Science.gov

Sample records for ag cd hg

  1. Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P.

    PubMed

    Sasakura, C; Suzuki, K T

    1998-09-01

    The interaction between transition metals (Ag+, Cd2+ and Hg2+) and selenium (Se) in the bloodstream was studied in vitro by means of the HPLC--inductively coupled argon plasma-mass spectrometry (ICP MS) method. Transition metal ions and selenide (produced in vitro from selenite in the presence of glutathione) or sulfide (Na2S) formed a (metal-Se/S) complex, which then bound to a plasma protein, selenoprotein P (Sel P), to form a ternary complex, (metal-Se/S)-Sel P. The molar ratios of metals to Se were 1:1 for Hg/Se and Cd/Se, but either 1:1 or 2:1 for Ag/Se, depending on the ratio of their doses. The results indicate that the interaction between transition metals and Se occurs through the general mechanism, i.e., transition metal ions and selenide form the unit complex (metal-Se)n, and then the complex binds to selenoprotein P to form the ternary complex ¿(metal-Se)n¿m--seleno-protein P in the bloodstream.

  2. Particulate contacts to Si and CdTe: Al, Ag, Hg-Cu-Te, and Sb-Te

    NASA Astrophysics Data System (ADS)

    Schulz, Douglas L.; Ribelin, Rosine; Curtis, Calvin J.; Ginley, David S.

    1999-03-01

    Our team has been investigating the use of particle-based contacts in both Si and CdTe solar cell technologies. First, in the area of contacts to Si, powders of Al and Ag prepared by an electroexplosion process have been characterized by transmission electron microscopy (TEM), TEM elemental determination X-ray spectroscopy (TEM-EDS), and TEM electron diffraction (TEM-ED). These Al and Ag particles were slurried and tested as contacts to p- and n-type silicon wafers, respectively. Linear current-voltage (I-V) was observed for Ag on n-type Si, indicative of an ohmic contact, whereas the Al on p-type Si sample was non-ideal. A wet-chemical surface treatment was performed on one Al sample and TEM-EDS indicated a substantial decrease in the O contaminant level. The treated Al on p-type Si films exhibited linear I-V after annealing. Second, in the area of contacts to CdTe, particles of Hg-Cu-Te and Sb-Te have been applied as contacts to CdTe/CdS/SnO2 heterostructures prepared by the standard NREL protocol. First, Hg-Cu-Te and Sb-Te were prepared by a metathesis reaction. After CdCl2 treatment and NP etch of the CdTe layer, particle contacts were applied. The Hg-Cu-Te contacted cells exhibited good electrical characteristics, with Voc>810 mV and efficiencies > 11.5% for most cells. Although Voc>800 mV were observed for the Sb-Te contacted cells, efficiencies in these devices were limited to 9.1% presumably by a large series resistance (>20 Ω) observed in all samples.

  3. Metal Cyanide Ions Mx(CN)y]+,- in the gas phase: M = Fe, Co, Ni, Zn, Cd, Hg, Fe + Ag, Co + Ag.

    PubMed

    Dance, Ian G; Dean, Philip A W; Fisher, Keith J; Harris, Hugh H

    2002-07-01

    The generation of metal cyanide ions in the gas phase by laser ablation of M(CN)(2) (M = Co, Ni, Zn, Cd, Hg), Fe(III)[Fe(III)(CN)(6)] x xH(2)O, Ag(3)[M(CN)(6)] (M = Fe, Co), and Ag(2)[Fe(CN)(5)(NO)] has been investigated using Fourier transform ion cyclotron resonance mass spectrometry. Irradiation of Zn(CN)(2) and Cd(CN)(2) produced extensive series of anions, [Zn(n)(CN)(2n+1)](-) (1 < or = n < or = 27) and [Cd(n)(CN)(2n+1)](-) (n = 1, 2, 8-27, and possibly 29, 30). Cations Hg(CN)(+) and [Hg(2)(CN)(x)](+) (x = 1-3), and anions [Hg(CN)(x)](-) (x = 2, 3), are produced from Hg(CN)(2). Irradiation of Fe(III)[Fe(III)(CN)(6)] x xH(2)O gives the anions [Fe(CN)(2)](-), [Fe(CN)(3)](-), [Fe(2)(CN)(3)](-), [Fe(2)(CN)(4)](-), and [Fe(2)(CN)(5)](-). When Ag(3)[Fe(CN)(6)] is ablated, [AgFe(CN)(4)](-) and [Ag(2)Fe(CN)(5)](-) are observed together with homoleptic anions of Fe and Ag. The additional heterometallic complexes [AgFe(2)(CN)(6)](-), [AgFe(3)(CN)(8)](-), [Ag(2)Fe(2)(CN)(7)](-), and [Ag(3)Fe(CN)(6)](-) are observed on ablation of Ag(2)[Fe(CN)(5)(NO)]. Homoleptic anions [Co(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n+2)](-) (n = 1-3), [Co(2)(CN)(4)](-), and [Co(3)(CN)(5)](-) are formed when anhydrous Co(CN)(2) is the target. Ablation of Ag(3)[Co(CN)(6)] yields cations [Ag(n)(CN)(n-1)](+) (n = 1-4) and [Ag(n)Co(CN)(n)](+) (n = 1, 2) and anions [Ag(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n-1)](-) (n = 1, 2), [Ag(n)Co(CN)(n+2)](-) (n = 1, 2), and [Ag(n)Co(CN)(n+3)](-) (n = 0-2). The Ni(I) species [Ni(n)(CN)(n-1)](+) (n = 1-4) and [Ni(n)(CN)(n+1)](-) (n = 1-3) are produced when anhydrous Ni(CN)(2) is irradiated. In all cases, CN(-) and polyatomic carbon nitride ions C(x)N(y)(-) are formed concurrently. On the basis of density functional calculations, probable structures are proposed for most of the newly observed species. General structural features are low coordination numbers, regular trigonal coordination stereochemistry for d(10) metals but distorted trigonal stereochemistry

  4. Studies on the fabrication of Ag/Hg1Ba2Ca1Cu2O6+dgr/CdSe heterostructures using the pulse electrodeposition technique

    NASA Astrophysics Data System (ADS)

    Shivagan, D. D.; Shirage, P. M.; Pawar, S. H.

    2004-03-01

    Metal/superconductor/semiconductor (Ag/Hg1Ba2Ca1Cu2O6+dgr (Hg-1212)/CdSe) heterostructures have been successfully fabricated using the pulse electrodeposition technique. The electrochemical parameters are optimized and diffusion free growth of CdSe on to Ag/Hg-1212 was obtained by employing underpotential deposition and by studying nucleation and growth mechanism during deposition. The heterostructures are characterized by x-ray diffraction, scanning electron microscopy studies and low-temperature four-probe electrical resistivity measurements. After the deposition of CdSe, the critical transition temperature of Hg-1212 films was found to be increased from 115 K with Jc (77 K) = 1.7 × 103 A cm-2 to 117.2 K with Jc (77 K) = 1.91 × 103 A cm-2. Tc and Jc (77 K) values were 120.3 K and 3.7 × 103 A cm-2, respectively, when the heterostructure was irradiated with red He-Ne laser. The improvements in superconducting properties of Hg-1212 in Ag/Hg-1212/CdSe heterostructures have been explained at length in this paper.

  5. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions.

    PubMed

    Nowicka, Beatrycze; Pluciński, Bartosz; Kuczyńska, Paulina; Kruk, Jerzy

    2016-08-01

    Acclimation to heavy metal-induced stress is a complex phenomenon. Among the mechanisms of heavy metal toxicity, an important one is the ability to induce oxidative stress, so that the antioxidant response is crucial for providing tolerance to heavy metal ions. The effect of chronic stress induced by ions of five heavy metals, Ag, Cu, Cr (redox-active metals) Cd, Hg (nonredox-active metals) on the green microalga Chlamydomonas reinhardtii was examined at two levels - the biochemical (content of photosynthetic pigments and prenyllipid antioxidants, lipid peroxidation) and the physiological (growth rate, photosynthesis and respiration rates, induction of nonphotochemical quenching of chlorophyll fluorescence). The expression of the genes which encode the enzymes participating in the detoxification of reactive oxygen species (APX1, CAT1, FSD1, MSD1) was measured. The other gene measured was one required for plastoquinone and α-tocopherol biosynthesis (VTE3). The application of heavy metal ions partly inhibited growth and biosynthesis of chlorophyll. The growth inhibition was accompanied by enhanced lipid peroxidation. An increase in the content of prenyllipid antioxidants was observed in cultures exposed to Cr2O7(2-), Cd(2+) (α- and γ-tocopherol and plastoquinone) and Cu(2+) (only tocopherols). The induction of nonphotochemical quenching was enhanced in cultures exposed to Cu(2+), Cr2O7(2-) and Cd(2+), as compared to the control. Chronic heavy metal-induced stress led to changes in gene expression dependent on the type and concentration of heavy metal ions. The up-regulation of antioxidant enzymes was usually accompanied by the up-regulation of the VTE3 gene.

  6. Ion conduction in the Ag{sub 2}HgI{sub 4}-Cu{sub 2}HgI{sub 4} systems doped with Cd{sup 2+}, K{sup +}, and Na{sup +}

    SciTech Connect

    Nair, S.M.; Yahya, A.I.; Ahmad, A.

    1996-03-01

    Ion conductivities of face centered cubic Ag{sub 2}HgI{sub 4}-Cu{sub 2}HgI{sub 4} systems doped with Cd{sup 2+}, K{sup +}, and Na{sup +} were measured. In 67 mol% Ag{sub 2}HgI{sub 4} solid solution doped with Cd{sup 2+} ions, the phase transition occurs at a lower temperature than in the parent compounds and the system shows higher conductivity. The increase in conductivity is discussed in terms of vacancies produced. K{sup +} doped Ag{sub 2}HgI{sub 4} exhibits higher conductivity prior to the phase transition, which is attributed to lattice loosening. A decrease in conductivity is observed above 140{degrees}C. This is interpreted in terms of anion framework collapse. Na{sup +} doped Ag{sub 2}HgI{sub 4} shows high conductivity for the high temperature phase because of the small size of Na{sup +} ions. The activation energy for ionic motion for all the samples is calculated from the graph of log({delta}T) versus 1/T.

  7. Photocatalytic removal of M(2+) (Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Ag(+)) over new catalyst CuCrO(2).

    PubMed

    Ketir, W; Bouguelia, A; Trari, M

    2008-10-30

    The metal ions M(2+) (Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Ag(+)) are potentially toxic. Their electro deposition has been carried out in aqueous air-equilibrated CuCrO(2) suspension upon visible illumination. The delafossite CuCrO(2) is p-type semiconductor characterized by a low band gap (1.28 eV) and a long-term chemical stability. The corrosion rate is found to be 10(-2) micromol m(-2)month(-1) in aqua regia. The oxide has been elaborated through nitrate route where the specific surface area is increased via the surface/bulk ratio. A correlation exists between the dark M(2+) adsorption, the redox potential of M(2+/0) couple and the conduction band of CuCrO(2) positioned at -1.06 V(SCE). Ag(+) cannot be photoreduced because of its positive potential located far above the valence band. By contrast, Zn(2+) is efficiently deposited due to the large driving force at the interface. The improved photoactivity of copper with a deposition percentage (90%) is attributed to the strong dark adsorption onto the surface catalyst. The results indicate a competitive effect with the water reduction; it has been observed that the M(2+) deposition goes parallel with the hydrogen evolution. Such behavior is attributed to the low H(2) over voltage when ultra fine aggregate of M islands are photodeposited onto CuCrO(2) substrate.

  8. Contact Formation (Hg, CD)Te

    DTIC Science & Technology

    1989-12-01

    AD-A21 7 088 0 a CONTACT FORMATION ON (HG, CD )TE FINAL REPORT W.A. BECK AND G.D. DAVIS V C ELECTE , I DECEMBER 1989 JAN22 1990 U.S. ARMY RESEARCH...27709-2211 I N I 11. TITLE (Include Security Clasification) Contact Formation on (Hg, CD )Te (u) 12. PERSONAL AUTHOR(S) W.A. Beck and G.D. Davis 13a...whereas the 1/f noise of the Au contacts originated at th i/" Cd )Te interface or in the underlying (Hg, Cd )Te, the 1/f noise of the Al contacts orig.L

  9. Syntheses, crystal structures and fluorescent properties of Cd(II), Hg(II) and Ag(I) coordination polymers constructed from 1H-1,2,4-triazole-1-acetic acid

    SciTech Connect

    Ding Degang; Xie Lixia; Fan Yaoting; Hou Hongwei; Xu Yan

    2009-06-15

    Three new d{sup 10} coordination polymers, namely [Cd(taa)Cl]{sub n}1, [Hg(taa)Cl]{sub n}2, and [Ag{sub 1.5}(taa)(NO{sub 3}){sub 0.5}]{sub n}3 (taa=1H-1,2,4-triazole-1-acatate anion) have been prepared and characterized by elemental analysis, IR, and single crystal X-ray diffraction. Compound 1 consists of two-dimensional layers constructed by carboxyl-linked helical chains, which are further linked through carboxyl group to generate a unique 3D open framework. Topological analysis reveals that the structure of 1 can be classified as an unprecedented (3,8)-connected network with the Schlaefli symbol (4.5{sup 2}){sub 2}(4{sup 2}.5{sup 8}.6{sup 14}.7{sup 3}.8). Compound 2 manifests a doubly interpenetrated decorated alpha-polonium cubic network with the Schlaefli symbol of (4{sup 10}.6{sup 2}.8{sup 3}). Compound 3 consists of 2D puckered layers made up of Ag centers and taa{sup -} bridges. In addition, all of these compounds are photoluminescent in the solid state with spectra that closely resemble those of the ligand precursor. - Graphical abstract: Three new compounds based on 1H-1,2,4-triazole-1-acetic acid and Cd(II), Hg(II) and Ag(I) salts display luminescent properties and may be potential candidates for luminescent materials.

  10. HgCdTe barrier infrared detectors

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Rogalski, A.

    2016-05-01

    In the last decade, new strategies to achieve high-operating temperature (HOT) detectors have been proposed, including barrier structures such as nBn devices, unipolar barrier photodiodes, and multistage (cascade) infrared detectors. The ability to tune the positions of the conduction and valence band edges independently in a broken-gap type-II superlattices is especially helpful in the design of unipolar barriers. This idea has been also implemented in HgCdTe ternary material system. However, the implementation of this detector structure in HgCdTe material system is not straightforward due to the existence of a valence band discontinuity (barrier) at the absorber-barrier interface. In this paper we present status of HgCdTe barrier detectors with emphasis on technological progress in fabrication of MOCVD-grown HgCdTe barrier detectors achieved recently at the Institute of Applied Physics, Military University of Technology. Their performance is comparable with state-of-the-art of HgCdTe photodiodes. From the perspective of device fabrication their important technological advantage results from less stringent surface passivation requirements and tolerance to threading dislocations.

  11. HgCdTe hybrid focal plane

    NASA Astrophysics Data System (ADS)

    Rode, J. P.

    1984-09-01

    Second-generation IR systems, consisting of 2-D mosaics of IR detectors, have been under intense development for the last few years. One of the most successful architectures has been a HgCdTe hybrid focal plane array (FPA), using a Si charge-coupled device (CCD) readout chip interfaced to epitaxial HgCdTe. Detection is made by backside-illuminated photovoltaic detectors with high fill factors and quantum efficiency. The detectors are coupled into the CCD by In bumps which mass bond each detector in the mosaic to a CCD input. Advances have been made in uniform, large area HgCdTe detector material that can be grown with a bandgap from less than 0.1 eV to greater than 1 eV. CCD architectures have been developed with simple, linear inputs and dynamic ranges up to 80 dB. Hybrid FPAs are currently being tested in prototype imaging systems, for detecting thermal differences as well as reflected sunlight in the IR. In the 3-5μm region, these arrays have proven capable of noise-equivalent temperature differences as low as 0.01 K, acquired at a 400 Hz frame rate. In addition to improving current imaging systems, these area arrays allow new system concepts to be brought to fruition.

  12. Syntheses, crystal structures and fluorescent properties of Cd(II), Hg(II) and Ag(I) coordination polymers constructed from 1H-1,2,4-triazole-1-acetic acid

    NASA Astrophysics Data System (ADS)

    Ding, De-Gang; Xie, Li-Xia; Fan, Yao-Ting; Hou, Hong-Wei; Xu, Yan

    2009-06-01

    Three new d10 coordination polymers, namely [Cd(taa)Cl] n1, [Hg(taa)Cl] n2, and [Ag 1.5(taa)(NO 3) 0.5] n3 (taa=1H-1,2,4-triazole-1-acatate anion) have been prepared and characterized by elemental analysis, IR, and single crystal X-ray diffraction. Compound 1 consists of two-dimensional layers constructed by carboxyl-linked helical chains, which are further linked through carboxyl group to generate a unique 3D open framework. Topological analysis reveals that the structure of 1 can be classified as an unprecedented (3,8)-connected network with the Schläfli symbol (4.5 2) 2(4 2.5 8.6 14.7 3.8). Compound 2 manifests a doubly interpenetrated decorated α-polonium cubic network with the Schläfli symbol of (4 10.6 2.8 3). Compound 3 consists of 2D puckered layers made up of Ag centers and taa - bridges. In addition, all of these compounds are photoluminescent in the solid state with spectra that closely resemble those of the ligand precursor.

  13. Status of LWIR HgCdTe infrared detector technology

    NASA Technical Reports Server (NTRS)

    Reine, M. B.

    1990-01-01

    The performance requirements that today's advanced Long Wavelength Infrared (LWIR) focal plane arrays place on the HgCdTe photovoltaic detector array are summarized. The theoretical performance limits for intrinsic LWIR HgCdTe detectors are reviewed as functions of cutoff wavelength and operating temperature. The status of LWIR HgCdTe photovoltaic detectors is reviewed and compared to the focal plane array (FPA) requirements and to the theoretical limits. Emphasis is placed on recent data for two-layer HgCdTe PLE heterojunction photodiodes grown at Loral with cutoff wavelengths ranging between 10 and 19 microns at temperatures of 70 to 80 K. Development trends in LWIR HgCdTe detector technology are outlined, and conclusions are drawn about the ability for photovoltaic HgCdTe detector arrays to satisfy a wide variety of advanced FPA array applications.

  14. Modeling Mercury Cadmium Telluride (HgCdTe) Photodiodes

    DTIC Science & Technology

    2009-11-01

    and Electron Devices Directorate, ARL and Dragica Vasileska Arizona State University, Tempe AZ 85287-5706...coefficient of Hg1–xCdxTe as a function of composition x (4). ......3 Figure 3. Comparison of the bandgap vs. lattice constant variation with alloy...proceeded deliberately and steadily for four decades in spite of the high vapor pressure of Hg at the melting point of HgCdTe and the known toxicity

  15. Lifetime Measurement of HgCdTe Semiconductor Material

    DTIC Science & Technology

    2012-03-01

    measurement of minority carrier lifetime using the photoconductive decay method. This experiment was conducted to analyze the minority carrier lifetime of...lifetime, photoconductive decay. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 18 19a. NAME OF...the photoconductive decay method was used. To measure the lifetime of the HgCdTe samples using the photoconductive decay method, samples of HgCdTe

  16. Transient and diffusion analysis of HgCdTe

    NASA Technical Reports Server (NTRS)

    Clayton, J. C.

    1982-01-01

    Solute redistribution during directional solidification of HgCdTe is addressed. Both one-dimensional and two-dimensional models for solute redistribution are treated and model results compared to experiment. The central problem studied is the cause of radial inhomogeneities found in directionally solidified HgCdTe. A large scale gravity-driven interface instability, termed shape instability, is postulated to be the cause of radial inhomogeneities. Recommendations for future work, along with appropriate computer programs, are included.

  17. MBE Growth, Characterization and Electronic Device Processing of HgCdTe, HgZnTe, Related Heterojunctions and HgCdTe-CdTe Superlattices

    DTIC Science & Technology

    1987-12-31

    and 3. T. NI. Wotherspoon. J. Phys. D 12, LI 117 (1979). ( 100) orientation, whereas p-type Hg, - Cd.Te layers are T~ P. Faune . J1. Reno, S...parameters are well con- ’J. P. Faune and A. Million. ]. Cryst. Growth 54. 582 (198 1) trolled, the quality of Hg1 - Cd.Te grown in both the ’J. P... Faune and A. Million. AppI. Phys. Lett- 41, 264 (1982). ( Ill ) B and the ( 100) orientations is comparable, thus giv- J P. Faurie. S. Sivananthan. NI

  18. HgCdTe Fabrication Using Directed Energy Techniques

    DTIC Science & Technology

    1982-04-01

    HgCdTE Pulsed electron beam processing Mercury Cadmium Teluride Hot wall epitaxy CdTe Heteroepitaxyj Cadmium Teluride Thin Films 20. ABSTRACT...control. Existing CdTe films show extensive twinning and poor surface morphology. Improvements are expected with a shift to sapphire substrates and the...Sample size is currently 0.5 inch square. These films were not twinned and had better surface morphology than the joriginal CdTe substrates. Good

  19. Nonmonotonic Evolution and Thermodynamic Trends at Metal/(Hg,Cd)Te Interfaces: Yb/Hg0.78Cd0.22Te.

    DTIC Science & Technology

    1987-10-23

    AND M. UNCLRSSIFIED D J PETERMAN ET AL, 23 OCT 87 TR-14 F/ O 20/12 NL MEOMOEE, 16 II1.25~ - II4 -. ii?1 FILE coF~ NONMONOTONIC EVOLUTION AND...of metal/(Hg,Cd)Te interface formation. For ex- ample, in studies of Ag,1 Cr , 2 𔃽 and Sm, we observed that the rate of surface-Cd depletion with...photoemission from thick, freshly-evaporated Cr films. Interface evolution with metal coverage was studied by analyzing EDCs of the valence band, and

  20. Molecular Beam Epitaxial Growth, Characterization and Electronic Device Processing of HgCdTe, HgZnTe, Related Heterojunctions and HgCdTe-CdTe Superlattices

    DTIC Science & Technology

    1989-11-13

    xI011 40 41 24.4 5 0. 1 0 C1" 166 2.7 x 1016 8.3X 101* 1.5 ... ... 36 27.6 3 3, 10 N. Vde . TomiaL A, VNL , Me. L MAN IM 313 b3oultercthe ofal...growth by molecular beam epitaxy of twin-free CdTe(111)B and HgCdTe(111)B epitaxial layers. HgCdTe( 1 11)B twin-free layers exhibit very different...OCT. 1 , 1987 - SEPT. 30, 1989 DARPA CONTRACT MONITORED BY AFOSR #F49620-87-C-0021 Acesion For 77 FINAL REPORT ?JI R& )TIC TAB J :-"tiicatiuf, 1 Jean

  1. Dislocation reduction in HgCdTe grown on CdTe/Si

    NASA Astrophysics Data System (ADS)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Bulk-grown CdZnTe (Zn = 3%) substrates are the natural choice for HgCdTe epitaxy since it is lattice matched to long wave LW-HgCdTe alloy. However, lack of large area CdZnTe substrates, high production costs, and more importantly, the difference in thermal expansion coefficients between CdZnTe and silicon Read out Integrated Circuits (ROIC) are some of the inherent drawbacks of CdZnTe substrates. Consequently, Hg1-xCdxTe detectors fabricated on silicon substrates are an attractive alternative. Recent developments in the molecular beam epitaxy (MBE) buffer layer growth technology on Si substrates has revolutionized the HgCdTe research and offered a new dimension to HgCdTe-based IR technology. Si substrates provide advantages in terms of relatively large area (3 to 6-inch diameter is easily obtained) compared to CZT substrate materials, durability during processing, and reliability to thermal cycling. Innovations in Si-based composite substrates made it possible to fabricate very large-format IR arrays that offer higher resolution, low-cost arrays and more dies per wafer. Between Si substrates and HgCdTe has large lattice mismatch of 19%. This leads to dislocation densities of low-107 cm-2 for optimal growth of HgCdTe on silicon-based substrates as compared to the mid-104 cm-2 dislocation density of HgCdTe grown on CdZnTe. This paper present dislocation reduction by two orders of magnitude using thermal cycle anneal under Hg environment on HgCdTe grown on Si substrates and as well as defect reduction in Cd(Se)Te buffer layers grown on Si Substrates.

  2. Crystal Growth of Solid Solution HgCdTe Alloys

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.

    1997-01-01

    The growth of homogenous crystals of HgCdTe alloys is complicated by the large separation between their liquidus and solidus temperatures. Hg(1-x)Cd(x)Te is representative of several alloys which have electrical and optical properties that can be compositionally tuned for a number of applications. Limitations imposed by gravity during growth and results from growth under reduced conditions are described. The importance of residual accelerations was demonstrated by dramatic differences in compositional distribution observed for different attitudes of the space shuttle that resulted in different steady acceleration components.

  3. MBE of (Hg,Cd)Te

    DTIC Science & Technology

    1988-10-01

    TERMS (Contin/ue on reverse if necessary and identify by block number) I IELD IGROUP SUB-GROUP £~iimA~A*~w 1 05 caltlcvi qeIv~~ 12 t]T/40 OSTRACT...Continue on reverse if necessary and identify by block number) Te work sponsored under this contract has centered on the molecular beam epitaxial growth...layhwdfg wth off CdTmbSb undeconvedal Mi gwth codidons is ou nindisulikey conul at wmly anlqwoaf n2Te3 mdemmtalSb. While these stomae sonest that the

  4. Raman spectroscopic investigations of Hg-Cd-Te melts

    NASA Technical Reports Server (NTRS)

    Morrobel-Sosa, Anny

    1987-01-01

    Raman scattering measurements are reported for a series of Hg sub1-xCd subxTe (with x less than or =0.2) materials from 295 K (room temperature) to 1126K (up to and above their liquidus temperatures), and for Hg sub1-xCd subxTe (x=0.3) at 285K. The samples were contained in high-temperature optically-flat fused silica cell. Variable temperature measurements were effected in a three-zone, high-temperature furnace equipped with optical windows, and monitored externally by three independently programmable temperature controllers. All studies were made in the backscattering geometry using the 5145 A line of an Ar+ ion laser, with incident power less than 250 mW, as the excitiation source. An intensity enhancement is observed for a mode in each of the compositions studied. The frequency of this mode varies with composition, 142/cm for HgTe, and 128/cm for both the Hg sub1-xCd subxTe (x=0.053 and 0.204) samples. In addition, a shift to lower frequency as a function of temperature is observed in all samples. This shift is most prominent for the x=0.053 sample. The temperature dependence of these modes as the liquidus temperatures are achieved and surpassed for these samples is presented as being associated with a structural transition in the Hg-rich compositions of the Hg sub1-xCd subxTe series. To our knowledge, this is the first reported study of Raman scattering by phonons in the melts of these materials.

  5. Photocatalytic oxidation removal of Hg0 using ternary Ag/AgI-Ag2CO3 hybrids in wet scrubbing process under fluorescent light

    NASA Astrophysics Data System (ADS)

    Zhang, Anchao; Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao; Xiang, Jun

    2017-01-01

    A series of ternary Ag/AgI-Ag2CO3 photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg0 removal in a wet scrubbing reactor. The hybrids were characterized by N2 adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg0 removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg0 removal. NO exhibited significant effect on Hg0 removal in comparison to SO2. Among these ternary Ag/AgI-Ag2CO3 hybrids, Ag/AgI(0.1)-Ag2CO3 showed the highest Hg0 removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag2CO3 and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag0 NPs). The trapping studies of reactive radicals showed that the superoxide radicals (rad O2-) may play a key role in Hg0 removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg0 removal over Ag/AgI(0.1)-Ag2CO3 hybrid under fluorescent light was proposed.

  6. Dislocation Reduction of HgCdTe/Si Through Ex Situ Annealing

    DTIC Science & Technology

    2016-06-07

    REPORT Dislocation Reduction of HgCdTe/Si Through Ex Situ Annealing 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Current growth methods of HgCdTe/Cd(Se...Z39.18 - Dislocation Reduction of HgCdTe/Si Through Ex Situ Annealing Report Title ABSTRACT Current growth methods of HgCdTe/Cd(Se)Te/Si by molecular... growth methods of HgCdTe/Cd(Se)Te/Si by molecular-beam epitaxy (MBE) result in a dislocation density of mid 106 cm2 to low 107 cm2. Although the exact

  7. Monolithically integrated HgCdTe focal plane arrays

    NASA Astrophysics Data System (ADS)

    Velicu, Silviu; Lee, Tae-Seok; Ashokan, Renganathan; Grein, Christoph H.; Boieriu, Paul; Chen, Y. P.; Dinan, John H.; Lianos, Dimitrios

    2003-12-01

    The cost and performance of hybrid HgCdTe infrared focal plane arrays are constrained by the necessity of fabricating the detector arrays on a CdZnTe substrate. These substrates are expensive, fragile, are available only in small rectangular formats, and are not a good thermal expansion match to the silicon readout integrated circuit. We discuss in this paper an infrared sensor technology based on monolithically integrated infrared focal plane arrays that could replace the conventional hybrid focal plane array technology. We have investigated the critical issues related to the growth of HgCdTe on Si read-out integrated circuits and the fabrication of monolithic focal plane arrays: (1) the design of Si read-out integrated circuits and focal plane array layouts, (2) the low temperature cleaning of Si(001) wafers, (3) growth of CdTe and HgCdTe layers on read-out integrated circuits, (4) array fabrication, interconnection between focal plane array and read-out integrated circuit input nodes and demonstration of the photovoltaic operation, and (5) maintenance of the read-out integrated circuit characteristics after substrate cleaning, molecular beam epitaxy growth and device fabrication. Crystallographic, optical and electrical properties of the grown layers are presented. Electrical properties for diodes fabricated on misoriented Si and read-out integrated circuit substrates are discussed. The fabrication of arrays with demonstrated I-V properties show that monolithic integration of HgCdTe-based infrared focal plane arrays on Si read-out integrated circuits is feasible and could be implemented in the 3rd generation of infrared systems.

  8. Growth, properties and applications of HgCdTe

    NASA Astrophysics Data System (ADS)

    Schmit, J. L.

    1983-12-01

    This paper provides primarily a review of the methods used to grow HgCdTe with a summary of some of its basic properties and applications. Methods of crystal growth fall generally into three classes: growth from the melt, from solution and from the vapor phase. All three methods have been and are being used to grow HgCdTe. The high vapor pressure of HgCdTe at the melting point, combined with a large segregation coefficient, have effectively limited the use of Czochralski or zone melting techniques, but two melt growth techniques have survived: (1) a variation of Bridgman growth called quench-anneal wherein a dendritic crystal is formed by quenching the melt and is homogenized by solid state recrystallization below the melting point, (2) a variation of freezing from a large volume called slush-growth wherein a melt is held in a temperature gradient for several weeks while a crystal grows. Growth from solution has taken the form of liquid phase epitaxy (LPE) on CdTe with the LPE systems including growth from Hg-rich, HgTe-rich and Te-rich solutions and using tipping, vertical dipping, vertical sliding and horizontal sliding. Vapor phase growth is very promising but is not yet in production. Techniques include growth by isothermal close spaced epitaxy in which HgTe is transported isothermally by chemical potential onto CdTe, molecular beam epitaxy (MBE) in which elements are evaporated in a high vacuum, and metal organic chemical vapor deposition (MOCVD) in which some of the metal atoms are carried to the substrate bound to organic radicals before being freed by pyrolysis. In all these methods, control of Hg pressure is a major concern. The fundamental properties discussed briefly are those of prime interest to detector manufacturers: energy gap ( Eg), intrinsic carrier concentration ( ni), and electrical activity of dopants. A reasonable fit to the Eg data from ˜ 20 papers is given by Eg = -0.302+1.93x+5.35×10 -4T(1-2x)-0.810x 2+0.832x 3. This gap, combined with k

  9. Liquidus temperatures of Hg-rich Hg-Cd-Te alloys

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Lehoczky, S. L.

    1983-01-01

    Measurements are made of the liquidus temperatures for ten (Hg/1-x/Cd)Te/1-y/ compositions in which x ranges from 0.091 to 0.401 and y ranges from 0.544 to 0.952. It is found that for metal-rich melts with the same x value, the liquidus temperature increases with y when y is in the range 0.5-0.7. This behavior is explained by the higher degree of association between Cd and Te than between Hg and Te in the melts. It is noted that recent calculated values of the liquidus isotherms by Tung et al. (1982) are in fair to good agreement with the experimental results obtained here.

  10. Cd/Hg cationic substitution in magic-sized CdSe clusters: Optical characterization and theoretical studies

    NASA Astrophysics Data System (ADS)

    Antanovich, Artsiom; Prudnikau, Anatol; Gurin, Valerij; Artemyev, Mikhail

    2015-07-01

    We examine conversion of magic-sized CdSe clusters (MSCs) into HgSe ones by means of Cd/Hg cation exchange. With this procedure Cd8Cd17- and Cd32-selenide clusters can be converted into corresponding Hg8-, Hg17- and Hg32-selenide ones. Upon cationic exchange MSCs behavior differs from that of bulkier counterparts - larger (2-3 nm) quantum dots. Unlike CdSe colloidal quantum dots, magic-sized clusters are converted in fast and complete manner without a formation of intermediate mixed CdxHg1-x compounds that was established on the basis of optical absorption spectroscopy and chemical composition analysis. These assumptions were supported by DFT quantum chemical calculations performed for Cd8-, Cd17- and Hg8-, Hg17-selenide model clusters. Energies of experimental and calculated optical transitions were compared in order to prove the isostructural character of cationic substitution in magic-sized clusters.

  11. Femtosecond laser-drilling-induced HgCdTe photodiodes.

    PubMed

    Zha, F-X; Li, M S; Shao, J; Yin, W T; Zhou, S M; Lu, X; Guo, Q T; Ye, Z H; Li, T X; Ma, H L; Zhang, B; Shen, X C

    2010-04-01

    Femtosecond-laser drilling may induce holes in HgCdTe with morphology similar to that induced by ion-milling in loophole technique. So-formed hole structures are proven to be pn junction diodes by the laser beam induced current characterization as well as the conductivity measurement. Transmission and photoluminescence spectral measurements on a n-type dominated hole-array structure give rise to different results from those of an ion-milled sample.

  12. HgCdTe Surface and Defect Study Program.

    DTIC Science & Technology

    1986-03-01

    LPE material. Solid state regrown (SSR) material and vertical Bridgman (VB) material exhibited lower background of most elements. The many isotopes...Sci. Technol. A 1 1735 (1983). 2. K. C. Mills, Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides (Betterworths, London, 1974). 3. A...34HgCdTe-SiO2 Interface Structure," 1983 U.S. Workshop on the Physics and Chemistry of Mercury Cadmium Telluride, February 8-10, 1983, Dallas, Texas. 5

  13. Defect chemistry and characterization of (Hg, Cd)Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.

    1981-01-01

    Single crystal samples of phosphorus doped Hg sub 0.8 Cd sub 0.2 Te were anneald at temperatures varying from 450 C to 600 C in various Hg atmospheres. The samples were quenched to room temperature from the annealing temperatures. Hall effect and mobility measurements were performed at 77 K on all these samples. The results indicate the crystals to be p type for a total phosphorus concentration of 10 to the 19th power/cu cm in all the samples. The hole concentration at 77 K increases with increasing Hg pressures at 450 C and 500 C contrary to the observation in undoped crystals. Also, at low Hg pressures the concentration of holes in the phosphorus doped crystals is lower than in the undoped crystals. The hole concentration in all the samples is lower than the intrinsic carrier concentration at the annealing temperatures. The hole mobility in the doped crystals is similar to that in the undoped crystals. A defect model according to which phosphorus behaves as a single acceptor interstitially, occupying Te lattice sites while it acts as a single donor occupying Hg lattice sites was established. Equilibrum constants established for the incorporation of all the phosphorus species explain the experimental results

  14. HgCdTe APDs for free space optical communications

    NASA Astrophysics Data System (ADS)

    Rothman, J.; Lasfargues, G.; Abergel, J.

    2015-10-01

    HgCdTe avalanche photodiode single element detectors have been developed for a large scope of photon starved applications. The present communication is dedicated to use of these detectors for free space optical communications. In this perspective we present and discuss the sensitivity and bandwidth that has been measured directly on HgCdTe APDs and on detector modules. In particular, we report on the performance of TEC cooled large area detectors with sensitive diameters ranging from 30- 200 μm, characterised by detector gains of 2- 20 V/μW and noise equivalent input power of 0.1-1 nW for bandwidths ranging from 20 to 400 MHz. One of these detectors has been used during the lunar laser communication demonstration (LLCD) and the results The perspectives for high data rate transmission is estimated from the results of impulse response measurements on HgCdTe APDs. These results indicate that bandwidths close to 10 GHz can be achieved in these devices. The associated sensitivity at an APD gain of 100 is estimated to be below 4 photons rms (NEP<10 nW) for APDs operated at 300 K.

  15. Spectral and thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II) binding by methanobactin from Methylosinus trichosporium OB3b.

    PubMed

    Choi, Dong W; Do, Young S; Zea, Corbin J; McEllistrem, Marcus T; Lee, Sung-W; Semrau, Jeremy D; Pohl, Nicola L; Kisting, Clint J; Scardino, Lori L; Hartsel, Scott C; Boyd, Eric S; Geesey, Gill G; Riedel, Theran P; Shafe, Peter H; Kranski, Kim A; Tritsch, John R; Antholine, William E; DiSpirito, Alan A

    2006-12-01

    Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV-visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.

  16. Phase diagrams and microscopic structures of (Hg,Cd)Te, (Hg,Zn)Te, and (Cd,Zn)Te alloys

    NASA Technical Reports Server (NTRS)

    Patrick, R. S.; Chen, A.-B.; Sher, A.; Berding, M. A.

    1988-01-01

    A cluster theory based on the quasi-chemical approximation has been applied to study the local correlation bond-length distribution, and phase diagrams of the II-VI pseudobinary alloys Hg(1 - x)Cd(x)Te, Hg(1 - x)Zn(x)Te, and Cd(1 - x)Zn(x)Te. The cluster energy is calculated by letting it relax in some effective alloy medium and then considering the contributions from the strain and chemical energies. Two different models are presented to simulate the alloy medium. While both models show that all three alloys have nearly random distributions, the signs of the local correlation prove to be sensitive to the alloy medium chosen for the energy calculation. Good agreement is found between experiment and the bond lengths and phase diagrams in both models.

  17. Massless Dirac fermions in semimetal HgCdTe

    NASA Astrophysics Data System (ADS)

    Marchewka, M.; Grendysa, J.; Żak, D.; Tomaka, G.; Śliż, P.; Sheregii, E. M.

    2017-01-01

    Magneto-transport results obtained for the strained 100 nm thick Hg1-x CdxTe (x=0.135) layer grown by MBE on the CdTe/GaAs substrate are interpreted by the 8×8 kp model with the in-plane tensile strain. The dispersion relation for the investigated structure proves that the Dirac point is located in the gap caused by the strain. It is also shown that the fan of the Landau Levels (LL's) energy calculated for topological protected surface states for the studied HgCdTe alloy corresponds to the fan of the LL's calculated using the graphen-like Hamiltonian which gives excellent agreement with the experimental data for velocity on the Fermi level equal to vf ≈ 0.85×106 m/s. That characterized strained Hg1-x CdxTe layers (0.13 < x < 0.14) are a perfect Topological Insulator with good perspectives of further applications.

  18. Interface Chemistry of Hg(1-x)Cd(x)Te.

    DTIC Science & Technology

    1985-05-08

    8217.’ * . ." ’C . -2- Mercury- Cadmium -Telluride is probably the most studied ternary semiconductor in recent years because of its widespread application for...grown at McDonnell Douglas Research Laboratories using a modified Bridgman method. The bulk crystals exhibited a band gap of 0.175±0.01 eV and p-type...Sulphides, Selenides and Tellurides, Butterworths, London, 1974. Therefore, the formation of Cr-Te phases at the HgCdTe-Cr interface should be

  19. HgCdTe Surface and Defect Study Program.

    DTIC Science & Technology

    1983-07-01

    as "independent" entities as is the case (to the first approximation) with all other semiconductors studied to date. These results have given rise to...all cases but one (Prof. Walter Harrison’s invited paper on the theory of bonding in MCT) have been written up as full articles for the conference...properties. In the case of PhotoxT Si0 2 on HgCdTe, the inter- face state structure which is controlled by the details of the bonding at the interface

  20. MOS structures based on epitaxial HgCdTe layers

    SciTech Connect

    Antonov, V.V.; Belashov, Y.G.; Kazak, E.P.; Mezentseva, M.P.; Voitsekhovskii, A.V.

    1985-08-01

    The authors present the results of a study of the dependence of the surface photoelectromotive force at wavelengths of 3.39 and 10.6 micrometers on the field electrode for MOS structures prepared from epitaxial Hg /SUB 1-x/ Cd /SUB x/ Te layers (x=0.20-0.25). They analyze the nature of the inhomogeneities in the region near the surface of semiconducting samples prepared under various heat treatment conditions and present their findings in a series of three charts.

  1. Growth of HgCdTe by Modified Molecular Beam Epitaxy

    DTIC Science & Technology

    1981-06-01

    15 3 Depth dependence of peak temperature ........................... 17 4 Surface of a thin film deposited by using very high power... film ............................ 54 22 Rutherford hackscattering of 3700 A Hg0 7Cdo 3Te on CdTe ......... 55 23 Surface of a HgCdTe film deposited at...single crystal CdTe boules. With this constraint, it is logical to extend the epitaxial growth technique to allow the growth of HgCdTe thin films on

  2. Advances in HgCdTe APDs and LADAR Receivers

    NASA Technical Reports Server (NTRS)

    Bailey, Steven; McKeag, William; Wang, Jinxue; Jack, Michael; Amzajerdian, Farzin

    2010-01-01

    Raytheon is developing NIR sensor chip assemblies (SCAs) for scanning and staring 3D LADAR systems. High sensitivity is obtained by integrating high performance detectors with gain i.e. APDs with very low noise Readout Integrated Circuits. Unique aspects of these designs include: independent acquisition (non-gated) of pulse returns, multiple pulse returns with both time and intensity reported to enable full 3D reconstruction of the image. Recent breakthrough in device design has resulted in HgCdTe APDs operating at 300K with essentially no excess noise to gains in excess of 100, low NEP <1nW and GHz bandwidths and have demonstrated linear mode photon counting. SCAs utilizing these high performance APDs have been integrated and demonstrated excellent spatial and range resolution enabling detailed 3D imagery both at short range and long ranges. In this presentation we will review progress in high resolution scanning, staring and ultra-high sensitivity photon counting LADAR sensors.

  3. Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors

    NASA Astrophysics Data System (ADS)

    Kebłowski, A.; Gawron, W.; Martyniuk, P.; Stepień, D.; Kolwas, K.; Piotrowski, J.; Madejczyk, P.; Kopytko, M.; Piotrowski, A.; Rogalski, A.

    2016-05-01

    In this paper we present progress in MOCVD growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool in fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping and without post grown annealing. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for long wavelength infrared photoconductors operated in HOT conditions. The (100) HgCdTe photoconductor optimized for 13-μm attain detectivity equal to 6.5x109 Jones and therefore outperform its (111) counterpart. The paper also presents technological progress in fabrication of MOCVD-grown (111) HgCdTe barrier detectors. The barrier device performance is comparable with state-of-the-art of HgCdTe photodiodes. The detectivity of HgCdTe detectors is close to the value marked HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07".

  4. Ultrasound-accelerated organogel: application for visual discrimination of Hg(2+) from Ag(+).

    PubMed

    Wang, Yanqiu; Wang, Zengyao; Xu, Zhice; Yu, Xudong; Zhao, Kun; Li, Yajuan; Pang, Xuelei

    2016-02-21

    A new kind of naphthalimide-based organogelator, TN, was designed and synthesized. The intramolecular guanylation of TN promoted by Hg(2+) or Ag(+) in both solution and gel state was studied through several approaches including FL, UV-visible, NMR, FT-IR and SEM experiments. TN could selectively sense Hg(2+) and Ag(+) ions with obvious fluorescence quenching and color changes from yellow to colorless among test ions in the solution state. Interestingly, the S-gel of TN could be used to selectively discriminate Hg(2+) from Ag(+)via phase and morphology changes. Hg(2+) ions triggered the gel-to-gel transition with morphology changes of the TN S-gel from nanofibrils to porous sheet structure, together with fluorescence quenching. In contrast, the gel collapsed in the presence of Ag(+) ions, which was comprised of short and disordered fiber structure. To the best of the authors' knowledge, this is the first example of gels selectively sensing Hg(2+) or Ag(+)via a reaction approach.

  5. ROIC for HgCdTe e-APD FPA

    NASA Astrophysics Data System (ADS)

    Chen, Guoqiang; Zhang, Junling; Wang, Pan; Zhou, Jie; Gao, Lei; Ding, Ruijun

    2013-08-01

    Ultra-low light imaging and passive/active dual mode imaging require very low noise optical receivers to achieve detection of fast and weak optical signal. HgCdTe electrons initiated avalanche photodiodes (e-APDs) in linear multiplication mode is the detector of choice thanks to its high quantum efficiency, high gain at low bias, high bandwidth and low noise factor. In my work, a passive/active dual mode readout integrated circuit (ROIC) of e-APD focal plane array (FPA) is designed. Unit cell circuit architecture of ROIC includes a capacitance feedback transimpedance amplifier (CTIA) as preamplifier of ROIC, a high voltage protection module, a comparator, a Sample-Hold circuit module, and output driver stage. There is a protection module in every unit cell circuit which can avoid ROIC to be damaged from avalanche breakdown of some diodes of detector. Conventional 5V CMOS process is applied to implement the high voltage protection with the small area rather than Laterally Diffused Metal Oxide Semiconductor (LDMOS) in high voltage BCD process in the limited 100um×100um pitch area. In CTIA module, three integration capacitances are included in the CTIA module, two of them are switchable to provide different well capacity and noise. Constraints such as pixel area, stability and power lead us design toward a simple one-stage cascade operational transconductance amplifier (OTA) as pre-amplifier. High voltage protection module can protect ROIC to be damaged because of breakdown of some avalanche diodes.

  6. MBE Growth and Transfer of HgCdTe Epitaxial Films from InSb Substrates

    NASA Astrophysics Data System (ADS)

    de Lyon, T. J.; Rajavel, R. D.; Nosho, B. Z.; Terterian, S.; Beliciu, M. L.; Patterson, P. R.; Chang, D. T.; Boag-O'Brien, M. F.; Holden, B. T.; Jacobs, R. N.; Benson, J. D.

    2010-07-01

    An investigation of the heteroepitaxial growth of HgCdTe films onto InSb(211)B substrates is reported. High-quality HgCdTe(211)B single-crystal films have been successfully deposited onto InSb(211)B substrates and have been characterized with x-ray diffraction rocking curve analysis, etch pit density analysis, and surface void defect mapping. X-ray rocking curve (422) reflection full-width at half-maximum of 60 arcsec has been obtained for 7- μm-thick x = 0.22 HgCdTe epitaxial films, and etch pit densities of 3 × 106 cm-2 to 3 × 107 cm-2 have been observed. A significant reduction in HgCdTe void defect densities to 100 cm-2 to 200 cm-2 has been observed on InSb, including a complete absence of large “void cluster” defects that are often observed for growth on CdZnTe. Wafer bow induced by the growth of HgCdTe on InSb is less than 1 μm for 2-inch-diameter substrates. Significant diffusion of In into HgCdTe is observed for HgCdTe/InSb wafers that are subjected to Hg anneals at 250°C to 300°C. A preliminary investigation of the transfer of HgCdTe films from InSb onto Si substrates has also been undertaken, using an adhesive wafer bonding approach evaluated with scanning acoustic microscopy. The infrared transmission characteristics of the bonding adhesive have been investigated with respect to postgrowth annealing procedures to establish the compatibility of the bonding approach with HgCdTe device processing and detector operation.

  7. Raman analysis of chemical substitution of Cd atoms by Hg in CdSe quantum dots and rods

    NASA Astrophysics Data System (ADS)

    Cherevkov, Sergei A.; Baranov, Alexander V.; Ushakova, Elena V.; Litvin, Alexander P.; Fedorov, Anatoly V.; Prudnikau, Anatol V.; Artemyev, Mikhail V.

    2016-01-01

    We investigate nanocrystals of ternary compounds CdXHg1-XSe with 0CdSe-like LO and the HgSe-like TO and LO-modes. It is shown that the crystalline structure of the original CdSe NCs used for Cd/Hg substitution, either zinc blende or wurtzite, strongly affects the structural properties of the resultant CdXHg1-XSe quantum dots and rods.

  8. Mode of incorporation of phosphorus in Hg(0.8)Cd(0.2)Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.; Abbott, R. C.; Nelson, D. A.

    1983-01-01

    Selim and Kroeger (1977) have studied the mode of incorporation of phosphorus in CdTe. According to their findings, phosphorus behaves amphoterically in CdTe acting as an acceptor interstitially and on Te lattice sites, and as a triple donor on Cd lattice sites. The present investigation is concerned with the role of phosphorus in Hg(0.8)Cd(0.2)Te, taking into account Hall-effect and mobility measurements on phosphorus-doped crystals quenched from a temperature in the range from 450 to 600 C subsequent to anneals in different partial pressures of Hg. It is found that the behavior of phosphorus in Hg(0.8)Cd(0.2)Te is similar to that established for CdTe, except that all the electrically active phosphorus defect centers in Hg(0.8)Cd(0.2)Te appear to be only singly ionized. At low Hg pressure, phosphorus is incorporated as a single donor occupying Hg lattice sites, and at high Hg pressure, as a single acceptor on interstitial sites and Te lattice sites.

  9. Mode of incorporation of phosphorus in Hg(0.8)Cd(0.2)Te

    NASA Astrophysics Data System (ADS)

    Vydyanath, H. R.; Abbott, R. C.; Nelson, D. A.

    1983-03-01

    Selim and Kroeger (1977) have studied the mode of incorporation of phosphorus in CdTe. According to their findings, phosphorus behaves amphoterically in CdTe acting as an acceptor interstitially and on Te lattice sites, and as a triple donor on Cd lattice sites. The present investigation is concerned with the role of phosphorus in Hg(0.8)Cd(0.2)Te, taking into account Hall-effect and mobility measurements on phosphorus-doped crystals quenched from a temperature in the range from 450 to 600 C subsequent to anneals in different partial pressures of Hg. It is found that the behavior of phosphorus in Hg(0.8)Cd(0.2)Te is similar to that established for CdTe, except that all the electrically active phosphorus defect centers in Hg(0.8)Cd(0.2)Te appear to be only singly ionized. At low Hg pressure, phosphorus is incorporated as a single donor occupying Hg lattice sites, and at high Hg pressure, as a single acceptor on interstitial sites and Te lattice sites.

  10. Ex Situ Thermal Cycle Annealing of Molecular Beam Epitaxy Grown HgCdTe/Si Layers

    DTIC Science & Technology

    2010-01-01

    during the growth process itself, is an effective means to reduce etch pit den- sity (EPD) and improve overall crystal quality. Subjecting CdTe /Si...results of ex situ thermal cycle annealing (TCA) of molecular beam epitaxy grown mercury cadmium telluride (HgCdTe) on Cd (Se)Te/ Si(211) composite...present the results of ex situ thermal cycle annealing (TCA) of molecular beam epitaxy grown mercury cadmium telluride (HgCdTe) on Cd (Se)Te/ Si(211

  11. Effect of magnetic field on energy spectrum and localization of electron in CdS/HgS/CdS/HgS/CdS multilayered spherical nanostructure

    NASA Astrophysics Data System (ADS)

    Holovatsky, V. A.; Bernik, I. B.; Yakhnevych, M. Ya.

    2017-03-01

    The theoretical investigation of magnetic field effect on energy spectrum and localization of the electron and oscillator strengths of intraband quantum transitions in the nanostructure CdS/HgS/CdS/HgS/CdS is performed. The calculations are made in the framework of effective mass approximation and rectangular potential barriers model using the method of the expansion of quasi-particle wave functions over the complete basis of functions obtained as the exact solutions of the Schrodinger equation for the electron in the nanostructure without the magnetic field. It is shown that the magnetic field violates the spherical symmetry of the system and takes off the degeneration of energy spectrum with respect to the magnetic quantum number. The energy of the electron in the states with m≥0 increases when magnetic field enhances; for the states with m<0 these dependences are non-monotonous (decreasing at first and then increasing). Moreover, the ground state of electron is formed alternately by the states with m=0, -1, -2, …. Magnetic field influences on the distribution of quasi-particle density. It is shown that the electron significantly changes its localization in the nanostructure with two potential wells tunneling through the potential barrier under the effect of magnetic field, changing the oscillator strengths of intraband quantum transitions.

  12. Heavy metal tolerance (Cr, Ag AND Hg) in bacteria isolated from sewage

    PubMed Central

    Lima de Silva, Agostinho A.; de Carvalho, Márcia A. Ribeiro; de Souza, Sérgio A. L; Dias, Patrícia M. Teixeira; da Silva Filho, Renato G.; de Meirelles Saramago, Carmen S.; de Melo Bento, Cleonice A.; Hofer, Ernesto

    2012-01-01

    Samples of sewage from a university hospital and a chemistry technical school were analysed for the percentage of bacterial tolerance to chromium (Cr), silver (Ag) and mercury (Hg). Additionally, we investigated the effect of these metals on pigmentation and on some enzymatic activities of the metal tolerant strains isolated, as well as antimicrobial resistance in some metal tolerant Enterobacteriaceae strains. Tolerance to Cr was observed mainly in Gram positive bacteria while in the case of Ag and Hg the tolerant bacteria were predominately Gram negative. Hg was the metal for which the percentage of tolerance was significantly higher, especially in samples from the hospital sewage (4.1%). Mercury also had the most discernible effect on color of the colonies. Considering the effect of metals on the respiratory enzymes, one strain of Ag-tolerant Bacillus sp. and one of Hg-tolerant P. aeruginosa were unable to produce oxidase in the presence of Ag and Hg, respectively, while the expression of gelatinase was largely inhibited in various Gram negative strains (66% by Cr). Drug resistance in Hg-tolerant Enterobacteriaceae strains isolated from the university hospital sewage was greater than 80%, with prevalence of multiple resistance, while the Ag-tolerant strains from the same source showed about 34% of resistance, with the predominance of mono-resistance. Our results showed that, despite the ability of metal tolerant strains to survive and grow in the presence of these elements, the interactions with these metals may result in metabolic or phisiological changes in this group of bacteria. PMID:24031994

  13. MBE growth of CdTe and Hg (1-x) Cd (x) Te films and multilayer structures

    NASA Astrophysics Data System (ADS)

    Farrow, R. F. C.; Noreika, A. J.; Takei, W. J.; Wood, S.; Greggi, J.

    1985-04-01

    The MBE growth of CdTe and Hg1-xCdxTe films on InSb and CdTe substrates has been investigated. Growth conditions for high-perfection CdTe films, exactly lattice-matched to InSb substrates, have been identified. These films are ideal for substrates for Hg1-xCdxTe film growth since they are free from low-angle grain boundaries and also provide electrical isolation of the Hg1-xCdxTe film from the InSb substrate. Magnetophotoconductivity studies of abrupt n-CdTe/p-InSb heterojunctions indicate the presence of an n-type inversion layer in the InSb. This could be the basis for a new type of FET device. Conditions for growth of Hg1-xCdxTe films have been explored and films of suitable quality for LWIR device fabrication have been prepared.

  14. Recent progress in MBE grown HgCdTe materials and devices at UWA

    NASA Astrophysics Data System (ADS)

    Gu, R.; Lei, W.; Antoszewski, J.; Madni, I.; Umana-Menbreno, G.; Faraone, L.

    2016-05-01

    HgCdTe has dominated the high performance end of the IR detector market for decades. At present, the fabrication costs of HgCdTe based advanced infrared devices is relatively high, due to the low yield associated with lattice matched CdZnTe substrates and a complicated cooling system. One approach to ease this problem is to use a cost effective alternative substrate, such as Si or GaAs. Recently, GaSb has emerged as a new alternative with better lattice matching. In addition, implementation of MBE-grown unipolar n-type/barrier/n-type detector structures in the HgCdTe material system has been recently proposed and studied intensively to enhance the detector operating temperature. The unipolar nBn photodetector structure can be used to substantially reduce dark current and noise without impeding photocurrent flow. In this paper, recent progress in MBE growth of HgCdTe infrared material at the University of Western Australia (UWA) is reported, including MBE growth of HgCdTe on GaSb alternative substrates and growth of HgCdTe nBn structures.

