partially Cd-sensitive species, with the exception of S. exiguus, accumulated Cd2+ ions in the cytoplasmic fraction to varying extents. This fraction from S. octosporus included a Cd-binding complex that contained (gamma EC)nG peptides known as cadystins or phytochelatins, while P. farinosa and T. delbrueckii synthesized Cd-binding proteins that were similar to the Cd-metallothionein produced by S. cerevisiae 301N in terms of molecular weight and amino acid composition. These results suggest that such cytoplasmic molecules play a role in the Cd-tolerance of the above three species of yeast. S. exiguus retained most cadmium in the cell wall fraction and no Cd-binding complex was found in the cytoplasm, an indication of the important role of the cell wall in its Cd-tolerance. Different modes of binding of Cd2+ ions appear to be involved in the Cd-resistance of wild-type yeasts and fungi. PMID:8673342

  5. Formation of Defected Cadmium Ferrite during Hydrothermal Storage of Cadmium-Iron Hydroxides

    NASA Astrophysics Data System (ADS)

    Wolski, W.; Wolska, E.; Kaczmarek, J.

    1994-05-01

    The storage of amorphous coprecipitated Cd(OH) 2 · 2Fe(OH) 3 gel in mother liquor at 150 ± 2°C for 20 hr leads to a crystalline species which, according to X-ray analysis, is composed of cadmium hydroxide nitrate, Cd 3(OH) 5NO 3, cadmium hydroxide, βCd(OH) 2, and a strongly ferrimagnetic spinel phase. The Curie point at 270-280°C was found by thermomagnetic analysis. At that temperature the decomposition of the spinel phase and of the accompanying nonmagnetic phases takes place. IR spectra indicate that during thermomagnetic recording the liberated cadmium oxide and iron oxide form antiferromagnetic cadmium ferrite, with frequencies somewhat displaced in comparison to CdFe 2O 4 annealed at 1000°C. The results indicate that the ferrimagnetic phase (having spinel structure, a unit-cell parameter a of about 8.37 ± 0.01 Å, and a Tc point differing by more than 300°C from that of pure maghemite, γFe 2O 3) is likely to be a defected solid solution of maghemite and cadmium ferrite, of the formula Cd 2+xFe 3+1- x [Fe 3+(5+ x)/3 □ (1- x)/3 ]O 4.

  6. Effect of cadmium on symbiotic soybean plants

    SciTech Connect

    Borges, A.C.; Wollum, A.G. II

    1981-04-01

    The potential for environmental contamination by cadmium (Cd) has increased significantly in recent years. Since Cd may be hazardous to living systems, a study was conducted to investigate: (1) the existence of Rhizobium japonicum strains tolerant to Cd, (2) the Cd effect on the symbiosis between host soybean plants (Glycine max (L.) Merr.) and R. japonicum strains with different Cd tolerances, and (3) interactions and distribution of Cd and other elements in the host when biomass is decreased by Cd. The existence of R. japonicum strains tolerant to Cd was assessed by comparing growth curves of 10 different strains growing in a basal medium with gluconate, yeast extract, L-arabinose, and Cd (0, 3.5, 7, 14, and 28 ..mu..g/ml). Strain 3Ilb110 (110) exhibited a tolerance to Cd after an initial lag in growth, while strain 3Ilb123 (123) was susceptible. Strains 110 and 123 were used to inoculate plants growing in nutrient solution with Perlite as a support medium to evaluate the plant-rhizobial interactions in the presence of 0, 2.2, 6.7, 10.1, and 20.2 ..mu..g Cd/ml, respectively. Plants were harvested and tops, roots, and nodules were analyzed 23 days after starting Cd application. Cadmium decreased dry matter production of tops, roots, and nodules. Plants inoculated with strain 123 accumulated significantly more dry matter in nodules than those with strain 110. However, in the presence of 0 and 2.2 ..mu..g Cd/ml, plants innoculated with strain 110 accumulated significantly more N than plants innoculated with strain 123. Nutrient imbalances were observed in the presence of Cd. It is suggested that the interactions of Cd with some nutrients may contribute to Cd toxicity in soybean plants. In this study the most pronounced Cd effect was on Fe and Mn nutrition, rather than Zn as had been previously reported.

  7. Solvothermal Process Assisted Sensitization of 1D Anodized TiO2 Nanotubes with 0D Cadmium Chalcogenides (CdTe, CdS) for Efficient Solar to Clean Energy Generation

    NASA Astrophysics Data System (ADS)

    Sarker, Swagotom

    The creation of an n-n heterojunction between TiO2 nanotubes (T_NT) and CdTe nanocrystals (which mostly exist as p-type) is crucial for realizing the benefits of efficient directional charge transport in a photoanode of 1D/0D architecture. The presented one-pot solvothermal approach leverages temperature control to achieve linker-free spatial distribution of CdTe nanocrystals (NCs) on T_NT resulting in highly efficient optical and photoelectrochemical responses. As a result of this positive outcome, a comparative study between the solvothermal approach and the linker mediated approach was performed on water oxidation with CdS NC decorated T_NT. Solvothermally synthesized T_NT/CdS photoelectrode presents ˜600% higher value of short-circuit current density (Isc) than that of the plain T_NT (0.95 mA/cm2); in addition, it demonstrates 4.20-fold increased applied-bias-to photoconversion efficiency (ABPE) in comparison with the lone T_NT (0.77%). However, linker mediated T_NT/MPA-CdS photoelectrode exhibits relatively lower value of I sc (2.51 mA/cm2) and ABPE (1.79 %).

  8. Cadmium transport and toxicity in isolated perfused renal proximal tubules

    SciTech Connect

    Robinson, M.E.K.

    1991-01-01

    Cadmium is a potent toxicant preferentially accumulated in the renal cortex of humans and other animals. To assess the renal toxicity of inorganic cadmium, isolated segments (S1, S2, and S3) of rabbit renal proximal tubules were perfused with various concentrations of unlabeled cadmium chloride (CdCl[sub 2]) and a vital dye (FD C green). The tubular epithelial cells were observed under the light microscope for cellular injury and necrosis. Cellular swelling, luminal membrane blebbing, and cellular vacuolization were indicators of cellular injury, and dye uptake was indicative of cellular necrosis. To determine lumen-to-bath transport rates for cadmium, the segments were perfused with a mixture of [sup 109]CdCl[sub 2] and [sup 3]H-L-glucose; unlabeled CdCl[sub 2] was added when necessary to vary the total cadmium concentration from 1.5 [mu]M to 2000 [mu]M. Immediately after perfusion the tubules were extracted with 3% trichoroacetic acid (TCA) or with a modified Ringer's buffer of reduced osmolality to determine the fate of the cadmium removed from the lumen. Based on the toxicant indicators, increased dye uptake, increased luminal membrane blebbing, and increased vacuole formation, as the cadmium concentration was increased, cadmium was found to show toxicity to renal tubular cells at concentrations greater than 500 [mu]M. In transport experiments, increasing the cadmium concentration causes an increase in the leak of L-glucose, also indicating toxicity. A clear imbalance exists between the rate of disappearance of cadmium from the lumen and the rate of appearance in the bath for all three tubular segments. Cadmium appears to bind cellular membrane proteins, but it is extractable with 3% TCA. Cadmium, like mercury, is taken up at the luminal membrane, but very little is transported through the basolateral membrane.

  9. Effects of salinity, temperature, and cadmium stress on cadmium-binding protein in the grass shrimp, Palaemonetes pugio

    SciTech Connect

    Howard, C.L.

    1988-01-01

    In 96-hour bioassays, shrimp were exposed to zero or one of three levels of cadmium, under one of six different salinity and temperature regimes. CdBP concentrations were quantified in survivors from the 24 exposure groups. Salinity and temperature did not affect survivorship unless the shrimp were also exposed to cadmium. Grass shrimp were most sensitive to cadmium at low salinity-high temperature, and least sensitive at high salinity-low temperature. The incidence of cadmium-associated black lesions in gill tissue was influenced by salinity and temperature stress. P. pugio produced a 10,000 dalton metallothionein-like CdBP when exposed to at least 0.1 mg Cd{sup 2+}/L for 96 hours. Accumulation of CdBP was increased with increases in the exposure cadmium level, increases in temperature and decreases in salinity, independently and in conjunction with one another. Maximum CdBP concentrations occurred in grass shrimp that survived the salinity-temperature-cadmium conditions creating maximum stress as measured by highest mortality, not necessarily in shrimp exposed to the highest cadmium levels. The potential utility of this method as a monitor of physiological stress in estuarine biota inhabiting metal-polluted environments is discussed.

  10. On-line preconcentration and determination of lead and cadmium by sequential injection/anodic stripping voltammetry.

    PubMed

    Ninwong, Benjawan; Chuanuwatanakul, Suchada; Chailapakul, Orawon; Dungchai, Wijitar; Motomizu, Shoji

    2012-07-15

    The highly sensitive determination of lead (Pb(II)) and cadmium (Cd(II)) ions, with a limit of detection of 0.01μgL(-1) for Pb(II) and Cd(II), by on-line preconcentration and anodic stripping voltammetry (ASV) controlled by a sequential injection analysis (SIA) system is reported here. The SIA system consisted of a syringe pump, an 8-port selection valve and a 6-port switching valve and was incorporated with a bismuth coated screen-printed carbon nanotube electrode (Bi-SPCNTE). The preconcentration of metal ions was performed by solid phase extraction using an Analig TE-05 chelating resin mini-column on a switching valve. The metal ions collected were then eluted from the resin with 1M hydrochloric acid (HCl), deposited on the electrode surface at -1.3V vs. Ag/AgCl and then measured with ASV. The pH of the sample, eluent volume, flow rate, concentration of the bismuth plating solution and the square-wave voltammetric parameters were optimized. Under the optimum conditions, an enrichment factor of 11.9-fold and 6.6-fold for Pb(II) and Cd(II) ions, respectively, was attained. Detection of Pb(II) and Cd(II) had two different linear ranges (0.5-15μgL(-1) and 15-70μgL(-1)). PMID:22817931

  11. Lead, cadmium and cobalt (Pb, Cd, and Co) leaching of glass-clay containers by pH effect of food.

    PubMed

    Valadez-Vega, Carmen; Zúñiga-Pérez, Clara; Quintanar-Gómez, Samuel; Morales-González, José A; Madrigal-Santillán, Eduardo; Villagómez-Ibarra, José Roberto; Sumaya-Martínez, María Teresa; García-Paredes, Juan Diego

    2011-01-01

    Recent studies have shown that handcrafted glass-clay containers are a health risk because they can be contaminated by heavy metals, which can be transferred to food, thus reaching the human body to potentially cause illness. Therefore, in the present work, we evaluate the leaching of lead, cadmium, and cobalt from glass-clay containers into two types of food: tomato sauce (salsa), and chickpea puree. The containers were obtained from four regions in the Mexican state of Hidalgo. Repetitive extractions from the containers were carried out to quantify the leaching of the heavy metals into the salsa, the chickpea puree, and acetic acid using the technique proposed by the USFDA. The results show that greater use of the containers leads to more leaching of heavy metals into both types of food and into the acetic acid, with the greatest metal extraction recorded for the Ixmiquilpan vessels. These results indicate that the metals present in the glass-clay containers leach into the food and that increased reuse increases the risk to the people who use them in food preparation. PMID:21731445

  12. Lead, Cadmium and Cobalt (Pb, Cd, and Co) Leaching of Glass-Clay Containers by pH Effect of Food

    PubMed Central

    Valadez-Vega, Carmen; Zúñiga-Pérez, Clara; Quintanar-Gómez, Samuel; Morales-González, José A.; Madrigal-Santillán, Eduardo; Villagómez-Ibarra, José Roberto; Sumaya-Martínez, María Teresa; García-Paredes, Juan Diego

    2011-01-01

    Recent studies have shown that handcrafted glass-clay containers are a health risk because they can be contaminated by heavy metals, which can be transferred to food, thus reaching the human body to potentially cause illness. Therefore, in the present work, we evaluate the leaching of lead, cadmium, and cobalt from glass-clay containers into two types of food: tomato sauce (salsa), and chickpea puree. The containers were obtained from four regions in the Mexican state of Hidalgo. Repetitive extractions from the containers were carried out to quantify the leaching of the heavy metals into the salsa, the chickpea puree, and acetic acid using the technique proposed by the USFDA. The results show that greater use of the containers leads to more leaching of heavy metals into both types of food and into the acetic acid, with the greatest metal extraction recorded for the Ixmiquilpan vessels. These results indicate that the metals present in the glass-clay containers leach into the food and that increased reuse increases the risk to the people who use them in food preparation. PMID:21731445

  13. Hepatic cadmium, metal-binding proteins and bioaccumulation in bluegills exposed to aqueous cadmium

    USGS Publications Warehouse

    Cope, W.G.; Atchison, G.J.; Wiener, J.G.

    1994-01-01

    We examined sublethal responses of juvenile bluegills Lepomis macrochirus to aqueous cadmium in two 28-d tests (test I, 0.0-8.4 μg Cd per liter; test II, 0.0-32.3 μg Cd per liter) in an intermittent-flow diluter. The experimental design was completely randomized, with two replicates in each of eight treatments (seven Cd exposures and one water control with 25 fish per replicate). Cadmium did not affect the growth of test fish. The mean whole-body concentrations of Cd in exposed fish were 1.8- to 44-fold those in controls in the two tests. Mean concentrations of hepatic nonthionein cytosolic Cd (not bound by metal-binding proteins, MBP) in all Cd treatments greatly exceeded those in controls, and mean concentrations of hepatic MBP in all treatments except one (0.8 μg Cd per liter in test I) exceeded those in controls. Nonthionein cytosolic Cd, hepatic MBP, and whole-body Cd in bluegills were linearly related to exposure concentrations within the range 0 to 20 μg Cd per liter. Much of the total Cd-binding capacity of hepatic MBP per fish was occupied by Cd after the 28-d exposures, although additional Cd-binding capacity remained unoccupied by Cd in fish in all treatments. The mean total Cd-binding capacity of hepatic MBP per fish, which ranged from 1.7 to 14 nmol Cd in test I and from 0.8 to 24 nmol Cd in test II, increased in a concentration-response manner at exposure concentrations below 13 μg/L. Nonthionein cytosolic Cd was the most sensitive indicator of Cd exposure, based on an LOEC of 0.8 μg Cd per liter.

  14. Two three-dimensional cadmium supramolecular architectures containing extensive hydrogen-bonding networks based on CdSO4 and bis-imidazole ligands

    NASA Astrophysics Data System (ADS)

    Wei, Yang-Fan; Wang, Tao; Pi, Min; Song, Wen; Jin, Chuan-Ming

    2012-11-01

    In this study, two novel three-dimensional (3D) supramolecular networks, [Cd(BIM)2(SO4)(H2O)]·(C2H5OH) (H2O)2 (1) and [Cd(2-mBIM)(SO4)(H2O)3]·H2O (2) [BIM = bis(imidazol-1-yl)-methane, 2-mBIM = bis(2-methylimidazol-1-yl)methane], were synthesized by the reactions of CdSO4 with BIM or 2-mBIM ligand via solvent diffusion methods. The networks were then characterized by elemental analyses, IR, TGA, and X-ray diffraction. Both compounds 1 and 2 have a 3D hydrogen-bonding network with an infinite one-dimensional (1D) double chain structure and an infinite 1D helix channel, respectively. These results suggest that the subtle change in the ligand structure may have a strong influence on the resulting architectures of the metal-organic frameworks. The solid-state luminescent spectra of compounds 1 and 2 indicate weak fluorescent emissions at ca. 338 and 389 nm, respectively.

  15. Synthesis and characterization of nano Cdo/NiO, nano Ag/ZnO composites & Ag/Zno embedded polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Godasu, Rahul

    Nanoparticles are finest structures whose size composition is within nanometer range. Thus nanoparticles are a collection of atoms bonded together with structural radius less than 100 nm. Nanocomposites are multiphase solid materials where one of the phases has one, two or three dimensions of less than 100 mn. Nano composites are prepared to improve mechanical, electrical, thermal, optical, electrochemical, catalytic properties from its parent materials. For instance, blend of nanoparticles with a polymer are called polymer nanocomposites. Nanostructured composites like Cadmium oxide/Nickel oxide (CdO/NiO) and silver/zinc oxide (Ag/ZnO) were prepared. Characterization of these prepared nanocomposites were carried out using X-ray powder diffraction, Differential scanning calorimetry, Scanning electron microscopy and the average sizes were determined using zeta sizer. Results obtained using characterization methods were in agreement stating that we were successful in synthesizing composites. The prepared Ag/ZnO nano composite was embedded in PCL polymer and we made films of PCL embedded with nano composite. The SEM image of the 5% Ag/ZnO embedded film clearly shows two regions, which indicates that Ag/ZnO nano composite was successfully embedded into the polymer using a non insitu method. SEM results also showed that the Zinc Oxide nano particles were successfully embedded into the polymer .

  16. Cadmium induces cadmium-tolerant gene expression in the filamentous fungus Trichoderma harzianum.

    PubMed

    Cacciola, Santa O; Puglisi, Ivana; Faedda, Roberto; Sanzaro, Vincenzo; Pane, Antonella; Lo Piero, Angela R; Evoli, Maria; Petrone, Goffredo

    2015-11-01

    The filamentous fungus Trichoderma harzianum, strain IMI 393899, was able to grow in the presence of the heavy metals cadmium and mercury. The main objective of this research was to study the molecular mechanisms underlying the tolerance of the fungus T. harzianum to cadmium. The suppression subtractive hybridization (SSH) method was used for the characterization of the genes of T. harzianum implicated in cadmium tolerance compared with those expressed in the response to the stress induced by mercury. Finally, the effects of cadmium exposure were also validated by measuring the expression levels of the putative genes coding for a glucose transporter, a plasma membrane ATPase, a Cd(2+)/Zn(2+) transporter protein and a two-component system sensor histidine kinase YcbA, by real-time-PCR. By using the aforementioned SSH strategy, it was possible to identify 108 differentially expressed genes of the strain IMI 393899 of T. harzianum grown in a mineral substrate with the addition of cadmium. The expressed sequence tags identified by SSH technique were encoding different genes that may be involved in different biological processes, including those associated to primary and secondary metabolism, intracellular transport, transcription factors, cell defence, signal transduction, DNA metabolism, cell growth and protein synthesis. Finally, the results show that in the mechanism of tolerance to cadmium a possible signal transduction pathway could activate a Cd(2+)/Zn(2+) transporter protein and/or a plasma membrane ATPase that could be involved in the compartmentalization of cadmium inside the cell. PMID:26349455

  17. A first-principles study on the negative thermal expansion material: Mn3(A0.5B0.5)N (A=Cu, Zn, Ag, or Cd; B=Si, Ge, or Sn)

    NASA Astrophysics Data System (ADS)

    Qu, Bingyan; He, Haiyan; Pan, Bicai

    2016-07-01

    In this paper, using the first-principles calculations, we systemically study the magnetic and the negative thermal expansion (NTE) properties of Mn3(A0.5B0.5)N (A = Cu, Zn, Ag, or Cd; B = Si, Ge, or Sn). From the calculated results, except Mn3(Cu0.5Si0.5)N, all the doped compounds considered would exhibit the NTE. For the dopants at B sites, the working temperature of the NTE shifts to higher temperature range from Si to Sn, and among the compounds with these dopants, Mn3(A0.5Ge0.5)N has the largest amplitude of the NTE coefficient. As to the dopants at A sites, compared to Mn3(Cu0.5B0.5)N, Mn3(A0.5B0.5)N (A = Ag or Cd) exhibit the NTE with higher temperature ranges and lower coefficient of the thermal expansion. In a word, these compounds would have different working temperatures and coefficients of the NTE, which is important for the applications in different conditions.

  18. Complexation of Cd2+, Ni2+, and Ag+ metal ions with 4,13-didecyl-l,7,10,16-tetraoxa-4,13-diazacyclooctadecane in acetonitrile-ethylacetate binary mixtures

    NASA Astrophysics Data System (ADS)

    Izadyar, M.; Rounaghi, G. H.; Tarahomi, S.; Mohajeri, M.

    2013-12-01

    Conductometric titrations have been performed in acetonitrile-ethylacetate (AN-EtOAc) binary solutions at 288, 298, 308, and 318 K to obtain the stoichiometry, the complex stability constants and the standard thermodynamic parameters for the complexation of Cd2+, Ni2+, and Ag+ cations with 4,13-didecyl-1,7,10,16-tetraoxa-4,13-diazacyclooctadecane (cryptand 22DD). The stability constants of the resulting 1: 1 complexes formed between the metal cations and the ligand were determined by computer fitting of the conductance-mole ratio data. There is a non-linear relationship between the log K f values of complexes and the mole fraction of ethylacetate in the mixed solvent system. In addition, the conductometric data show that the stoichiometry of the complexes formed between the Cd2+, Ni2+, and Ag+ cations with the ligand changes with the nature of the solvent. The standard enthalpy and entropy values for the 1: 1 [ML] complexation reactions were evaluated from the temperature dependence of the formation constants. Thermodynamically, the complexation processes of the metal cations with the C22DD, is mainly entropy governed and the values of thermodynamic parameters are influenced by the nature and composition of the binary mixed solvent solutions.

  19. Influence of combined antioxidants against cadmium induced testicular damage.

    PubMed

    Koyuturk, Meral; Yanardag, Refiye; Bolkent, Sehnaz; Tunali, Sevim

    2006-05-01

    Acute effects of cadmium (Cd) and combined antioxidants were evaluated in Sprague-Dawley rat testes. The rats were subdivided into four groups. Cadmium chloride (2mg/kgday) injected intraperitoneally during 8 days. Vitamin C (250mg/kgday), vitamin E (250mg/kgday) and sodium selenate (0.25mg/kgday) were pretreated by gavage in both of control and cadmium injected rats. Testis lipid peroxidation and glutathione levels were determined by spectrophotometrically. In Cd treated rats, lipid peroxidation levels were increased and glutathione levels were decreased and combined antioxidants treatment was effective in preventing of lipid peroxidation and normalizing glutathione. In Cd treated animals, the degenerative changes were observed, but not observed in the administrated rats with Cd and antioxidants under the light microscope. Proliferating cell nuclear antigen, metallothionein and caspase-3 activities were evaluated by immunohistochemically. Proliferation activity was not seen in the spermatogonial cells of cadmium treated testis. Treatment with antioxidants in cadmium administrated testis leads to pronounced increase in proliferation activity. Cytoplasmic caspase-3 activity was determined in the spermatogenic cells but not spermatogonia in treatment of antioxidants with Cd. In control and treated with antioxidants animals, metallothionein expressions were localized in the cells of seminiferous tubules, although the expression only was observed in the interstitial cells of cadmium treated rats. Results demonstrated beneficial effects of combined vitamin C, vitamin E and selenium treatment in Cd toxicity. PMID:21783663

  20. Trichosporon jirovecii-mediated synthesis of cadmium sulfide nanoparticles.

    PubMed

    El-Baz, Ashraf Farag; Sorour, Noha Mohamed; Shetaia, Youssria Mohamed

    2016-05-01

    Cadmium sulphide is one of the most promising materials for solar cells and of great interest due to its useful applications in photonics and electronics, thus the development of bio-mediated synthesis of cadmium sulphide nanoparticles (CdS NPs) is one of the essential areas in nanoparticles. The present study demonstrates for the first time the eco-friendly biosynthesis of CdS NPs using the yeast Trichosporon jirovecii. The biosynthesis of CdS NPs were confirmed by UV-Vis spectrum and characterized by X-ray diffraction assay and electron microscopy. Scanning and transmission electron microscope analyses shows the formation of spherical CdS NPs with a size range of about 6-15 nm with a mean Cd:S molar ratio of 1.0:0.98. T. jirovecii produced hydrogen sulfide on cysteine containing medium confirmed by positive cysteine-desulfhydrase activity and the colony color turned yellow on 0.1 mM cadmium containing medium. T. jirovecii tolerance to cadmium was increased by the UV treatment and three 0.6 mM cadmium tolerant mutants were generated upon the UV radiation treatment. The overall results indicated that T. jirovecii could tolerate cadmium toxicity by its conversion into CdS NPs on cysteine containing medium using cysteine-desulfhydrase as a defense response mechanism. PMID:26467054

  1. CADMIUM SOLUBILITY IN PADDY SOILS: EFFECTS OF SOIL OXIDATION, METAL SULFIDES AND COMPETITIVE IONS.

    EPA Science Inventory

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) an...

  2. REPRODUCTIVE EFFECTS OF LOW ACUTE DOSES OF CADMIUM CHLORIDE IN ADULT MALE RATS

    EPA Science Inventory

    Adult male Sprague-Dawley rats were injected sc with cadmium (Cd, as cadmium chloride) in doses ranging from 1.6 to 152 micromol Cd/kg body weight (body wt). Fourteen days after dosing, animals were evaluated for reproductive damage. Evaluations for each animal included tests, se...

  3. CHRONIC INGESTION OF CADMIUM AND/OR TRITIUM. II. EFFECTS ON GROWTH, DEVELOPMENT, AND REPRODUCTIVE FUNCTION

    EPA Science Inventory

    The effects of chronic low-level exposure to cadmium (Cd) and/or tritium (HTO) on the growth and reproduction were evaluated in Sprague-Dawley rats. Cadmium exposure levels ranged from less than 0.1 to 5.0 ppm as CdCl2 in the drinking water, while HTO concentrations ranged from l...

  4. Cadmium mass measurements between the neutron shell closures at N = 50 and 82

    SciTech Connect

    Borgmann, Ch.; Blaum, K.; Boehm, Ch.; George, S.; Kreim, S.; Breitenfeldt, M.; Audi, G.; Lunney, D.; Naimi, S.; Baruah, S.; Rosenbusch, M.; Schweikhard, L.; Beck, D.; Dworschak, M.; Herfurth, F.; Minaya-Ramirez, E.; Savreux, R.; Yazidjian, C.; Cakirli, R. B.; Casten, R. F.

    2011-10-28

    The mass values of the neutron-deficient cadmium isotopes {sup 99-109}Cd and of the neutron-rich isotopes {sup 114,120,122-124,126,128}Cd have been measured using ISOLTRAP. The behavior of the separation energies of the cadmium isotopes from N = 50 to 82 is discussed.

  5. Response of Pleurotus ostreatus to cadmium exposure

    SciTech Connect

    Favero, N.; Bressa, G.; Costa, P. )

    1990-08-01

    The possibility of utilizing agroindustrial wastes in the production of edible, high-quality products (e.g., mushrooms) implies the risk of bringing toxic substances, such as heavy metals, into the human food chain. Thus, growth in the presence of cadmium and cadmium accumulation limits have been studied in the industrially cultivated fungus P. ostreatus. Fruit body production is substantially unaffected in the presence of 25, 139, and 285 mg Cd/kg of dried substrate. Cadmium concentration in fruit bodies is related to cadmium substrate level, the metal being present at higher levels in caps (22-56 mg/kg dry wt) than in stems (13-36 mg/kg dry wt). Concentration factor (CF), very low in the controls (about 2), further decreases in treated specimens. The presence of a cadmium control mechanism in this fungi species is suggested. Fruit body cadmium levels could, however, represent a risk for P. ostreatus consumers, according to FAO/WHO limits related to weekly cadmium intake.

  6. Cadmium resistance in an oligochaete and its effect on cadmium trophic transfer to an omnivorous shrimp

    USGS Publications Warehouse

    Wallace, W.G.; Lopez, G.R.; Levinton, J.S.