  15. High Visible Photoelectrochemical Activity of Ag Nanoparticle-Sandwiched CdS/Ag/ZnO Nanorods.

    PubMed

    Yang, Xu; Li, Hui; Zhang, Wu; Sun, Mingxuan; Li, Lequn; Xu, Ning; Wu, Jiada; Sun, Jian

    2017-01-11

    We report on the sensitizing of CdS-coated ZnO (CdS/ZnO) nanorods (NRs) by Ag nanoparticles (NPs) embedded between the CdS coating and the ZnO nanorod and the improved optical and photoelectrochemical properties of the Ag NP-sandwiched nanostructure CdS/Ag/ZnO NRs. The CdS/Ag/ZnO NRs were fabricated by growing Ag NPs on hydrothermally grown ZnO NRs and subsequently depositing CdS coatings followed by subsequent N2 annealing. The structure of the fabricated CdS/Ag/ZnO NRs was characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman backscattering, revealing that the ZnO NRs and the CdS coatings are both structured with hexagonal wurtzite and the Ag NPs contact well with ZnO and CdS. Optical properties were evaluated by measuring optical absorption and photoluminescence, showing that the Ag NPs behave well as sensitizers for optical property improvement and the CdS/Ag/ZnO NRs exhibit better photoresponse in a wide spectral region than CdS/ZnO because of plasmon-enhanced absorption due to the embedment of Ag NPs. The Ag NPs also serve as electron relays from CdS to ZnO, facilitating electron transfer from the CdS coatings to the ZnO NRs. The excellent photoresponse and efficient electron transfer make the CdS/Ag/ZnO NRs highly photoelectrochemically active. The CdS/Ag/ZnO NRs fabricated on indium-tin oxide present much better photoelectrochemical performance as photoanodes working in the visible region than CdS/ZnO NRs without Ag NPs. Under visible illumination, a maximum optical-to-chemical conversion efficiency of 3.13% is obtained for CdS/Ag/ZnO NR photoanodes against 1.35% for CdS/ZnO NR photoanodes.

  16. 13 micron cutoff HgCdTe detector arrays for space and ground-based astronomy

    NASA Astrophysics Data System (ADS)

    McMurtry, Craig W.; Cabrera, Mario S.; Dorn, Meghan L.; Pipher, Judith L.; Forrest, William J.

    2016-07-01

    With the recent success of our development of 10 micron HgCdTe infrared (IR) detector arrays,1,2 we have used what we learned and extended the cutoff wavelength to 13 microns. These 13 micron HgCdTe detector arrays can operate at higher temperatures than Si:As, e.g. in a properly designed spacecraft with passive cooling, the 13 micron IR array will work well at temperatures around 30K. We present the initial measurements of dark current, noise and quantum efficiency for the first deliveries of 13 micron HgCdTe detector arrays from Teledyne Imaging Sensors. We also discuss our plans to develop 15 micron cutoff HgCdTe detector arrays which would facilitate the detection of the broad CO2 absorption feature in the atmospheres of exoplanets, particularly those in the habitable zone of their host star.

  17. Acceptor states in heteroepitaxial CdHgTe films grown by molecular-beam epitaxy

    SciTech Connect

    Mynbaev, K. D.; Shilyaev, A. V. Bazhenov, N. L.; Izhnin, A. I.; Izhnin, I. I.; Mikhailov, N. N.; Varavin, V. S.; Dvoretsky, S. A.

    2015-03-15

    The photoluminescence method is used to study acceptor states in CdHgTe heteroepitaxial films (HEFs) grown by molecular-beam epitaxy. A comparison of the photoluminescence spectra of HEFs grown on GaAs substrates (CdHgTe/GaAs) with the spectra of CdHgTe/Si HEFs demonstrates that acceptor states with energy depths of about 18 and 27 meV are specific to CdHgTe/GaAs HEFs. The possible nature of these states and its relation to the HEF synthesis conditions and, in particular, to the vacancy doping occurring under conditions of a mercury deficiency during the course of epitaxy and postgrowth processing are discussed.

  18. Low-Roughness Plasma Etching of HgCdTe Masked with Patterned Silicon Dioxide

    NASA Astrophysics Data System (ADS)

    Ye, Z. H.; Hu, W. D.; Yin, W. T.; Huang, J.; Lin, C.; Hu, X. N.; Ding, R. J.; Chen, X. S.; Lu, W.; He, L.

    2011-08-01

    A novel mask technique utilizing patterned silicon dioxide films has been exploited to perform mesa etching for device delineation and electrical isolation of HgCdTe third-generation infrared focal-plane arrays (IRFPAs). High-density silicon dioxide films were deposited at temperature of 80°C, and a procedure for patterning and etching of HgCdTe was developed by standard photolithography and wet chemical etching. Scanning electron microscopy (SEM) showed that the surfaces of inductively coupled plasma (ICP) etched samples were quite clean and smooth. Root-mean-square (RMS) roughness characterized by atomic force microscopy (AFM) was less than 1.5 nm. The etching selectivity between a silicon dioxide film and HgCdTe in the samples masked with patterned silicon dioxide films was greater than 30:1. These results show that the new masking technique is readily available and promising for HgCdTe mesa etching.

  19. Engineering steps for optimizing high temperature LWIR HgCdTe photodiodes

    NASA Astrophysics Data System (ADS)

    Madejczyk, Pawel; Gawron, Waldemar; Martyniuk, Piotr; Keblowski, Artur; Pusz, Wioletta; Pawluczyk, Jaroslaw; Kopytko, Malgorzata; Rutkowski, Jaroslaw; Rogalski, Antoni; Piotrowski, Jozef

    2017-03-01

    The authors report on energy gap engineering solutions to improve the high-temperature performance of long-wave infrared (LWIR) HgCdTe photodiodes. Metalorganic chemical vapour deposition (MOCVD) technology with a wide range of composition and donor/acceptor doping and without ex-situ post grown annealing seems to be an excellent tool for HgCdTe heterostructure epitaxial growth. The heterojunction HgCdTe photovoltaic device based on epitaxial graded gap structures integrated with Auger-suppression is a magnificent solution for high operating temperature (HOT) infrared detectors. The thickness, composition and doping of HgCdTe heterostructure were optimized with respect to photoelectrical parameters like dark current, the responsivity and the response time. In this paper we focus on graded interface abruptness in the progressive optimization.

  20. Photoconductive HgCdTe detector assemblies for the GOES imager and sounder instruments

    NASA Astrophysics Data System (ADS)

    Hartley, Jeanne M.; Reine, Marion B.; Terzis, C. L.; Verrilli, Anthony J.; Hassler, Richard A.; Lesondak, Edward P.

    1996-10-01

    The GOES Imager and Sounder instruments each utilize several HgCdTe photoconductive (PC) detectors and detector arrays for detection over the 6.5 to 14.7 micrometers region. These high performance detectors are integrated with germanium aplanat lenses and mounted in miniature hermetically sealed housings. There are demanding requirements on the radiometric performance of these detector assemblies. For LW Sounder detectors, the highest possible sensitivity achievable by a practical HgCdTe photoconductor at the operating temperatures of 100 to 105 K was required. Lockheed Martin designed, fabricated, tested, packaged, qualified, and delivered 7 of the 11 HgCdTe PC detector assemblies for GOES-8, and 9 of the 11 assemblies for GOES- 9. All the n-type HgCdTe starting material was grown at Lockheed Martin.

  1. Recent progress in MOCVD growth for thermoelectrically cooled HgCdTe medium wavelength infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Gawron, W.; Martyniuk, P.; Kębłowski, A.; Kolwas, K.; Stępień, D.; Piotrowski, J.; Madejczyk, P.; Pędzińska, M.; Rogalski, A.

    2016-04-01

    The authors report on advanced metalorganic chemical vapour deposition (MOCVD) of Hg1-xCdxTe (HgCdTe) structures for high operating temperature, medium wavelength infrared (MWIR) detector application. MOCVD technology with wide range of composition and donor/acceptor doping and without post grown annealing was proved to be an excellent tool for HgCdTe heterostructure epitaxial growth used for uncooled photodetector design. The interdiffused multilayer process (IMP) technique was applied for the HgCdTe deposition. HgCdTe epilayers were grown at 350 °C with Hg source kept at 210 °C. The II/VI mole ratio was assumed in the range from 1.5 to 3 during CdTe/HgTe cycles of the IMP process. The MWIR detectors grown by MOCVD exhibit detectivity ∼7.3 × 1011 Jones at λPEAK = 3.5 μm and T = 230 K being determined by background limited photodetector (BLIP) condition.

  2. Occurrence of toxic metals (Hg, Cd and Pb) in fresh and canned tuna: public health implications.

    PubMed

    Storelli, Maria M; Barone, Grazia; Cuttone, Giuseppe; Giungato, Daniele; Garofalo, Rita

    2010-11-01

    Hg, Pb and Cd levels in fresh and canned tuna were determined and assessed by comparing element levels in these samples with maximum permissible limits set by European legislation. The estimated weekly intakes by human consuming both fresh and canned tuna were also evaluated for possible consumer health risks. Among tested metals, Hg had the highest concentrations, followed by Pb and Cd either in fresh tuna or canned tuna. None of the tested samples surpassed the European regulatory limits fixed for Cd and Pb, whereas 8.9% of the tuna cans and 20% of fresh tuna samples exceeded standard for Hg. The size of tuna was a determining factor of Hg burden. A high intake of Hg surpassing the toxicological reference value established by WHO, was associated with consumption of larger size tuna specimens. Also canned tuna consumption with Hg concentrations higher than 1 μg kg(-1), strongly increased the consumer exposure. In contrast, Cd and Pb weekly intakes through consumption either of fresh tuna or canned tuna did not exceed the toxicological reference values established by WHO, and consequently there was no human health risk. A continuous surveillance system of Hg content in these fishery products is crucial for consumer protection.

  3. Defect chemistry and characterization of Hg sub 1x Cd sub x Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.

    1982-01-01

    Single crystal samples of undoped and doped Hg sub 1-x Cd sub x Te were annealed at varying temperatures and partial pressures of Hg. Hall effect and mobility measurements were carried out on these samples after quenching to room temperature. Based on the variation of the carrier concentration and the carrier mobility as a function of the partial pressure of Hg temperature, and dopant concentration, defect models were established for the doped and the undoped crystals. These models indicate that the native acceptor defects in both Hg0.8Cd0.2Te and Hg0.6Cd0.4Te doubly ionized and the native donor defects are negligible in concentration, implying that p to n conversion in these alloys occurs due only to residual donors. Incorporation mechanism of copper, indium, iodine, and phosphorus were investigated. A large concentration of indium is found to be paired with the native acceptor defects. Results on crystals doped with phosphorus indicate that phosphorus behaves amphoterically, acting as a donor on Hg lattice sites and as an acceptor intersitially on Te lattice sites. A majority of the phosphorus is found to be present as neutral species formed from the pairing reaction between phosphorus on Hg lattice sites and phosphorus in interstitial sites. Equilibrium constants for the intrinsic excitation reaction, as well as for the incorporation of the different dopants and the native acceptor defects were established.

  4. Sensitive and selective detection of Hg2+ and Cu2+ ions by fluorescent Ag nanoclusters synthesized via a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Ren, Xiangling; Meng, Xianwei; Fang, Zheng; Tang, Fangqiong

    2013-09-01

    An easily prepared fluorescent Ag nanoclusters (Ag NCs) probe for the sensitive and selective detection of Hg2+ and Cu2+ ions was developed here. The Ag NCs were synthesized by using polymethacrylic acid sodium salt as a template via a convenient hydrothermal process. The as-prepared fluorescent Ag NCs were monodispersed, uniform and less than 2 nm in diameter, and can be quenched in the presence of mercury (Hg2+) or copper (Cu2+) ions. Excellent linear relationships existed between the quenching degree of the Ag NCs and the concentrations of Hg2+ or Cu2+ ions in the range of 10 nM to 20 μM or 10 nM to 30 μM, respectively. By using ethylenediaminetetraacetate (EDTA) as the masking agent of Cu2+, Hg2+ was exclusively detected in coexistence with Cu2+ with high sensitivity (LOD = 10 nM), which also provided a reusable detection method for Cu2+. Furthermore, the different quenching phenomena caused by the two metals ions such as changes in visible colour, shifts of UV absorbance peaks and changes in size of Ag NCs make it easy to distinguish between them. Therefore the easily synthesized fluorescent Ag NCs may have great potential as Hg2+ and Cu2+ ions sensors.An easily prepared fluorescent Ag nanoclusters (Ag NCs) probe for the sensitive and selective detection of Hg2+ and Cu2+ ions was developed here. The Ag NCs were synthesized by using polymethacrylic acid sodium salt as a template via a convenient hydrothermal process. The as-prepared fluorescent Ag NCs were monodispersed, uniform and less than 2 nm in diameter, and can be quenched in the presence of mercury (Hg2+) or copper (Cu2+) ions. Excellent linear relationships existed between the quenching degree of the Ag NCs and the concentrations of Hg2+ or Cu2+ ions in the range of 10 nM to 20 μM or 10 nM to 30 μM, respectively. By using ethylenediaminetetraacetate (EDTA) as the masking agent of Cu2+, Hg2+ was exclusively detected in coexistence with Cu2+ with high sensitivity (LOD = 10 nM), which also provided a

  5. Magnetotransport in double quantum well with inverted energy spectrum: HgTe/CdHgTe

    NASA Astrophysics Data System (ADS)

    Yakunin, M. V.; Suslov, A. V.; Popov, M. R.; Novik, E. G.; Dvoretsky, S. A.; Mikhailov, N. N.

    2016-02-01

    We present an experimental study of the double-quantum-well (DQW) system made of two-dimensional layers with inverted energy band spectrum: HgTe. The magnetotransport reveals a considerably larger overlap of the conduction and valence subbands than in known HgTe single quantum wells (QW), which may be regulated here by an applied gate voltage Vg. This large overlap manifests itself in a much higher critical field Bc separating the range above it with a plain behavior of the Hall magnetoresistance ρx y(B ) , where the quantum peculiarities shift linearly with Vg, and the range below with a complicated behavior. In the latter case, specific structures in ρx y(B ) are formed like a double-N -shaped ρx y(B ) , reentrant sign-alternating quantum Hall effect with transitions into a zero-filling-factor state, etc., which are clearly manifested here due to better magnetic quantization at high fields, as compared to the features seen earlier in a single HgTe QW. The coexisting electrons and holes were found in the whole investigated range of positive and negative Vg as revealed (i) from fits to the low-field N -shaped ρx y(B ) , (ii) from the Fourier analysis of oscillations in ρx x(B ) , and (iii) from a specific behavior of ρx y(B ) at high positive Vg. A peculiar feature here is that the found electron density n remains almost constant in the whole range of investigated Vg while the hole density p drops down from the value a factor of 6 larger than n at extreme negative Vg to almost zero at extreme positive Vg passing through the charge-neutrality point. We show that this difference between n and p stems from an order of magnitude larger density of states for holes in the lateral valence subband maxima than for electrons in the conduction subband minimum. We analyze our observations on the basis of a calculated picture of magnetic levels in a DQW and suggest that their specificity is due to (i) a nonmonotonic course of the valence subband magnetic levels and an

  6. Doping behavior of iodine in Hg/0.8/Cd/0.2/Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.; Kroger, F. A.

    1982-01-01

    The defect state prevailing in iodine doped single-crystal samples of Hg0.8Cd0.2Te, annealed at 450-600 C in Hg vapor, has been deduced from Hall effect measurements on samples cooled to 77 K from the annealing temperature. Results are found to be similar to those previously obtained for iodine doped CdS, i.e. iodine acts as a single donor occupying Te lattice sites with a fraction paired with the native acceptor defects. The concentration of iodine on tellurium lattice sites increases with the partial pressure of Hg, whereas that of the pair species increases as the partial pressure of Hg decreases.

  7. Formation Dirac point and the topological surface states for HgCdTe-QW and mixed 3D HgCdTe TI

    NASA Astrophysics Data System (ADS)

    Marchewka, Michał

    2016-12-01

    In this paper the results of numerical calculations based on the finite difference method (FDM) for the 2D and 3D TI with and without uniaxial tensile strain for mixed Hg1-xCdxTe structures are presented. The numerical calculations were made using the 8×8 model for x from 0 up to 0.155 and for the wide range for the thickness from a few nm for 2D up to 150 nm for 3D TI as well as for different mismatch of the lattice constant and different barrier potential in the case of the QW. For the investigated region of the Cd composition (x value) the negative energy gap (Eg=Γ8-Γ6) in the Hg1-xCdxTe is smaller than in the case of pure HgTe which, as it turns out, has a significant influence on the topological surface states (TSS) and the position of the Dirac point for QW as well as for 3D TI. The results show that the strained gap and the position of the Dirac point against the Γ8 is a function of the x-Cd compounds in the case of the 3D TI as well as the critical width of the mixed Hg1-xCdxTe QW.

  8. Inductively coupled plasma etching of HgCdTe IRFPAs detectors at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Zhang, S.; Hu, X. N.; Ding, R. J.; He, L.

    2016-05-01

    To fabricate various advanced structures with HgCdTe material, the Inductively Coupled Plasma enhanced Reactive Ion Etching system is indispensable. However, due to low damage threshold and complicated behaviors of mercury in HgCdTe, the lattice damage and induced electrical conversion is very common. According to the diffusion model during etching period, the mercury interstitials, however, may not diffuse deep into the material at cryogenic temperature. In this report, ICP etching of HgCdTe at cryogenic temperature was implemented. The etching system with cryogenic assembly is provided by Oxford Instrument. The sample table was cooled down to 123K with liquid nitrogen. The mask of SiO2 with a contact layer of ZnS functioned well at this temperature. The selectivity and etching velocity maintained the same as reported in the etching of room temperature. Smooth and clean surfaces and profiles were achieved with an optimized recipe.

  9. Nonlinear terahertz response of HgTe/CdTe quantum wells

    SciTech Connect

    Chen, Qinjun; Sanderson, Matthew; Zhang, Chao

    2015-08-24

    Without breaking the topological order, HgTe/CdTe quantum wells can have two types of bulk band structure: direct gap type (type I) and indirect gap type (type II). We report that the strong nonlinear optical responses exist in both types of bulk states under a moderate electric field in the terahertz regime. Interestingly, for the type II band structure, the third order conductivity changes sign when chemical potentials lies below 10 meV due to the significant response of the hole excitation close to the bottom of conduction band. Negative nonlinear conductivities suggest that HgTe/CdTe quantum wells can find application in the gain medium of a laser for terahertz radiation. The thermal influences on nonlinear optical responses of HgTe/CdTe quantum wells are also studied.

  10. Prototyping of MWIR MEMS-based optical filter combined with HgCdTe detector

    NASA Astrophysics Data System (ADS)

    Kozak, Dmitry A.; Fernandez, Bautista; Velicu, Silviu; Kubby, Joel

    2010-02-01

    In the past decades, there have been several attempts to create a tunable optical detector with operation in the infrared. The drive for creating such a filter is its wide range of applications, from passive night vision to biological and chemical sensors. Such a device would combine a tunable optical filter with a wide-range detector. In this work, we propose using a Fabry-Perot interferometer centered in the mid-wave infrared (MWIR) spectrum with an HgCdTe detector. Using a MEMS-based interferometer with an integrated Bragg stack will allow in-plane operation over a wide range. Because such devices have a tendency to warp, creating less-than-perfect optical surfaces, the Fabry-Perot interferometer is prototyped using the SOI-MUMPS process to ensure desirable operation. The mechanical design is aimed at optimal optical flatness of the moving membranes and a low operating voltage. The prototype is tested for these requirements. An HgCdTe detector provides greater performance than a pyroelectic detector used in some previous work, allowing for lower noise, greater detection speed and higher sensitivity. Both a custom HgCdTe detector and commercially available pyroelectric detector are tested with commercial optical filter. In previous work, monolithic integration of HgCdTe detectors with optical filters proved to be problematic. Part of this work investigates the best approach to combining these two components, either monolithically in HgCdTe or using a hybrid packaging approach where a silicon MEMS Fabry-Perot filter is bonded at low temperature to a HgCdTe detector.

  11. High-value utilization of lignin to synthesize Ag nanoparticles with detection capacity for Hg²⁺.

    PubMed

    Shen, Zuguang; Luo, Yuqiong; Wang, Qun; Wang, Xiaoying; Sun, Runcang

    2014-09-24

    This study reports the rapid preparation of silver nanoparticles (AgNPs) from Tollens' reagent under microwave irradiation. In the synthesis, lignin with reducing groups and spatial three-dimensional structure was used as reducing and stabilizing agents without other chemical reagents, and the effects of the ratio of lignin to Ag(+), reaction temperature, and heating time on the synthesis of AgNPs were investigated. The obtained AgNPs were further characterized by UV-vis, Malvern particle size, TEM, XRD, and XPS analyses. The structural changes of lignin before and after reaction were also studied by FT-IR, (1)H NMR, (13)C NMR, and GC-MS. The results revealed that the obtained AgNPs were mostly spherical with diameters of around 24 nm. The optimum reaction conditions were a ratio 50 mg of lignin to 0.3 mM of Ag(+), a microwave irradiation temperature of 60 °C, and a heating time of 10 min. Moreover, AgNPs redispersed well in water and ethanol after centrifugation for the removal of lignin. During the formation of AgNPs, lignin was oxidized, and the side chains of lignin were partly disrupted into small molecules, such as hydrocarbon and alcohol. The resultant lignin-AgNPs showed highly selective sensing detection for Hg(2+), and the color of the lignin-AgNP solution containing Hg(2+) decreased gradually with increasing amounts of Hg(2+) within seconds, but the other 19 metal ions had little effect on the color and surface plasmon absorption band of the lignin-AgNPs. Also, there was a linear relationship between the absorbance and Hg(2+) concentration, with a limit of detection concentration of 23 nM. This study provides not only a new way to take advantage of agricultural and forestry residues, but also a green and rapid method for the synthesis of AgNPs to detect the toxic ion Hg(2+) selectively and sensitively.

  12. Recent progress in LWIR HOT photoconductors based on MOCVD grown (100) HgCdTe

    NASA Astrophysics Data System (ADS)

    Gawron, W.; Kębłowski, A.; Kopytko, M.; Madejczyk, P.; Martyniuk, P.; Pędzińska, M.; Piotrowski, A.; Piotrowski, J.; Rogalski, A.; Romanis, M.; Sosna, A.

    2016-10-01

    Hg1-x Cd x Te photoconductors grown in (100) crystallographic orientation are prone to demonstrating high crystalline quality, which results in a lower number of generation-recombination centers, lower noise and high responsivity. This work presents the optimum growth conditions and results of the characterization both of layers and high operating temperature (HOT) long wavelength infrared (LWIR) photoconductive devices based on them. The (100) HgCdTe photoconductor attains D*(13 μm) equal to 6.5 × 109 cmHz1/2W-1 at 200 K and therefore outperforms its (111)B counterpart.

  13. HgCdTe Photoconductive Mixers for 2-8 THz

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Boreiko, R. T.; Sivananthan, S.; Ashokan, R.

    2001-01-01

    Heterodyne spectroscopy has been taken to wavelengths as short as 63 micrometers with Schottky-diode mixers. Schottkys, however, are relatively insensitive compared to superconducting mixers such as the hot-electron microbolometer (HEB), which has an effective quantum efficiency of 3% at 120 micrometers (2.5 THz). Although HEB sensitivities are bound to improve, there will always be losses associated with antenna coupling of radiation into sub-micron size devices. Another approach to far infrared (FIR) mixer design is to use a photoconductive device which can be made much larger than a wavelength, and thus act as its own antenna. For example, HgCdTe photodiodes have been used as mixers in the lambda = 10 micrometers band for over 25 years, with sensitivities now only a factor of 2 from the quantum-noise-limit. HgCdTe can also be applied at FIR wavelengths, but surprisingly little work has been done to date. The exception is the pioneering work of Spears and Kostiuk and Spears, who developed HgCdTe photomixers for the 20-120 micrometer region. The spectral versatility of the HgCdTe alloy is well recognized for wavelengths as long as 8-20 micrometers. What is not so recognized, however, is that theoretically there is no long wavelength limit for appropriately composited HgCdTe. Although Spears successfully demonstrated a photoconductive response from HgCdTe at 120 micrometers, this initial effort was apparently never followed up, in part because of the difficulty of controlling the HgCdTe alloy composition with liquid-phase-epitaxy (LPE) techniques. With the availability of precise molecular-beam-epitaxy (MBE) since the early 1990's, it is now appropriate to reconsider HgCdTe for detector applications longward of lambda = 20 micrometers. We recently initiated an effort to fabricate detectors and mixers using II-VI materials for FIR wavelengths. Of particular interest are device structures called superlattices, which offer a number of advantages for high sensitivity

  14. Surface electrons in inverted layers of p-HgCdTe

    NASA Technical Reports Server (NTRS)

    Schacham, Samuel E.; Finkman, Eliezer

    1990-01-01

    Anodic oxide passivation of p-type HgCdTe generates an inversion layer. Extremely high Hall mobility data for electrons in this layer indicated the presence of a two-dimensional electron gas. This is verified by use of the Shubnikov-de Haas effect from 1.45 to 4.15 K. Data are extracted utilizing a numerical second derivative of dc measurement. Three sub-bands are detected. Their relative occupancies are in excellent agreement with theory and with experimental results obtained on anodic oxide as accumulation layers of n-type HgCdTe. The effective mass derived is comparable to what was expected.

  15. Temperature-driven massless Kane fermions in HgCdTe crystals

    PubMed Central

    Teppe, F.; Marcinkiewicz, M.; Krishtopenko, S. S.; Ruffenach, S.; Consejo, C.; Kadykov, A. M.; Desrat, W.; But, D.; Knap, W.; Ludwig, J.; Moon, S.; Smirnov, D.; Orlita, M.; Jiang, Z.; Morozov, S. V.; Gavrilenko, V.I.; Mikhailov, N. N.; Dvoretskii, S. A.

    2016-01-01

    It has recently been shown that electronic states in bulk gapless HgCdTe offer another realization of pseudo-relativistic three-dimensional particles in condensed matter systems. These single valley relativistic states, massless Kane fermions, cannot be described by any other relativistic particles. Furthermore, the HgCdTe band structure can be continuously tailored by modifying cadmium content or temperature. At critical concentration or temperature, the bandgap collapses as the system undergoes a semimetal-to-semiconductor topological phase transition between the inverted and normal alignments. Here, using far-infrared magneto-spectroscopy we explore the continuous evolution of band structure of bulk HgCdTe as temperature is tuned across the topological phase transition. We demonstrate that the rest mass of Kane fermions changes sign at critical temperature, whereas their velocity remains constant. The velocity universal value of (1.07±0.05) × 106 m s−1 remains valid in a broad range of temperatures and Cd concentrations, indicating a striking universality of the pseudo-relativistic description of the Kane fermions in HgCdTe. PMID:27573209

  16. Bioavailability of Cd, Zn and Hg in Soil to Nine Recombinant Luminescent Metal Sensor Bacteria

    PubMed Central

    Bondarenko, Olesja; Rõlova, Taisia; Kahru, Anne; Ivask, Angela

    2008-01-01

    A set of nine recombinant heavy metal-specific luminescent bacterial sensors belonging to Gram-negative (Escherichia and Pseudomonas) and Gram-positive (Staphylococcus and Bacillus) genera and containing various types of recombinant metal-response genetic elements was characterized for heavy metal bioavailability studies. All nine strains were induced by Hg and Cd and five strains also by Zn. As a lowest limit, the sensors were detecting 0.03 μg·L-1 of Hg, 2 μg·L-1 of Cd and 400 μg·L-1 of Zn. Limit of determination of the sensors depended mostly on metal-response element, whereas the toxicity of those metals towards the sensor bacteria was mostly dependent on the type of the host bacterium, with Gram-positive strains being more sensitive than Gram-negative ones. The set of sensors was used to evaluate bioavailability of Hg, Cd and Zn in spiked soils. The bioavailable fraction of Cd and Zn in soil suspension assay (2.6 – 5.1% and 0.32 – 0.61%, of the total Cd and Zn, respectively) was almost comparable for all the sensors, whereas the bioavailability of Hg was about 10-fold higher for Gram-negative sensor cells (30.5% of total Hg), compared to Gram-positive ones (3.2% of the total Hg). For Zn, the bioavailable fraction in soil-water suspensions and respective extracts was comparable (0.37 versus 0.33% of the total Zn). However, in the case of Cd, for all the sensors used and for Hg concerning only Gram-negative sensor strains, the bioavailable fraction in soil-water suspensions exceeded the water-extracted fraction about 14-fold, indicating that upon direct contact, an additional fraction of Cd and Hg was mobilized by those sensor bacteria. Thus, for robust bioavailability studies of heavy metals in soils any type of genetic metal-response elements could be used for the construction of the sensor strains. However, Gram-positive and Gram-negative senor strains should be used in parallel as the bioavailability of heavy metals to those bacterial groups may be

  17. Bioavailability of Cd, Zn and Hg in Soil to Nine Recombinant Luminescent Metal Sensor Bacteria.

    PubMed

    Bondarenko, Olesja; Rõlova, Taisia; Kahru, Anne; Ivask, Angela

    2008-11-04

    A set of nine recombinant heavy metal-specific luminescent bacterial sensors belonging to Gram-negative (Escherichia and Pseudomonas) and Gram-positive (Staphylococcus and Bacillus) genera and containing various types of recombinant metalresponse genetic elements was characterized for heavy metal bioavailability studies. All nine strains were induced by Hg and Cd and five strains also by Zn. As a lowest limit, the sensors were detecting 0.03 μg·L(-1) of Hg, 2 μg·L(-1) of Cd and 400 μg·L(-1) of Zn. Limit of determination of the sensors depended mostly on metal-response element, whereas the toxicity of those metals towards the sensor bacteria was mostly dependent on the type of the host bacterium, with Gram-positive strains being more sensitive than Gram-negative ones. The set of sensors was used to evaluate bioavailability of Hg, Cd and Zn in spiked soils. The bioavailable fraction of Cd and Zn in soil suspension assay (2.6 - 5.1% and 0.32 - 0.61%, of the total Cd and Zn, respectively) was almost comparable for all the sensors, whereas the bioavailability of Hg was about 10-fold higher for Gram-negative sensor cells (30.5% of total Hg), compared to Gram-positive ones (3.2% of the total Hg). For Zn, the bioavailable fraction in soil-water suspensions and respective extracts was comparable (0.37 versus 0.33% of the total Zn). However, in the case of Cd, for all the sensors used and for Hg concerning only Gram-negative sensor strains, the bioavailable fraction in soilwater suspensions exceeded the water-extracted fraction about 14-fold, indicating that upon direct contact, an additional fraction of Cd and Hg was mobilized by those sensor bacteria. Thus, for robust bioavailability studies of heavy metals in soils any type of genetic metal-response elements could be used for the construction of the sensor strains. However, Gram-positive and Gram-negative senor strains should be used in parallel as the bioavailability of heavy metals to those bacterial groups may be

  18. Development of Buffer Layer Technologies for LWIR and VLWIR HgCdTe Integration on Si

    DTIC Science & Technology

    2007-11-02

    the-art HgCdTe films ) can only be achieved on a Si(211)B surface orientation. Since Si-based digital electronics utilizes the (100) orientation...for the large lattice mismatch (and crystallographic orientation change) are urgently needed to overcome these problems. Currently ZnTe/ CdTe ...technologies are based on i) the use of ultrathin, GeSi films as obedient buffers ii) wafer bonding of lattice-matched buffers. Summary of the most

  19. Bioaccumulation of As, Cd, Cr, Hg(II), and MeHg in killifish (Fundulus heteroclitus) from amphipod and worm prey.

    PubMed

    Dutton, Jessica; Fisher, Nicholas S

    2011-08-15

    Elevated metal levels in fish are a concern for the fish themselves, their predators, and possibly humans who consume contaminated seafood. Metal bioaccumulation models often rely on assimilation efficiencies (AEs) of ingested metals and loss rate constants after dietary exposure (k(ef)s). These models can be used to better understand processes regulating metal accumulation and can be used to make site-specific predictions of metal concentrations in animal tissues. Fish often consume a varied diet, and prey choice can influence these two parameters. We investigated the trophic transfer of As, Cd, Cr, Hg(II), and methylmercury (MeHg) from a benthic amphipod (Leptocheirus plumulosus) and an oligochaete (Lumbriculus variegatus) to killifish (Fundulus heteroclitus) using gamma-emitting radioisotopes. Except for MeHg, AEs varied between prey type. AEs were highest for MeHg (92%) and lowest for Cd (2.9-4.5%) and Cr (0.2-4%). Hg(II) showed the largest AE difference between prey type (14% amphipods, 24% worms). For Cd and Hg(II) k(ef)s were higher after consuming amphipods than consuming worms. Tissue distribution data shows that Cd and Hg(II) were mainly associated with the intestine, whereas As and MeHg were transported throughout the body. Calculated trophic transfer factors (TTFs) suggest that MeHg is likely to biomagnify at this trophic step at all ingestion rates, whereas As, Cd, Cr, and Hg(II) will not. Data collected in this study and others indicate that using one prey item to calculate AE and k(ef) could lead to an over- or underestimation of these parameters.

  20. Distribution of the surface potential of epitaxial HgCdTe

    SciTech Connect

    Novikov, V. A. Grigoryev, D. V.; Bezrodnyy, D. A.; Dvoretsky, S. A.

    2014-09-08

    We studied the distribution of surface potential of the Hg{sub 1−x}Cd{sub x}Te epitaxial films grown by molecular beam epitaxy. The studies showed that the variation of the spatial distribution of surface potential in the region of the V-defect can be related to the variation of the material composition of epitaxial film. The V-defect is characterized by increased of Hg content with respect to the composition of the solid solution of Hg{sub 1−x}Cd{sub x}Te epitaxial film. In this paper, it was demonstrated that the unformed V-defects can be observed together with the macroscopic V-defects on the epitaxial film surface. These unformed V-defects can allow the creation of a complex surface potential distribution profile due to the redistribution of the solid solution composition.

  1. Investigation of possibility of VLWIR lasing in HgCdTe based heterostructures

    NASA Astrophysics Data System (ADS)

    Morozov, S. V.; Rumyantsev, V. V.; Kadykov, A. M.; Dubinov, A. A.; Antonov, A. V.; Kudryavtsev, K. E.; Kuritsin, D. I.; Mikhailov, N. N.; Dvoretskii, S. A.; Teppe, F.; Gavrilenko, V. I.

    2015-10-01

    The optical properties of a number of Hg1-xCdxTe bulk epilayers (x = 0.152 - 0.23) and heterostructures with quantum wells (QW) based on narrow gap HgCdTe are examined aiming to reveal the prospects of such structures for laser development in long wave infrared and very long wave infrared ranges. Experimental evidence of long wavelength superluminescence, i.e. amplification of spontaneous emission, at 8.4 μm in narrow gap HgCdTe bulk epitaxial film at 100 K is reported. Employing heterostructures with QW is demonstrated to be promissory for furthering the radiation wavelength to 10 - 30 μm range.

  2. Arsenic complexes optical signatures in As-doped HgCdTe

    SciTech Connect

    Gemain, F.; Robin, I. C.; Brochen, S.; Ballet, P.; Gravrand, O.; Feuillet, G.

    2013-04-08

    In this paper, the optical signatures of arsenic complexes in As-doped HgCdTe samples grown by molecular beam epitaxy are clearly identified using comparison between photoluminescence spectra, Extended X-Ray Absorption Fine Structure, and Hall measurements. The ionization energies of the different complexes are measured both by photoluminescence and Hall measurements.

  3. LWIR HgCdTe: Innovative detectors in an incumbent technology

    NASA Technical Reports Server (NTRS)

    Tennant, William E.

    1990-01-01

    HgCdTe is the current material of choice for high performance imagers operating at relatively high temperatures. Its lack of technological maturity compared with silicon and wide-band gap III-V compounds is more than offset by its outstanding IR sensitivity and by the relatively benign effect of its materials defects. This latter property has allowed non-equilibrium growth techniques, metal oxide chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE), to produce device quality long wavelength infrared (LWIR) HgCdTe even on common substrates like GaAs and GaAs/Si. Detector performance in these exotic materials structures is comparable in many ways with devices in equilibrium-grown material. Lifetimes are similar. RoA values at 77K as high as several hundred have been seen in HgCdTe/GaAs/Si with 9.5 micron cut-off wavelength. HgCdTe/GaAs layers with approx. 15 micron cut-off wavelengths have given average 77K RoAs of greater than 2. Hybrid focal plane arrays have been evaluated with excellent operability.

  4. Lateral Diffusion Length Changes in HgCdTe Detectors in a Proton Environment

    NASA Technical Reports Server (NTRS)

    Hubbs, John E.; Marshall, Paul W.; Marshall, Cheryl J.; Gramer, Mark E.; Maestas, Diana; Garcia, John P.; Dole, Gary A.; Anderson, Amber A.

    2007-01-01

    This paper presents a study of the performance degradation in a proton environment of very long wavelength infrared (VLWIR) HgCdTe detectors. The energy dependence of the Non-Ionizing Energy Loss (NIEL) in HgCdTe provides a framework for estimating the responsivity degradation in VLWIR HgCdTe due to on orbit exposure from protons. Banded detector arrays that have different detector designs were irradiated at proton energies of 7, 12, and 63 MeV. These banded detector arrays allovedin sight into how the fundamental detector parameters degraded in a proton environment at the three different proton energies. Measured data demonstrated that the detector responsivity degradation at 7 MeV is 5 times larger than the degradation at 63 MeV. The comparison of the responsivity degradation at the different proton energies suggests that the atomic Columbic interaction of the protons with the HgCdTe detector is likely the primary mechanism responsible for the degradation in responsivity at proton energies below 30 MeV.

  5. Modeling of HgCdTe focal plane array spectral inhomogeneities

    NASA Astrophysics Data System (ADS)

    Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme

    2015-06-01

    Infrared focal plane arrays (IRFPA) are widely used to perform high quality measurements such as spectrum acquisition at high rate, ballistic missile defense, gas detection, and hyperspectral imaging. For these applications, the fixed pattern noise represents one of the major limiting factors of the array performance. This sensor imperfection refers to the nonuniformity between pixels, and is partially caused by disparities of the cut-off wavenumbers. In this work, we focus particularly on mercury cadmium telluride (HgCdTe), which is the most important material of IR cooled detector applications. Among the many advantages of this ternary alloy is the tunability of the bandgap energy with Cadmium composition, as well as the high quantum efficiency. In order to predict and understand spectral inhomogeneities of HgCdTe-based IRFPA, we propose a modeling approach based on the description of optical phenomena inside the pixels. The model considers the p-n junctions as a unique absorbent bulk layer, and derives the sensitivity of the global structure to both Cadmium composition and HgCdTe layer thickness. For this purpose, HgCdTe optical and material properties were necessary to be known at low temperature (80K), in our operating conditions. We therefore achieved the calculation of the real part of the refractive index using subtracti

  6. High-pressure dissociation of silver mercury iodide, Ag{sub 2}HgI{sub 4}

    SciTech Connect

    Parfitt, D.C.; Hull, S. . E-mail: s.hull@rl.ac.uk; Keen, D.A.; Crichton, W.

    2004-10-01

    High-pressure X-ray diffraction has been used to probe the behavior of the superionic conductor silver mercury iodide (Ag{sub 2}HgI{sub 4}) at pressures up to 5GPa and at temperatures from 295 to 370K. Significant changes in the diffraction spectra, indicative of structural transitions, are observed around 0.7 and 1.3GPa across the range of temperatures studied. The change at 0.7GPa is shown to correspond to the dissociation of silver mercury iodide into silver iodide and mercury iodide, i.e., Ag{sub 2}HgI{sub 4}->2AgI+HgI{sub 2}. The second transition, at 1.3GPa, is due to a structural phase transition within HgI{sub 2}. Rietveld analysis of the diffraction data is used to confirm and refine all the known crystal structures.

  7. Fluorescent sensor for selective determination of copper ion based on N-acetyl-L-cysteine capped CdHgSe quantum dots.

    PubMed

    Wang, Qingqing; Yu, Xiangyang; Zhan, Guoqing; Li, Chunya

    2014-04-15

    Using N-acetyl-L-cysteine as a stabilizer, well water-dispersed, high-quality and stable CdHgSe quantum dots were facilely synthesized via a simple aqueous phase method. The as-prepared N-acetyl-L-cysteine capped CdHgSe quantum dots were thoroughly characterized by transmission electron microscopy, X-ray diffraction spectroscopy and FTIR. A fluorescent sensor for selective determination of copper ions was developed using N-acetyl-L-cysteine capped CdHgSe quantum dots as fluorescent probe. The fluorescence intensity of N-acetyl-L-cysteine capped CdHgSe quantum dots decreased when interacted with copper ions due to the formation of coordination complex and aggregates. The method possesses high selectivity and is not influenced by some potential interferences such as Ag(+), Zn(2+), Co(2+) and Ni(2+). Under the optimal conditions, the change of fluorescence intensity (ΔI) was linearly proportional to the concentration of copper ions in the range of 1.0×10(-9)-4.0×10(-7) mol L(-1), with a detection limit as low as 2.0×10(-10) mol L(-1) (S/N=3). The developed method had been successfully employed to determine Cu(2+) in shrimp and South-lake water samples, and the results were verified by atomic absorption spectroscopy. The fluorescent sensor was demonstrated to be selective, sensitive and simple for copper ion determination, and promise for practical applications.

  8. Development of megapixel HgCdTe detector arrays with 15 micron cutoff

    NASA Astrophysics Data System (ADS)

    Forrest, William J.; McMurtry, Craig W.; Dorn, Meghan L.; Pipher, Judith; Cabrera, Mario S.

    2016-06-01

    I. HistoryHgCdTe is a versatile II-VI semiconductor with a direct-bandgap tunable via the Hg:Cd ratio. Hg:Cd ratio = 53:47 (2.5 micron cutoff) was used on the NICMOS instrument on HST and the 2MASS. Increasing Hg:Cd ratio to 70:30 leads to a 5.4 micron cutoff, utilized in NEOWISE and many JWST instruments. Bailey, Wu et al. (1998) motivated extending this technology to 10 microns and beyond. Bacon, McMurtry et al. (2003, 2004) indicated significant progress toward this longwave (LW) goal.Warm-Spitzer has pioneered passive cooling to below 30 K in space, enabling the JWST mission.II. CurrentNASA's proposed NEOcam mission selected HgCdTe with a 10.6 micron cutoff because it promises natural Zodiacal background limited sensitivity with modest cooling (40 K). Teledyne Imaging Systems (TIS) is producing megapixel arrays with excellent performance (McMurtry, Lee, Dorn et al. (2013)) for this mission.III. FutureModest cooling requirements (circa 30 K) coupled with megapixel arrays and LW sensitivity in the thermal IR make HgCdTe attractive for many infrared instruments. For instance, the spectral signature of a terrestrial planet orbiting in the habitable zone of a nearby star will be the deep and wide absorption by CO_2 centered at 15 microns (Seager and Deming, 2010). LW instruments can enhance Solar System missions, such as exploration of the Enceladus geysers (Spencer, Buratti et al. 2006). Passive cooling will be adequate for these missions. Modern ground-based observatories will benefit from infrared capability out to the N band (7.5-13.6 microns). The required detector temperatures (30-40 K) are easily achievable using commercially available mechanical cryo-coolers (refrigerators).IV. Progress to dateTIS is developing megapixel HgCdTe arrays sensitive out to 15 microns under the direction of the University of Rochester. As a first step, we have produced arrays with a 13 micron cutoff. The initial measurements indicate very promising performance. We will present the

  9. Development of megapixel HgCdTe detector arrays with 15 micron cutoff

    NASA Astrophysics Data System (ADS)

    Forrest, William J.; McMurtry, Craig W.; Dorn, Meghan; Pipher, Judith; Cabrera, Mario S.

    2016-10-01

    I. HistoryHgCdTe is a versatile II-VI semiconductor with a direct-bandgap tunable via the Hg:Cd ratio. Hg:Cd ratio = 53:47 (2.5 micron cutoff) was used on the NICMOS instrument on HST and the 2MASS. Increasing Hg:Cd ratio to 70:30 leads to a 5.4 micron cutoff, utilized in NEOWISE and many JWST instruments. Bailey, Wu et al. (1998) motivated extending this technology to 10 microns and beyond. Bacon, McMurtry et al. (2003, 2004) indicated significant progress toward this longwave (LW) goal.Warm-Spitzer has pioneered passive cooling to below 30 K in space, enabling the JWST mission.II. CurrentNASA's proposed NEOcam mission selected HgCdTe with a 10.6 micron cutoff because it promises natural Zodiacal background limited sensitivity with modest cooling (40 K). Teledyne Imaging Systems (TIS) is producing megapixel arrays with excellent performance (McMurtry, Lee, Dorn et al. (2013)) for this mission.III. FutureModest cooling requirements (circa 30 K) coupled with megapixel arrays and LW sensitivity in the thermal IR make HgCdTe attractive for many infrared instruments. For instance, the spectral signature of a terrestrial planet orbiting in the habitable zone of a nearby star will be the deep and wide absorption by CO_2 centered at 15 microns (Seager and Deming, 2010). LW instruments can enhance Solar System missions, such as exploration of the Enceladus geysers (Spencer, Buratti et al. 2006). Passive cooling will be adequate for these missions. Modern ground-based observatories will benefit from infrared capability out to the N band (7.5-13.6 microns). The required detector temperatures (30-40 K) are easily achievable using commercially available mechanical cryo-coolers (refrigerators).IV. Progress to dateTIS is developing megapixel HgCdTe arrays sensitive out to 15 microns under the direction of the University of Rochester. As a first step, we have produced arrays with a 13 micron cutoff. The initial measurements indicate very promising performance. We will present the

  10. Defect chemistry and characterization Hg(1-x)Cd(x)Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.; Donovan, J. C.

    1981-01-01

    Iodine doped single crystal samples of mercury cadmium telluride were annealed at temperatures varying from 450 C to 600 C in Hg vapor and quenched to room temperature. Hall effect measurements at 77 K on the crystals cooled to room temperature indicate the samples to be n-type after anneals at high Hg pressures whereas they turn p-type after anneals at low Hg pressures; the electron concentration increases with increase in Hg pressure. The results are explained on the basis that the crystals are saturated with (Hg,Cd)I2, with a fraction of the iodine being present as donor occupying tellurium lattice sites and a fraction being present as acceptors resulting from the iodine on tellurium lattice sites pairing with the doubly ionized native acceptor defects. The solubility of the donor species increases with increase in Hg pressure, whereas that of the acceptor species increases with decrease in Hg pressure. Equilibrium constants for the incorporation of the iodine species as well as the pairing reaction were established.

  11. Defect chemistry and characterization Hg(1-x)Cd(x)Te

    NASA Astrophysics Data System (ADS)

    Vydyanath, H. R.; Donovan, J. C.

    Iodine doped single crystal samples of mercury cadmium telluride were annealed at temperatures varying from 450 C to 600 C in Hg vapor and quenched to room temperature. Hall effect measurements at 77 K on the crystals cooled to room temperature indicate the samples to be n-type after anneals at high Hg pressures whereas they turn p-type after anneals at low Hg pressures; the electron concentration increases with increase in Hg pressure. The results are explained on the basis that the crystals are saturated with (Hg,Cd)I2, with a fraction of the iodine being present as donor occupying tellurium lattice sites and a fraction being present as acceptors resulting from the iodine on tellurium lattice sites pairing with the doubly ionized native acceptor defects. The solubility of the donor species increases with increase in Hg pressure, whereas that of the acceptor species increases with decrease in Hg pressure. Equilibrium constants for the incorporation of the iodine species as well as the pairing reaction were established.

  12. Exploiting the higher specificity of silver amalgamation: selective detection of mercury(II) by forming Ag/Hg amalgam.

    PubMed

    Deng, Li; Ouyang, Xiangyuan; Jin, Jianyu; Ma, Cheng; Jiang, Ying; Zheng, Jing; Li, Jishan; Li, Yinhui; Tan, Weihong; Yang, Ronghua

    2013-09-17

    Heavy metal ion pollution poses severe risks in human health and the environment. Driven by the need to detect trace amounts of mercury, this article demonstrates, for the first time, that silver/mercury amalgamation, combining with DNA-protected silver nanoparticles (AgNPs), can be used for rapid, easy and reliable screening of Hg(2+) ions with high sensitivity and selectivity over competing analytes. In our proposed approach, Hg(2+) detection is achieved by reducing the mercury species to elemental mercury, silver atoms were chosen as the mercury atoms' acceptors by forming Ag/Hg amalgam. To signal fluorescently this silver amalgamation event, a FAM-labeled ssDNA was employed as the signal reporter. AgNPs were grown on the DNA strand that resulted in greatly quenching the FAM fluorescence. Formation of Ag/Hg amalgam suppresses AgNPs growth on the DNA, leading to fluorescence signal increase relative to the fluorescence without Hg(2+) ions, as well as marked by fluorescence quenching. This FAM fluorescence enhancement can be used for detection of Hg(2+) at the a few nanomolar level. Moreover, due to excellent specificity of silver amalgamation with mercury, the sensing system is highly selective for Hg(2+) and does not respond to other metal ions with up to millimolar concentration levels. This sensor is successfully applied to determination of Hg(2+) in tap water, spring water and river water samples. The results shown herein have important implications in the development of new fluorescent sensors for the fast, easy, and selective detection and quantification of Hg(2+) in environmental and biological samples.

  13. Biomonitoring potential of five sympatric Tillandsia species for evaluating urban metal pollution (Cd, Hg and Pb)

    NASA Astrophysics Data System (ADS)

    Sánchez-Chardi, Alejandro

    2016-04-01

    The present study quantifies non essential heavy metals highly toxic for biological systems (Pb, Hg and Cd) in five autochthonous epiphytic plants from Tillandsia genus (T. recurvata, T. meridionalis, T. duratii, T. tricholepis, T. loliacea) according to different traffic levels (reference, low, medium and high polluted sites) in Asunción (Paraguay). The three metals increased in polluted sites following Pb (till 62.99 ppm in T. tricholepis) > Cd (till 1.35 ppm in T. recurvata) > Hg (till 0.36 ppm in T. recurvata) and Pb and Cd levels were directly related to traffic flow. Although the species showed similar bioaccumulation pattern (namely, higher levels of metals in polluted sites), enrichment factors (maximum EF values 37.00, 18.16, and 11.90 for Pb, Hg, and Cd, respectively) reported T. tricholepis as the most relevant bioindicator due to its wide distribution and abundance in study sites, low metal content in control site and high metal contents in polluted sites, and significant correlations with traffic density of Pb and Cd. This study emphasizes the necessity of biomonitoring air pollution in areas out of air monitoring control such as Asunción, where the high levels of metal pollution especially Pb, may represent an increment of risk for the human population inhabiting this urban area.

  14. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite.

    PubMed

    Ghassabzadeh, Hamid; Mohadespour, Ahmad; Torab-Mostaedi, Meisam; Zaheri, Parisa; Maragheh, Mohammad Ghannadi; Taheri, Hossein

    2010-05-15

    The aim of the present work was to investigate the ability of expanded perlite (EP) to remove of silver, copper and mercury ions from aqueous solutions. Batch adsorption experiments were carried out and the effect of pH, adsorbent dosage, contact time and temperature of solution on the removal process has been investigated. The optimum pH for the adsorption was found to be 6.5. Adsorption of these metal ions reached their equilibrium concentration in 120, 240 and 180 min for Ag (I), Cu (II) and Hg (II) ions, respectively. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that adsorption process for these metal ions followed well pseudo-second-order kinetics. Using Langmuir isotherm model, maximum adsorption capacity of EP was found to be 8.46, 1.95 and 0.35 mg/g for Ag (I), Cu (II) and Hg (II) ions, respectively. Finally, the thermodynamic parameters including, the change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) of adsorption were calculated for each metal ion. The results showed that the adsorption of these metal ions on EP was feasible and exothermic at 20-50 degrees C.

  15. Cd, Hg, and Pb Compounds of Benzene-1,3-diamidoethanethiol (BDETH2)

    SciTech Connect

    Zaman,K.; Blue, L.; Huggins, F.; Atwood, D.

    2007-01-01

    Benzene-1,3-diamidoethanethiol (BDETH{sub 2}) is an exceptional precipitant for removing soft heavy metals from water. The present work will detail the bonding arrangement of BDETH{sub 2} to the metals Cd, Hg, and Pb, along with the full characterization data of the BDET-M compounds. It was found that the Hg compound has a linear S-M-S geometry. The characterization data consisted of Mp, EA, IR, Raman, MS, XANES, EXAFS, and solid-state multinuclear NMR.

  16. N-containing Ag(I) and Hg(II) complexes: a new class of antibiotics.

    PubMed

    Sabounchei, Seyyed Javad; Shahriary, Parisa

    2013-01-01

    Several classes of antimicrobial compounds are presently available; microorganism's resistance to these drugs constantly emerges. In order to prevent this serious medical problem, the elaboration of new types of antibacterial agents or the expansion of bioactivity of the naturally known biosensitive compounds is a very interesting research problem. The synthesis and characterization of metal complexes with organic bioactive ligands is one of the promising fields for the search. The biological activities of the metal complexes differ from those of either the ligand or the metal ion. The results obtained thus far have led to the conclusion that structural factors, which govern antimicrobial activities, are strongly dependent on the central metal ion. A review of papers dealing with the Ag(I) and Hg(II) complexes of N donor ligands is presented. These metal complexes of N-chelating ligands have attracted considerable attention because of their interesting physicochemical properties and pronounced biological activities. This review will mainly focus on the preparation procedures and antibacterial properties of free organic ligands and the corresponding complexes. Finally, a research about antimicrobial properties of new Hg(II) complexes with 5-methyl-5-(4-pyridyl)-2,4-imidazolidenedione (L) and various halogen ions, HgL2X2 (X = Cl¯ (49), Br¯ (50), and I¯ (51)), is reported. Noteworthy antimicrobial activities, evaluated by minimum inhibitory concentration, for these complexes were observed.

  17. Structural and optoelectronic properties of Mg substituted ZTe (Z=Zn, Cd and Hg)

    NASA Astrophysics Data System (ADS)

    Khan, Imad; Subhan, Fazle; Ahmad, Iftikhar; Ali, Zahid

    2015-08-01

    Wide band gap semiconductor alloys, MgxZ1-xTe (Z=Zn, Cd and Hg), are investigated over a full range of Mg compositions (0≤x≤1) using density functional theory (DFT). The variation in the lattice constant of MgxZ1-xTe is linear with the composition x, and all these alloys obey Vegrd's law. The CdTe (6.50 Å) and MgTe (6.44 Å) are lattice matched compounds, therefore the lattice constant of MgCdTe decreases slightly with the concentration x, whereas the lattice constant also decreases for MgHgTe but increases for MgZnTe. It is due to the fact that Mg has larger size than Zn and smaller size than Cd and Hg. The band gap of these compounds are calculated using the modified Becke-Johnson (mBJ) exchange potential as LDA and GGA are not effective in producing the experimental band gap of a strongly correlated electron system. The calculated band gaps of these compounds cover the range 0-3.5 eV and are consistent with the experimental band gaps. The band gaps exhibit nonlinear behavior or bowing effect with the change in concentration. The frequency dependent optical properties like dielectric functions, and indices of refraction of these ternary systems are also calculated and discussed.

  18. Cross-Sectional Study of Macrodefects in MBE Dual-Band HgCdTe on CdZnTe

    NASA Astrophysics Data System (ADS)

    Reddy, M.; Lofgreen, D. D.; Jones, K. A.; Peterson, J. M.; Radford, W. A.; Benson, J. D.; Johnson, S. M.

    2013-11-01

    HgCdTe dual-band mid-wave infrared/long-wave infrared focal-plane arrays on CdZnTe are a key component in advanced electrooptic sensor applications. Molecular beam epitaxy (MBE) has been used successfully for growth of dual-band layers on larger CdZnTe substrates. However, the macrodefect density, which is known to reduce the pixel operability and its run-to-run variation, is larger when compared with layers grown on Si substrate. This paper reports the macrodefect density versus size signature of a well-optimized MBE dual-band growth and a cross-sectional study of a macrodefect that represents the most prevalent class using focused ion beam, scanning transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The results show that the macrodefect originates from a void, which in turn is associated with a pit on the CdZnTe substrate.

  19. Investigation of magnetoabsorption at different temperatures in HgTe/CdHgTe quantum-well heterostructures in pulsed magnetic fields

    SciTech Connect

    Platonov, V. V.; Kudasov, Yu. B.; Makarov, I. V.; Maslov, D. A.; Surdin, O. M.; Zholudev, M. S.; Ikonnikov, A. V.; Gavrilenko, V. I.; Mikhailov, N. N.; Dvoretsky, S. A.