    1998-01-01

    It has been demonstrated that the deposit-feeding oligochaete Limnodrilus hoffmeisteri inhabiting Foundry Cove (FC), a severely cadmium (Cd)-contaminated cove located on the Hudson River, New York, USA, has evolved resistance to Cd. In this study we investigate how this resistance influences Cd trophic transfer from this oligochaete to the grass shrimp Palaemonetes pugio. Cadmium-resistant worms collected from FC and nonresistant worms collected from an adjacent unpolluted site were investigated for differences in Cd tolerance, accumulation, subcellular distribution and bioavailability to shrimp. FC worms were more tolerant of Cd, surviving twice as long as worms from the unpolluted site during a toxicity bioassay. The 7 d concentration factor of Cd-resistant worms was 4 times greater than that of nonresistant worms (2020 vs 577). There were also differences between worm populations with respect to subcellular Cd distributions. Cd-resistant worms produced metallothionein-like proteins (MT) as well as metal-rich granules (MRG) for Cd storage and detoxification; nonresistant worms only produced MT. These differences in subcellular Cd distributions led to large differences in Cd bioavailability to shrimp; shrimp fed Cd-resistant worms absorbed 21% of the ingested Cd, while those fed nonresistant worms absorbed roughly 4 times that amount (~75%). These absorption efficiencies were in good agreement with the proportions of Cd bound to the worm's most biologically available subcellular fractions (i.e. the cytosol and organelles). Although Cd-resistant worms predominantly stored the toxic metal in biologically unavailable MRG, their increased accumulation of Cd would still result in substantial trophic transfer to shrimp because of the storage of Cd in the biologically available fractions. This work demonstrates that the evolution of Cd resistance can have profound implications for Cd bioavailability and cycling within aquatic ecosystems.

  7. Cadmium-binding proteins from blue crabs (Callinectes sapidus) environmentally exposed to cadmium

    SciTech Connect

    Wiedow, M.A.; Kneip, T.J.; Garte, S.J.

    1982-06-01

    Two heat-stable (90/sup 0/C) cadmium-binding proteins were isolated from the hepatopancreas of Hudson River blue crabs (Callinectes sapidus) by Sephadex G-75 gel filtration chromatography. These proteins have molecular weights of 10,600 and 9,400, and ultraviolet absorbance ratios at 250/280 nm of 12.4 and 5.4, respectively. Repeated freezing and thawing and prolonged (3-6 weeks) storage resulted in protein degradation or loss of Cd-binding activity. These proteins were induced by laboratory injection of CdCl/sub 2/ in blue crabs from pristine (Chesapeake Bay) areas; however, injection of CdCl/sub 2/ into Hudson River animals yielded anomalous chromatography profiles. Cadmium-binding proteins were also identified in blue crab thoracic muscle and gill. The possibility is discussed that these proteins are a type of metallothionein and could contribute to the human toxicity of this cadmium-contaminated edible crustacean.

  8. Progress in Solving the Elusive Ag Transport Mechanism in TRISO Coated Particles: What is new?

    SciTech Connect

    Isabella Van Rooyen

    2014-10-01

    The TRISO particle for HTRs has been developed to an advanced state where the coating withstands internal gas pressures and retains fission products during irradiation and under postulated accidents. However, one exception is Ag that has been found to be released from high quality TRISO coated particles when irradiated and can also during high temperature accident heating tests. Although out- of- pile laboratory tests have never hither to been able to demonstrate a diffusion process of Ag in SiC, effective diffusion coefficients have been derived to successfully reproduce measured Ag-110m releases from irradiated HTR fuel elements, compacts and TRISO particles It was found that silver transport through SiC does not proceed via bulk volume diffusion. Presently grain boundary diffusion that may be irradiation enhanced either by neutron bombardment or by the presence of fission products such as Pd, are being investigated. Recent studies of irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), transmission kukuchi diffraction (TKD) patterns and high resolution transmission electron microscopy (HRTEM) have been used to further the understanding of Ag transport through TRISO particles. No silver was observed in SiC grains, but Ag was identified at triple-points and grain boundaries of the SiC layer in the TRISO particle. Cadmium was also found in some of the very same triple junctions, but this could be related to silver behavior as Ag-110m decays to Cd-110. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries and in most SiC grain boundaries and the potential role of Pd in the transport of Ag will be discussed.

  9. Cadmium Subtraction Method for the Active Albedo Neutron Interrogation of Uranium

    SciTech Connect

    Worrall, Louise G.; Croft, Stephen

    2015-02-01

    This report describes work performed under the Next Generation Safeguards Initiative (NGSI) Cadmium Subtraction Project. The project objective was to explore the difference between the traditional cadmium (Cd) ratio signature and a proposed alternative Cd subtraction (or Cd difference) approach. The thinking behind the project was that a Cd subtraction method would provide a more direct measure of multiplication than the existing Cd ratio method. At the same time, it would be relatively insensitive to changes in neutron detection efficiency when properly calibrated. This is the first published experimental comparison and evaluation of the Cd ratio and Cd subtraction methods.

  10. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles.

    PubMed

    Su, Yiming; Adeleye, Adeyemi S; Huang, Yuxiong; Sun, Xiaoya; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei; Keller, Arturo A

    2014-10-15

    Nanoscale zerovalent iron (nZVI) has demonstrated high efficacy for treating nitrate or cadmium (Cd) contamination, but its efficiency for simultaneous removal of nitrate and Cd has not been investigated. This study evaluated the reactivity of nZVI to the co-contaminants and by-product formation, employed different catalysts to reduce nitrite yield from nitrate, and examined the transformation of nZVI after reaction. Nitrate reduction resulted in high solution pH, negatively charged surface of nZVI, formation of Fe3O4 (a stable transformation of nZVI), and no release of ionic iron. Increased pH and negative charge contributed to significant increase in Cd(II) removal capacity (from 40 mg/g to 188 mg/g) with nitrate present. In addition, nitrate reduction by nZVI could be catalyzed by Cd(II): while 30% of nitrate was reduced by nZVI within 2 h in the absence of Cd(II), complete nitrate reduction was observed in the presence of 40 mg-Cd/L due to the formation of Cd islands (Cd(0) and CdO) on the nZVI particles. While nitrate was reduced mostly to ammonium when Cd(II) was not present or at Cd(II) concentrations ≥ 40 mg/L, up to 20% of the initial nitrate was reduced to nitrite at Cd(II) concentrations < 40 mg/L. Among nZVI particles doped with 1 wt. % Cu, Ag, or Au, nZVI deposited with 1 wt. % Au reduced nitrite yield to less than 3% of the initial nitrate, while maintaining a high Cd(II) removal capacity. PMID:24999115

  11. Differntial cadmium accumulation and phytotoxicity in sixteen tobacco cultivars

    SciTech Connect

    Clarke, B.B.; Brennan, E. )

    1988-01-01

    Contrary to most agronomic plants, tobacco accumulates a greater proportion of cadmium (Cd) in its foliage than in any other plant part when it is exposed to Cd-contaminated soil or sand. Because tobacco leaves are marketed as a commercial product, this pattern of partitioning is highly undesirable from the standpoint of human toxicity. Recognizing that Cd uptake and translocation is under genetic control, the authors evaluated the distribution of cadmium in 16 tobacco cultivars to determine whether a genotype could be selected that minimizes the accumulation of Cd in the leaf. In order to assess the impact of low levels of cadmium that might originate from superphosphate, fertilizers, sludge, or contaminated rain on plant growth, several growth parameters of Cd-treated and untreated tobacco plants were compared. The results of these studies are presented.

  12. Correlations between cadmium concentration in urine and exposure variables

    NASA Astrophysics Data System (ADS)

    Schwarz, Elmar; Chutsch, Martina; Krause, Christian M.; Schulz, Christine; Thefeld, Wolfgang

    1993-03-01

    As part of the study 'UMWELT und GESUNDHEIT 1985/86', a representative samples of the population of the Federal Republic of Germany was examined for urinary Cd. A log-linear prediction model based on 2109 cases led to an explained variance portion of R2 equals .32. Strong associations were revealed between urinary cadmium and the smoking history and age of the subjects. This is evidence of the function urinary cadmium has as an indicator of the Cd body burden. However, there are also clear connections with physiological parameters (urinary creatinine and serum urea), which are taken to be a modification of Cd excretion by renal function. The association between urinary Cd and serum urea can also be interpreted as a cadmium-induced renal dysfunction. Urinary Cd concentrations tend to be lower in regions with low industrial nitrogen oxide emissions and high economic dynamics, as well as in non- urban residential structures.

  13. Effects of diethyldithiocarbamate and selected analogs on cadmium metabolism following chronic cadmium ingestion

    SciTech Connect

    Gale, G.R.; Atkins, L.M.; Smith, A.B.; Jones, M.M.

    1985-01-01

    Effects of ip treatment with diethyldithiocarbamate (DDTC), 4- carboxamidopiperidine-N-dithiocarboxylate (CAP-N-DTC), and N-methyl-N- dithiocarboxyglucamine (MDCG) on cadmium (Cd) levels in selected mouse organs and tissues were assessed after mice were offered deionized water containing 0.05 mg/ml of CdCl/sub 2/ x 2.5 H/sub 2/O, 10 mg/ml of sucrose, and 0.125 microCi/ml of carrier-free /sup 109/CdCl/sub 2/ as the sole drinking fluid for 15 days. Only 0.31 +/- 0.01 % of the ingested Cd was absorbed. Data obtained following treatment were compared with those obtained earlier in similar studies following ip Cd injection. In contrast to its action when administered after ip Cd injection, DDTC enhanced hepatic Cd burdens in mice which received Cd po. DDTC did, however, reduce renal Cd levels markedly after Cd ingestion, while enhancing brain Cd levels. CAP- N-DTC and MDCG, which were shown earlier to have no effect on Cd levels in striated muscle following ip Cd administration, effected significant reduction of muscle Cd concentrations after Cd administration po, while also reducing hepatic and renal Cd levels significantly. It was concluded that certain dithiocarbamates effectively mobilize and promote excretion of Cd which has been absorbed from one of the natural portals of entry.

  14. Cadmium-induced testicular injury

    SciTech Connect

    Siu, Erica R.; Mruk, Dolores D.; Porto, Catarina S.; Cheng, C. Yan

    2009-08-01

    Cadmium (Cd) is an environmental toxicant and an endocrine disruptor in humans and rodents. Several organs (e.g., kidney, liver) are affected by Cd and recent studies have illustrated that the testis is exceedingly sensitive to Cd toxicity. More important, Cd and other toxicants, such as heavy metals (e.g., lead, mercury) and estrogenic-based compounds (e.g., bisphenols) may account for the recent declining fertility in men among developed countries by reducing sperm count and testis function. In this review, we critically discuss recent data in the field that have demonstrated the Cd-induced toxicity to the testis is probably the result of interactions of a complex network of causes. This is likely to involve the disruption of the blood-testis barrier (BTB) via specific signal transduction pathways and signaling molecules, such as p38 mitogen-activated protein kinase (MAPK). We also summarize current studies on factors that confer and/or regulate the testis sensitivity to Cd, such as Cd transporters and metallothioneins, the impact of Cd on the testis as an endocrine disruptor and oxidative stress inducer, and how it may disrupt the Zn{sup 2+} and/or Ca{sup 2+} mediated cellular events. While much work is needed before a unified mechanistic pathway of Cd-induced testicular toxicity emerges, recent studies have helped to identify some of the likely mechanisms and/or events that take place during Cd-induced testis injury. Furthermore, some of the recent studies have shed lights on potential therapeutic or preventive approaches that can be developed in future studies by blocking or minimizing the destructive effects of Cd to testicular function in men.

  15. Cadmium-induced testicular injury.

    PubMed

    Siu, Erica R; Mruk, Dolores D; Porto, Catarina S; Cheng, C Yan

    2009-08-01

    Cadmium (Cd) is an environmental toxicant and an endocrine disruptor in humans and rodents. Several organs (e.g., kidney, liver) are affected by Cd and recent studies have illustrated that the testis is exceedingly sensitive to Cd toxicity. More important, Cd and other toxicants, such as heavy metals (e.g., lead, mercury) and estrogenic-based compounds (e.g., bisphenols) may account for the recent declining fertility in men among developed countries by reducing sperm count and testis function. In this review, we critically discuss recent data in the field that have demonstrated the Cd-induced toxicity to the testis is probably the result of interactions of a complex network of causes. This is likely to involve the disruption of the blood-testis barrier (BTB) via specific signal transduction pathways and signaling molecules, such as p38 mitogen-activated protein kinase (MAPK). We also summarize current studies on factors that confer and/or regulate the testis sensitivity to Cd, such as Cd transporters and metallothioneins, the impact of Cd on the testis as an endocrine disruptor and oxidative stress inducer, and how it may disrupt the Zn(2+) and/or Ca(2+) mediated cellular events. While much work is needed before a unified mechanistic pathway of Cd-induced testicular toxicity emerges, recent studies have helped to identify some of the likely mechanisms and/or events that take place during Cd-induced testis injury. Furthermore, some of the recent studies have shed lights on potential therapeutic or preventive approaches that can be developed in future studies by blocking or minimizing the destructive effects of Cd to testicular function in men. PMID:19236889

  16. Cadmium-induced Testicular Injury*

    PubMed Central

    Siu, Erica R.; Mruk, Dolores D.; Porto, Catarina S.; Cheng, C. Yan

    2009-01-01

    Cadmium (Cd) is an environmental toxicant and an endocrine disruptor in humans. Several organs (e.g., kidney, liver) are affected by Cd and recent studies have illustrated that the testis is exceedingly sensitive to Cd toxicity. More important, Cd and other toxicants, such as heavy metals (e.g., lead, mercury) and estrogenic-based compounds (e.g., bisphenols) may account for the recent declining fertility in men among developed countries by reducing sperm count and testis function. In this review, we critically discuss recent data in the field that have demonstrated the Cd-induced toxicity to the testis is probably the result of interactions of a complex network of causes. This is likely to involve the disruption of the blood-testis barrier (BTB) via specific signal transduction pathways and signaling molecules, such as p38 mitogen-activated protein kinase (MAPK). We also summarize current studies on factors that confer the testis sensitivity to Cd, such as Cd transporters and metallothioneins, and the impact of Cd on the testis as an endocrine disruptor, oxidative stress inducer and how it may disrupt the Zn+2 and/or Ca+2 mediated cellular events. While much work is needed before a unified mechanistic pathway of Cd-induced testicular toxicity is emerged, recent studies have helped to identify some of the likely mechanisms and/or events that take place during Cd-induced testis injury. Furthermore, some of the recent studies have shed lights on potential therapeutic or preventive approaches that can be developed in future studies by blocking or minimizing the destructive effects of Cd to testicular function in men. PMID:19236889

  17. MECHANISMS OF CADMIUM ABSORPTION IN RATS

    EPA Science Inventory

    This study was undertaken in order to help clarify the factors which determine the fractional absorption of an oral load of cadmium (Cd) from the intestine of the rat. The experiments utilized intact segments of intestine, perfused or incubated in situ with their blood supply int...

  18. RISK ASSESSMENT FOR CADMIUM IN PHOSPHATE FERTILIZERS

    EPA Science Inventory

    Cadmium induced renal tubular dysfunction occurred where subsistence rice farmers produced their lifetime dietary rice on Zn-mine waste contaminated soils in Japan and other Asian countries. Research has shown that polished rice Cd is greatly increased while grain Zn is not incre...

  19. A polymorphism in metallothionein 1A (MT1A) is associated with cadmium-related excretion of urinary beta 2‐microglobulin

    SciTech Connect

    Lei, Lijian; Chang, Xiuli; Rentschler, Gerda; Tian, Liting; Zhu, Guoying; Chen, Xiao; Jin, Taiyi; Broberg, Karin

    2012-12-15

    Objectives: Cadmium (Cd) toxicity of the kidney varies between individuals despite similar exposure levels. In humans Cd is mainly bound to metallothioneins (MT), which scavenge its toxic effects. Here we analyzed whether polymorphisms in MT genes MT1A and MT2A influence Cd-related kidney damage. Methods: In a cross-sectional study N = 512 volunteers were selected from three areas in South-Eastern China, which to varying degree were Cd-polluted from a smelter (control area [median Cd in urine U-Cd = 2.67 μg/L], moderately [U-Cd = 4.23 μg/L] and highly [U-Cd = 9.13 μg/L] polluted areas). U-Cd and blood Cd (B-Cd) concentrations were measured by graphite-furnace atomic absorption spectrometry. MT1A rs11076161 (G/A), MT2A rs10636 (G/C) and MT2A rs28366003 (A/G) were determined by Taqman assays; urinary N-Acetyl-beta-(D)-Glucosaminidase (UNAG) by spectrometry, and urinary β2-microglobulin (UB2M) by ELISA. Results: Higher B-Cd (natural log-transformed) with increasing number of MT1A rs11076161 A-alleles was found in the highly polluted group (p-value trend = 0.033; all p-values adjusted for age, sex, and smoking). In a linear model a significant interaction between rs11076161 genotype and B-Cd was found for UNAG (p = 0.001) and UB2M concentrations (p = 0.001). Carriers of the rs11076161 AA genotype showed steeper slopes for the associations between Cd in blood and natural log-transformed UB2M (β = 1.2, 95% CI 0.72–1.6) compared to GG carriers (β = 0.30, 95% CI 0.15–0.45). Also for UNAG (natural log-transformed) carriers of the AA genotype had steeper slopes (β = 0.55, 95% CI 0.27–0.84) compared to GG carriers (β = 0.018, 95% CI − 0.79–0.11). Conclusions: MT1A rs11076161 was associated with B-Cd concentrations and Cd-induced kidney toxicity at high exposure levels. -- Highlights: ► Cadmium is toxic to the kidney but the susceptibility differs between individuals. ► The toxic effect of cadmium is scavenged by metallothioneins. ► A common variant of

  20. Impacts of anthropogenic pressures on the water quality of the Gironde Estuary (SW France) from the Urban Agglomeration of Bordeaux: spatial characterization and inputs of trace metal elements (Ag, As, Cd, Cu, Pb and Zn)

    NASA Astrophysics Data System (ADS)

    Kessaci, Kahina; Coynel, Alexandra; Blanc, Gérard; Deycard, Victoria N.; Derriennic, Hervé; Schäfer, Jörg

    2014-05-01

    Recent European legislation (2000/60/CE) has listed eight trace metal elements as priority toxic substances for water quality. Urban metal inputs into hydrosystems are of increasing interest to both scientists and managers facing restrictive environmental protection policies, population increase and changing metal applications. The Gironde Estuary (SW France; 625 km2) is known for its metal/metalloid pollution originating from industrial (e.g. Cd, Zn, Cu, As, Ag, Hg) or agricultural sources (e.g. Cu) in the main fluvial tributaries (Garonne and Dordogne Rivers). However, little peer-reviewed scientific work has addressed the impact of urban sources on the Gironde Estuary, especially the Urban Agglomeration of Bordeaux (~1 million inhabitants) located on the downstream branch of the Garonne River. In this study, a snapshot sampling campaign was performed in 2011 for characterizing the spatial distribution of dissolved and particulate metal/metalloid (As, Ag, Cd, Pb, Zn, Cu) concentrations in three suburban watersheds: the Jalle of Blanquefort (330 km2), Eau Bourde (140 km2), and Peugue (112 km2). Furthermore, particulate metal Enrichment Factors (EF) were calculated using local geochemical background measured at the bottom of a sediment core (492 cm). Results indicated that metal concentrations displayed a high spatial variability depending on the suburban watershed and the studied element. Local concentrations anomalies were observed for: (i) As in the Eau Bourde River in dissolved (4.2 μg/l) and particulate phases (246 mg/kg; EF= 20) and attributed to a nearby industrial incinerator; (ii) Zn in the Peugue River with maximum dissolved and particulate concentrations of 87 μg/l and 1580 mg/kg (EF=17), respectively, probably due to urban habitation runoff; (iii) Ag in the Jalle of Blanquefort River with high dissolved (74 ng/l) and particulate concentrations (33.7 mg/kg; EF=117) due to industrial activities in the downstream part. Based on hydro

  1. Cadmium as a respiratory toxicant

    SciTech Connect

    Grose, E.C.; Graham, J.A.

    1987-01-01

    Cadmium is a major respiratory toxicant as evidenced by numerous human and animal studies. Controlled animal inhalation studies provide supporting evidence to the associations observed in epidemiological studies that Cd has the potential to cause lung fibrosis, emphysema, cancer, and kidney disease after prolonged exposure. Shorter-term exposure studies indicate that mechanisms thought to be involved in several of these chronic disease states (especially fibrosis and emphysema) are acutely activated. The evidence of toxicity is sufficiently clear that a TLV has been set and the International Agency for Research on Cancer has named Cd as a Group B1 substance (probable human carcinogen). The risk to Cd exposure is enhanced by its chemical and physical properties that result in bioaccumulation. Thus, even a low-level exposure over long periods of time would be expected to reach doses that could be toxic.

  2. Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis.

    PubMed

    Hložková, Kateřina; Matěnová, Michaela; Žáčková, Petra; Strnad, Hynek; Hršelová, Hana; Hroudová, Miluše; Kotrba, Pavel

    2016-03-01

    Mechanisms evolved in eukaryotes to handle heavy metals involve cytosolic, metal-binding metallothioneins (MTs). We have previously documented that the sequestration of silver (Ag) in the Ag-hyperaccumulating Amanita strobiliformis is dominated by 34-amino-acid (AA) AsMT1a, 1b, and 1c isoforms. Here we show that in addition to AsMT1a, 1b, and 1c isogenes, the fungus has two other MT genes: AsMT2 encoding a 34-AA AsMT2 similar to MTs known from other species, but unrelated to AsMT1s; AsMT3 coding for a 62-AA AsMT3 that shares substantial identity with as-yet-uncharacterized conserved peptides predicted in agaricomycetes. Transcription of AsMT1s and AsMT3 in the A. strobiliformis mycelium was specifically inducible by treatments with Ag or copper (Cu) and zinc (Zn) or cadmium (Cd), respectively; AsMT2 showed a moderate upregulation in the presence of Cd. Expression of AsMTs in the metal-sensitive Saccharomyces cerevisiae revealed that all AsMTs confer increased Cd tolerance (AsMT3 proved the most effective) and that, unlike AsMT1 and AsMT2, AsMT3 can protect the yeasts against Zn toxicity. The highest level of Cu tolerance was observed with yeasts expressing AsMT1a. Our data indicate that A. strobiliformis can specifically employ different MT genes for functions in the cellular handling of Ag and Cu (AsMT1s) and Zn (AsMT3). PMID:26895864

  3. Cadmium carcinogenesis in review.

    PubMed

    Waalkes, M P

    2000-04-01

    Cadmium is an inorganic toxicant of great environmental and occupational concern which was classified as a human carcinogen in 1993. Occupational cadmium exposure is associated with lung cancer in humans. Cadmium exposure has also, on occasion, been linked to human prostate cancer. The epidemiological data linking cadmium and pulmonary cancer are much stronger than for prostatic cancer. Other target sites for cadmium carcinogenesis in humans (liver, kidney, stomach) are considered equivocal. In rodents, cadmium causes tumors at several sites and by various routes. Cadmium inhalation in rats results in pulmonary adenocarcinomas, supporting a role in human lung cancer. Prostate tumors and preneoplastic proliferative lesions can be induced in rats after cadmium ingestion or injection. Prostatic carcinogenesis in rats occurs only at cadmium doses below those that induce chronic degeneration and dysfunction of the testes, a well-known effect of cadmium, confirming the androgen dependency of prostate tumors. Other targets of cadmium in rodents include the testes, adrenals, injection sites, and hematopoietic system. Various treatments can modify cadmium carcinogenesis including supplemental zinc, which prevents cadmium-induced injection site and testicular tumors while facilitating prostatic tumors. Cadmium is poorly mutagenic and probably acts through indirect mechanisms, although the precise mechanisms remain unknown. PMID:10830873

  4. Protective effects of selenium on cadmium toxicity in rats: Role of altered toxicokinetics and metallothionein

    SciTech Connect

    Wahba, Z.Z.; Coogan, T.P.; Rhodes, S.W.; Waalkes, M.P. )

    1993-02-01

    Selenium prevents the toxicity of the carcinogenic metal cadmium through undefined mechanisms. In this study, the authors determined the effects of selenium on cadmium toxicokinetics and on the ability of cadmium to induce metallothionein, a metal-binding protein that is thought to confer tolerance to cadmium toxicity. To assess the acute protective effects of selenium, male Wistar (WF/NCr) rats were given selenium (as SeO[sub 2]; 10 [mu]mol/kg, sc) at [minus]24, 0, and +24 h relative to cadmium (as CdCl[sub 2]; 45 [mu]mol/kg, sc). Over a 14-d period this dose of cadmium killed 6 out of 10 rats, while 100% of the cadmium-treated rats given concurrent selenium treatments survived. The acute increases in testicular weight that were seen with cadmium, indicative of edematous damage, were also prevented by concurrent selenium treatments. Further studies assessed the distribution and excretion of cadmium and its ability to induce metallothionein in rats given 40 [mu]mol Cd/kg, sc, at time 0 and selenium (10 [mu]mol/kg, sc) at [minus]24 and 0 h. Selenium treatments enhanced cadmium accumulation at 24 h in the liver (23%), testes (145%), and epididymis (35%) but reduced renal accumulation by more than half. Urine samples, collected at 0-3, 3-6, and 6-24 h following cadmium administration, indicted a markedly reduced excretion of cadmium in selenium treated rats during all time periods. The synthesis of metallothionein was stimulated to a much lesser extent by cadmium in selenium-treated rat kidney (41% decrease) but was unaffected in liver. The levels of cadmium-binding proteins within the testes were markedly reduced by cadmium treatment, an effect unmodified by selenium treatments. These results suggest selenium prevents acute cadmium toxicity through a mechanism that does not involve induction of metallothionein and in spite of a markedly enhanced retention of cadmium. 50 refs., 1 fig., 4 tabs.

  5. Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria.

    PubMed

    He, Lin-Yan; Chen, Zhao-Jin; Ren, Gai-Di; Zhang, Yan-Feng; Qian, Meng; Sheng, Xia-Fang

    2009-07-01

    Two cadmium (Cd)-resistant strains Pseudomonas sp. RJ10 and Bacillus sp. RJ16 were investigated for their effects on the soil Cd and lead (Pb) solubilization and promotion of plant growth and Cd and Pb uptakes of a Cd-hyperaccumulator tomato. In the heavy metal-contaminated inoculated soil, the CaCl(2)-extractable Cd and Pb were increased by 58-104% and 67-93%, respectively, compared to the uninoculation control. The bacteria produced indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Root elongation assay conducted on tomato under gnotobiotic conditions demonstrated increase in root elongation of inoculated tomato seedlings compared to the control plants. An increase in Cd and Pb contents of above-ground tissues varied from 92% to 113% and from 73% to 79% in inoculated plants growing in heavy metal-contaminated soil compared to the uninoculation control, respectively. These results show that the bacteria could be exploited for bacteria enhanced-phytoextraction of Cd- and Pb-polluted soils. PMID:19368973

  6. Distribution and age-related bioaccumulation of lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As) in tissues of common carp (Cyprinus carpio) and European catfish (Sylurus glanis) from the Buško Blato reservoir (Bosnia and Herzegovina).