    2015-12-15

    The magnetoabsorption in magnetic fields as high as 40 T is investigated at T > 77 K in HgTe/CdHgTe quantum-well heterostructures (d{sub QW} ≈ 8 nm). The spectra reveal two lines associated both with intraband transition from the lower Landau level in the conduction band and with interband transition. It is shown that the band structure in these systems changes from inverted to normal with increasing temperature.

  20. Extending the operating temperature, wavelength and frequency response of HgCdTe heterodyne detectors

    NASA Technical Reports Server (NTRS)

    Spears, D. L.

    1980-01-01

    Near ideal optical heterodyne performance was obtained at GHz IF frequencies in the 10 micrometer wavelength region with liquid nitrogen cooled HgCdTe photodiodes. Heterodyne NEP's as low as 2.7 x 10 to the minus 20th power W/Hz at 100MHz, 5.4 x 10 to the minus 20th power W/Hz at 1.5 GHz, and 9.4 x 19 to the minus 20th power W/Hz at 3 GHz were achieved. Various physical phenomena which occur within a photodiode and affect heterodyne operation were examined in order to assess the feasibility of extending the operating temperature, wavelength, and frequency response of these HgCdTe photomixers.

  1. Development of a HgCdTe photomixer and impedance matched GaAs FET amplifier

    NASA Technical Reports Server (NTRS)

    Shanley, J. F.; Paulauskas, W. A.; Taylor, D. R.

    1982-01-01

    A research program for the development of a 10.6 micron HgCdTe photodiode/GaAs field effect transistor amplifier package for use at cryogenic temperatures (77k). The photodiode/amplifier module achieved a noise equivalent power per unit bandwidth of 5.7 times 10 to the 20th power W/Hz at 2.0 GHz. The heterodyne sensitivity of the HgCdTe photodiode was improved by designing and building a low noise GaAs field effect transistor amplifier operating at 77K. The Johnson noise of the amplifier was reduced at 77K, and thus resulted in an increased photodiode heterodyne sensitivity.

  2. Convective Influence on Radial Segregation During Unidirectional Solidification of the Binary Alloy HgCdTe

    NASA Technical Reports Server (NTRS)

    Watring, D. A.; Gillies, D. C.; Lehoczky, S. L.; Szofran, F. R.; Alexander, H.

    1996-01-01

    In order to simulate the space environment for basic research into the crystal growth mechanism, Hg(0.8)Cd(0.2)Te crystals were grown by the vertical Bridgman-Stockbarger method in the presence of an applied axial magnetic field. The influence of convection, by magneto hydrodynamic damping, on mass transfer in the melt and segregation at the solid-liquid interface was investigated by measuring the axial and radial compositional variations in the grown samples. The reduction of convective mixing in the melt through the application of the magnetic field is found to have a large effect on radial segregation and interface morphology in the grown crystals. Direct comparisons are made with a Hg(0.8)Cd(0.2)Te crystal grown without field and also in the microgravity environment of space during the second United States Microgravity Payload Mission (USMP-2).

  3. HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays

    SciTech Connect

    Yakushev, M. V. Brunev, D. V.; Varavin, V. S.; Vasilyev, V. V.; Dvoretskii, S. A.; Marchishin, I. V.; Predein, A. V.; Sabinina, I. V.; Sidorov, Yu. G.; Sorochkin, A. V.

    2011-03-15

    Results of studies of the molecular beam epitaxial growth of HgCdTe alloys on Si substrates as large as 100 mm in diameter are presented. Optimum conditions for obtaining HgCdTe/Si(310) heterostructures of the device quality for the spectral range of 3-5 {mu}m are determined. The results of measurements and discussion of photoelectric parameters of an infrared photodetector of a format of 320 Multiplication-Sign 256 elements with a step of 30 {mu}m based on a hybrid assembly of a matrix photosensitive cell with a Si multiplexer are presented. A high stability of photodetector parameters to thermocycling from room temperature to liquid-nitrogen temperature is shown.

  4. The structural and electronic properties of amorphous HgCdTe from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Huxian; Chen, Xiaoshuang; Lu, Jianping; Shu, Haibo; Lu, Wei

    2014-01-01

    Amorphous mercury cadmium telluride (a-MCT) model structures, with x being 0.125 and 0.25, are obtained from first-principles calculations. We generate initial structures by computation alchemy method. It is found that most atoms in the network of amorphous structures tend to be fourfold and form tetrahedral structures, implying that the chemical ordered continuous random network with some coordination defects is the ideal structure for a-MCT. The electronic structure is also concerned. The gap is found to be 0.30 and 0.26 eV for a-Hg0.875Cd0.125Te and a-Hg0.75Cd0.25Te model structures, independent of the composition. By comparing with the properties of crystalline MCT with the same composition, we observe a blue-shift of energy band gap. The localization of tail states and its atomic origin are also discussed.

  5. Linear Mode HgCdTe Avalanche Photodiodes for Photon Counting Applications

    NASA Technical Reports Server (NTRS)

    Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry

    2015-01-01

    An overview of recent improvements in the understanding and maturity of linear mode photon counting with HgCdTe electron-initiated avalanche photodiodes is presented. The first HgCdTe LMPC 2x8 format array fabricated in 2011 with 64 micron pitch was a remarkable success in terms of demonstrating a high single photon signal to noise ratio of 13.7 with an excess noise factor of 1.3-1.4, a 7 ns minimum time between events, and a broad spectral response extending from 0.4 micron to 4.2 micron. The main limitations were a greater than 10x higher false event rate than expected of greater than 1 MHz, a 5-7x lower than expected APD gain, and a photon detection efficiency of only 50% when greater than 60% was expected. This paper discusses the reasons behind these limitations and the implementation of their mitigations with new results.

  6. Comparative performance of HgCdTe photodiodes for heterodyne application

    NASA Technical Reports Server (NTRS)

    Kowitz, H. R.

    1980-01-01

    The use of photodiodes as optical photomixers in laser heterodyne spectroscopy systems is discussed. The quantum efficiency of the photodiodes is reported with the emphasis on its effect on the system's signal to noise ratio. The measurement techniques used to determine photodiode dc and heterodyne quantum efficiencies are described. The theory behind the measurements as well as actual measurements data for two HgCdTe photodiodes are presented.

  7. Minimizing Reflectivity by Etching Microstructures in Mercury Cadmium Telluride (HgCdTe)

    DTIC Science & Technology

    2013-02-01

    untreated material. 15. SUBJECT TERMS HgCdTe, Microstructures 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...mismatch), which is first grown on a silicon (Si) substrate. The MCT IR focal plane array (FPA) with a Si substrate is then interfaced to a Si...dimensions of the microstructures, beyond the limit of resolution, the effective index of refraction is a weighted average of the fill factor of the two

  8. Study to improve the low frequency noise characteristics of (Hg,Cd)Te detectors

    NASA Technical Reports Server (NTRS)

    Broudy, R. M.

    1973-01-01

    Efforts made to identify and reduce the sources of l/f noise in 15 micron n-type (Hg,Cd)Te detectors operating at 77 K are reported. The investigation covered: evaluation of the influence of material properties and detector processing techniques, determination of the relative importance of surfaces, volumes, regions, and contracts, and generation of theoretical models for guidance of the experimental work.

  9. Hg(1-x)Cd(x)Te-detectors and hybrid IR-CCD's

    NASA Astrophysics Data System (ADS)

    Maier, H.; Conzelmann, H.; Geibel, C.; Paehler, G.; Schmidt, B.

    An account is given of the parameters that have been found to be critical in the manufacture of photovoltaic detectors in the Hg(1-x)Cd(x)Te system, as well as in their coupling to CCDs for the production of linear thermal detector arrays useful in the 8-12 micron atmospheric window. The critical processing step for the sake of detector performance is surface passivation. Attention is given to a linear staggered-64-element array.

  10. MBE based HgCdTe APDs and 3D LADAR sensors

    NASA Astrophysics Data System (ADS)

    Jack, Michael; Asbrock, Jim; Bailey, Steven; Baley, Diane; Chapman, George; Crawford, Gina; Drafahl, Betsy; Herrin, Eileen; Kvaas, Robert; McKeag, William; Randall, Valerie; De Lyon, Terry; Hunter, Andy; Jensen, John; Roberts, Tom; Trotta, Patrick; Cook, T. Dean

    2007-04-01

    Raytheon is developing HgCdTe APD arrays and sensor chip assemblies (SCAs) for scanning and staring LADAR systems. The nonlinear characteristics of APDs operating in moderate gain mode place severe requirements on layer thickness and doping uniformity as well as defect density. MBE based HgCdTe APD arrays, engineered for high performance, meet the stringent requirements of low defects, excellent uniformity and reproducibility. In situ controls for alloy composition and substrate temperature have been implemented at HRL, LLC and Raytheon Vision Systems and enable consistent run to run results. The novel epitaxial designed using separate absorption-multiplication (SAM) architectures enables the realization of the unique advantages of HgCdTe including: tunable wavelength, low-noise, high-fill factor, low-crosstalk, and ambient operation. Focal planes built by integrating MBE detectors arrays processed in a 2 x 128 format have been integrated with 2 x 128 scanning ROIC designed. The ROIC reports both range and intensity and can detect multiple laser returns with each pixel autonomously reporting the return. FPAs show exceptionally good bias uniformity <1% at an average gain of 10. Recent breakthrough in device design has resulted in APDs operating at 300K with essentially no excess noise to gains in excess of 100, low NEP <1nW and GHz bandwidth. 3D LADAR sensors utilizing these FPAs have been integrated and demonstrated both at Raytheon Missile Systems and Naval Air Warfare Center Weapons Division at China Lake. Excellent spatial and range resolution has been achieved with 3D imagery demonstrated both at short range and long range. Ongoing development under an Air Force Sponsored MANTECH program of high performance HgCdTe MBE APDs grown on large silicon wafers promise significant FPA cost reduction both by increasing the number of arrays on a given wafer and enabling automated processing.

  11. Monte Carlo Treatment of Displacement Damage in Bandgap Engineered HgCdTe Detectors

    NASA Technical Reports Server (NTRS)

    Fodness, Bryan C.; Marshall, Paul W.; Reed, Robert A.; Jordan, Thomas M.; Pickel, James C.; Jun, Insoo; Xapsos, Michael A.; Burke, Edward A.

    2003-01-01

    The conclusion are: 1. Description of NIEL calculation for short, mid, and longwave HgCdTe material compositions. 2. Full recoil spectra details captured and analyzed Importance of variance in high Z materials. 3. Can be applied directly to calculate damage distributions in arrays. 4. Future work will provide comparisons of measured array damage with calculated NIEL and damage energy distributions. 5. Technique to assess the full recoil spectrum behavior is extendable to other materials.

  12. HgCdTe photomixers for CO2 laser radar systems

    NASA Technical Reports Server (NTRS)

    Bratt, Peter R.

    1992-01-01

    The Santa Barbara Research Center has developed a variety of high speed HgCdTe photodetectors for use in CO2 laser radar systems. These detectors have outstanding performance and can be made available in production quantities. Many of them have been employed in a variety of systems applications over the past ten years. In this paper, we briefly describe the detector technology, summarize the state-of-the-art, and indicate some practical applications.

  13. Fast, high-yield synthesis of amphiphilic Ag nanoclusters and the sensing of Hg(2+) in environmental samples.

    PubMed

    Xia, Nan; Yang, Jie; Wu, Zhikun

    2015-06-14

    We report the high-yield (74%) synthesis of Ag30(Capt)18 (abbreviated as Ag30) in a very time-saving fashion (half an hour). The cluster composition was determined by high-resolution mass spectrometry combined with TG analysis, and the structure was probed by 1D and 2D NMR. Interestingly, the nanoclusters can dissolve in water and methanol, as well as in most organic solvents such as ethanol, acetone, acetonitrile, dichloromethane and ethyl acetate with the assistance of acetic acid. Such a good solubility in a range of various polar solvents was not reported previously in nanoclusters' research and is important for applications. An important result from this work is that Ag30 can sense a low concentration of Hg(2+) in environmental samples (including lake water and soil solution), indicating that Ag30 can be a potential colorimetric probe for Hg(2+). The sensing mechanism was revealed to be related to the anti-galvanic reduction process.

  14. Thermophysical Properties and Structural Transition of Hg(0.8)Cd(0.2)Te Melt

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.; Lehoczky, S. L.

    2004-01-01

    Thermophysical properties, namely, density, viscosity, and electrical conductivity of Hg(sub o.8)Cd(sub 0.2)Te melt were measured as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were simultaneously determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(sub o.8)Cd(sub 0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(sub 0.8)Cd(0.2)Te melt as the temperature was decreased from 1090 K to the liquidus temperature.

  15. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    NASA Technical Reports Server (NTRS)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  16. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    NASA Technical Reports Server (NTRS)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  17. Candidate 10 micron HgCdTe arrays for the NEOCam space mission

    NASA Astrophysics Data System (ADS)

    McMurtry, Craig W.; Dorn, Meghan; Cabrera, Mario S.; Pipher, Judith L.; Forrest, William J.; Mainzer, Amy K.; Wong, Andre

    2016-08-01

    The Near Earth Object Camera (NEOCam, Mainzer et al. 2015) is one of five NASA Discovery Class mission experiments selected for Phase A: down-select to one or two experiments will take place late in 2016. NEOCam will survey the sky in search of asteroids and comets, particularly those close to the Earth's orbit. The NEOCam infrared telescope will have two infrared (IR) channels; one covering 4 to 5 microns, and one covering 6-10 microns. Both IR cameras will use multiple 2Kx2K pixel format HAWAII-2RG arrays with different cutoff wavelength HgCdTe detectors from Teledyne Imaging Sensors. Past development work by the University of Rochester with Teledyne Imaging Sensors and JPL (McMurtry et al. 2013, Dorn et al. 2016) focused upon bringing the 10 micron HgCdTe detector technology up to NASA TRL 6+. This work extends that development program to push the format from 1Kx1K to the larger 2Kx2K pixel array. We present results on the first 2Kx2K candidate 10 micron cutoff HgCdTe arrays, where we measured the dark current, read noise, and total noise.

  18. Density, Electrical Conductivity and Viscosity of Hg(0.8)Cd(0.2)Te Melt

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The density, viscosity, and electrical conductivity of Hg(0.8)Cd(0.2)Te melt were measured as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(0.8)Cd(0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(0.8)Cd(0.2)Te melt as the temperature was decreased to below 1090 K

  19. Interactions between photoexcited NIR emitting CdHgTe quantum dots and graphene oxide

    NASA Astrophysics Data System (ADS)

    Jagtap, Amardeep M.; Varade, Vaibhav; Konkena, Bharathi; Ramesh, K. P.; Chatterjee, Abhijit; Banerjee, Arup; Pendyala, Naresh Babu; Koteswara Rao, K. S. R.

    2016-02-01

    Hydrothermally grown mercury cadmium telluride quantum dots (CdHgTe QDs) are decorated on graphene oxide (GO) sheets through physisorption. The structural change of GO through partial reduction of oxygen functional groups is observed with X-ray photoelectron spectroscopy in GO-QDs composites. Raman spectroscopy provides relatively a small change (˜1.1 times) in D/G ratio of band intensity and red shift in G band from 1606 cm-1 to 1594 cm-1 in GO-CdHgTe QDs (2.6 nm) composites, which indicates structural modification of GO network. Steady state and time resolved photoluminescence (PL) spectroscopy shows the electronic interactions between photoexcited near infrared emitting CdHgTe QDs and GO. Another interesting observation is PL quenching in the presence of GO, and it is quite effective in the case of smaller size QDs (2.6 nm) compared to the larger size QDs (4.2 nm). Thus, the observed PL quenching is attributed to the photogenerated electron transfer from QDs to GO. The photoexcited electron transfer rate decreases from 2.2 × 109 to 1.5 × 108 s-1 with increasing particle size from 2.6 to 4.2 nm. Photoconductivity measurements on QDs-GO composite devices show nearly 3 fold increase in the current density under photo-illumination, which is a promising aspect for solar energy conversion and other optoelectronic applications.

  20. The optoelectronic properties of a solar energy material: Ag2HgSnS4

    NASA Astrophysics Data System (ADS)

    Hadjri Mebarki, S.; Amrani, B.; Driss Khodja, K.; Khelil, A.

    2017-03-01

    We used an ab initio full potential-linearized augmented plane wave technique within the density functional theory to study the structural and optoelectronic properties of Ag2HgSnS4 in a wurtzite-stannite phase. The exchange correlation effects are included through the generalized gradient approximation and modified Becke-Johnson exchange potential. Various physical quantities, such as lattice parameter, bulk modulus, band structure and density of states, are given. Also, we have presented the results of the effective mass for the electrons in the CB and the holes in the BV. We show that the modified Becke-Johnson exchange potential can predict the energy band gap in better agreement with the experiment. In addition the dielectric function and energy-loss function are presented for the energy range of 0-26 eV. The electronic and optical properties indicate that this compound can be successfully used in optoelectronic devices

  1. Laser drilling induced electrical type inversion in vacancy-doped p-type HgCdTe

    NASA Astrophysics Data System (ADS)

    Zha, F. X.; Zhou, S. M.; Ma, H. L.; Yin, F.; Zhang, B.; Li, T. X.; Shao, J.; Shen, X. C.

    2008-10-01

    Femtosecond laser was used to generate micrometer-sized holes in vacancy-doped p type mercury cadmium telluride (HgCdTe). Characterization by laser beam induced current (LBIC) microscope shows obvious electrical type inversion around each hole. Both the intensity of the LBIC signals and the spatial dimension of the type-inversed regions are well comparable with those of n-on-p HgCdTe photodiodes formed by the conventional ion milling technique. The observation demonstrates the potential of laser drilling to be a new tool in fabricating HgCdTe photodiode arrays.

  2. Development of a (Hg, Cd)Te photodiode detector, Phase 2. [for 10.6 micron spectral region

    NASA Technical Reports Server (NTRS)

    1972-01-01

    High speed sensitive (Hg,Cd)Te photodiode detectors operating in the 77 to 90 K temperature range have been developed for the 10.6 micron spectral region. P-N junctions formed by impurity (gold) diffusion in p-type (Hg, Cd) Te have been investigated. It is shown that the bandwidth and quantum efficiency of a diode are a constant for a fixed ratio of mobility/lifetime ratio of minority carriers. The minority carrier mobility and lifetime uniquely determine the bandwidth and quantum efficiency and indicate the shallow n on p (Hg,Cd) Te diodes are preferable as high performance, high frequency devices.

  3. HgCdTe for NASA EOS missions and detector uniformity benchmarks

    NASA Technical Reports Server (NTRS)

    Norton, Paul R.

    1990-01-01

    Important NASA Earth Observing System (EOS) missions, Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectrometer (MODIS-N), which require detector spectral response in the range of 14 to 17 microns at medium background flux levels and operation in the range of temperatures between 65 to 95 K, will be flown beginning in the next few years. Currently, a prime candidate detector technology for these missions is trapping-mode photoconductive HgCdTe devices. These devices can be tailored to the exact cutoff wavelengths required by those missions, and thus offer the performance advantages of an intrinsic detector which is ideally matched to the mission wavelength. Under the long wavelength-background-temperature conditions of these EOS missions, any detector will at best be thermal generation-recombination noise limited. Photoconductive devices are generally preferred under these circumstances, since at elevated temperatures their performance degrades with n(sub i) while for photovoltaic detectors performance degrades as n sub i(exp 2) n sub i is the intrinsic carrier concentration which is a function of alloy composition and temperature, but not doping. Very high performance trapping-mode photoconductive HgCdTe detectors have been developed which can be reproducibly fabricated. Detectivity (D asterisk) at 80K and 16 micron cutoff wavelength in excess of 10(exp 11) Jones has been measured for these devices. Power dissipation is at least two orders of magnitude less than conventional HgCdTe photoconductors - on the order of 0.12 W/cm(exp 2) compared with 12 W/cm(exp 2). EOS missions define thermal noise limited conditions for the long wavelength operating bands. Trapping-mode photoconductive HgCdTe detectors are linear under such conditions and responsivity is independent of background flux. At lower temperatures or high flux conditions in which background flux limits detector performance, trapping-mode detectors have a responsivity which varies with

  4. Ultrasensitive electrochemical sensor for Hg(2+) by using hybridization chain reaction coupled with Ag@Au core-shell nanoparticles.

    PubMed

    Li, Zongbing; Miao, Xiangmin; Xing, Ke; Peng, Xue; Zhu, Aihua; Ling, Liansheng

    2016-06-15

    A novel electrochemical biosensor for Hg(2+) detection was reported by using DNA-based hybridization chain reaction (HCR) coupled with positively charged Ag@Au core-shell nanoparticles ((+)Ag@Au CSNPs) amplification. To construct the sensor, capture probe (CP ) was firstly immobilized onto the surface of glass carbon electrode (GCE). In the presence of Hg(2+), the sandwiched complex can be formed between the immobilized CP on the electrode surface and the detection probe (DP) modified on the gold nanoparticles (AuNPs) based on T-Hg(2+)-T coordination chemistry. The carried DP then opened two ferrocene (Fc) modified hairpin DNA (H1 and H2) in sequence and propagated the happen of HCR to form a nicked double-helix. Numerous Fc molecules were formed on the neighboring probe and produced an obvious electrochemical signal. Moreover, (+)Ag@Au CSNPs were assembly onto such dsDNA polymers as electrochemical signal enhancer. Under optimal conditions, such sensor presents good electrochemical responses for Hg(2+) detection with a detection limit of 3.6 pM. Importantly, the methodology has high selectivity for Hg(2+) detection.

  5. Experimental study of HgCdTe imaging sensor irradiated by pulse CO2 laser

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Wang, Qingsheng; Hu, Hongtao; Fang, Xiaodong; Nie, Jinsong

    2016-10-01

    The damages of TEA-CO2 laser to HgCdTe imaging sensor are researched experimentally and theoretically. The shadows, cracks and dark line are observed. There is a gap between photosensitive layer and CdZnTe which decreases light transmittance, so that the shadows occur. It shows that the crack damages begin from photosensitive layer. The sensor is irradiated by pulse laser, the absorptivity of photosensitive layer is strong, sharp temperatures fluctuations inside the sensor, leading to stress. With the stress increased, the cracks are observed on the surface of the detector. Cracked the surface of the substrate, and effective transmission reduced, which caused gray pixel response decline. The dark line in image occurs several times because Hg atoms separate out from the detector and gather together at the Si-COMS which makes a short circuit between silicon substrate and signal choice line. The volatility of Hg makes the short circuit is unstable, resulting in the dark line repeated in the output image, but the short circuit occurs by chance.

  6. Structural and optical properties of core–shell Ag{sub 2}S/HgS nanostructures

    SciTech Connect

    Basyach, Priyanka; Choudhury, Amarjyoti

    2013-07-15

    Graphical abstract: - Highlights: • Core–shell Ag{sub 2}S/HgS nanostructures are successfully synthesized. • The particle size and the structure were confirmed through TEM images. • The absorbance analysis reveals red shift with increasing shell concentration. • A transition from TYPE 1 to TYPE 2 core–shell nanostructure is observed. - Abstract: Here we report on a two-step synthesis route for fabrication of core–shell Ag{sub 2}S/HgS nanostructures. Nanoscale Ag{sub 2}S semiconductors are prepared by a standard redox reaction using AgNO{sub 3} and CS{sub 2} as the reactants in PVP. HgS layers are developed on Ag{sub 2}S cores through S-S bonding at the interface separating the two systems. The properties of these core–shell nanostructures are studied via various spectroscopic and microscopic tools like UV–Vis absorption spectra, photoluminescence spectra, X-ray diffraction pattern and transmission electron microscopic images. Change in optical properties is observed while varying the shell thickness in the sample. A detailed study on the luminescence properties reveal transition from TYPE 1 to TYPE 2 core–shell nanostructures is observed with increasing shell thickness.

  7. Characterization of HgCdTe Films Grown on Large-Area CdZnTe Substrates by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Arkun, F. Erdem; Edwall, Dennis D.; Ellsworth, Jon; Douglas, Sheri; Zandian, Majid; Carmody, Michael

    2017-03-01

    Recent advances in growth of Hg1-x Cd x Te films on large-area (7 cm × 7.5 cm) CdZnTe (CZT) substrates is presented. Growth of Hg1-x Cd x Te with good uniformity on large-area wafers is achieved using a Riber 412 molecular beam epitaxy (MBE) tool designed for growth of Hg1-x Cd x Te compounds. The reactor is equipped with conventional CdTe, Te, and Hg sources for achieving uniform exposure of the wafer during growth. The composition of the Hg1-x Cd x Te compound is controlled in situ by employing a closed-loop spectral ellipsometry technique to achieve a cutoff wavelength (λ co) of 14 μm at 78 K. We present data on the thickness and composition uniformity of films grown for large-format focal-plane array applications. The composition and thickness nonuniformity are determined to be <1% over the area of a 7 cm × 7.5 cm wafer. The films are further characterized by Fourier-transform infrared spectroscopy, optical microscopy, and Hall measurements. Additionally, defect maps show the spatial distribution of defects generated during the epitaxial growth of the Hg1-x Cd x Te films. Microdefect densities are in the low 103 cm-2 range, and void defects are below 500 cm-2. Dislocation densities less than 5 × 105 cm-2 are routinely achieved for Hg1-x Cd x Te films grown on CZT substrates. HgCdTe 4k × 4k focal-plane arrays with 15 μm pitch for astronomical wide-area infrared imagers have been produced using the recently developed MBE growth process at Teledyne Imaging Sensors.

  8. Growth and characterization of Hg(1-x)Cd(x)Se alloys

    NASA Technical Reports Server (NTRS)

    Andrews, R. N.; Szofran, F. R.; Lehoczky, S. L.

    1988-01-01

    A detailed evaluation of the influence of growth conditions on the radial and axial compositional variations in directionally solidified Hg(1-x)Cd(x)Se alloys was performed. The measured axial compositional profiles were fitted to theoretical profiles to determine the effective solute (CdSe) diffusion coefficient (D) for the Hg(1-x)Cd(x)Se system. The value for D was estimated to be 3.0 + or - 0.5 x 10 to the -5th sq cm/s and did not appear to be significantly affected by the rate of crystal growth. The axial crystal uniformity was shown to be highly growth-rate dependent, with the faster growth rates producing crystals of more uniform composition in the axial direction. The magnitude of the radial variations was also shown to be highly growth-rate dependent, with the slower growth rates producing crystals of greater radial uniformity. This translation rate dependence of the radial uniformity is discussed in terms of lateral solute diffusion and convective interfacial fluid flows.

  9. Persistent photoconductivity of amorphous Hg0.78Cd0.22Te:In films

    NASA Astrophysics Data System (ADS)

    Lianjie, Yu; Yuhui, Su; Yanli, Shi; Xiongjun, Li; Weiyan, Zhao; Qi, Ma; Yunjian, Tai; Peng, Zhao

    2016-10-01

    The persistent photoconductivity (PPC) of amorphous Hg0.78Cd0.22Te: In films has been studied under illumination by super-bandgap light (a He-Ne laser, hv = 1.96 eV, 30 mW/cm2) and sub-bandgap light (1000 K Blackbody source, the largest photon energies hv p = 0.42 eV, 8.9 mW/cm2) in the range of 80-300 K. The persistent photoconductivity effect increases with increase in illumination intensity and illumination time. However, it decreases with increase in working temperature. The non-exponential decay of photoconductivity implies the presence of continuous distribution of defect states in amorphous Hg0.78Cd0.22Te: In films. These results indicate that the decay of photoconductivity is not governed by the carrier trapped in the intrinsic defects, but it may be due to light-induced defects under light illumination. Project supported by the Natural Science Foundation of Yunnan Province (No. 2008CD176).

  10. High-Performance MWIR HgCdTe on Si Substrate Focal Plane Array Development

    NASA Astrophysics Data System (ADS)

    Bommena, R.; Ketharanathan, S.; Wijewarnasuriya, P. S.; Dhar, N. K.; Kodama, R.; Zhao, J.; Buurma, C.; Bergeson, J. D.; Aqariden, F.; Velicu, S.

    2015-09-01

    The development of low noise-equivalent differential temperature (NEDT), high-operability midwave infrared (MWIR) focal plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates is reported. High-quality n-type MWIR HgCdTe layers with a cutoff wavelength of 4.90 μm at 77 K and a carrier concentration of 1-2 × 1015 cm-3 were grown on CdTe/Si substrates by MBE. Highly uniform composition and thickness over 3-inch areas were demonstrated, and low surface defect densities (voids ~5 × 102 cm-2, micro-defects ~5 × 103 cm-2) and etch pit density (~3.5 × 106 cm-2) were measured. This material was used to fabricate 320 × 256, 30 μm pitch FPAs with planar device architecture; arsenic implantation was used to achieve p-type doping. Radiometric and noise characterization was also performed. A low NEDT of 13.8 m K at 85 K for a 1 ms integration time with f/#2 optics was measured. The NEDT operability was 99% at 120 K with a mean dark current noise of 8.14 × 10-13 A/pixel. High-quality thermal images were obtained from the FPA up to a temperature of 150 K.

  11. 6-Diphenylphosphinoacenaphth-5-yl-mercurials as ligands for d(10) metals. Observation of closed-shell interactions of the type Hg(II)···M; M = Hg(II), Ag(I), Au(I).

    PubMed

    Hupf, Emanuel; Lork, Enno; Mebs, Stefan; Beckmann, Jens

    2015-02-16

    The salt metathesis reaction of ArLi with HgCl2 produced Ar2Hg (1, Ar = 6-Ph2P-Ace-5), which underwent complex formation with d(10)-configurated transition metal chlorides and triflates to give the complexes 1·HgCl2, 1·Hg(O3SCF3)2, 1·AgCl, 1·Ag(O3SCF3), [1·Ag(NCMe)2](O3SCF3), 1·AuCl, and [1·Au](O3SCF3) comprising significant metallophilic interactions between Hg(II) and Hg(II), Ag(I), and Au(I), respectively. The transmetalation reaction of ArSnBu3 with HgCl2 afforded ArHgCl (2) that also forms a complex with additional HgCl2, namely, 2·HgCl2, which however lacks metallophilic interactions. Compounds 2 and 1·HgCl2 possess the same elemental composition and can be interconverted in solution by choice of the solvent. In the presence of tetrahydrothiophene (tht), the complexes 1·AuCl and [1·Au](O3SCF3) underwent rearrangement into the Au(III) cation [cis-Ar2Au](+) ([3](+), which was isolated as Cl(-) and (O3SCF3)(-) salts) and elemental Hg. The reaction of 1·Hg(O3SCF3)2 with ArH produced the complex ArHg(ArH)(O3SCF3) (4). The metallophilic interactions are theoretically analyzed by a set of real-space bonding indicators derived from the atoms-in-molecules (AIM) and electron localizability indicator (ELI) space-partitioning schemes.

  12. Dry etched SiO2 Mask for HgCdTe Etching Process

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.

    2016-09-01

    A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.

  13. The heat of formation of Mercury vacancies in Hg(0.8)Cd(0.2)Te

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.; Trivedi, S. B.; Whiteside, R. C.; Palosz, W.

    1986-01-01

    A modified mass loss measurement technique has been employed for the first time for the direct in situ determination of vacancy concentrations in Hg(0.8)Cd(0.2)Te at elevated temperatures. This technique can also be used to establish the pressure-temperature phase diagram for this type of system. The derived mean value for the heat of formation of mercury vacancies in the above alloy is 0.43 eV. Theoretical considerations concerning the vacancy formation in HgTe and in Hg(0.8)Cd(0.2)Te are in qualitative agreement with the experimental value.

  14. Conceptual design and applications of HgCdTe infrared photodiodes for heterodyne systems

    NASA Technical Reports Server (NTRS)

    Sirieix, M. B.; Hofheimer, H.

    1980-01-01

    The significance of HgCdTe photodiodes are discussed relative to their existance in heterodyne detection systems operating in the 9 to 11 micrometer CO2 laser wavelength region. Their successful fabrication as well as the physical properties of the materials are described. The implementation of controlled industrial processes are reported with emphasis on the yield of predictable and repeatable detector characteristics to the discriminating systems, demands for high cutoff frequencies, quantum efficiency, and reliability. The most salient production steps and diode characteristics are presented. Measured results from production units are also given.

  15. Relativistic M-subshell radiationless transition probabilities and energies for Zn, Cd and Hg

    SciTech Connect

    Sampaio, J.M.; Parente, F.; Indelicato, P.; Marques, J.P.

    2014-09-15

    Theoretical calculations of radiationless transition probabilities and energies for M-subshell vacancies in Zn, Cd, and Hg are tabulated using the Dirac–Fock method. Transition probabilities between an initial vacancy state and a final two-vacancies state are presented for each initial and final atomic angular momentum quantum number. Calculations were performed in the single configuration approach with the Breit interaction, self-energy and (Uehling) vacuum polarization corrections included in the self-consistent method. Higher-order retardation corrections and QED effects were also included as perturbations.

  16. Next-generation performance of SAPHIRA HgCdTe APDs

    NASA Astrophysics Data System (ADS)

    Atkinson, Dani E.; Hall, Donald N. B.; Baker, Ian M.; Goebel, Sean B.; Jacobson, Shane M.; Lockhart, Charles; Warmbier, Eric A.

    2016-08-01

    We present the measured characteristics of the most recent iteration of SAPHIRA HgCdTe APD arrays, and with suppressed glow show them to be capable of a baseline dark current of 0:03e-/s. Under high bias voltages the device also reaches avalanche gains greater than 500. The application of a high temperature anneal during production shows great improvements to cosmetic performance and moves the SAPHIRA much closer to being science grade arrays. We also discuss investigations into photon counting and ongoing telescope deployments of the SAPHIRA with UH-IfA.

  17. Extended short wavelength infrared HgCdTe detectors on silicon substrates

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Hansel, D.; Mukhortova, A.; Chang, Y.; Kodama, R.; Zhao, J.; Velicu, S.; Aqariden, F.

    2016-09-01

    We report high-quality n-type extended short wavelength infrared (eSWIR) HgCdTe (cutoff wavelength 2.59 μm at 77 K) layers grown on three-inch diameter CdTe/Si substrates by molecular beam epitaxy (MBE). This material is used to fabricate test diodes and arrays with a planar device architecture using arsenic implantation to achieve p-type doping. We use different variations of a test structure with a guarded design to compensate for the lateral leakage current of traditional test diodes. These test diodes with guarded arrays characterize the electrical performance of the active 640 × 512 format, 15 μm pitch detector array.

  18. Extensive study of potential harmful elements (Ag, As, Hg, Sb, and Se) in surface sediments of the Bohai Sea, China: Sources and environmental risks.

    PubMed

    Li, Li; Cui, Jingjing; Liu, Jihua; Gao, Jingjing; Bai, Yazhi; Shi, Xuefa

    2016-12-01

    This study analyzed 405 surface sediment samples, obtained from across the Bohai Sea, for concentrations of five potentially harmful elements (Ag, As, Hg, Sb, and Se) and several ancillary parameters (Al, Fe, Mn, total organic carbon (TOC), and grain size). Statistically, the spatial distributions of these elements were correlated positively with Al, Fe, TOC, and grain size, indicating natural sources for these elements or common accumulation mechanisms. The assessment of potential environmental risk with empirical sediment quality guidelines showed that a significant proportion of the samples had As and Sb concentrations that exceeded the effects range low (ERL) or T20 values in the Bohai Sea, indicating the potential for adverse biological effects. However, the assessment results differed when using evaluation methods that considered background values. Based on the geoaccumulation index (Igeo), Hg and Ag were found to have the highest percentages (35% and 60%, respectively) in samples that were moderately contaminated. The estimated contamination degree (Cd) suggested higher contamination levels for the entire area, with 69% of the samples being moderately contaminated. Generally, except for some local hotspots, such as Jinzhou Bay, the contamination levels of these elements in the Bohai Sea were established as slight to moderate. Samples from the Jinzhou Bay area had concentrations that were 10-100 times higher than in the rest of the Bohai Sea, indicating severe contamination.

  19. Comparison of Measured Leakage Current Distributions with Calculated Damage Energy Distributions in HgCdTe

    NASA Technical Reports Server (NTRS)

    Marshall, C. J.; Ladbury, R.; Marshall, P. W.; Reed, R. A.; Howe, C.; Weller, B.; Mendenhall, M.; Waczynski, A.; Jordan, T. M.; Fodness, B.

    2006-01-01

    This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distribution were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [I]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Car10 code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. The nuclear elastic component (also calculated using the MCNPX) has a negligible effect on the shape of the damage distribution. The Coulombic contribution was calculated using MRED [3,4], a Geant4 [4,5] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.

  20. Comparison of Measured Dark Current Distributions with Calculated Damage Energy Distributions in HgCdTe

    NASA Technical Reports Server (NTRS)

    Marshall, C. J.; Marshall, P. W.; Howe, C. L.; Reed, R. A.; Weller, R. A.; Mendenhall, M.; Waczynski, A.; Ladbury, R.; Jordan, T. M.

    2007-01-01

    This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distributions were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [1]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Carlo code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. While the nuclear elastic component (also calculated using the MCNPX) contributes only a small fraction of the total nonionizing damage energy, its inclusion in the shape of the damage across the array is significant. The Coulombic contribution was calculated using MRED [3-5], a Geant4 [4,6] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.

  1. Performance of science grade HgCdTe H4RG-15 image sensors

    NASA Astrophysics Data System (ADS)

    Zandian, Majid; Farris, Mark; McLevige, William; Edwall, Dennis; Arkun, Erdem; Holland, Eric; Gunn, James E.; Smee, Stephen; Hall, Donald N. B.; Hodapp, Klaus W.; Shimono, Atsushi; Tamura, Naoyuki; Carmody, Micheal; Auyeung, John; Beletic, James W.

    2016-07-01

    We present the test results of science grade substrate-removed 4K×4K HgCdTe H4RG-15 NIR 1.7 μm and SWIR 2.5 μm sensor chip assemblies (SCAs). Teledyne's 4K×4K, 15 μm pixel pitch infrared array, which was developed for the era of Extremely Large Telescopes, is first being used in new instrumentation on existing telescopes. We report the data on H4RG-15 arrays that have achieved science grade performance: very low dark current (<0.01 e-/pixel/sec), high quantum efficiency (70-90%), single CDS readout noise of 18 e-, operability >97%, total crosstalk <1.5%, well capacity >70 ke-, and power dissipation less than 4 mW. These SCAs are substrate-removed HgCdTe which simultaneously detect visible and infrared light, enabling spectrographs to use a single SCA for Visible-IR sensitivity. Larger focal plane arrays can be constructed by assembling mosaics of individual arrays.

  2. A New nBn IR Detection Concept Using HgCdTe Material

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Boulard, F.; Ferron, A.; Ballet, Ph.; Hassis, W.

    2015-09-01

    This paper presents a new HgCdTe-based heterostructure to perform quantum infrared detection. The structure is based on the unipolar barrier concept, introduced by White in the 1980s for HgCdTe. The driving concept is the use of a large gap barrier layer to impede the flow of majority carriers (electrons on the conduction band in the case of n-type material) while facilitating the transport of minority (photo) carriers (holes on the valence band). The issue encountered here is the formation of a small potential barrier on the valence band, blocking photocarriers and therefore killing the quantum efficiency. The idea is to optimize the structure with an asymmetric barrier: abrupt on the contact side to efficiently block the majority carriers, and gradual on the absorption layer side to plane down the remaining potential barrier for the collected photocarriers. The concept has been studied by finite element modeling simulation and showed promising results. An optimal design has been identified in the middle wave band and molecular beam epitaxy layers have been grown then processed. First experimental characterization of the electro-optical properties of such structures showed promising features: 60% quantum efficiency and low turn-on voltage have been measured on single pixels.

  3. Thermal cycling reliability of indirect hybrid HgCdTe infrared detectors

    NASA Astrophysics Data System (ADS)

    Chen, Xing; He, Kai; Wang, Jian-xin; Zhang, Qin-yao

    2013-09-01

    Thermal cycling reliability is one of the most important issues whether the HgCdTe infrared focal plane array detectors can be applied to both military and civil fields. In this paper, a 3D finite element model for indirect hybrid HgCdTe infrared detectors is established. The thermal stress distribution and thermally induced warpage of the detector assembly as a function of the distance between the detector chip and Si-ROIC, the thickness and the materials properties of electrical lead board in cryogenic temperature are analyzed. The results show that all these parameters have influences on the thermal stress distribution and warpage of the detector assembly, especially the coefficient of thermal expansion(CTE) of electrical lead board. The thermal stress and warpage in the assembly can be avoided or minimized by choosing the appropriate electrical lead board. Additionally, the warpage of some indirect hybrid detectors assembly samples is measured in experiment. The experimental results are in good agreement with the simulation results, which verifies that the results are calculated by finite element method are reasonable.

  4. Development of a P-I-N HgCdTe photomixer for laser heterodyne spectrometry

    NASA Technical Reports Server (NTRS)

    Bratt, Peter R.

    1987-01-01

    An improved HgCdTe photomixer technology was demonstrated employing a p-i-n photodiode structure. The i-region was near intrinsic n-type HgCdTe; the n-region was formed by B+ ion implantation; and the p-region was formed either by a shallow Au diffusion or by a Pt Schottky barrier. Experimental devices in a back-side illuminated mesa diode configuration were fabricated, tested, and delivered. The best photomixer was packaged in a 24-hour LN2 dewar along with a cooled GaAs FET preamplifier. Testing was performed by mixing black-body radiation with a CO2 laser beam and measuring the IF signal, noise, and signal-to-noise ratio in the GHz frequency range. Signal bandwidth for this photomixer was 1.3 GHz. The heterodyne NEP was 4.4 x 10 to the -20 W/Hz out to 1 GHz increasing to 8.6 x 10 to the -10 W/Hz at 2 GHz. Other photomixers delivered on this program had heterodyne NEPs at 1 GHz ranging from 8 x 10 to the -20 to 4.4 x 10 to the -19 W/Hz and NEP bandwidths from 2 to 4 GHz.

  5. Junction optimization in HgCdTe: Shockley-Read-Hall generation-recombination suppression

    NASA Astrophysics Data System (ADS)

    Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Wijewarnasuriya, P. S.

    2015-07-01

    Heterojunction device design concepts are leveraged to reduce depletion layer generation-recombination (G-R) dark current in planar P+-on-n SWIR HgCdTe infrared detectors. Shockley-Read-Hall (SRH) depletion dark current (when present) is expected to be the dominant dark current component at low temperatures, and in fact, it is beneficial for the transition from diffusion to G-R to be at such relatively low temperatures. However, it is empirically observed that even for relatively long values of the SRH lifetime ( 20 μ s ), the transition occurs at relatively high temperatures (>200 K) for material with a cut-off wavelength of 2.5 μ m . A key device design parameter of P+-on-n photodiodes is the position of the electrical junction relative to the hetero-metallurgical interface. Junction formation via p-type arsenic implantation into the narrow-gap absorber layer is typically chosen for efficient collection of diffusion current, however, other configurations are possible as well. In this letter, we numerically explore the conditions that reduce depletion dark current without reducing the quantum efficiency (QE). The findings support the assertion that device design conditions exist in SWIR HgCdTe that essentially eliminate the depletion dark current without significantly reducing the QE.

  6. Fast, high-yield synthesis of amphiphilic Ag nanoclusters and the sensing of Hg2+ in environmental samples

    NASA Astrophysics Data System (ADS)

    Xia, Nan; Yang, Jie; Wu, Zhikun

    2015-05-01

    We report the high-yield (74%) synthesis of Ag30(Capt)18 (abbreviated as Ag30) in a very time-saving fashion (half an hour). The cluster composition was determined by high-resolution mass spectrometry combined with TG analysis, and the structure was probed by 1D and 2D NMR. Interestingly, the nanoclusters can dissolve in water and methanol, as well as in most organic solvents such as ethanol, acetone, acetonitrile, dichloromethane and ethyl acetate with the assistance of acetic acid. Such a good solubility in a range of various polar solvents was not reported previously in nanoclusters' research and is important for applications. An important result from this work is that Ag30 can sense a low concentration of Hg2+ in environmental samples (including lake water and soil solution), indicating that Ag30 can be a potential colorimetric probe for Hg2+. The sensing mechanism was revealed to be related to the anti-galvanic reduction process.We report the high-yield (74%) synthesis of Ag30(Capt)18 (abbreviated as Ag30) in a very time-saving fashion (half an hour). The cluster composition was determined by high-resolution mass spectrometry combined with TG analysis, and the structure was probed by 1D and 2D NMR. Interestingly, the nanoclusters can dissolve in water and methanol, as well as in most organic solvents such as ethanol, acetone, acetonitrile, dichloromethane and ethyl acetate with the assistance of acetic acid. Such a good solubility in a range of various polar solvents was not reported previously in nanoclusters' research and is important for applications. An important result from this work is that Ag30 can sense a low concentration of Hg2+ in environmental samples (including lake water and soil solution), indicating that Ag30 can be a potential colorimetric probe for Hg2+. The sensing mechanism was revealed to be related to the anti-galvanic reduction process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00705d

  7. CdTe quantum dot-based fluorescent probes for selective detection of Hg (II): The effect of particle size

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Zhao, Zhu-Jun; Li, Jian-Jun; Zhao, Jun-Wu

    2017-04-01

    Mercury ions-induced fluorescence quenching properties of CdTe quantum dots (QDs) have been studied using the fluorescence spectroscopic techniques. By using the hydrothermal method, the CdTe QDs with different particles sizes from 1.98 to 3.68 nm have been prepared, and the corresponding fluorescence emission wavelength is changed from 518 to 620 nm. The fluorescence of QDs is enhanced after linking Bovine serum albumin (BSA) onto the surface of the QDs. Experimental results show that the fluorescence intensity of BSA-coated CdTe QDs could be effectively quenched when Hg2 + react with BSA-coated CdTe QDs. Interestingly, both the sensing sensitivity and selectivity of this fluorescence probe could be improved when the particle size of the QDs decreases. Thus the BSA-coated CdTe QDs with green fluorescence emission have better advantages than the BSA-coated CdTe QDs with red fluorescence for Hg2 + detection. Interference experiment results indicate that the influence from other metal ions could be neglected in the detection, and the Hg2 + could be specifically detected. By using this BSA-coated CdTe QDs-based fluorescence probe, the Hg2 + could be detected with an ultra-low detection limit of nanomole level, and the linear range spans a scope from 0.001 to 1 μmol/L.

  8. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films

    NASA Astrophysics Data System (ADS)

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates.

  9. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films.

    PubMed

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-09

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates.

  10. 480 x 8 hybrid HgCdTe infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masako; Wada, Hideo; Okamura, Toshihiro; Kudo, Jun-ichi; Tanikawa, Kunihiro; Hikida, Soichiro; Miyamoto, Yoshihiro; Miyazaki, Shinji; Yoshida, Yukihiro

    2001-10-01

    This paper explains the technologies used for high-performance long linear arrays based on HgCdTe/CMOS hybrid multiplexers with bidirectional Time Delay and Integration (TDI) functions, and it describes the development of the first high-resolution Forward Looking Infrared (FLIR) system with the SXGA format. Long-wavelength Infrared (LWIR) photodiode arrays are fabricated using liquid-phase epitaxially grown HgCdTe on a CdZnTe substrate. Each photodiode array consists of 480x8-element n+/n-on-p diodes formed by B+ implantation. Each photodiode is surrounded by a crosswise drain diode to define the detection area. The diodes with a 10.3-μm cutoff wavelength had a typical zero-bias resistance of 10 MΩ and a shunt resistance of 1 GΩ. Four CMOS Read Out Integrated Circuits (ROICs) were used for bidirectional TDI and multiplex operations where each ROIC summed up and multiplexed eight signals from 120 channels. The ROIC also includes pixel deselection and gain control circuits along with the corresponding memory and writing means. The Infrared Focal Plane Arrays (IRFPAs) had a typical Noise Equivalent Temperature Difference (NETD) of 18 mK after TDI with F/1.55 optics and 10-μs integration. The FLIR system using the 480x8 IRFPA demonstrated a high spatial resolution of 1280 horizontal lines by 960 vertical lines (SXGA format) and NETD of less than 30 mK. The unique algorithm for image enhancement was successfully confirmed to be efficient.

  11. Minority carrier lifetime in iodine-doped molecular beam epitaxy-grown HgCdTe

    SciTech Connect

    Madni, I.; Umana-Membreno, G. A.; Lei, W.; Gu, R.; Antoszewski, J.; Faraone, L.

    2015-11-02

    The minority carrier lifetime in molecular beam epitaxy grown layers of iodine-doped Hg{sub 1−x}Cd{sub x}Te (x ∼ 0.3) on CdZnTe substrates has been studied. The samples demonstrated extrinsic donor behavior for carrier concentrations in the range from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3} without any post-growth annealing. At a temperature of 77 K, the electron mobility was found to vary from 10{sup 4} cm{sup 2}/V s to 7 × 10{sup 3} cm{sup 2}/V s and minority carrier lifetime from 1.6 μs to 790 ns, respectively, as the carrier concentration was increased from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. The diffusion of iodine is much lower than that of indium and hence a better alternative in heterostructures such as nBn devices. The influence of carrier concentration and temperature on the minority carrier lifetime was studied in order to characterize the carrier recombination mechanisms. Measured lifetimes were also analyzed and compared with the theoretical models of the various recombination processes occurring in these materials, indicating that Auger-1 recombination was predominant at higher doping levels. An increase in deep-level generation-recombination centers was observed with increasing doping level, which suggests that the increase in deep-level trap density is associated with the incorporation of higher concentrations of iodine into the HgCdTe.

  12. Temporal variability of bioavailable Cd, Hg, Zn, Mn and Al in an upwelling regime.

    PubMed

    Lares, M Lucila; Flores, Muñoz Gilberto; Lara-Lara, Ruben

    2002-01-01

    Monthly variability of Cd, Hg, Zn, Mn and Al concentrations in mussels (Mytilus californianus) soft tissue and brown seaweed (Macrocystis pyrifera) was studied at a pristine rocky shore off San Quintin Bay, Baja California, México. The results were related to climatic and hydrographic conditions and to the physiological state of the mussels (condition index) by correlation analysis and principal component analysis (PCA). A "normalization" to account for the variability induced by the physiological state of the mussel was performed. The PCA was performed in two ways to relate the environmental variables and the condition index to: (1) the metal concentrations in mussels, and (2) the "normalized" mussel concentrations. The association of the variability of Cd with the upwelling season was revealed in both PCAs. The temporal variability of this metal in mussels was highly correlated to that in seaweed, suggesting that the dissolved phase determined the variability of Cd in mussels. However, for Hg, Zn, Mn and Al the results from both PCAs were different. The first PCA showed the relationship of these metals to pluvial precipitation and to the condition index. The PCA for the normalized mussel concentrations showed that, after eliminating the effect of the condition index, only Al was related to pluvial precipitation. Manganese, and to a less degree Zn, were related to these metals in seaweed. Because zinc is an essential element in mussels, some regulation of their internal concentrations is likely. Mercury was not detected in seaweed, but because of its reactive nature, it is not expected that the dissolved fraction could be a significant pathway; therefore, it can be concluded that its temporal variability was determined by the variability in the condition index only.

  13. Differential influences of Cu and Zn chronic exposure on Cd and Hg bioaccumulation in an estuarine oyster.

    PubMed

    Liu, Fengjie; Wang, Wen-Xiong

    2014-03-01

    In this study, the effects of Cu and Zn exposure, alone and in combination, on the bioaccumulation of Cd and Hg were investigated in an estuarine oyster Crassostrea hongkongensis under different salinity gradients. We showed that Zn, but not Cu, exposure significantly enhanced the Cd bioaccumulation. In contrast, both Cu and Zn exposure significantly enhanced the Hg bioaccumulation. Combined exposure and salinity did not affect the metal interactions in oysters. The increased tissue concentrations of Cd or Hg were associated with their increased storage in inducible metal-binding ligands (e.g. metallothionein-like proteins, MTLP) by Cu/Zn exposure. The differential roles of Cu and Zn exposure in Cd and Hg bioaccumulation resulted from their contrasting ligand induction and affinities. Analysis of field collected oysters indicated that Cu/Zn exposure was a significant contributor to tissue concentrations of Cd, Cu and Hg. Overall, biochemical/physiological changes of the animals chronically exposed to metal stressors played a key role in affecting tissue concentrations of other metals. One metal's ability to enhance the bioaccumulation of other metals depended upon the relative affinities of the metals for MTLP.

  14. Method development for Cd and Hg determination in biodiesel by electrothermal atomic absorption spectrometry with emulsion sample introduction.

    PubMed

    Aranda, Pedro R; Gásquez, José A; Olsina, Roberto A; Martinez, Luis D; Gil, Raúl A

    2012-11-15

    A novel method for analysis of biodiesel by electrothermal atomic absorption spectrometry is described. This analytical strategy involves sample preparation as emulsions for routine and reliable determination of Cd and Hg. Several experimental conditions were investigated, including emulsion stability and composition, furnace temperature program and matrix modification. Different calibration strategies were also evaluated, being the analyte addition method preferred both for Cd and Hg. The accuracy was verified through comparison with an acid digestion in a microwave closed system. The injection repeatability was evaluated as the average relative standard deviation (R.S.D %) for five successive firings and was better than 4.4% for Cd and 5.4% Hg respectively. The detection limits, evaluated by the 3σ concept of calculation (n=10), were of 10.2 μg kg(-1) (0.9 μg L(-1)) for Hg and 0.3 μg kg(-1) (0.04 μg L(-1)) for Cd. This method was successfully applied to the determination of Cd and Hg in biodiesel samples obtained from local vendors.

  15. Converting Ag₂S-CdS and Ag₂S-ZnS into Ag-CdS and Ag-ZnS nanoheterostructures by selective extraction of sulfur.

    PubMed

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2014-11-01

    A mild three-step solution strategy is developed to prepare Ag-MS (M=Zn, Cd) nanoheterostructures composed of MS nanorods with silver tips. First, Ag2S-MS heterostructures are synthesized by following a solution-liquid-solid mechanism with Ag2S nanoparticles as catalysts, then the Ag2S sections of the heterostructures are converted into silver nanoparticles by selective extraction of sulfur. Notably, for the prepared Ag-CdS heterostructures, the localized surface plasmon resonance of silver remarkably intensifies the photoluminescence of CdS by enhancing the excitation light absorption, which is beneficial for potential applications of CdS nanoparticles in the fields of biolabeling, light-emitting diodes, and so forth. The strategy reported herein would be useful for designing and fabricating other metal-semiconductor hybrid nanostructures with desirable performances.

  16. Compositional redistribution during casting of Hg sub 0.8 Cd sub 0.2 Te alloys

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Perry, G. L. E.; Szofran, F. R.; Lehoczky, S. L.

    1986-01-01

    A series of Hg(0.8)Cd(0.2)Te ingots was cast both vertically and horizontally under well-defined thermal conditions by using a two-zone furnace with isothermal heat-pipe liners. The main objective of the experiments was to establish correlations between casting parameters and compositional redistribution and to develop ground-based data for a proposed flight experiment of casting of Hg(1-x)Cd(x)Te alloys under reduced gravity conditions. The compositional variations along the axial and radial directions were determined by precision density measurements, infrared transmission spectra, and X-ray energy dispersion spectrometry. Comparison between the experimental results and a numerical simulation of the solidification process of Hg(0.8)Cd(0.2)Te is described.

  17. Fracture mechanisms of Hg 0.8Cd 0.2Te induced by pulsed TEA-CO 2 laser

    NASA Astrophysics Data System (ADS)

    Cai, H.; Cheng, Z. H.; Zhu, H. H.; Zuo, D. L.

    2005-12-01

    The fracture mechanisms of Hg 0.8Cd 0.2Te induced by pulsed TEA-CO 2 laser have been investigated theoretically and experimentally in this paper. The Hg 0.8Cd 0.2Te target was irradiated by a TEA-CO 2 laser with wavelength of 10.6 μm and spike width of 240 ns in an ambient atmosphere. The evident cracks can be found on the surface of the target from the scanning electron microscopy (SEM) photos, indicating that the severe breaks happened during the experiment. Theoretical analysis has also been carried out and the results show that the fracture of Hg 0.8Cd 0.2Te is mainly induced by thermal stresses, although there are three forces (thermal stress, evaporation wave and laser-supported detonation (LSD) wave) exerted on the target surface during the process.

  18. Complexes of Ag(I), Hg(I) and Hg(II) with multidentate pyrazolyl-pyridine ligands: From mononuclear complexes to coordination polymers via helicates, a mesocate, a cage and a catenate.

    PubMed

    Argent, Stephen P; Adams, Harry; Riis-Johannessen, Thomas; Jeffery, John C; Harding, Lindsay P; Clegg, William; Harrington, Ross W; Ward, Michael D

    2006-11-14

    The coordination chemistry of a series of di- and tri-nucleating ligands with Ag(I), Hg(I) and Hg(II) has been investigated. Most of the ligands contain two or three N,N'-bidentate chelating pyrazolyl-pyridine units pendant from a central aromatic spacer; one contains three binding sites (2 + 3 + 2-dentate) in a linear sequence. A series of thirteen complexes has been structurally characterised displaying a wide range of structural types. Bis-bidentate bridging ligands react with Ag(I) to give complexes in which Ag(I) is four-coordinate from two bidentate donors, but the complexes can take the form of one-dimensional coordination polymers, or dinuclear complexes (mesocate or helicate). A tris-bidentate triangular ligand forms a complicated two-dimensional coordination network with Ag(I) in which Ag...Ag contacts, as well as metal-ligand coordination bonds, play a significant role. Three dinuclear Hg(I) complexes were isolated which contain an {Hg2}2+ metal-metal bonded core bound to a single bis-bidentate ligand which can span both metal ions. Also characterised were a series of Hg(II) complexes comprising a simple mononuclear four-coordinate Hg(II) complex, a tetrahedral Hg(II)4 cage which incorporates a counter-ion in its central cavity, a trinuclear double helicate, and a trinuclear catenated structure in which two long ligands have spontaneously formed interlocked metallomacrocyclic rings thanks to cyclometallation of two of the Hg(II) centres.

  19. Contribution à l'étude du système quaternaire argent-mercure-thallium-tellure: Étude de la coupe AgTlTeHgTe

    NASA Astrophysics Data System (ADS)

    Gardes, B.; Ayral-Marin, R. M.; Brun, G.; Tedenac, J. C.

    1988-04-01

    The AgTlTeHgTe system has been studied by DTA and X-ray diffraction techniques. The diagram is characterized by an intermediate phase Ag 3HgTl 3Te 4 (or Ag 0.27Hg 0.09Tl 0.27Te 0.36) with 25 mol% HgTe and a high-temperature phase for T > 597 K in the range from 30 to 60 mol% HgTe. Electric measurements have been carried out for Ag 3HgTl 3Te 4.

  20. Quantum chemistry insight into Mg-substitution in chlorophyll by toxic heavy metals: Cd, Hg and Pb

    NASA Astrophysics Data System (ADS)

    Bechaieb, Rim; Ben Akacha, Azaiez; Gérard, Hélène

    2016-10-01

    In this paper, we examined the structural, electronic and energetic data associated to the Mg-substitution in chlorophyll by three major toxic pollutants: Cd2+, Hg2+ and Pb2+. We evidenced a highly versatile bonding of the cations with the pheophytin ligand, with a strong out-of-plane distortion for Hg and Pb. The binding energies ranged from slightly stronger than Mg2+ in the case of Hg2+ to much smaller for Pb2+. Nevertheless, our various approaches of free cations solvation allowed us to evidence that Mg-substitution should be possible for all title elements.

  1. Optical Properties of Hg1- x- y Cd x Dy y Se Crystals

    NASA Astrophysics Data System (ADS)

    Kovalyuk, T. T.; Maryanchuk, P. D.; Maistruk, É. V.; Koziarskyi, D. P.

    2013-12-01

    Results of investigations of the optical properties of Hg1- x- y Cd x Dy y Se crystals by the Bridgeman method are presented. Based on independent measurements of the reflection and transmission coefficients with a Nicolet 6700 spectrometer at Т = 300 K for wavelengths 0.9 ≤ λ ≤ 26.6 μm, values of the refractive and absorption indices and of the absorption coefficient are determined for the examined crystals. From the dependences α = f(hν) it is established that direct interband optical transitions are allowed in the crystals, and values of the gap width are determined. The effects of the temperature on the transmission coefficient and on the gap width at Т = 118-297 K are investigated.

  2. (55)Fe X-ray Response of HgCdTe NIR Detector Arrays

    NASA Technical Reports Server (NTRS)

    Fox, Ori; Rauscher, Bernard J.

    2008-01-01

    Conversion gain is a fundamental parameter in detector characteristics that is used to measure many identifying detector properties, including read noise, dark current, and quantum efficiency (QE). Charge coupling effects, such as inter-pixel capacitance, attenuate photon shot noise and result in an overestimation of of conversion gain when implementing the photon transfer technique. The (55)Fe X-ray technique is a direct and simple method by which to measure the conversion gain by comparing the observed instrumental counts (ADU) to the known charge (e-) liberated by a single X-ray photon. Here we present the calibrated pair production energy for 1.7 micron HgCdTe infrared detectors.

  3. Low noise HgCdTe 128 x 128 SWIR FPA for Hubble space telescope

    NASA Technical Reports Server (NTRS)

    Blessinger, Michael; Vural, Kadri; Kleinhans, William; Rieke, Marcia J.; Thompson, Rodger; Rasche, Robert

    1989-01-01

    Large area focal plane arrays of unprecedented performance were developed for use in Near Infrared Camera and Multi-Object Spectrometer (NICMOS), a proposed Hubble Space Telescope refurbishment instrument. These FPAs are 128x128-element, HgCdTe hybrid arrays with a cutoff wavelength of 2.5 microns. The multiplexer consists of a CMOS field effect transistor switch array with a typical mean readout noise of less than 30 electrons. The detectors typically have a mean dark current of less than 10 electrons/s at 77 K, with currents below 2 electrons measured at 60 K (both at 0.5 V reverse bias). The mean quantum efficiency is 40 to 60 percent at 77 K for 1.0 to 2.4 microns. Functional pixel yield is typically greater than 99 percent, and the power consumption is approximately 0.2 mW (during readout only).

  4. Transient charge technique investigation of HgI/sub 2/ and CdSe nuclear detectors

    SciTech Connect

    Roth, M.; Burger, A.; Nissenbaum, J.; Schieber, M.

    1987-02-01

    The use of the Transient Charge Technique (TCT) for the evaluation of high resistivity Mercuric Iodide and Cadmium Selenide nuclear radiation detectors is suggested. It has been shown that the real values of mobilities and trapping times of electrons and holes in HgI/sub 2/ can be easily obtained from the analysis of the voltage transient response to drift of charge carriers created by alpha particles. This allows one to evaluate the bulk transport properties of the material and, additionally, to estimate accurately the surface recombination velocity of the carriers. Preliminary results on the shape of voltage transients in CdSe are also reported, and the limitations of the use of the TCT for characterization of both materials are discussed.

  5. Low dark current LWIR HgCdTe focal plane arrays at AIM

    NASA Astrophysics Data System (ADS)

    Haiml, M.; Eich, D.; Fick, W.; Figgemeier, H.; Hanna, S.; Mahlein, M.; Schirmacher, W.; Thöt, R.

    2016-05-01

    Cryogenically cooled HgCdTe (MCT) quantum detectors are unequalled for applications requiring high imaging as well as high radiometric performance in the infrared spectral range. Compared with other technologies, they provide several advantages, such as the highest quantum efficiency, lower power dissipation compared to photoconductive devices, and fast response times, hence outperforming micro-bolometer arrays. AIM will present its latest results on n-on-p as well as p-on-n low dark current planar MCT photodiode focal plane detector arrays at cut-off wavelengths >11 μm at 80 K. Dark current densities below the Rule'07 have been demonstrated for n-on-p devices. Slightly higher dark current densities and excellent cosmetics with very low cluster and point defect densities have been demonstrated for p-on-n devices.

  6. Electrical characterization of Hg(1-x)Cd(x)Te alloys

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Summers, C. J.; Szofran, F. R.; Martin, B. G.

    1982-01-01

    Theoretical models are described for calculations of charge-carrier concentrations, Fermi energy, and conduction electron mobility as functions of x, temperature, and ionized and neutral defect concentrations of Hg(1-x)Cd(x)Te alloys. Measurements are reported of electron concentration and electron mobility from 5-300 K for alloys with x values of between 0.17 and 0.30. The electrical data are in reasonable agreement with theory, and were analyzed to obtain estimates of donor and acceptor state concentrations. The electron mobilities are calculated in terms of a microscopic theory of electrical conduction derived from the solution of the Boltzmann equation for the perturbed steady-state electron distribution function, and they show that longitudinal optical-phonon and charged and neutral defect scattering are the dominant mobility-limiting mechanisms.

  7. Sofradir's recent improvements regarding the reliability and performance of HgCdTe IR detectors

    NASA Astrophysics Data System (ADS)

    Brenière, Xavier; Rubaldo, Laurent; Dupont, Frederic

    2014-06-01

    Sofradir IR detectors are being deployed in a lengthening line of space applications (earth observation, atmospheric observation, scientific missions, etc…), and also in the whole range of tactical applications (portable cameras, missile seekers, land, airborne and naval systems, etc…). Sofradir is taking advantage of these two areas. Firstly, space applications are developing new advances and technologies that can later be introduced in the production of IR detectors for tactical applications, thereby increasing their quality and reliability. In addition, Sofradir can better satisfy space application requirements for failure rates, as these can only be demonstrated with the large number of detectors manufactured, which tactical applications provide. As a result, this approach offers a continuous cycle for reliability of IR detectors, accelerating reliability growth in production, and at the same time meeting requirements for space applications. This paper presents recent improvements introduced in production lines of HgCdTe detectors, that increase performances, image quality, and reliability.

  8. Improvements of long wave p on n HgCdTe infrared technology

    NASA Astrophysics Data System (ADS)

    Péré-Laperne, N.; Taalat, R.; Berthoz, J.; Rubaldo, L.; Carrère, E.; Dargent, L.; Kerlain, A.

    2016-09-01

    Sofradir presented its product Scorpio LW based on a p on n HgCdTe technology. This product is in production with a TV format, 15μm pitch. This product was developed and optimized in the framework of the joint laboratory between Sofradir and the CEA-LETI. The p on n technology is based on an In doped absorbing material and an As implanted junction area. This architecture allows decreasing both dark current and series resistance compared to the legacy n on p technology based on Hg vacancies. This technology demonstrated an operating temperature up to 100K and a typical operability over 99.5%. Some applications require a lower dark current in the range 90K to 110K, a lower average noise level and a lower number of noise defects than the present ones. In order to address these specific requirements, Sofradir performed some technological improvements. In this paper, the technological improvements are briefly described. These technological tunings led to a 40% decrease of dark current at 110K. Both noise level and number of noise defects are kept constant in the range 90K to 110K. These improvements are paving the way to a further increase of operating temperature for long wave (LW) devices.

  9. History of the "Detector Materials Engineering" Crystal Growth Process for Bulk Hg1- x Cd x Te

    NASA Astrophysics Data System (ADS)

    Higgins, W. M.; Nelson, D. A.; Roy, R. G.; Murosako, R. P.; Lancaster, R. A.; Tower, J.; Norton, P.

    2013-11-01

    This paper reviews the history and technology of a bulk Hg1- x Cd x Te crystal growth process that was developed in the early 1980s at Honeywell Electro-Optics Division (presently BAE Systems, Electronic Solutions). The crystal growth process name, DME, was an acronym for the department name: Detector Materials Engineering. This was an accelerated crucible rotation technique (ACRT) vertical traveling heater method growth process. Crystal growth occurred in the pseudobinary Hg1- x Cd x Te system. ACRT mixing allowed the lower-density, higher- x-value Hg1- x Cd x Te growth nutrient in the upper region of the ampoule to replenish the depleted melt and allowed the growth of constant- x-value, higher-density Hg1- x Cd x Te. The material grown by this research and production growth process yielded single crystals that had improved purity, compositional uniformity, precipitate density, and reproducibility in comparison with solid-state recrystallization and other bulk Hg1- x Cd x Te growth techniques. Radial and longitudinal nonuniformities in x-value for Hg1- x Cd x Te were reduced to <0.0008/cm. The net electrically active background impurities did not exceed 1 × 1014 cm-3. Electron mobilities in excess of 1.5 × 106 cm2/V-s were observed at 77 K. Structural defects of less than 104 cm-2 were measured. Te precipitates were not observed. As a result of these material improvements, long-wavelength infrared (LWIR) photoconductive devices fabricated from DME material had highly desired performance characteristics.

  10. Linear-mode photon counting with the noiseless gain HgCdTe e-APD

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey D.; Scritchfield, Richard; Mitra, Pradip; Sullivan, William, III; Gleckler, Anthony D.; Strittmatter, Robert; Martin, Robert J.

    2011-05-01

    A linear mode photon counting FPA using HgCdTe MWIR cutoff e-APDs has been designed, fabricated, and characterized. The broad spectral range (0.4 μm to 4.3 μm) is unique among photon counters, making this a "first of its kind" system spanning the visible to the MWIR. The low excess noise ((F(M) ~ 1) of the e-APDs allows for robust photon detection while operating at a stable linear avalanche gain in the range of 500 to 1000. The ROIC design included a very high gain-bandwidth product RTIA (3x1011 Ohm-Hz) and a 4 ns output digital pulse width comparator. The ROIC had 16 high bandwidth analog and 16 LVDS digital outputs. The 2x8 array was integrated into an LN2 Dewar with a custom LCC and daughter board design that preserved high bandwidth analog and digital signal integrity. The 2x8 e-APD arrays were fabricated on 4.3 μm cutoff HgCdTe and operated at 84 K. The measured dark currents were approximately 1 pA at 13 V bias where the measured APD gain was 500. This translates to a predicted dark current induced dark count rate of less than 20 KHz. Single photon detection was achieved with a photon pulse SNR of 13.7 above the amplifier noise floor. A photon detection efficiency of 50% was measured at a background limited false event rate (FER) of about 1 MHz. The measured jitter was in the range of 550 ps to 800 ps. The demonstrated minimum time between distinguishable events was less than 10 ns.

  11. Comprehensive investigation of HgCdTe metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Raupp, Gregory B.

    1993-01-01

    The principal objective of this experimental and theoretical research program was to explore the possibility of depositing high quality epitaxial CdTe and HgCdTe at very low pressures through metalorganic chemical vapor deposition (MOCVD). We explored two important aspects of this potential process: (1) the interaction of molecular flow transport and deposition in an MOCVD reactor with a commercial configuration, and (2) the kinetics of metal alkyl source gas adsorption, decomposition and desorption from the growing film surface using ultra high vacuum surface science reaction techniques. To explore the transport-reaction issue, we have developed a reaction engineering analysis of a multiple wafer-in-tube ultrahigh vacuum chemical vapor deposition (UHV/CVD) reactor which allows an estimate of wafer or substrate throughput for a reactor of fixed geometry and a given deposition chemistry with specified film thickness uniformity constraints. The model employs a description of ballistic transport and reaction based on the pseudo-steady approximation to the Boltzmann equation in the limit of pure molecular flow. The model representation takes the form of an integral equation for the flux of each reactant or intermediate species to the wafer surfaces. Expressions for the reactive sticking coefficients (RSC) for each species must be incorporated in the term which represents reemission from a wafer surface. The interactions of MOCVD precursors with Si and CdTe were investigated using temperature programmed desorption (TPD) in ultra high vacuum combined with Auger electron spectroscopy (AES). These studies revealed that diethyltellurium (DETe) and dimethylcadmium (DMCd) adsorb weakly on clean Si(100) and desorb upon heating without decomposing. These precursors adsorb both weakly and strongly on CdTe(111)A, with DMCd exhibiting the stronger interaction with the surface than DETe.

  12. First principles study on electronic structure and elastic properties of LaCd and LaHg

    SciTech Connect

    Devi, Hansa E-mail: gita-pagare@yahoo.co.in; Pagare, Gitanjali E-mail: gita-pagare@yahoo.co.in; Chouhan, S. S. E-mail: gita-pagare@yahoo.co.in; Sanyal, Sankar P.

    2014-04-24

    Full -potential linearized augmented plane wave method (FP- LAPW) has been used for the comparative study of electronic structure and elastic properties of CsCl-type LaCd and LaHg intermetallic compounds using generalized gradient approximation (GGA). The density of states at the Fermi Level, N (E{sub F}), is found to be 0.06 and 3.03 states/eV for LaCd and LaHg respectively. We report elastic constants for these compounds for the first time. The ductility/brittleness of these compounds has been analyzed using Pugh rule and Cauchy’s pressure.

  13. Ag nanoparticle mediated growth of CdS nanobelts

    NASA Astrophysics Data System (ADS)

    Sreejith, K.; Nuwad, J.; Thinaharan, C.; Dey, G. K.; Pillai, C. G. S.

    2007-06-01

    Catalytic growth of CdS have been carried out on large scale by evaporation of bulk CdS on Ag deposited Si (1 1 1) at atmospheric pressure. The as prepared CdS had wurtzite structure as evidenced by X-ray diffraction. The nanostructures were beltlike with several tens of micrometers length, several micrometers width and few nanometers to tens of nanometers thick as seen by scanning electron microscope and confirmed by TEM studies. The nanobelts were single crystalline in nature and showed reflection corresponding to (1 1 2) and (0 0 2) planes in SAED. The PL studies revealed the green band due to band gap emission and red band due to emission from the surface states. The higher intensity of the defect emission indicated the presence of considerable concentration of surface defects in the as prepared sample. The deposition of CdS could be explained on the basis of catalyst assisted vapor-liquid-solid and vapor-solid mechanism.

  14. Ultra-Low Dark Current HgCdTe Detector in SWIR for Space Applications

    NASA Astrophysics Data System (ADS)

    Cervera, C.; Boulade, O.; Gravrand, O.; Lobre, C.; Guellec, F.; Sanson, E.; Ballet, P.; Santailler, J. L.; Moreau, V.; Zanatta, J. P.; Fieque, B.; Castelein, P.

    2016-09-01

    This paper presents recent developments at Commissariat à l'Energie atomique, Laboratoire d'Electronique et de Technologie de l'Information infrared laboratory on processing and characterization of p-on-n HgCdTe (MCT) planar infrared focal plane arrays (FPAs) in short-wave infrared (SWIR) spectral band for the astrophysics applications. These FPAs have been grown using both liquid phase epitaxy and molecular beam epitaxy on a lattice-matched CdZnTe substrate. This technology exhibits lower dark current and lower series resistance in comparison with n-on-p vacancy-doped architecture and is well adapted for low flux detection or high operating temperature. This architecture has been evaluated for space applications in long-wave infrared and very-long-wave infrared spectral bands with cut-off wavelengths from 10 μm up to 17 μm at 78 K and is now evaluated for the SWIR range. The metallurgical nature of the absorbing layer is also examined and both molecular beam epitaxy and liquid phase epitaxy have been investigated. Electro-optical characterizations have been performed on individual photodiodes from test arrays, whereas dark current investigation has been performed with a fully functional readout integrated circuit dedicated to low flux operations.

  15. Adsorbent-adsorbate interactions in the adsorption of Cd(II) and Hg(II) on ozonized activated carbons.

    PubMed

    Sánchez-Polo, M; Rivera-Utrilla, J

    2002-09-01

    The present work investigated the effect of surface oxygenated groups on the adsorption of Cd(II) and Hg(II) by activated carbon. A study was undertaken to determine the adsorption isotherms and the influence of the pH on the adsorption of each metallic ion by a series of ozonized activated carbons. In the case of Cd(II), the adsorption capacity and the affinity of the adsorbent augmented with the increase in acid-oxygenated groups on the activated carbon surface. These results imply that electrostatic-type interactions predominate in this adsorption process. The adsorption observed at solution pH values below the pH(PZC) of the carbon indicates that other forces also participate in this process. Ionic exchange between -C pi-H3O+ interaction protons and Cd(II) ions would account for these findings. In the case of Hg(II), the adsorption diminished with an increase in the degree of oxidation of the activated carbon. The presence of electron-withdrawing groups on oxidized carbons decreases the electronic density of their surface, producing a reduction in the adsorbent-adsorbate dispersion interactions and in their reductive capacity, thus decreasing the adsorption of Hg(II) on the activated carbon. At pH values above 3, the pH had no influence on the adsorption of Hg(II) by the activated carbon, confirming that electrostatic interactions do not have a determinant influence on Hg(II) adsorption.

  16. Facile synthesis of N-acetyl-L-cysteine capped CdHgSe quantum dots and selective determination of hemoglobin.

    PubMed

    Wang, Qingqing; Zhan, Guoqing; Li, Chunya

    2014-01-03

    Using N-acetyl-L-cysteine (NAC) as a stabilizer, well water-dispersed, high-quality and stable CdHgSe quantum dots were facilely synthesized via a simple aqueous phase method. The as-prepared NAC capped CdHgSe quantum dots were thoroughly characterized by fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. A novel method for the selective determination of hemoglobin (Hb) was developed based on fluorescence quenching of the NAC capped CdHgSe quantum dots. A number of key factors including pH value of phosphate buffer solution, quantum dots concentration, the adding sequence of reagents and reaction time that influence the analytical performance of the NAC capped CdHgSe quantum dots in Hb determination were investigated. Under the optimal experimental conditions, the change of fluorescence intensity (ΔI) was linearly proportional to the concentration of Hb in the range of 4.0×10(-9)-4.4×10(-7) mol L(-1) with a detection limit of 2.0×10(-9) mol L(-1). The developed method has been successfully employed to determine Hb in human urine samples.

  17. Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.

    2016-09-01

    In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor /acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.

  18. High-Operating Temperature HgCdTe: A Vision for the Near Future

    NASA Astrophysics Data System (ADS)

    Lee, D.; Carmody, M.; Piquette, E.; Dreiske, P.; Chen, A.; Yulius, A.; Edwall, D.; Bhargava, S.; Zandian, M.; Tennant, W. E.

    2016-09-01

    We review recent advances in the HgCdTe material quality and detector performance achieved at Teledyne using molecular beam epitaxy growth and the double-layer planar hetero-junction (DLPH) detector architecture. By using an un-doped, fully depleted absorber, Teledyne's DLPH architecture can be extended for use in high operating temperatures and other applications. We assess the potential achievable performance for long wavelength infrared (LWIR) hetero-junction p-lightly-doped n or p-intrinsic- n (p-i-n) detectors based on recently reported results for 10.7 μm cutoff 1 K × 1 K focal plane arrays (FPAs) tested at temperatures down to 30 K. Variable temperature dark current measurements show that any Shockley-Read-Hall currents in the depletion region of these devices have lifetimes that are reproducibly greater than 100 ms. Under the assumption of comparable lifetimes at higher temperatures, it is predicted that fully-depleted background radiation-limited performance can be expected for 10- μm cutoff detectors from room temperature to well below liquid nitrogen temperatures, with room-temperature dark current nearly 400 times lower than predicted by Rule 07. The hetero-junction p-i-n diode is shown to have numerous other significant potential advantages including minimal or no passivation requirements for pBn-like processing, low 1/ f noise, compatibility with small pixel pitch while maintaining high modulation transfer function, low crosstalk and good quantum efficiency. By appropriate design of the FPA dewar shielding, analysis shows that dark current can theoretically be further reduced below the thermal equilibrium radiative limit. Modeling shows that background radiation-limited LWIR HgCdTe operating with f/1 optics has the potential to operate within √2 of background-limited performance at 215 K. By reducing the background radiation by 2/3 using novel shielding methods, operation with a single-stage thermo-electric-cooler may be possible. If the

  19. Carbon quantum dots prepared with polyethyleneimine as both reducing agent and stabilizer for synthesis of Ag/CQDs composite for Hg(2+) ions detection.

    PubMed

    Liu, Ting; Dong, Jiang Xue; Liu, Shi Gang; Li, Na; Lin, Shu Min; Fan, Yu Zhu; Lei, Jing Lie; Luo, Hong Qun; Li, Nian Bing

    2017-01-15

    A stable silver nanoparticles/carbon quantum dots (Ag/CQDs) composite was prepared by using CQDs as reducing and stabilizing agent. The CQDs synthesized with polyethyleneimine (PEI) showed an extraordinary reducibility. When Hg(2+) was presented in the Ag/CQDs composite solution, a color change from yellow to colorless was observed, accompanied by a shift of surface plasmon resonance (SPR) band and decrease in absorbance of the Ag/CQDs composite. On the basis of the further studies on TEM, XPS and XRD analysis, the possible mechanism is attributed to the formation of a silver-mercury amalgam. Hence, a two dimensional sensing platform for Hg(2+) detection was constructed upon the Ag/CQDs composite. Based on the change of absorbance, a good linear relationship was obtained from 0.5 to 50μM for Hg(2+). And the limit of detection for Hg(2+) was as low as 85nM, representing high sensitivity to Hg(2+). More importantly, the proposed method also exhibits a good selectivity toward Hg(2+) over other metal ions. Besides, this strategy demonstrates practicability for the detection of Hg(2+) in real water samples with satisfactory results.

  20. Observation of Shubnikov de Haas oscillations due to interfacial two dimensional electron gas in epitaxial HgCdTe on CdZnTe heterostructure

    NASA Astrophysics Data System (ADS)

    Jain, Tapasya; Manchanda, Rachna; Kumari Mishra, Manna; Thakur, O. P.; Sharma, R. K.

    2017-01-01

    The presence of two dimensional electron gas associated with misfit dislocation network at the compositionally graded interface of HgCdTe/CdZnTe heterostructure prepared by liquid phase epitaxy has been reported. Shubnikov-de-Haas (SdH) oscillations were observed in Ga-diffused n-type HgCdTe/CdZnTe heterostructures in the temperature range of 1.8-10 K with magnetic field swept up to 8 T. The epilayer was thinned down from an initial thickness of ˜23 μm to the graded interfacial region of ˜3 μm in steps of ˜10 μm each and the magneto-transport measurements were done at each differential etch step. The SdH oscillations observed at three steps were coherent with all the peaks occurring at same magnetic field value. An estimation of electron effective mass and sheet carrier density helped conclude that these SdH oscillations are due to a 2DEG present at HgCdTe-CdZnTe hetero interface. It is proposed that the stress field of misfit dislocation network in the interfacial region is responsible for the formation of this 2DEG.

  1. Interface morphology studies of liquid phase epitaxy grown HgCdTe films by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.

    1994-04-01

    In this paper we report an investigation of the morphology of the interfaces of liquid phase epitaxy (LPE) grown HgCdTe thin films on CdTe and CdZnTe substrates by atomic force microscopy (AFM) on freshly cleaved (110) crystallographic planes. An empirical observation which may be linked to lattice mismatch was indicated by an angle between the cleavage steps of the substrate to those of the film. The precipitates with size ranging from 5 nm to 20 nm were found to be most apparent near the interface.

  2. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  3. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    SciTech Connect

    Qiu, Weicheng; Hu, Weida Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei; Cheng, Xiang'ai Wang, Rui

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  4. HgCdTe technology in Germany: the past, the present, and the future

    NASA Astrophysics Data System (ADS)

    Cabanski, W.; Ziegler, J.

    2009-05-01

    The first HgCdTe (MCT) activities at AEG-Telefunken in Germany were started in 1976. As part of the closing of AEG, the Heilbronn based IR-technology division was established as a spin-off company in 1995, under the brand name of AIM Infrarot-Module GmbH. A rapidly growing team of scientists focused on the detector-dewar-cooler technology and the development of linear photoconductive MCT arrays by applying the solid-state-recrystallization (SSR) technique for MCT growth, depositing and thinning MCT on sapphire substrates and oxide passivation. In 1979, after successful development of an own MCT-technology base, AEG-Telefunken entered into a license agreement with Texas Instruments for US Common Module (CM) technology in order to speed up the entry into full scale production with a transfer of MCT-material, dewar and cooler processes. CMs are still manufactured in small numbers. At the same time, a proprietary pc-MCT technology, independent of the CM production line, was developed and continuously matured and is today successfully applied in various custom designs like detectors for smart ammunition, for commercial and space applications. In 1982 started the development of 2nd Gen. photovoltaic MCT detectors, based on liquid-phase-epitaxy (LPE) in tilting and dipping technique and on planar array technology with Hg-Diffusion and ion implantation for pn-junction formation and CdTe/ZnS passivation. Linear MCT arrays in the 8-10,5 μm wavelength range with state of the art electro-optical performance have rapidly been demonstrated. Within the frame of the European anti-tank program TRIGAT, a two-way know-how-transfer between AEGTelefunken and SOFRADIR was established for linear LW MCT array processing, flip-chip-technology and dewar technology. Today, AIM's 2nd Gen. portfolio is based on MCT-LPE in dipping technique on CdZnTe substrates, characterized by a very low defect and dislocation density for 0,9 μm to 15μm wavelength application. Array processing is performed

  5. Biomonitoring of Cd, Cr, Hg and Pb in the Baluarte River basin associated to a mining area (NW Mexico).

    PubMed

    Ruelas-Inzunza, J; Green-Ruiz, C; Zavala-Nevárez, M; Soto-Jiménez, M

    2011-08-15

    With the purpose of knowing seasonal variations of Cd, Cr, Hg and Pb in a river basin with past and present mining activities, elemental concentrations were measured in six fish species and four crustacean species in Baluarte River, from some of the mining sites to the mouth of the river in the Pacific Ocean between May 2005 and March 2006. In fish, highest levels of Cd (0.06 μg g ⁻¹ dry weight) and Cr (0.01 μg g⁻¹) were detected during the dry season in Gobiesox fluviatilis and Agonostomus monticola, respectively; the highest levels of Hg (0.56 μg g⁻¹) were detected during the dry season in Guavina guavina and Mugil curema. In relation to Pb, the highest level (1.65 μg g⁻¹) was detected in A. monticola during the dry season. In crustaceans, highest levels of Cd (0.05 μg g⁻¹) occurred in Macrobrachium occidentale during both seasons; highest concentration of Cr (0.09 μg g⁻¹) was also detected in M. occidentale during the dry season. With respect to Hg, highest level (0.20 μg g⁻¹) was detected during the rainy season in Macrobrachium americanum; for Pb, the highest concentration (2.4 μg g⁻¹) corresponded to Macrobrachium digueti collected in the dry season. Considering average concentrations of trace metals in surficial sediments from all sites, Cd (p<0.025), Cr (p<0.10) and Hg (p<0.15) were significantly higher during the rainy season. Biota sediment accumulation factors above unity were detected mostly in the case of Hg in fish during both seasons. On the basis of the metal levels in fish and crustacean and the provisional tolerable weekly intake of studied elements, people can eat up to 13.99, 0.79 and 2.34 kg of fish in relation to Cd, Hg and Pb, respectively; regarding crustaceans, maximum amounts were 11.33, 2.49 and 2.68 kg of prawns relative to levels of Cd, Hg and Pb, respectively.

  6. Fabrication and application of a new modified electrochemical sensor using nano-silica and a newly synthesized Schiff base for simultaneous determination of Cd2+, Cu2+ and Hg2+ ions in water and some foodstuff samples.

    PubMed

    Afkhami, Abbas; Soltani-Felehgari, Farzaneh; Madrakian, Tayyebeh; Ghaedi, Hamed; Rezaeivala, Majid

    2013-04-10

    A new chemically modified carbon paste electrode was constructed and used for rapid, simple, accurate, selective and highly sensitive simultaneous determination of cadmium, copper and mercury using square wave anodic stripping voltammetry (SWASV). The carbon paste electrode was modified by N,N'-bis(3-(2-thenylidenimino)propyl)piperazine coated silica nanoparticles. Compared with carbon paste electrode, the stripping peak currents had a significant increase at the modified electrode. Under the optimized conditions (deposition potential, -1.100 V vs. Ag/AgCl; deposition time, 60s; resting time, 10s; SW frequency, 25 Hz; pulse amplitude, 0.15 V; dc voltage step height, 4.4 mV), the detection limit was 0.3, 0.1 and 0.05 ng mL(-1) for the determination of Cd(2+), Cu(2+) and Hg(2+), respectively. The complexation reaction of the ligand with several metal cations in methanol was studied and the stability constants of the complexes were obtained. The effects of different cations and anions on the simultaneous determination of metal ions were studied and it was found that the electrode is highly selective for the simultaneous determination of Cd(2+), Cu(2+) and Hg(2+). Furthermore, the present method was applied to the determination of Cd(2+), Cu(2+) and Hg(2+) in water and some foodstuff samples.

  7. Improvement of RTS Noise in HgCdTe MWIR Detectors

    NASA Astrophysics Data System (ADS)

    Brunner, Alexandre; Rubaldo, Laurent; Destefanis, V.; Chabuel, F.; Kerlain, A.; Bauza, D.; Baier, N.

    2014-08-01

    Random telegraph signal (RTS) noise is present in all bands of the infrared spectrum from λ c = 2.5 μm (short-wavelength infrared) to λ c = 15.75 μm (very long-wavelength infrared) and decreases the performance of infrared photodetectors. The main features of RTS noise such as the jump amplitude and RTS frequency are defined, and their dependence as a function of focal-plane array (FPA) temperature was measured for all bands of the infrared spectrum. Both of these features comply with a Boltzmann activation law , and their activation energies scale with the bandgap. Comparison of three different HgCdTe mid-wavelength infrared photodetector technologies was also performed, showing that the optimized n-on- p improvement of operability (AOP) and p-on- n high-operating-temperature technologies show a reduced number of pixels exhibiting RTS noise (by about two decades) in comparison with standard n-on- p technology.

  8. Short wavelength HgCdTe staring focal plane for low background astronomy applications

    NASA Technical Reports Server (NTRS)

    Hall, D.; Stobie, J.; Hartle, N.; Lacroix, D.; Maschhoff, K.

    1989-01-01

    The design of a 128x128 staring short wave infrared (SWIR) HgCdTe focal plane incorporating charge integrating transimpedance input preamplifiers is presented. The preamplifiers improve device linearity and uniformity, and provide signal gain ahead of the miltiplexer and readout circuitry. Detector's with cutoff wavelength of 2.5 microns and operated at 80 K have demonstrated impedances in excess of 10(exp 16) ohms with 60 percent quantum efficiency. Focal plane performance using a smaller format device is presented which demonstrates the potential of this approach. Although the design is capable of achieving less than 30 rms electrons with todays technology, initial small format devices demonstrated a read noise of 100 rms electrons and were limited by the atypical high noise performance of the silicon process run. Luminescence from the active silicon circuitry in the multiplexer limits the minimum detector current to a few hundred electrons per second. Approaches to eliminate this excessive source of current is presented which should allow the focal plane to achieve detector background limited performance.

  9. Cd Hg Te (1.3 µm - 1.55 µm) Avalanche Photodiode

    NASA Astrophysics Data System (ADS)

    Meslage, J.; Pichard, G.; Fragnon, M.; Royer, M.; Nguyen Duy, M.; Biosrobert, C.; Morvan, D.

    1983-11-01

    The particular Cd0.7 Hg0.3Te band structure:almost equality of band gap and spin orbit splitting, provides good ionization properties to this alloy : a high ionization coefficients ratio is expected. The devices elaboration is made by planar technology. A N+/N/P+ structure is achieved by ions implantation followed by a diffusion process. A diffused guard ring allows to avoid surface and junction edge effects. The I (V) characteristic shows a breakdown voltage (VB) of about 100 V. The dark current at 0.95 VB, amounts 100nA.Photodiodes sensitivity is typiclly of 0.7. A/W when M=1.Multiplication coefficients as high as 40 have been measured, the photoresponse spatial homogeneity in gain mode has been also controlled with a lOμm size spot : no microplasma effect have been observed. Photodetectors sensitivity, measured at 500 MHz, remains identical in avalanche operating mode. Good linearity is obtained when plotting P-N schottky noise versus light intensity No excess noise was observed. The study of the avalanche photodiode noise, synchronous with 1.3. μm DEL emission, at 30 MHz with a 1 MHz bandwith has been carried out in relation to the multiplication factor, and has led to an estimation of the ionization coefficient ratio.

  10. Nernst and Seebeck effects in HgTe/CdTe topological insulator

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Song, Juntao; Li, Yu-Xian

    2015-03-01

    The Seebeck and Nernst effects in HgTe/CdTe quantum wells are studied using the tight-binding Hamiltonian and the nonequilibrium Green's function method. The Seebeck coefficient, Sc, and the Nernst coefficient, Nc, oscillate as a function of EF, where EF is the Fermi energy. The Seebeck coefficient shows peaks when the Fermi energy crosses the discrete transverse channels, and the height of the nth peak of the Sc is [ln2 /(1/2 +|n |)] for EF > 0. For the case EF < 0, the values of the peaks are negative, but the absolute values of the first five peaks are the same as those for EF > 0. The 6th peak of Sc reaches the value [ln2 /1.35 ] due to a higher density of states. When a magnetic field is applied, the Nernst coefficient appears. However, the values of the peaks for Nc are all positive. For a weak magnetic field, the temperature suppresses the oscillation of the Seebeck and Nernst coefficients but increases their magnitude. For a large magnetic field, because of the highly degenerate Landau levels, the peaks of the Seebeck coefficient at position EF=-12 , 10 , 28 meV , and Nernst coefficient at EF=-7 , 10 meV are robust against the temperature.

  11. Electrical Properties of the V-Defects of Epitaxial HgCdTe

    NASA Astrophysics Data System (ADS)

    Novikov, V. A.; Grigoryev, D. V.; Bezrodnyy, D. A.; Voitsekhovskii, A. V.; Dvoretsky, S. A.; Mikhailov, N. N.

    2017-03-01

    The manufacturing process of wide-band-gap matrix photodetector devices and miniaturization of their individual pixels gave rise to increased demands on the material quality and research methods. In the present paper we propose using the methods of atomic-force microscopy to study the local distribution of electrical properties of the V-defects that form in epitaxial films of HgCdTe during their growth process via molecular beam epitaxy. We demonstrate that a complex approach to studying the electrical properties of a predefined region of a V-defect allows one to obtain more detailed information on its properties. Using scanning spreading resistance microscopy, we show that, for a V-defect when the applied bias is increased, the surface area that participates in the process of charge carrier transfer also increases almost linearly. The presence of a potential barrier on the periphery of individual crystal grains that form the V-defect interferes with the flow of current and also affects the distribution of surface potential and capacitive contrast.

  12. Optical-absorption model for molecular-beam epitaxy HgCdTe and application to infrared detector photoresponse

    NASA Astrophysics Data System (ADS)

    Moazzami, K.; Phillips, J.; Lee, D.; Edwall, D.; Carmody, M.; Piquette, E.; Zandian, M.; Arias, J.

    2004-06-01

    Accurate knowledge of the optical-absorption coefficient in HgCdTe is important for infrared (IR) detector design, production process (layer screening), and interpretation of detector performance. Measurements of the optical-absorption coefficient of HgCdTe layers with uniform composition are presented with the goal of developing a revised model in the interest of IR detector technology. Existing methods of determining HgCdTe alloy composition from IR transmission measurements are compared, where one self-consistent method is suggested and shown to agree with experimental detector data. An exponential Urbach and hyperbolic model are presented to represent band tail and above-bandgap absorption regions, respectively. Parameters associated with these models are extracted for Hg1-xCdxTe compositions of x=0.22-0.60 and temperatures of T=40-300 K using samples of varying thickness to obtain accurate data for varying spectral regions of the absorption coefficient. An initial analytical expression for the absorption coefficient is presented and compared to experimental detector-response data. Detector-response simulations indicate that accurate optical-absorption models are needed, where detector structures with thin layers and arbitrary composition profiles in current and future IR detectors will be the most demanding.

  13. [Toxic effects of Hg2+, Cd2+ and Cu2+ on cell membrane system of Cabomba caroliniana A. Gray].

    PubMed

    Gu, Wei; Shi, Guo-Xin; Chao, Jian-Guo; Wu, Qi-Nan; Zhang, Chao-Ying; Du, Kai-He; Xu, Qin-Song

    2008-05-01

    By the observation with electron- and confocal laser scanning microscopy and the determination of physiological and biochemical reactions, the toxic effects of Hg2+, Cd2+ and Cu2+ on the cell membrane system of Cabomba caroliniana A. Gray were investigated. The results showed that under the actions of the three heavy metal ions, the contents of reactive oxygen species (ROS) and malondialdehyde (MDA) in C. caroliniana leaf cells increased, activities of protective enzymes were in disorder, and lipid peroxidation happened. The cell membrane was damaged, membrane permeability increased, and plasmolysis occurred. Meanwhile, the chloroplast swelled or even disintegrated. The excitement of photosynthetic pigments on thylakoids membrane by light was inhibited, and the auto-fluoresent intensity was decreased. The cristae of mitochondria swelled and decreased, mitochondria membrane was damaged, and nuclear membrane was broken. The effects of Hg2+, Cd2+ and Cu2+ on the cell membrane system of C. caroliniana showed a definite dose-effect correlation, and the stability of membrane system played a key role in the resistance of C. caroliniana to the toxic effects of heavy metals. C. caroliniana was sensitive to Hg2+, and the lethal concentration of Hg2+ was ranged from 0.3 to 0.5 mg L(-1). C. caroliniana had relatively higher endurance to Cd2+ and Cu2+, and could be used as the resistant plant for biological control.

  14. Hg1-xCdxTe vapor deposition on CdZnTe substrates by Closed Space Sublimation technique

    NASA Astrophysics Data System (ADS)

    Rubio, Sandra; Sochinskii, Nikolai V.; Repiso, Eva; Tsybrii, Zinoviia; Sizov, Fiodor; Plaza, Jose Luis; Diéguez, Ernesto

    2017-01-01

    Closed Space Sublimation (CSS) technique has been studied to deposit Hg1-xCdxTe polycrystalline films on CdZnTe substrates at the improved pressure-temperature conditions. The experimental results on film characterization suggest that the CSS optimal conditions are the argon atmospheric pressure (1013 mbar) and the deposition temperature in the range of 500-550 °C. These conditions provide macro-defect free Hg1-xCdxTe films with the uniform size and surface distribution of polycrystals.

  15. Threading and misfit-dislocation motion in molecular-beam epitaxy-grown HgCdTe epilayers

    NASA Astrophysics Data System (ADS)

    Carmody, M.; Lee, D.; Zandian, M.; Phillips, J.; Arias, J.

    2003-07-01

    Lattice mismatch between the substrate and the absorber layer in single-color HgCdTe infrared (IR) detectors and between band 1 and band 2 in two-color detectors results in the formation of crosshatch lines on the surface and an array of misfit dislocations at the epi-interfaces. Threading dislocations originating in the substrate can also bend into the interface plane and result in misfit dislocations because of the lattice mismatch. The existence of dislocations threading through the junction region of HgCdTe IR-photovoltaic detectors can greatly affect device performance. High-quality CdZnTe substrates and controlled molecular-beam epitaxy (MBE) growth of HgCdTe can result in very low threading-dislocation densities as measured by the etch-pit density (EPD ˜ 104cm-2). However, dislocation gettering to regions of high stress (such as etched holes, voids, and implanted-junction regions) at elevated-processing temperatures can result in a high density of dislocations in the junction region that can greatly reduce detector performance. We have performed experiments to determine if the dislocations that getter to these regions of high stress are misfit dislocations at the substrate/absorber interface that have a threading component extending to the upper surface of the epilayer, or if the dislocations originate at the cap/absorber interface as misfit dislocations. The preceding mechanisms for dislocation motion are discussed in detail, and the possible diode-performance consequences are explored.

  16. Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera

    NASA Astrophysics Data System (ADS)

    Dorn, Meghan L.; Pipher, Judith L.; McMurtry, Craig; Hartman, Spencer; Mainzer, Amy; McKelvey, Mark; McMurray, Robert; Chevara, David; Rosser, Joshua

    2016-07-01

    HgCdTe detector arrays with a cutoff wavelength of ˜10 μm intended for the Near-Earth Object Camera (NEOCam) space mission were subjected to proton-beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested-one with 800-μm substrate intact, one with 30-μm substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes an elevated signal in nonhit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in nonhit pixels during proton testing for both the substrate-removed detector array and the array with 30-μm substrate. The detector array with full 800-μm substrate exhibited substantial photocurrent for a flux of 103 protons/cm2 s at a beam energy of 18.1 MeV (˜750 e-/s) and 34.4 MeV (˜65 e-/s). For the integrated space-like ambient proton flux level measured by the Spitzer Space Telescope, the luminescence would be well below the NEOCam dark current requirement of <200 e-/s, but the pattern of luminescence could be problematic, possibly complicating calibration.

  17. Evaluation of dislocation densities in HgCdTe films by high-resolution x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Qingxue; Yang, Jianrong; Wei, Yanfeng; Fang, Weizheng; He, Li

    2005-01-01

    The dislocation densities in HgCdTe films grown on CdZnTe by Liquid Phase Epitaxy (LPE) are calculated based on their effects on the x-ray rocking curves. The dislocation densities derived from three kinds of methods, i.e. FWHM of X-ray double axis diffraction, Williamson-Hall plot and Pseudo-Voigt function, are approximately the same. It is found that the thickness of HgCdTe epilayers about 10 um is large enough so that effect of crystallize size on the rocking curves width can be ignored. Because the intrinsic FWHM of HgCdTe and the instrumental function of high resolution X-ray diffraction are neglected in Williamson-Hall plot and Pseudo-Voigt function, the dislocation densities obtained by these methods are a little larger than those derived from the first kind of method. Among three kinds of methods, Pseudo-Voigt function method is the easiest one to fit the rocking curves and calculate the dislocation densities.

  18. Receiver Performance of CO2 and CH4 Lidar with Low Noise HgCdTe Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Sun, X.; Abshire, J. B.

    2012-12-01

    NASA Goddard Space Flight Center (GSFC) is currently developing CO2 lidars at 1.57 μm wavelength for the Active Sensing of CO2 Emission over Days, Nights, and Seasons (ASCENDS) mission. One of the major technical challenges is the photodetectors that have to operate in short wave infrared (SWIR) wavelength region and sensitive to received laser pulses of only a few photons. We have been using InGaAs photocathode photomultiplier tubes (PMT) in our airborne simulator of the CO2 lidar that can detect single photon with up to 10% quantum efficiency at <1.6 μm wavelength. However it was difficult to maintain a sufficiently wide signal dynamic range and single photon sensitivity at the same time with the PMTs. There may also be a lifetime limitation with the InGaAs photocathode PMT for a multi-year space mission. We have been developing HgCdTe avalanche photodiode (APD) SWIR detector systems with DRS Technologies, Reconnaissance, Surveillance and Target Acquisition (RSTA) Division as an alternative photodetector for our CO2 lidars. The new HgCdTe APDs have typically a >50% quantum efficiency, including the effect of fill-factor, from 0.9 to 4.5 μm wavelength. DRS RSTA will integrate a low noise read-out integrated circuit (ROIC) with the HgCdTe APD array into a low noise analog SWIR detector with near single photon sensitivity. The new HgCdTe APD SWIR detector assembly is expected to improve the receiver sensitivity of our CO2 lidar by at least a factor of two and provide a sufficient wide signal dynamic range. The new SWIR detector systems can also be used in the CH4 lidars at 1.65 μm wavelength currently being developed at GSFC. The near infrared PMTs have diminishing quantum efficiency as the wavelength exceeds 1.6 μm. InGaAs APDs have a high quantum efficiency but too high an excess noise factor to achieve near quantum limited performance. The new HgCdTe APDs is expected to give a much superior performance than the PMTs and the InGaAs APDs. In this paper, we

  19. Electrostatic assembles and optical properties of Au CdTe QDs and Ag/Au CdTe QDs

    NASA Astrophysics Data System (ADS)

    Yang, Dongzhi; Wang, Wenxing; Chen, Qifan; Huang, Yuping; Xu, Shukun

    2008-09-01

    Au-CdTe and Ag/Au-CdTe assembles were firstly investigated through the static interaction between positively charged cysteamine-stabilized CdTe quantum dots (QDs) and negatively charged Au or core/shell Ag/Au nano-particles (NCs). The CdTe QDs synthesized in aqueous solution were capped with cysteamine which endowed them positive charges on the surface. Both Au and Ag/Au NCs were prepared through reducing precursors with gallic acid obtained from the hydrolysis of natural plant poly-phenols and favored negative charges on the surface of NCs. The fluorescence spectra of CdTe QDs exhibited strong quenching with the increase of added Au or Ag/Au NCs. Railey resonance scattering spectra of Au or Ag/Au NCs increased firstly and decreased latter with the concentration of CdTe QDs, accompanied with the solution color changing from red to purple and colorless at last. Experimental results on the effects of gallic acid, chloroauric acid tetrahydrate and other reagents demonstrated the static interaction occurred between QDs and NCs. This finding reveals the possibilities to design and control optical process and electromagnetic coupling in hybrid structures.

  20. Nernst and Seebeck effects in HgTe/CdTe topological insulator

    SciTech Connect

    Zhang, Yuan; Song, Juntao; Li, Yu-Xian

    2015-03-28

    The Seebeck and Nernst effects in HgTe/CdTe quantum wells are studied using the tight-binding Hamiltonian and the nonequilibrium Green's function method. The Seebeck coefficient, S{sub c}, and the Nernst coefficient, N{sub c}, oscillate as a function of E{sub F}, where E{sub F} is the Fermi energy. The Seebeck coefficient shows peaks when the Fermi energy crosses the discrete transverse channels, and the height of the nth peak of the S{sub c} is [ln2/(1/2 +|n|)] for E{sub F} > 0. For the case E{sub F} < 0, the values of the peaks are negative, but the absolute values of the first five peaks are the same as those for E{sub F} > 0. The 6th peak of S{sub c} reaches the value [ln2/1.35] due to a higher density of states. When a magnetic field is applied, the Nernst coefficient appears. However, the values of the peaks for N{sub c} are all positive. For a weak magnetic field, the temperature suppresses the oscillation of the Seebeck and Nernst coefficients but increases their magnitude. For a large magnetic field, because of the highly degenerate Landau levels, the peaks of the Seebeck coefficient at position E{sub F}=−12, 10, 28meV, and Nernst coefficient at E{sub F}=−7, 10meV are robust against the temperature.

  1. HgCdTe Detectors for Space and Science Imaging: General Issues and Latest Achievements

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Rothman, J.; Cervera, C.; Baier, N.; Lobre, C.; Zanatta, J. P.; Boulade, O.; Moreau, V.; Fieque, B.

    2016-09-01

    HgCdTe (MCT) is a very versatile material system for infrared (IR) detection, suitable for high performance detection in a wide range of applications and spectral ranges. Indeed, the ability to tailor the cutoff frequency as close as possible to the needs makes it a perfect candidate for high performance detection. Moreover, the high quality material available today, grown either by molecular beam epitaxy or liquid phase epitaxy, allows for very low dark currents at low temperatures, suitable for low flux detection applications such as science imaging. MCT has also demonstrated robustness to the aggressive environment of space and faces, therefore, a large demand for space applications. A satellite may stare at the earth, in which case detection usually involves a lot of photons, called a high flux scenario. Alternatively, a satellite may stare at outer space for science purposes, in which case the detected photon number is very low, leading to low flux scenarios. This latter case induces very strong constraints onto the detector: low dark current, low noise, (very) large focal plane arrays. The classical structure used to fulfill those requirements are usually p/ n MCT photodiodes. This type of structure has been deeply investigated in our laboratory for different spectral bands, in collaboration with the CEA Astrophysics lab. However, another alternative may also be investigated with low excess noise: MCT n/ p avalanche photodiodes (APD). This paper reviews the latest achievements obtained on this matter at DEFIR (LETI and Sofradir common laboratory) from the short wave infrared (SWIR) band detection for classical astronomical needs, to long wave infrared (LWIR) band for exoplanet transit spectroscopy, up to very long wave infrared (VLWIR) bands. The different available diode architectures ( n/ p VHg or p/ n, or even APDs) are reviewed, including different available ROIC architectures for low flux detection.

  2. Dislocations as a Noise Source in LWIR HgCdTe Photodiodes

    NASA Astrophysics Data System (ADS)

    Jóźwikowski, Krzysztof; Jóźwikowska, Alina; Martyniuk, Andrzej

    2016-10-01

    The effect of dislocation on the 1/ f noise current in long-wavelength infrared (LWIR) reverse biased HgCdTe photodiodes working at liquid nitrogen (LN) temperature was analyzed theoretically by using a phenomenological model of dislocations as an additional Shockley-Read-Hall (SRH) generation-recombination (G-R) channel in heterostructure. Numerical analysis was involved to solve the set of transport equations in order to find a steady state values of physical parameters of the heterostructure. Next, the set of transport equations for fluctuations (TEFF) was formulated and solved to obtain the spectral densities (SD) of the fluctuations of electrical potential, quasi-Fermi levels, and temperature. The SD of mobility fluctuations, shot G-R noise, and thermal noise were also taken into account in TEFF. Additional expressions for SD of 1/ f fluctuations of the G-R processes were derived. Numerical values of the SD of noise current were compared with the experimental results of Johnson et al. Theoretical analysis has shown that the dislocations increase the G-R processes and this way cause the growth of G-R dark current. Despite the fact that dislocations increase both shot G-R noise and 1/ f G-R noise, the main cause of 1/ f current noise in LN cooled LWIR photodiodes are fluctuations of the carriers mobility determined by 1/ f fluctuations of relaxation times. As the noise current is proportional to the total diode current, growth of G-R dark current caused by dislocations leads to the growth of noise current.

  3. Nondestructive Characterization of Residual Threading Dislocation Density in HgCdTe Layers Grown on CdZnTe by Liquid-Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Fourreau, Y.; Pantzas, K.; Patriarche, G.; Destefanis, V.

    2016-09-01

    The performance of mercury cadmium telluride (MCT)-based infrared (IR) focal-plane arrays is closely related to the crystalline perfection of the HgCdTe thin film. In this work, Te-rich, (111)B-oriented HgCdTe epilayers grown by liquid-phase epitaxy on CdZnTe substrates have been studied. Surface atomic steps are shown on as-grown MCT materials using atomic force microscopy (AFM) and white-light interferometry (WLI), suggesting step-flow growth. Locally, quasiperfect surface spirals are also evidenced. A demonstration is given that these spirals are related to the emergence of almost pure screw threading dislocations. A nondestructive and quantitative technique to measure the threading dislocation density is proposed. The technique consists of counting the surface spirals on the as-grown MCT surface from images obtained by either AFM or WLI measurements. The benefits and drawbacks of both destructive—chemical etching of HgCdTe dislocations—and nondestructive surface imaging techniques are compared. The nature of defects is also discussed. Finally, state-of-the-art threading dislocation densities in the low 104 cm-2 range are evidenced by both etch pit density (EPD) and surface imaging measurements.

  4. Electrical and Optical Studies of Defect Structure of HgCdTe Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Świątek, Z.; Ozga, P.; Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytsky, H. V.

    2016-07-01

    Electrical and optical studies of defect structure of HgCdTe films grown by molecular beam epitaxy (MBE) are performed. It is shown that the peculiarity of these films is the presence of neutral defects formed at the growth stage and inherent to the material grown by MBE. It is assumed that these neutral defects are the Te nanocomplexes. Under ion milling, they are activated by mercury interstitials and form the donor centers with the concentration of 1017 cm-3, which makes it possible to detect such defects by measurements of electrical parameters of the material. Under doping of HgCdTe with arsenic using high temperature cracking, the As2 dimers are present in the arsenic flow and block the neutral Te nanocomplexes to form donor As2Te3 complexes. The results of electrical studies are compared with the results of studies carried out by micro-Raman spectroscopy.

  5. The chemistry and structure of ?222? CdO/Ag heterophase interfaces on an atomic scale

    NASA Astrophysics Data System (ADS)

    Chan, D. K.; Seidman, D. N.; Merkle, K. L.

    1996-03-01

    The chemistry and structure of {222} CdO/Ag (ceramic/metal) heterophase interfaces are determined with sub-nanometer chemical and structural spatial resolution employing atom-probe field-ion and high-resolution electron microscopies. The interfaces are produced in a controlled manner via internal oxidation of a Ag1.62at%Cd alloy, which results in the formation of CdO precipitates in a Ag matrix. The CdO precipitates are octahedral-shaped with facets on the {222} polar planes, and have a cube-on-cube orientation relationship with the Ag matrix. Atom-probe analyses are made along the chemically-ordered CdO <111>-type directions, thereby perpendicularly intersecting the {222} interfaces. A total of 35 {222} heterophase interfaces is chemically analyzed, of which 19 have the chemical sequence Ag|O|Cd|… and 16 the sequence Ag|Cd|O|…. High resolution electron microscopy analyses reveal that the {222} facet planes of the CdO precipitates con atomic height ledges, therefore indicating that the preciptates were in a coarsening stage. The combined atom-probe and high-resolution electron microscope results demonstrate that the chemistry of the terminating {222} facet plane of CdO is controlled by coarsening kinetics.

  6. HgCdTe e-APD detector arrays with single photon sensitivity for space lidar applications

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoli; Abshire, James B.; Beck, Jeffrey D.