    PubMed

    Has-Schön, Elizabeta; Bogut, Ivan; Vuković, Rosemary; Galović, Dalida; Bogut, Ante; Horvatić, Janja

    2015-09-01

    The purpose of this study was to quantify the bioaccumulation of Pb, Hg, Cd, and As in tissues of carp (Cyprinus carpio) and catfish (Silurus glanis) from Buško Blato in Bosnia and Herzegovina. Arsenic concentrations were below the Maximal Admissible Concentration (MAC) for Croatia and other countries. Mercury concentrations were below 1 mg kg(-1), but in most muscle samples of both species and all catfish liver samples, the values were higher than 0.5 mg kg(-1) (higher than the MAC for many countries including Croatia). Lead concentrations were higher than 1 mg kg(-1) (the MAC for Croatia) in most muscle samples; all kidney and most catfish liver samples also exceeded 1 mg kg(-1). Cadmium concentrations in all tissues, other than the gonads, were higher than 0.1 mg kg(-1) (MAC for Croatia), with the highest concentrations found in the kidneys. The only gender difference was found in carp, where a 68.4% higher concentration of As was found in the fry compared to the milt (P<0.05). Concentrations of all of the elements were higher in catfish compared to carp for most tissues. Significant correlations were found between all of the elements in the muscles and the liver of carp. In catfish, the muscles were the only tissue in which multiple correlations were found. Linear positive correlations with age and body mass were demonstrated for the concentrations of all heavy metals for all tissues except the gonads in both fish species. We concluded that significant heavy metal accumulation in carp and a catfish tissues correlates with age and body mass; bioaccumulation is species- and tissue-specific and is different for each element. PMID:25966047

  7. Cadmium and the kidney.

    PubMed Central

    Friberg, L

    1984-01-01

    The paper is a review of certain aspects of importance of cadmium and the kidney regarding the assessment of risks and understanding of mechanisms of action. The review discusses the following topics: history and etiology of cadmium-induced kidney dysfunction and related disorders; cadmium metabolism, metallothionein and kidney dysfunction; cadmium in urine as indicator of body burden, exposure and kidney dysfunction; cadmium levels in kidney and liver as indicators of kidney dysfunction; characteristics of early kidney dysfunction; the critical concentration concept; critical concentrations of cadmium in kidney cortex; and prognosis. PMID:6734547

  8. Studies of cadmium uptake and metabolism by the kidney

    SciTech Connect

    Suzuki, K.T.

    1984-03-01

    The investigation centered on a possible relationship between the toxicity of cadmium and changes in its chemical forms in tissues. Two models have been studied: one is the renal damage induced by a single injection of cadmium-containing metallothionein and the other is the renal damage induced by repeated injections of cadmium salt. Parenteral loading of cadmium-containing metallothionein caused acute and transitory necrotic damage of renal tubular lining cells. This was explained by the selection and rapid uptake of metallothionein at the proximal tubules and degradation of the protein, resulting in liberation of cadmium ions. Cadmium ions were injected repeatedly into rats, and the changes in the chemical forms of cadmium, zinc and copper in the liver and kidneys were correlated with the histological observations. The transitory necrotic damage of the proximal tubules caused during the repeated injections of cadmium was accompanied with a rapid decrease of the copper content in the kidney metallothionein. Further loading of cadmium ions induced increases in the amounts of cadmium not bound to metallothionein and its oxidation products as well as an increase of the Cd/Zn ratio in metallothionein. With these changes in the chemical forms of cadmium, persistent damage of the kidneys occurred. The transitory renal damage caused both by a single injection of cadmium-containing metallothionein and by repeated injections of cadmium salt can be explained by a limit of the native biosynthetic capacity of metallothionein in the kidney, while the persistent damage appears to be due to a limit of the induced capacity. 46 references, 7 figures.

  9. Effect of Chlorella vulgaris intake on cadmium detoxification in rats fed cadmium

    PubMed Central

    Kim, You Jin; Kwon, Sanghee

    2009-01-01

    The aim of this study was to investigate if dietary Chlorella vulgaris (chlorella) intake would be effective on cadmium (Cd) detoxification in rats fed dietary Cd. Fourteen-week old male Sprague-Dawley (SD) rats weighing 415.0 ± 1.6 g were randomly divided into two groups and fed slightly modified American Institute of Nutrition-93 Growing (AIN-93G) diet without (n=10) or with (n=40) dietary Cd (200 ppm) for 8 weeks. To confirm alteration by dietary Cd intake, twenty rats fed AIN-93G diet without (n=10) and with (n=10) dietary Cd were sacrificed and compared. Other thirty rats were randomly blocked into three groups and fed slightly modified AIN-93G diets replacing 0 (n=10), 5 (n=10) or 10% (n=10) chlorella of total kg diet for 4 weeks. Daily food intake, body weight change, body weight gain/calorie intake, organ weight (liver, spleen, and kidney), perirenal fat pad and epididymal fat pad weights were measured. To examine Cd detoxification, urinary Cd excretion and metallothonein (MT) concentrations in kidney and intestine were measured. Food intake, calorie intake, body weight change, body weight gain/calorie intake, organ weight and fat pad weights were decreased by dietary Cd intake. Urinary Cd excretion and MT concentrations in kidney and small intestine were increased by dietary Cd. After given Cd containing diet, food intake, calorie intake, body weight change, body weight gain/calorie intake, organ weights and fat pad weights were not influenced by dietary chlorella intake. Renal MT synthesis tended to be higher in a dose-dependent manner, but not significantly. And chlorella intake did not significantly facilitate renal and intestinal MT synthesis and urinary Cd excretion. These findings suggest that, after stopping cadmium supply, chlorella supplementation, regardless of its percentage, might not improve cadmium detoxification from the body in growing rats. PMID:20016707

  10. Development of an inhalation unit risk factor for cadmium.

    PubMed

    Haney, J

    2016-06-01

    An inhalation unit risk factor (URF) was developed for cadmium. The URF is based on excess lung cancer mortality in a key epidemiological study of cadmium smelter workers (Park et al., 2012). The Park et al. (2012) study is an update of the Thun et al. (1985) cohort that was previously used to derive a URF in USEPA (1985). Park et al. re-analyzed the cadmium smelter worker population (near Denver, CO) using more detailed work history information, a revised cadmium exposure matrix, a detailed retrospective exposure assessment for arsenic (potential confounder), and updated mortality data (through 2002). Grouped observed and expected number of lung cancer mortalities along with cumulative cadmium exposures were used in the current study to obtain the maximum likelihood estimate and asymptotic variance of the slope (β) for the linear multiplicative relative risk model using Poisson regression modeling. Life-table analyses were used to derive the final URF for cadmium of 4.9E-04 per μg Cd/m(3). The corresponding lifetime air concentration at the 1 in 100,000 no significant excess risk level is 0.020 μg Cd/m(3), which can be used to protect the general public in Texas against the potential carcinogenic effects from chronic exposure to cadmium and cadmium compounds. PMID:26970597

  11. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, Dean H.; Nelson, Art J.; Ahrenkiel, Richard K.

    1996-01-01

    A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.

  12. Silicate reduces cadmium uptake into cells of wheat.

    PubMed

    Greger, Maria; Kabir, Ahmad H; Landberg, Tommy; Maity, Pooja J; Lindberg, Sylvia

    2016-04-01

    Cadmium (Cd) is a health threat all over the world and high Cd content in wheat causes high Cd intake. Silicon (Si) decreases cadmium content in wheat grains and shoot. This work investigates whether and how silicate (Si) influences cadmium (Cd) uptake at the cellular level in wheat. Wheat seedlings were grown in the presence or absence of Si with or without Cd. Cadmium, Si, and iron (Fe) accumulation in roots and shoots was analysed. Leaf protoplasts from plants grown without Cd were investigated for Cd uptake in the presence or absence of Si using the fluorescent dye, Leadmium Green AM. Roots and shoots of plants subjected to all four treatments were investigated regarding the expression of genes involved in the Cd uptake across the plasma membrane (i.e. LCT1) and efflux of Cd into apoplasm or vacuole from the cytosol (i.e. HMA2). In addition, phytochelatin (PC) content and PC gene (PCS1) expression were analysed. Expression of iron and metal transporter genes (IRT1 and NRAMP1) were also analysed. Results indicated that Si reduced Cd accumulation in plants, especially in shoot. Si reduced Cd transport into the cytoplasm when Si was added both directly during the uptake measurements and to the growth medium. Silicate downregulated LCT1 and HMA2 and upregulated PCS1. In addition, Si enhanced PC formation when Cd was present. The IRT1 gene, which was downregulated by Cd was upregulated by Si in root and shoot facilitating Fe transport in wheat. NRAMP1 was similarly expressed, though the effect was limited to roots. This work is the first to show how Si influences Cd uptake on the cellular level. PMID:26745394

  13. Analytical performance of a lab-made concomitant metal analyzer to generate volatile species of Ag, Au, Cd, Cu, Ni, Sn and Zn using 8-hydroxyquinoline as a reaction media.

    PubMed

    Villanueva-Alonso, Julia; Peña-Vázquez, Elena; Bermejo-Barrera, Pilar

    2012-10-15

    This study evaluated the main parameters affecting Ag, Au, Cd, Cu, Ni, Sn and Zn vapor generation using a lab-made concomitant metal analyzer (CMA) as a reaction chamber and gas-liquid separator. The modifier used in the reaction media was 8-hydroxyquinoline, and Inductively-Coupled Plasma Optical Emission Spectrometry was used as detection technique. The performance of the lab-made concomitant analyzer was compared with the performance of a continuous flow gas-liquid separator and of a cyclonic spray chamber. Standards were prepared in acid media and included 1 mg L(-1) of Co as a catalyzer. The optimum concentrations of the reagents in the standards were: 450 mg L(-1) of 8-hydroxyquinoline and 0.4 M nitric acid. The optimum concentration of sodium borohydride to generate the vapors was 2.25% (w/v) (prepared in 0.4% (w/v) NaOH). The volatile species were swept from the CMA to the torch by an argon flow of 0.6 mL min(-1). The use of the CMA led to an improvement of the detection limits for some elements compared to conventional nebulization: 1.1 μg L(-1) for Ag, 7.0 μg L(-1) for Au and 4.3 μg L(-1) for Sn. The limit of detection for Cu was 1.4 μg L(-1) and for Ni 22.5 μg L(-1). The direct mixing of the reagents on the spray chamber was not effective for Cd and Zn; a deviation of the linearity was observed for these elements. PMID:23141310

  14. Modelling a nickel cadmium battery as a homogeneous device

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul J.; Fan, Deyuan; White, Ralph E.

    1990-01-01

    A computer model of the nickel-cadmium (Ni-Cd) battery cell has been developed. This one-dimensional macrohomogeneous model predicts performance for Ni-Cd battery cells based on electrochemical phenomena. Reaction rates, concentrations, current densities, porosities, and potentials are predicted over a range of conditions. A description of the model, some initial results, and plans for continued development are presented.

  15. Syntheses, crystal structures and fluorescent properties of Cd(II), Hg(II) and Ag(I) coordination polymers constructed from 1H-1,2,4-triazole-1-acetic acid

    NASA Astrophysics Data System (ADS)

    Ding, De-Gang; Xie, Li-Xia; Fan, Yao-Ting; Hou, Hong-Wei; Xu, Yan

    2009-06-01

    Three new d10 coordination polymers, namely [Cd(taa)Cl] n1, [Hg(taa)Cl] n2, and [Ag 1.5(taa)(NO 3) 0.5] n3 (taa=1H-1,2,4-triazole-1-acatate anion) have been prepared and characterized by elemental analysis, IR, and single crystal X-ray diffraction. Compound 1 consists of two-dimensional layers constructed by carboxyl-linked helical chains, which are further linked through carboxyl group to generate a unique 3D open framework. Topological analysis reveals that the structure of 1 can be classified as an unprecedented (3,8)-connected network with the Schläfli symbol (4.5 2) 2(4 2.5 8.6 14.7 3.8). Compound 2 manifests a doubly interpenetrated decorated α-polonium cubic network with the Schläfli symbol of (4 10.6 2.8 3). Compound 3 consists of 2D puckered layers made up of Ag centers and taa - bridges. In addition, all of these compounds are photoluminescent in the solid state with spectra that closely resemble those of the ligand precursor.

  16. Factors influencing cadmium accumulation and its toxicity to marine organisms

    PubMed Central

    Engel, David W.; Fowler, Bruce A.

    1979-01-01

    The toxicity of dissolved cadmium to a variety of marine animals has been found to be related to salinity, with decreased toxicity observed at higher salinities. Recent data from our laboratory have demonstrated that the toxicity of cadmium to estuarine shrimp and larval fish is a function of free cadmium ion concentration, which in turn is controlled by the chloride concentration of the water. As the chloride concentration (i.e., salinity of the water) increases, the concentration of free cadmium ion decreases relative to total dissolved metal, due to its complexation with chloride ions. These observations have been given further support by measurements involving the uptake of 115mCd by shrimp which showed that accumulation of 115mCd and chloride concentration also are inversely related. Experiments also have been conducted on the physiological effects of cadmium on the respiration of excised oyster gill tissue. Although tissues from oysters exposed for 14 days to 0.1 ppm total dissolved cadmium accumulated significant quantities of metal, no measurable effects on respiration rates were detected. Higher doses (0.3 and 0.6 ppm) caused both mortalities of oysters and accelerated respiration of excised oyster gill. Exposure to 0.1 ppm cadmium also caused the induction of and/or increased binding of cadmium to a specific low molecular weight protein in oysters. This protein appeared to have a detoxification function at low cadmium exposure levels, but in animals exposed to 0.6 ppm cadmium the induction mechanism apparently became saturated, allowing the excess cadmium to bind critical sites with resultant damage. PMID:488052

  17. Spectrometric characteristics of cadmium sulfide-based scintillators

    SciTech Connect

    Zdesenko, Y.G.; Nikolaiko, A.S.; Ryzhikov, V.D.; Silin, V.J.

    1985-11-01

    Results of measurements of the time and spectrometric characteristics of CdS(Te) scintillation crystals produced by advanced technology are presented. The possibility of using detectors based on cadmium sulfide for spectrometry of ionizing radiation at a temperature of 300/sup 0/K is shown. The energy resolution of the better specimens is 21% for the 622-keV /sup 137/Cs gamma line. Measurements made confirm the possibility of creating spectrometers based on CdS(Te) and allow it to be hoped that cadmium sulfide detectors can be produced that have the necessary parameters of studying /sup 116/Cd double beta decay.

  18. Photoelectrochemical properties of double layer photoelectrode of cadmium chalcogenides prepared by vacuum evaporation

    SciTech Connect

    Fujii, M.; Kawai, T.; Kawai, S.

    1989-03-01

    Double layer thin films were prepared using two kinds of cadmium chalcogenides by vacuum evaporation. The double layer films showed different photoelectrochemical properties from those of single layer electrodes. Onset potentials of CdSe/CdS and CdTe/CdSe electrodes shifted negatively from those of CdSe and CdTe single layer electrodes. The CdSe/CdTe electrode functioned under irradiation of longer wavelengths than the CdSe electrode did, and it was more stable than the N-CdTe electrode was.

  19. Mechanisms of Cadmium Carcinogenesis

    EPA Science Inventory

    Cadmium is a transition metal and an ubiquitous environmental and industrial pollutant. Laboratory animal studies and epidemiological studies have shown that exposure to cadmium is associated with various organ toxicities and carcinogenic effects. Several national and internation...

  20. Cadmium and zinc relationships.

    PubMed Central

    Elinder, C G; Piscator, M

    1978-01-01

    Cadmium and zinc concentrations in kidney and liver have been measured under different exposure situations in different species including man. The results show that zinc increases almost equimolarly with cadmium in kidney after long-term low-level exposure to cadmium, e.g., in man, horse, pig, and lamb. In contrast, the increase of zinc follows that of cadmium to only a limited extent, e.g., in guinea pig, rabbit, rat, mouse, and chicks. In liver, the cadmium--zinc relationship seems to be reversed in such a way that zinc increases with cadmium more markedly in laboratory animals than in higher mammals. These differences between cadmium and zinc relationships in humans and large farm animals and those in commonly used laboratory animals must be considered carefully before experimental data on cadmium and zinc relationships in laboratory animals can be extrapolated to humans. PMID:720298

  1. Tantalum-cadmium film coatings: Preparation, phase composition, and structure

    NASA Astrophysics Data System (ADS)

    Tuleushev, Yu. Zh.; Volodin, V. N.; Zhakanbaev, E. A.

    2015-01-01

    Ion-plasma sputtering and codeposition of ultrafine Ta and Cd particles were used for the first time to prepare solid solutions, namely, alloys with up to 66.2 at % Cd in the form of coatings; the fact of such a production confirms the thermal-fluctuation melting and coalescence of small particles. When the coatings are formed by tantalum and cadmium nanolayers, the mutual dissolution of the components takes place, which is accompanied by the formation of solid solutions of one metal in the other. When the cadmium concentration is above 44 at %, the β-Ta tetragonal lattice transforms into the α-Ta body-centered cubic lattice. Beginning from 74.4 at % Cd, a hexagonal structure typical of cadmium is formed, and tantalum is present in the coatings in the form of amorphous phase. The formation of β-Ta- and Cd-based interstitial and α-Ta-based substitute solid solutions is stated. At 700°C, cadmium evaporates from Ta-based solid solutions, and porous tantalum is formed. The evaporation of cadmium from coatings, which consist of the mixture of tantalum solid solution in cadmium and amorphous tantalum, leads to the formation of tantalum characterized by a highly developed surface. The prepared Ta-based materials assume the technological application of the results of the investigation.

  2. PRODUCTION OF LOW MOLECULAR WEIGHT CADMIUM-BINDING PROTEINS IN RABBIT LUNG FOLLOWING EXPOSURE TO CADMIUM CHLORIDE

    EPA Science Inventory

    Low molecular weight cadmium-binding proteins were studied in lung tissue from rabbits exposed to aerosols of CdCl2. Lungs obtained from animals exposed by inhalation to aerosols of 800 or 1600 micrograms/cu.m. CdCl2 for 2-hr periods/day, every other day for a 5-day period, were ...

  3. Waste-related cadmium cycle in Switzerland

    SciTech Connect

    Keller, L.; Brunner, P.H.

    1983-02-01

    The anthropogenic contribution to the global cadmium flux exceeds natural sources by a factor of three. The most important pathway is the atmosphere; therefore, high cadmium concentrations can be found even in remote areas. On a local level, the increase in cadmium consumption can be observed in increasing concentrations in the soil, plants, and food. The question arises as to what extent the soil-plant-man-waste-soil cycle can be loaded with cadmium in order to function without negative impact on the environment. In Switzerland, 120 tons (t) of cadmium are consumed per year. Of this amount, 25 t end up in municipal solid waste, 3 t in wastewater, and 19 t in precipitation and dry fallout. As a consequence of today's waste management practice (75% incineration, 20% sanitary landfill, 5% composting; 75% of all sewage is purified), the annual input to the soil is 40 t: 18 t concentrated in landfills, 19 t dissipated via the atmosphere, and 3 t directly spread via sewage sludge, compost, and fertilizer on agricultural land. If even distribution were possible, the cadmium content of the soil would theoretically double in 150 years. The accumulation in the soil will increase the cadmium content of plants grown on such a soil. According to a simple model, the level of 3 ppm cadmium in soils should not be surpassed. At such concentrations, plants are likely to contain greater than 0.4 mg Cd/kg, a concentration which can cause toxic effects in long-term experiments. The safe level in food might be even lower.

  4. Enhanced cadmium efflux and root-to-shoot translocation are conserved in the hyperaccumulator Sedum alfredii (Crassulaceae family).

    PubMed

    Zhang, Zhongchun; Yu, Qi; Du, Hanying; Ai, Wenli; Yao, Xuan; Mendoza-Cózatl, David G; Qiu, Baosheng

    2016-06-01

    Investigation on the molecular mechanisms of cadmium hyperaccumulation has been mostly focused on members of the Brassicaceae family. Here, we show using hyperaccumulating (HP) and nonhyperaccumulating (NHP) populations of Sedum alfredii (Crassulaceae), that Cd hypertolerance correlates with higher Cd efflux rates and less cadmium accumulation in suspension cells and roots. The heavy metal ATPase HMA2, but not HMA4, was highly expressed in suspension cultures and roots from HP plants compared to NHP cells and plants. Reciprocal grafting also showed that Cd translocation is more efficient in HP plants. These results suggest that cadmium efflux is a conserved mechanism among natural cadmium hyperaccumulator species. PMID:27222256

  5. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  6. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  7. [Speciation analysis of cadmium in cadmium-enriched plants with SE-HPLC combined with ICP-MS and ESI-MS].

    PubMed

    Li, Bin; Liu, Li; Wang, Qiu-Quan; Yan, Hua; Huang, Ben-Li

    2010-04-01

    Different species of ferns (pyrrosia lingua, Lepisorus thunbergianus, Lycopodium japonicum, Elaphoglossum yoshinagae and Woodwardia japonica) were cultivated using different species of cadmium as cultivation solution. The results showed that there were differences in enrichment amounts of cadmium in different parts of plants (amounts in root > in stem > in leaves). And it was found that different species of cadmium could induce synthesization of plant--chelated peptides (PCs) with different extents. And then PCs was coordinated with cadmium to decrease the toxicity from cadmium. There are some kinds of peptides ligands found in plants, which are mainly PC3, iso-PC3(betaAla) and iso-PC2(betaAla). In the present paper, the distribution of cadmium in different parts of ferns was studied after the ferns were intimidated with different species of cadmium. And the species of PCs-Cd coordination compounds were also investigated to explain the detoxification mechanism aroused by it. PMID:20545169

  8. Distillation of cadmium from uranium plutonium cadmium alloy

    NASA Astrophysics Data System (ADS)

    Kato, Tetsuya; Iizuka, Masatoshi; Inoue, Tadashi; Iwai, Takashi; Arai, Yasuo

    2005-04-01

    Uranium-plutonium alloy was prepared by distillation of cadmium from U-Pu-Cd ternary alloy. The initial ternary alloy contained 2.9 wt% U and 8.7 wt% Pu other than Cd, which were recovered by molten salt electrolysis with liquid Cd cathode. The distillation experiments were conducted in 10 g scale of the initial alloy using a small-scale distillation furnace equipped with an evaporator and a condenser in a vacuum vessel. After distillation at 1073 K, the weight of the residue was in good agreement with that of the loaded actinides, where the content of Cd decreased to less than 0.05 wt%. The uranium-plutonium alloy product was recovered without adhering to the yttria crucible. The cross section of the product was observed using electron probe micro-analyzer and it was found to consist of a dense material. Almost all of the evaporated Cd was recovered in the condenser and so enclosed well in the apparatus.

  9. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum.

    PubMed

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-01-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ(114/110)Cdorgans-solution) of -0.70‰ to -0.22‰ in Ricinus communis and -0.51‰ to -0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology. PMID:27076359

  10. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum

    NASA Astrophysics Data System (ADS)

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-04-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ114/110Cdorgans-solution) of ‑0.70‰ to ‑0.22‰ in Ricinus communis and ‑0.51‰ to ‑0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology.

  11. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum

    PubMed Central

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-01-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ114/110Cdorgans-solution) of −0.70‰ to −0.22‰ in Ricinus communis and −0.51‰ to −0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology. PMID:27076359

  12. Cadmium(II) complex formation with glutathione.

    PubMed

    Mah, Vicky; Jalilehvand, Farideh

    2010-03-01

    Complex formation between heavy metal ions and glutathione (GSH) is considered as the initial step in many detoxification processes in living organisms. In this study the structure and coordination between the cadmium(II) ion and GSH were investigated in aqueous solutions (pH 7.5 and 11.0) and in the solid state, using a combination of spectroscopic techniques. The similarity of the Cd K-edge and L(3)-edge X-ray absorption spectra of the solid compound [Cd(GS)(GSH)]ClO(4).3H(2)O, precipitating at pH 3.0, with the previously studied cysteine compound {Cd(HCys)(2).H(2)O}(2).H(3)O(+).ClO(4) (-) corresponds to Cd(S-GS)(3)O (dominating) and Cd(S-GS)(4) four-coordination within oligomeric complexes with mean bond distances of 2.51 +/- 0.02 A for Cd-S and 2.24 +/- 0.04 A for Cd-O. For cadmium(II) solutions (C (Cd(II)) approximately 0.05 M) at pH 7.5 with moderate excess of GSH (C (GSH)/C (Cd(II)) = 3.0-5.0), a mix of Cd(S-GS)(3)O (dominating) and Cd(S-GS)(4) species is consistent with the broad (113)Cd NMR resonances in the range 632-658 ppm. In alkaline solutions (pH 11.0 and C (GSH)/C (Cd(II)) = 2.0 or 3.0), two distinct peaks at 322 and 674 ppm are obtained. The first peak indicates six-coordinated mononuclear and dinuclear complexes with CdS(2)N(2)(N/O)(2) and CdSN(3)O(2) coordination in fast exchange, whereas the second corresponds to Cd(S-GS)(4) sites. At high ligand excess the tetrathiolate complex, Cd(S-GS)(4), characterized by a sharp delta((113)Cd) NMR signal at 677 ppm, predominates. The average Cd-S distance, obtained from the X-ray absorption spectra, varied within a narrow range, 2.49-2.53 A, for all solutions (pH 7.5 and 11.0) regardless of the coordination geometry. PMID:20035360

  13. A rapid, partial leach and organic separation for the sensitive determination of Ag, Bi, Cd, Cu, Mo, Pb, Sb, and Zn in surface geologic materials by flame atomic absorption

    USGS Publications Warehouse

    Viets, J.G.; Clark, J.R.; Campbell, W.L.

    1984-01-01

    A solution of dilute hydrochloric acid, ascorbic acid, and potassium iodide has been found to dissolve weakly bound metals in soils, stream sediments, and oxidized rocks. Silver, Bi, Cd, Cu, Mo, Pb, Sb, and Zn are selectively extracted from this solution by a mixture of Aliquat 336 (tricaprylyl methyl ammonium chloride) and MIBK (methyl isobutyl ketone). Because potentially interfering major and minor elements do not extract, the organic separation allows interference-free determinations of Ag and Cd to the 0.05 ppm level, Mo, Cu, and Zn to 0.5 ppm, and Bi, Pb, and Sb to 1 ppm in the sample using flame atomic absorption spectroscopy. The analytical absorbance values of the organic solution used in the proposed method are generally enhanced more than threefold as compared to aqueous solutions, due to more efficient atomization and burning characteristics. The leaching and extraction procedures are extremely rapid; as many as 100 samples may be analyzed per day, yielding 800 determinations, and the technique is adaptable to field use. The proposed method was compared to total digestion methods for geochemical reference samples as well as soils and stream sediments from mineralized and unmineralized areas. The partial leach showed better anomaly contrasts than did total digestions. Because the proposed method is very rapid and is sensitive to pathfinder elements for several types of ore deposits, it should be useful for reconnaissance surveys for concealed deposits. ?? 1984.

  14. Dietary Intake Estimates and Urinary Cadmium Levels in Danish Postmenopausal Women

    PubMed Central

    Vacchi-Suzzi, Caterina; Eriksen, Kirsten T.; Levine, Keith; McElroy, Jane; Tjønneland, Anne; Raaschou-Nielsen, Ole; Harrington, James M.; Meliker, Jaymie R.

    2015-01-01

    Background Cadmium is a known carcinogen that can disrupt endocrine signalling. Cigarette smoking and food are the most common routes of non-occupational exposure to cadmium. Cadmium accumulates in the kidney and can be measured in urine, making urine cadmium (U-Cd) a biomarker of long-term exposure. However dietary-cadmium (D-Cd) intake estimates are often used as surrogate indicator of cadmium exposure in non-smoking subjects. It is therefore important to investigate the concordance between D-Cd estimates obtained with Food Frequency Questionnaires and U-Cd. Methods U-Cd levels were compared with estimated dietary-cadmium (D-Cd) intake in 1764 post-menopausal women from the Danish Diet, Cancer and Health cohort. For each participant, a food frequency questionnaire, and measures of cadmium content in standard recipes were used to judge the daily intake of cadmium, normalized by daily caloric intake. Cadmium was measured by ICP-MS in spot urine sampled at baseline and normalized by urinary creatinine. Information on diet, socio-demographics and smoking were self-reported at baseline. Results Linear regressions between U-Cd and D-Cd alone revealed minimal but significant positive correlation in never smokers (R2 = 0.0076, β = 1.5% increase per 1 ng Cd kcal-1, p = 0.0085, n = 782), and negative correlation in current smokers (R2 = 0.0184, β = 7.1% decrease per 1 ng Cd kcal-1 change, p = 0.0006, n = 584). In the full study population, most of the variability in U-Cd was explained by smoking status (R2 = 0.2450, n = 1764). A forward selection model revealed that the strongest predictors of U-Cd were age in never smokers (Δ R2 = 0.04), smoking duration in former smokers (Δ R2 = 0.06) and pack-years in current smokers (Δ R2 = 0.07). Food items that contributed to U-Cd were leafy vegetables and soy-based products, but explained very little of the variance in U-Cd. Conclusions Dietary-Cd intake estimated from food frequency questionnaires correlates only minimally

  15. The effects of low environmental cadmium exposure on bone density

    SciTech Connect

    Trzcinka-Ochocka, M.; Jakubowski, M.; Szymczak, W.; Janasik, B.; Brodzka, R.

    2010-04-15

    Recent epidemiological data indicate that low environmental exposure to cadmium, as shown by cadmium body burden (Cd-U), is associated with renal dysfunction as well as an increased risk of cadmium-induced bone disorders. The present study was designed to assess the effects of low environmental cadmium exposure, at the level sufficient to induce kidney damage, on bone metabolism and mineral density (BMD). The project was conducted in the area contaminated with cadmium, nearby a zinc smelter located in the region of Poland where heavy industry prevails. The study population comprised 170 women (mean age=39.7; 18-70 years) and 100 men (mean age=31.9; 18-76 years). Urinary and blood cadmium and the markers of renal tubular dysfunction ({beta}{sub 2}M-U RBP, NAG), glomerular dysfunction (Alb-U and {beta}{sub 2}M-S) and bone metabolism markers (BAP-S, CTX-S) as well as forearm BMD, were measured. The results of this study based on simple dose-effect analysis showed the relationship between increasing cadmium concentrations and an increased excretion of renal dysfunction markers and decreasing bone density. However, the results of the multivariate analysis did not indicate the association between exposure to cadmium and decrease in bone density. They showed that the most important factors that have impact on bone density are body weight and age in the female subjects and body weight and calcium excretion in males. Our investigation revealed that the excretion of low molecular weight proteins occurred at a lower level of cadmium exposure than the possible loss of bone mass. It seems that renal tubular markers are the most sensitive and significant indicators of early health effects of cadmium intoxication in the general population. The correlation of urinary cadmium concentration with markers of kidney dysfunction was observed in the absence of significant correlations with bone effects. Our findings did not indicate any effects of environmental cadmium exposure on bone

  16. Associations between cadmium exposure and circulating levels of sex hormones in postmenopausal women

    SciTech Connect

    Ali, Imran; Engström, Annette; Vahter, Marie; Skerfving, Staffan; Lundh, Thomas; Lidfeldt, Jonas; Samsioe, Göran; Halldin, Krister; Åkesson, Agneta

    2014-10-15

    Recent epidemiological as well as in vivo and in vitro studies collectively suggest that the metalloestrogen cadmium (Cd) could be a potential risk factor for hormone-related cancers in particularly breast cancer. Assessment of the association between Cd exposure and levels of endogenous sex hormones is of pivotal importance, as increased levels of such have been associated with a higher risk of breast cancer in postmenopausal women. The present study investigated the perceived relationship (multivariable-adjusted linear regression analyses) between Cd exposure [blood Cd (B-Cd) and urinary Cd (U-Cd)], and serum levels of androstenedione, testosterone, estradiol, and sex-hormone binding globulin (SHBG), in 438 postmenopausal Swedish women without hormone replacement therapy (HRT). A significant positive association between B-Cd (median 3.4 nmol/L) and serum testosterone levels, as well as a significant inverse association between B-Cd and serum estradiol levels and with the estradiol/testosterone ratio were encountered. However, U-Cd (median 0.69 nmol/mmol creatinine) was inversely associated with serum estradiol levels only. Our data may suggest that Cd interferes with the levels of testosterone and estradiol in postmenopausal women, which might have implications for breast cancer risk. - Highlights: • Low level cadmium exposure may interfere with the levels of steroid hormones. • Cadmium exposure was associated with increased serum testosterone concentrations. • Cadmium exposure was associated with decreased estradiol/testosterone ratio. • Cadmium exposure may have implications for breast-cancer promotion.

  17. In Situ Localized Surface Plasmon Resonance (LSPR) Spectroscopy to Investigate Kinetics of Chemical Bath Deposition of CdS Thin Films

    SciTech Connect

    Kalyanaraman, Ramki; Taz, Humaira; Ruther, Rose E.; Nanda, Jagjit

    2015-02-11

    Techniques that can characterize the early stages of thin film deposition from liquid phase processes can aid greatly in our understanding of mechanistic aspects of chemical bath deposition (CBD). Here we have used localized surface plasmon resonance (LSPR) spectroscopy to monitor in-situ the kinetics of early-stage growth of cadmium sulfide (CdS) thin films on Ag nanoparticle on quartz substrates. Real-time shift during CdS deposition showed that the LSPR wavelength red shifted rapidly due to random deposition of CdS on the substrate, but saturated at longer times. LSPR modeling showed that these features could be interpreted as an initial deposition of CdS islands followed by preferential deposition onto itself. The CdS also showed significantly enhanced Raman signals up to 170 times due to surface enhanced raman scattering (SERS) from the CdS/Ag NP regions. The ex-situ SERS effect supported the LSPR shift suggesting that these techniques could be used to understand nucleation and growth phenomena from the liquid phase.

  18. In Situ Localized Surface Plasmon Resonance (LSPR) Spectroscopy to Investigate Kinetics of Chemical Bath Deposition of CdS Thin Films

    DOE PAGESBeta

    Kalyanaraman, Ramki; Taz, Humaira; Ruther, Rose E.; Nanda, Jagjit

    2015-02-11

    Techniques that can characterize the early stages of thin film deposition from liquid phase processes can aid greatly in our understanding of mechanistic aspects of chemical bath deposition (CBD). Here we have used localized surface plasmon resonance (LSPR) spectroscopy to monitor in-situ the kinetics of early-stage growth of cadmium sulfide (CdS) thin films on Ag nanoparticle on quartz substrates. Real-time shift during CdS deposition showed that the LSPR wavelength red shifted rapidly due to random deposition of CdS on the substrate, but saturated at longer times. LSPR modeling showed that these features could be interpreted as an initial deposition ofmore » CdS islands followed by preferential deposition onto itself. The CdS also showed significantly enhanced Raman signals up to 170 times due to surface enhanced raman scattering (SERS) from the CdS/Ag NP regions. The ex-situ SERS effect supported the LSPR shift suggesting that these techniques could be used to understand nucleation and growth phenomena from the liquid phase.« less

  19. Cadmium-induced genetic instability in mice testis.

    PubMed

    Oliveira, Helena; Lopes, Tina; Almeida, Tânia; Pereira, Maria de Lourdes; Santos, Conceição

    2012-12-01

    Cadmium is a well recognized carcinogenic, cytotoxic and mutagenic transition metal. Recent evidence suggests that the proteins participating in the DNA repair systems, especially in excision and mismatch repair (MMR), are sensitive targets of cadmium toxicity. Microsatellite instability (MSI) is regarded as one of the phenotypes of defective DNA MMR and, consequently, as a marker of high risk for cancer. The purpose of this work is to determine whether cadmium, in the form of cadmium chloride (CdCl(2)), may induce microsatellite mutations in murine testes. For this study, 2-month-old male ICR-CD1 mice were treated by a single subcutaneous injection of 1, 2 and 3 mg CdCl(2)/kg body weight and killed after 35 days. A panel of six microsatellite markers, previously reported as being the most sensitive in detecting MSI in murine tumours, was used in this study. The results show that CdCl(2) in the doses of 2 and 3 mg/kg induced a decrease in the testis weight and severe histopathologic changes with complete disorganization of testicular structure and evidences of severe necrosis. In addition, the animals exposed to the lowest CdCl(2) dose presented MSI in the testis. The results indicate the existence of MSI in at least two nuclear loci suggesting putative genotoxic effects induced by cadmium. PMID:22699117

  20. Urinary cadmium and mortality among inhabitants of a cadmium-polluted area in Japan

    SciTech Connect

    Nakagawa, Hideaki; Nishijo, Muneko . E-mail: ni-koei@kanazawa-med.ac.jp; Morikawa, Yuko; Miura, Katsuyuki; Tawara, Kenji; Kuriwaki, Jun-ichi; Kido, Teruhiko; Ikawa, Akemi; Kobayashi, Etsuko; Nogawa, Koji

    2006-03-15

    The influence of cadmium (Cd) body burden on mortality remains controversial. Excess mortality and the dose-response relationship between mortality and urinary cadmium excretion were investigated in this study among environmentally exposed subjects. A 15-year follow-up study was carried out on 3119 inhabitants (1403 men and 1716 women) of the Cd-polluted Kakehashi River basin, whose urinary Cd concentration was examined in a 1981-1982 health impact survey. The mortality risk of high urinary Cd ({>=}10 {mu}g/g Cr) subjects after adjustment for age using Cox's proportional hazard model was higher than that of moderate urinary Cd (<10 {mu}g/g Cr) subjects in both sexes. When the subjects were divided into five groups according to the amount of urinary Cd (<3, 3-5, 5-10, 10-20, {>=}20 {mu}g/g Cr), the mortality risk was significantly increased among the subjects with urinary Cd{>=}3 {mu}g/g Cr in proportion to the increases in the amount of urinary Cd concentration after adjustment for age, especially in women. Furthermore, special causes of death among high and moderate urinary Cd were investigated, and mortality risk ratio for heart failure, which is a cause of death often diagnosed in cases with a gradual deterioration culminating in death, was significantly increased in both sexes, compared with the moderate urinary Cd subjects. Also, in women the mortality risk for renal diseases in the high urinary Cd subjects was significantly higher than that in the moderate urinary Cd subjects. These results suggest that a causal association between Cd body burden and mortality exists among inhabitants environmentally exposed to Cd but that no special disease may be induced except renal diseases.

  1. CdS and CdS/CdSe sensitized ZnO nanorod array solar cells prepared by a solution ions exchange process

    SciTech Connect

    Chen, Ling; Gong, Haibo; Zheng, Xiaopeng; Zhu, Min; Zhang, Jun; Yang, Shikuan; Cao, Bingqiang

    2013-10-15

    Graphical abstract: - Highlights: • CdS and CdS/CdSe quantum dots are assembled on ZnO nanorods by ion exchange process. • The CdS/CdSe sensitization of ZnO effectively extends the absorption spectrum. • The performance of ZnO/CdS/CdSe cell is improved by extending absorption spectrum. - Abstract: In this paper, cadmium sulfide (CdS) and cadmium sulfide/cadmium selenide (CdS/CdSe) quantum dots (QDs) are assembled onto ZnO nanorod arrays by a solution ion exchange process for QD-sensitized solar cell application. The morphology, composition and absorption properties of different photoanodes were characterized with scanning electron microscope, transmission electron microscope, energy-dispersive X-ray spectrum and Raman spectrum in detail. It is shown that conformal and uniform CdS and CdS/CdSe shells can grow on ZnO nanorod cores. Quantum dot sensitized solar cells based on ZnO/CdS and ZnO/CdS/CdSe nanocable arrays were assembled with gold counter electrode and polysulfide electrolyte solution. The CdS/CdSe sensitization of ZnO can effectively extend the absorption spectrum up to 650 nm, which has a remarkable impact on the performance of a photovoltaic device by extending the absorption spectrum. Preliminary results show one fourth improvement in solar cell efficiency.

  2. General aspects of cadmium: transport, uptake and metabolism by the kidney.

    PubMed Central

    Nordberg, M

    1984-01-01

    Cadmium taken up from lung and gastrointestinal tract is transported via blood to liver and kidney. On long-term exposure to cadmium, renal tubular dysfunction develops in humans and experimental animals. Data from animal experiments demonstrate that initially after exposure cadmium in blood is bound to albumin and proteins with higher molecular weight. Such cadmium is mainly taken up in liver. For a few days after exposure cadmium exists as metallothionein in plasma and blood cells. After both single and long-term administration of cadmium bound to metallothionein, cadmium is taken up by the kidney. The concentration of metallothionein-bound cadmium in plasma is quite low due to continuous renal clearance. Cadmium from metallothionein is taken up in renal tubules by pinocytosis and subsequently degraded in lysosomes, thereby releasing cadmium which stimulates de novo synthesis of metallothionein but also binds to reabsorbed metallothionein. Catabolizing and rebinding are continuous and prevent excretion of cadmium. Because of differences in transport, renal metabolic handling forms of cadmium are also different for different forms of cadmium administered and rate of administration. A single dose of metallothionein-bound cadmium given intravenously is almost immediately and completely taken up in the renal tubule. Under such conditions, resynthesis and rebinding processes are insufficient to sequester cadmium from sensitive tissue receptors, and renal damage occurs at total tissue concentrations much lower than when renal cadmium concentrations rise slowly. This explains the wide range (10-200 micrograms Cd/g wet weight) of cadmium in the renal cortex that associated with renal tubular dysfunction in experimental animals. Images FIGURE 5. A FIGURE 5. B FIGURE 5. C FIGURE 6. A FIGURE 6. B FIGURE 6. C PMID:6734552

  3. Cadmium telluride films on foreign substrates

    SciTech Connect

    Chu, T.L.; Chu, S.S.; Pauleau, Y.; Murthy, K.; Stokes, E.D.; Russell, P.E.

    1983-01-01

    Thin films of cadmium telluride have been deposited on mullite and tungsten-coated graphite substrates at 500--700 /sup 0/C by the direct combination of cadmium and tellurium in a hydrogen atmosphere. Their microstructure and crystallographic properties were studied. The importance of controlling the Cd/Te molar ratio in the reaction mixture to obtain nearly stoichiometric films was demonstrated. The electrical properties of nonstoichiometric and nearly stoichiometric films on mullite substrates were measured by the van der Pauw technique. Schottky barriers were used to measure the electrical properties of cadmium telluride films on W/graphite substrates. The effective intragrain minority carrier diffusion length in n-type films was measured by the scanned electron beam method using a Schottky barrier structure.

  4. Characterization studies on cadmium-mycophosphatin from the mushroom Agaricus macrosporus

    SciTech Connect

    Meisch, H.U.; Schmitt, J.A.

    1986-03-01

    A low molecular weight Cd-binding phosphoglycoprotein, cadmium-mycophosphatin, has been isolated from the mushroom Agaricus macrosporus. This protein has a molecular weight of 12,000 dalton and contains no sulfur but a high amount of acid amino acids (Glu, Asp), and carbohydrates (glucose, galactose). Cadmium-mycophosphatin has an isoelectric point less than pH 2, binds cadmium with a dissociation constant of K/sub D/ = 1.59 x 10 M (pK/sub D/ = 6.8) and is saturated with 13.5 mole Cd/mole, all Cd-binding sites being equivalent. It is suggested that Cd is bound by phosphoserine groups, similar relations being known from calcium-binding proteins in animals. From A. macrosporus four other low-molecular weight glycoproteins have been isolated which contain sulfur and bind cadmium and copper. The biological significance of these Cd-binding proteins is discussed.

  5. Evaluation of liquid metal embrittlement of SS304 by Cd and Cd-Al solutions

    SciTech Connect

    Thomas, J.K.; Iyer, N.C. ); Begley, J.A. )

    1992-01-01

    The susceptibility of stainless steel 304 to liquid metal embrittlement (LME) by cadmium (Cd) and cadmium-aluminum (Cd-Al) solutions was examined as part of a failure evaluation for SS304-clad cadmium reactor safety rods which had been exposed to elevated temperatures. The active, or cadmium (Cd) bearing, portion of the safety rod consists of a 0.756 in. diameter aluminum allow (Al-6061) core, a 0.05 in. thick Cd layer, and a 0.042 in. thick Type 304 stainless steel cladding. The safety rod thermal tests were conducted as part of a program to define the response of reactor core components to a hypothetical LOCA for the Savannah River Site (SRS) production reactor. LME was considered as a potential failure mechanism based on the nature of the failure and susceptibility of austenitic stainless steels to embrittlement by other liquid metals.

  6. Evaluation of liquid metal embrittlement of SS304 by Cd and Cd-Al solutions

    SciTech Connect

    Thomas, J.K.; Iyer, N.C.; Begley, J.A.

    1992-07-01

    The susceptibility of stainless steel 304 to liquid metal embrittlement (LME) by cadmium (Cd) and cadmium-aluminum (Cd-Al) solutions was examined as part of a failure evaluation for SS304-clad cadmium reactor safety rods which had been exposed to elevated temperatures. The active, or cadmium (Cd) bearing, portion of the safety rod consists of a 0.756 in. diameter aluminum allow (Al-6061) core, a 0.05 in. thick Cd layer, and a 0.042 in. thick Type 304 stainless steel cladding. The safety rod thermal tests were conducted as part of a program to define the response of reactor core components to a hypothetical LOCA for the Savannah River Site (SRS) production reactor. LME was considered as a potential failure mechanism based on the nature of the failure and susceptibility of austenitic stainless steels to embrittlement by other liquid metals.

  7. Effects of chelating agents on oral uptake and renal deposition and excretion of cadmium.

    PubMed Central

    Engström, B

    1984-01-01

    The gastrointestinal absorption, transport, tissue deposition and excretion of cadmium was studied in adult male mice given a single oral LD50 dose of 109Cd-labeled CdCl2 alone or in combination with nitrilotriacetic acid (NTA), sodium tripolyphosphate (STPP) or ethylenediaminetetraacetic acid (EDTA). Blood, intestinal mucosa, liver and kidneys were analyzed for 109Cd at different times after exposure and the influence of the chelating agents on Cd binding to metallothionein and other tissue ligands was also studied. Acute toxicity was noted. Complex formation between Cd and EDTA was studied in solutions containing Cd:EDTA at 1:04 and 1:4 molar ratios. Adult male mice were exposed orally or by direct infusion into the stomach to either of the two solutions (containing an LD50 dose of Cd). Body retention and tissue deposition of Cd was recorded after 4 (direct infusion) or 21 days (oral exposure), and the mortality in different exposure groups observed. Adult male were also exposed to a low oral dose of 109Cd-labeled cadmium (0.5 mg/kg), followed by 18 months continuous administration of NTA, (500 ppm) STPP (500 ppm) or EDTA (50 ppm) in the drinking water or the chelating agent in combination with Cd (50 ppm), Cd alone (50 ppm) or deionized water. Whole-body retention of 109Cd, tissue deposition of 109Cd and total Cd and development of proteinuria were observed. When cadmium was given with an excess of EDTA, all Cd ions were bound in a 1:1 Cd-EDTA complex. Decreased acute toxicity was observed which was related to increased body elimination of cadmium. The Cd passes though the body still bound to EDTA and is excreted via the kidneys in this form. Similar results were found in mice exposed to Cd + NTA, while gavage of CD + STPP led to an initially decreased systemic uptake of Cd and thereafter to a prolongation of the biological half-time and thus a comparatively higher body retention of the metal. Cd may form a 2:1 complex with EDTA in the presence of excess cadmium

  8. Cadmium and renal cancer

    SciTech Connect

    Il'yasova, Dora; Schwartz, Gary G. . E-mail: gschwart@wfubmc.edu

    2005-09-01

    Background: Rates of renal cancer have increased steadily during the past two decades, and these increases are not explicable solely by advances in imaging modalities. Cadmium, a widespread environmental pollutant, is a carcinogen that accumulates in the kidney cortex and is a cause of end-stage renal disease. Several observations suggest that cadmium may be a cause of renal cancer. Methods: We performed a systematic review of the literature on cadmium and renal cancer using MEDLINE for the years 1966-2003. We reviewed seven epidemiological and eleven clinical studies. Results: Despite different methodologies, three large epidemiologic studies indicate that occupational exposure to cadmium is associated with increased risk renal cancer, with odds ratios varying from 1.2 to 5.0. Six of seven studies that compared the cadmium content of kidneys from patients with kidney cancer to that of patients without kidney cancer found lower concentrations of cadmium in renal cancer tissues. Conclusions: Exposure to cadmium appears to be associated with renal cancer, although this conclusion is tempered by the inability of studies to assess cumulative cadmium exposure from all sources including smoking and diet. The paradoxical findings of lower cadmium content in kidney tissues from patients with renal cancer may be caused by dilution of cadmium in rapidly dividing cells. This and other methodological problems limit the interpretation of studies of cadmium in clinical samples. Whether cadmium is a cause of renal cancer may be answered more definitively by future studies that employ biomarkers of cadmium exposure, such as cadmium levels in blood and urine.

  9. Evaluation of the potential carcinogenicity of cadmium, cadium acetate, cadmium bromide, cadmium chloride. Final report

    SciTech Connect

    Not Available

    1988-06-01

    Cadmium is a probable human carcinogen, classified as weight-of-evidence Group B1 under the EPA Guidelines for Carcinogen Risk Assessment (U.S. EPA, 1986a). Evidence on potential carcinogenicity from animal studies is Sufficient, and the evidence from human studies is Limited. The potency factor (F) for cadmium is estimated to be 57.9/(mg/kg/day) (based on epidemiology data for cadmium workers), placing it in potency group 2 according to the CAG's methodology for evaluating potential carcinogens (U.S. EPA, 1986b). Cadmium weight of evidence and potency are based on epidemiology data for cadmium workers exposed to cadmium oxide and/or cadmium fume. Although human data for cadmium salts are lacking, due to the responsiveness of animals to soluble cadmium compounds, especially cadmium chloride, the weight of evidence and potency for cadmium acetate, cadmium bromide and cadmium chloride are considered to be the same as those cadmium compounds to which workers are exposed. Thus, cadmium acetate, cadmium bromide, and cadmium chloride are all classified as weight-of-evidence Group and the potency group, cadmium, cadmium acetate, cadmium bromide, and cadmium chloride are assigned MEDIUM hazard rankings for the purposes of RQ adjustment. Combining the weight-of-evidence group and the potency group, carbon tetrachloride is assigned a MEDIUM hazard ranking for the purposes of RQ adjustment.

  10. Cysteamine capped CdS quantum dots as a fluorescence sensor for the determination of copper ion exploiting fluorescence enhancement and long-wave spectral shifts.

    PubMed

    Boonmee, Chanida; Noipa, Tuanjai; Tuntulani, Thawatchai; Ngeontae, Wittaya

    2016-12-01

    We described a turn-on fluorescence sensor for the determination of Cu(2+) ions, utilizing the quantum confinement effect of cadmium sulfide quantum dots capped with cysteamine (Cys-CdS QDs). The fluorescence intensity of the Cys-CdS QDs was both enhanced and red shifted (from blue-green to yellow) in the presence of Cu(2+). Fluorescence enhancement was linearly proportional to the concentration of Cu(2+) in the concentration range 2 to 10μM. Other cations at the same concentration level did not significantly change the intensity and spectral maxima of Cys-CdS QDs, except Ag(+). The limit of detection was 1.5μM. The sensor was applied to the determination of Cu(2+) in (spiked) real water samples and gave satisfactory results, with recoveries ranging from 96.7 to 108.2%, and with RSDs ranging from 0.3 to 2.6%. PMID:27372512

  11. Cadmium Accumulation and Metallothionein Biosynthesis in Cadmium-Treated Freshwater Mussel Anodonta woodiana

    PubMed Central

    Li, Yongquan; Yang, Huizhen; Liu, Na; Luo, Jixian; Wang, Qian; Wang, Lan

    2015-01-01

    This study investigated the distribution of cadmium (Cd) and the protein level of metallothionein (MT) and examined the relationship of Cd accumulation and the MT concentration in different tissues of freshwater mussel Anodonta woodiana following Cd treatment. The mussels were exposed to Cd (4.21, 8.43, 16.86, 33.72 and 67.45 mg L-1) for 24, 48, 72 and 96 h, respectively. After Cd treatment, the gills, mantle, foot, visceral mass and digestive gland tissues were collected for analysis. We found that, in the controls, Cd distributed in all tissues in the concentration order of gills>mantle>foot>visceral mass>digestive gland. Upon Cd treatment, Cd concentration significantly increased in all tissues. The highest Cd accumulation was found in the digestive gland, which was 0.142 mg g-1 (P<0.05). MT levels in the gills and mantle of the mussels increased significantly (P<0.05), which were in positive correlation with Cd accumulation in the tissues (P<0.05). In conclusion, our results demonstrated a correlation between Cd accumulation and MT up-regulation in gills and mantle of the mussels after Cd treatment. It is suggested that the protein level of MT in gills and mantle of Anodonta woodiana is a good biomarker for Cd contamination. PMID:25647043

  12. Effects of cadmium on myometrial activity of the nonpregnant human. Interactions with calcium and oxytocin.

    PubMed

    Sipowicz, M; Kostrzewska, A; Laudanski, T; Akerlund, M

    1995-02-01

    With respect to recent reports suggesting an involvement of cadmium in preterm labor, the effects of this ion on the activity of myometrial strips from term pregnant women were examined. The interactions of cadmium with calcium and oxytocin on myometrial activity were also studied. Cadmium alone inhibited spontaneous contractile activity already in a concentration of 10(-9) M and in 10(-3) M myometrial contractions were almost completely abolished. Responses to Ca2+ and oxytocin were significantly increased by exposure to cadmium in low concentration (10(-9) M-10(-8) M), whereas higher concentration of Cd2+ had inhibitory action. These results suggest that cadmium not only blocks Ca2+ channels in the human myometrium, but also interferes with intracellular mechanisms involved in excitation-contraction coupling. The increased responses to Ca2+ and oxytocin in the presence of low amounts of Cd2+ support a role of cadmium in mechanisms of preterm labor. PMID:7900519

  13. Cadmium exposure from smoking cigarettes: variations with time and country where purchased.

    PubMed

    Elinder, C G; Kjellström, T; Lind, B; Linnman, L; Piscator, M; Sundstedt, K

    1983-10-01

    Cadmium has been determined in 26 brands of cigarettes purchased in eight different countries throughout the world and in 16 different samples of cigarettes produced in Sweden between 1918 and 1968. In addition the amount of cadmium released from smoking one cigarette to the particulate phase collected from a smoking simulation machine, corresponding to the amount actually inhaled by a smoker, has been determined. The cadmium concentration in different brands of cigarettes ranged from 0.19 to 3.0 micrograms Cd/g dry wt, with a general tendency toward lower values in cigarettes from developing countries. No systematic change in the cadmium concentration of cigarettes with time could be revealed. The amount of cadmium inhaled from smoking one cigarette containing about 1.7 microgram Cd was estimated to be 0.14 to 0.19 microgram, corresponding to about 10% of the total cadmium content in the cigarette. PMID:6617614

  14. The Precise Determination of Cd Isotope Ratio in Geological Samples by MC-ICP-MS with Ion Exchange Separation

    NASA Astrophysics Data System (ADS)

    Du, C.; Hu, S.; Wang, D.; Jin, L.; Guo, W.