    2014-05-01

    A multi-element HgCdTe electron initiated avalanche photodiode (e-APD) array has been developed for space lidar. The detector array was fabricated with 4.3μm cutoff HgCdTe with a spectral response from 0.4 to 4.3 μm. We have demonstrated a 4x4 e-APD array with 80 μm square elements followed by a custom cryogenic CMOS read-out integrated circuit (ROIC). The device operates at 77K inside a small closed-cycle cooler-Dewar with the support electronics integrated in a field programmable gate array. Measurements showed a unity gain quantum efficiency of about 90% at 1.5-1.6 μm wavelength. The bulk dark current of the HgCdTe e-APD at 77K was less than 50,000 input referred electrons/s at 12 V APD bias where the APD gain was 620 and the measured noise equivalent power (NEP) was 0.4 fW/Hz1/2. The electrical bandwidth of the device was about 6 MHz, mostly limited by the ROIC, but sufficient for the lidar application. Although the devices were designed for low bandwidth pulse detections, the high gain and low dark current enabled them to be used for single photon detections. Because the APD was biased below the break-down voltage, the output is linear to the input signal and there were no nonlinear effect such as dead-time and afterpulsing, and no need for gated operation. A new series of HgCdTe e-APDs have also been developed with a much wider bandwidth ROIC and higher APD gain, which is expected to give a much better performance in single photon detections.

  7. Heat capacity, enthalpy of mixing, and thermal conductivity of Hg(1-x)Cd(x)Te pseudobinary melts

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    1986-01-01

    Heat capacity and enthalpy of mixing of Hg(1-x)Cd(x)Te pseudobinary melts were calculated assuming an associated solution model for the liquid phase. The thermal conductivity of the pseudobinary melts for x = 0, 0.05, 0.1, and 0.2 was then calculated from the heat capacity values and the experimental values of thermal diffusivity and density for these melts. The thermal conductivity for the pseudobinary solid solution is also discussed.

  8. A 40+ year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA.

    PubMed

    Arnason, John G; Fletcher, Barbara A

    2003-01-01

    Sediments of the Patroon Creek watershed (33 km(2)) are known to contain significant concentrations of heavy metals derived from two industrial sites within the watershed. Mercury Refining, Inc (Mereco) has stored and recycled Hg from 1955 to the present day, and National Lead Industries (NLI) manufactured aircraft components containing Cd, Pb, and U from 1958 to 1984. Here we present the first record of heavy metal deposition as preserved in a 3-m long sediment core collected in 1999 from Patroon Reservoir, a small water body (1.3 ha) downstream of the industrial sites. Bulk sediment samples were collected from the core at 0.05-m intervals and analyzed for total Cd, Pb, and U by ICP-MS and total Hg by CVAAS. Total Hg increases from less than 1 mg kg(-1) (dw) below 1.68 m, to a maximum of 6.2 mg kg(-1) at 0.80 m, and then declines to the sediment-water interface. Total Cd, Pb, and U concentrations increase abruptly above 1.68 m to maximum values of 25, 320, and 3600 mg kg(-1) (dw), respectively, and then decline gradually upwards. By correlating metal profiles with industrial history, we conclude that the 1.68 m horizon was deposited no earlier than 1958, the beginning of aircraft component manufacturing at NLI. The average, apparent sedimentation rate within the reservoir has a minimum value of approximately 0.04 m year(-1) for the 41-year period from 1958 to 1999. In the interval 0--1.68 m, average concentrations of Cd, Hg, Pb, and U are 1.69, 1.50, 461, and 13 mg kg(-1), respectively. These levels are comparable with other lake, reservoir and stream sediments that have been moderately to severely impacted by industrial pollution and are above levels expected to be detrimental to aquatic organisms.

  9. Synthesis and Cell Imaging of a Near-Infrared Fluorescent Magnetic "CdHgTe-Dextran-Magnetic Layered Double Hydroxide-Fluorouracil" Composite.

    PubMed

    Jin, XueQin; Zhang, Min; Gou, GuoJing; Ren, Jie

    2016-05-01

    In this article, a water-soluble near-infrared quantum dots of CdHgTe were prepared and subsequently combined with the drug delivery system "dextran-magnetic layered double hydroxide-fluorouracil" (DMF) to build a new nanostructure platform in form of CdHgTe@DMF, in which the fluorescent probe function of quantum dots and the magnetic targeting transport and slow-release curative effect of DMF were blended availably together. The luminescent property particle size, and internal structure of the composite were characterized using fluorescence spectrophotometer, ultraviolet spectrophotometer, laser particle size distribution, TEM, X-ray diffraction, and Fourier transform infrared. The experimental study on fluorescent tags effect and magnetic targeting performance of the multifunctional platform were performed by fluorescent confocal imaging. The results showed that the CdHgTe could be grafted successfully onto the surface of DMF by electrostatic coupling. The CdHgTe@DMF composite showed super-paramagnetic and photoluminescence property in the near-infrared wavelength range of 575-780 nm. Compared with CdHgTe, the CdHgTe@DMF composite could significantly improve the cell imaging effect, the label intensity increased with the magnetic field intensity, and obeyed the linear relationship Dmean = 1.758 + 0.0075M under the conditions of magnetic field interference. It can be implied that the CdHgTe@DMF may be an effective multifunction tool applying to optical bioimaging and magnetic targeted therapy.

  10. Density, Electrical Conductivity and Viscosity of Hg(sub 0.8)Cd(sub 0.2)Te Melt

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The density, viscosity, and electrical conductivity of Hg(sub 0.8)Cd(sub 0.2)Te melt were measures as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(sub 0.8)Cd(sub 0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(sub 0.8)Cd(sub 0.2)Te melt as the temperature was decreased to below 1090 K.

  11. Selective separation of Hg(II) and Cd(II) from aqueous solutions by complexation-ultrafiltration process.

    PubMed

    Zeng, Jian Xian; Ye, Hong Qi; Huang, Nian Dong; Liu, Jun Feng; Zheng, Li Feng

    2009-07-01

    Complexation-ultrafiltration process was investigated to separate selectively Hg(II) and Cd(II) from binary metal solutions by using poly (acrylic acid) sodium salt as a complexing agent. Effects of operating parameters on selective separation factors (beta(Cd/Hg)) of the both metals have been examined in detail. Results indicated that loading rate, pH, concentration of salt added and low-molecular competitive complexing agent affect significantly beta(Cd/Hg) value. Further, a concentration experiment was carried out according to the previous optimum parameters. Rejection coefficient of mercury is close to 1, while that of cadmium is about 0.1. The experiment was characterized by good effectiveness, and enabled the rapid linear increase of mercury concentration and very slow increase of cadmium concentration in the retentate. Then, a diafiltration technique was applied to separate further the both metals. Cadmium concentration in the retentate declines sharply with the diafiltration volume, whereas for mercury it is the contrary.

  12. "Turn on" and label-free core-shell Ag@SiO2 nanoparticles-based metal-enhanced fluorescent (MEF) aptasensor for Hg(2+).

    PubMed

    Pang, Yuanfeng; Rong, Zhen; Xiao, Rui; Wang, Shengqi

    2015-03-30

    A turn on and label-free fluorescent apasensor for Hg(2+) with high sensitivity and selectivity has been demonstrated in this report. Firstly, core-shell Ag@SiO2 nanoparticles (NPs) were synthetized as a Metal-Enhanced Fluorescent (MEF) substrate, T-rich DNA aptamers were immobilized on the surface of Ag@SiO2 NPs and thiazole orange (TO) was selected as fluorescent reporter. After Hg(2+) was added to the aptamer-Ag@SiO2 NPs and TO mixture buffer solution, the aptamer strand can bind Hg(2+) to form T-Hg(2+)-T complex with a hairpin structure which TO can insert into. When clamped by the nucleic acid bases, the fluorescence quanta yield of TO will be increased under laser excitation and emitted a fluorescence emission. Furthermore, the fluorescence emission can be amplified largely by the MEF effect of the Ag@SiO2 NPs. The whole experiment can be finished within 30 min and the limit of detection is 0.33 nM even with interference by high concentrations of other metal ions. Finally, the sensor was applied for detecting Hg(2+) in different real water samples with satisfying recoveries over 94%.

  13. "Turn on" and label-free core-shell Ag@SiO2 nanoparticles-based metal-enhanced fluorescent (MEF) aptasensor for Hg2+

    NASA Astrophysics Data System (ADS)

    Pang, Yuanfeng; Rong, Zhen; Xiao, Rui; Wang, Shengqi

    2015-03-01

    A turn on and label-free fluorescent apasensor for Hg2+ with high sensitivity and selectivity has been demonstrated in this report. Firstly, core-shell Ag@SiO2 nanoparticles (NPs) were synthetized as a Metal-Enhanced Fluorescent (MEF) substrate, T-rich DNA aptamers were immobilized on the surface of Ag@SiO2 NPs and thiazole orange (TO) was selected as fluorescent reporter. After Hg2+ was added to the aptamer-Ag@SiO2 NPs and TO mixture buffer solution, the aptamer strand can bind Hg2+ to form T-Hg2+-T complex with a hairpin structure which TO can insert into. When clamped by the nucleic acid bases, the fluorescence quanta yield of TO will be increased under laser excitation and emitted a fluorescence emission. Furthermore, the fluorescence emission can be amplified largely by the MEF effect of the Ag@SiO2 NPs. The whole experiment can be finished within 30 min and the limit of detection is 0.33 nM even with interference by high concentrations of other metal ions. Finally, the sensor was applied for detecting Hg2+ in different real water samples with satisfying recoveries over 94%.

  14. "Turn on" and label-free core−shell Ag@SiO2 nanoparticles-based metal-enhanced fluorescent (MEF) aptasensor for Hg2+

    PubMed Central

    Pang, Yuanfeng; Rong, Zhen; Xiao, Rui; Wang, Shengqi

    2015-01-01

    A turn on and label-free fluorescent apasensor for Hg2+ with high sensitivity and selectivity has been demonstrated in this report. Firstly, core−shell Ag@SiO2 nanoparticles (NPs) were synthetized as a Metal-Enhanced Fluorescent (MEF) substrate, T-rich DNA aptamers were immobilized on the surface of Ag@SiO2 NPs and thiazole orange (TO) was selected as fluorescent reporter. After Hg2+ was added to the aptamer-Ag@SiO2 NPs and TO mixture buffer solution, the aptamer strand can bind Hg2+ to form T-Hg2+-T complex with a hairpin structure which TO can insert into. When clamped by the nucleic acid bases, the fluorescence quanta yield of TO will be increased under laser excitation and emitted a fluorescence emission. Furthermore, the fluorescence emission can be amplified largely by the MEF effect of the Ag@SiO2 NPs. The whole experiment can be finished within 30 min and the limit of detection is 0.33 nM even with interference by high concentrations of other metal ions. Finally, the sensor was applied for detecting Hg2+ in different real water samples with satisfying recoveries over 94%. PMID:25819733

  15. Structures, physicochemical properties, and applications of T-Hg(II)-T, C-Ag(I)-C, and other metallo-base-pairs.

    PubMed

    Tanaka, Yoshiyuki; Kondo, Jiro; Sychrovský, Vladimír; Šebera, Jakub; Dairaku, Takenori; Saneyoshi, Hisao; Urata, Hidehito; Torigoe, Hidetaka; Ono, Akira

    2015-12-21

    Recently, metal-mediated base-pairs (metallo-base-pairs) have been studied extensively with the aim of exploring novel base-pairs; their structures, physicochemical properties, and applications have been studied. This trend has become more evident after the discovery of Hg(II)-mediated thymine-thymine (T-Hg(II)-T) and Ag(I)-mediated cytosine-cytosine (C-Ag(I)-C) base-pairs. In this article, we focus on the basic science and applications of these metallo-base-pairs, which are composed of natural bases.

  16. Advanced methods for preparation and characterization of infrared detector materials. [crystallization and phase diagrams of Hg sub 1-x Cd sub x Te

    NASA Technical Reports Server (NTRS)

    Lehoczy, S. L.

    1979-01-01

    Crystal growth of Hg sub 1-x Cd sub x Te and density measurements of ingot slices are discussed. Radial compositional variations are evaluated from the results of infrared transmission edge mapping. The pseudo-binary HgTe-CdTe phase diagram is examined with reference to differential thermal analysis measurements. The phase equilibria calculations, based on the 'regular association solution' theory (R.A.S.) are explained and, using the obtained R.A.S. parameters, the activities of Hg, Cd, and Te vapors and their partial pressures over the pseudo-binary melt are calculated.

  17. Influence of Ag doping concentration on structural and optical properties of CdS thin film

    SciTech Connect

    Kumar, Pragati; Saxena, Nupur; Gupta, Vinay; Agarwal, Avinash

    2015-05-15

    This work shows the influence of Ag concentration on structural properties of pulsed laser deposited nanocrystalline CdS thin film. X-ray photoelectron spectroscopy (XPS) studies confirm the dopant concentration in CdS films and atomic concentration of elements. XPS studies show that the samples are slightly sulfur deficient. GAXRD scan reveals the structural phase transformation from cubic to hexagonal phase of CdS without appearance of any phase of CdO, Ag{sub 2}O or Ag{sub 2}S suggesting the substitutional doping of Ag ions. Photoluminescence studies illustrate that emission intensity increases with increase in dopant concentration upto 5% and then decreases for higher dopant concentration.

  18. Loading Ag nanoparticles on Cd(II) boron imidazolate framework for photocatalysis

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zhang, De-Xiang; Chen, Shumei; Wen, Tian

    2016-05-01

    An amine-functionalized Cd(II) boron imidazolate framework (BIF-77) with three-dimensional open structure has been successfully synthesized, which can load Ag nanoparticles (NPs) for photocatalytic degradation of methylene blue (MB).

  19. Pb-Zn-Cd-Hg multi isotopic characterization of the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Widory, D.; Innocent, C.; Guerrot, C.; Bourrain, X.; Johnson, T. M.

    2012-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition (major ions and pollutants such as metals) of the dissolved load of rivers. Furthermore, this influence can also be evidenced in the suspended solid matter known to play an important role in the transport of heavy metals through river systems. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. Initially, the Loire upstream flows in a south to north direction originating in the Massif Central, and continues up to the city of Orléans, 650 km from the source. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The Loire River then follows a general east to west direction to the Atlantic Ocean. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for heavy metals Zn-Cd-Pb-Hg in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for these metals for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of

  20. Influence of infrared radiation on the electrical characteristics of the surface-barrier nanostructures based on MBE HgCdTe

    NASA Astrophysics Data System (ADS)

    Pociask-Bialy, Malgorzata; Izhnin, Ihor; Voitsekhovskii, Alexander; Nesmelov, Sergey; Dzyadukh, Stanislav

    2016-12-01

    Impact of illumination on the admittance of the MIS structures based on MBE Hg1-xCdxTe with graded-gap layers and single quantum wells was investigated. It is shown that for HgCdTe-based nanostructures the illumination greatly affects the capacitance and conductance dependencies. The capacitance-voltage characteristics exhibit a low-frequency behavior, which is associated with a decrease in the differential resistance of the space charge region. Especially informative illumination exposure is in the study of deep traps in n-HgCdTe (x=0.21-0.23) without graded-gap layer. Illumination leads to the low-frequency behavior of capacitance-voltage characteristics of MIS structures based on p-HgCdTe with HgTe single quantum well in the active region, and maximums in the voltage dependences do not appear.

  1. Population health risk via dietary exposure to trace elements (Cu, Zn, Pb, Cd, Hg, and As) in Qiqihar, Northeastern China.

    PubMed

    Luo, Jinming; Meng, Jia; Ye, Yajie; Wang, Yongjie; Bai, Lin

    2016-11-15

    The estimated daily intakes (EDIs) of six trace elements (Cu, Zn, Pb, Cd, Hg, and As) in vegetables (leafy vegetable, i.e., bok choy, fruit vegetables, i.e., cucumber and tomato, and other categories, i.e., mushroom, kidney bean, and potato), cereals (rice and wheat flour), and meats (pork, mutton, and beef) most commonly consumed by adult inhabitants of Qiqihar, Northeastern China, were determined to assess the health status of local people. The average EDIs of Cu, Zn, Pb, Cd, Hg, and As were with 20.77 μg (kg bw)(-1) day(-1) of Cu, 288 μg (kg bw)(-1) day(-1) of Zn, 2.01 μg (kg bw)(-1) day(-1) of Pb, 0.41 μg (kg bw)(-1) day(-1) of Cd, 0.01 μg (kg bw)(-1) day(-1) of Hg, and 0.52 μg (kg bw)(-1) day(-1) of As, respectively, which are below the daily allowance recommended by FAO/WHO. However, the maximum EDIs of Pb and Cd were 4.56 μg (kg bw)(-1) day(-1) and 1.68 μg (kg bw)(-1) day(-1), respectively, which are above the recommended levels [i.e., 3.58 μg (kg bw)(-1) day(-1) for Pb and 1.0 μg (kg bw)(-1) day(-1) for Cd] by FAO/WHO. This finding indicates that the potential health risk induced by daily ingestion of Pb and Cd for the local residents should receive a significant concern. Similarly, we detected elevated Pb and Cd concentrations, i.e., with average of 13.58 and 0.60 mg kg(-1) dw, respectively, in the adult scalp hairs. Consumption of rice, potato, bok choy, and wheat flour contributed to 75 and 82% of Pb and Cd daily intake from foodstuffs. Nevertheless, human scalp hair is inappropriate biological material for determination of the nutritional status of trace elements in this region.

  2. Operating mechanism of electrically bistable memory device based on Ag doped CdSe/PVA nanocomposite

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Tripathi, S. K.

    2015-06-01

    This paper reports the fabrication and characterization of electrically bistable memory device with device structure Al/Ag doped CdSe/PVA nanocomposite/Ag. Current-Voltage (I-V) measurements show two conductivity states at the same applied voltage indicating the bistability behavior. The possible operating mechanism for the memory effects has been described. During transition from the low resistance state to high resistance state, the current follows the change from the injection emission to the space charge limited conduction mechanism. The achieved results demonstrate that the device based on Ag doped CdSe/PVA nanocomposite has a potential for future non-volatile memory devices.

  3. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain.

    PubMed

    Karri, Venkatanaidu; Schuhmacher, Marta; Kumar, Vikas

    2016-12-01

    Human exposure to toxic heavy metals is a global challenge. Concurrent exposure of heavy metals, such as lead (Pb), cadmium (Cd), arsenic (As) and methylmercury (MeHg) are particularly important due to their long lasting effects on the brain. The exact toxicological mechanisms invoked by exposure to mixtures of the metals Pb, Cd, As and MeHg are still unclear, however they share many common pathways for causing cognitive dysfunction. The combination of metals may produce additive/synergetic effects due to their common binding affinity with NMDA receptor (Pb, As, MeHg), Na(+) - K(+) ATP-ase pump (Cd, MeHg), biological Ca(+2) (Pb, Cd, MeHg), Glu neurotransmitter (Pb, MeHg), which can lead to imbalance between the pro-oxidant elements (ROS) and the antioxidants (reducing elements). In this process, ROS dominates the antioxidants factors such as GPx, GS, GSH, MT-III, Catalase, SOD, BDNF, and CERB, and finally leads to cognitive dysfunction. The present review illustrates an account of the current knowledge about the individual metal induced cognitive dysfunction mechanisms and analyse common Mode of Actions (MOAs) of quaternary metal mixture (Pb, Cd, As, MeHg). This review aims to help advancement in mixture toxicology and development of next generation predictive model (such as PBPK/PD) combining both kinetic and dynamic interactions of metals.

  4. Low-Cost Lattice Matching Zn(Se)Te/Si Composite Substrates for HgCdSe and Type-2 Superlattices

    DTIC Science & Technology

    2013-09-01

    9 Figure 8. X-ray FWHMs of ZnTe/Si layers as a function of alloy composition...superlattices (T2-SLS) (15, 16) and HgCdSe (17, 18) alloys for LWIR applications. These compound semiconductor systems have lattice constants close to...lattice constant very near 6.1 Å, which can be tuned to lattice-match any configured T2-SLS system or HgCdSe alloys . For these reasons, we propose

  5. Hole Transport in Arsenic-Doped Hg1- x Cd x Te with x ≥ 0.5

    NASA Astrophysics Data System (ADS)

    Umana-Membreno, G. A.; Kala, H.; Bains, S.; Akhavan, N. D.; Antoszewski, J.; Maxey, C. D.; Faraone, L.

    2016-09-01

    Hole transport in arsenic-doped p-type Hg1- x Cd x Te epitaxial layers with x ≥ 0.5 has been studied employing Hall-effect measurements and theoretical modeling of hole scattering mechanisms. The hole transport parameters extracted from four different Hg1- x Cd x Te films with x = 0.50, 0.56-0.58, 0.65, and 0.80, were analyzed using an iterative solution of Boltzmann's transport equation. Hole mobilities in the samples with x values of 0.5 and 0.56-0.58 were found to be predominantly limited by ionized impurity scattering, and exhibited relatively high impurity compensation ratios ≥2. The sample with x = 0.65 exhibited the highest hole mobility, a low compensation ratio of 1.05, and mobility characteristics were limited predominantly by polar optical phonon scattering at temperatures ≥200 K. Hole mobility in the sample with x = 0.80 was found to be limited by polar optical phonon scattering and ionized impurity scattering (compensation ratio 1.20-1.56). Although the sample temperatures employed were not sufficiently low to unambiguously discriminate the scattering strength of static strain and dislocations, the experimental hole mobility characteristics cannot be adequately modeled if these two mechanisms are neglected. The ionization energy of the arsenic acceptor impurities was found to exhibit a quadratic dependence on the CdTe mole fraction.

  6. Development of High-Performance eSWIR HgCdTe-Based Focal-Plane Arrays on Silicon Substrates

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Pepping, J.; Mukhortova, A.; Ketharanathan, S.; Kodama, R.; Zhao, J.; Hansel, D.; Velicu, S.; Aqariden, F.

    2016-09-01

    We report the development of high-performance and low-cost extended short-wavelength infrared (eSWIR) focal-plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates. High-quality n-type eSWIR HgCdTe (cutoff wavelength ˜2.68 μm at 77 K, electron carrier concentration 5.82 × 1015 cm-3) layers were grown on CdTe/Si substrates by MBE. High degrees of uniformity in composition and thickness were demonstrated over three-inch areas, and low surface defect densities (voids 9.56 × 101 cm-2, micro-defects 1.67 × 103 cm-2) were measured. This material was used to fabricate 320 × 256 format, 30 μm pitch FPAs with a planar device architecture using arsenic implantation to achieve p-type doping. The dark current density of test devices showed good uniformity between 190 K and room temperature, and high-quality eSWIR imaging from hybridized FPAs was obtained with a median dark current density of 2.63 × 10-7 A/cm2 at 193 K with a standard deviation of 1.67 × 10-7 A/cm2.

  7. Underpotential deposition of Cd on Ag(1 1 1): an in situ STM study

    NASA Astrophysics Data System (ADS)

    García, S. G.; Salinas, D. R.; Staikov, G.

    2005-02-01

    The kinetics and mechanism of Cd underpotential deposition (UPD) and involved surface alloy formation processes in the system Ag(1 1 1)/Cd 2+, SO42-, are studied by means of combined electrochemical measurements and in situ scanning tunneling microscopy (STM). The results show that the UPD process starts with a formation of an expanded (diluted) adlayer with a superlattice structure Ag(1 1 1)- (√{3}×√{19})R23.4°. In the underpotential range 50 mV < Δ E < 80 mV this adlayer transforms to a condensed close packed Cd monolayer via a first order phase transition. At long polarization times the condensed monolayer undergoes structural changes involving place exchange processes between Cd atoms and surface Ag atoms. A formation of a second Cd monolayer and a significant Ag-Cd surface alloying take place at lower underpotentials (Δ E < 50 mV). The kinetics of surface alloying are analyzed on the basis of a recently proposed diffusion model including a relatively fast initial formation of a very thin surface alloy film and a subsequent slow alloy growth controlled by solid state diffusion. The anodic dealloying results in an appearance of monatomically deep pits, which disappear quickly at relatively high underpotentials (Δ E > 550 mV) indicating a high mobility of surface Ag atoms.

  8. A Highly Sensitive Multi-Element HgCdTe E-APD Detector for IPDA Lidar Applications

    NASA Technical Reports Server (NTRS)

    Beck, Jeff; Welch, Terry; Mitra, Pradip; Reiff, Kirk; Sun, Xiaoli; Abshire, James

    2014-01-01

    An HgCdTe electron avalanche photodiode (e-APD) detector has been developed for lidar receivers, one application of which is integrated path differential absorption lidar measurements of such atmospheric trace gases as CO2 and CH4. The HgCdTe APD has a wide, visible to mid-wave-infrared, spectral response, high dynamic range, substantially improved sensitivity, and an expected improvement in operational lifetime. A demonstration sensor-chip assembly consisting of a 4.3 lm cutoff HgCdTe 4 9 4 APD detector array with 80 micrometer pitch pixels and a custom complementary metal-oxide-semiconductor readout integrated circuit was developed. For one typical array the APD gain was 654 at 12 V with corresponding gain normalized dark currents ranging from 1.2 fA to 3.2 fA. The 4 9 4 detector system was characterized at 77 K with a 1.55 micrometer wavelength, 1 microsecond wide, laser pulse. The measured unit gain detector photon conversion efficiency was 91.1%. At 11 V bias the mean measured APD gain at 77 K was 307.8 with sigma/mean uniformity of 1.23%. The average, noise-bandwidth normalized, system noise-equivalent power (NEP) was 1.04 fW/Hz(exp 1/2) with a sigma/mean of 3.8%. The measured, electronics-limited, bandwidth of 6.8 MHz was more than adequate for 1 microsecond pulse detection. The system had an NEP (3 MHz) of 0.4 fW/Hz(exp 1/2) at 12 V APD bias and a linear dynamic range close to 1000. A gain-independent quantum-limited SNR of 80% of full theoretical was indicative of a gain-independent excess noise factor very close to 1.0 and the expected APD mode quantum efficiency.

  9. A Highly Sensitive Multi-element HgCdTe e-APD Detector for IPDA Lidar Applications

    NASA Astrophysics Data System (ADS)

    Beck, Jeff; Welch, Terry; Mitra, Pradip; Reiff, Kirk; Sun, Xiaoli; Abshire, James

    2014-08-01

    An HgCdTe electron avalanche photodiode (e-APD) detector has been developed for lidar receivers, one application of which is integrated path differential absorption lidar measurements of such atmospheric trace gases as CO2 and CH4. The HgCdTe APD has a wide, visible to mid-wave-infrared, spectral response, high dynamic range, substantially improved sensitivity, and an expected improvement in operational lifetime. A demonstration sensor-chip assembly consisting of a 4.3 μm cutoff HgCdTe 4 × 4 APD detector array with 80 μm pitch pixels and a custom complementary metal-oxide-semiconductor readout integrated circuit was developed. For one typical array the APD gain was 654 at 12 V with corresponding gain normalized dark currents ranging from 1.2 fA to 3.2 fA. The 4 × 4 detector system was characterized at 77 K with a 1.55 μm wavelength, 1 μs wide, laser pulse. The measured unit gain detector photon conversion efficiency was 91.1%. At 11 V bias the mean measured APD gain at 77 K was 307.8 with σ/mean uniformity of 1.23%. The average, noise-bandwidth normalized, system noise-equivalent power (NEP) was 1.04 fW/Hz1/2 with a σ/mean of 3.8%. The measured, electronics-limited, bandwidth of 6.8 MHz was more than adequate for 1 μs pulse detection. The system had an NEP (3 MHz) of 0.4 fW/Hz1/2 at 12 V APD bias and a linear dynamic range close to 1000. A gain-independent quantum-limited SNR of 80% of full theoretical was indicative of a gain-independent excess noise factor very close to 1.0 and the expected APD mode quantum efficiency.

  10. Preliminary measurements of very low dark currents in MLA/SWIR HgCdTe/DRO arrays

    NASA Technical Reports Server (NTRS)

    Yang, B. T.

    1986-01-01

    In infrared astronomy observations, one of the key detector performance parameters is the dark current which, together with the optics, establishes the fundamental limit of a space-based instrument. This technical note summarizes an effort to measure dark current performance of the MLA/Short Wave Infrared photovoltaic HgCdTe array (2.5 micron cutoff) at temperatures from 65 to 120 K. The preliminary results indicate that dark current decreased systematically to 100 K, then the value became measurement-limited at about 3.0 E-18 A/pixel, or 19 electrons/sec/pixel.

  11. Towards the next generation of L-APD MOVPE HgCdTe arrays: beyond the SAPHIRA 320 x 256

    NASA Astrophysics Data System (ADS)

    Hall, Donald N. B.; Baker, Ian; Finger, Gert

    2016-07-01

    The Leonardo (formerly Selex ES) SAPHIRA 320 X 256 @24μm pitch L-APD MOVPE HgCdTe array is now generally accepted as the sensor of choice for near infrared (NIR - 0.8 to 2.5μm) adaptive optics (AO) wavefront (WF) sensing using natural guide stars. With larger formats and improved readout integrated circuits (ROICs), this technology shows great promise for more sophisticated wavefront correction and also, potentially, lower background astronomy applications. This opens the path to larger format arrays optimized for either AO WF sensing or low background applications. We present Selex-UH initiatives in both areas.

  12. Producible Alternative to CdTe for Epitaxy (PACE-2) of LWIR (Long Wave Infrared) HgCdTe

    DTIC Science & Technology

    1984-11-01

    excluding grain boundaries ) :c-:v . ••• -. SC84-27821 LPE/MBE CdTe/GaAs LADA CdTe/GaAs Fig. 26 Cathodoluminescence of PACE-2 CdTe. 41...thermal conductivity which makes it difficult to main- tain a planar growth interface, second, a high vacancy concentration with high mobility at the...melting point results in a large number of defects which, again because of high mobilities , interacts to form numerous extended disloca- tions, low

  13. Anthropogenic and geogenic Cd, Hg, Pb and Se sources of contamination in a brackish aquifer below agricultural fields

    NASA Astrophysics Data System (ADS)

    Mastrocicco, Micòl; Colombani, Nicolò; Di Giuseppe, Dario; Faccini, Barbara; Ferretti, Giacomo; Coltorti, Massimo

    2015-04-01

    Groundwater quality is often threatened by industrial, agricultural and land use practices (anthropogenic input). In deltaic areas is however difficult to distinguish between geogenic and anthropogenic inorganic contaminants pollution, since these phenomena can influence each other and often display a seasonal cycling. The effect of geogenic groundwater ionic strength (>10 g/l) on the mobility of trace elements like Cd, Hg, Pb and Se was studied in combination with the anthropogenic sources of these elements (fertilizers) in a shallow aquifer. The site is located in the Po river plain (Northern Italy) in an agricultural field belonging to a reclaimed deltaic environment, near Codigoro town. It is 6 ha wide and is drained by a subsurface drainage system made of PVC tile drains with a slope of 3‰, which provides gravity drainage towards two ditches that in turn discharge in a main channel. The whole area has been intensively cultivated with cereal rotation since 1960, mainly using synthetic urea as nitrogen fertilizer at an average rate of 180 kg-N/ha/y and pig slurry at an average rate of 60 kg-N/ha/y. The sediments were analyzed for major and trace elements via XRF, while major ions in groundwater were analyzed via IC and trace elements via ICP-MS. Three monitoring wells, with an inner diameter of 2 cm and screened down to 4 m below ground level, were set up in the field and sampled every four month from 2012 to 2014. The use of intensive depth profiles with resolution of 0.5 m in three different locations, gave insights into groundwater and sediment matrix interactions. To characterize the anthropogenic inputs synthetic urea and pig slurry were analyzed for trace elements via ICP-MS. The synthetic urea is a weak source of Cd and Hg (~1 ppb), while Se and Pb are found below detection limits. The pig slurry is a much stronger source of Se (~19 ppb) and Pb (~23 ppb) and a weak source of Cd (~3 ppb) and Hg (~2 ppb). Although, the mass loading rate pig slurry is

  14. Status of two-color and large format HgCdTe FPA technology at Raytheon Vision Systems

    NASA Astrophysics Data System (ADS)

    Smith, E. P. G.; Bornfreund, R. E.; Kasai, I.; Pham, L. T.; Patten, E. A.; Peterson, J. M.; Roth, J. A.; Nosho, B. Z.; De Lyon, T. J.; Jensen, J. E.; Bangs, J. W.; Johnson, S. M.; Radford, W. A.

    2006-02-01

    Raytheon Vision Systems (RVS) is developing two-color and large format single color FPAs fabricated from molecular beam epitaxy (MBE) grown HgCdTe triple layer heterojunction (TLHJ) wafers on CdZnTe substrates and double layer heterojunction (DLHJ) wafers on Si substrates, respectively. MBE material growth development has resulted in scaling TLHJ growth on CdZnTe substrates from 10cm2 to 50cm2, long-wavelength infrared (LWIR) DLHJ growth on 4-inch Si substrates and the first demonstration of mid-wavelength infrared (MWIR) DLHJ growth on 6-inch Si substrates with low defect density (<1000cm -2) and excellent uniformity (composition<0.1%, cut-off wavelength Δcenter-edge<0.1μm). Advanced FPA fabrication techniques such as inductively coupled plasma (ICP) etching are being used to achieve high aspect ratio mesa delineation of individual detector elements with benefits to detector performance. Recent two-color detectors with MWIR and LWIR cut-off wavelengths of 5.5μm and 10.5μm, respectively, exhibit significant improvement in 78K LW performance with >70% quantum efficiency, diffusion limited reverse bias dark currents below 300pA and RA products (zero field-of-view, +150mV bias) in excess of 1×103 Ωcm2. Two-color 20μm unit-cell 1280×720 MWIR/LWIR FPAs with pixel response operability approaching 99% have been produced and high quality simultaneous imaging of the spectral bands has been achieved by mating the FPA to a readout integrated circuit (ROIC) with Time Division Multiplexed Integration (TDMI). Large format mega pixel 20μm unit-cell 2048×2048 and 25μm unit-cell 2560×512 FPAs have been demonstrated using DLHJ HgCdTe growth on Si substrates in the short wavelength infrared (SWIR) and MWIR spectral range. Recent imaging of 30μm unit-cell 256×256 LWIR FPAs with 10.0-10.7μm 78K cut-off wavelength and pixel response operability as high as 99.7% show the potential for extending HgCdTe/Si technology to LWIR wavelengths.

  15. Analysis of surface and bulk effects in HgCdTe photodetector arrays by variable-area diode test structures

    NASA Astrophysics Data System (ADS)

    Deng, Yi; Lin, Chun; Hu, Xiaoning

    2009-07-01

    This study describes variable-area diode data analysis of surface and bulk effects of HgCdTe infrared photodiodes passivated with dual-layer CdTe/ZnS films. We attempt to present a general analytical relation between the zero-bias resistance-area product and the perimeter-to-area ratio of the diodes by variable-area diode array test structures. We have taken contributions into consideration from surface leakage between HgCdTe and passivant due to band bending, surface generation currents in the depletion region close to the HgCdTe-passivant interface, and the bulk currents. The model we use is based on the one put forward by Vishnu Gopal. The variable-area diode data analysis can be of great practical help in identifying the various possible mechanism contributing to the surface leakage currents. Through data analysis and curve fitting, we can also get some other useful parameters (like junction depth), which can be the reference to other experiment results. The experimental samples we used range from 20μm to 200μm in size and include both square and circular diode geometries. The conventional boron implantation was used to form the p-n junction and Au was used for the metal pads. The insulating layers of CdTe and ZnS were both electron-beam evaporated at a rate of 1.3 Å/sec. The fabricated diode test patterns were wire-bonded and packaged into a dewar system. I-V measurements were performed using a Keithley 4200 parameter analyzer. The data analysis and curve fitting are all dealt with by MATLAB. Through the results we can find that the surface leakage is nearly the same to the bulk current in diameter between 50~150μm, which indicate that surface leakage is still a dominating dark current in small dimension diode. The results also showed that diodes from 50 to 150μm in size have better performance than the larger or smaller ones and this can be explained by the limit of material imperfection and the limit of processing techniques.

  16. Large stokes shift of Ag doped CdSe quantum dots via aqueous route.

    PubMed

    Huang, Jian; Jiang, Yang; Duan, Hongyan; Liu, Chao; Mi, Longfei; Lan, Xinzheng; Zhou, Hongyang; Zhong, Honghai

    2013-10-01

    Monodispersed and luminescent Ag-doped CdSe semiconductor quantum dots (d-dots) were synthesized by an aqueous route assisted with electrochemical preparation of Se source with 3-mercaptopropionic acid as stabilizer. The silver dopants were incorporated into the host crystals via cation-exchange mechanism. X-ray diffraction patterns revealed that the as-synthesized CdSe:Ag d-dots were well retained in the zinc blende structure. The CdSe:Ag d-dots that exhibited uniform size distribution and good crystallnity could be observed by High-resolution transmission electron microscopy (HRTEM), with average diameter of 2.7 nm. Successful doping was confirmed by X-ray photoelectron spectroscopy survey spectra. The peculiar Ag-related photoluminescence showed strong intensity, and at the same time, intrinsic band-edge exciton emission of CdSe QDs was suppressed. The dopant emission exhibited larger Stockes shift of - 0.51 eV than that of the band-gap emission, and varied from 546 to 583 nm by changing electrolytic time. Possible radiative recombination mechanism of the aqueous Ag-doped CdSe d-dots was discussed. The results demonstrated that doping can be an effective way to manipulate the optical properties of semiconductor nanocrystals.

  17. Toward selective, sensitive, and discriminative detection of Hg(2+) and Cd(2+)via pH-modulated surface chemistry of glutathione-capped gold nanoclusters.

    PubMed

    Huang, Pengcheng; Li, Sha; Gao, Nan; Wu, Fangying

    2015-11-07

    Heavy metal pollution can exert severe effects on the environment and human health. Simple, selective, and sensitive detection of heavy metal ions, especially two or more, using a single probe, is thereby of great importance. In this study, we report a new and facile strategy for discriminative detection of Hg(2+) and Cd(2+) with high selectivity and sensitivity via pH-modulated surface chemistry of the glutathione-capped gold NCs (GSH-Au NCs). By simply adjusting pH values of the colloidal solution of the NCs, Hg(2+) could specifically turn off the fluorescence under acidic pH, however, Cd(2+) could exclusively turn on the fluorescence under alkaline pH. This enables the NCs to serve as a dual fluorescent sensor for Hg(2+) and Cd(2+). We demonstrate that these two opposing sensing modes are presumably due to different interaction mechanisms: Hg(2+) induces aggregation by dissociating GSH from the Au surface via robust coordination and, Cd(2+) could passivate the Au surface by forming a Cd-GSH complex with a compact structure. Finally, the present strategy is successfully exploited to separately determine Hg(2+) and Cd(2+) in environmental water samples.

  18. The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994-2000)

    USGS Publications Warehouse

    Grosbois, C.; Meybeck, Michel; Horowitz, A.; Ficht, A.

    2006-01-01

    Fresh floodplain deposits (FD), from 11 key stations, covering the Seine mainstem and its major tributaries (Yonne, Marne and Oise Rivers), were sampled from 1994 to 2000. Background levels for Cd, Cu, Hg, Pb, and Zn were established using prehistoric FD and actual bed sediments collected in small forested sub-basins in the most upstream part of the basin. Throughout the Seine River Basin, FD contain elevated concentrations of Cd, Cu, Hg, Pb and Zn compared to local background values (by factors > twofold). In the Seine River Basin, trace element concentrations display substantial downstream increases as a result of increasing population densities, particularly from Greater Paris (10 million inhabitants), and reach their maxima at the river mouth (Poses). These elevated levels make the Seine one of the most heavily impacted rivers in the world. On the other hand, floodplain-associated trace element levels have declined over the past 7 years. This mirrors results from contemporaneous suspended sediment surveys at the river mouth for the 1984-1999 period. Most of these temporal declines appear to reflect reductions in industrial and domestic solid wastes discharged from the main Parisian sewage plant (Seine Aval). ?? 2005 Elsevier B.V. All rights reserved.

  19. Ag adsorption on Cd-terminated CdS (0 0 0 1) and S-terminated CdS (0 0 0 1-bar) surfaces: First-principles investigations

    SciTech Connect

    Ma, Yandong; Dai, Ying; Wei, Wei; Liu, Xianghong; Huang, Baibiao

    2011-04-15

    First-principles calculations are performed to study the adsorption of Ag at Cd-terminated CdS (0 0 0 1) and S-terminated CdS (0 0 0 1-bar) surfaces as a function of Ag coverage. Our results reveal that Ag adsorption at Cd-terminated (0 0 0 1) has a large binging energy than at S-terminated (0 0 0 1-bar) surface. For Ag adsorption at Cd-terminated (0 0 0 1) surface, T4 structure is more favorable and the Ag-Cd bond posses an ionic-like character. While for Ag adsorption at S-terminated (0 0 0 1-bar) surface, the H3 structure is most stable and the bonding between Ag-S is covalent. It is found that the magnitude and the sign of surface dipole moment are partly determined by the difference between the electronegativities of Ag and the host atom bonding with Ag. The adsorption energy changes as a function of Ag coverage. In addition, related properties of Ag cluster adsorption at Cd-terminated (0 0 0 1) surface are also discussed. -- Graphical abstract: We studied the adsorption of Ag at Cd-terminated CdS (0 0 0 1) and S-terminated CdS (0 0 0 1-bar) surfaces as a function of Ag coverage by means of the first-principles calculations. In addition, related properties of Ag cluster adsorption at Cd-terminated (0 0 0 1) surface are also discussed. Our ab initio calculations are useful complement to the intense experimental studies for Ag-CdS interface. Display Omitted Research highlights: {yields} Ag adsorption effects on electronic structure and associated physics properties of CdS is systemically studied. {yields} The surface dipole moment is partly determined by the difference between the electronegativities of silver and the host atom bonding with silver. {yields} The characteristic of Ag cluster (Ag{sub 2}, Ag{sub 4}, and Ag{sub 7}) adsorption on the CdS (0 0 0 1) surface is discussed.

  20. Local structure and site occupancy of Cd and Hg substitutions in CeTIn5 (T=Co, Rh, Ir)

    SciTech Connect

    Bauer, Eric D; Ronning, Filip; Thompson, J D; Sarrao, J L; Booth, C H; Bianchi, A D; Cho, J Y; Chan, J Y; Capan, C; Fisk, Z

    2009-01-01

    The CeTIn{sub 5} superconductors (T = Co, Rh, or Ir) have generated great interest due to their relatively high transition temperatures, non-Fermi liquid behavior, and their proximity to antiferromagnetic order and quantum critical points. In contrast to small changes with the T-species, electron doping in CeT(In{sub 1-x}M{sub x}){sub 5} with M = Sn and hole doping with Cd or Hg have a dramatic effect on the electronic properties at very low concentrations. The present work reports local structure measurements using the extended x-ray absorption fine-structure (EXAFS) technique that address the substituent atom distribution as a function of T, M, and x, in the vicinity of the superconducting phase. Together with previous measurements for M = Sn, the proportion of the M atom residing on the In(1) site, f{sub 1n(1)}, increases in the order M = Cd, Sn, and Hg, ranging from about 40% to 70%, showing a strong preference for each of these substituents to occupy the In(1) site (random occupation = 20%). In addition, f{sub In(1)} ranges from 70% to 100% for M = Hg in the order T = Co, Rh, and Ir. These fractions track the changes in the atomic radii of the various species, and help explain the sharp dependence of T{sub c} on substituting into the In site. However, it is difficult to reconcile the small concentrations of M with the dramatic changes in the ground state in the hole-doped materials with only an impurity scattering model. These results therefore indicate that while such substitutions have interesting local atomic structures with important electronic and magnetic consequences, other local changes in the electronic and magnetic structure are equally important in determining the bulk properties of these materials.

  1. Ternary Solid Phase Equilibria in the Systems (Ag,In,Au)-(Cd,He)-Te

    DTIC Science & Technology

    1988-07-22

    thermochemnical data. In closed thermodynamic systems Ag,In, and Au were shown to be stable with respect to stoichiometric CdTe and Ag, In reactive towards...compositions within Codes Avail and/or 2lit Specilal the six ternary systems. Thermodynamic calculations were performed using the data collected in... Thermodynamic Properties of the Elements, (Amer.Chem.Soc., Washington, D.C., 1956) 11) John H. Pugh, Masters Thesis, UCLA, 1986-unpublished. 12) W.G

  2. Probing the mechanism of the interaction between l-cysteine-capped-CdTe quantum dots and Hg(2+) using capillary electrophoresis with ensemble techniques.

    PubMed

    Xu, Laifang; Hao, Junjie; Yi, Tao; Xu, Yinyin; Niu, Xiaoying; Ren, Cuiling; Chen, Hongli; Chen, Xingguo

    2015-03-01

    A good understanding of the mechanism of interaction between quantum dots (QDs) and heavy metal ions is essential for the design of more effective sensor systems. In this work, CE was introduced to explore how l-cysteine-capped-CdTe QDs (l-cys-CdTe QDs) interacts with Hg(2+) . The change in electrophoretic mobility can synchronously reflect the change in the composition and property of QDs. The effects of the free and capping ligands on the system are discussed in detail. ESI-MS, dynamic light scattering (DLS), zeta potential, and fluorescence (FL) were also applied as cooperative tools to study the interaction mechanism. Furthermore, the interaction mechanism, which principally depended on the concentration of Hg(2+) , was proposed reasonably. At the low concentration of Hg(2+) , the formation of a static complex between Hg(2+) and the carboxyl and amino groups of l-cys-CdTe QDs surface was responsible for the FL quenching. With the increase of Hg(2+) concentration, the capping l-cys was stripped from the surface of l-cys-CdTe QDs due to the high affinity of Hg(2+) to the thiol group of l-cys. Our study demonstrates that CE can reveal the mechanism of the interaction between QDs and heavy metal ions, such as FL quenching.

  3. Determination of Cd, Cr, Hg and Pb in plastics from waste electrical and electronic equipment by inductively coupled plasma mass spectrometry with collision-reaction interface technology.

    PubMed

    Santos, Mirian C; Nóbrega, Joaquim A; Cadore, Solange

    2011-06-15

    A procedure based on the use of a quadrupole inductively coupled plasma-mass spectrometer equipped with a collision-reaction interface (CRI) for control of spectral overlap interferences was developed for simultaneous determination of Cd, Cr, Hg, and Pb in plastics from waste electrical and electronic equipment (WEEE). The injection of H(2) and He (80 and 60 mL min(-1), respectively) into the sampled plasma, colliding and reacting with potentially interfering polyatomic ions, allows interference-free determination of chromium via its isotopes (52)Cr and (53)Cr that are freed from overlap due to the occurrence of (40)Ar(12)C(+), (40)Ar(12)C(1)H(+), (36)S(16)O(+) or (1)H(36)S(16)O(+). Cadmium, Hg and Pb were directly determined via their isotopes (110)Cd, (111)Cd, (112)Cd, (199)Hg, (200)Hg, (201)Hg, (202)Hg, (206)Pb, (207)Pb, and (208)Pb, without using CRI. The CRI can be quickly activated or deactivated before each analyte measurement. Limits of detection for (52)Cr were 0.04 or 0.14 μg L(-1) with He or H(2) injected in CRI. Cadmium and Pb have LODs between 0.02 and 0.08 μg L(-1) and Hg had 0.93-0.98 μg L(-1), without using CRI. Analyte concentrations for samples varied from 16 to 43, 1 to 11, 4 to 12, and 5 to 13 mg kg(-1) for Cr, Cd, Hg and Pb, respectively.

  4. HgCdTe p-on- n Focal-Plane Array Fabrication Using Arsenic Incorporation During MBE Growth

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Ballet, Ph.; Baylet, J.; Baier, N.

    2009-08-01

    Extrinsic p-type doping during molecular-beam epitaxy (MBE) growth represents an essential generic toolbox for advanced heterostructures based on the HgCdTe material system: PiN diodes, mesa avalanche photodiodes (APD) or third-generation multispectral focal-plane arrays. Today, arsenic appears to be the best candidate to fulfill this role and our group is actively working on its incorporation during MBE growth, using an original radio frequency (RF) plasma source for arsenic. Such a cell is supposed to deliver a monatomic As flux, and as expected we observed high As electrical activation rates after annealing short-wave (SW), mid-wave (MW), and long-wave (LW) layers. At last, a couple of technological runs have been carried out in the MW range in order to validate the approach on practical devices. p-on- n focal-plane arrays (FPA) have been fabricated using a mesa delineated technology on an As-on-In doped metallurgical heterojunction layer grown on a lattice-matched CdZnTe layer (320 × 256, 30 μm pitch, 5 μm cutoff at 77 K). Observed diodes exhibit very interesting electro-optical characteristics: large shunt impedance, high quantum efficiency, and no noticeable excess noise. The resulting focal-plane arrays were observed to be very uniform, leading to high operabilities. Noise equivalent temperature difference (NETD) distributions are very similar to those observed with the As ion-implanted p-on- n technology, fabricated in our laboratory as well. In our opinion, those excellent results demonstrate the feasibility of our MBE in situ arsenic doping process. Good electrical activation rates and high-quality layers can be obtained. We believe that such an approach allows precise control of the p-doping profile in the HgCdTe layer, which is necessary for advanced structure designs.

  5. Synthesis and characterization of La11+xHg45-x and RE11Hg44.5 (RE = Nd, Sm) as hettotypes of the Sm11Cd45 structure type

    NASA Astrophysics Data System (ADS)

    Tambornino, Frank; Schwärzer, Kuno; Hoch, Constantin

    2016-10-01

    The mercury-rich amalgams La11+xHg45-x and RE11Hg44.5 (space group F4bar3m (No. 216), La11+xHg45-x : a = 21.9342(19) Å, RE = Nd: a = 21.7384(14) Å; RE = Sm: a = 21.6555(4) Å), were synthesized by dissolving the respective rare earth metals in a mercury surplus and subsequently distilling off the excess. The compounds were characterized by single crystal and powder X-ray methods together with ab-initio band structure calculations. Both crystal structures deviate significantly and in different ways from their common aristotype, the Sm11Cd45 structure type. In La11+xHg45-x (x = 0.7(1)) two crystallographic sites show mixed occupancy, whereas in RE11Hg44.5 one of the Hg positions is fully unoccupied. Their band structures exhibit typical broad Hg d states at low energies, and a strong mixing of s and p states indicates a mercury sublattice with high connectivity.

  6. Development of electrodeposited ZnTe layers as window materials in ZnTe/CdTe/CdHgTe multi-layer solar cells

    SciTech Connect

    Islam, A.B.M.O. Chaure, N.B.; Wellings, J.; Tolan, G.; Dharmadasa, I.M.

    2009-02-15

    Zinc telluride (ZnTe) thin films have been deposited on glass/conducting glass substrates using a low-cost electrodeposition method. The resulting films have been characterized using various techniques in order to optimize growth parameters. X-ray diffraction (XRD) has been used to identify the phases present in the films. Photoelectrochemical (PEC) cell and optical absorption measurements have been performed to determine the electrical conductivity type, and the bandgap of the layers, respectively. It has been confirmed by XRD measurement that the deposited layers mainly consist of ZnTe phases. The PEC measurements indicate that the ZnTe layers are p-type in electrical conduction and optical absorption measurements show that their bandgap is in the range 2.10-2.20 eV. p-Type ZnTe window materials have been used in CdTe based solar cell structures, following new designs of graded bandgap multi-layer solar cells. The structures of FTO/ZnTe/CdTe/metal and FTO/ZnTe/CdTe/CdHgTe/metal have been investigated. The results are presented in this paper using observed experimental data.

  7. Defect chemistry and characterization of Hg(1-x)Cd(x)Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.

    1981-01-01

    Undoped mercury cadmium telluride crystals were subjected to high temperature equilibration at temperatures ranging from 400 C to 655 C in various Hg atmospheres. Hall effect and mobility measurements were carried out on the crystals quenched to room temperature subsequent to the high temperature equilibration. The variation of the hole concentration in the cooled crystals at 77 K as a function of the partial pressure of Hg at the equlibration temperatures, together with a comparison of the hole mobility in the undoped samples with that in the copper and phosphorous doped samples yielded a defect model for the undoped crystals, according to which, the undoped crystals are essentially intrinsic at the equilibration temperatures and the native acceptor defects are doubly ionized. Native donor defects appear to be negligible in concentration, implying that the p to n conversion in these alloys is mainly due to residual foreign donor impurities. The thermodynamic constants for the intrinsic excitation process as well as for the incorporation of the doubly ionized native acceptor defects in the undoped crystals were obtained.

  8. Defect chemistry and characterization of Hg(1-x)Cd(x)Te

    NASA Astrophysics Data System (ADS)

    Vydyanath, H. R.

    Undoped mercury cadmium telluride crystals were subjected to high temperature equilibration at temperatures ranging from 400 C to 655 C in various Hg atmospheres. Hall effect and mobility measurements were carried out on the crystals quenched to room temperature subsequent to the high temperature equilibration. The variation of the hole concentration in the cooled crystals at 77 K as a function of the partial pressure of Hg at the equlibration temperatures, together with a comparison of the hole mobility in the undoped samples with that in the copper and phosphorous doped samples yielded a defect model for the undoped crystals, according to which, the undoped crystals are essentially intrinsic at the equilibration temperatures and the native acceptor defects are doubly ionized. Native donor defects appear to be negligible in concentration, implying that the p to n conversion in these alloys is mainly due to residual foreign donor impurities. The thermodynamic constants for the intrinsic excitation process as well as for the incorporation of the doubly ionized native acceptor defects in the undoped crystals were obtained.

  9. Density of dislocations in CdHgTe heteroepitaxial structures on GaAs(013) and Si(013) substrates

    NASA Astrophysics Data System (ADS)

    Sidorov, Yu. G.; Yakushev, M. V.; Varavin, V. S.; Kolesnikov, A. V.; Trukhanov, E. M.; Sabinina, I. V.; Loshkarev, I. D.

    2015-11-01

    Epitaxial layers of Cd x Hg1- x Te (MCT) on GaAs(013) and Si(013) substrates were grown by molecular beam epitaxy. The introduction of ZnTe and CdTe intermediate layers into the structures made it possible to retain the orientation close to that of the substrate in MCT epitaxial layers despite the large mismatch between the lattice parameters. The structures were investigated using X-ray diffraction and transmission electron microscopy. The dislocation families predominantly removing the mismatch between the lattice parameters were found. Transmission electron microscopy revealed Γ-shaped misfit dislocations (MDs), which facilitated the annihilation of threading dislocations. The angles of rotation of the lattice due to the formation of networks of misfit dislocations were measured. It was shown that the density of threading dislocations in the active region of photodiodes is primarily determined by the network of misfit dislocations formed in the MCT/CdTe heterojunction. A decrease in the density of threading dislocations in the MCT film was achieved by cyclic annealing under conditions of the maximally facilitated nonconservative motion of dislocations. The dislocation density was determined from the etch pits.

  10. Dielectric functions and carrier concentrations of Hg{sub 1−x}Cd{sub x}Se films determined by spectroscopic ellipsometry

    SciTech Connect

    Lee, A. J.; Peiris, F. C.; Brill, G.; Doyle, K.; Myers, T. H.

    2015-08-17

    Spectroscopic ellipsometry, ranging from 35 meV to 6 eV, was used to determine the dielectric functions of a series of molecular beam epitaxy-grown Hg{sub 1−x}Cd{sub x}Se thin films deposited on both ZnTe/Si(112) and GaSb(112) substrates. The fundamental band gap as well as two higher-order electronic transitions blue-shift with increasing Cd composition in Hg{sub 1−x}Cd{sub x}Se, as expected. Representing the free carrier absorption with a Drude oscillator, we found that the effective masses of Hg{sub 1−x}Cd{sub x}Se (grown on ZnTe/Si) vary between 0.028 and 0.050 times the free electron mass, calculated using the values of carrier concentration and the mobility obtained through Hall measurements. Using these effective masses, we determined the carrier concentrations of Hg{sub 1−x}Cd{sub x}Se samples grown on GaSb, which is of significance as films grown on such doped-substrates posit ambiguous results when measured by conventional Hall experiments. These models can serve as a basis for monitoring Cd-composition during sample growth through in-situ spectroscopic ellipsometry.

  11. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe

    NASA Astrophysics Data System (ADS)

    Qiu, W. C.; Cheng, X. A.; Wang, R.; Xu, Z. J.; Jiang, T.

    2014-05-01

    In this paper, experimental results of temperature-dependent signal inversion of laser beam induced current (LBIC) for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe are reported. LBIC characterization shows that the traps induced by femtosecond laser drilling are sensitive to temperature. Theoretical models for trap-related p-n junction transformation are proposed and demonstrated using numerical simulations. The simulations are in good agreement with the experimental results. The effects of traps and mixed conduction are possibly the main reasons that result in the novel signal inversion of LBIC microscope at room temperature. The research results provide a theoretical guide for practical applications of large-scale array HgCdTe infrared photovoltaic detectors formed by femtosecond laser drilling, which may act as a potential new method for fabricating HgCdTe photodiodes.

  12. Structural, electronic, elastic, thermodynamic and phonon properties of LaX (X = Cd, Hg and Zn) compounds in the B2 phase

    NASA Astrophysics Data System (ADS)

    Örnek, Osman; Arıkan, Nihat

    2016-07-01

    The ab initio computations have been performed to examine the structural, elastic, electronic and phonon properties of cubic LaX (X = Cd, Hg and Zn) compounds in the B2 phase. The optimized lattice constants, bulk modulus, and its pressure derivative and elastic constants are evaluated and compared with available data. Electronic band structures and total and partial densities of states (DOS) have been derived for LaX (X = Cd, Hg and Zn) compounds. The electronic band structures show metallic character; the conductivity is mostly governed by La-5d states for three compounds. Phonon-dispersion curves have been obtained using the first-principle linear-response approach of the density-functional perturbation theory. The specific heat capacity at a constant volume CV of LaX (X = Cd, Hg and Zn) compounds are calculated and discussed.

  13. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe

    SciTech Connect

    Qiu, W. C.; Wang, R.; Xu, Z. J.; Jiang, T.; Cheng, X. A.

    2014-05-28

    In this paper, experimental results of temperature-dependent signal inversion of laser beam induced current (LBIC) for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe are reported. LBIC characterization shows that the traps induced by femtosecond laser drilling are sensitive to temperature. Theoretical models for trap-related p-n junction transformation are proposed and demonstrated using numerical simulations. The simulations are in good agreement with the experimental results. The effects of traps and mixed conduction are possibly the main reasons that result in the novel signal inversion of LBIC microscope at room temperature. The research results provide a theoretical guide for practical applications of large-scale array HgCdTe infrared photovoltaic detectors formed by femtosecond laser drilling, which may act as a potential new method for fabricating HgCdTe photodiodes.

  14. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure

    SciTech Connect

    Liang, Jian; Hu, Weida Ye, Zhenhua; Li, Zhifeng; Chen, Xiaoshuang Lu, Wei; Liao, Lei

    2014-05-14

    An HgCdTe long-wavelength infrared focal plane array photodetector is proposed by modulating light distributions based on the photonic crystal. It is shown that a promising prospect of improving performance is better light harvest and dark current limitation. To optimize the photon field distributions of the HgCdTe-based photonic crystal structure, a numerical method is built by combining the finite-element modeling and the finite-difference time-domain simulation. The optical and electrical characteristics of designed HgCdTe mid-wavelength and long-wavelength photon-trapping infrared detector focal plane arrays are obtained numerically. The results indicate that the photon crystal structure, which is entirely compatible with the large infrared focal plane arrays, can significantly reduce the dark current without degrading the quantum efficiency compared to the regular mesa or planar structure.

  15. High resolution imaging of the Venus night side using a Rockwell 128x128 HgCdTe array

    NASA Technical Reports Server (NTRS)

    Hodapp, K.-W.; Sinton, W.; Ragent, B.; Allen, D.

    1989-01-01

    The University of Hawaii operates an infrared camera with a 128x128 HgCdTe detector array on loan from JPL's High Resolution Imaging Spectrometer (HIRIS) project. The characteristics of this camera system are discussed. The infrared camera was used to obtain images of the night side of Venus prior to and after inferior conjunction in 1988. The images confirm Allen and Crawford's (1984) discovery of bright features on the dark hemisphere of Venus visible in the H and K bands. Our images of these features are the best obtained to date. Researchers derive a pseudo rotation period of 6.5 days for these features and 1.74 microns brightness temperatures between 425 K and 480 K. The features are produced by nonuniform absorption in the middle cloud layer (47 to 57 Km altitude) of thermal radiation from the lower Venus atmosphere (20 to 30 Km altitude). A more detailed analysis of the data is in progress.

  16. Magneto-Hydrodynamic Damping of Convection During Vertical Bridgman-Stockbarger Growth of HgCdTe

    NASA Technical Reports Server (NTRS)

    Watring, D. A.; Lehoczky, S. L.

    1996-01-01

    In order to quantify the effects of convection on segregation, Hg(0.8)Cd(0.2)Te crystals were grown by the vertical Bridgman-Stockbarger method in the presence of an applied axial magnetic field of 50 kG. The influence of convection, by magneto-hydrodynamic damping, on mass transfer in the melt and segregation at the solid-liquid interface was investigated by measuring the axial and radial compositional variations in the grown samples. The reduction of convective mixing in the melt through the application of the magnetic field is found to decrease radial segregation to the diffusion-limited regime. It was also found that the suppression of the convective cell near the solid-liquid interface results in an increase in the slope of the diffusion-controlled solute boundary layer, which can lead to constitutional supercooling.

  17. Comparing FDTD and Ray-Tracing Models in Numerical Simulation of HgCdTe LWIR Photodetectors

    NASA Astrophysics Data System (ADS)

    Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich

    2016-09-01

    We present a simulation study of HgCdTe-based long-wavelength infrared detectors, focusing on methodological comparisons between the finite-difference time-domain (FDTD) and ray-tracing optical models. We performed three-dimensional simulations to determine the absorbed photon density distributions and the corresponding photocurrent and quantum efficiency spectra of isolated n-on- p uniform-composition pixels, systematically comparing the results obtained with FDTD and ray tracing. Since ray tracing is a classical optics approach, unable to describe interference effects, its applicability has been found to be strongly wavelength dependent, especially when reflections from metallic layers are relevant. Interesting cavity effects around the material cutoff wavelength are described, and the cases where ray tracing can be considered a viable approximation are discussed.

  18. The effect of metal-semiconductor contact on the transient photovoltaic characteristic of HgCdTe PV detector.

    PubMed

    Cui, Haoyang; Xu, Yongpeng; Yang, Junjie; Tang, Naiyun; Tang, Zhong

    2013-01-01

    The transient photovoltaic (PV) characteristic of HgCdTe PV array is studied using an ultrafast laser. The photoresponse shows an apparent negative valley first, then it evolves into a positive peak. By employing a combined theoretical model of pn junction and Schottky potential, this photo-response polarity changing curves can be interpreted well. An obvious decreasing of ratio of negative valley to positive peak can be realized by limiting the illumination area of the array electrode. This shows that the photoelectric effect of Schottky barrier at metal-semiconductor (M/S) interface is suppressed, which will verify the correctness of the model. The characteristic parameters of transient photo-response induced from p-n junction and Schottky potential are extracted by fitting the response curve utilizing this model. It shows that the negative PV response induced by the Schottky barrier decreases the positive photovoltage generated by the pn junction.

  19. Defect study in molecular beam epitaxy-grown HgCdTe films with activated and unactivated arsenic

    SciTech Connect

    Izhnin, I. I.; Dvoretsky, S. A.; Mikhailov, N. N.; Varavin, V. S.; Mynbaev, K. D.; Fitsych, O. I.; Pociask-Bialy, M.; Sheregii, E.; Voitsekhovskii, A. V.

    2014-04-28

    A defect study was performed on molecular beam epitaxy-grown HgCdTe films in situ doped with arsenic. Doping was performed from either effusion cell or cracker cell, and studied were both as-grown samples and samples subjected to arsenic activation annealing. Electrical properties of the films were investigated with the use of ion milling as a means of “stirring” defects in the material. As a result of the study, it was confirmed that the most efficient incorporation of electrically active arsenic occurs at the cracking zone temperature of 700 °C. Interaction between arsenic and tellurium during the growth was observed and is discussed in the paper.

  20. The effect of disorder on spin hall conductance in the bulk states of HgTe/CdTe heterostructure

    NASA Astrophysics Data System (ADS)

    Wu, Hai-Bin; Zhang, Ying-Tao; Liu, Jian-Jun

    2017-03-01

    By using the Green's function method, we have investigated spin Hall conductance (SHC) in a four terminal quantum spin Hall insulator. The results show that the intrinsic spin orbit coupling in a HgTe/CdTe hetero-structure interface naturally leads to separate probability distributions for the two spins in coordinate space, which leads to the spin Hall effect in our proposed device. We also find that the SHC of bulk states exhibits an oscillatory behavior as a function of the device width and persists at a broad device width. In addition, we calculate the effects of disorder on the SHC of the bulk states of non-trivial and trivial topology. The results indicate that the spin up and spin down conductances show different degrees of suppression by disorder; thus the SHC could be significantly enhanced by the disorder. This kind of property has a great value to practical applications.

  1. Large area space qualified thermoelectrically (TE) cooled HgCdTe MW photovoltaic detectors for the Halogen Occultation Experiment (HALOE)

    NASA Technical Reports Server (NTRS)

    Norton, P. W.; Zimmermann, P. H.; Briggs, R. J.; Hartle, N. M.

    1986-01-01

    Large-area, HgCdTe MW photovoltaic detectors have been developed for the NASA-HALOE instrument scheduled for operation on the Upper Atmospheric Research Satellite. The photodiodes will be TE-cooled and were designed to operate in the 5.1-5.4 micron band at 185 K to measure nitric oxide concentrations in the atmosphere. The active area required 15 micron thick devices and a full backside common contact. Reflections from the backside contact doubled the effective thickness of the detectors. Optical interference from reflections was eliminated with a dual layer front surface A/R coating. Bakeout reliability was optimized by having Au metallization for both n and p interconnects. Detailed performance data and a model for the optical stack are presented.

  2. SEMICONDUCTOR TECHNOLOGY: Influence of hydrogenation on the dark current mechanism of HgCdTe photovoltaic detectors

    NASA Astrophysics Data System (ADS)

    Hui, Qiao; Weida, Hu; Zhenhua, Ye; Xiangyang, Li; Haimei, Gong

    2010-03-01

    The influence of hydrogenation on the dark current mechanism of HgCdTe photovoltaic detectors is studied. The hydrogenation is achieved by exposing samples to a H2/Ar plasma atmosphere that was produced during a reactive ion etching process. A set of variable-area photomask was specially designed to evaluate the hydrogenation effect. It was found that the current-voltage characteristics were gradually improved when detectors were hydrogenated by different areas. The fitting results of experimental results at reverse bias conditions sustained that the improvement of current-voltage curves was due to the suppression of trap assisted tunneling current and the enhancement of minority lifetime in the depletion region. It was also found that the dominative forward current was gradually converted from a generation-recombination current to a diffusion current with the enlargement of the hydrogenation area, which was infered from the ideality factors by abstraction of forward resistance-voltage curves of different detectors.

  3. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-10-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor—Ag2S (0.9 eV) quantum dots (QDs)—in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

  4. Modelling of zircaloy dissolution by molten (Ag, In, Cd) absorber alloy

    NASA Astrophysics Data System (ADS)

    Veshchunov, M. S.; Hofmann, P.

    1996-04-01

    Solid Zircaloy (Zry) is dissolved by molten (Ag, In, Cd) alloy at high temperatures. Results of detailed chemical-analytical examinations (integral and point analysis) of (Ag, In, Cd)/Zry reaction couples annealed at temperatures of 1100, 1150 and 1200°C in crucible tests demonstrate a homogeneous composition of the resulting liquid phase and prove that strong convective mixing of the liquid takes place in the course of the interactions. The theoretical model developed on the basis of the measured data explains the reasons for the observed convective mixing of the liquid phase and describes the kinetics of the (Ag, In, Cd)/Zry interactions leading to the saturation of the liquid phase with Zr. Two main parameters of the model are calculated: Zr concentration in the saturated melt and convective mass transfer coefficient in the liquid phase. The influence of an oxide layer on the (Ag, In, Cd)/Zry interactions is additionally studied and described by the developed model.

  5. Synthesis and enhanced fluorescence of Ag doped CdTe semiconductor quantum dots.

    PubMed

    Ding, Si-Jing; Liang, Shan; Nan, Fan; Liu, Xiao-Li; Wang, Jia-Hong; Zhou, Li; Yu, Xue-Feng; Hao, Zhong-Hua; Wang, Qu-Quan

    2015-02-07

    Doping with intentional impurities is an intriguing way to tune the properties of semiconductor nanocrystals. However, the synthesis of some specific doped semiconductor nanocrystals remains a challenge and the doping mechanism in this strongly confined system is still not clearly understood. In this work, we report, for the first time, the synthesis of stable and water-soluble Ag-doped CdTe semiconductor quantum dots (SQDs) via a facile aqueous approach. Experimental characterization demonstrated the efficient doping of the Ag impurities into the CdTe SQDs with an appropriate reaction time. By doping 0.3% Ag impurities, the Stokes shift is decreased by 120 meV, the fluorescence intensity is enhanced more than 3 times, the radiative rate is enhanced 4.2 times, and the non-radiative rate is efficiently suppressed. These observations reveal that the fluorescence enhancement in Ag-doped CdTe SQDs is mainly attributed to the minimization of surface defects, filling of the trap states, and the enhancement of the radiative rate by the silver dopants. Our results suggest that the silver doping is an efficient method for tuning the optical properties of the CdTe SQDs.

  6. Feasibility of Open Tube Slider Growth of HgCdTe from Te-Rich Solution.

    DTIC Science & Technology

    1980-02-01

    BINARY K 3 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 X3 (MOLE FRACTION CdTo) Figure 2. Segregation Coefficient of Hgi -xCdxTe. The circles are from...APPENDIX B CHARACTERIZATION OF LPE GROWN HGi -xCdxTe J. E. Bowers, J. L. Schmit and J. A. Mroczkowski, Presented at the 1979 Detector Spe- cialty

  7. Bioaccumulation of Hg, Cd and Pb by Fucus vesiculosus in single and multi-metal contamination scenarios and its effect on growth rate.

    PubMed

    Henriques, Bruno; Lopes, Cláudia B; Figueira, Paula; Rocha, Luciana S; Duarte, Armando C; Vale, Carlos; Pardal, Miguel A; Pereira, Eduarda

    2017-03-01

    Results of 7-days exposure to metals, using environmentally realistic conditions, evidenced the high potential of living Fucus vesiculosus to remove Pb, Hg and Cd from contaminated salt waters. For different contamination scenarios (single- and multi-contamination), ca 450 mg L(-1) (dry weight), enable to reduce the concentrations of Pb in 65%, of Hg in 95% and of Cd between 25 and 76%. Overall, bioconcentration factors ranged from 600 to 2300. Elovich kinetic model described very well the bioaccumulation of Pb and Cd over time, while pseudo-second-order model adjusted better to experimental data regarding Hg. F. vesiculosus showed different affinity toward studied metals, following the sequence order: Hg > Pb > Cd. Analysis of metal content in the macroalgae after bioaccumulation, proved that all metal removed from solution was bound to the biomass. Depuration experiments reveled no significant loss of metal back to solution. Exposure to contaminants only adversely affected the organism's growth for the highest concentrations of Cd and Pb. Findings are an important contribute for the development of remediation biotechnologies for confined saline waters contaminated with trace metal contaminants, more efficient and with lower costs than the traditional treatment methods.

  8. Correlation Between Bands Structure and Magneto-Transport Properties in n-type HgTe/CdTe Superlattice with Relatively Thin CdTe Barrier

    SciTech Connect

    Braigue, M.; Nafidi, A.; Chaib, H.; Tirbiyine, A.; Hemine, J.; Idbaha, A.; Boulkassim, A.; El Gouti, T.; Massaq, M.; Talwar, Devki N.; SrinivasaVinod, M.

    2011-12-26

    Theoretical calculations of the electronic properties of n-type HgTe/CdTe superlattices (SLs) in the envelope function formalism have provided a reasonable agreement with the experimental data on the magneto-transport behavior. Numerical results of the band energies E(d{sub 2}), E(k{sub z}) and E(k{sub p}) in the direction of growth and in plane of the SLs predict that the system retains semiconductor characteristics for d{sub 1}/d{sub 2} = 2.69 and d{sub 2}<10 nm. For d{sub 2} = 3.2 nm the calculated effective band gap (E{sub g}({Gamma},4.2 K) = 48 meV) suggests that the material sample is a two-dimensional modulated nanostructure and a potential candidate to be used for the far infrared detection applications.

  9. Local field-induced optical properties of Ag-coated CdS quantum dots.

    PubMed

    Je, Koo-Chul; Ju, Honglyoul; Treguer, Mona; Cardinal, Thierry; Park, Seung-Han

    2006-08-21

    Local field-induced optical properties of Ag-coated CdS quantum dot structures are investigated. We experimentally observe a clear exciton peak due to the quantum confinement effect in uncoated CdS quantum dots, and surface plasmon resonance and red-shifted exciton peak in Ag-coated CdS composite quantum dot structures. We have calculated the Stark shift of the exciton peak as a function of the local field for different silver thicknesses and various sizes of quantum dots based on the effective-mass Hamiltonian using the numerical-matrix-diagonalization method. Our theoretical calculations strongly indicate that the exciton peak is red-shifted in the metal-semiconductor composite quantum dots due to a strong local field, i.e., the quantum confined Stark effect.

  10. Matrix and impurity element distributions in CdHgTe (CMT) and (Cd,Zn)(Te,Se) compounds by chemical analysis

    NASA Astrophysics Data System (ADS)

    Capper, P.; O'Keefe, E. S.; Maxey, C.; Dutton, D.; Mackett, P.; Butler, C.; Gale, I.

    1996-04-01

    This review describes several of the main techniques used to determine matrix element distributions and those which can provide a survey of impurity levels and assess deliberate doping concentrations in Cd xHg 1 - xTe and CdTe-based substrate materials. The most widely used method to non-destructively determine x is that of Fourier transform infrared (FTIR) spectrometry and lateral x variations in current bulk, LPE and MOVPE material measured by this technique will be presented. Auger electron spectrometry (AES) has been used on bevelled samples to assess variations in x with depth and interface widths in LPE, MOVPE and MBE layers and examples will be given. Near IR spectrometry is also now being used to monitor the variations in Zn and Se content, in CdZnTe and CdTeSe respectively, and results in this area will be described along with measurements of Zn on the micro-scale using AES. All of these techniques need to be calibrated against an absolute chemical analysis technique and we have used atomic absorption spectrometry (AAS). The latter technique also provides the accurate measure of dopant and impurity elements to standardise other techniques. Secondary ion mass spectrometry (SIMS) is mainly used for the determination of dopant depth distributions while laser scan mass spectrometry (LSMS) has the unique capability of providing a survey of low levels of impurities in thin epitaxial layers. Depth profiles of arsenic and iodine in MOVPE heterostructures, using SIMS, will be given. Impurity surveys, using LSMS, in bulk CMT and substrate materials and in CMT epitaxial layers grown by LPE, MOVPE and MBE will be described. Reported glow discharge mass spectrometry (GDMS) results on substrate materials will be compared to the present results.

  11. Antimicrobial activity of CdS and Ag2S quantum dots immobilized on poly(amidoamine) grafted carbon nanotubes.

    PubMed

    Neelgund, Gururaj M; Oki, Aderemi; Luo, Zhiping

    2012-12-01

    Herein we report the design of antimicrobial nanohybrids, f-MWCNTs-CdS and f-MWCNTs-Ag(2)S developed by covalent grafting of cationic hyperbranched dendritic polyamidoamine (PAMAM) onto multiwalled carbon nanotubes (MWCNTs) and successive deposition of CdS and Ag(2)S quantum dots (QDs). The CdS and Ag(2)S QDs were in situ deposited on PAMAM grafted MWCNTs instead of anchoring the pre-synthesized QDs. The fourth generation, amine terminated hyperbranched PAMAM was grafted on MWCNTs, which was achieved through repetitive reactions of Michael addition of methylmethacrylate to the surface amino groups and amidation of terminal ester groups with ethylenediamine. The covalent grafting of PAMAM onto MWCNTs and the consecutive conjugation of CdS and Ag(2)S QDs were characterized using Fourier transform infrared spectroscopy, elemental analysis, powder X-ray diffraction, Raman spectroscopy, transmission electron microscopy and energy dispersive spectroscopy. The antibacterial activity of f-MWCNTs-CdS and f-MWCNTs-Ag(2)S nanohybrids was evaluated against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the results were compared with the activity of carboxylated MWCNTs, PAMAM grafted MWCNTs, PAMAM dendrimer, and CdS and Ag(2)S QDs. It was found that the germicidal action of MWCNTs was enhanced by grafting of PAMAM, which was further improved with immobilization of CdS and Ag(2)S QDs.

  12. Tunable Visible Emission of Ag-Doped CdZnS Alloy Quantum Dots.

    PubMed

    Sethi, Ruchi; Kumar, Lokendra; Sharma, Prashant K; Pandey, Ac

    2009-10-13

    Highly luminescent Ag-ion-doped Cd1-xZnxS (0 ≤ x ≤ 1) alloy nanocrystals were successfully synthesized by a novel wet chemical precipitation method. Influence of dopant concentration and the Zn/Cd stoichiometric variations in doped alloy nanocrystals have been investigated. The samples were characterized by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) to investigate the size and structure of the as prepared nanocrystals. A shift in LO phonon modes from micro-Raman investigations and the elemental analysis from the energy dispersive X-ray analysis (EDAX) confirms the stoichiometry of the final product. The average crystallite size was found increasing from 1.0 to 1.4 nm with gradual increase in Ag doping. It was observed that photoluminescence (PL) intensity corresponding to Ag impurity (570 nm), relative to the other two bands 480 and 520 nm that originates due to native defects, enhanced and showed slight red shift with increasing silver doping. In addition, decrease in the band gap energy of the doped nanocrystals indicates that the introduction of dopant ion in the host material influence the particle size of the nanocrystals. The composition dependent bandgap engineering in CdZnS:Ag was achieved to attain the deliberate color tunability and demonstrated successfully, which are potentially important for white light generation.

  13. Tunable Visible Emission of Ag-Doped CdZnS Alloy Quantum Dots

    PubMed Central

    2010-01-01

    Highly luminescent Ag-ion-doped Cd1−xZnxS (0 ≤ x ≤ 1) alloy nanocrystals were successfully synthesized by a novel wet chemical precipitation method. Influence of dopant concentration and the Zn/Cd stoichiometric variations in doped alloy nanocrystals have been investigated. The samples were characterized by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) to investigate the size and structure of the as prepared nanocrystals. A shift in LO phonon modes from micro-Raman investigations and the elemental analysis from the energy dispersive X-ray analysis (EDAX) confirms the stoichiometry of the final product. The average crystallite size was found increasing from 1.0 to 1.4 nm with gradual increase in Ag doping. It was observed that photoluminescence (PL) intensity corresponding to Ag impurity (570 nm), relative to the other two bands 480 and 520 nm that originates due to native defects, enhanced and showed slight red shift with increasing silver doping. In addition, decrease in the band gap energy of the doped nanocrystals indicates that the introduction of dopant ion in the host material influence the particle size of the nanocrystals. The composition dependent bandgap engineering in CdZnS:Ag was achieved to attain the deliberate color tunability and demonstrated successfully, which are potentially important for white light generation. PMID:20652135

  14. Tunable Visible Emission of Ag-Doped CdZnS Alloy Quantum Dots

    NASA Astrophysics Data System (ADS)

    Sethi, Ruchi; Kumar, Lokendra; Sharma, Prashant K.; Pandey, A. C.

    2010-01-01

    Highly luminescent Ag-ion-doped Cd1-xZnxS (0 ≤ x ≤ 1) alloy nanocrystals were successfully synthesized by a novel wet chemical precipitation method. Influence of dopant concentration and the Zn/Cd stoichiometric variations in doped alloy nanocrystals have been investigated. The samples were characterized by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) to investigate the size and structure of the as prepared nanocrystals. A shift in LO phonon modes from micro-Raman investigations and the elemental analysis from the energy dispersive X-ray analysis (EDAX) confirms the stoichiometry of the final product. The average crystallite size was found increasing from 1.0 to 1.4 nm with gradual increase in Ag doping. It was observed that photoluminescence (PL) intensity corresponding to Ag impurity (570 nm), relative to the other two bands 480 and 520 nm that originates due to native defects, enhanced and showed slight red shift with increasing silver doping. In addition, decrease in the band gap energy of the doped nanocrystals indicates that the introduction of dopant ion in the host material influence the particle size of the nanocrystals. The composition dependent bandgap engineering in CdZnS:Ag was achieved to attain the deliberate color tunability and demonstrated successfully, which are potentially important for white light generation.

  15. Reduction of Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} by Fe{sup II}/Fe{sup III} hydroxysulfate green rust.

    SciTech Connect

    O'Loughlin, E. J.; Kelly, S. D.; Kemner, K. M.; Csencsits, R.; Cook, R. E.

    2003-11-01

    Green rusts are mixed Fe{sup II}/Fe{sup III} hydroxides that are found in many suboxic environments where they are believed to play a central role in the biogeochemical cycling of iron. X-ray absorption fine structure analysis of hydroxysulfate green rust suspensions spiked with aqueous solutions of AgCH{sub 3}COO, AuCl{sub n}(OH){sub 4-n}, CuCl{sub 2}, or HgCl{sub 2} showed that Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} were readily reduced to Ag{sup 0}, Au{sup 0}, Cu{sup 0}, and Hg{sup 0}. Imaging of the resulting solids from the Ag{sup I}-, Au{sup III}-, and Cu{sup II}-amended green rust suspensions by transmission electron microscopy indicated the formation of submicron-sized particles of Ag{sup 0}, Au{sup 0}, and Cu{sup 0}. The facile reduction of Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} to Ag{sup 0}, Au{sup 0}, Cu{sup 0}, and Hg{sup 0}, respectively, by green rust suggests that the presence of green rusts in suboxic soils and sediments can have a significant impact on the biogeochemistry of silver, gold, copper, and mercury, particularly with respect to their mobility.

  16. Influence of Cd 2+, Hg 2+ and Pb 2+ on (+)-catechin binding to bovine serum albumin studied by fluorescence spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Peng, Mijun; Shi, Shuyun; Zhang, Yuping

    2012-01-01

    The effect of heavy metal ions, Cd 2+, Hg 2+ and Pb 2+ on (+)-catechin binding to bovine serum albumin (BSA) has been investigated by spectroscopic methods. The results indicated that the presence of heavy metal ions significantly affected the binding modes and binding affinities of (+)-catechin to BSA, and the effects depend on the types of heavy metal ion. One binding mode was found for (+)-catechin with and without Cd 2+, while two binding modes - a weaker one at low concentration and a stronger one at high concentration were found for (+)-catechin in the presence of Hg 2+ and Pb 2+. The presence of Cd 2+ decreased the binding affinities of (+)-catechin for BSA by 20.5%. The presence of Hg 2+ and Pb 2+ decreased the binding affinity of (+)-catechin for BSA by 8.9% and 26.7% in lower concentration, respectively, and increased the binding affinity of (+)-catechin for BSA by 5.2% and 9.2% in higher concentration, respectively. The changed binding affinity and binding distance of (+)-catechin for BSA in the presence of Cd 2+, Hg 2+ and Pb 2+ were mainly because of the conformational change of BSA induced by heavy metal ions. However, the quenching mechanism for (+)-catechin to BSA was based on static quenching combined with non-radiative energy transfer irrespective of the absence or presence of heavy metal ions.

  17. Studies on a novel mask technique with high selectivity and aspect-ratio patterns for HgCdTe trenches ICP etching

    NASA Astrophysics Data System (ADS)

    Ye, Z. H.; Hu, W. D.; Li, Y.; Huang, J.; Yin, W. T.; Lin, C.; Hu, X. N.; Ding, R. J.; Chen, X. S.; Lu, W.; He, L.

    2012-06-01

    A novel mask technique, combining high selectivity silicon dioxide patterns over high aspect-ratio photoresist (PR) patterns has been exploited to perform mesa etching for device delineation and electrical isolation of HgCdTe third-generation infrared focal plane arrays (IRFPAs). High-density silicon dioxide film covering high aspect-ratio PR patterns was deposited at the temperature of 80°C and silicon dioxide film patterns over high aspect-ratio PR patterns of HgCdTe etching samples was developed by standard photolithography and wet chemical etch. Scanning electron microscopy (SEM) shows that the surfaces of inductively coupled plasma (ICP) etched samples are quite clean and smooth. The etching selectivity between the novel mask and HgCdTe of the samples is increased to above 32: 1 while the side-wall impact of etching plasma is suppressed by the high aspect ratio patterns. These results show that the combined patterning of silicon dioxide film and thick PR film is a readily available and promising masking technique for HgCdTe mesa etching.

  18. Research and development of HgZnTe as an infrared material

    NASA Technical Reports Server (NTRS)

    Wahi, A. K.; Lindau, I.; Spicer, W. E.

    1989-01-01

    Interfacial morphology and Fermi level pinning behavior at the interfaces of Al, Ag, and Pt with UHV-cleaved CdTe and ZnTe have been studied using X-ray and ultraviolet photoemission spectroscopies. Results are compared to metal/HgCdTe interface formation, where the weak HgTe bond and consequent ease of Hg loss strongly influence semiconductor disruption and metal-semiconductor intermising. For Al/CdTe, the strong Al-Te reaction yields a significantly more extensive Al-Te reacted region than has been observed for HgCdTe. The Al/ZnTe interface is observed to be more abrupt than Al/CdTe. The final Fermi level pinning positions, Ef-Evbm for Al, Ag, and Pt on p-type CdTe and p-ZnTe have been determined. Efi is found to be roughly the same for both CdTe and ZnTe, with the value for ZnTe lying approximately 0.2 eV closer to the VBM for all three metals. From these results, one would expect Schottky barriers of about the same height for these metals on p-CdTe and p-ZnTe; and also that, in principle, metal interfaces with the two alloys HgCdTe and HgZnTe would have the same properties. Comparisons and implications for electrical behavior of metal contacts to the alloys are discussed.

  19. Determining the boundaries of second-type phase transitions in Ag-Mg-Cd alloys by means of diffusion couples

    NASA Astrophysics Data System (ADS)

    Kalmykov, K. B.; Dmitrieva, N. E.; Dunaev, S. F.

    2017-02-01

    The interaction between elements in the transition zones of diffusion couples Mg + AgCd-alloy are studied. Isothermal sections of the Ag-Mg-Cd ternary system at 573 K are constructed. The existence of a Heusler phase based on H-Ag2MgCd compound is found in the field of the solid β'-solution. It is shown that the interdiffusion of components prevents the formation of ordered phases in the transition zones of bimetals, allowing us to determine the boundaries of second-type phase transitions in solid solutions.

  20. [Concentration of Hg, Pb, Cd, Cr and As in liver Carcharhinus limbatus (Carcharhiniformes: Carcharhinidae) captured in Veracruz, Mexico].

    PubMed

    Mendoza-Díaz, Fernando; Serrano, Arturo; Cuervo-López, Liliana; López-Jiménez, Alejandra; Galindo, José A; Basañez-Muñoz, Agustin

    2013-06-01

    Pollution by heavy metals in marine ecosystems in the Gulf of Mexico is one of the hardest conservation issues to solve. Sharks as top predators are bioindicators of the marine ecosystem health, since they tend to bioaccumulate and biomagnify contaminants; they also represent a food source for local consumption. Thus, the objective of this study was to study the possible presence of heavy metals and a metalloid in livers of Carcharhinus limbatus. For this, a total of 19 shark livers were taken from animals captured nearby Tamihua, Veracruz, Mexico from December 2007 to April 2008. 12 out of the 19 captured sharks were males, one was an adult female, three were juvenile males, and three juvenile females. Four heavy metals (Hg, Pb, Cd, and Cr) and one metaloid (As) were analyzed in shark livers using an atomic absorption spectrophotometry with flame and hydride generator. Our results showed that the maximum concentrations found were: Hg = 0.69 mg/kg, Cd = 0.43 mg/kg, As = 27.37 mg/kg, Cr = 0.70 mg/kg. The minimum concentrations found were: As = 14.91 mg/kg, Cr = 0.35 mg/kg. The Pb could not be determined because the samples did not have the spectrophotometer minimum detectable amount (0.1 mg/kg). None of the 19 samples analyzed showed above the permissible limits established by Mexican and American laws. There was a correlation between shark size and Cr and As concentration (Pearson test). The concentration of Cr and As was observed to be higher in bigger animals. There was not a significant difference in heavy metals concentration between juveniles and adults; however, there was a difference between males and females. A higher Cr concentration was found in females when compared to males. None of the samples exceed the maximum limit established by the laws of Mexico and the United States of America. Much longer studies are needed with C. limbatus and other species caught in the region, in order to determine the degree of contaminants exposure in aquatic ecosystems

  1. Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions.

    PubMed

    Chen, Wei-Ni; Jiang, Shiuh-Jen; Chen, Yen-Ling; Sahayam, A C

    2015-02-20

    A slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions using flow injection (FI) vapor generation (VG) as the sample introduction system. A slurry containing 2% m/v lotion, 2% m/v thiourea, 0.05% m/v L-cysteine, 0.5 μg mL(-1) Co(II), 0.1% m/v Triton X-100 and 1.2% v/v HCl was injected into a VG-ICP-MS system for the determination of Ge, As, Cd, Sb, Hg and Bi without dissolution and mineralization. Because the sensitivities of the analytes in the slurry and that of aqueous solution were quite different, an isotope dilution method and a standard addition method were used for the determination. This method has been validated by the determination of Ge, As, Cd, Sb, Hg and Bi in GBW09305 Cosmetic (Cream) reference material. The method was also applied for the determination of Ge, As, Cd, Sb, Hg and Bi in three cosmetic lotion samples obtained locally. The analysis results of the reference material agreed with the certified value and/or ETV-ICP-MS results. The detection limit estimated from the standard addition curve was 0.025, 0.1, 0.2, 0.1, 0.15, and 0.03 ng g(-1) for Ge, As, Cd, Sb, Hg and Bi, respectively, in original cosmetic lotion sample.

  2. Genetic control of HgCl2-induced IgE and autoimmunity by a 117-kb interval on rat chromosome 9 through CD4 CD45RChigh T cells.

    PubMed

    Pedros, C; Papapietro, O; Colacios, C; Casemayou, A; Bernard, I; Garcia, V; Lagrange, D; Mariamé, B; Andreoletti, O; Fournié, G J; Saoudi, A

    2013-06-01

    Gold or mercury salts trigger a dramatic IgE response and a CD4 T-cell-dependent nephropathy in Brown-Norway (BN), but not in Lewis (LEW) rats. We previously identified the 1.1-Mb Iresp3 (immunoglobin response QTL3) locus on chromosome 9 that controls these gold salt-triggered immune disorders. In the present work, we investigated the genetic control of HgCl(2)-induced immunological disorders and assessed the relative contribution of the CD45RC(high) and CD45RC(low) CD4 T-cell subpopulations in this control. By using interval-specific congenic lines, we narrowed down Iresp3 locus to 117-kb and showed that BN rats congenic for the LEW 117-kb were protected from HgCl(2)-triggered IgE response and nephropathy. This 117-kb interval also controls CD45RC expression by CD4 T cells and the ability of CD45RC(high) CD4 T cells to trigger the autoimmune disorders resulting from HgCl(2) administration. This 117-kb region contains four genes, including Vav1, a strong candidate gene according to its cellular function and exclusive expression in hematopoietic cells. Thus, this study highlights the role of the CD45RC(high) CD4 T-cell subpopulation in the opposite susceptibility of BN and LEW rats to HgCl(2)-triggered immune disorders and identifies a 117-kb interval on chromosome 9 that has a key role in their functions.

  3. Folic acid functionalized silver nanoparticles with sensitivity and selectivity colorimetric and fluorescent detection for Hg2+ and efficient catalysis

    NASA Astrophysics Data System (ADS)

    Su, Dongyue; Yang, Xin; Xia, Qingdong; Zhang, Qi; Chai, Fang; Wang, Chungang; Qu, Fengyu

    2014-09-01

    In this research, folic acid functionalized silver nanoparticles (FA-AgNPs) were selected as a colorimetric and a ‘turn on’ fluorescent sensor for detecting Hg2+. After being added into Hg2+, AgNPs can emit stable fluorescence at 440 nm when the excitation wavelength is selected at 275 nm. The absorbance and fluorescence of the FA-AgNPs could reflect the concentration of the Hg2+ ions. Thus, we developed a simple, sensitive analytical method to detect Hg2+ based on the colorimetric and fluorescence enhancement of FA-AgNPs. The sensor exhibits two linear response ranges between absorbance and fluorescence intensity with Hg2+ concentration, respectively. Meanwhile, a detection limit of 1 nM is estimated based on the linear relationship between responses with a concentration of Hg2+. The high specificity of Hg2+ with FA-AgNPs interactions provided the excellent selectivity towards detecting Hg2+ over other metal ions (Pb2+, Mg2+, Zn2+, Ni2+, Cu2+, Co2+, Ca2+, Mn2+, Fe2+, Cd2+, Ba2+, Cr6+ and Cr3+). This will provide a simple, effective and multifunctional colorimetric and fluorescent sensor for on-site and real-time Hg2+ ion detection. The proposed method can be applied to the analysis of trace Hg2+ in lake water. Additionally, the FA-AgNPs can be used as efficient catalyst for the reduction of 4-nitrophenol and potassium hexacyanoferrate (III).

  4. ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents.

    PubMed

    Saravanan, R; Mansoob Khan, M; Gupta, Vinod Kumar; Mosquera, E; Gracia, F; Narayanan, V; Stephen, A

    2015-08-15

    A ternary ZnO/Ag/CdO nanocomposite was synthesized using thermal decomposition method. The resulting nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, and X-ray photoelectron spectroscopy. The ZnO/Ag/CdO nanocomposite exhibited enhanced photocatalytic activity under visible light irradiation for the degradation of methyl orange and methylene blue compared with binary ZnO/Ag and ZnO/CdO nanocomposites. The ZnO/Ag/CdO nanocomposite was also used for the degradation of the industrial textile effluent (real sample analysis) and degraded more than 90% in 210 min under visible light irradiation. The small size, high surface area and synergistic effect in the ZnO/Ag/CdO nanocomposite is responsible for high photocatalytic activity. These results also showed that the Ag nanoparticles induced visible light activity and facilitated efficient charge separation in the ZnO/Ag/CdO nanocomposite, thereby improving the photocatalytic performance.

  5. Phase Transition and Second Harmonic Generation in Thiophosphates Ag2Cd(P2S6) and AgCd3(PS4)S2 Containing Two Second-Order Jahn-Teller Distorted Cations.

    PubMed

    Fan, Yu-Hang; Jiang, Xiao-Ming; Liu, Bin-Wen; Li, Shu-Fang; Guo, Wei-Huan; Zeng, Hui-Yi; Guo, Guo-Cong; Huang, Jin-Shun

    2017-01-03

    Two new phases in the Ag-Cd-P-S system containing two second-order Jahn-Teller (SOJT) distorted d(10) cations (Cd(2+) and Ag(+)), namely, Ag2Cd(P2S6) (1) and AgCd3(PS4)S2 (2), are obtained via medium-temperature solid-state synthesis. Compound 1 exhibits a two-dimensional layered structure and undergoes a first-order structural phase transition at approximately 280 °C. This outcome can be ascribed to the significant mismatch in the expansion coefficients between Cd-S (Ag-S) and P-P (P-S) bonds evaluated through bond valence theory. The three-dimensional non-centrosymmetric (NCS) framework of 2 is constructed by two types of tetrahedral layers consisting of corner-shared CdS4, AgS4, and PS4 tetrahedra. Compound 2 exhibits second harmonic generation (SHG) intensity of 0.45 times that of commercial AgGaS2 (AGS) at a laser irradiation of 1.85 μm and an optical band gap of 2.56 eV, and no intrinsic vibrational absorption of chemical bonds is observed in the range of 2.5-18.2 μm. Both phase transition in 1 and SHG properties in 2 are closely related to the SOJT distorted d(10) cations and diverse phosphorus-sulfur polyanions (PaSb)(n-), which together can easily result in NCS distorted structures and interesting properties.

  6. Raman studies on Ag-ion doped CdZnS luminescent alloy quantum dots

    NASA Astrophysics Data System (ADS)

    Sethi, Ruchi; Sharma, Prashant K.; Pandey, A. C.; Kumar, Lokendra

    2010-07-01

    Un-doped and Ag-ion doped CdZnS alloy nanocrystals were synthesized using methaacrylic acid (MAA) as a capping agent. A continuous higher frequency shift in optical phonon modes was observed in the Raman spectra of the samples with increasing Zn composition demonstrating a typical 'one-mode' type behavior of the alloy material. Furthermore, the influence of MAA concentration on the optical and vibrational properties was also investigated. Transmission electron micrograph (TEM) of the samples shows that the CdZnS nanocrystals were embedded in the matrix of MAA. In addition, tremendous attention was paid towards the power induced Raman shift in the alloy nanocrystals.

  7. Repackaging and characterizing of a HgCdTe CMOS infrared camera for the New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Cao, Wenda; Coulter, Roy; Gorceix, Nicolas; Goode, Philip R.

    2010-07-01

    The 1.6-meter New Solar Telescope (NST) is currently the world's largest aperture solar telescope. The NST is newly built at Big Bear Solar Observatory (BBSO). Among other instruments, the NST is equipped with several focal plane instruments operating in the near infrared (NIR). In order to satisfy the diverse observational requirements of these scientific instruments, a 1024 × 1024 HgCdTe TCM8600 CMOS camera manufactured by Rockwell Scientific Company has been repackaged and upgraded at Infrared Laboratories Inc. A new ND-5 dewar was designed to house the TCM8600 array with a low background filter wheel, inverted operation and at least 12 hours of hold time between fills. The repackaged camera will be used for high-resolution NIR photometry at the NST Nasmyth focus on the telescope and high-precision NIR spectro-polarimetry in the NST Coudé Lab below. In March 2010, this repackaged camera was characterized in the Coudé Lab at BBSO. This paper presents the design of new dewar, the detailed process of repackaging and characterizing the camera, and a series of test results.

  8. Heterojunction depth in P+-on-n eSWIR HgCdTe infrared detectors: generation-recombination suppression

    NASA Astrophysics Data System (ADS)

    Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.

    2015-08-01

    A key design feature of P+-on-n HgCdTe detectors is the depth of the p-type region. Normally, homojunction architectures are utilized where the p-type region extends into the narrow-gap absorber layer. This facilitates the collection of photo-carriers from the absorber layer to the contact; however, this may result in excess generation-recombination (G-R) current if defects are present. Alternatively, properly adopting a heterojunction architecture confines the p-type region (and the majority of the electric field) solely to the wide-gap layer. Junction placement is critical since the detector performance is now dependent on the following sensitivity parameters: p-type region depth, doping, valence band offset, lifetime and detector bias. Understanding the parameter dependence near the hetero-metallurgical interface where the compositional grading occurs and the doping is varied as either a Gaussian or error function is vital to device design. Numerical modeling is now essential to properly engineer the electric field in the device to suppress G-R current while accounting for the aforementioned sensitivity parameters. The simulations reveal that through proper device design the p-type region can be confined to the wide-gap layer, reducing G-R related dark current, without significantly reducing the quantum efficiency at the operating bias V = -0.100V.

  9. TEQUILA: NIR camera/spectrograph based on a Rockwell 1024x1024 HgCdTe FPA

    NASA Astrophysics Data System (ADS)

    Ruiz, Elfego; Sohn, Erika; Cruz-Gonzales, Irene; Salas, Luis; Parraga, Antonio; Perez, Manuel; Torres, Roberto; Cobos Duenas, Francisco J.; Gonzalez, Gaston; Langarica, Rosalia; Tejada, Carlos; Sanchez, Beatriz; Iriarte, Arturo; Valdez, J.; Gutierrez, Leonel; Lazo, Francisco; Angeles, Fernando

    1998-08-01

    We describe the configuration and operation modes of the IR camera/spectrograph: TEQUILA based on a 1024 X 1024 HgCdTe FPA. The optical system will allow three possible modes of operation: direct imaging, low and medium resolution spectroscopy and polarimetry. The basic system is being designed to consist of the following: 1) A LN(subscript 2) dewar that allocates the FPA together with the preamplifiers and a 24 filter position cylinder. 2) Control and readout electronics based on DSP modules linked to a workstation through fiber optics. 3) An opto-mechanical assembly cooled to -30 degrees that provides an efficient operation of the instrument in its various modes. 4) A control module for the moving parts of the instrument. The opto-mechanical assembly will have the necessary provision to install a scanning Fabry-Perot interferometer and an adaptive optics correction system. The final image acquisition and control of the whole instrument is carried out in a workstation to provide the observer with a friendly environment. The system will operate at the 2.1 m telescope at the Observatorio Astronomico Nacional in San Pedro Martir, B.C. (Mexico), and is intended to be a first-light instrument for the new 7.8m Mexican IR-Optical Telescope.

  10. Analysis of beverages for Hg, As, Pb, and Cd with a field portable X-ray fluorescence analyzer.

    PubMed

    Anderson, David L

    2010-01-01

    Analytical capabilities of a handheld X-ray tube analyzer for analysis of beverages were evaluated. Sets of standard solutions for the elements Hg, As, Pb, and Cd were prepared with mass fractions up to 5000 mg/kg. A thirst quencher beverage was spiked with these elements up to mass fractions of 2500 mg/kg. Portions of these solutions were placed in standard X-ray fluorescence (XRF) cells, as well as the original container, and analyzed by using a field portable Innov-X alpha-6000s XRF tube-type analyzer. Uncorrected analyzer output usually yielded qualitative or semiquantitative results for the spiked beverages in X-ray cells. Average correction factors applied to analyzer output yielded accurate (in terms of z-scores) quantitative results for As above 20 mg/kg and qualitative or semiquantitative results for the other elements. Weighted quadratic fit calibrations provided accurate quantitative or semiquantitative results for all elements at levels above 20 mg/kg. The instrument's preset X-ray overlap correction algorithm worked well for the beverage spiked with all four elements. Spiked beverages analyzed through the wall of the original polyethylene terephthalate container produced accurate results within measurement uncertainties after application of "container wall" correction factors.

  11. The quantum efficiency of HgCdTe photodiodes in relation to the direction of illumination and to their geometry

    NASA Technical Reports Server (NTRS)

    Rosenfeld, D.; Bahir, G.

    1993-01-01

    A theoretical study of the effect of the direction of the incident light on the quantum efficiency of homogeneous HgCdTe photodiodes suitable for sensing infrared radiation in the 8-12 microns atmospheric window is presented. The probability of an excess minority carrier to reach the junction is derived as a function of its distance from the edge of the depletion region. Accordingly, the quantum efficiency of photodiodes is presented for two geometries. In the first, the light is introduced directly to the area in which it is absorbed (opaque region), while in the second, the light passes through a transparent region before it reaches the opaque region. Finally, the performance of the two types of diodes is analyzed with the objective of finding the optimal width of the absorption area. The quantum efficiency depends strongly on the way in which the light is introduced. The structure in which the radiation is absorbed following its crossing the transparent region is associated with both higher quantum efficiency and homogeneity. In addition, for absorption region widths higher than a certain minimum, the quantum efficiency in this case is insensitive to the width of the absorption region.

  12. Ion-exchange synthesis and improved photovoltaic performance of CdS/Ag2S heterostructures for inorganic-organic hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyun; Wang, Xiong; Zhang, Yange; Li, Pinjiang

    2016-11-01

    A facile ultrasound-assisted ion exchange route was developed for the synthesis of CdS/Ag2S heterojunctions by ion exchange between the nanostructured CdS film and [Ag(NH3)2]+ under ultrasonication. The CdS/Ag2S heterojunction film was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis DRS spectroscopy, photoelectrochemical measurements, and the transient photovoltage (TPV) technique. CdSsbnd Ag2S heterojunctions exhibit a dense morphology, enhanced visible light absorption and stronger photocurrent response than the pure CdS films. Poly(3-hexylthiophene) (P3HT) was then spin coated into the CdS/Ag2S framework. Hybrid solar cells constructed with FTO/CdS/Ag2S/P3HT/Au display relatively higher power conversion efficiency than FTO/CdS/P3HT/Au.

  13. [Determination of Ag, Cu, Zn and Cd in silver brazing filler metals by ICP-AES].

    PubMed

    Yang, X

    1997-06-01

    A method of simultaneous and direct determination for Ag, Cu, Zn and Cd in silver brazing filler metals by ICP-AES is reported. The spectral interferences and effect of acidity have been investigated. Working conditions were optimized. The method has been applied to the analysis of silver brazing filler metals with RSD of 4-7% and recovery of 94-105%. This method was accurate, simple and rapid.

  14. Seasonal survey of contaminants (Cd and Hg) and micronutrients (Cu and Zn) in edible tissues of cephalopods from Tunisia: assessment of risk and nutritional benefits.

    PubMed

    Rjeibi, Moncef; Metian, Marc; Hajji, Tarek; Guyot, Thierry; Ben Chaouacha-Chekir, Rafika; Bustamante, Paco

    2015-01-01

    Concentrations of cadmium (Cd), copper (Cu), mercury (Hg), and zinc (Zn) were determined by atomic absorption spectrophotometry in the muscle tissues (arms and mantle) of 3 commercial cephalopods (Loligo vulgaris, Octopus vulgaris, and Sepia officinalis) caught in 3 different Tunisian coastal regions. The highest concentrations found correspond to the essential elements Cu and Zn. Octopuses and cuttlefish showed the highest levels of those elements whereas squid presented with significantly higher values of Hg in both muscular tissues. This may be related to different feeding behavior and detoxification processes among benthic and pelagic cephalopods. Variation of element concentrations between seasons was different between species and seemed to be mostly dependent on the sampling site. From a public health standpoint, average concentrations of Cd, Cu, Hg, and Zn measured in edible tissues of cephalopods from this study did not reveal, in general, any risk for consumers. The estimated target hazard quotients for Cd and Hg for consumers of the selected species were below 1 and within the safety range for human health. Moreover, their consumption could provide in an important contribution to the daily dietary intake of Cu for the Tunisian population, especially regarding the consumption of octopus and cuttlefish muscles.

  15. Selective turn-on fluorescence sensor for Ag+ using cysteamine capped CdS quantum dots: determination of free Ag+ in silver nanoparticles solution.

    PubMed

    Khantaw, Thitima; Boonmee, Chanida; Tuntulani, Thawatchai; Ngeontae, Wittaya

    2013-10-15

    Cadmium sulfide quantum dots capped with cysteamine (Cys-CdS QDs) were demonstrated as a selective fluorescence probe for sensing of free trace silver ions. The fluorescence intensity of the Cys-CdS QDs can be enhanced only in the presence of free Ag(+) and the fluorescence spectrum was slightly red shift from the original spectra. In addition, the fluorescence intensities were linearly increased upon increasing Ag(+) concentration. At the optimized condition for Ag(+) detection, when adding other metal ions to the Cys-CdS QDs solution, fluorescence spectra of Cys-CdS QDs did not change significantly revealing good selectivity of the sensors towards Ag(+). The working linear concentration range was found to be 0.1-1.5 µM with LOD of 68 nM. The proposed sensor was then applied to detect free Ag(+) in the silver nanoparticles solution. The results showed that the proposed sensor can be efficiently used with good accuracy and precision providing the simple method for detection of free Ag(+) in silver nanoparticles of quality control products.

  16. The visible light photocatalytic activity enhancement of cotton cellulose nanofibers/In2S3/Ag-CdS nanocomposites

    NASA Astrophysics Data System (ADS)

    Pan, Jiaqi; Li, Jing; Zhang, Xiufang; Zheng, Yingying; Cui, Can; Zhu, Zhiyan; Li, Chaorong

    2016-07-01

    Cotton cellulose nanofibers (CCNFs)/In2S3/Ag-CdS nanocomposites were prepared by a typical technical route which combined electrospinning and a chemical method. The results showed that the CCNFs/In2S3/Ag-CdS nanocomposites had a remarkable visible light photocatalytic property and cycling stability, which displayed a significant enhancement compared with that of pure In2S3. Through analysis, this enhancement could be mainly attributed to the multilevel structure of the composites.

  17. Influences of thicknesses and structures of barrier cap layers on As ion profiles and implant damages in HgCdTe epilayers

    NASA Astrophysics Data System (ADS)

    Shi, Changzhi; Lin, Chun; Wei, Yanfeng; Chen, Lu; Ye, Zhenhua

    2016-05-01

    The barrier cap layer (BCL) is considered to be able to absorb partially implant induced damages during ion implantation, thus its structure and property could impact the result of ion implantation. In this paper, for As ion implantation in HgCdTe, the different BCLs were deposited on the CdZnTe-based (LPE) and GaAs-based (MBE) HgCdTe epilayers, respectively. Then, the influences of thicknesses and structures of these BCLs on dopant profiles and implant damages were investigated. The as-grown BCLs include thermally evaporated (TE) ZnS, TE CdTe, electron beam evaporated (EBE) CdTe and in-situ CdTe/ZnTe grown by MBE. The SIMS profiles and TEM characterization indicate: For TE ZnS BCLs, there exists an optimized thickness to obtain the deepest As indiffusion after high temperature annealing, and the end-of-range (EOR) depth is linearly proportional to the thickness ratio of a-MCT layer/damage layer. For TE CdTe BCLs, the barrier layer induced channeling effect (BLICE) occurs to the thin BCL samples, while this effect is suppressed in the thick BCL samples. The phenomenon might be due to that the blocking effect of the layered structure inside each crystal column becomes dominate in the thick BCL samples. Additionally, the EBE CdTe BCL with layered structure can suppress effectively the BLICE effect; in the in-situ CdTe/ZnTe BCL, the short defect layer generated in the CdTe buffer layer and the amorphization of the ZnTe layer during ion implantation also play a significant role in suppressing the BLICE effect.

  18. Enhanced selective photocatalytic CO2 reduction into CO over Ag/CdS nanocomposites under visible light

    NASA Astrophysics Data System (ADS)

    Zhu, Zezhou; Qin, Jiani; Jiang, Min; Ding, Zhengxin; Hou, Yidong

    2017-01-01

    Photocatalytic reduction of carbon dioxide can convert chemically inert carbon dioxide into useful chemical fuel in a mild manner. Herein, Ag-CdS nanocomposites were prepared by photodeposition method and examined for photocatalytic CO2 reduction under visible light. Meanwhile, the nanocomposites were characterized by XRD, SEM, TEM, XPS, DRS and PL in detail. The results show that, the deposition of Ag improves the photocatalytic performance of CdS, especially in the selectivity of CO2-to-CO. The highest photocatalytic activity is achieved over 1.0 wt.% Ag/CdS, with an increase by 3 times in comparison to CdS. In this reaction system, Ag can serve as electron trap as well as active site for CO2 reduction, which is probably responsible for the enhanced activity and selectivity of CO2 to CO over Ag/CdS. The possible mechanism of CO2 photoreduction over Ag/CdS was proposed in view of the abovementioned analysis.

  19. Synthesis and characterization of AgI nanoparticles in β-CD/PAN nanofibers by electrospinning method

    NASA Astrophysics Data System (ADS)

    Liang, Haiou; Li, Chunping; Bai, Jie; Zhang, Lijuan; Guo, Liping; Huang, Yarong

    2013-04-01

    AgI nanoparticles/β-cyclodextrin (β-CD)/polyacrylonitrile (PAN) composite nanofibers film were prepared via a new route which combined electrospinning technology with the reaction of solid-liquid process. In this article, AgI nanoparticles were successfully prepared in β-CD/PAN nanofibers which contained different concentration β-CD by the new route. Firstly, the AgNO3-β-CD/PAN nanofibers were obtained via electrospinning method, then put the nanofibers into the solution of potassium iodide to prepare AgI-β-CD/PAN nanofibers. The morphology and structure of the composite nanofibers and nanoparticles have been investigated by scanning electron microscopy (SEM) and transmission electro microscopy (TEM). The existence of the AgI nanoparticles was proved by X-ray photoelectron spectroscopy (XPS) and X-ray diffractometer (XRD) patterns. The results of various characterizations indicated that the sample of AgI-β-CD (2 wt%)/PAN have the optimum morphology and structure.

  20. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Sardans, Jordi; Montes, Fernando; Peñuelas, Josep

    2010-02-01

    this technique that reaches figures of merit equivalent to Inductively coupled plasma mass spectrometry (ICP-MS). Herein is presented an overview of recent advances and applications of (ETAAS) for the determination of As, Cd, Cu, Hg and Pb in biological samples drawn from studies over the last decade.

  1. Effect of Ag doping on the electrical properties of thermally deposited CdS-La2O3 TFTs

    NASA Astrophysics Data System (ADS)

    Gogoi, Paragjyoti; Saikia, Rajib

    2012-06-01

    In this article, we have reported the fabrication of CdS thin film transistors (TFTs) doped with Ag by thermal evaporation technique on chemically cleaned glass substrates using multiple pumps down process. High-k rare earth oxide La2O3 is used as gate dielectric in CdS TFTs. Some important electrical parameters have been evaluated using Weimer's model. The electrical parameters are compared with the parameters of undoped CdS TFTs. The Ag-doped CdS TFTs exhibit a high mobility of 6.1 cm2 V-1 s-1 than that of the undoped CdS TFTs, mobility of which is found as 6.25 × 10-2 cm2 V-1 s-1. The TFTs also exhibit low threshold voltage. Both Ag-doped and undoped TFTs are characterised using Levinson et al. model.