    2014-12-01

    Cadmium (Cd) is a trace element which occurs at μg g-1 level abundances in the crust. Cd isotopes have great prospects in the study of the cosmogony, the trace of anthropogenic sources, the micronutrient cycling and the ocean productivity. This study develops an optimized technique for the precise and accurate determination of Cd isotopic compositions. Cd was separated from the matrix by elution with AG-MP-1 anionic exchange chromatographic resin. The matrix elements (K, Na, Ca, Al, Fe, and Mg etc.), polyatomic interfered elements (Ge, Ga, Zr, Nb, Ru, and Mo), and isobaric interfered elements (In, Pd and most of Sn) were eluted using HCl with gradient descent concentrations (2, 0.3, 0.06, 0.012 and 0.0012 mol L-1). The same elution procedure was repeated to eliminate the residuel Sn (Sn/Cd < 0.018). The collected Cd was analyzed using MC-ICP-MS, in which the instrumental mass fractionation was controlled by a "sample-standard bracketing" technique. The recovery of Cd larger than 96.85%, and the δ114/110Cd are in the range of -1.43~+0.20‰ for ten geological reference materials (GSD-3a, GSD-5a, GSD-7a, GSD-6, GSD-9, GSD-10, GSD-11, GSD-12, GSD-23, and GSS-1). The δ114/110Cd obtained for GSS-1 soil sample relative to the NIST SRM 3108 Cd solution was 0.20, which was coherent with the literature values (0.08±0.23). This method had a precision of 0.001~0.002% (RSD), an error range of 0.06~0.14 (δ114/110Cd, 2σ), and a long-term reproducibility of 0.12 (δ114/110Cd, 2σ).

  15. Induction of cytoprotective autophagy in PC-12 cells by cadmium

    SciTech Connect

    Wang, Qiwen; Zhu, Jiaqiao; Zhang, Kangbao; Jiang, Chenyang; Wang, Yi; Yuan, Yan; Bian, Jianchun; Liu, Xuezhong; Gu, Jianhong; Liu, Zongping

    2013-08-16

    Highlights: •Cadmium can promote early upregulation of autophagy in PC-12 cells. •Autophagy precedes apoptosis in cadmium-treated PC-12 cells. •Cadmium-induced autophagy is cytoprotective in PC-12 cells. •Class III PI3K/beclin-1/Bcl-2 signaling pathway plays a positive role in cadmium-triggered autophagy. -- Abstract: Laboratory data have demonstrated that cadmium (Cd) may induce neuronal apoptosis. However, little is known about the role of autophagy in neurons. In this study, cell viability decreased in a dose- and time-dependent manner after treatment with Cd in PC-12 cells. As cells were exposed to Cd, the levels of LC3-II proteins became elevated, specific punctate distribution of endogenous LC3-II increased, and numerous autophagosomes appeared, which suggest that Cd induced a high level of autophagy. In the late stages of autophagy, an increase in the apoptosis ratio was observed. Likewise, pre-treatment with chloroquine (an autophagic inhibitor) and rapamycin (an autophagic inducer) resulted in an increased and decreased percentage of apoptosis in contrast to other Cd-treated groups, respectively. The results indicate that autophagy delayed apoptosis in Cd-treated PC-12 cells. Furthermore, co-treatment of cells with chloroquine reduced autophagy and cell activity. However, rapamycin had an opposite effect on autophagy and cell activity. Moreover, class III PI3 K/beclin-1/Bcl-2 signaling pathways served a function in Cd-induced autophagy. The findings suggest that Cd can induce cytoprotective autophagy by activating class III PI3 K/beclin-1/Bcl-2 signaling pathways. In sum, this study strongly suggests that autophagy may serve a positive function in the reduction of Cd-induced cytotoxicity.

  16. Theory and practical considerations of multilayer dielectric thin-film stacks in Ag-coated hollow waveguides.

    PubMed

    Bledt, Carlos M; Melzer, Jeffrey E; Harrington, James A

    2014-02-01

    This analysis explores the theory and design of dielectric multilayer reflection-enhancing thin film stacks based on high and low refractive index alternating layers of cadmium sulfide (CdS) and lead sulfide (PbS) on silver (Ag)-coated hollow glass waveguides (HGWs) for low loss transmission at midinfrared wavelengths. The fundamentals for determining propagation losses in such multilayer thin-film-coated Ag hollow waveguides is thoroughly discussed, and forms the basis for further theoretical analysis presented in this study. The effects on propagation loss resulting from several key parameters of these multilayer thin film stacks is further explored in order to bridge the gap between results predicted through calculation under ideal conditions and deviations from such ideal models that often arise in practice. In particular, the effects on loss due to the number of dielectric thin film layers deposited, deviation from ideal individual layer thicknesses, and surface roughness related scattering losses are presented and thoroughly investigated. Through such extensive theoretical analysis the level of understanding of the underlying loss mechanisms of multilayer thin-film Ag-coated HGWs is greatly advanced, considerably increasing the potential practical development of next-generation ultralow-loss mid-IR Ag/multilayer dielectric-coated HGWs. PMID:24514252

  17. Sublethal effects of cadmium exposure on freshwater teleosts

    SciTech Connect

    Watson, C.F.

    1988-01-01

    Biochemical and physiological parameters were examined to investigate the effects of sublethal concentrations on freshwater teleosts (golden shiner, Notemigonus crysoleucas; fathead minnow, Pimephales promelas; and bluegill sunfish, Lepomis macrochirus). Accumulation profiles of fish environmentally exposed to cadmium demonstrated that tissue distribution was time- and concentration-dependent. Gill tissue and internal organs accumulated significant residue levels of cadmium. Investigations concerned with the influence of cadmium on gill ATPase activity indicated that enzymatic activity was sensitive to cadmium exposure. An acute (48 h) comparative study was performed with the three species of freshwater teleosts. A stimulation of Na/K ATPase activity was observed at an exposure concentration of 1 {mu}g Cd/1 in bluegill sunfish and fathead minnows. At higher exposure concentrations (10 and 100 {mu}g Cd/1) an inhibition of enzymatic activity was observed. Gill Na/K ATPase activity in golden shiners was not significantly influenced by cadmium exposure. The observed insensitivity of Na/K ATPase in golden shiners may, in part, be related to high background concentrations of cadmium in gill tissue. An overall inhibitory response of gill Na/K ATPase was demonstrated in bluegill sunfish exposed to 10 and 100 {mu}g/1 of cadmium for 14 d. These results support the conclusion that biochemical and physiological parameters have potential for diagnostic use in assessing the overall environmental health of fish populations.

  18. Biological assessment of exposure in factories with second degree usage of cadmium compounds.

    PubMed

    Wibowo, A A; Herber, R F; van Deyck, W; Zielhuis, R L

    1982-02-01

    Biological assessment of occupational exposure to cadmium in five different factories with low-level second degree usage of Cd-compounds has been carried out. In 124 exposed and control male workers the following measurements, were performed: cadmium in blood (CdB) and urine (CdU), B2-microglobulin (B2M), creatinin in urine (Creat), hemoglobin (Hb) and hematocrit (Ht). Analysis of 34 pairs of workers matched according to age, smoking habits, ethnic origin and factory, established a significant difference only in CdU, the geometric means being 0.67 microgram/g Creat in the exposed group and 0.48 microgram/g Creat in the control group. Significant correlation was found between CdU x age and CdB x smoking habits. Multiple regression analysis showed that for each year increase in age CdU increased 3%, for each percent increase of CdB CdU increased 0.28%; for each cigarette smoked per day CdB increased 1.6%. It is concluded that in this type of work the low external cadmium exposure does not express itself in different CdB-levels, but only in different CdU-levels, indicating an increased body burden due to long term low levels occupational cadmium exposure. In biological assessment of exposure to Cd, it is essential to take age and smoking habits fully into account. PMID:7068238

  19. Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils.

    PubMed

    Six, L; Smolders, E

    2014-07-01

    The gradual increase of soil cadmium concentrations in European soils during the 20th century has prompted environmental legislation to limit soil cadmium (Cd) accumulation. Mass balances (input-output) reflecting the period 1980-1995 predicted larger Cd inputs via phosphate (P) fertilizers and atmospheric deposition than outputs via crop uptake and leaching. This study updates the Cd mass balance for the agricultural top soils of EU-27+Norway (EU-27+1). Over the past 15 years, the use of P fertilizers in the EU-27+1 has decreased by 40%. The current mean atmospheric deposition of Cd in EU is 0.35 g Cd ha(-1) yr(-1), this is strikingly smaller than values used in the previous EU mass balances (~3 g Cd ha(-1) yr(-1)). Leaching of Cd was estimated with most recent data of soil solution Cd concentrations in 151 soils, which cover the range of European soil properties. No significant time trends were found in the data of net applications of Cd via manure, compost, sludge and lime, all being small sources of Cd at a large scale. Modelling of the future long-term changes in soil Cd concentrations in agricultural top soils under cereal or potato culture predicts soil Cd concentrations to decrease by 15% over the next 100 years in an average scenario, with decreasing trends in some scenarios being more prevalent than increasing trends in other scenarios. These Cd balances have reverted from the general positive balances estimated 10 or more years ago. Uncertainty analysis suggests that leaching is the most uncertain relative to other fluxes. PMID:24727598

  20. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    USGS Publications Warehouse

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  1. DNA repair systems as targets of cadmium toxicity

    SciTech Connect

    Giaginis, Constantinos; Gatzidou, Elisavet; Theocharis, Stamatios . E-mail: theocharis@ath.forthnet.gr

    2006-06-15

    Cadmium (Cd) is a heavy metal and a potent carcinogen implicated in tumor development through occupational and environmental exposure. Recent evidence suggests that proteins participating in the DNA repair systems, especially in excision and mismatch repair, are sensitive targets of Cd toxicity. Cd by interfering and inhibiting these DNA repair processes might contribute to increased risk for tumor formation in humans. In the present review, the information available on the interference of Cd with DNA repair systems and their inhibition is summarized. These actions could possibly explain the indirect contribution of Cd to mutagenic effects and/or carcinogenicity.

  2. Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador.

    PubMed

    Chavez, E; He, Z L; Stoffella, P J; Mylavarapu, R S; Li, Y C; Moyano, B; Baligar, V C

    2015-11-15

    Cadmium (Cd) content in cacao beans above a critical level (0.6 mg kg(-1)) has raised concerns in the consumption of cacao-based chocolate. Little is available regarding Cd concentration in soil and cacao in Ecuador. The aim of this study was to determine the status of Cd in both, soils and cacao plants, in southern Ecuador. Soil samples were collected from 19 farms at 0-5, 5-15, 15-30, and 30-50 cm depths, whereas plant samples were taken from four nearby trees. Total recoverable and extractable Cd were measured at the different soil depths. Total recoverable Cd ranged from 0.88 to 2.45 and 0.06 to 2.59, averaged 1.54 and 0.85 mg kg(-1), respectively in the surface and subsurface soils whereas the corresponding values for M3-extractable Cd were 0.08 to 1.27 and 0.02 to 0.33 with mean values of 0.40 and 0.10 mg kg(-1). Surface soil in all sampling sites had total recoverable Cd above the USEPA critical level for agricultural soils (0.43 mg kg(-1)), indicating that Cd pollution occurs. Since both total recoverable and M3-extractable Cd significantly decreased depth wise, anthropogenic activities are more likely the source of contamination. Cadmium in cacao tissues decreased in the order of beans>shell>leaves. Cadmium content in cacao beans ranged from 0.02 to 3.00, averaged 0.94 mg kg(-1), and 12 out of 19 sites had bean Cd content above the critical level. Bean Cd concentration was highly correlated with M3- or HCl-extractable Cd at both the 0-5 and 5-15 cm depths (r=0.80 and 0.82 for M3, and r=0.78 and 0.82 for HCl; P<0.01). These results indicate that accumulation of Cd in surface layers results in excessive Cd in cacao beans and M3- or HCl-extractable Cd are suitable methods for predicting available Cd in the studied soils. PMID:26172587

  3. Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method

    DOEpatents

    Bolotnikov, Aleskey E.; James, Ralph B.

    2010-07-20

    The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.

  4. Cadmium and lithium doping in silver orthophosphate: An ab initio study.

    PubMed

    Huang, Yang; Liu, Ming-Yang; Ma, Tai; Lou, Zhong-Ping; Cao, Chao; He, Yao

    2016-01-01

    Using hybrid functional calculations, we investigate the effects of defects and defect complexes related with Cd, Li, and N impurities on the atomic and electronic properties of Ag3PO4. It was found that substitutional Cd on Ag lattice site (CdAg) contributes to the n-type conductivity of Ag3PO4. For substitutional Cd on P (or O) lattice site (CdP) (or CdO), it is not expected that Cd will incorporate into the P (or O) site due to the strong covalent interactions in the PO4 structural units. The interstitial Cd (Cdi) acts as a shallow donor, but its formation energy is relatively high compared with that of CdAg. For the (CdAg-2NO) complex, the formation of this inactive complex generates a fully occupied impurity band just above the valence band maximum of Ag3PO4, which significantly reduces the acceptor transition energy level. But the formation energy of the (CdAg-2NO) complex is even higher than that of the corresponding single point defect NO. Unlike LiP and LiO which has relatively high formation energy, interstitial Li (Lii or Lii(s)) with an appreciable solubility is likely to be the n-type dopant under O-poor condition. PMID:27576491

  5. Cadmium and lithium doping in silver orthophosphate: An ab initio study

    PubMed Central

    Huang, Yang; Liu, Ming-Yang; Ma, Tai; Lou, Zhong-Ping; Cao, Chao; He, Yao

    2016-01-01

    Using hybrid functional calculations, we investigate the effects of defects and defect complexes related with Cd, Li, and N impurities on the atomic and electronic properties of Ag3PO4. It was found that substitutional Cd on Ag lattice site (CdAg) contributes to the n-type conductivity of Ag3PO4. For substitutional Cd on P (or O) lattice site (CdP) (or CdO), it is not expected that Cd will incorporate into the P (or O) site due to the strong covalent interactions in the PO4 structural units. The interstitial Cd (Cdi) acts as a shallow donor, but its formation energy is relatively high compared with that of CdAg. For the (CdAg-2NO) complex, the formation of this inactive complex generates a fully occupied impurity band just above the valence band maximum of Ag3PO4, which significantly reduces the acceptor transition energy level. But the formation energy of the (CdAg-2NO) complex is even higher than that of the corresponding single point defect NO. Unlike LiP and LiO which has relatively high formation energy, interstitial Li (Lii or Lii(s)) with an appreciable solubility is likely to be the n-type dopant under O-poor condition. PMID:27576491

  6. Cadmium-tolerant bacteria induce metal stress tolerance in cereals.

    PubMed

    Ahmad, Iftikhar; Akhtar, Muhammad Javed; Zahir, Zahir Ahmad; Naveed, Muhammad; Mitter, Birgit; Sessitsch, Angela

    2014-09-01

    Cadmium usually hampers plant growth, but bacterial inoculation may improve stress tolerance in plants to Cd by involving various mechanisms. The objective was to characterize and identify bacteria that improve plant growth under Cd stress and reduce Cd uptake. Cadmium-tolerant bacteria were isolated from rhizosphere soil, which was irrigated with tannery effluent, and six strains were selected as highly tolerant to Cd, showing minimum inhibitory concentration as 500 mg L(-1) or 4.45 mmol L(-1). These strains were identified by 16S rRNA gene analysis and functional analysis in regard to plant growth promotion characteristics. To determine their effect on cereal growth under Cd stress, seeds were inoculated with these strains individually and grown in soil contaminated with three Cd levels (0, 40 and 80 mg kg(-1)). Biomass production, relative water content (RWC), electrolyte leakage (ELL) and tissue Cd concentration were measured. Biomass of both cereals was inhibited strongly when exposed to Cd; however, bacterial inoculation significantly reduced the suppressive effect of Cd on cereal growth and physiology. The bacterial isolates belonged to the genera Klebsiella, Stenotrophomonas, Bacillus and Serratia. Maize was more sensitive than wheat to Cd. Klebsiella sp. strain CIK-502 had the most pronounced effects in promoting maize and wheat growth and lowering Cd uptake under Cd stress. PMID:24849374

  7. Cadmium kinetics in freshwater clams. Uptake of cadmium by the excised gill of Anodonta anatina

    SciTech Connect

    Holwerda, D.A.; de Knecht, J.A.; Hemelraad, J.; Veenhof, P.R.

    1989-03-01

    There are several, and sometimes conflicting, reports on metal interaction during bioaccumulation from a mixture of heavy metals by marine or estuarine organisms. Concerning the influence of zinc on Cd uptake, it was found in a previous study with the freshwater clam Anodonta cygnea that zinc retarded the accumulation of cadmium when present in a hundred-fold excess over the latter metal. In the only in vitro investigation known, it was shown that the uptake of cadmium by the excised gills of the seal mussel Mytilus edulis was not affected by co-exposure with other metal ions or by the presence of metabolic inhibitors. By contrast, bioaccumulation of cadmium in M. edulis was strongly reduced by co-exposure to zinc in a hundred-fold excess over cadmium. The clear effect of zinc on Cd accumulation in A. cygnea prompted the authors to investigate this phenomenon in an in vitro model. The primary aim was to detect whether the in vivo effect of zinc is caused by a direct influence on the gill epithelium or is sustained by a behavioral response of the animal. At the same time, the possible effect of some other exogenous factors on Cd uptake was examined. In addition, it was investigated whether the rate of in vitro uptake is a function of gill size.

  8. Isotopic fractionation of cadmium into calcite

    NASA Astrophysics Data System (ADS)

    Horner, Tristan J.; Rickaby, Rosalind E. M.; Henderson, Gideon M.

    2011-12-01

    Cadmium mimics the distribution of the macronutrient phosphate in the oceans, and has uses as a palaeoproxy of past ocean circulation and nutrient utilization. Isotopic analyses of dissolved Cd in modern seawater show potential as a new tool for disentangling phytoplankton utilization of Cd from abiotic processes, such as ocean mixing. Extending this information into the past requires the Cd isotope signal to be captured and faithfully preserved in a suitable sedimentary archive. However, the role that environmental factors, such as temperature, may play in controlling Cd isotope fractionation into such archives has not been assessed. To this end, we have performed controlled inorganic CaCO 3 precipitation experiments in artificial seawater solutions. We grew calcite under different precipitation rates, temperatures, salinities, and ambient [Mg 2 + ], before measuring Cd isotopic compositions by double spike MC-ICPMS. We find that the isotopic fractionation factor for Cd into calcite ( α-C) in seawater is always less than one (i.e. light isotopes of Cd are preferred in calcite). The fractionation factor has a value of 0.99955 ± 0.00012 and shows no response to temperature, [Mg 2 + ], or precipitation rate across the range studied. The constancy of this fractionation in seawater suggests that marine calcites may provide a record of the local seawater composition, without the need to correct for effects due to environmental variables. We also performed CaCO 3 growth in freshwater and, in contrast to calcite precipitated from artificial seawater solutions, no isotopic offset was recorded between the growth solution and calcite ( α-Cd=1.0000±0.0001). Cadmium isotope fractionation during calcite growth can be explained by a kinetic isotope effect during the largely unidirectional incorporation of Cd at the mineral surface. Further, the rate of Cd uptake and isotopic fractionation can be modulated by increased ion blocking of crystal surface sites at high salinity

  9. Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation.

    PubMed

    Wang, Kai-Sung; Huang, Lung-Chiu; Lee, Hong-Shen; Chen, Pai-Ye; Chang, Shih-Hsien

    2008-06-01

    Phytoextraction is a promising technique to remediate heavy metals from contaminated wastewater. However, the interactions of multi-contaminants are not fully clear. This study employed cadmium, Triton X-100 (TX-100), and EDTA to investigate their interactions on phytotoxicity and Cd phytoextraction of Ipomoea aquatica (water spinach) in simulated wastewater. The Cd speciation was estimated by a chemical equilibrium model and MINEQL+. Statistic regression was applied to evaluate Cd speciation on Cd uptake in shoots and stems of I. aquatica. Results indicated that the root length was a more sensitive parameter than root weight and shoot weight. Root elongation was affected by Cd in the Cd-EDTA solution and TX-100 in the Cd-TX-100 solution. Both the root length and the root biomass were negatively correlated with the total soluble Cd ions. In contrast, Cd phytoextraction of I. aquatic was correlated with the aqueous Cd ions in the free and complex forms rather than in the chelating form. Additionally, the high Cd bioconcentration factors of I. aquatica (375-2227 l kg(-1) for roots, 45-144 l kg(-1) for shoots) imply that I. aquatica is a potential aquatic plant to remediate Cd-contaminated wastewater. PMID:18471856

  10. Cadmium-zinc interactions in plants and extractable cadmium and zinc fractions in soil

    SciTech Connect

    Abdel-Sabour, M.F.; Mortvedt, J.J.; Kelsoe, J.J.

    1988-06-01

    This study related Cd-Zn concentrations in plants to levels of Cd and Zn in soil recovered by several extractants soon after application of Cd and Zn sources to soil. Cadmium nitrate and ZnSO/sub 4/ or Zn(C/sub 2/H/sub 3/O/sub 2/)/sub 2/ were mixed with a Zn-deficient Crowley silt loam soil, cropped with corn (Zea mays L.), and then cropped with Swiss chard (Beta vulgaris). Applied Cd significantly increased the Cd/Zn ratio in both crops, especially in Swiss chard, which accumulates heavy metals. A previously published sequential-extraction procedure was used to fractionate Cd and Zn in soil after the corn harvest. Results of statistical analyses showed the highest correlation between Cd uptake by each crop and the carbonate and sulfide fractions of Cd in soil. Including other Cd fractions resulted in only slightly higher R/sup 2/ values. Zinc uptake by each crop was best related to the organic fraction of Zn in soil, and including the other Zn fractions did not affect the relationship. These results show that Cd and Zn uptake by corn or Swiss chard was not related to similar chemical fractions of these elements in soil, and that the Cd/Zn ratio in plant tops was significantly affected by both Cd and Zn applications to soil.

  11. Effect of Occupational Cadmium Exposure on Parathyroid Gland

    PubMed Central

    Ibrahim, Khadiga S.; Beshir, Safia; Shahy, Eman M.; Shaheen, Weam

    2016-01-01

    BACKGROUND: Cadmium (Cd) is used in many industries. High-level exposure is associated with severe kidney and bone damage. AIM: This study investigates the possible effect of occupational cadmium exposure on parathyroid gland and some minerals in workers. METHODS: Environmental air monitoring of cadmium was done. Serum and urine cadmium levels, kidney function, some minerals, and plasma parathormone were estimated in the studied groups. RESULTS: The exposed workers had significantly higher Cd concentration in serum and urine than controls. The mean levels of plasma parathyroid hormone, serum phosphorus and magnesium were significantly lower among the exposed group. However, the mean levels of serum creatinine and calcium were significantly higher in the same group when compared to referents. There was a significant positive correlation between Cd concentration in the serum and urine for the exposed group. The biological Cd exposure indices correlated positively with serum calcium and negatively with plasma PTH level. The prevalence of musculoskeletal complaints, bone ache, joint pain and muscle spasm were more prevalent among the exposed workers compared with the controls with odds ratio 4.316, 3.053 and 3.103 respectively. CONCLUSIONS: Occupational cadmium exposure has an adverse effect on PTH level and serum human minerals. PMID:27335606

  12. Cadmium blood and urine concentrations as measures of exposure: NHANES 1999–2010

    PubMed Central

    Adams, Scott V.; Newcomb, Polly A.

    2014-01-01

    Exposure to cadmium, a heavy metal present in cigarettes, can be assessed in both urine and blood. Few studies have compared the properties of concurrent measurements of urine cadmium (uCd) and blood cadmium (bCd) in relation to the duration and timing of a known exposure. In this study, bCd and uCd were modeled with data from the National Health and Nutrition Examination Survey (1999–2010). Adjusted geometric mean bCd and uCd were estimated from regression results. Each 1% higher geometric mean uCd was associated with 0.50% (95% CI: 0.47%–0.54%; R2=0.30) higher bCd. In male never-smokers, bCd was 69% (59%–81%) and uCd was 200%(166%–234%) higher at age ≥70y versus 20–29y. Ten pack-years (py) of smoking were associated with 13.7%(10.0%–17.4%) higher bCd and 16.8% (12.6%–21.1%) higher uCd in male smokers. The first year after smoking cessation was associated with 53% (48%–58%) lower bCd and 23%(14%–33%) lower uCd in representative males age 55y with 20py smoking. Smoking in the previous 5 days was associated with 55%(40%–71%) higher bCd and 7%(−3%–18%) higher uCd. Results were similar for women. uCd mainly measures long-term exposure and bCd recent exposure, but with noticeable overlap. Epidemiological studies should base the choice of uCd or bCd on the timing of cadmium exposure relevant to the disease under study. PMID:24002489

  13. Cadmium in soils and its transfer to plants and the human food chain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cadmium occurs naturally in all soils, but few soils contain higher than 1mg Cd kg-1. Most geogenic Cd is accompanied by 100-200 fold higher Zn except for marine shale or phosphorite derived soils which may have 1g Cd per 10g Zn or higher. Contamination by mining or smelter emissions of Zn-Pb-Cu i...

  14. Integrated management strategies for Arsenic and Cadmium in rice paddy environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is both a major staple food for human populations, and the major source of soil arsenic (As) and cadmium (Cd) transfer to the human food chain. Thus soil and crop accumulation of As and Cd have become major environmental issues globally. Arsenic and Cd contamination of soils and rice threatens ...

  15. Tolerance of Ricinus communis L. to Cd and screening of high Cd accumulation varieties for remediation of Cd contaminated soils.