  2. Phase transitions of the system Ag sub 2 HgI sub 4 -Cu sub 2 HgI sub 4 at normal and high pressure studied by differential scanning calorimetry

    SciTech Connect

    Friesel, M.; Baranowski, B.; Lunden, A. )

    1990-02-08

    Differential scanning calorimetry has been applied for studying the system Ag{sub 2}HgI{sub 4}-Cu{sub 2}HgI{sub 4} at both normal and high pressure. It is confirmed that there is a miscibility gap in the ordered phase and that the order-disorder phase transition has a eutectoid point at 307 K and 42.7 mol % Cu{sub 2}HgI{sub 4} at normal pressure, which is about 30 K higher than expected from a calculation for ideal eutectic behavior. The order-disorder transition is of first-order character over the whole composition range, confirming the interpretation by Suchow and ruling out the suggestion by Jaffray that it should be of second-order character in the middle part of the range. The transition enthalpy is equal to 7.3 {plus minus} 0.2 kJ/mol for the eutectoid composition. The phase diagram of the eutectoid composition was determined for pressures up to 0.72 GPa, and the temperature of the order-disorder transition increased from 307 to about 325 K, The correlation was not linear over the whole pressure range, but an average dT/dP slope of 25 K/GPa is in good agreement with the 24 K/GPa calculated by means of van Laar,s formula. The transition enthalpy (kJ/mol) decreased linearly with increasing pressure with d{Delta}H/dp = -4.0 kJ/(mol GPa). A calculation from simple additive rule gives instead d{Delta}H/dp = -1.5 kJ/(mol GPa).

  3. Photoelectric properties of ITO/CdS/chlorophyll a/Ag heterojunction solar cells

    SciTech Connect

    Segui, J.; Hotchandani, S.; Baddou, D.; Leblanc, R.M. )

    1991-10-31

    The heterojunction ITO/CdS/Chl a/Ag (Chl a = chlorophyll a) solar cells have been prepared by sequential electrodeposition of CdS and Chl a onto conductive indium-tin oxide (ITO) electrode followed by vacuum deposition of Ag, and their photovoltaic studies have been carried out. The dark J-V and photovoltaic characteristics, especially the action spectra, suggest the presence of a barrier at CdS/CFhl a interface. Various photovoltaic parameters of the cells obtained for the incident light power of 20 {mu}W/Cm{sup 2} at 740 nm, the maximum of Chl a absorption in red region, are as follows: J{sub SC} {approx equal} 150-200 nA/cm{sup 2}, V{sub OC} {approx} 0.35-0.40 V, ff = 0.26, and {eta} (%) = 0.17. The measurements performed at three wavelengths, namely, 740, 680, and 560 nm, indicate that the cells (illuminated through CdS electrode) perform better for weakly absorbed light at 560 nm. The results further show that the use of CdS instead of Al as rectifying electrode has definitely led to an improvement in the performance of CdS/Chl a over Al/Chl a cells in terms of the decreased internal resistances, decreased dark current and voltage, increased fill factors, and increased power conversion efficiencies. This has been attributed to the elimination of insulating layer of Al{sub 2}O{sub 3} existing at Al/Chl a interface.

  4. Effect of surface fields on the dynamic resistance of planar HgCdTe mid-wavelength infrared photodiodes

    SciTech Connect

    He, Kai; Wang, Xi; Zhang, Peng; Chen, Yi-Yu; Zhou, Song-Min; Xie, Xiao-Hui; Lin, Chun Ye, Zhen-Hua; Wang, Jian-Xin; Zhang, Qin-Yao; Li, Yang

    2015-05-28

    This work investigates the effect of surface fields on the dynamic resistance of a planar HgCdTe mid-wavelength infrared photodiode from both theoretical and experimental aspects, considering a gated n-on-p diode with the surface potential of its p-region modulated. Theoretical models of the surface leakage current are developed, where the surface tunnelling current in the case of accumulation is expressed by modifying the formulation of bulk tunnelling currents, and the surface channel current for strong inversion is simulated with a transmission line method. Experimental data from the fabricated devices show a flat-band voltage of V{sub FB}=−5.7 V by capacitance-voltage measurement, and then the physical parameters for bulk properties are determined from the resistance-voltage characteristics of the diode working at a flat-band gate voltage. With proper values of the modeling parameters such as surface trap density and channel electron mobility, the theoretical R{sub 0}A product and corresponding dark current calculated from the proposed model as functions of the gate voltage V{sub g} demonstrate good consistency with the measured values. The R{sub 0}A product remarkably degenerates when V{sub g} is far below or above V{sub FB} because of the surface tunnelling current or channel current, respectively; and it attains the maximum value of 5.7×10{sup 7} Ω · cm{sup 2} around the transition between surface depletion and weak inversion when V{sub g}≈−4 V, which might result from reduced generation-recombination current.

  5. A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications

    NASA Astrophysics Data System (ADS)

    Beck, Jeff; McCurdy, James; Skokan, Mark; Kamilar, Chris; Scritchfield, Richard; Welch, Terry; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Reiff, Kirk

    2013-05-01

    A 16 element HgCdTe e-APD detector has been developed for lidar receivers that has significant improvements in sensitivity in the spectral range from < 1μm to 4 μm. A demonstration detector consisting of a 4x4 APD detector array, with 80 μm square elements, a custom CMOS readout integrated circuit (ROIC), a closed cycle cooler-Dewar, and support electronics has been designed, fabricated, and tested. The custom ROIC design provides > 6 MHz bandwidth with low noise and 21 selectable gains. Ninety-six arrays were fabricated with 69% of the arrays meeting the dark current spec in the center 4 pixels at 10 V bias where the APD gain was expected to be around 150. Measurements to 12 V on one array showed APD gains of 654 with a gain normalized dark currents of 1.2 fA to 3.2 fA. The lowest dark current array showed a maximum dark current of 6.2 pA at 10 V and 77 K. The 4.4 μm cutoff detector was characterized at an operating temperature of 77K with a 1.55 μm, 1μs wide, laser pulse. The photon conversion efficiency at unity gain was 91%. The mean measured APD gain at 77 K was 308 at 11V, the responsivity was 782 μV/pW, the average NEP was 1.04 fW/Hz1/2. The bandwidth was 6.8 MHz, and the broadband NEP was 2.97 pW. This detector offers a wide spectral response, dynamic range, and substantially improved sensitivity and lifetime for integrated path differential absorption (IPDA) lidar measurements of atmospheric trace gases such as CO2 and CH4.

  6. Effect of the arsenic cracking zone temperature on the efficiency of arsenic incorporation in CdHgTe films in molecular-beam epitaxy

    SciTech Connect

    Sidorov, G. Yu. Mikhailov, N. N.; Varavin, V. S.; Ikusov, D. G.; Sidorov, Yu. G.; Dvoretskii, S. A.

    2008-06-15

    Cd{sub x}Hg{sub 1-x}Te films with x {approx} 0.22 and thickness of {approx}10 {mu}m have been grown by molecular-beam epitaxy on gallium arsenide substrates and doped in situ with arsenic. Activation annealing of doped films provided p-type conduction with a hole density of up to 10{sup 17} cm{sup -3}. The influence exerted by the arsenic cracking zone temperature on the efficiency of arsenic incorporation into the CdHgTe film was studied. A model describing the dependence of the arsenic concentration in the films on the arsenic cracking zone temperature was suggested. A comparison of the model and the experimental data demonstrated that the incorporation efficiency of diatomic arsenic is approximately two orders of magnitude higher than that of tetratomic arsenic.

  7. Studies of boron implantation through photochemically deposited SiO/sub 2/ films on Hg/sub 1-x/Cd/sub x/Te. Technical report

    SciTech Connect

    Bowman, R.C.; Robertson, R.E.; Knudsen, J.F.; Downing, R.G.

    1987-05-22

    Variable-temperature Hall and resistivity measurements were used to monitor the changes in carrier behavior in p-type Hg(1-x)Cd(x)Te when boron ions are implanted through photochemically deposited SiO/sub 2/. The formation of an n-type layer is demonstrated. Quantitative and nondestructive determination of the absolute /sup 10/B concentration and distribution were obtained by the novel method of neutron-depth profiling. As expected, the boron distributions in the SiO/sub 2/ films and Hg(1-x)Cd(x)Te are strongly dependent upon the ion implant energy. However, negligible changes in the boron depth profiles were found after 200 C anneals. The present results are briefly related to the performance behavior of mid-wavelength infrared (MWIR) sensors produced via generic ion-implantation procedures.

  8. Investigation of surface potential in the V-defect region of MBE Cd{sub x}Hg{sub 1−x}Te film

    SciTech Connect

    Novikov, V. A. Grigoryev, D. V.

    2015-03-15

    Atomic-force microscopy is used to investigate the distribution of the contact-potential difference (surface potential) in Cd{sub x}Hg{sub 1−x}Te epitaxial films grown by molecular-beam epitaxy. Modification of the solid-solution composition near the V-defect results in a variation in the contact-potential difference. It is shown that the solid-solution composition varies by ∼0.05 (2.5 at %) towards increasing mercury content in the V-defect region, and a region of mercury depletion by 0.36 at % is observed at the V-defect periphery. From analysis of the surface-potential distribution, it is shown that the Cd{sub x}Hg{sub 1−x}Te epitaxial film contains unform V-defects with a diameter less than 1 μm in addition to macroscopic V-defects.

  9. Facile in situ synthesis of hydrophilic RGO-CD-Ag supramolecular hybrid and its enhanced antibacterial properties.

    PubMed

    Li, Tie; Shen, Jianfeng; Li, Na; Ye, Mingxin

    2014-06-01

    In this study, a novel hydrophilic RGO-CD-Ag hybrid with the supramolecular β-cyclodextrin (CD) as a conjugation interface was fabricated successfully by a facile in situ synthesis process. The results of several characterizations confirmed that the in situ reaction provided a straightforward approach to deposit the CD wrapped Ag nanoparticles onto the CD chemical functionalized RGO sheets through the head-to-head H-bond interactions between the linker CD molecules. Moreover, it was also found that the CD interface that existed indeed influences the structure and performances of RGO-CD-Ag nanocomposite. The analysis of the static contact angle revealed that the surface property of the hybrid could be transformed from hydrophobic to hydrophilic feature, which highly improved the aqueous dispersibility. And then, the bactericidal test of RGO-CD-Ag was demonstrated and clearly showed the strongest antibacterial activity against Gram-negative and Gram-positive bacteria among all samples. In short, this method may readily provide a new family of supramolecular based materials expected to find applications beyond the bactericidal field.

  10. Electrical properties of antimony-doped p-type Hg 0.78Cd 0.22Te liquid-phase-epitaxy films

    NASA Astrophysics Data System (ADS)

    Chen, M. C.; Dodge, J. A.

    1986-08-01

    Hall measurements have been performed on antimony-doped p-type Hg 0.78Cd 0.22Te LPE (Liquid-Phase-Epitaxy) films between 20 and 150 K. The ionization energy of isolated shallow acceptors was estimated to be about 11 meV. From the analysis of the Hall coefficient and the hole mobility data, we found that compensation in the films is not enough to explain the typically low hole mobility at low temperatures.

  11. Numerical study of the intrinsic recombination carriers lifetime in extended short-wavelength infrared detector materials: A comparison between InGaAs and HgCdTe

    NASA Astrophysics Data System (ADS)

    Wen, Hanqing; Bellotti, Enrico

    2016-05-01

    Intrinsic carrier lifetime due to radiative and Auger recombination in HgCdTe and strained InGaAs has been computed in the extended short-wavelength infrared (ESWIR) spectrum from 1.7 μm to 2.7 μm. Using the Green's function theory, both direct and phonon-assisted indirect Auger recombination rates as well as the radiative recombination rates are calculated for different cutoff wavelengths at 300 K with full band structures of the materials. In order to properly model the full band structures of strained InGaAs, an empirical pseudo-potential model for the alloy is fitted using the virtual crystal approximation with spin-orbit coupling included. The results showed that for InxGa1-xAs grown on InP substrate, the compressive strain, which presents in the film when the cutoff wavelength is longer than 1.7 μm, leads to decrease of Auger recombination rate and increase of radiative recombination rate. Since the dominant intrinsic recombination mechanism in this spectral range is radiative recombination, the overall intrinsic carrier lifetime in the strained InGaAs alloys is shorter than that in the relaxed material. When compared to the relaxed HgCdTe, both relaxed and compressively strained InGaAs alloys show shorter intrinsic carrier lifetime at the same cutoff wavelength in room temperature which confirms the potential advantage of HgCdTe as wide-band infrared detector material. While HgCdTe offers superior performance, ultimately the material of choice for ESWIR application will also depend on material quality and cost.

  12. Simultaneous determination of Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ by using second-derivative spectrophotometry method

    NASA Astrophysics Data System (ADS)

    Han, Yanyan; Li, Yan; Si, Wei; Wei, Dong; Yao, Zhenxing; Zheng, Xianpeng; Du, Bin; Wei, Qin

    2011-09-01

    A new method of simultaneous determination of Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ is proposed here by using the second-derivative spectrophotometry method. In pH = 10.35 Borax-NaOH buffer, using meso-tetra (3-methoxyl-4-hydroxylphenyl) porphyrin ([T-(3-MO-4-HP)P]) as chromomeric reagent, micelle solution was formed after Tween-80 surfactant was added into the solution containing Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ ions. The original absorption spectrum of the above complexes was obtained after heating in the boiling water for 25 min. The second-derivative absorption peaks of five metal-porphyrin complexes can be separated from the original absorption spectrum by using chemometric tool. In this way, Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ ions can be determined simultaneously. Under the optimal conditions, the linear ranges of the calibration curve were 0-0.60, 0-0.60, 0-0.40, 0-0.80 and 0-0.48 μg mL -1 for Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+, respectively. The molar absorptivity of these color systems were 1.38 × 10 5, 1.01 × 10 5, 3.24 × 10 5, 1.07 × 10 5 and 1.29 × 10 5 L mol -1 cm -1. The method developed in this paper has advantages in selectivity, sensitivity, operation and can effectively resolve spectra overlapping problem. This method has been applied to determine the real samples with satisfactory results.

  13. Modeling of electron energy spectra and mobilities in semi-metallic Hg{sub 1−x}Cd{sub x}Te quantum wells

    SciTech Connect

    Melezhik, E. O. Gumenjuk-Sichevska, J. V.; Sizov, F. F.

    2015-11-21

    Electron mobility, energy spectra, and intrinsic carrier concentrations in the n-type Hg{sub 0.32}Cd{sub 0.68}Te/Hg{sub 1−x}Cd{sub x}Te/Hg{sub 0.32}Cd{sub 0.68}Te quantum well (QW) in semi-metallic state are numerically modeled. Energy spectra and wave functions were calculated in the framework of the 8-band k-p Hamiltonian. In our model, electron scattering on longitudinal optical phonons, charged impurities, and holes has been taken into account, and the mobility has been calculated by an iterative solution of the Boltzmann transport equation. Our results show that the increase of the electron concentration in the well enhances the screening of the 2D electron gas, decreases the hole concentration, and can ultimately lead to a high electron mobility at liquid nitrogen temperatures. The increase of the electron concentration in the QW could be achieved in situ by delta-doping of barriers or by applying the top-gate potential. Our modeling has shown that for low molar composition x the concentration of holes in the well is high in a wide range of electron concentrations; in this case, the purity of samples does not significantly influence the electron mobility. These results are important in the context of establishing optimal parameters for the fabrication of high-mobility Hg{sub 1−x}Cd{sub x}Te quantum wells able to operate at liquid nitrogen temperature and thus suitable for applications in terahertz detectors.

  14. Magnetotransmission of unpolarized infrared radiation in Hg1 - x Cd x Cr2Se4 (0 ≤ x ≤ 1) single crystals studied using the voigt geometry

    NASA Astrophysics Data System (ADS)

    Sukhorukov, Yu. P.; Telegin, A. V.; Bebenin, N. G.; Patrakov, E. I.; Naumov, S. V.; Fedorov, V. A.; Menshchikova, T. K.

    2013-11-01

    The features characterizing the behavior of magnetotransmission in Hg1 - x Cd x Cr2Se4 single crystals are studied using natural light in the infrared spectral range. The relation between the changes in the magneto-optical properties and in the electron band structure is found. It is shown that the most significant changes in the magnetotransmission spectrum and the band structure occur within the 0.1 < x < 0.25 range.

  15. DFT study of Hg adsorption on M-substituted Pd(1 1 1) and PdM/γ-Al2O3(1 1 0) (M = Au, Ag, Cu) surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Jiancheng; Yu, Huafeng; Geng, Lu; Liu, Jianwen; Han, Lina; Chang, Liping; Feng, Gang; Ling, Lixia

    2015-11-01

    The adsorption of Hgn (n = 1-3) on the Au-, Ag-, Cu-substituted Pd(1 1 1) surfaces as well as the PdM/γ-Al2O3(1 1 0) (M = Au, Ag, Cu) surfaces has been investigated using spin-polarized density functional theory calculations. It is found that M-substituted Pd(1 1 1) surfaces show as good Hg adsorption capacity as the perfect Pd(1 1 1) at low Hg coverage, while the Hg adsorption capacity is only slightly weakened at high Hg coverage. On the basis of stepwise adsorption energies analysis, it is concluded that M-substituted Pd(1 1 1) surfaces can contribute to the binding of Hg atom on the surfaces at high Hg coverage. The electronic properties of the second metal atoms are the main factor contributes to the Hg adsorption capacity. Gas phase Pd2 shows better Hg adsorption capacity than Pd2/γ-Al2O3, while PdM/γ-Al2O3 can adsorb Hg more efficiently than bare PdM clusters. It suggests that the γ-Al2O3 support can enhance the activity of PdM for Hg adsorption and reduces the activity of Pd2. It is also found that Pd is the main active composition responsible for the interaction of mercury with the surface for PdM/γ-Al2O3 sorbent. Taking Hg adsorption capacity and economic costs into account, Cu addition is a comparatively good candidate for Hg capture.

  16. Synthesis, characterization, DFT and biological studies of isatinpicolinohydrazone and its Zn(II), Cd(II) and Hg(II) complexes.

    PubMed

    El-Gammal, O A; Rakha, T H; Metwally, H M; Abu El-Reash, G M

    2014-06-05

    Isatinpicolinohydrazone (H2IPH) and its Zn(II), Cd(II) and Hg(II) complexes have been synthesized and investigated using physicochemical techniques viz. IR, (1)H NMR, (13)C NMR, UV-Vis spectrometric methods and magnetic moment measurements. The investigation revealed that H2IPH acts as binegative tetradentate in Zn(II), neutral tridentate in Cd(II) and as neutral bidentate towards Hg(II) complex. Octahedral geometry is proposed for all complexes. The bond length, bond angle, chemical reactivity, energy components (kcal/mol), binding energy (kcal/mol) and dipole moment (Debyes) for all the title compounds were evaluated by DFT and also MEP for the ligand is shown. Theoretical infrared intensities of H2IPH and also the theoretical electronic spectra of the ligand and its complexes were calculated. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The in vitro antibacterial studies of the complexes proved them as growth inhibiting agents. The DDPH antioxidant of the compounds have been screened. Antitumor activity, carried out in vitro on human mammary gland (breast) MCF7, have shown that Hg(II) complex exhibited potent activity followed by Zn(II), Cd(II) complexes and the ligand.

  17. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions.

    PubMed

    Monier, M; Abdel-Latif, D A

    2012-03-30

    In this study, cross-linked magnetic chitosan-phenylthiourea (CSTU) resin were prepared and characterized by means of FTIR, (1)H NMR, SEM high-angle X-ray diffraction (XRD), magnetic properties and thermogravimetric analysis (TGA). The prepared resin were used to investigate the adsorption properties of Hg(II), Cd(II) and Zn(II) metal ions in an aqueous solution. The extent of adsorption was investigated as a function of pH and the metal ion removal reached maximum at pH 5.0. Also, the kinetic and thermodynamic parameters of the adsorption process were estimated. These data indicated that the adsorption process is exothermic and followed the pseudo-second-order kinetics. Equilibrium studies showed that the data of Hg(II), Cd(II) and Zn(II) adsorption followed the Langmuir model. The maximum adsorption capacities for Hg(II), Cd(II) and Zn(II) were estimated to be 135 ± 3, 120 ± 1 and 52 ± 1 mg/g, which demonstrated the high adsorption efficiency of CSTU toward the studied metal ions.

  18. Determination of charge-carrier diffusion length in the photosensing layer of HgCdTe n-on-p photovoltaic infrared focal plane array detectors

    SciTech Connect

    Vishnyakov, A. V.; Stuchinsky, V. A. Brunev, D. V.; Zverev, A. V.; Dvoretsky, S. A.

    2014-03-03

    In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents j{sub ph} being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at j{sub ph} ≠ 0) charge-carrier diffusion length l{sub d} {sub eff} as a function of j{sub ph} for j{sub ph} → 0 inferred from our experimental data proved to be consistent with the behavior of l{sub d} {sub eff} vs j{sub ph} as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.

  19. Opto-electronic Properties of Mid-Wavelength: n Type II InAs/InAs1- x Sb x and Hg1- x Cd x Te

    NASA Astrophysics Data System (ADS)

    De Wames, Roger E.

    2016-09-01

    There is significant interest in mid-wavelength type II strained layer superlattices (SLSs) and HgCdTe material systems for background limited performance, operating at significantly higher temperature, T ≥ 150 K, than InSb, T ≈ 80-90 K. A precise knowledge of the electronic and optical properties of these materials is desirable since they determine detector performance and are needed for input parameters in self-consistent physics-based predictive models. Recently, data on the optical absorption coefficient, and the hole minority carrier lifetime has become available, suggesting that in the extrinsic region the limiting recombination processes in mid-wavelength type II Ga-free SLSs are radiative and Shockley-Read-Hall (SRH). These findings provide the opportunity for comparisons with mid-wavelength HgCdTe. The comparisons show that the radiative recombination coefficients are similar; however, the SRH lifetime limited to 9 μs for the SLS implies that the dark current density is expected to be limited by bulk generation-recombination (G-R) SRH processes for temperatures below 160 K; hence requiring heterojunction designs to suppress the G-R dark currents and be diffusion limited. Mid-wavelength infrared HgCdTe photodiodes are shallow p+n photovoltaic devices and because of the very long SRH hole lifetime are diffusion radiatively limited photodiodes down to 80 K.

  20. Determination of charge-carrier diffusion length in the photosensing layer of HgCdTe n-on-p photovoltaic infrared focal plane array detectors

    NASA Astrophysics Data System (ADS)

    Vishnyakov, A. V.; Stuchinsky, V. A.; Brunev, D. V.; Zverev, A. V.; Dvoretsky, S. A.

    2014-03-01

    In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents jph being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at jph ≠ 0) charge-carrier diffusion length ld eff as a function of jph for jph → 0 inferred from our experimental data proved to be consistent with the behavior of ld eff vs jph as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.

  1. Synthesis, characterization, DFT and biological studies of isatinpicolinohydrazone and its Zn(II), Cd(II) and Hg(II) complexes

    NASA Astrophysics Data System (ADS)

    El-Gammal, O. A.; Rakha, T. H.; Metwally, H. M.; Abu El-Reash, G. M.

    2014-06-01

    Isatinpicolinohydrazone (H2IPH) and its Zn(II), Cd(II) and Hg(II) complexes have been synthesized and investigated using physicochemical techniques viz. IR, 1H NMR, 13C NMR, UV-Vis spectrometric methods and magnetic moment measurements. The investigation revealed that H2IPH acts as binegative tetradentate in Zn(II), neutral tridentate in Cd(II) and as neutral bidentate towards Hg(II) complex. Octahedral geometry is proposed for all complexes. The bond length, bond angle, chemical reactivity, energy components (kcal/mol), binding energy (kcal/mol) and dipole moment (Debyes) for all the title compounds were evaluated by DFT and also MEP for the ligand is shown. Theoretical infrared intensities of H2IPH and also the theoretical electronic spectra of the ligand and its complexes were calculated. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The in vitro antibacterial studies of the complexes proved them as growth inhibiting agents. The DDPH antioxidant of the compounds have been screened. Antitumor activity, carried out in vitro on human mammary gland (breast) MCF7, have shown that Hg(II) complex exhibited potent activity followed by Zn(II), Cd(II) complexes and the ligand.

  2. Decorating CdTe QD-Embedded Mesoporous Silica Nanospheres with Ag NPs to Prevent Bacteria Invasion for Enhanced Anticounterfeit Applications.

    PubMed

    Gao, Yangyang; Dong, Qigeqi; Lan, Shi; Cai, Qian; Simalou, Oudjaniyobi; Zhang, Shiqi; Gao, Ge; Chokto, Harnoode; Dong, Alideertu

    2015-05-13

    Quantum dots (QDs) as potent candidates possess advantageous superiority in fluorescence imaging applications, but they are susceptible to the biological circumstances (e.g., bacterial environment), leading to fluorescence quenching or lose of fluorescent properties. In this work, CdTe QDs were embedded into mesoporous silica nanospheres (m-SiO2 NSs) for preventing QD agglomeration, and then CdTe QD-embedded m-SiO2 NSs (m-SiO2/CdTe NSs) were modified with Ag nanoparticles (Ag NPs) to prevent bacteria invasion for enhanced anticounterfeit applications. The m-SiO2 NSs, which serve as intermediate layers to combine CdTe QDs with Ag NPs, help us establish a highly fluorescent and long-term antibacterial system (i.e., m-SiO2/CdTe/Ag NSs). More importantly, CdTe QD-embedded m-SiO2 NSs showed fluorescence quenching when they encounter bacteria, which was avoided by attaching Ag NPs outside. Ag NPs are superior to CdTe QDs for preventing bacteria invasion because of the structure (well-dispersed Ag NPs), size (small diameter), and surface charge (positive zeta potentials) of Ag NPs. The plausible antibacterial mechanisms of m-SiO2/CdTe/Ag NSs toward both Gram-positive and Gram-negative bacteria were established. As for potential applications, m-SiO2/CdTe/Ag NSs were developed as fluorescent anticounterfeiting ink for enhanced imaging applications.

  3. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Hahm, Eunil; Jeong, Daham; Cha, Myeong Geun; Choi, Jae Min; Pham, Xuan-Hung; Kim, Hyung-Mo; Kim, Hwanhee; Lee, Yoon-Sik; Jeong, Dae Hong; Jung, Seunho; Jun, Bong-Hyun

    2016-05-01

    We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs. The assembled Ag NPs on silica NPs were confirmed by TEM and the presence of β-CD dimer on Ag@SiO2 was confirmed by UV-vis and attenuated total reflection-Fourier transform infrared spectroscopy. The β-CD dimer@Ag@SiO2 NPs were used as SERS substrate for detecting perylene, a PAH, directly and in a wide linearity range of 10‑7 M to 10‑2 M with a low detection limit of 10‑8 M. Also, the β-CD dimer@Ag@SiO2 NPs exhibited 1000-fold greater sensitivity than Ag@SiO2 NPs in terms of their perylene detection limit. Furthermore, we demonstrated the possibility of detecting various PAH compounds using the β-CD dimer@Ag@SiO2 NPs as a multiplex detection tool. Various PAH compounds with the NPs exhibited their distinct SERS bands by the ratio of each PAHs. This approach of utilizing the assembled structure and the ligands to recognize target has potential for use in sensitive analytical sensors.

  4. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Hahm, Eunil; Jeong, Daham; Cha, Myeong Geun; Choi, Jae Min; Pham, Xuan-Hung; Kim, Hyung-Mo; Kim, Hwanhee; Lee, Yoon-Sik; Jeong, Dae Hong; Jung, Seunho; Jun, Bong-Hyun

    2016-01-01

    We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs. The assembled Ag NPs on silica NPs were confirmed by TEM and the presence of β-CD dimer on Ag@SiO2 was confirmed by UV-vis and attenuated total reflection-Fourier transform infrared spectroscopy. The β-CD dimer@Ag@SiO2 NPs were used as SERS substrate for detecting perylene, a PAH, directly and in a wide linearity range of 10−7 M to 10−2 M with a low detection limit of 10−8 M. Also, the β-CD dimer@Ag@SiO2 NPs exhibited 1000-fold greater sensitivity than Ag@SiO2 NPs in terms of their perylene detection limit. Furthermore, we demonstrated the possibility of detecting various PAH compounds using the β-CD dimer@Ag@SiO2 NPs as a multiplex detection tool. Various PAH compounds with the NPs exhibited their distinct SERS bands by the ratio of each PAHs. This approach of utilizing the assembled structure and the ligands to recognize target has potential for use in sensitive analytical sensors. PMID:27184729

  5. Sellmeier and thermo-optic dispersion formulas for CdGa2S4 and their application to the nonlinear optics of Hg1-xCdxGa2S4

    NASA Astrophysics Data System (ADS)

    Kato, Kiyoshi; Umemura, Nobuhiro; Petrov, Valentin

    2017-03-01

    This paper reports the Sellmeier and thermo-optic dispersion formulas for CdGa2S4 that provide excellent reproduction of the temperature-dependent phase-matching conditions in Hg0.35Cd0.65Ga2S4 and Hg0.51Cd0.49Ga2S4 for second-harmonic generation (SHG) and sum-frequency generation (SFG) in the 0.897-10.5910 μm spectral range coupled with Sellmeier and thermo-optic dispersion formulas for HgGa2S4 presented in our previous papers (Kato et al., 2016 [1]; Umemura et al., 2012 [2]).

  6. Trace element (Cd, Cu, Hg, Se, Zn) accumulation and tissue distribution in loggerhead turtles (Caretta caretta) from the Western Mediterranean Sea (southern Italy).

    PubMed

    Maffucci, F; Caurant, F; Bustamante, P; Bentivegna, F

    2005-02-01

    Cadmium (Cd), copper (Cu), mercury (Hg), selenium (Se) and zinc (Zn) were determined in the liver, kidney and muscle of 29 loggerhead turtles, Caretta caretta, from the South Tyrrhenian Sea (Western Mediterranean). No significant differences (p>0.05) were detected between males and females. Trace element concentrations were not influenced by the size of the specimen except Se in the liver, which was negatively correlated with the curved carapace length (p<0.001). Muscles generally displayed the lowest trace element burdens, with the exception of Zn which contained concentrations as high as 176 microgg-1dwt. Kidneys displayed the highest Cd and Se mean concentrations (57.2+/-34.6 and 15.5+/-9.1 microgg-1dwt, respectively), while liver exhibited the highest Cu and Hg levels (37.3+/-8.7 and 1.1+/-1.7 microgg-1dwt, respectively). Whichever tissue is considered, the toxic elements had elevated coefficients of variation (i.e. from 60% to 177%) compared to those of the essential ones (i.e. from 14% to 65%), which is a consequence of homeostatic processes for Cu, Se and Zn. Globally, the concentrations of Hg remained low in all the considered tissues, possibly the result of low trophic level in sea turtles. In contrast, the diet of loggerhead turtles would result in a significant exposure to Cd. Highly significant correlations between Cd and Cu and Zn in the liver and kidney suggest that efficient detoxification processes involving MT occur which prevent Cd toxicity in loggerhead turtles.

  7. Experimental and theoretical spectroscopic studies of Ag-, Cd- and Pb-sodalite

    NASA Astrophysics Data System (ADS)

    Mikuła, A.; Król, M.; Koleżyński, A.

    2016-12-01

    Synthetic sodalite structures containing silver, cadmium and lead cations have been obtained and structurally identified. In order to examine the changes in sodalite spectra envelope resulting from the substitution of initial sodium cations by Ag+, Cd2+ and Pb2+, a series of theoretical sodalite model structures with various Me/Na ratio and different anions have been prepared. Based on ab initio calculations and experimental results, it has been determined how the type and amount of both extra framework cations and anions affect the vibrational spectra and structural properties of sodalite. Additionally, an attempt to identified of bands associated with the individual cations and anions vibration has been undertaken.

  8. Metal arsonate polymers of Cd, Zn, Ag and Pb supported by 4-aminophenylarsonic acid

    NASA Astrophysics Data System (ADS)

    Lesikar-Parrish, Leslie A.; Neilson, Robert H.; Richards, Anne F.

    2013-02-01

    The coordination preferences of 4-aminophenylarsonic acid, 4-NH2C6H4AsO3H2, (p-arsanilic acid) with CdCl2·2.5H2O, ZnCl2, Ag(SO3CF3) and Pb(NO3)2 have been investigated affording five new metal arsonate polymers. The reaction between 4-aminophenylarsonic acid and CdCl2·2.5H2O resulted in a one-dimensional polymer, [{Cd(4-NH3C6H4AsO3H)(Cl)2}(H2O)2]n, 1, in which the polymeric chain is propagated by bridging chlorides. Exchange of CdCl2 for ZnCl2 afforded [{Zn2(4-NH3C6H4AsO3)(Cl)2}(H2O)2(Cl)]n, 2, featuring interlinked 6- and 8-membered [Zn-O-As] ring systems. The reaction of Ag(SO3CF3) with 4-aminophenylarsonic acid, afforded polymeric 3, [Ag(4-NH2C6H4AsO3H)(4-NH2C6H4AsO3H2)]n where coordination of the amino group to the silver center is observed and [{Ag2(4-NH3C6H4AsO3H)(4-NH3C6H4AsO3)(μ2-SO3CF3)2}(SO3CF3)2]n, 4. By comparison, the reaction of p-arsanilic acid with Pb(NO3)2 yielded a polymeric chain [Pb(4-NH3C6H4AsO3H)(NO3)2]n, 5 of similar topology to 1. The structures of 1-5 have been indiscriminately characterized by single crystal X-ray diffraction and their composition supported by relevant spectroscopic techniques. A comparison of the structural features of these polymers is used to determine the coordination preference of the ligand and factors influencing structural motifs, for example, the role of the anion.

  9. Valve movement response of the mussel mytilus galloprovincialis to metals (Cu, Hg, Cd and Zn) and phosphate industry effluents from Moroccan Atlantic coast.

    PubMed

    Fdil, Mohamed Ait; Mouabad, Abdelfattah; Outzourhit, Abdelkader; Benhra, Ali; Maarouf, Abdelmalek; Pihan, Jean Claude

    2006-07-01

    Valve activity was measured in the Mediterranean mussel Mytilus galloprovincialis in response to sublethal concentrations of four metals (Hg, Cu, Zn and Cd) and two phosphate industry effluents from the Atlantic coast of Morocco. Valve movements were monitored using a proximity inductive sensor which could display all activity figures from full closure to wide opening of the shell valves. In a 1 h exposure experiments, all metals induced a decrease in the time of normal opening and the appearance of sequences of stress behaviour, including enhanced valve adductions and complete closure at high concentrations. Mercury (tested from 5 to 75 microg Hg l(-1)) was the most toxic to the valve activity, with a threshold effective concentration at 10 microg Hg l(-1) and full valve closure occurring at 50 microg Hg l(-1). Copper (15-150 microg Cu l(-1)) showed a toxic effect starting at threshold concentration of 20 microg Cu l(-1) and induced full valve closure at 150 microg Cu l(-1). Zinc (100-500 microg Zn l(-1)) was effective in reducing the time of normal opening (threshold concentration at 100 microg Zn I(-1)) but no complete closure was recorded in any of the tested concentrations. For cadmium (1000-5000 microg Cd l(-1)), the valve activity was insensitive for exposures under 2000 microg Cd l(-1). Results for the testing of several samplings of the phosphate industry effluents (Safi and Jorf Lasfar) showed that their toxicity varied over the time. The effluent of the Jorf Lasfar plant (2-9.4%) was, however, more toxic than that of Safi (1-25%). In the light of these results, the sensitivity of the valve activity of Mytilus galloprovincialis to pollutants and its usefulness for in situ monitoring of coastal pollution in Morocco are discussed.

  10. New data on toxic metal intoxication (Cd, Pb, and Hg in particular) and Mg status during pregnancy.

    PubMed

    Semczuk, M; Semczuk-Sikora, A

    2001-01-01

    The technological revolution we witness today poses a threat to the homo sapiens species, and its biological results are unpredictable. Excess toxic metals in the environment and the deficiency of bio-elements are particularly harmful for developing organisms. Long-term fetal exposure during pregnancy to even lower concentrations of toxic metals, which have the ability to accumulate, often leads to irreversible developmental disorders, On the basis of accessible literature, the paper presents transplacental transmission of cadmium, lead and mercury to the fetus. The disadvantageous effects of cadmium and lead on ionic transmission, functional potential and submicroscopic amnion structure as well as the interdependence between the unfavorable effects of these two metals on the amniotic membrane and the competitive antagonistic activity of Mg ions are emphasized. This paper presents a hypothesis suggesting the involvement of cadmium in the etiopathogenesis of eclampsia based on the literature. It also considers the present state of knowledge of the toxic effects of Cd, Pb and Hg on the course of pregnancy and fetal development. Magnesium--an intracellular cation second in importance to potassium plays a significant biological role, though it has not been fully explored yet. The concentration of Mg in the placental and fetal tissues increases during pregnancy. The requirements for this element in a pregnant woman's organism generally exceed its supply; hence, pregnancy should be considered a condition of 'physiological hypomagnesemia'. The accessible data concerning the content of Mg during pregnancy in the blood as well as in the uterine muscular wall in physiological and pathological pregnancies are diverse. The prevailing opinion is that oral supplementation of magnesium during pregnancy makes up for its deficit in the organism of the pregnant woman and also positively influences fetal development. It is recommended to administer magnesium with food in the form of

  11. Influence of reactive sulfide (AVS) and supplementary food on Ag, Cd and Zn bioaccumulation in the marine polychaete Neanthes arenaceodentata

    USGS Publications Warehouse

    Lee, J.-S.; Lee, B.-G.; Yoo, H.; Koh, C.-H.; Luoma, S.N.

    2001-01-01

    A laboratory bioassay determined the relative contribution of various pathways of Ag, Cd and Zn bioaccumulation in the marine polychaete Neanthes arenaceodentata exposed to moderately contaminated sediments. Juvenile worms were exposed for 25 d to experimental sediments containing 5 different reactive sulfide (acid volatile sulfides, AVS) concentrations (1 to 30 ??mol g-1), but with constant Ag, Cd, and Zn concentrations of 0.1, 0.1 and 7 ??mol g-1, respectively. The sediments were supplemented with contaminated food (TetraMin??) containing 3 levels of Ag-Cd-Zn (uncontaminated, 1?? or 5??1 metal concentrations in the contaminated sediment). The results suggest that bioaccumulation of Ag, Cd and Zn in the worms occurred predominantly from ingestion of contaminated sediments and contaminated supplementary food. AVS or dissolved metals (in porewater and overlying water) had a minor effect on bioaccumulation of the 3 metals in most of the treatments. The contribution to uptake from the dissolved source was most important in the most oxic sediments, with maximum contributions of 8% for Ag, 30% for Cd and 20% for Zn bioaccumulation. Sediment bioassays where uncontaminated supplemental food is added could seriously underestimate metal exposures in an equilibrated system; N. arenaceodentata feeding on uncontaminated food would be exposed to 40-60% less metal than if the food source was equilibrated (as occurs in nature). Overall, the results show that pathways of metal exposure are dynamically linked in contaminated sediments and shift as external geochemical characteristics and internal biological attributes vary.

  12. Divergent tropism of HHV-6AGS and HHV-6BPL1 in T cells expressing different CD46 isoform patterns.

    PubMed

    Hansen, Aida S; Bundgaard, Bettina B; Biltoft, Mette; Rossen, Litten S; Höllsberg, Per

    2017-02-01

    CD46 is a receptor for HHV-6A, but its role as a receptor for HHV-6B is controversial. The significance of CD46 isoforms for HHV-6A and HHV-6B tropism is unknown. HHV-6AGS was able to initiate transcription of the viral genes U7 and U23 in the CD46(+)CD134(-) T-cell lines Peer, Jurkat, Molt3, and SupT1, whereas HHV-6BPL1 was only able to do so in Molt3 and SupT1, which expressed a CD46 isoform pattern different from Peer and Jurkat. The HHV-6BPL1-susceptible T-cell lines were characterized by low expression of the CD46 isoform BC2 and domination of isoforms containing the cytoplasmic tail, CYT-1. A HHV-6BPL1 susceptible cell line, Be13, changed over time its CD46 isoform pattern to resemble Peer and Jurkat and concomitantly lost its susceptibility to HHV-6BPL1 but not HHV-6AGS infection. We propose that isoforms of CD46 impact on HHV-6B infection and thereby in part explain the distinct tropism of HHV-6AGS and HHV-6BPL1.

  13. Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France.

    PubMed

    Resongles, Eléonore; Casiot, Corinne; Freydier, Rémi; Dezileau, Laurent; Viers, Jérôme; Elbaz-Poulichet, Françoise

    2014-05-15

    In this study, we assessed past and present influence of ancient mining activity on metal(loid) enrichment in sediments of a former mining watershed (Gardon River, SE France), that is now industrialized and urbanized. A sedimentary archive and current sediments were characterized combining geochemical analyses, zinc isotopic analyses and sequential extractions. The archive was used to establish local geochemical background and recorded (i) increasing enrichment factors (EFs) for Pb, Zn, Cd, Tl, Hg, As and Sb throughout the industrial era, (ii) a contamination peak in 1976 attributed to a tailings dam failure, and (iii) current levels in 2002 and 2011 similar to those of 1969, except for Sb and Hg, reflecting a persisting contamination pattern. Inter-element relationships and spatial distribution of EF values of current sediments throughout the watershed suggested that both ancient and current contamination had a common origin for Pb, Zn, Cd, Tl and As related to the exploitation of Pb/Zn mineralization while old Sb mines and coal extraction area were the main sources for Sb and Hg respectively. This prevailing mining origin was reflected for Zn by a relatively uniform isotopic composition at δ(66)Zn=0.23 ± 0.03‰, although slight decrease from 0.23‰ to 0.18‰ was recorded from upstream to downstream sites along the river course in relation with the contribution of the lighter δ(66)Zn signature (~0.08‰) of acid mine drainage impacted tributaries. Results from sequential extractions revealed that the potential mobility of the studied metal(loid)s varied in the order SbCd, with an increase of the mobile pool for Cd, Pb, Zn and to a lesser extent for As and Tl associated to increased enrichment. Altogether, these results tend to demonstrate that ancient mining activity still contributes to metal enrichment in the sediments of the Gardon River and that some of these metals may be mobilized toward the water compartment.

  14. Self-Assembled Templates of Aromatic Pentapeptides for Synthesis of CdS Quantum-Dots to Detect the Trace Amounts of Hg(2+) in Aqueous Solutions.

    PubMed

    Meng, Min; Dou, Yingying; Xu, Wenlong; Hao, Jingcheng

    2016-05-01

    Molecular self-assembly has become a popular tool to prepare nanomaterials with potential applications, such as ion-responsive detection of Hg(2+) in aqueous solutions. In this study, FFACD aromatic pentapeptides, whose N-terminuses were protected by carboxyl (Ac-FFACD) or a 9-fluorenylmethoxycarbonyl group (Fmoc-FFACD), were chosen as building blocks to produce nanostructures in solutions. Based on the preliminary determination of the critical aggregation concentration (CAC) of Ac-FFACD and Fmoc-FFACD aromatic pentapeptides in water, the order of magnitude of which is 10(-5) mol·L(-1), self-assembled spiral and networked nanowires can be easily obtained over a range of concentrations. These nanowires were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The self-assembled spiral and networked nanowires were designed to be used as templates for preparing CdS quantum dots (QDs) in-situ at room temperature. The peptide-functionalized, nanowire-encapsulated CdS QDs can be used for rapid, sensitive, and selective detection of trace amounts of mercuric ions (Hg(2+)) in aqueous solutions. This method enables rapid, linear detection (the linear correlation coefficients are 0.9972 of ΔF = 257.09 + 3.58 cHg(2+) for Ac-FFACD and 0.9994 of ΔF = 48.13 + 32.96 cHg(2+) for Fmoc-FFACD) with the Hg(2+) limit of detection at 300.85 ng·L(-1) and 32.09 ng·L(-1) for Ac-FFACD and Fmoc-FFACD, respectively. The supramolecular, self-assembled nanowires, fabricated from the two aromatic pentapeptides and having encapsulated QDs, exhibit superior properties attributable to the large loading capacity and the coordination sites of these peptides with Hg(2+). These structures can serve as novel Hg(2+) sensors and have possible applications for detection of various targets in scientific and engineering systems.

  15. Toxicity of Hg, Cu, Cd, and Cr on early developmental stages of Ciona intestinalis (Chordata, Ascidiacea) with potential application in marine water quality assessment.

    PubMed

    Bellas, J; Vázquez, E; Beiras, R

    2001-08-01

    The toxicity of mercury, copper, cadmium and chromium on sperm viability, fertilisation, embryogenesis and larval attachment of Ciona intestinalis was examined. Fertilisation rate (FR) showed a small decrease even at the highest metal concentration tested. The median effective concentrations (EC50) reducing rates of embryogenesis and larval attachment by 50% were 54 microg Hg/l (0.27 microM), 46 microg Cu/l (0.72 microM), 838 microg Cd/l (7.46 microM), 10,318 microg Cr/l (198 microM), and 35 microg Hg/l (0.18 microM), 34 microg Cu/l (0.54 microM) and 11,755 microg Cr/l (226 microM), respectively. Therefore, Hg is three times more toxic than Cu (on a molar basis), ca. 30 times more toxic than Cd and ca. 1000 times more toxic than Cr to early stages of C. intestinalis. Rates of larval attachment and embryogenesis were the most sensitive endpoints, although the latter is more advisable for routine assessment of seawater quality because of its greater simplicity. In addition to bivalves and sea-urchins, ascidian embryos can provide biological criteria for seawater quality standards taking into account the sensitivity of a chordate and contributing to the detection of harmful chemicals with no marked effect on the species currently in use in seawater quality bioassays.

  16. Optimization of simultaneous electrochemical determination of Cd(II), Pb(II), Cu(II) and Hg(II) at carbon nanotube-modified graphite electrodes.

    PubMed

    Pikna, L'ubomír; Heželová, Mária; Kováčová, Zuzana

    2015-01-01

    The health of the environment is worsening every day. Monitoring of potentially toxic elements and remediation of environmental pollution are necessary. Therefore, the research and development of simple, inexpensive, portable and effective sensors is important. Electrochemistry is a useful component of the field of environment monitoring. The present study focuses on evaluating and comparing three types of electrodes (PIGE, PIGE/MWCNT/HNO3 and PIGE/MWCNT/EDTA/HNO3) employed for the simultaneous electrochemical determination of four potentially toxic elements: Cd(II), Pb(II), Cu(II) and Hg(II). Cyclic voltammograms were measured in an acetate buffer. The LOD, LOQ, the standard and relative precisions of the method and a prediction intervals were calculated (according to the technical procedure DIN 32 645) for the three electrodes and for each measured element. The LOD for PIGE/CNT/HNO3 (the electrode with narrowest calculated prediction intervals) was 2.98 × 10(-7) mol L(-1) for Cd(II), 4.83 × 10(-7) mol L(-1) for Pb(II), 3.81 × 10(-7) mol L(-1) for Cu(II), 6.79 × 10(-7) mol L(-1) for Hg(II). One of the benefits of this study was the determination of the amount of Hg(II) in the mixture of other elements.

  17. Synthesis and structural characterization of dinuclear Cd2+, Hg2+ and Fe2+ complexes with neutral bi and tetradentate flexible pyrazole-based ligands

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Lalegani, Arash; Behvandi, Fatemeh; Safaeiyan, Forough; Sarkarzadeh, Afsoon; Bruno, Giuseppe; Amiri Rudbari, Hadi

    2015-02-01

    Four new complexes of [Hg2Cl4(bpp)]n (1), [Hg2Cl4(tdmpp)] (2), [Cd2I4(tdmpp)] (3) and [Fe2Cl4(tdmpp)] (4) were prepared by using the neutral N-donor ligands 1,3-bis(3,5-dimethyl-1-pyrazolyl)propane (bpp) and 1,1,3,3-tetrakis(3,5-dimethyl-1-pyrazolyl)propane (tdmpp) with different flexibility and appropriate metal salts of Cd(II), Hg(II) and Fe(II) ions. These compounds were characterized by the infrared spectroscopy, elemental analysis and X-ray crystallography. Flexible ligands and non-covalent Csbnd H⋯Cl hydrogen bonds play a major role in the crystal packing of compounds 1, 2 and 4. In the two-dimensional non-covalent structure of 1, there are two distinctly different coordination modes for the mercury atoms. One mercury atom has pseudo-trigonal bipyramidal geometry and the other adopts a distorted tetrahedral environment. In the dinuclear structures of 2 and 4 the neutral molecules are linked together by the Csbnd H⋯Cl hydrogen bonds, forming an infinite one-dimensional zigzag chain structure. Compounds 2-4 are isostructural with each other.

  18. Availability of sediment-bound Cd, Co, and Ag to mussels

    SciTech Connect

    Gagnon, C.; Fisher, N.S.

    1995-12-31

    Ingested sediment is one potentially important source of metals for benthic organisms. The influence of physical and chemical properties of oxidized sediments on the bioavailability of metals to marine filter feeders is largely unknown. The authors examined the relative importance of specific sedimentary components that may exert control on the uptake of Cd, Co, and Ag in the mussel Mytilus edulis. Iron and manganese oxides, montmorillonite clay, silica, and natural sediment particles were triple labeled with the gamma emitters {sup 109}Cd, {sup 57}Co, and {sup 110m}Ag. Some particles were also coated with fulvic acid (FA) to simulate the influence of organic coating on metal bioavailability. Metals associated with FA-coated particles were generally absorbed by mussels to a greater extent than metals associated with uncoated particles. Desorption experiments with labeled particles at pH 5 were performed in parallel to simulate the behavior of food-bound metals in the acidic gut of bivalves. High correlations (r > 0.97) between the amount of desorbed metal under these conditions and the assimilation efficiency for metals from FA-coated particles were noted among coated particles but not uncoated particles (r < 0.6). These results suggest that the relation between metal partitioning to sediments and biological availability of the metal is not obvious, since the organic coatings and the acidic digestion process influence assimilation of sediment-bound metals.

  19. Aryl-substituted cyclopropyl acetylenes as sensitive mechanistic probes in the gold-catalyzed hydration of alkynes. Comparison to the Ag(I)-, Hg(II)-, and Fe(III)-catalyzed processes.

    PubMed

    Velegraki, Georgia; Stratakis, Manolis

    2013-09-06

    The gold-catalyzed hydration of 2-phenyl- or 2,2-diphenylcyclopropyl acetylene, sensitive probes to trace the formation of vinyl carbocations, provides exclusively the corresponding cyclopropyl methyl ketones. On the other hand, in the Ag(I)- or Fe(III)-catalyzed hydration, a profound vinyl carbocationic character appears in the initially formed metal-alkyne complexes, as judged by the partial (Ag(+)) or exclusive (Fe(3+)) formation of allene-type rearrangement products. These findings provide clear evidence for subtle electronic differences in metal-alkyne complexes, including Au(I or III), Ag(I), Fe(III), and Hg(II).

  20. Evaluation of toxic metal (Hg, Cd, Pb), polychlorinated biphenyl (PCBs), and pesticide (DDTs) levels in aromatic herbs collected in selected areas of Southern Italy.

    PubMed

    Storelli, Maria Maddalena

    2014-01-01

    This study provides, for the first time, data regarding levels of toxic metals (Hg, Cd, and Pb) and organochlorine compounds (PCBs and DDTs) in various aromatic herbs as rosemary (Rosmarinus officinalis), sage (Salvia officinalis), laurel (Laurus nobilis), oregano (Origanum vulgare), and spearmint (Mentha viridis) collected in some towns of the Southern Italy with different anthropogenic and population pressure. Metal and organochlorine compound concentrations were determined using atomic absorption spectrophotometer and gas-chromatography mass spectrometer (GC/MS), respectively. Pb emerged as the most abundant element, followed by Cd and Hg, while between organochlorine compounds, PCB concentrations were higher than those of DDTs. The pollutant concentrations were found to vary depending on the different herbs. The highest Pb levels were observed in rosemary (1.66 μg g(-1) dry weight) and sage (1.41 μg g(-1) dry weight), this latter showing also the highest Cd concentrations (0.75 μg g(-1) dry weight). For PCBs, the major concentrations were found in rosemary (2.75 ng g(-1) dry weight) and oregano (2.39 ng g(-1) dry weight). The principal component analysis applied in order to evaluate possible similarities and/or differences in the contamination levels among sampling sites indicated differences area-specific contamination.

  1. Simultaneous Stripping Detection of Pb(II), Cd(II) and Zn(II) Using a Bimetallic Hg-Bi/Single-Walled Carbon Nanotubes Composite Electrode

    PubMed Central

    Ouyang, Ruizhuo; Zhu, Zhenqian; Tatum, Clarissa E.; Chambers, James Q.; Xue, Zi-Ling

    2011-01-01

    A new, sensitive platform for the simultaneous electrochemical assay of Zn(II), Cd(II) and Pb(II) in aqueous solution has been developed. The platform is based on a new bimetallic Hg-Bi/single-walled carbon nanotubes (SWNTs) composite modified glassy carbon electrode (GCE), demonstrating remarkably improved performance for the anodic stripping assay of Zn(II), Cd(II) and Pb(II). The synergistic effect of Hg and Bi as well as the enlarged, activated surface and good electrical conductivity of SWNTs on GCE contribute to the enhanced activity of the proposed electrode. The analytical curves for Zn(II), Cd(II) an Pb(II) cover two linear ranges varying from 0.5 to 11 μg L-1 and 10 to 130 μg L-1 with correlation coefficients higher than 0.992. The limits of detection for Zn(II), Cd(II) are lower than 2 μg L-1 (S/N = 3). For Pb(II), moreover, there is another lower, linear range from 5 to 1100 ng L-1 with a coefficient of 0.987 and a detection limit of 0.12 ng L-1. By using the standard addition method, Zn(II), Cd(II) and Pb(II) ions in river samples were successfully determined. These results suggest that the proposed method can be applied as a simple, efficient alternative for the simultaneous monitoring of heavy metals in water samples. In addition, this method demonstrates the powerful application of carbon nanotubes in electrochemical analysis of heavy metals. PMID:21660117

  2. A 4K x 4K HgCdTe astronomical camera enabled by the JWST NIR detector development program

    NASA Astrophysics Data System (ADS)

    Hall, Donald N. B.; Luppino, Gerard; Hodapp, Klaus W.; Garnett, James D.; Loose, Markus; Zandian, Majid

    2004-09-01

    The ambitious science goals of the James Webb Space Telescope (JWST) have driven spectacular advances in λco ~ 5um detector technology over the past five years. This paper reviews both the UH/RSC team"s Phase A development and evaluation of 2Kx2K arrays exceeding the detector requirements for JWST"s near infrared instruments and also the hardware integration of these into a 4Kx4K (16Mpxl) close packed mosaic focal plane array housed in an Ultra Low Background test facility. Both individual first generation 2Kx2K SCA"s and 4Kx4K mosaic focal planes have been extensively characterized in the laboratory and, since September 2003, a NIR camera utilizing the 4Kx4K mosaic focal plane has been in use for nearly 100 nights at the UH 2.2 m telescope on Mauna Kea. Typical test results for the first generation 2Kx2K arrays and their integration into 4Kx4K mosaic focal planes are reported. Demonstration of the design concepts and both array and mosaic focal plane performance in actual hardware, as described here, has provided the foundation for design iterations leading to later generations of 2Kx2K arrays and 4Kx4K mosaic focal planes. Four major technology developments leading to first generation hardware demonstrations of both 2Kx2K SCA"s and a 4Kx4K mosaic FPA are reviewed. These are: 1) improvement in test equipment and procedures to characterize the detectors against JWST requirements and goals, primarily at 37K but with the capability to test from 30K to 100K; 2) optimization of λc ~ 5 um MBE HgCdTe material on a CZT substrate for low dark current (goal of 0.003 e-/sec at 37K) with high quantum efficiency, low cross-talk and greatly reduced image persistence; 3) development of the 2Kx2K HAWAII-2RG multiplexer designed specifically to take full advantage of these detector characteristics for a wide range of astronomical applications (and fully compatible with an ASIC controller developed under the JWST Instrument Technology Development initiative) and 4) development of

  3. Development of the HgCdTe Avalanche Photodiode Detectors and the Improvement in the CO2 Lidar Performance for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Sun, X.; Abshire, J. B.; Chen, J. R.; Ramanathan, A. K.; Mao, J.