    PubMed

    Wu, Shanshan; Shen, Chuang; Yang, Zhongyi; Lin, Biyun; Yuan, Jiangang

    2016-11-01

    Response of castor (Ricinus communis L.) to cadmium (Cd) was assessed by a seed-suspending seedbed approach. Length of total radicle was the most sensitive indicator of Cd tolerance among the tested germination and growth characters. The ED50 value for Cd was 11.87 mg L(-1), indicating high Cd tolerance in castor. A pot experiment was conducted by growing 46 varieties of castor under CK (without Cd) and Cd1 (10 mg kg(-1) of Cd) and Cd2 (50 mg kg(-1) of Cd) treatments to investigate genotype variations in growth response and Cd accumulation of castor under different Cd exposures. Castor possessed high Cd accumulation ability; average shoot and root Cd concentrations of the 46 tested varieties were 21.83 and 185.43 mg kg(-1), and 174.99 and 1181.96 mg kg(-1) under Cd1 and Cd2, respectively. Great variation in Cd accumulation was observed among varieties, and Cd concentration of castor was genotype dependent. The correlation between biomass and Cd accumulation was significantly positive, while no significant correlation was observed between Cd concentration and Cd accumulation, which indicated that biomass performance is the dominant factor in determining Cd accumulation ability. PMID:27348198

  16. Effect of progesterone pretreatment on cadmium toxicity in the male Fischer (F344/NCr) rat.

    PubMed

    Shiraishi, N; Barter, R A; Uno, H; Waalkes, M P

    1993-01-01

    A previous report has indicated that progesterone pretreatment can markedly reduce cadmium toxicity in male NAW mice. Therefore we examined the effects of progesterone pretreatment on cadmium toxicity in male Fischer (F344/NCr) rats. A single sc injection of 20 mumol CdCl2/kg proved nonlethal over 24 hr but caused the typical spectrum of testicular lesions in these rats. However, when rats were pretreated with progesterone (100 mg/kg, sc, -48, -24, and 0 hr) and then given cadmium (20 mumol CdCl2/kg, 0 hr), this dose of cadmium proved very toxic, unexpectedly causing a 53% mortality. Progesterone pretreatment had no effect on cadmium-induced testicular lesions in surviving rats. Significant elevations in serum lactate dehydrogenase (LDH) activity, indicative of hepatotoxicity, were also observed in progesterone-pretreated rats given cadmium as compared to rats given cadmium alone. Progesterone pretreatment had no effect on the distribution of cadmium to liver, kidney, or testes. Progesterone pretreatment also had no effect on the cadmium-induced increases in hepatic or renal metallothionein (MT) or hepatic or testicular MT mRNA levels. In contrast, levels of the testicular cadmium-binding protein (TCBP) in progesterone-pretreated rats were doubled. These results indicate that, contrary to previously reported data for the mouse, progesterone pretreatment increased the lethality of cadmium in male Fischer (F344/NCr) rats and had no effect on cadmium-induced testicular toxicity. The mechanism by which progesterone enhanced cadmium toxicity, especially cadmium-induced hepatotoxicity, deserves further study. PMID:8430418

  17. Cadmium-binding proteins in the mussel, Mytilus edulis

    SciTech Connect

    Frazier, J.M.

    1986-03-01

    Inducible cadmium-binding proteins (Cd-BP) in the mussel, Mytilus edulis, were resolved into two molecular weight components, designated Cd-BP/sub 10/ and Cd-BP/sub 20/, by gel-permeation chromatography on Sephadex G-75. Each of these two molecular weight components were further resolved into four subcomponents by DEAE-ion-exchange chromatography. All eight subcomponents bound cadmium and exhibited significant UV absorption at 254 nm and little absorption at 280 nm. Each subcomponent was purified and subjected to amino acid composition analysis. Two classes were identified, one having higher cysteine and lower glutamic acid contents compared to the other class. All subcomponents have a relatively high glycine content relative to mammalian metallothioneins. Although the Cd-BP/sub 20/ have apparent molecular weights almost twice the Cd-BP/sub 10/, the exact molecular relationship between these binding proteins is not known.

  18. Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L.

    PubMed

    Liang, Taishuai; Ding, Han; Wang, Guodong; Kang, Jingquan; Pang, Hongxi; Lv, Jinyin

    2016-02-01

    We investigated the ameliorative role of sulfur (S) in protecting plants against cadmium (Cd) toxicity by using two pakchoi (Brassica chinensis L.) cultivars with different Cd tolerance levels. The exposure of pakchoi seedlings to 100μM Cd inhibited plant growth, increased superoxide content, enhanced membrane lipid peroxidation, and induced Cd accumulation in the roots and shoots. Application of S to Cd-stressed plants alleviated Cd-induced oxidative stress by promoting the capacity of the ascorbate (AsA)-glutathione (GSH) cycle, enhanced S assimilation by increasing the activity of ATP sulfurylase (ATPS) and o-acetylserine(thiol)lyase (OASTL), and decreased Cd translocation from the roots to the shoots by enhancing phytochelatins (PCs) biosynthesis. Results suggested that S reversed Cd-induced growth inhibition and oxidative stress by restraining Cd translocation from the roots to the shoots and upregulating S assimilation and GSH metabolism, including the AsA-GSH cycle and PCs synthesis. PMID:26513528

  19. Cadmium - A metallohormone?

    SciTech Connect

    Byrne, Celia; Divekar, Shailaja D.; Storchan, Geoffrey B.; Parodi, Daniela A.; Martin, Mary Beth

    2009-08-01

    Cadmium is a heavy metal that is often referred to as the metal of the 20th century. It is widely used in industry principally in galvanizing and electroplating, in batteries, in electrical conductors, in the manufacture of alloys, pigments, and plastics, and in the stabilization of phosphate fertilizers. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smoking, and, to a lesser degree, drinking water. Although the metal has no known physiological function, there is evidence to suggest that the cadmium is a potent metallohormone. This review summarizes the increasing evidence that cadmium mimics the function of steroid hormones, addresses our current understanding of the mechanism by which cadmium functions as a hormone, and discusses its potential role in development of the hormone dependent cancers.

  20. Cadmium in tobacco

    SciTech Connect

    Yue, L. )

    1992-03-01

    The present study was conducted to determine the cadmium level in tobacco planted in five main tobacco-producing areas, a cadmium polluted area, and in cigarettes produced domestically (54 brands). The results indicate that average cadmium content in tobacco was 1.48 (0.10-4.95 mg/kg), which was similar to that of Indian tobacco (1.24 mg/kg), but the cadmium of tobacco produced in the cadmium polluted area was quite high (8.60 mg/kg). The average cigarette cadmium was 1.05 micrograms/g (with filter tip) and 1.61 micrograms/g (regular cigarette). Therefore special attention should be paid to the soil used in planting tobacco.

  1. Cadmium--a metallohormone?

    PubMed

    Byrne, Celia; Divekar, Shailaja D; Storchan, Geoffrey B; Parodi, Daniela A; Martin, Mary Beth

    2009-08-01

    Cadmium is a heavy metal that is often referred to as the metal of the 20th century. It is widely used in industry principally in galvanizing and electroplating, in batteries, in electrical conductors, in the manufacture of alloys, pigments, and plastics, and in the stabilization of phosphate fertilizers. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smoking, and, to a lesser degree, drinking water. Although the metal has no known physiological function, there is evidence to suggest that the cadmium is a potent metallohormone. This review summarizes the increasing evidence that cadmium mimics the function of steroid hormones, addresses our current understanding of the mechanism by which cadmium functions as a hormone, and discusses its potential role in development of the hormone dependent cancers. PMID:19362102

  2. Cadmium - a metallohormone?

    PubMed Central

    Byrne, Celia; Divekar, Shailaja D.; Storchan, Geoffrey B.; Parodi, Daniela A.; Martin, Mary Beth

    2009-01-01

    Cadmium is a heavy metal that is often referred to as the metal of the 20th Century. It is widely used in industry principally in galvanizing and electroplating, in batteries, in electrical conductors, in the manufacture of alloys, pigments, and plastics, and in the stabilization of phosphate fertilizers. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smoking, and, to a lesser degree, drinking water. Although the metal has no known physiological function, there is evidence to suggest that the cadmium is a potent metallohormone. This review summarizes the increasing evidence that cadmium mimics the function of steroid hormones, addresses our current understanding of the mechanism by which cadmium functions as a hormone, and discusses its potential role in development of the hormone dependent cancers. PMID:19362102

  3. Cadmium exposure activates the ERK signaling pathway leading to altered osteoblast gene expression and apoptotic death in Saos-2 cells

    PubMed Central

    Arbon, Kate S.; Christensen, Cody M.; Harvey, Wendy A.; Heggland, Sara J.

    2012-01-01

    Recent reports of cadmium in electronic waste and jewelry have increased public awareness regarding this toxic metal. Human exposure to cadmium is associated with the development of osteoporosis. We previously reported cadmium induces apoptosis in human tumor-derived Saos-2 osteoblasts. In this study, we examine the extracellular signal-regulated protein kinase (ERK) and protein kinase C (PKC) pathways in cadmium-induced apoptosis and altered osteoblast gene expression. Saos-2 osteoblasts were cultured in the presence or absence of 10 μM CdCl2 for 2–72 hours. We detected significant ERK activation in response to CdCl2 and pretreatment with the ERK inhibitor PD98059 attenuated cadmium-induced apoptosis. However, PKCα activation was not observed after exposure to CdCl2 and pretreatment with the PKC inhibitor, Calphostin C, was unable to rescue cells from cadmium-induced apoptosis. Gene expression studies were conducted using qPCR. Cells exposed to CdCl2 exhibited a significant decrease in the bone-forming genes osteopontin (OPN) and alkaline phosphatase (ALP) mRNA. In contrast, SOST, whose protein product inhibits bone formation, significantly increased in response to CdCl2. Pretreatment with PD98059 had a recovery effect on cadmium-induced changes in gene expression. This research demonstrates cadmium can directly inhibit osteoblasts via ERK signaling pathway and identifies SOST as a target for cadmium-induced osteotoxicity. PMID:22019892

  4. Studies on structural & optical properties of CdS0.2Se0.8: Ag nanocomposite thin film for photosensor application

    NASA Astrophysics Data System (ADS)

    Chaudhari, J. B.; Patil, R. S.; Patil, I. J.; Jagtap, P. P.; Sharma, Ramphal

    2012-06-01

    Silver doped CdS0.2Se0.8 thin films of different concentrations were grown by simple and economical chemical bath deposition technique and later on characterized for optoelectronic and physicochemical properties. The X-ray diffraction (XRD) patterns of undoped and doped sample indicates polycrystalline nature with hexagonal structure. Scanning electron microscopy (SEM) micrograph showed uniform morphology with cabbage type structure for undoped film and leaf-like structure for doped films over the entire glass substrate. Room temperature absorbance for 1 wt% doping concentration of silver showed an excitonic peak which confirms the size quantization of the particle. I-V characteristic for undoped and doped film shows ohmic and Schottky junction behavior.

  5. Effect of pre-exposure to cadmium and silver on nickel induced toxic manifestations in mice: Possible role of ceruloplasmin and metallothionein

    SciTech Connect

    Srivastava, R.C.; Husain, M.M.; Srivastava, S.K.; Hasan, S.K.; Lai, A.

    1995-05-01

    Recent studies from our laboratory and elsewhere have provided strong evidence for the involvement of reactive oxygen species (ROS) in nickel (Ni) toxicity. The toxic manifestations of Ni are further evident from animal studies where it caused significant depletion in serum ceruloplasmin (CP) activity. CP has been implicated in a variety of crucially important cellular functions including its role in the protection against oxidative damage and as a carrier for the transport of essential metals. Since there is a lack of information about its role in Ni toxicity, an attempt was made to evaluate its implication(s) during Ni exposure. Administration of cadmium chloride (CdCl{sub 2}) or silver nitrate (AgNO{sub 3}) in mice respectively enhance or deplete the activity of serum SP. Besides, both the salts induce metallothioneins (MT), which also serve as an efficient scavenger of ROS. We therefore, studied the effect of Cd and Ag under various predisposing conditions on the protection against Ni-mediated toxic manifestations by evaluating (i) hepatic lipid peroxidation (ii) Ni content in target tissues and (iii) mortality in mice. Our results demonstrate that Cd pretreatment(s) provided significant protection against Ni-mediated toxic responses and reflect the possible interplay of the induced levels of CP and MT. 19 refs., 2 figs., 2 tabs.

  6. Cadmium Toxicity and Treatment

    PubMed Central

    Bernhoft, Robin A.

    2013-01-01

    Cadmium is a heavy metal of considerable toxicity with destructive impact on most organ systems. It is widely distributed in humans, the chief sources of contamination being cigarette smoke, welding, and contaminated food and beverages. Toxic impacts are discussed and appear to be proportional to body burden of cadmium. Detoxification of cadmium with EDTA and other chelators is possible and has been shown to be therapeutically beneficial in humans and animals when done using established protocols. PMID:23844395

  7. Root-selective expression of "AtCAX4" and "AtCAX2" results in reduced lamina cadmium in field-grown "Nicotiana tabacum L"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To assess the impact of enhanced root vacuole cadmium (Cd) sequestration on leaf Cd accumulation under a low Cd dose, as generally occurs in agriculture, leaf Cd accumulation was examined in field-grown tobacco plants expressing genes encoding the high-capacity-Cd, tonoplast-localized, divalent cati...

  8. Multisite adsorption of cadmium on goethite

    SciTech Connect

    Venema, P.; Hiemstra, T.; Riemsdijk, W.H. van

    1996-11-10

    Recently a new general ion adsorption model has been developed for ion binding to mineral surfaces (Hiemstra and van Riemsdijk, 1996). The model uses the Pauling concept of charge distribution (CD) and is an extension of the multi-site complexation (MUSIC) approach. In the CD-MUSIC model the charge of an adsorbing ion that forms an inner sphere complex is distributed over its ligands, which are present in two different electrostatic planes. In this paper the authors have applied the CD-MUSIC model to the adsorption of metal cations, using an extended data set for cadmium adsorbing on goethite. The adsorption of cadmium and the cadmium-proton exchange ratio were measured as function of metal ion concentration, pH, and ionic strength. The data could be described well, taking into account the surface heterogeneity resulting from the presence of two different crystal planes (the dominant 110 face and the minor 021 face). The surface species used in the model are consistent with recent EXAFS data. In accordance with the EXAFS results, high-affinity complexes at the 021 face were used in the model.

  9. Cadmium, diabetes and chronic kidney disease

    SciTech Connect

    Edwards, Joshua R. Prozialeck, Walter C.

    2009-08-01

    Recent epidemiological studies suggest a positive association between exposure to the environmental pollutant cadmium (Cd) and the incidence and severity of diabetes. In this review, we examine the literature suggesting a relationship between Cd exposure, elevated blood glucose levels, and the development of diabetes. In addition we review human and animal studies indicating that Cd potentiates or exacerbates diabetic nephropathy. We also review the various possible cellular mechanisms by which Cd may alter blood glucose levels. In addition, we present some novel findings from our own laboratories showing that Cd elevates fasting blood glucose levels in an animal model of subchronic Cd exposure before overt signs of renal dysfunction are evident. These studies also show that Cd reduces insulin levels and has direct cytotoxic effects on the pancreas. Together, these findings indicate that Cd may be a factor in the development of some types of diabetes and they raise the possibility that Cd and diabetes-related hyperglycemia may act synergistically to damage the kidney.

  10. Cadmium isotopic composition in the ocean

    NASA Astrophysics Data System (ADS)

    Lacan, Francois; Francois, Roger; Ji, Yongcheng; Sherrell, Robert M.

    2006-10-01

    The oceanic cycle of cadmium is still poorly understood, despite its importance for phytoplankton growth and paleoceanographic applications. As for other elements that are biologically recycled, variations in isotopic composition may bring unique insights. This article presents (i) a protocol for the measurement of cadmium isotopic composition (Cd IC) in seawater and in phytoplankton cells; (ii) the first Cd IC data in seawater, from two full depth stations, in the northwest Pacific and the northwest Mediterranean Sea; (iii) the first Cd IC data in phytoplankton cells, cultured in vitro. The Cd IC variation range in seawater found at these stations is not greater than 1.5 ɛCd/amu units, only slightly larger than the mean uncertainty of measurement (0.8 ɛCd/amu). Nevertheless, systematic variations of the Cd IC and concentration in the upper 300 m of the northwest Pacific suggest the occurrence of Cd isotopic fractionation by phytoplankton uptake, with a fractionation factor of 1.6 ± 1.4 ɛCd/amu units. This result is supported by the culture experiment data suggesting that freshwater phytoplankton ( Chlamydomonas reinhardtii and Chlorella sp.) preferentially take up light Cd isotopes, with a fractionation factor of 3.4 ± 1.4 ɛCd/amu units. Systematic variations of the Cd IC and hydrographic data between 300 and 700 m in the northwest Pacific have been tentatively attributed to the mixing of the mesothermal (temperature maximum) water ( ɛCd/amu = -0.9 ± 0.8) with the North Pacific Intermediate Water ( ɛCd/amu = 0.5 ± 0.8). In contrast, no significant Cd IC variation is found in the northwest Mediterranean Sea. This observation was attributed to the small surface Cd depletion by phytoplankton uptake and the similar Cd IC of the different water masses found at this site. Overall, these data suggest that (i) phytoplankton uptake fractionates Cd isotopic composition to a measurable degree (fractionation factors of 1.6 and 3.4 ɛCd/amu units, for the in situ and

  11. EFFECTS OF BIOSOLIDS ON SORPTION AND DESORPTION BEHAVIOR OF CADMIUM IN BIOSOLIDS-AMENDED SOILS

    EPA Science Inventory

    Cadmium sorption and desorption experiments were conducted on different fractions of soils amended with different biosolids with varying chemical properties and unamended soil (control). Biosolids addition increased the slope of the Cd sorption isotherms compared to the control s...

  12. Maternal Cadmium, Iron and Zinc Levels, DNA Methylation and Birth Weight

    EPA Science Inventory

    BACKGROUND:Cadmium (Cd) is a ubiquitous and environmentally persistent toxic metal that has been implicated in neurotoxicity, carcinogenesis and obesity and essential metals including zinc (Zn) and iron (Fe) may alter these outcomes. However mechanisms underlying these relationsh...

  13. Do aquatic insects avoid cadmium-contaminated sediments?

    SciTech Connect

    Hare, L.; Shooner, F.

    1995-06-01

    The long-term colonization of profundal lake sediments having a range of spiked cadmium (Cd) concentrations (0.007 to 2.7 {mu}mol/g dry wt.) was measured in the field. Population densities of two of the most abundant colonizing insects (the chironomids Procladius [Holotanypus] sp., and Sergentia coracina) were unrelated to the Cd gradient, even though both taxa accumulated Cd in direct relation to its concentration in sediment Cd gradient Cd gradient. Cadmium concentrations in Chironomus (salinarius gp.) sp. larvae also responded positively to the sediment Cd gradient and ranged from 0.2 to 50 {mu}g/g. In contrast with the two other taxa, the abundance of Chironomus (salinarius gp.) sp. was the result of a behavioral or a toxic response, larvae of the three chironomid taxa were given a choice between field-control and Cd-spiked sediments in the laboratory. None of the taxa avoided the Cd-spiked sediments, suggesting that the lower abundance of Chironomus (salinarius gp.) sp. at high Cd concentrations in the field was due to Cd toxicity and not to avoidance of the Cd-rich sediments.

  14. Valence Fluctuations Revealed by Magnetic Field and Pressure Scans: Comparison with Experiments in YbXCu4 (X=In, Ag, Cd) and CeYIn5 (Y=Ir, Rh)

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques

    2009-10-01

    The mechanism of how critical end points of the first-order valence transition (FOVT) are controlled by a magnetic field is discussed. We demonstrate that critical temperature is suppressed to be a quantum critical point (QCP) by a magnetic field. This results explain the field dependence of the isostructural FOVT observed in Ce metal and YbInCu4. Magnetic field scan can make the system reenter in a critical valence fluctuation region. Even in intermediate-valence materials, the QCP is induced by applying a magnetic field, at which magnetic susceptibility also diverges. The driving force of the field-induced QCP is shown to be a cooperative phenomenon of the Zeeman effect and the Kondo effect, which creates a distinct energy scale from the Kondo temperature. The key concept is that the closeness to the QCP of the FOVT is vital in understanding Ce- and Yb-based heavy-fermions. This explains the peculiar magnetic and transport responses in CeYIn5 (Y=Ir, Rh) and metamagnetic transition in YbXCu4 for X=In as well as the sharp contrast between X=Ag and Cd.

  15. Cadmium induces acidosis in maize root cells.

    PubMed

    Nocito, Fabio Francesco; Espen, Luca; Crema, Barbara; Cocucci, Maurizio; Sacchi, Gian Attilio

    2008-01-01

    * Cadmium (Cd) stress increases cell metabolic demand for sulfur, reducing equivalents, and carbon skeletons, to sustain phytochelatin biosynthesis for Cd detoxification. In this condition the induction of potentially acidifying anaplerotic metabolism in root tissues may be expected. For these reasons the effects of Cd accumulation on anaplerotic metabolism, glycolysis, and cell pH control mechanisms were investigated in maize (Zea mays) roots. * The study compared root apical segments, excised from plants grown for 24 h in a nutrient solution supplemented, or not, with 10 microM CdCl(2), using physiological, biochemical and (31)P-nuclear magnetic resonance (NMR) approaches. * Cadmium exposure resulted in a significant decrease in both cytosolic and vacuolar pH of root cells and in a concomitant increase in the carbon fluxes through anaplerotic metabolism leading to malate biosynthesis, as suggested by changes in dark CO2 fixation, metabolite levels and enzyme activities along glycolysis, and mitochondrial alternative respiration capacity. This scenario was accompanied by a decrease in the net H(+) efflux from the roots, probably related to changes in plasma membrane permeability. * It is concluded that anaplerotic metabolism triggered by Cd detoxification processes might lead to an imbalance in H(+) production and consumption, and then to cell acidosis. PMID:18537888

  16. Phase equilibria in the neodymium–cadmium binary system

    PubMed Central

    Skołyszewska-Kühberger, Barbara; Reichmann, Thomas L.; Ipser, Herbert

    2014-01-01

    The equilibrium phase diagram of the neodymium–cadmium system has been established by thermal, metallographic and X-ray analysis based on a study of 70 alloys. The system contains three congruently melting intermetallic compounds, i.e. NdCd (1040 °C), NdCd2 (995 °C), Nd11Cd45 (855 °C), and four incongruently melting compounds NdCd3 (860 °C), Nd13Cd58 (740 °C), NdCd6 (655 °C) and NdCd11 (520 °C). Four eutectic reactions are found in this binary system, i.e. at ∼25 at.% Cd and 770 °C, at 58 at.% Cd and 955 °C, at 79 at.% Cd and 850 °C, and very close to pure Cd at 318 °C, as well as one eutectoid reaction at ∼15 at.% Cd and 500 °C. The solid solubility of Nd in Cd is negligible. Dilatometric curves were recorded for three Nd–Cd compositions up to 4 at.% Cd, to accurately determine phase transitions between the solid solutions of Cd in the low- and high-temperature modification of Nd. PMID:25197164

  17. Citrate-stabilized Q-CdSe seed-mediated synthesis of silver nanoparticles: The role of citrate moieties anchored to the Q-CdSe surface

    NASA Astrophysics Data System (ADS)

    Ingole, Pravin P.; Bhat, Mohsin A.

    2016-03-01

    Here, we try to explore a new dimension/role for citrate molecules in the bound state, i.e. anchored to the surface of cadmium selenide quantum dots (Q-CdSe), in the synthesis of metal nanoparticles (MNPs). Being labile, the citrate molecule is considered a good candidate for the stabilization of semiconductor quantum dots (QDs) such as Q-CdSe that can be used for further functionalization/modification of the surface properties of the QDs. In its free/ionic form (i.e. not bound to the surface), it is well known for its role as a reducing as well as a capping agent in the synthesis of silver and gold MNPs. A simple strategy for the preparation of silver MNPs following the chemical reduction of silver ions that is mediated by citrate-stabilized Q-CdSe seeds without addition of an external reducing agent is presented. The citrate moieties anchored to the surface of Q-CdSe are found to play an important role in the chemical reduction of silver ions. The obtained product was analysed by spectroscopic, microscopic and structural characterization techniques such as surface plasmon resonance (SPR), transmission electron microscopy (TEM) and cyclic voltammetry. The characteristic redox behaviour observed in cyclic voltammograms (CVs) also supports the formation of Ag MNPs in the samples. Further, the impact of the reaction solution pH on the feasibility of silver ion reduction by Q-CdSe seeds resulting into the formation of Ag MNPs is also briefly discussed.

  18. Thin films and solar cells of cadmium telluride and cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Ferekides, Christos Savva

    The objectives of this dissertation are to investigate (1) the metalorganic chemical vapor deposition (MOCVD) and properties of cadmium telluride (CdTe) and cadmium zinc telluride (Cd(1-x)Zn(z)Te) films and junctions, and their potential application to solar cells, and (2) the fabrication and characterization of CdTe solar cells by the close spaced sublimation (CSS) technique. CdTe and Cd(1-x)Zn(x)Te films have been deposited by MOCVD on a variety of substrates at 300-400 C. The effect of the deposition parameters and post deposition heat treatments on the electrical, optical, and structural properties have been investigated. Heterojunctions of the configuration CdTe/transparent conducting semiconductor (TCS) and Cd(1-x)Zn(x)Te/TCS have been prepared and characterized. CdTe(MOCVD)/CdS and Cd(1-x)Zn(x)Te(E sub g = 1.65eV)/Cd(1-x)Zn(x)S solar cells with efficiencies of 9.9 percent and 2.4 percent, respectively have been fabricated. The as-deposited CdTe(MOCVD)/CdS junctions exhibited high dark current densities due to deflects at the interface associated with small grain size. Their characteristics of the Cd(1-x)Zn(x)Te junctions degraded with increasing Zn concentration due to the crystalline quality and very small grain size (0.3 microns) in films with high ZnTe contents (greater than 25 percent). No effective post-deposition heat treatment has been developed. CdTe/CdS solar cells have also been fabricated by the close spaced sublimation (CSS). Significant improvements in material and processing have been made, and in collaboration with fellow researchers an AM1.5 conversion efficiency of 13.4 percent has been demonstrated, the highest efficiency ever measured for such devices. The highest conversion efficiency for the CdTe(CSS)/CdS solar cell was achieved by reaching high open-circuit voltages and fill factors, while the short-circuit current densities were moderate. These results indicate that further improvements to increase the short-circuit current densities

  19. Cadmium(II) complex formation with cysteine and penicillamine.

    PubMed

    Jalilehvand, Farideh; Leung, Bonnie O; Mah, Vicky

    2009-07-01

    The complex formation between cadmium(II) and the ligands cysteine (H(2)Cys) and penicillamine (H(2)Pen = 3,3'-dimethylcysteine) in aqueous solutions, having C(Cd(II)) approximately 0.1 mol dm(-3) and C(H(2)L) = 0.2-2 mol dm(-3), was studied at pH = 7.5 and 11.0 by means of (113)Cd NMR and Cd K- and L(3)-edge X-ray absorption spectroscopy. For all cadmium(II)-cysteine molar ratios, the mean Cd-S and Cd-(N/O) bond distances were found in the ranges 2.52-2.54 and 2.27-2.35 A, respectively. The corresponding cadmium(II)-penicillamine complexes showed slightly shorter Cd-S bonds, 2.50-2.53 A, but with the Cd-(N/O) bond distances in a similar wide range, 2.28-2.33 A. For the molar ratio C(H(2)L)/C(Cd(II)) = 2, the (113)Cd chemical shifts, in the range 509-527 ppm at both pH values, indicated complexes with distorted tetrahedral CdS(2)N(N/O) coordination geometry. With a large excess of cysteine (molar ratios C(H(2)Cys)/C(Cd(II)) >or= 10), complexes with CdS(4) coordination geometry dominate, consistent with the (113)Cd NMR chemical shifts, delta approximately 680 ppm at pH 7.5 and 636-658 ppm at pH 11.0, and their mean Cd-S distances were 2.53 +/- 0.02 A. At pH 7.5, the complexes are almost exclusively sulfur-coordinated as [Cd(S-cysteinate)(4)](n-), while at higher pH, the deprotonation of the amine groups promotes chelate formation. At pH 11.0, a minor amount of the [Cd(Cys)(3)](4-) complex with CdS(3)N coordination is formed. For the corresponding penicillamine solutions with molar ratios C(H(2)Pen)/C(Cd(II)) >or= 10, the (113)Cd NMR chemical shifts, delta approximately 600 ppm at pH 7.5 and 578 ppm at pH 11.0, together with the average bond distances, Cd-S 2.53 +/- 0.02 A and Cd-(N/O) 2.30-2.33 A, indicate that [Cd(penicillaminate)(3)](n-) complexes with chelating CdS(3)(N/O) coordination dominate already at pH 7.5 and become mixed with CdS(2)N(N/O) complexes at pH 11.0. The present study reveals differences between cysteine and penicillamine as ligands to the

  20. Differences in cadmium transport to the testis, epididymis, and brain in cadmium-sensitive and -resistant murine strains 129/J and A/J.

    PubMed

    King, L M; Banks, W A; George, W J

    1999-05-01

    Although most animals with scrotal testes are susceptible to cadmium-induced testicular toxicity, strain-related differences are seen in mice. Resistant murine strains demonstrate a decreased cadmium concentration in the testis and also in the epididymis and seminal vesicle. In this study we analyzed cadmium transport into tissues with a vascular barrier, the testis, epididymis, and brain, in an attempt to characterize the mechanisms of strain resistance to cadmium-induced testicular toxicity. In the resistant murine strain A/J, 109Cd transport (administered as 109CdCl2) was significantly attenuated in the testis, epididymis, and brain, when compared to the sensitive murine strain 129/J. The unidirectional influx constant (Ki, in microliter g-1 min-1) for 109Cd was 0.01929 in the A/J testis as compared with 1.174 in the 129/J testis (P <.0001). The percentage of a 109Cd dose that reached the A/J testis by 60 min was over 10 times less than that which reached the 129/J testis. The transport system used by cadmium in the 129/J testis was saturable, with 20 microM unlabeled cadmium chloride inhibiting transport by over 60%. The transporter was competitively inhibited by zinc (P =. 00017), but not by calcium, indicating a specificity in ion transport. Studies with isolated tubules and analysis of testicular fluid compartments demonstrated no significant difference in cadmium uptake or efflux between the strains when corrected for the amount of 109Cd entering the testis. Therefore, murine strain differences in testicular sensitivity to cadmium appear to be related to the variable presence of a transport system for cadmium in the testicular vasculature. PMID:10215659

  1. Cadmium distribution and chemical fate in soybean plants

    SciTech Connect

    Cataldo, D.A.; Garland, T.R.; Wildung, R.E.

    1981-10-01

    The distribution and chemical behavior of Cd/sup 2+/ in tissues and its chemical form in xylem water of soybeam plants (cv. Williams) were investigated. Following root absorption, Cd is strongly retained by roots, with only 2% of the accumulated Cd being transported to leaves; as much as 8% was transported to seeds during seed filling. In vivo xylem exudates contained two anionic Cd complexes in addition to inorganic forms of Cd. Once accumulated in root and leaf tissues, Cd rapidly equilibrated between the insoluble, soluble, and organelle fractions. Of the solubles, which contain 50% of the Cd, >50% was associated with components of >10,000 molecular weight, and <8% was associated with <500 molecular weight components. Cadmium accumulated in soybean seeds was primarily associated with cotyledons. Fractionation of seeds showed the soy proteinate and soy whey to contain 32 and 50% of the accumulated Cd, respectively.

  2. Complex study of the physiological role of cadmium. II. Effect of cadmium load on the cadmium content of eggs.

    PubMed

    Bokori, J; Fekete, S; Kádár, I; Albert, M

    1995-01-01

    The possibility of "cadmium (Cd) contamination" of eggs and the dynamics of Cd accumulation were studied. A total of 40 (4 x 10) Japanese quails weighing 155-200 g, being at the middle phase of egg production and kept on batteries in a climatized animal house were used. The birds were fed a standard quail layer diet and drank tap-water ad libitum. With the exception of the control group (Cd-0), the diet of the other three groups was supplemented with Cd sulphate homogeneously mixed in the diet so that it contained 75 mg (Cd-75), 150 mg (Cd-150) and 300 mg (Cd-300) per kg. During the 37-day feeding trial the quails' behaviour, health status and daily egg production were monitored and the birds were weighed weekly. The egg production of the experimental groups, particularly of those exposed to a high Cd load, rapidly decreased: at the highest Cd load (300 ppm) egg production completely ceased at days 10-11 of the trial. The total Cd content of the eggs rose already from the 3rd day of the feeding trial and by day 10 it reached a value of 0.777 mg/kg dry matter in the eggs of quails of group Cd-75. This was about five times the value measured in the control quails' eggs (0.165 mg/kg dry matter). The Cd content of the egg-white and egg-yolk (maximum values: 0.212 and 0.107 mg/kg dry matter) also increased to about 2 or 3 times that measured in the control eggs. The Cd content of eggs reached the peak in the 2nd week of the feeding trial, then started to decrease, and in the 3rd and 4th weeks not even the eggs laid by quails exposed to a high Cd load contained more Cd than about twice the concentration measured in the controls' eggs. The elucidation of this hitherto not studied process requires further investigations. The phenomenon may be due to a lack of the protein necessary for Cd transport and to the impairment of Cd absorption and of the excretory activity of the oviduct. The higher Cd concentrations measured in the egg were accompanied by markedly elevated Fe, K

  3. Combined effects of cadmium and salinity on juvenile Takifugu obscurus: cadmium moderates salinity tolerance; salinity decreases the toxicity of cadmium

    PubMed Central

    Wang, Jun; Zhu, Xuexia; Huang, Xin; Gu, Lei; Chen, Yafen; Yang, Zhou

    2016-01-01

    Obscure puffer Takifugu obscurus, a species of anadromous fish, experiences several salinity changes in its lifetime. Cadmium (Cd) is a toxic heavy metal that can potentially induce oxidative stress in fish. The present study aimed to detect the combined effects of Cd (0, 5, 10, 20 and 50 mg L−1) and salinity (0, 15 and 30 ppt) on juvenile T. obscurus. Results showed the juveniles could survive well under different salinities; however, with Cd exposure, the survival rates significantly decreased at 0 and 30 ppt. At 15 ppt, tolerance to Cd increased. Cd exposure clearly induced oxidative stress, and the responses among different tissues were qualitatively similar. Salinity acted as a protective factor which could reduce the reactive oxygen species and malondialdehyde levels. In addition, salinity could enhance the antioxidant defense system, including superoxide dismutase, catalase and glutathione. Na+/K+–ATPase activity significantly decreased under Cd exposure in gill, kidney and intestine. These findings indicated that Cd could moderate the adaptability of juvenile T. obscurus to high salinity and low salinity played a protective role upon Cd exposure. Thus, the role of salinity should be considered when evaluating the effect of heavy metals on anadromous and estuarine fishes. PMID:27487764

  4. Combined effects of cadmium and salinity on juvenile Takifugu obscurus: cadmium moderates salinity tolerance; salinity decreases the toxicity of cadmium.

    PubMed

    Wang, Jun; Zhu, Xuexia; Huang, Xin; Gu, Lei; Chen, Yafen; Yang, Zhou

    2016-01-01

    Obscure puffer Takifugu obscurus, a species of anadromous fish, experiences several salinity changes in its lifetime. Cadmium (Cd) is a toxic heavy metal that can potentially induce oxidative stress in fish. The present study aimed to detect the combined effects of Cd (0, 5, 10, 20 and 50 mg L(-1)) and salinity (0, 15 and 30 ppt) on juvenile T. obscurus. Results showed the juveniles could survive well under different salinities; however, with Cd exposure, the survival rates significantly decreased at 0 and 30 ppt. At 15 ppt, tolerance to Cd increased. Cd exposure clearly induced oxidative stress, and the responses among different tissues were qualitatively similar. Salinity acted as a protective factor which could reduce the reactive oxygen species and malondialdehyde levels. In addition, salinity could enhance the antioxidant defense system, including superoxide dismutase, catalase and glutathione. Na(+)/K(+)-ATPase activity significantly decreased under Cd exposure in gill, kidney and intestine. These findings indicated that Cd could moderate the adaptability of juvenile T. obscurus to high salinity and low salinity played a protective role upon Cd exposure. Thus, the role of salinity should be considered when evaluating the effect of heavy metals on anadromous and estuarine fishes. PMID:27487764

  5. Evaluating a 'biotic ligand model' applied to chloride-enhanced Cd uptake by Brassica juncea from nutrient solution at constant Cd2+ activity.

    PubMed

    López-Chuken, Ulrico J; Young, Scott D; Guzmán-Mar, Jorge L

    2010-03-01

    Evidence of chloride-enhanced cadmium uptake by plants in soil experiments has been reported. However, it is still unclear whether this finding is due to increased rates of Cd2+ diffusion to plant roots or the direct uptake of complexes such as CdC1+. A controlled hydroponic experiment was undertaken to distinguish and quantify the uptake rates of free and inorganic-complexed cadmium and to model the uptake of cadmium by Indian mustard plants with a 'biotic ligand model'. Plants were treated with NaCl (0 to 200 mM) including equivalent Na2SO4 treatments. Cadmium speciation in solution was calculated using the WHAM-VI model. Results of the current trials showed that higher Cl-concentrations in solution generally resulted in greater cadmium accumulation by plants than predicted by the Cd2+ activity. Activities of Cd-chloro complexes showed the best correlations with the cadmium concentrations in the plants compared with the activity of Cd2+. The biotic ligand model showed a reasonable good fit for the plants when assuming competition by Cd2+ and CdCl+ for sorption sites at root level. The relative values of the two reaction constants suggest that root affinity for Cd2+ is 3.4 times greater than for CdCl+. Nevertheless this clearly indicates a substantial role for chloro-complexed cadmium accumulation. PMID:20426272

  6. Screening of a new cadmium hyperaccumulator, Galinsoga parviflora, from winter farmland weeds using the artificially high soil cadmium concentration method.

    PubMed

    Lin, Lijin; Jin, Qian; Liu, Yingjie; Ning, Bo; Liao, Ming'an; Luo, Li

    2014-11-01

    A new method, the artificially high soil cadmium (Cd) concentration method, was used to screen for Cd hyperaccumulators among winter farmland weeds. Galinsoga parviflora was the most promising remedial plant among 5 Cd accumulators or hyperaccumulators. In Cd concentration gradient experiments, as soil Cd concentration increased, root and shoot biomass decreased, and their Cd contents increased. In additional concentration gradient experiments, superoxide dismutase and peroxidase activities increased with soil Cd concentrations up to 75 mg kg(-1) , while expression of their isoenzymes strengthened. Catalase (CAT) activity declined and CAT isoenzyme expression weakened at soil Cd concentrations less than 50 mg kg(-1) . The maxima of Cd contents in shoots and roots were 137.63 mg kg(-1) and 105.70 mg kg(-1) , respectively, at 100 mg kg(-1) Cd in soil. The root and shoot bioconcentration factors exceeded 1.0, as did the translocation factor. In a field experiment, total extraction of Cd by shoots was 1.35 mg m(-2) to 1.43 mg m(-2) at soil Cd levels of 2.04 mg kg(-1) to 2.89 mg kg(-1) . Therefore, the artificially high soil Cd concentration method was effective for screening Cd hyperaccumulators. Galinsoga parviflora is a Cd hyperaccumulator that could be used to efficiently remediate Cd-contaminated farmland soil. PMID:25053512

  7. Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum.

    PubMed

    Zhu, Xiao Fang; Zheng, Cheng; Hu, Yi Ting; Jiang, Tao; Liu, Yu; Dong, Ning Yu; Yang, Jian Li; Zheng, Shao Jian

    2011-07-01

    The mechanisms of heavy metal resistance in plants can be classified into internal tolerance and exclusion mechanisms, but exclusion of heavy metals with the help of organic acids secretion has not been well documented. Here we demonstrated the contribution of oxalate secretion to cadmium (Cd) exclusion and resistance in tomato. Different Cd resistance between two tomato cultivars was evaluated by relative root elongation (RRE) and Cd accumulation. Cultivar 'Micro-Tom' showed better growth and lower Cd content in roots than 'Hezuo903' at different Cd concentrations not only in short-term hydroponic experiment but also in long-term hydroponic and soil experiments, indicating that the genotypic difference in Cd resistance is related to the exclusion of Cd from roots. 'Micro-Tom' had greater ability to secrete oxalate, suggesting that oxalate secretion might contribute to Cd resistance. Cd-induced secretion of oxalate was localized to root apex at which the majority of Cd accumulated. Phenylglyoxal, an anion-channel inhibitor, effectively blocked Cd-induced oxalate secretion and aggravated Cd toxicity while exogenous oxalate supply ameliorated Cd toxicity efficiently. These results indicated that the oxalate secreted from the root apex helps to exclude Cd from entering tomato roots, thus contributes to Cd resistance in the Cd-resistant tomato cultivar. PMID:21388421

  8. Statolith formation in Cnidaria: effects of cadmium on Aurelia statoliths

    NASA Technical Reports Server (NTRS)

    Spangenberg, D. B.

    1986-01-01

    Statolith formation in Cnidaria was reviewed with an emphasis on Aurelia statoliths. The review provides information on the chemical composition, mechanisms of initiation of mineralization, and effects of environmental factors on Cnidarian statolith formation. Environmental factors discussed included modified sea water ingredients, X-irradiation, clinostat rotation, and petroleum oil ingredients. A detailed account of the effects of cadmium on mineralization and demineralization of Aurelia statoliths is given. Cadmium at dosages of 2 to 4 micromoles significantly reduces statolith numbers in developing ephyrae. At a dosage of 3 micromoles, cadmium accelerates statolith loss in unfed ephyrae studied at 4 and 8 days following ephyrae release from strobilae. Cadmium, therefore, is shown to reduce statolith numbers in developing ephyrae and to cause greater reduction of statolith numbers in unfed ephyrae after 4 and 8 days than occurred in controls. Supplementation of Cd(2+)-containing artificial sea water (ASW) with calcium (3X and 5X ASW calcium content) results in higher numbers of statoliths at day 4 as compared with cadmium-treated ephyrae. At 8 days only the 5X calcium supplemented ASW is effective in enhancing statolith numbers in Cd(2+)-treated ephyrae. These results suggest that cadmium competes in some manner with calcium at the mineralizing sites of Aurelia.

  9. Blood Cadmium Level

    EPA Science Inventory

    This indicator describes the presence of cadmium in the blood of the U.S. population from 1999 to 2008. Cadmium is a metal that is toxic to humans and animals. This indicator shows how human exposure to this environmental contaminant has changed over time and how it varies...

  10. Changes in cadmium mobility during composting and after soil application

    SciTech Connect

    Hanc, Ales Tlustos, Pavel; Szakova, Jirina; Habart, Jan

    2009-08-15

    The effect of twelve weeks of composting on the mobility and bioavailability of cadmium in six composts containing sewage sludge, wood chips and grass was studied, along with the cadmium immobilization capacity of compost. Two different soils were used and Cd accumulation measured in above-ground oat biomass (Avena sativa L.). Increasing pH appears to be an important cause of the observed decreases in available cadmium through the composting process. A pot experiment was performed with two different amounts of compost (9.6 and 28.8 g per kg of soil) added into Fluvisol with total Cd 0.255 mg kg{sup -1}, and contaminated Cambisol with total Cd 6.16 mg kg{sup -1}. Decrease of extractable Cd (0.01 mol l{sup -1} CaCl{sub 2}) was found in both soils after compost application. The higher amount of compost immobilized an exchangeable portion of Cd (0.11 mol l{sup -1} CH{sub 3}COOH extractable) in contaminated Cambisol unlike in light Fluvisol. The addition of a low amount of compost decreased the content of Cd in associated above-ground oat biomass grown in both soils, while a high amount of compost decreased the Cd content in oats only in the Cambisol.

  11. Interaction between titanium and cadmium in various guinea pig organs.

    PubMed

    Takano, Takashi; Kaneda, Takeharu; Kaneshige, Masaki; Tsutsumi, Tomoko; Ochiai, Yoshitsugu; Shimizu, Kazumasa; Hondo, Ryo; Mochizuki, Mariko; Ueda, Fukiko

    2013-02-01

    Titanium (Ti) is used in many fields, while cadmium (Cd) is known to cause the itai-itai disease. In the present study, possible interactions between titanium and cadmium were investigated. Aorta, taenia coli, and liver were removed from male guinea pigs. Muscle tension was measured using intact aorta and taenia coli and using β-escin-permeabilized taenia coli in a physiological salt solution and a hyperpotassium solution containing Cd and/or Ti. Cellular Cd contents were determined using all tissues after washout with EDTA solution. Cadmium-induced relaxation in the hyperpotassium solution recovered significantly (P < 0.01) following Ti treatment in taenia coli, but not in the aorta. In β-escin-permeabilized taenia coli, the percentage recoveries after Cd treatment and after Ti plus Cd treatment were 67.3 ± 8.7 % (n = 4) and 87.7 ± 3.8 % (n = 4), respectively, compared with Ca-induced control contraction. Cellular Cd contents in taenia coli decreased significantly following treatment with Ti 10(-4) M. Although similar results were obtained using the aorta and the liver, there were no significant differences between the control and Ti 10(-5) M. High concentrations of Ti may reduce cellular Cd content. PMID:23238609

  12. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, D.H.; Nelson, A.J.; Ahrenkiel, R.K.

    1996-07-30

    A process is described for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness. 12 figs.

  13. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Bernechea, María; Miller, Nichole Cates; Xercavins, Guillem; So, David; Stavrinadis, Alexandros; Konstantatos, Gerasimos

    2016-08-01

    Solution-processed inorganic solar cells are a promising low-cost alternative to first-generation solar cells. Solution processing at low temperatures combined with the use of non-toxic and abundant elements can help minimize fabrication costs and facilitate regulatory acceptance. However, at present, there is no material that exhibits all these features while demonstrating promising efficiencies. Many of the candidates being explored contain toxic elements such as lead or cadmium (perovskites, PbS, CdTe and CdS(Se)) or scarce elements such as tellurium or indium (CdTe and CIGS(Se)/CIS). Others require high-temperature processes such as selenization or sintering, or rely on vacuum deposition techniques (Sb2S(Se)3, SnS and CZTS(Se)). Here, we present AgBiS2 nanocrystals as a non-toxic, earth-abundant material for high-performance, solution-processed solar cells fabricated under ambient conditions at low temperatures (≤100 °C). We demonstrate devices with a certified power conversion efficiency of 6.3%, with no hysteresis and a short-circuit current density of ∼22 mA cm‑2 for an active layer thickness of only ∼35 nm.

  14. Cadmium isotope variations in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Xue, Zichen; Rehkämper, Mark; Horner, Tristan J.; Abouchami, Wafa; Middag, Rob; van de Flierd, Tina; de Baar, Hein J. W.

    2013-11-01

    Cadmium concentrations and isotope compositions were determined for 47 seawater samples from the high nutrient low chlorophyll (HNLC) zone of the Atlantic sector of the Southern Ocean. The samples include 13 surface waters from a transect of the Weddell Gyre and 3 depth profiles from the Weddell Sea and Drake Passage. The Southern Ocean mixed layer samples from this study and Abouchami et al. (2011) define a clear but broad ‘HNLC trend’ in a plot of εCd114/110 versus [Cd], which is primarily a consequence of isotopic fractionation associated with biological uptake (εCd114/110 is the deviation of the 114Cd/110Cd ratio of a sample from NIST SRM 3108 Cd in parts per 10,000). The trend is especially apparent in comparison to the large range of values shown by a global set of seawater Cd data for shallow depths. The Southern Ocean samples are also distinguished by their relatively high Cd concentrations (typically 0.2 to 0.6 nmol/kg) and moderately fractionated εCd114/110 (generally between +4 and +8) that reflect the limited biological productivity of this region. Detailed assessment reveals fine structure within the ‘HNLC trend’, which may record differences in the biological fractionation factor, different scenarios of closed and open system isotope fractionation, and/or distinct source water compositions. Southern Ocean seawater from depths ⩾1000 m has an average εCd114/110 of +2.5±0.2 (2se, n=16), and together with previous results this establishes a relatively constant εCd114/110 value of +3.0±0.3 (2se, n=27) for global deep waters. Significant isotopic variability was observed at intermediate depths in the Southern Ocean. Seawater from 200 m to 400 m in Weddell Sea has high Cd concentrations and εCd114/110 as low as +1, presumably due to remineralization of Cd from biomass that records incomplete nutrient utilization. Antarctic Intermediate Water, which was sampled at 150 to 750 m depth in the Drake Passage, features a distinct Cd isotope

  15. Synthesis and spectroscopic and structural studies of a new cadmium(II)-citrate aqueous complex. Potential relevance to cadmium(II)-citrate speciation and links to cadmium toxicity.

    PubMed

    Dakanali, M; Kefalas, E T; Raptopoulou, C P; Terzis, A; Mavromoustakos, T; Salifoglou, A

    2003-04-21

    The presence of cadmium in the environment undoubtedly contributes to an increased risk of exposure and ultimate toxic influence on humans. In an effort to comprehend the chemical and biological interactions of Cd(II) with physiological ligands, like citric acid, we explored the requisite aqueous chemistry, which afforded the first aqueous Cd(II)-citrate complex [Cd(C(6)H(6)O(7))(H(2)O)](n)() (1). Compound 1 was characterized by elemental analysis, and spectroscopically by FT-IR and (113)Cd MAS NMR. Compound 1 crystallizes in the orthorhombic space group P2(1)2(1)2(1), with a = 6.166(2) A, b = 10.508(3) A, c = 13.599(5) A, V = 881.2(5) A(3), and Z = 4. The X-ray structure of 1 reveals the presence of octahedral Cd(II) ions bound to citrate ligands in a molecular crystal lattice. Citrate acts as a tridentate binder promoting coordination to one Cd(II) through the central alcoholic moiety, one terminal carboxylate group, and the central carboxylate group. In addition, the central carboxylate binds to three Cd(II) ions. Specifically, one of the oxygens of the central carboxylate serves as a bridge to two neighboring Cd(II) ions, while the other oxygen binds to a third Cd(II). A bound water molecule completes the coordination requirements of Cd(II). (113)Cd MAS NMR studies project the spectroscopic signature of the nature of the coordination environment around Cd(II) in 1, thus corroborating the X-ray findings. Collectively, the data at hand are in line with past solution studies. The latter predict that other similar low molecular mass Cd(II)-citrate complexes may exist in the acidic pH region, thus influencing the uptake of cadmium by living (micro)organisms, their ability to metabolize organic substrates, and possibly Cd(II) toxicity. PMID:12691558

  16. Thin-film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    1986-09-01

    This is the final technical progress report of a research program entitled Thin-Film Cadmium Telluride Solar Cells. The major objective was to demonstrate chemical vapor deposition (CVD)-grown CdTe devices with a photovoltaic efficiency of at least 10%. The work included: (1) CVD and characterization of p-CdTe films of controlled resistivity; (2) deposition and characterization of heterojunction partners; (3) surface passivation of CdTe; and (4) preparation and characterization of thin-film solar cells. The CVD of p-CdTe was optimized with emphasis on resistivity control through nonstoichiometry and extrinsic doping. Both carbon and oxygen were identified as acceptors. The use of thermal oxidation for surface passivation of CdTe was investigated using capacitance-voltage measurement. Device-quality thermal oxide can be prepared by hydrogen annealing of CdTe before oxidation. Deposition and characterization of CdS, CdO, and ZnO:In were also carried out. The best thin-film cell to date had a conversion efficiency near 9%.

  17. Search for biomarkers of animal exposure to cadmium

    SciTech Connect

    Ikediobi, C.; Liu, Jing; Ugochukwu, Ngozi; Latinwo, L.

    1997-10-01

    Exposure of animals to cadmium has been associated with DNA strand breaks, and inactivation of sulfhydryl-containing enzymes and proteins. This study was intended to exploit certain Cd-induced cellular metabolic alterations/lesions with a view to develop reliable biomarkers of animal exposure to cadmium. Groups of Sprague-Dawley rats (125-150 g) were exposed by gavage on a daily basis to three different dose levels of CdCl{sub 2} (4.8, 12.0, 30.0 mg/kg) for periods of 3, 6, 9 and 12 days. At the end of each exposure period, blood, liver and kidney samples were obtained and analyzed for blood pyruvate, plasma trypsin inhibitory capacity (TIC) and liver/kidney malondialdehyde (MDA), metallothionein (MT) and Cd. There was a general decrease in bodyweight gain among the experimental groups of animals that was directly related to Cd dose. In addition, Cd in blood pyruvate and liver/kidney MDA were observed. Liver/kidney MT and total Cd were similarly observed to increase with Cd dose and duration of animal exposure to Cd. In contrast, plasma TIC decreased in a dose-dependent manner with increase in the duration of exposure. The relevance and significance of the use of blood pyruvate, liver/kidney MDA, MT, Cd and plasma TIC as potential biomarkers of animal exposure to Cd are discussed.

  18. Physiological responses of fenugreek seedlings and plants treated with cadmium.

    PubMed

    Zayneb, Chaâbene; Bassem, Khemakhem; Zeineb, Kamoun; Grubb, C Douglas; Noureddine, Drira; Hafedh, Mejdoub; Amine, Elleuch

    2015-07-01

    The bioaccumulation efficiency of cadmium (Cd) by fenugreek (Trigonella foenum-graecum) was examined using different concentrations of CdCl2. The germination rate was similar to control except at 10 mM Cd. However, early seedling growth was quite sensitive to the metal from the lowest Cd level. Accordingly, amylase activity was reduced substantially on treatment of seeds with 0.5, 1, and 10 mM Cd. Cadmium also affected various other plant growth parameters. Its accumulation was markedly lower in shoots as compared to roots, reducing root biomass by almost 50 %. Plants treated with 1 and 5 mM Cd presented chlorosis due to a significant reduction in chlorophyll b especially. Furthermore, at Cd concentrations greater than 0.1 mM, plants showed several signs of oxidative stress; an enhancement in root hydrogen peroxide (H2O2) level and in shoot malondialdehyde (MDA) content was observed. Conversely, antioxidant enzyme activities (superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)) increased in various plant parts. Likewise, total phenolic and flavonoid contents reached their highest values in the 0.5 mM Cd treatment, consistent with their roles in quenching low concentrations of reactive oxygen species (ROS). Consequently, maintaining oxidant and antioxidant balance may permit fenugreek to hyperaccumulate Cd and allow it to be employed in extremely Cd polluted soils for detoxification purposes. PMID:25752634

  19. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri.

    PubMed

    Zhao, F J; Jiang, R F; Dunham, S J; McGrath, S P

    2006-01-01

    Arabidopsis halleri is a well-known zinc (Zn) hyperaccumulator, but its status as a cadmium (Cd) hyperaccumulator is less certain. Here, we investigated whether A. halleri can hyperaccumulate Cd and whether Cd is transported via the Zn pathway. Growth and Cd and Zn uptake were determined in hydroponic experiments with different Cd and Zn concentrations. Short-term uptake and root-to-shoot transport were measured with radioactive 109Cd and 65Zn labelling. A. halleri accumulated > 1000 mg Cd kg(-1) in shoot dry weight at external Cd concentrations >or= 5 microm, but the short-term uptake rate of 109Cd was much lower than that of 65Zn. Zinc inhibited short-term 109Cd uptake kinetics and root-to-shoot translocation, as well as long-term Cd accumulation in shoots. Uptake of 109Cd and 65Zn were up-regulated, respectively, by low iron (Fe) or Zn status. A. halleri was much less tolerant to Cd than to Zn. We conclude that A. halleri is able to hyperaccumulate Cd partly, at least, through the Zn pathway, but the mechanisms responsible for cellular Zn tolerance cannot detoxify Cd effectively. PMID:17096791

  20. Intracellular distribution of cadmium during the growth of Abortiporus biennis on cadmium-amended media.

    PubMed

    Grąz, Marcin; Pawlikowska-Pawlęga, Bożena; Jarosz-Wilkołazka, Anna

    2015-08-01

    Heavy metals are difficult to remediate and traditional remedial processes are expensive, so bioremediation technology using bacteria, fungi, or plants is of interest. Many studies have demonstrated that basidiomycetes fungi are able to growth under heavy metals stress. In this study the distribution of cadmium (Cd) in Abortiporus biennis cells was studied. Cd accumulated especially within cytoplasm and its presence caused changes in the cytoplasm appearance, which became denser in comparison to the cytoplasm of control cells. Vacuolization of cytoplasm and periplasmic region in A. biennis cells was also observed. The growth rate of A. biennis was inhibited up to 75% during the growth on medium amended with 1 mmol/L cadmium oxide. The presence of Cd in growing media inhibited oxalic acid secretion by A. biennis, but oxalate concentration increased together with elevated Cd concentration in growing medium. The influence of initial pH of growing media on the accumulation of Cd by A. biennis was also observed. The highest accumulation of Cd in mycelium was detected during A. biennis growth on media with a pH of 6. Studies addressing metals uptake by fungi and metal distribution in fungal cells may allow these organisms to be applied in bioremediation processes more effectively or to be used as bioindicators of contaminated environmental pollutions. PMID:26114405

  1. High efficiency thin film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Chu, T. L.; Chu, S. S.; Ang, S. T.; Han, K. D.; Liu, Y. Z.

    Thin films of cadmium telluride deposited by the close-spaced sublimation (CSS) technique have been characterized and used for the preparation of CdS/CdTe heterojunction solar cells. The current-voltage and capacitance-voltage relations of CdS/CdTe heterojunctions indicate that the cleanliness of the interface is an important factor affecting the characteristics of the solar cells. The best cell has an area of about 1.2 sq cm and an AM1.5 (global) efficiency of 10.5 percent.

  2. Injection locking and saturation intensity of a cadmium iodide laser.

    PubMed

    Greene, D P; Eden, J G

    1985-02-01

    A discharge-pumped cadmium monoiodide (CdI) laser utilizing isotopically pure CdI(2) ((114)CdI(2)) has been injection locked with a flashlamp-pumped dye laser having a linewidth of 0.3 cm(-1). Complete locking of the slave oscillator occurs for wavelengths between 655 and 660 nm and for injection intensities of ~5 W cm(-2). The saturation intensity for the B ? X band of CdI has been directly measured with an excimer-pumped dye laser to be (125 +/- 60) kW cm(-2). PMID:19724345

  3. Oxidant and antioxidant status of cadmium administered rats

    NASA Astrophysics Data System (ADS)

    Toplan, S.; Ozcelik, D.; Dariyerli, N.; Akyolcu, M. C.

    2003-05-01

    Cadmium is one of the industrial elements that lead environmental pollution. Biological half-life of cadmium is relatively longer, so its clearance from tissue is considerably long. In present study, oxidant stress and antioxidant defense mechanism due to exposure to cadmium in rats wanted to be investigated. For such a purpose adult female wistar albino rats were divided into two as control and experimental groups. During experimental period while both group animals were fed by standard fodder, cadmium added (20 μg Cd/ml as cadmium sulfate) drinking water was given to experimental group for four weeks. At the end of four weeks blood samples were drawn from animals under ether anesthesia. As a Last product of lipid peroxidation malondialdehyde (MDA) level, superoxide dismutas (SOD) activity which is sign of antioxidant defense enzyme activity and glutathione levels (GSH) were measured. Increase in lipid peroxidation has been observed by increased MDA levels in experimental group (p<0.001). SOD enzyme activity was also found to be significantly lower in experimental group (p<0.001). Glutathione level of experimental group found to be decreased according to control group values (p<0.01). As a result of present study it may be concluded that cadmium may lead to increase in lipid peroxidation. On the other hand SOD activity and glutathione levels may also be decreased by effect of cadmium in erythrocytes. So the resultant would be the disturbed antioxidant mechanism

  4. A biosensor for cadmium based on bioconvective patterns

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Matsos, Helen C.

    1990-01-01

    An 'in vitro' method for monitoring cadmium, one of the most lethal bivalent heavy metals, can detect biologically active levels. The effects of cadmium tend to concentrate in protozoa far above natural levels and therein begin transferring through freshwater food chains to animals and humans. In a small sample volume (approximately 5 ml) the method uses the toxic response to the protozoa, Tetrahymena pyriformis, to cadmium. The assay relies on macroscopic bioconvective patterns to measure the toxic response, giving a sensitivity better than 1 micro-g/1 and a toxicity threshold to 7 micro-g/1 for Cd(2+). Cadmium hinders pattern formation in a dose-dependent manner. Arrested organism growth arises from slowed division and mutation to non-dividing classes. Unlike previous efforts, this method can be performed in a shallow flow device and does not require electronic or chemical analyses to monitor toxicity.

  5. Sources of Cadmium Exposure Among Healthy Premenopausal Women

    PubMed Central

    Adams, Scott V.; Newcomb, Polly A.; Shafer, Martin M.; Atkinson, Charlotte; Aiello Bowles, Erin J.; Newton, Katherine M.; Lampe, Johanna W.

    2011-01-01

    Background Cadmium, a persistent and widespread environmental pollutant, has been associated with kidney function impairment and several diseases. Cigarettes are the dominant source of cadmium exposure among smokers; the primary source of cadmium in non-smokers is food. We investigated sources of cadmium exposure in a sample of healthy women. Methods In a cross-sectional study, 191 premenopausal women completed a health questionnaire and a food frequency questionnaire. The cadmium content of spot urine samples was measured with inductively-coupled plasma mass spectrometry and normalized to urine creatinine content. Multivariable linear regression was used to estimate the strength of association between smoking habits and, among non-smokers, usual foods consumed and urinary cadmium, adjusted for age, race, multivitamin and supplement use, education, estimated total energy intake, and parity. Results Geometric mean urine creatinine-normalized cadmium concentration (uCd) of women with any history of cigarette smoking was 0.43 μg/g (95% confidence interval (CI): 0.38–0.48 μg/g) and 0.30 μg/g (0.27–0.33 μg/g) among never-smokers, and increased with pack-years of smoking. Analysis of dietary data among women with no reported history of smoking suggested that regular consumption of eggs, hot cereals, organ meats, tofu, vegetable soups, leafy greens, green salad, and yams was associated with uCd. Consumption of tofu products showed the most robust association with uCd; each weekly serving of tofu was associated with a 22% (95% CI: 11–33%) increase in uCd. Thus, uCd was estimated to be 0.11 μg/g (95% CI: 0.06 – 0.15 μg/g ) higher among women who consumed any tofu than among those who consumed none. Conclusions Cigarette smoking is likely the most important source of cadmium exposure among smokers. Among non-smokers, consumption of specific foods, notably tofu, is associated with increased urine cadmium concentration. PMID:21333327

  6. In search of biomonitors for cadmium: cadmium content of wild Swedish fauna during 1973-1976.

    PubMed

    Frank, A

    1986-12-01

    Forty-five species of birds and 22 species of mammals of the terrestrial and aquatic fauna, herbivores as well as carnivores, were investigated during the period 1973-1976 for cadmium-accumulating properties in order to find biomonitors for cadmium in the Swedish environment. The herbivores of the terrestrial fauna, birds as well as mammals, are preferred to carnivores, since they demonstrate generally higher renal Cd levels. The moose (Alces alces), roe deer (Capreolus capreolus) and hare (Lepus europeus and Lepus timidus) were found to be suitable as biomonitors because of their common occurrence and uniform geographical distribution. The eider duck (Somateria mollissima), although a short-distance migrating bird whose diet is composed mainly of mussels and crustaceans, and which lives along a great part of the Swedish coastline, is suggested as a biomonitor of cadmium for the aquatic environment. The accumulation rate of cadmium in the kidneys is rapid. Renal levels of cadmium in the parts per million range are reached 10 weeks after hatching. Juvenile birds should be collected for monitoring purposes before leaving their feeding domains at the end of the summer. PMID:3810147

  7. Review of CdO thin films

    NASA Astrophysics Data System (ADS)

    Chandiramouli, R.; Jeyaprakash, B. G.

    2013-02-01

    Cadmium Oxide (CdO) thin film is one of the first transparent conducting oxide semiconductors. Its excellent optical and electronic properties have made CdO a promising material for flat panel displays. In this article, we provide a comprehensive review of the state-of-the-art research activities related to the 'preparation-property-application' triangle of CdO thin films.

  8. Cadmium: Simulation of environmental control strategies to reduce exposure

    NASA Astrophysics Data System (ADS)

    Yost, K. J.; Miles, L. J.; Greenkorn, R. A.

    1981-07-01

    The effects of selected environmental control strategies on human dietary and respiratory exposure to environmental cadmium (Cd) have been simulated. For each control strategy, mean Cd dietary and respiratory exposures are presented for a twenty-year simulation period. Human exposures related to cadmium are associated with both process waste disposal and product disposal. Dietary exposure is by far the dominant mechanism for Cd intake. Dietary exposure related to aqueous discharges is primarily a result of municipal sludge landspreading, whereas that associated with emissions to the atmosphere derives mainly from the deposition on cropland of airborne particulates from product incineration. Only relatively small dietary exposure reductions are possible through restrictions on any single Cd use. Combinations of waste management and environmental control measures promise greater reductions in dietary and respiratory exposure than those achievable through use restrictions.

  9. Pseudomonas aeruginosa KUCD1, a possible candidate for cadmium bioremediation

    PubMed Central

    Sinha, Sangram; Mukherjee, Samir Kumar

    2009-01-01

    A cadmium (8 mM) resistant Pseudomonas aeruginosa strain KUCd1 exhibiting high Cd accumulation under in vitro aerobic condition has been reported. The isolate showed a significant ability to remove more than 75% and 89% of the soluble cadmium during the active growth phase from the growth medium and from Cd-amended industrial wastewater under growth supportive condition. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDXS) suggest the presence of Cd in the cells from mid stationary phase. The cell fractionation study revealed membrane and periplasm to be the major accumulating site in this strain. The chemical nature of the accumulated Cd was studied by X-ray powder diffraction analysis. PMID:24031411

  10. Cadmium-induced changes of gypsy moth larval mass and protease activity.

    PubMed

    Vlahović, Milena; Ilijin, Larisa; Lazarević, Jelica; Mrdaković, Marija; Gavrilović, Anja; Matić, Dragana; Mataruga, Vesna Perić

    2014-03-01

    Cadmium uptake takes place mainly through food. Lymantria dispar larvae were exposed to dietary cadmium in concentrations of 10 and 30μg Cd/g dry food (NOEC, no-observed-effect and LOEC, lowest-observed-effect concentration, respectively) for acute and chronic treatment and recovery. We established that metal contamination decreased mass only during the chronic treatment at 30μg Cd/dry food with no recovery on removal of cadmium for 3days. Significant reduction of protease activity was detected at LOEC after the acute and chronic treatments. Protease showed enhanced plasticity with regard to the fitness trait (mass) during environmental stress and the higher cadmium load, when it changed. The statistically significant higher index of phenotypic plasticity for protease correlated with lower variability. Protease isoforms at the same cadmium treatments differed between genotypes, while some protease isoforms from one egg-mass differed between cadmium treatments. Owing to the low sensitivity and plasticity of mass change during exposure to cadmium, as well as its small influence, we concluded that larval mass is not a good indicator of cadmium presence in food. We suggest that proteases, with further research, might be a suitable indicator of dietary cadmium contamination, as well as nutriment utilization during heavy metal stress. PMID:24230976

  11. Striking association between urinary cadmium level and albuminuria among Torres Strait Islander people with diabetes

    SciTech Connect

    Haswell-Elkins, Melissa Satarug, Soisungwan; O'Rourke, Peter; Moore, Michael; Ng, Jack; McGrath, Victor; Walmby, Maria

    2008-03-15

    Objectives: Indigenous people of the Torres Strait (Australia) have greater potential for cadmium exposure and renal damage than other Australians due to high cadmium in some traditional seafood and a high prevalence of Type 2 diabetes, hypertension, smoking, and obesity. This study explored associations between albuminuria and an index of cadmium exposure (urinary cadmium excretion) in the presence and absence of Type 2 diabetes. Research design and methods: Two population-based, cross-sectional studies were undertaken in the Torres Strait to obtain data on body mass index (BMI), blood pressure, chronic disease, smoking, urinary cadmium, and albumin creatinine ratio (ACR). Results: Age- and BMI-adjusted urinary cadmium levels were significantly higher (p<0.01) among people with diabetes and albuminuria (n=22, geometric mean (GM) 1.91 {mu}g Cd/g creatinine) compared to those with diabetes and normal ACR (n=21, GM 0.74 {mu}g Cd/g creatinine). Urinary cadmium was also strongly associated (p<0.001) with ACR among people with diabetes in regression models and remained significant after controlling for age, sex, BMI, smoking status, and hypertension (or continuous systolic and diastolic measurements). Conclusions: While the study has methodological limitations and the nature of the association is unclear, the striking dose-dependent links between markers of cadmium exposure and of Type 2 diabetic nephropathy highlight the need for further definitive research on the health effects of cadmium in the presence of diabetes.

  12. Health, safety and environmental issues relating to cadmium usage in photovoltaic energy systems

    SciTech Connect

    Moskowitz, P.D.; Fthenakis, V.M. ); Zweibel, K. )

    1989-12-01

    This paper discusses the current technology base and hazards associated with two promising thin-film photovoltaic cells that contain cadmium compounds -- cadmium telluride (CdTe) and copper indium diselenide (CuInSe{sub 2}). More specifically, this paper summarizes the toxicological information on cadmium (Cd) compounds; evaluates potential health, safety and environmental hazards associated with cadmium usage in the photovoltaics industry; describes regulatory requirements associated with the use, handling and disposal of cadmium compounds; and lists management options to permit the safe and continued use of these materials. Handling of cadmium in photovoltaic production can present hazards to health, safety and the environment. Prior recognition of these hazards can allow device manufacturers and regulators to implement appropriate and readily available hazard management strategies. Hazards associated with product use (i.e., array fires) and disposal remain controversial and partially unresolved. The most likely effects that could be expected would be those associated with chronic low-level exposures to cadmium wastes. Because of the general immobility of the cadmium present in these devices and availability of environmental and biomonitoring protocols, chronic hazards can be monitored, and remediated if necessary. Nevertheless, concern about cadmium hazards should continue to be emphasized to ensure that health, safety and environmental issues are properly managed. At the same time, the potential role that these systems can play in ameliorating some important health and environmental hazards related to other energy systems should not be ignored. 27 refs., 5 figs., 2 tabs.

  13. Cadmium Increases the Sensitivity of Adolescent Female Mice to Nicotine-Related Behavioral Deficits

    PubMed Central

    Adeniyi, Philip Adeyemi; Olatunji, Babawale Peter; Ishola, Azeez Olakunle; Ajonijebu, Duyilemi Chris; Ogundele, Olalekan Michael

    2014-01-01

    This study investigates spatial and nonspatial working memory, anxiety related behavior, and motor activities in cadmium and/or nicotine exposed female adolescent mice. P28 female adolescent mice (albino strain) were divided into four groups of five (n = 5) mice each. A set of mice (Nic) received subcutaneous nicotine (2.0 mg/kg) while a separate set (Cd) was treated with 2.0 mg/kg cadmium (subcutaneous). For the combined treatments of cadmium and nicotine, we administered 2.0 mg/kg Nicotine and 2.0 mg/kg of Cd. Subsequently, a separate group of animals (n = 5; control) received normal saline. The total duration of treatment for all groups was 28 days (P28–P56). At P56, the treatment was discontinued, after which the animals were examined in behavioural tests. Nicotine and cadmium increased the metabolism and food intake in the female adolescent mice. This also corresponded to an increase in weight when compared with the control. However, a combined nicotine-cadmium treatment induced a decline in weight of the animals versus the control. Also, nicotine administration increased the motor function, while cadmium and nicotine-cadmium treatment caused a decline in motor activity. Both nicotine and cadmium induced a reduction in memory index; however, nicotine-cadmium treatment induced the most significant decrease in nonspatial working memory. PMID:25477708

  14. Cadmium- and mercury-resistant Bacillus strains from a salt marsh and from Boston Harbor

    SciTech Connect

    Mahler, I.; Levinson, H.S.; Wang, Y.; Halvorson, H.O.

    1986-12-01

    Bacteria resistant to cadmium or mercury or both were isolated from the Great Sippewissett Marsh (Cape Cod, Mass.) and from Boston Harbor. Many of these metal-resistant isolates were gram-positive aerobic sporeformers, although not necessarily isolated as spores. Although several of the isolated strains bore plasmids, cadmium and mercury resistances appeared to be, for the most part, chromosomally encoded. DNA sequence homology of the gram-positive cadmium- and mercury-resistant isolates was not demonstrable with metal resistance genes from plasmids of either gram-positive (pI258) or gram-negative (pDB7) origin. Cadmium resistance of all the marsh isolates tested resulted from reduced Cd/sup 2 +/ transport. On the other hand, three cadmium-resistant harbor isolates displayed considerable influx but no efflux of Cd/sup 2 +/. Hg-resistant strains detoxified mercury by transforming Hg/sup 2 +/ to volatile Hg0 via mercuric reductase.

  15. Influence of cadmium exposure on selected hematological parameters in freshwater teleost, Notemigonus crysoleucas

    SciTech Connect

    Benson, W.H.; Baer, K.N.; Stackhouse, R.A.; Watson, C.F.

    1987-02-01

    The use of hematological parameters for assessing the acute toxicity of heavy metals to mammals has shown considerable promise. These parameters include the measurement of blood glucose, hematocrit, and a variety of enzymes. The present investigation was undertaken to evaluate the use of selected hematological parameters in aquatic organisms. Exposure of Notemigonus crysoleucas to cadmium resulted in a 96-hr /sup LC/50 value of 3.15 mg Cd/liter. The influence of cadmium on selected hematological parameters was examined following 96 hr of exposure to 0, 1.35, and 2.40 mg Cd/liter. Cadmium exposure produced significant alterations in the levels of glucose, aspartate aminotransaminase, and alanine aminotransaminase. Hematocrit was not altered by exposure to cadmium. These results indicate that glucose and transaminases may be useful as diagnostic tests for cadmium exposure in aquatic organisms.

  16. Cadmium-coordinated supramolecule suppresses tumor growth of T-cell leukemia in mice

    PubMed Central

    Zhou, Xiaoping; Koizumi, Yukio; Zhang, Muxin; Natsui, Miyuki; Koyota, Souichi; Yamada, Manabu; Kondo, Yoshihiko; Hamada, Fumio; Sugiyama, Toshihiro

    2015-01-01

    Cadmium is a toxic pollutant with occupational and environmental significance, due to its diverse toxic effects. Supramolecules that conjugate and decontaminate toxic metals have potential for use in treatment of cadmium intoxication. In addition, metal-coordinating ability has been postulated to contribute to the cytotoxic effects of anti-tumor agents such as cisplatin or bleomycin. Thiacalixarenes, cyclic oligomers of p-alkylphenol bridged by sulfur atoms, are supramolecules known to have potent coordinating ability to metal ions. In this study, we show that cadmium-coordinated thiacalix[4]arene tetrasulfate (TC4ATS-Cd) exhibits an anti-proliferative effect against T-cell leukemia cells. Cadmium exhibited cytotoxicity with IC50 values ranging from 36 to 129 μM against epithelia-derived cancer cell lines, while TC4ATS-Cd elicited no significant cytotoxicity (IC50 > 947 μM). However, a number of T-cell leukemia cell lines exhibited marked sensitivity to TC4ATS-Cd. In Jurkat cells, toxicity of TC4ATS-Cd occurred with an IC50 of 6.9 μM, which is comparable to that of 6.5 μM observed for cadmium alone. TC4ATS-Cd induced apoptotic cell death through activation of caspase-3 in Jurkat cells. In a xenograft model, TC4ATS-Cd (13 mg/kg) treatment significantly suppressed the tumor growth of Jurkat cells in mice. In addition, TC4ATS-Cd-treated mice exhibited significantly less cadmium accumulation in liver and kidney compared to equimolar cadmium-treated mice. These results suggest that cadmium-coordinated supramolecules may have therapeutic potential for treatment of T-cell leukemia. PMID:25735932

  17. Modulation of exogenous selenium in cadmium-induced changes in antioxidative metabolism, cadmium uptake, and photosynthetic performance in the 2 tobacco genotypes differing in cadmium tolerance.

    PubMed

    Liu, Wenxing; Shang, Shenghua; Feng, Xue; Zhang, Guoping; Wu, Feibo

    2015-01-01

    Hydroponic experiments were conducted using cadmium (Cd)-sensitive (cv Guiyan 1) and Cd-tolerant (Yunyan 2) tobacco cultivars to evaluate cultivar differences in response to Cd toxicity in the presence of selenium (Se). The results showed that addition of 3 µM Se in 50 µM Cd solution markedly reduced Cd accumulation in plants, alleviated Cd-induced growth inhibition, and increased nitrogen and chlorophyll contents as well as photosynthetic performance (i.e., net photosynthetic rate, stomatal conductance, and transpiration rate). External Se dramatically depressed Cd-induced O2 (•-) , H2 O2 , and malondialdehyde accumulation, especially in the sensitive cultivar. Selenium significantly elevated Cd-depressed activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione-peroxidase, and glutathione reductase in the both cultivars after 7-d treatments. Meanwhile, Se counteracted Cd-induced alterations in certain nutrient elements; for example, it significantly increased Zn and Ca concentrations and reduced Mg concentration in both cultivars. Furthermore, Se significantly elevated Cd-depressed H(+) -K(+) -adenosine triphosphatase (ATPase), Na(+) -K(+) -ATPase, and Ca(2+) -Mg(2+) -ATPase activities. The beneficial effect of Se under Cd stress may be related mainly to the increased ATPase activity and reduced Cd uptake and reactive oxygen species accumulation, thus reducing the negative consequences of oxidative stress caused by Cd toxicity. PMID:25263007

  18. Sequence of exposure to cadmium and arsenic determines the extent of toxic effects in male Fischer rats.

    PubMed

    Hochadel, J F; Waalkes, M P

    1997-01-15

    Arsenic and cadmium are both priority hazardous substances and human carcinogens. Although there is the potential for simultaneous exposure to both metals, the interactions of cadmium and arsenic are not well defined. We examined the toxicity of these metals when given alone or in alternating sequence to adult male Fischer rats. In the first study, a non-toxic dose of arsenic (22.5 micromol NaAsO2/kg, s.c.) was given 24 h before cadmium (10, 20, or 30 micromol CdCl2/kg, s.c.) and toxicity was assessed 24 h later. Arsenic pretreatment markedly reduced mortality in rats given the high dose of cadmium (9 survivors/10 treated) compared to rats given cadmium alone (2/10). Arsenic pretreatment also reduced cadmium-induced hepatotoxicity, as indicated by serum glutamic oxalacetic transaminase (SGOT) activity, and markedly reduced cadmium-induced testicular hemorrhagic necrosis. Arsenic pretreatment produced an 8-fold increase in hepatic levels of metallothionein (MT), a metal-binding protein often associated with cadmium tolerance. In the second study, a non-toxic dose of cadmium (3 micromol CdCl2/kg, s.c.) was given 24 h before arsenic (68, 79, 84, or 90 micro/mol NaAsO2/kg. s.c.) and toxicity was assessed 24 h later. Cadmium pretreatment did not alter the lethality of the high dose of arsenic and had no effect on arsenic-induced hepatotoxicity. Although cadmium pretreatment had no effect on arsenic toxicity, it produced large increases in hepatic MT (26-fold) before the arsenic challenge and greatly enhanced MT induction after the challenge. Thus, even though both arsenic and cadmium induce MT synthesis, only arsenic pretreatment protects against cadmium intoxication, and cadmium pretreatment does not effect arsenic toxicity. Thus, toxic interactions of arsenic and cadmium appear to depend on the sequence of exposure. PMID:9020510

  19. Direct effect of cadmium on blood pressure and adrenergic system in the cat

    SciTech Connect

    Revis, N.W.; Bingham, G.

    1984-01-01

    The dose-response effect of cadmium on systolic and diastolic pressure were measured in the cat after injecting a bolus of cadmium intravenously. In animals treated with 100, 125, or 150 ug cadmium/kg BW systolic and diastolic pressure were both significantly increased. These increases were gradual as the dose Cd was increased from 75 to 125 ug. In an attempt to determine the mechanism associated with cadmium-induced hypertension in the cat the effect of this element on the adrenergic system was studied. The effect of ..cap alpha.. and BETA agonists on cadmium-induced increase in blood pressure were determined by the injection of either propranolol or phentolamine at 20 mg/kg BW. The hypertensive effect of 125 ug Cd was abolished by phentolamine but not by propranolol suggesting, that Cd may induce the release of norepinephrine from storage sites. In support of this suggestion we observed in cats treated with 125 ug Cd a significant increase in plasma norepinephrine which was not affected by propranolol or phentolamine injections. However reserpine pretreatment abolished both the increase in plasma norepinephrine and the cadmium-induced hypertensive effect. The data suggest that the associated mechanism of cadmium-induced hypertension may be related to the effect of this element of the release of norepinephrine. Increases in the extracellular levels of this neurotransmitter in turn provokes a rise in blood pressure through its interaction with the receptors of vascular smooth muscle cells. 38 references, 7 figures, 1 table.

  20. Effective Phytoextraction of Cadmium (Cd) with Increasing Concentration of Total Phenolics and Free Proline in Cannabis sativa (L) Plant Under Various Treatments of Fertilizers, Plant Growth Regulators and Sodium Salt.

    PubMed

    Ahmad, Ayaz; Hadi, Fazal; Ali, Nasir

    2015-01-01

    The comparative effect of fertilizers (NPK), plant growth regulators (GA3, IAA, Zeatin) and sodium chloride (NaCl) on Cd phytoaccumulation, proline and phenolics production in Cannabis sativa was evaluated. Proline and phenolices were correlated with Cd contents in plant. Cd significantly reduced the plant growth. Fertilizers application (in combination) most significantly increased the growth (19 cm root and 47 cm shoot) on Cd contaminated soil. All treatments increased the Cd contents in plant tissues. This increase was highly significant in fertilizers treated plants (1101, 121 and 544 ppm in roots, stem and leaves respectively). Significantly positive correlation was found between Cd concentration and dry biomass of root (R2=0.7511) and leaves (R2=0.5524). All treatments significantly increased the proline and total phenolics and maximum was recorded in NaCl treated plants followed by fertilizers. Proline was higher in roots while phenolics in leaves. The correlation between proline and phenolics was positive in leaf (R2=0.8439) and root (R2=