    2015-12-01

    NASA Goddard Space Flight Center (GSFC) is developing the CO2 lidar as a candidate for the NASA's planned ASCENDS mission under the support of Earth Science Technology Office (ESTO) IIP and ATI-QRS programs. A new type of HgCdTe avalanche photodiode (APD) detector has been developed by the DRS Technologies under the IIP program. The new detectors achieved >70% quantum efficiency, including the effect of the fill factor, over the spectral range from 0.4 to 4.3 μm, which significantly improves the receiver performance of our CO2 lidar and enabled other remote sending measurements. The HgCdTe APD arrays have 80 μm square pixels in a 4x4 array along with a bank of 16 preamplifiers on the same chip carrier. Test results at both DRS and GSFC showed the HgCdTe APD array has achieved, an APD gain of 500-1000, 8-10 MHz electrical bandwidth, and an average noise equivalent power (NEP) of <0.5 fW/Hz1/2. It has demonstrated at least a 3 orders of magnitude dynamic range at a fixed APD gain setting. The gains of the APD and the preamplifier can also be adjusted to further extend the receiver dynamic range. During summer 2014 we successfully demonstrated airborne lidar measurements of column CO2 using one of these detectors. The Aerospace Corporation is currently building a 3U CubeSat with one of these detectors in a small closed-cycle cryocooler as the primary payload under the ESTO In-space Validation of Earth Science Technology (InVEST) program. The CubeSat is scheduled to be launched in late 2016 and will fly in a low Earth orbit and monitor the performance for at least a year. We have also updated the performance analysis of a space-based version of our CO2 lidar with the new HgCdTe APD detector. For the retrievals, a least-square-error method is used to fit the measured transmittances to a predetermined line shape function using 8 to 16 sampling wavelengths. The error in the derived total optical depth and the CO2 mixing ratio are estimated via the standard error

  4. Electronically driven structural transitions in A10(PO4)6F2 apatites (A = Ca, Sr, Pb, Cd and Hg).

    PubMed

    Balachandran, Prasanna V; Rajan, Krishna; Rondinelli, James M

    2014-06-01

    It is shown that there is a dynamic lattice instability in the aristotype P63/m structure of A10(PO4)6F2 apatites containing divalent A-site Cd or Hg cations with (n - 1)d(10)ns(0) electronic configurations. The distortion to a low-symmetry P\\bar{1} triclinic structure is driven by an electronic mechanism rather than from ionic size mismatch. Our theoretical work provides key insights into the role of the electronic configurations of A cations in fluorapatites.

  5. Optical parametric oscillator on an Hg{sub 1-x}Cd{sub x}Ga{sub 2}S{sub 4} crystal

    SciTech Connect

    Badikov, Valerii V; Don, A K; Mitin, Konstantin V; Seregin, Aleksandr M; Sinaiskii, V V; Schebetova, Nadezhda I

    2005-09-30

    Lasing was obtained for the first time in an optical parametric oscillator (OPO) on an Hg{sub 1-x}Cd{sub x}Ga{sub 2}S{sub 4} crystal pumped by a nanosecond Nd:YAG laser. Due to the cadmium concentration gradient along the crystal axis, the OPO could be tuned under noncritical phase-matching conditions by a linear displacement of the crystal. The tuning range was 2.85-3.27 {mu}m, with the maximum slope conversion efficiency equal to 6.6%. (nonlinear optical phenomena)

  6. Constrained DFT+U approach for understanding the magnetic behaviour of ACr2O4 (A = Zn, Mg, Cd and Hg) compounds

    NASA Astrophysics Data System (ADS)

    Lal, Sohan; Pandey, Sudhir K.

    2017-03-01

    In this work, we try to understand the inconsistency reported by Yaresko (2008) [10] in the theoretically estimated sign of nearest neighbour exchange coupling constant (J1) and variation of its magnitude with increasing U in ACr2O4 (A = Zn, Cd, Mg and Hg) compounds by using density functional theory. In unconstrained calculations, the sign of J1 and variation of its magnitude as a function of U in the present study are not consistent with the experimental data and not according to the relation, J1 ∝ t2/U, respectively especially for CdCr2O4 for U > 3 eV and HgCr2O4 for U = 2- 6 eV. Such an inconsistent behaviour of J1 is almost similar to that of Yaresko for these two compounds for U = 2- 4 eV. For ZnCr2O4 and MgCr2O4, the sign of J1 and variation of its magnitude in the present work are in accordance with the experimental data and above mentioned relation, respectively for U = 2- 6 eV and are similar to that of Yaresko for ZnCr2O4 for U = 2- 4 eV. However, in constrained calculations the sign of J1c and variation of its magnitude in the present work are according to experimental data and above mentioned relation, respectively for all four compounds. Hence, the present study shows the importance of constrained calculations in understanding the magnetic behaviour of these spinels. The values of magnitude of Curie-Weiss temperature (ΘCW)c for ZnCr2O4 > MgCr2O4 > CdCr2O4 > HgCr2O4 for U = 2- 5 eV, which are according to the order of experimentally observed values for these spinels. The calculated values of (ΘCW)c for ZnCr2O4, MgCr2O4, CdCr2O4 and HgCr2O4 are -982 K, -721 K, -147 K and -122 K, respectively at U = 5 eV.

  7. Thermal Studies of Zn(II), Cd(II) and Hg(II) Complexes of Some N-Alkyl-N-Phenyl-Dithiocarbamates

    PubMed Central

    Onwudiwe, Damian C.; Ajibade, Peter A.

    2012-01-01

    The thermal decomposition of Zn(II), Cd(II) and Hg(II) complexes of N-ethyl-N-phenyl and N-butyl-N-phenyl dithiocarbamates have been studied using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The products of the decomposition, at two different temperatures, were further characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results show that while the zinc and cadmium complexes undergo decomposition to form metal sulphides, and further undergo oxidation forming metal oxides as final products, the mercury complexes gave unstable volatiles as the final product. PMID:22949811

  8. Assessment of Pb, Cd, Cr and Ag leaching from electronics waste using four extraction methods.

    PubMed

    Keith, Ashley; Keesling, Kara; Fitzwater, Kendra K; Pichtel, John; Houy, Denise

    2008-12-01

    Heavy metals present in electronic components may leach upon disposal and therefore pose significant environmental hazards. The potential leaching of Pb, Cd, Cr and Ag from PC cathode ray tubes, printed circuit boards (PCBs), PC mice, TV remote controls, and mobile phones was assessed. After controlled crushing, each component was extracted using the Toxicity Characteristic Leaching Procedure (TCLP), EPA Method 1312 (SPLP), NEN 7371 (Dutch Environmental Agency), and DIN S4 (Germany). The TCLP consistently leached the greatest amounts of Pb from all components. The SPLP, NEN 7371 and DIN S4 extracted relatively small amounts of metals compared with the TCLP and were not considered effective as leaching tests for e-waste. The smallest size fraction (< 2 mm) of CRT glass and PCBs leached significantly (p < 0.05) highest Pb via the TCLP. A modified TCLP removed 50.9% more extractable Pb compared with the conventional procedure.

  9. Determination of As, Cd, Pb, and Hg in urine using inductively coupled plasma mass spectrometry with the direct injection high efficiency nebulizer

    NASA Astrophysics Data System (ADS)

    Minnich, Michael G.; Miller, Derek C.; Parsons, Patrick J.

    2008-03-01

    The application of the large-bore direct injection high efficiency nebulizer (LB-DIHEN) for the determination of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in urine by inductively coupled plasma mass spectrometry (ICP-MS) is described. The LB-DIHEN is compared with the standard method using a concentric pneumatic nebulizer and cyclonic spray chamber. In addition to the toxicological significance of As, Cd, Pb, and Hg, these elements represent a cross-section of analytical issues including spectral interferences (e.g., 40Ar 35Cl + on 75As + and 98Mo 16O + on 114Cd +) and memory effects (Hg). In this study, the low sample consumption of the LB-DIHEN is used to reduce the volume of urine needed for analysis, and to reduce the volume of final diluted sample required for analysis. Eliminating the spray chamber and reducing the dead volume of the nebulizer reduces memory effects, especially for analytes such as Hg. The Dynamic Reaction Cell (DRC) is used in this study to attenuate the background level of ArCl + in spite of the increase in the solvent load and, in turn, the urine matrix (chloride) delivered to the plasma by the LB-DIHEN. This is the first report on coupling the LB-DIHEN to a standard autosampler for unattended sample analysis. The robustness of direct injection nebulization for routine analysis and the issues associated with automation of the sample introduction process are discussed. Although the figures of merit (sensitivity, limit of detection, and precision) determined for both nebulizers are slightly poorer for the LB-DIHEN than for the concentric pneumatic nebulizer, there is not a clinically significant difference between the results for both sample introduction systems. The accuracy of results is assessed using archived urine materials that are circulated by several different proficiency testing (PT) programs and external quality assessment schemes (EQAS). Results obtained using the LB-DIHEN were within the acceptable range

  10. Photocatalytic activity of CdS and Ag(2)S quantum dots deposited on poly(amidoamine) functionalized carbon nanotubes.

    PubMed

    Neelgund, Gururaj M; Oki, Aderemi

    2011-10-02

    Two novel ternary nanocatalysts, f-MWCNTs-CdS and f-MWCNTs-Ag(2)S were successfully constructed by covalent grafting of fourth generation (G4) hyperbranched, crosslinked poly(amidoamine) (PAMAM) to carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) and subsequent deposition of CdS or Ag(2)S quantum dots (QDs). The structural transformation, surface potential, and morphology of functionalized MWCNTs (f-MWCNTs) and nanocatalysts were characterized by UV-vis spectrophotometer, Fourier transform infrared spectroscopy, powder X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, scanning electron microscopy and energy dispersive spectroscopy. Transmission electron microscopy reveals the effective anchoring of QDs on f-MWCNTs. The catalytic activity of nanocatalysts was evaluated by photodegradation of methyl orange under illumination of UV light. The coupling of MWCNTs, PAMAM and CdS or Ag(2)S QDs significantly enhanced the catalytic efficiency of nanocatalysts. The rate constants for degradation of methyl orange in presence of nanocatalysts were calculated using the Langmuir-Hinshelwood model. Overall, the excellence in photodegradation was accomplished by hybridizing f-MWCNTs with CdS or Ag(2)S.

  11. Spectroscopic, and electrochemical studies of [MCl2(η2-N,N-dpksc)] (M = Zn, Cd, Hg and dpksc = di-2-pyridylketone semicarbazone)

    NASA Astrophysics Data System (ADS)

    Bakir, Mohammed; McDermot, Covel; Johnson, Toni

    2013-05-01

    A series of group 12 metal chlorides of dpksc of the type [MCl2(η2-N,N-dpksc)] (M = Zn, Cd and Hg) were synthesized from the reactions between MCl2 and dpksc in refluxing CH3CN. Spectroscopic measurements performed on protophilic solutions of [MCl2(η2-N,N-dpksc)] divulged sensitivity of [MCl2(η2-N,N-dpksc)] to changes in their surroundings. Variable temperature 1H NMR studies revealed the amine protons to be more sensitive to temperature variations compared to the amide and aromatic protons. Electronic absorption spectral measurements disclosed acid-base inter-conversion between [MCl2(η2-N,N-dpksc)] and its conjugate base [MCl2(η2-N,N-dpksc-H)]-. In dmf, the acidity of [MCl2(η2-N,N-dpksc)] increases in the following order: [ZnCl2(η2-N,N-dpksc)] > [CdCl2(η2-N,N-dpksc)] > [HgCl2(η2-N,N-dpksc)]. The electrochemical properties of [MCl2(η2-N,N-dpksc)] are dominated by a series of irreversible redox transformations pointing to electrochemical decomposition of [MCl2(η2-N,N-dpksc)] upon electronic transfers.

  12. Influence of High-Power Pulsed IR Laser Radiation on the Electrophysical Properties of Cd x Hg1- x Те Heteroepitaxial Layers

    NASA Astrophysics Data System (ADS)

    Talipov, N. Kh.

    2013-05-01

    Results of investigations into the electrophysical properties of p- and n-type Cd x Hg1- x Te heteroepitaxial layers grown by molecular beam and liquid phase epitaxy methods after exposure to high-power pulsed IR radiation of solid-state Nd3+:YAG and chemical DF lasers at wavelengths of 1.06 and 3.8-4.2 μm, respectively, are presented. It is demonstrated that the main types of defects resulting from pulsed irradiation are mercury vacancies that play the role of acceptors in this material. The spatial distribution of generated mercury vacancies depends on the intensity and wavelength of laser radiation: the defects generated by pulses of the Nd3+:YAG laser are concentrated only near the surface, whereas DF-laser radiation creates defects in the entire volume of the heteroepitaxial structures. It is established that irradiation with the Nd3+:YAG laser of the p-Cd x Hg1- x Te heteroepitaxial layers implanted by boron ions leads to the activation of implanted boron atoms as a result of melting and recrystallization of the irradiated surface layer.

  13. Survey of trace elements (Al, As, Cd, Cr, Co, Hg, Mn, Ni, Pb, Se, and Si) in retail samples of flavoured and bottled waters.

    PubMed

    Barroso, M F; Ramos, S; Oliva-Teles, M T; Delerue-Matos, C; Sales, M G F; Oliveira, M B P P

    2009-01-01

    Concentrations of eleven trace elements (Al, As, Cd, Cr, Co, Hg, Mn, Ni, Pb, Se, and Si) were measured in 39 (natural and flavoured) water samples. Determinations were performed using graphite furnace electrothermetry for almost all elements (Al, As, Cd, Cr, Co, Mn, Ni, Pb, and Si). For Se determination hydride generation was used, and cold vapour generation for Hg. These techniques were coupled to atomic absorption spectrophotometry. The trace element content of still or sparkling natural waters changed from brand to brand. Significant differences between natural still and natural sparkling waters (p < 0.001) were only apparent for Mn. The Mann-Whitney U-test was used to search for significant differences between flavoured and natural waters. The concentration of each element was compared with the presence of flavours, preservatives, acidifying agents, fruit juice and/or sweeteners, according to the labelled composition. It was shown that flavoured waters generally increase the trace element content. The addition of preservatives and acidifying regulators had a significant influence on Mn, Co, As and Si contents (p < 0.05). Fruit juice can also be correlated to the increase of Co and As. Sweeteners did not provide any significant difference in Mn, Co, Se and Si content.

  14. Toxicity and Traces of Hg, Pb and Cd in the Hepatopancreas, Gills and Muscles of Perna viridis from Jakarta Bay, Indonesia.

    PubMed

    Irnidayanti, Y

    2015-02-01

    Heavy metals contamination on the coast of Jakarta Bay has led to the level of pollution and can cause toxicity to organisms living in the sea, i.e., green mussels. Green mussels have the ability to detoxify metals entering their bodies. Their ability to accumulate metals is higher than other aquatic animals. This is due to their sedentary life which prevents them from avoiding the effects of pollution and their high tolerance to certain metals. The high concentration of metal content would be toxic to the cell because metal ions can act as oxidants and bind to organic and protein molecules. The results of the study showed that traces of heavy metals were detected in the hepatopancreas, gills, muscles and gonads organs of the mussels living in the waters of Muara Angke. Lead (Pb) and cadmium (Cd) were found in all four organs, while mercury (Hg) was not detected in the muscles. Traces of Hg and Cd were not detected in hepatopancreas, gills, muscles and gonads of green mussels in Panimbang, while Pb was detected by 0.00 1 in the male gonads and 0.01 in hepatopancreas. The concentration of Pb in the male gonads are still below the acceptable limit and concentration of Pb in the hepatopancreas is relatively equivalent to the acceptable limit. Metal detection in the organs above shows that the Muara Angke waters tend to be polluted and have an impact on the mussels weight loss as a result of heavy metal toxicity.

  15. Highly Sensitive and Selective In-Situ SERS Detection of Pb2+, Hg2+, and Cd2+ Using Nanoporous Membrane Functionalized with CNTs

    NASA Astrophysics Data System (ADS)

    Shaban, Mohamed; Galaly, A. R.

    2016-05-01

    Porous Anodic Alumina (PAA) membrane was functionalized with CoFe2O4 nanoparticles and used as a substrate for the growing of very long helical-structured Carbon Nanotubes (CNTs) with a diameter less than 20 nm. The structures and morphologies of the fabricated nanostructures were characterized by field emission- scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and Raman spectroscopy. By uploading the CNTs on PAA, the characteristic Raman peaks of CNTs and PAA showed 4 and 3 times enhancement, respectively, which leads to more sensitive Surface-Enhanced Raman Spectroscopy (SERS) substrates. For comparison, PAA and CNTs/PAA arrays were used as SERS substrates for the detection of Hg2+, Cd2+, and Pb2+. The proposed sensor demonstrated high sensitivity and selectivity between these heavy metal ions. CNTs/PAA sensor showed excellent selectivity toward Pb2+ over other metal ions, where the enhancement factor is decreased from ~17 for Pb2+ to ~12 for Hg2+ and to ~4 for Cd2+. Therefore, the proposed CNTs/PAA sensor can be used as a powerful tool for the determination of heavy metal ions in aqueous solutions.

  16. Study of LWIR and VLWIR Focal Plane Array Developments: Comparison Between p-on- n and Different n-on- p Technologies on LPE HgCdTe

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Mollard, L.; Largeron, C.; Baier, N.; Deborniol, E.; Chorier, Ph.

    2009-08-01

    The very long infrared wavelength (>14 μm) is a very challenging range for the design of mercury cadmium telluride (HgCdTe) large focal plane arrays (FPAs). The need (mainly expressed by the space industry) for very long wave FPAs appears very difficult to fulfil. High homogeneity, low defect rate, high quantum efficiency, low dark current, and low excess noise are required. Indeed, for such wavelength, the corresponding HgCdTe gap becomes smaller than 100 meV and each step from the metallurgy to the technology becomes critical. This paper aims at presenting a status of long and very long wave FPAs developments at DEFIR (LETI-LIR/Sofradir joint venture). This study will focus on results obtained in our laboratory for three different ion implanted technologies: n-on- p mercury vacancies doped technology, n-on- p extrinsic doped technology, and p-on- n arsenic on indium technology. Special focus is given to 15 μm cutoff n/ p FPA fabricated in our laboratory demonstrating high uniformity, diffusion and shot noise limited photodiodes at 50 K.

  17. Highly Sensitive and Selective In-Situ SERS Detection of Pb2+, Hg2+, and Cd2+ Using Nanoporous Membrane Functionalized with CNTs

    PubMed Central

    Shaban, Mohamed; Galaly, A. R.

    2016-01-01

    Porous Anodic Alumina (PAA) membrane was functionalized with CoFe2O4 nanoparticles and used as a substrate for the growing of very long helical-structured Carbon Nanotubes (CNTs) with a diameter less than 20 nm. The structures and morphologies of the fabricated nanostructures were characterized by field emission- scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and Raman spectroscopy. By uploading the CNTs on PAA, the characteristic Raman peaks of CNTs and PAA showed 4 and 3 times enhancement, respectively, which leads to more sensitive Surface-Enhanced Raman Spectroscopy (SERS) substrates. For comparison, PAA and CNTs/PAA arrays were used as SERS substrates for the detection of Hg2+, Cd2+, and Pb2+. The proposed sensor demonstrated high sensitivity and selectivity between these heavy metal ions. CNTs/PAA sensor showed excellent selectivity toward Pb2+ over other metal ions, where the enhancement factor is decreased from ~17 for Pb2+ to ~12 for Hg2+ and to ~4 for Cd2+. Therefore, the proposed CNTs/PAA sensor can be used as a powerful tool for the determination of heavy metal ions in aqueous solutions. PMID:27143512

  18. Synthesis, characterizations and anti-bacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method

    NASA Astrophysics Data System (ADS)

    Sivakumar, S.; Venkatesan, A.; Soundhirarajan, P.; Khatiwada, Chandra Prasad

    2015-02-01

    In the present study, synthesized pure and Ag (1%, 2%, and 3%) doped Cadmium Oxide (CdO) nanoparticles by chemical precipitation method. Then, the synthesized products were characterized by thermo gravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy, Ultra violet-Vis diffused reflectance spectroscopy (UV-Vis-DRS), Scanning electron microscopy (SEM), Energy dispersive X-rays (EDX) spectroscopy, and anti-bacterial activities, respectively. The transition temperatures and phase transitions of Cd(OH)2 to CdO at 400 °C was confirmed by TG-DTA analysis. The XRD patterns show the cubic shape and average particle sizes are 21, 40, 34, and 37 nm, respectively for pure and Ag doped samples. FT-IR study confirmed the presence of CdO and Ag at 677 and 459 cm-1, respectively. UV-Vis-DRS study shows the variation on direct and indirect band gaps. The surface morphologies and elemental analysis have been confirmed from SEM and with EDX. In addition, the synthesized products have been characterized by antibacterial activities against Gram-positive and negative bacteria. Further, the present investigation suggests that CdO nanoparticles have the great potential applications on various industrial and medical fields of research.

  19. Biosynthesis of micro- and nanocrystals of Pb (II), Hg (II) and Cd (II) sulfides in four Candida species: a comparative study of in vivo and in vitro approaches.

    PubMed

    Cuéllar-Cruz, Mayra; Lucio-Hernández, Daniela; Martínez-Ángeles, Isabel; Demitri, Nicola; Polentarutti, Maurizio; Rosales-Hoz, María J; Moreno, Abel

    2017-03-01

    Nature produces biominerals (biogenic minerals) that are synthesized as complex structures, in terms of their physicochemical properties. These biominerals are composed of minerals and biological macromolecules. They are produced by living organisms and are usually formed through a combination of chemical, biochemical and biophysical processes. Microorganisms like Candida in the presence of heavy metals can biomineralize those metals to form microcrystals (MCs) and nanocrystals (NCs). In this work, MCs and NCs of PbS, HgS or HgCl2 as well as CdS are synthesized both in vitro (gels) and in vivo by four Candida species. Our in vivo results show that, in the presence of Pb(2+) , Candida cells are able to replicate and form extracellular PbS MCs, whereas in the presence of Hg(2+) and Cd(2+) , they did synthesize intercellular MCs from HgS or HgCl2 and CdS NCs respectively. The MCs and NCs biologically obtained in Candida were compared with those PbS, HgS and CdS crystals synthetically obtained in vitro through the gel method (grown either in agarose or in sodium metasilicate hydrogels). This is, to our knowledge, the first time that the biosynthesis of the various MCs and NCs (presented in several species of Candida) has been reported. This biosynthesis is differentially regulated in each of these pathogens, which allows them to adapt and survive in different physiological and environmental habitats.

  20. Frequency dependent electrical properties of nano-CdS/Ag junctions

    NASA Astrophysics Data System (ADS)

    Mohanta, D.; Choudhury, A.

    2005-05-01

    Polymer embedded cadmium sulfide nanoparticles/quantum dots were synthesized by a chemical route using polyvinyl alcohol (lmw) as the desired matrix. In an attempt to measure the electrical properties of nano-CdS/Ag samples, we propose that contribution from surface traps are mainly responsible in determining the I˜ V and C˜ V characteristics in high frequency ranges. To be specific, beyond 1.2 MHz, the carrier injection from the trap centers of the embedded quantum dots is ensured by large current establishment even at negative biasing condition of the junction. The unexpected nonlinear signature of C˜ V response is believed to be due to the fact that while trying to follow very high signal frequency (at least 10-3 of recombination frequency), there is complete abruptness in carrier trapping (charging) or/and detrapping (decay) in a given CdS nanoparticle assembly. The frequency dependent unique role of the trap carriers certainly find application in nanoelectronic devices at a desirable frequency of operation.

  1. The structural, elastic and optical properties of ScM (M = Rh, Cu, Ag, Hg) intermetallic compounds under pressure by ab initio simulations

    NASA Astrophysics Data System (ADS)

    Ali, Md. Lokman; Rahaman, Md. Zahidur; Rahman, Md. Atikur

    2016-11-01

    The influence of pressure on the structural and elastic properties of ScM (M = Rh, Cu, Ag, Hg) compounds has been investigated by using ab initio approach pseudopotential plane-wave method based on the density functional theory within the generalized gradient approximation (GGA). The optical properties have been investigated under zero pressure. It is found that the optimized lattice parameters for all metals are in good agreement with the experimental data and other available theoretical values. We obtained three independent elastic constants Cij (C11,C12 and C44) and various elastic parameters such as bulk modulus B, shear modulus G, Young’s modulus E,B/G, Poisson’s ratio ν and anisotropy factor A as a function of pressure. In addition, the mechanical stability and ductile/brittle nature are also investigated from the calculated elastic constants. The study of optical properties reveals that all of these compounds possess good absorption coefficient in the high energy region and the refractive index of all these compounds is higher in the low energy region and gradually decreased in the high energy region. All these calculations have been carried out using the CASTEP computer code.

  2. Effect of a boron implantation on the electrical properties of epitaxial HgCdTe with different material composition

    NASA Astrophysics Data System (ADS)

    Lyapunov, D. V.; Pishchagin, A. A.; Grigoryev, D. V.; Korotaev, A. G.; Voitsekhovskii, A. V.; Kokhanenko, A. P.; Iznin, I. I.; Savytskyy, H. V.; Bonchik, A. U.; Dvoretskii, S. A.; Mikhailov, N. N.

    2016-08-01

    In this work the experimental results of investigations of the dynamics of accumulation and spatial distribution of electrically active radiation defects when irradiating epitaxial films of Hg1-xCdxTe (MCT) with different material composition (x). The films, grown by molecular beam epitaxy (MBE) were irradiated by B ions at room temperature in the radiation dose range 1012 -1015 ions/cm2 and with ion energy 100 keV. The results give the differences in implantation profiles, damage accumulation and electrical properties as a function of the material composition of the films.

  3. Enhanced photoelectrochemical performance of ZnO nanorod arrays decorated with CdS shell and Ag2S quantum dots

    NASA Astrophysics Data System (ADS)

    Holi, Araa Mebdir; Zainal, Zulkarnain; Talib, Zainal Abidin; Lim, Hong-Ngee; Yap, Chi-Chin; Chang, Sook-Keng; Ayal, Asmaa Kadim

    2017-03-01

    Ternary nanostructured Ag2S/CdS/ZnO thin film was prepared by using a simple low-cost hydrothermal method. The hexagonal phase of ZnO nanorods and CdS shells combined with monoclinic Ag2S quantum dots resulted in improved optical and photoelectrochemical properties. CdS shell with high absorption property efficiently compliment the energy levels of ZnO and improved the ability of light absorption. Furthermore, narrow band gap Ag2S also played a vital part in the light harvesting. The photoelectrochemical performance of the ternary nanostructured Ag2S/CdS/ZnO NRs was investigated in a mixture of Na2S and Na2SO3 aqueous solutions under visible light illumination. The Ag2S/CdS/ZnO NRs were found to be more efficient than ZnO NRs, CdS/ZnO NRs, and Ag2S/ZnO NRs as this particular sample gave a maximum photocurrent of 5.69 mA cm-2, which is around 2 and 1.5 times greater than CdS/ZnO NRs and Ag2S/ZnO NRs, respectively. Besides that, it was found that this ternary film possessed 15 times higher photocurrent density than plain ZnO NRs. This is attributed to the larger amount of visible light absorbed by the ternary nanostructured composite.

  4. Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950-2005).

    PubMed

    Meybeck, Michel; Lestel, Laurence; Bonté, Philippe; Moilleron, Régis; Colin, Jean Louis; Rousselot, Olivier; Hervé, Daniel; de Pontevès, Claire; Grosbois, Cécile; Thévenot, Daniel R

    2007-04-01

    The Driver-Pressures-State-Impact-Response approach is applied to heavy metals in the Seine River catchment (65,000 km(2); 14 million people of which 10 million are aggregated within Paris megacity; 30% of French industrial and agricultural production). The contamination pattern at river mouth is established on the particulate material at different time scales: 1930-2000 for floodplain cores, 1980-2003 for suspended particulate matter (SPM) and bed-sediments, 1994-2003 for atmospheric fallout and annual flood deposits. The Seine has been among the most contaminated catchments with maximum contents recorded at 130 mg kg(-1) for Cd, 24 for Hg, 558 for Pb, 1620 for Zn, 347 for Cu, 275 for Cr and 150 for Ni. Today, the average levels for Cd (1.8 mg kg(-1)), Hg (1.08), Pb (108), Zn (370), Cu (99), Cr (123) and Ni (31) are much lower but still in the upper 90% of the global scale distribution (Cr and Ni excepted) and well above the natural background values determined on pre-historical deposits. All metal contents have decreased at least since 1955/65, well before metal emission regulations that started in the mid 1970's and the metal monitoring in the catchment that started in the early 1980's. In the last 20 y, major criteria changes for the management of contaminated particulates (treated urban sludge, agricultural soils, dredged sediments) have occurred. In the mid 1990's, there was a complete shift in the contamination assessment scales, from sediment management and water usage criteria to the good ecological state, now required by the 2000 European Directive. When comparing excess metal outputs, associated to river SPM, to the average metal demand within the catchment from 1950 to 2000, the leakage ratios decrease exponentially from 1950 to 2000 for Cd, Cr, Cu, Pb and Zn, meanwhile, a general increase of the demand is observed: the rate of recycling and/or treatment of metals within the anthroposphere has been improved ten-fold. Hg environmental trajectory is very

  5. Fabrication of ITO/Ag3SbS3/CdX (X = S, Se) thin film heterojunctions for photo-sensing applications

    NASA Astrophysics Data System (ADS)

    Daniel, T.; Henry, J.; Mohanraj, K.; Sivakumar, G.

    2016-11-01

    Thin film heterojunctions of Ag3SbS3/CdX (X = S, Se) are deposited on a glass substrate coated with SnO2:In (ITO). The films were characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), UV-visible spectroscopy, photoluminescence spectroscopy, field emission scanning electron microscopy and I-V analysis. XRD reveals the monoclinic structure of Ag3SbS3 and a fcc structure for both CdS and CdSe thin films. The AFM images clearly show the distinct morphological features (nanopyramids, wedge-shaped and rectangular nanorod-like grains). From the I-V studies, under illumination, an ITO/Ag3SbS3/CdS heterojunction produces a higher photocurrent (12.4 mA) than that an ITO/Ag3SbS3/CdSe heterojunction (1.34 mA).

  6. Exciton-plasmon interactions between CdS quantum dots and Ag nanoparticles in photoelectrochemical system and its biosensing application.

    PubMed

    Zhao, Wei-Wei; Yu, Pei-Pei; Shan, Yun; Wang, Jing; Xu, Jing-Juan; Chen, Hong-Yuan

    2012-07-17

    With DNA as a rigid spacer, Ag nanoparticles (NPs) were bridged to CdS quantum dots (QDs) for the stimulation of exciton-plasmon interactions (EPI) in a photoelectrochemical (PEC) system. Due to their natural absorption overlap, the exciton of the QDs and the plasmon of Ag NPs could be induced simultaneously. The EPI resonant nature enabled manipulating photoresponse of the QDs via tuning interparticle distances. Specifically, the photocurrent of the QDs could be greatly attenuated and even be completely damped by the generated EPI. The work opens a different horizon for EPI investigation through an engineered PEC nanosystem, and provides a viable mechanism for new DNA sensing protocol.

  7. Cation recognition of thiacalix[2]thianthrene and p-tert-butylthiacalix[2]thianthrene and their conformers and complexes with Zn(II), Cd(II) and Hg(II): a theoretical investigation.

    PubMed

    Kaenkaew, Saowapak; Sae-Khow, Ornchuree; Ruangpornvisuti, Vithaya

    2010-02-01

    The structures of thiacalix[2]thianthrene, p-tert-butylthiacalix[2]thianthrene and their complexes with Zn(2+), Cd(2+) and Hg(2+) were obtained using B3LYP/LanL2DZ and HF/LanL2DZ calculations. The structures of the most stable conformers of thiacalix[2]thianthrene and p-tert-butylthiacalix[2]thianthrene optimized at either the B3LYP/LanL2DZ or HF/LanL2DZ level are in good agreement with their corresponding X-ray crystallographic structures. The binding energies of cations, Zn(2+), Cd(2+) and Hg(2+) to thiacalix[2]thianthrene and to p-tert-butylthiacalix[2]thianthrene conformers, and the thermodynamic properties of their associations were obtained. The relative selectivities of both thiacalix[2]thianthrene and thiacalix[2]thianthrene conformer are in same order: Zn(2+) > Hg(2+) > Cd(2+).

  8. Rapid and wide-range determination of Cd(II), Pb(II), Cu(II) and Hg(II) in fish tissues using light addressable potentiometric sensor.

    PubMed

    Zhang, Wen; Xu, Yiwei; Tahir, Haroon E; Zou, Xiaobo; Wang, Ping

    2017-04-15

    A rapid and wide-range method, based on light addressable potentiometric sensor (LAPS), is introduced into determination of Cd(II), Pb(II), Cu(II) and Hg(II) in fish tissues. A compact LAPS module is prepared by integrating four LAPS chips specifically sensitive to target elements. Its responses in digestions from various settings are investigated to find suitable factors. Analytical properties of this method are evaluated in consequent experiments under optimized conditions. Measurement range for each target element exceeds 0.1 to 1000mgL(-1), and response time is less than 10s. Accuracy, precision and selectivity of the proposed method are also well defined in measurements. It is successively performed to detect the target elements in real fish samples from 4 species, and obtained results are consistent with certified method.

  9. Hassle free synthesis of nanodimensional Ni, Cu and Zn sulfides for spectral sensing of Hg, Cd and Pb: A comparative study

    NASA Astrophysics Data System (ADS)

    Ansari, Zarina; Singha, Shib Shankar; Saha, Abhijit; Sen, Kamalika

    2017-04-01

    A simple room temperature synthesis method of Ni, Cu and Zn sulfide nanoparticles (NPs) in aqueous medium is reported here. The NPs stabilized in aqueous medium by the citrate ions were characterized by UV-vis, ζ potentials, TEM and Raman spectroscopic techniques. The solid NPs could be isolated from the aqueous medium when allowed to stand for a prolonged time ( 20 h). The solids were also characterized by IR and powder X-ray analysis. The nanoparticles were further used for the development of facile optical sensing and detection of heavy metal ions at trace scale. Alterations in the absorption spectra of the generated NPs were indicative of their interactions with heavy metal ions. Raman spectral measurements further validate the detection technique. It is found that out of the three synthesized nanoparticles, nickel sulfide NP is a specific sensor for mercury ions whereas zinc sulfide and copper sulfide NPs act as sensors for Hg2 +, Cd2 + and Pb2 +.

  10. Hassle free synthesis of nanodimensional Ni, Cu and Zn sulfides for spectral sensing of Hg, Cd and Pb: A comparative study.

    PubMed

    Ansari, Zarina; Singha, Shib Shankar; Saha, Abhijit; Sen, Kamalika

    2017-04-05

    A simple room temperature synthesis method of Ni, Cu and Zn sulfide nanoparticles (NPs) in aqueous medium is reported here. The NPs stabilized in aqueous medium by the citrate ions were characterized by UV-vis, ζ potentials, TEM and Raman spectroscopic techniques. The solid NPs could be isolated from the aqueous medium when allowed to stand for a prolonged time (~20h). The solids were also characterized by IR and powder X-ray analysis. The nanoparticles were further used for the development of facile optical sensing and detection of heavy metal ions at trace scale. Alterations in the absorption spectra of the generated NPs were indicative of their interactions with heavy metal ions. Raman spectral measurements further validate the detection technique. It is found that out of the three synthesized nanoparticles, nickel sulfide NP is a specific sensor for mercury ions whereas zinc sulfide and copper sulfide NPs act as sensors for Hg(2+), Cd(2+) and Pb(2+).

  11. Electronic band structure and exchange coupling constants in ACr2X4 spinels ( A=Zn , Cd, Hg; X=O , S, Se)

    NASA Astrophysics Data System (ADS)

    Yaresko, A. N.

    2008-03-01

    We present the results of band structure calculations for ACr2X4 ( A=Zn , Cd, Hg and X=O , S, Se) spinels. Effective exchange coupling constants between Cr spins are determined by fitting the energy of spin spirals to a classical Heisenberg model. The calculations reproduce the change of the sign of the dominant nearest-neighbor exchange interaction J1 from antiferromagnetic in oxides to ferromagnetic in sulfides and selenides. It is verified that the ferromagnetic contribution to J1 is due to indirect hopping between Crt2g and eg states via Xp states. Antiferromagnetic coupling between third Cr neighbors is found to be important in all the ACr2X4 spinels studied, whereas other interactions are much weaker. The results are compared to predictions based on the Goodenough-Kanamori rules of superexchange.

  12. Preparation and photoelectrochemistry of p-HgIn/sub 2/Te/sub 4/ and p- and n-CdIn/sub 2/Te/sub 2/

    SciTech Connect

    Becker, R.S.; Zhou, G.D.; Elton, J.

    1986-10-23

    The photoelectrochemical properties of the two p-type title semiconductors were examined in several redox solutions for the first time. For p-HgIn/sub 2/Te/sub 4/, the quantum efficiency for carrier collection (phi/sub c/) is 94% at short circuit, and the monochromatic and polychromatic power efficiencies calculated from the three electrode cell experiments are 9.5% and 3%, respectively, in iron(III) triethanolamine solution with comparably high values in (Cr(III)EDTA)/sup -/. The flat-band potential (V/sub fb/) is at -0.70 V (vs. SCE) in the former two couples, and indirect and direct gap transitions exist at 0.88 and 1.04 eV, respectively. Stability studies indicate essentially 100% stability to photocorrosion in Fe(III)TEA. For p-CdIn/sub 2/Te/sub 4/, phi/sub c/ is also high at short circuit (91%) and the monochromatic power efficiency is even higher (11%) than for p-HgIn/sub 2/Te/sub 4/ while the polychromatic value is somewhat lower (2%); both calculated from three electrode cell experiments. The V/sub fb/ is at approximately -0.5V (vs. SCE), and both an indirect (1.16 eV) and a direct transition exist (1.24 eV). Data for both semiconductors in a polysulfide solution indicate considerably poorer PEC characteristics than for the other redox solutions.

  13. Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag) in the southeastern Atlantic and the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Boye, M.; Wake, B. D.; Lopez Garcia, P.; Bown, J.; Baker, A. R.; Achterberg, E. P.

    2012-08-01

    Comprehensive synoptic datasets (surface water down to 4000 m) of dissolved cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb) and silver (Ag) are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu and Ag display nutrient-like profiles similar to silicic acid, and of Cd similar to phosphate. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs may have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However, uptake by dino- and nano-flagellates may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P), yielding lower Cd / P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd uptake induced by iron-limiting conditions in these high-nutrient-low-chlorophyll waters

  14. 4482 Element Multispectral Hybrid PV/PC HgCdTe IRFPA for High Resolution Coverage of 3.7 - 15.4 Micrometers for the AIRS Instrument

    NASA Technical Reports Server (NTRS)

    Rutter, James; Libonate, Scott; Denley, Brian; Gurnee, Mark N.; Robillard, Gene

    1996-01-01

    The Atmospheric Infrared Sounder (AIRS) is a key facility instrument in the NASA Earth Observing System (EOS) program, being implemented to obtain comprehensive long-term measurements of earth processes affecting global change. The instrument performs passive IR remote sensing using a high resolution grating spectrometer with a wide spectral coverage (3.7 - 15.4 m) directing radiation onto a hybrid HgCdTe IRFPA operating at 58K in a vacuum package cooled to 155K. The hybrid HgCdTe FPA consists of twelve modules, 10 with multiplexed photovoltaic detectors and two with individually leaded out photoconductive detectors. The complex FPA has a large optical footprint, 53 mm x 66 mm, and receives energy dispersed from the grating through a precision filter assembly containing 17 narrow band filters. The backside illuminated PV detector arrays are fabricated from P-on-n double layer LPE grown heterojunction detectors in a bilinear format of 50 m x 100 m detectors, with from 232 to 420 detectors per module. For the MWIR bands four PV modules cover the 3.7 m to 8.22 m region. Low detector capacitance and low noise preamplifiers in the ROIC are key to achieving high sensitivities in these bands. Uniform quantum efficiencies and detectivities exceeding 3E13 cm-rtHz/W have been achieved. The LWIR region is covered by six PV modules spanning 8.8 m to 13.75 m. High detector resistance and very low ROIC preamplifier input noise are key to achieving high sensitivity. A detectivity exceeding 2E11 cm-rtHz/W has been achieved at the longest wavelength. Two additional PC modules cover the longest spectral bands out to 15.4 m. This high performance multispectral focal plane has been built and integrated with the dewar assembly, and is currently being integrated with the complete AIRS sensor.

  15. Latest developments of 10μm pitch HgCdTe diode array from the legacy to the extrinsic technology

    NASA Astrophysics Data System (ADS)

    Péré-Laperne, Nicolas; Berthoz, Jocelyn; Taalat, Rachid; Rubaldo, Laurent; Kerlain, Alexandre; Carrère, Emmanuel; Dargent, Loïc.

    2016-05-01

    Sofradir recently presented Daphnis, its latest 10 μm pitch product family. Both Daphnis XGA and HD720 are 10μm pitch mid-wave infrared focal plane array. Development of small pixel pitch is opening the way to very compact products with a high spatial resolution. This new product is taking part in the HOT technology competition allowing reductions in size, weight and power of the overall package. This paper presents the recent developments achieved at Sofradir to make the 10μm pitch HgCdTe focal plane array based on the legacy technology. Electrical and electro-optical characterizations are presented to define the appropriate design of 10μm pitch diode array. The technological tradeoffs are explained to lower the dark current, to keep high quantum efficiency with a high operability above 110K, F/4. Also, Sofradir recently achieved outstanding Modulation Transfer Function (MTF) demonstration at this pixel pitch, which clearly demonstrates the benefit to users of adopting 10μm pixel pitch focal plane array based detectors. Furthermore, the HgCdTe technology has demonstrated an increase of the operating temperature, plus 40K, moving from the legacy to the P-on-n one at a 15μm pitch in mid-wave band. The first realizations using the extrinsic P-on-n technology and the characterizations of diodes with a 10μm pitch neighborhood will be presented in both mid-wave and long-wave bands.

  16. Efficient visible-light photocatalytic activity by band alignment in mesoporous ternary polyoxometalate-Ag2S-CdS semiconductors

    NASA Astrophysics Data System (ADS)

    Kornarakis, I.; Lykakis, I. N.; Vordos, N.; Armatas, G. S.

    2014-07-01

    Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster anions with different reduction potentials, such as PW12O403-, SiW12O404- and PMo12O403-, were employed as electron acceptors in these ternary heterojunction photocatalysts. Characterization by small-angle X-ray scattering, X-ray diffraction, transmission electron microscopy and N2 physisorption measurements showed hexagonal arrays of POM-Ag2S-CdS hybrid nanorods with large internal BET surface areas and uniform mesopores. The Keggin structure of the incorporated POM clusters was also verified by elemental X-ray spectroscopy microanalysis, infrared and diffuse-reflectance ultraviolet-visible spectroscopy. These new porous materials were implemented as visible-light-driven photocatalysts, displaying exceptional high activity in aerobic oxidation of various para-substituted benzyl alcohols to the corresponding carbonyl compounds. Our experiments show that the spatial separation of photogenerated electrons and holes at CdS through the potential gradient along the CdS-Ag2S-POM interfaces is responsible for the increased photocatalytic activity.Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster

  17. Red florescent Ag2S-CdS hybrid nanoparticles prepared by a one pot and rapid microwave method

    NASA Astrophysics Data System (ADS)

    Karimipour, Masoud; Molaei, Mehdi

    2016-03-01

    In this work, Ag2S-CdS hybrid composite with novel luminescence property was synthesized using a one pot and rapid microwave method. Structural analysis by means of XRD and TEM obtained the formation of the composite. Optical spectroscopy by means of UV-Vis and Photoluminescence measurements revealed that the functional composite has an intensive red light emission at 657 nm with a large stocks shift of about 150 nm. The quantum efficiency of the prepared hybrid material in red region is 10% which is comparable with the efficiency of pure CdS (11%) with green emission. [Figure not available: see fulltext.

  18. Analysis of whole human blood for Pb, Cd, Hg, Se, and Mn by ICP-DRC-MS for biomonitoring and acute exposures.

    PubMed

    Jones, Deanna R; Jarrett, Jeffery M; Tevis, Denise S; Franklin, Melanie; Mullinix, Neva J; Wallon, Kristen L; Derrick Quarles, C; Caldwell, Kathleen L; Jones, Robert L

    2017-01-01

    We improved our inductively coupled plasma mass spectrometry (ICP-MS) whole blood method [1] for determination of lead (Pb), cadmium (Cd), and mercury (Hg) by including manganese (Mn) and selenium (Se), and expanding the calibration range of all analytes. The method is validated on a PerkinElmer (PE) ELAN® DRC II ICP-MS (ICP-DRC-MS) and uses the Dynamic Reaction Cell (DRC) technology to attenuate interfering background ion signals via ion-molecule reactions. Methane gas (CH4) eliminates background signal from (40)Ar2(+) to permit determination of (80)Se(+), and oxygen gas (O2) eliminates several polyatomic interferences (e.g. (40)Ar(15)N(+), (54)Fe(1)H(+)) on (55)Mn(+). Hg sensitivity in DRC mode is a factor of two higher than vented mode when measured under the same DRC conditions as Mn due to collisional focusing of the ion beam. To compensate for the expanded method's longer analysis time (due to DRC mode pause delays), we implemented an SC4-FAST autosampler (ESI Scientific, Omaha, NE), which vacuum loads the sample onto a loop, to keep the sample-to-sample measurement time to less than 5min, allowing for preparation and analysis of 60 samples in an 8-h work shift. The longer analysis time also resulted in faster breakdown of the hydrocarbon oil in the interface roughing pump. The replacement of the standard roughing pump with a pump using a fluorinated lubricant, Fomblin®, extended the time between pump maintenance. We optimized the diluent and rinse solution components to reduce carryover from high concentration samples and prevent the formation of precipitates. We performed a robust calculation to determine the following limits of detection (LOD) in whole blood: 0.07µgdL(-1) for Pb, 0.10µgL(-1) for Cd, 0.28μgL(-1) for Hg, 0.99µgL(-1) for Mn, and 24.5µgL(-1) for Se.

  19. The nature of the compositional dependence of p n junction depth in ion-milled p-HgCdTe

    NASA Astrophysics Data System (ADS)

    Bogoboyashchyy, V. V.; Izhnin, I. I.; Mynbaev, K. D.

    2006-02-01

    The dependence of conductivity-type conversion depth in vacancy-doped Hg1-xCdxTe (MCT) alloys subjected to ion milling on alloy composition and treatment temperature is studied both experimentally and theoretically. It is shown that both in compositionally homogeneous crystals and in samples with a wide bandgap protective layer the dependence is defined by internal electric fields, which affect the diffusion of mercury interstitial atoms that are generated during the treatment. Results of the calculation of the effect of the potentials of a p n junction formed by ion milling and of a varyband structure field (in samples with the protective layer) on the conversion depth fit both the original experimental data and those taken from the literature well. The data obtained confirms the validity of the diffusion model of the formation of the excessive mercury source in MCT subjected to ion milling, which was proposed by the authors previously. The results presented in the paper allow one to predict and control the conversion depth in MCT subjected to ion milling for p n junction fabrication, which makes them useful in MCT infrared detector technology.

  20. Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria.

    PubMed

    Wang, Jia; Huang, Qifei; Li, Ting; Xin, Baoping; Chen, Shi; Guo, Xingming; Liu, Changhao; Li, Yuping

    2015-08-15

    A few studies have focused on release of valuable/toxic metals from Pb/Zn smelting slag by heterotrophic bioleaching using expensive yeast extract as an energy source. The high leaching cost greatly limits the practical potential of the method. In this work, autotrophic bioleaching using cheap sulfur or/and pyrite as energy matter was firstly applied to tackle the smelting slag and the bioleaching mechanisms were explained. The results indicated autotrophic bioleaching can solubilize valuable/toxic metals from slag, yielding maximum extraction efficiencies of 90% for Zn, 86% for Cd and 71% for In, although the extraction efficiencies of Pb, As and Ag were poor. The bioleaching performance of Zn, Cd and Pb was independent of leaching system, and leaching mechanism was acid dissolution. A maximum efficiency of 25% for As was achieved by acid dissolution in sulfursulfur oxidizing bacteria (S-SOB), but the formation of FeAsO4 reduced extraction efficiency in mixed energy source - mixed culture (MS-MC). Combined works of acid dissolution and Fe(3+) oxidation in MS-MC was responsible for the highest extraction efficiency of 71% for In. Ag was present in the slag as refractory AgPb4(AsO4)3 and AgFe2S3, so extraction did not occur.

  1. Composite vibrational spectroscopy of the group 12 difluorides: ZnF2, CdF2, and HgF2

    NASA Astrophysics Data System (ADS)

    Solomonik, Victor G.; Smirnov, Alexander N.; Navarkin, Ilya S.

    2016-04-01

    The vibrational spectra of group 12 difluorides, MF2 (M = Zn, Cd, Hg), were investigated via coupled cluster singles, doubles, and perturbative triples, CCSD(T), including core correlation, with a series of correlation consistent basis sets ranging in size from triple-zeta through quintuple-zeta quality, which were then extrapolated to the complete basis set (CBS) limit using a variety of extrapolation procedures. The explicitly correlated coupled cluster method, CCSD(T)-F12b, was employed as well. Although exhibiting quite different convergence behavior, the F12b method yielded the CBS limit estimates closely matching more computationally expensive conventional CBS extrapolations. The convergence with respect to basis set size was examined for the contributions entering into composite vibrational spectroscopy, including those from higher-order correlation accounted for through the CCSDT(Q) level of theory, second-order spin-orbit coupling effects assessed within four-component and two-component relativistic formalisms, and vibrational anharmonicity evaluated via a perturbative treatment. Overall, the composite results are in excellent agreement with available experimental values, except for the CdF2 bond-stretching frequencies compared to spectral assignments proposed in a matrix isolation infrared and Raman study of cadmium difluoride vapor species [Loewenschuss et al., J. Chem. Phys. 50, 2502 (1969); Givan and Loewenschuss, J. Chem. Phys. 72, 3809 (1980)]. These assignments are called into question in the light of the composite results.

  2. Heavy metals (Cd, Co, Cu, Ni, Pb, Fe, and Hg) content in four fish commonly consumed in Iran: risk assessment for the consumers.

    PubMed

    Hosseini, Mehdi; Nabavi, Seyed Mohammad Bagher; Nabavi, Seyedeh Narges; Pour, Nasrin Adami

    2015-05-01

    In this study, concentrations of Cd, Co, Cu, Ni, Pb, Fe, and Hg were determined in commercially valuable fish from Khuzestan shore, northwest of the Persian Gulf. It was also our intention to evaluate potential risks to human health associated with seafood consumption. The liver and skin showed higher metal concentrations than the muscle. The results showed that heavy metal concentrations in different food habitats increase in the following order: benthic omnivorous fish < zooplanktivore fish < phytoplanktivore fish < piscivore fish. Also, the comparison indicated that benthic species (Euryglossa orientalis, Otolithes ruber) were more contaminated than pelagic species (Liza abu and Psettodes erumei). Therefore, the concentration of heavy metals in edible part of fish species did not exceed the permissible limits proposed by Food and Agriculture Organization (FAO) (1983), WHO (1996), Regional Organization for the Protection of the Marine Environment (ROPME) (1999), and FAD (2001) which are suitable for human consumption, except for Ni and Cd in E. orientalis and Pb in O. ruber.

  3. Synthesis, structural characterization and dielectric properties of (C6H9N2)2(Hg0.75Cd0.25)Cl4 compound.

    PubMed

    Elwej, R; Hamdi, M; Hannachi, N; Hlel, F

    2014-01-01

    The present paper undertakes the study of a title compound whose structure is (C6H9N2)2(Hg0.75Cd0.25)Cl4. The centrosymmetric compound crystallizes in the triclinic space group P-1, with a=7.580(7) Å; b=8.572(8) Å; c=15.433(13) Å; α=84.49(5)°; β=89.13(5)°; γ=68.53(5)° and Z=2. The crystal structure was solved and refined to R (int)=0.0212 using 7932 independent reflections. The atomic arrangement shows an alternation of organic and inorganic layers. Between layers, the cohesion is performed via N-H⋯Cl hydrogen bonding, yet in the organic sheets, cations are further connected to classical π-π stacking. The Infrared and Raman spectra of this compound reported from 400 to 4000 cm(-1) confirmed the presence of the principal bands assigned to the internal modes of organic cation. Solid-state (13)C and (111)Cd CP-MAS-NMR spectra are reported. The dielectric study of this compound has been measured, in order to determine the σ(d.c) conductivity which is thermally activated with activation energy about 1.5 eV.

  4. Effects of morphology, diameter and periodic distance of the Ag nanoparticle periodic arrays on the enhancement of the plasmonic field absorption in the CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Kohnehpoushi, Saman; Eskandari, Mehdi; Ahmadi, Vahid; Yousefirad, Mansooreh; Nabavi, Elham

    2016-09-01

    In this work, the numerical calculations of plasmonic field absorption of Ag nanoparticles (Ag NPs) periodic arrays in the CdSe quantum dot (QD) film are investigated by the three-dimensional finite difference time domain (FDTD). Diameter (D), periodic distance (P), and morphology effects of Ag NPs are investigated on the improvement of the plasmonic field absorption in CdSe QD film. Results show that plasmonic field absorption in CdSe QD film is enhanced with reduction of D of Ag NPs until 5 nm and reduces thereafter. It is observed that with raising D of Ag NPs, optimum plasmonic field absorption in CdSe QD film is shifted toward the higher P. Moreover, with varying morphology of Ag NPs from spherical to cylindrical, cubic, ringing and pyramid, the plasmonic field absorption is considerably enhanced in CdSe QD film and position of quadrupole plasmon mode (QPPM) is shifted toward further wavelength. For cylindrical Ag NPs, the QPPM intensity increased with raising height (H) until 15 nm and reduces thereafter.

  5. Synthesis, characterization and evaluation of the photocatalytic performance of Ag-CdMoO{sub 4} solar light driven plasmonic photocatalyst

    SciTech Connect

    Adhikari, Rajesh; Malla, Shova; Gyawali, Gobinda; Sekino, Tohru; Lee, Soo Wohn

    2013-09-01

    Graphical abstract: - Highlights: • Ag-CdMoO{sub 4} solar light driven photocatalyst was successfully synthesized. • Photocatalyst exhibited strong absorption in the visible region. • Photocatalytic activity was significantly enhanced. • Enhanced activity was caused by the SPR effect induced by Ag nanoparticles. - Abstract: Ag-CdMoO{sub 4} plasmonic photocatalyst was synthesized in ethanol/water mixture by photo assisted co-precipitation method at room temperature. As synthesized powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) surface area analyzer. Photocatalytic activity was evaluated by performing the degradation experiment over methylene blue (MB) and indigo carmine (IC) as model dyes under simulated solar light irradiation. The results revealed that the Ag-CdMoO{sub 4} showed the higher photocatalytic performance as compared to CdMoO{sub 4} nanoparticles. Dispersion of Ag nanoparticles over the surface of CdMoO{sub 4} nanoparticles causes the surface plasmon resonance (SPR) and enhances the broad absorption in the entire visible region of the solar spectrum. Hence, dispersion of Ag nanoparticles over CdMoO{sub 4} nanoparticles could be the better alternative to enhance the absorption of visible light by scheelite crystal family for effective photocatalysis.

  6. The utilization of the Antarctic environmental specimen bank (BCAA) in monitoring Cd and Hg in an Antarctic coastal area in Terra Nova Bay (Ross Sea--Northern Victoria Land).

    PubMed

    Riva, S Dalla; Abelmoschi, M L; Magi, E; Soggia, F

    2004-07-01

    The first projects relating to levels of Cd and Hg on marine biota and sediments from Terra Nova Bay (Ross Sea--Antarctica) and their bioaccumulation and biomagnification in this trophic web have been carried out by research programmes pertaining to the Italian Antarctic Research Program (PNRA) since 1989. Making use of this data, and checking the same metals after 10 years thanks to the samples stored in the BCAA, we have looked for the levels of Cd and Hg in a coastal marine ecosystem of Terra Nova Bay, and have proposed using some organisms to monitor the levels of these two heavy metals in this environment where the Italian Base is located, using the data determinate in this work as background levels. In our work, the amount of Hg and Cd concentrations have been determined in biota from the inner shelf of Terra Nova Bay (Adamussium colbecki, Laternula elliptica, Odontaster validus, Sterechinus neumayeri, Trematomus bernacchii, Iridaea cordata, Phyllophora antarctica, Parborlasia corrugatus), and in two different size fractions of sieved marine sediments (<2000 microm and <63 microm). To widen the distribution of Cd and Hg in this ecosystem we have also investigated the fraction of these metals bound to the labile phase of the marine sediments, and their presence in the particulate matter found in pack-ice cores, recent snow, water column and sea microlayer.

  7. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell.

    PubMed

    Kumar, P Naresh; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-04-21

    A novel photoanode architecture with plasmonic silver (Ag) nanostructures embedded in titania (TiO2), which served as the wide band gap semiconducting support and CdS quantum dots (QDs), as light absorbers, is presented. Ag nanostructures were prepared by a polyol method and are comprised of clumps of nanorods, 15-35 nm wide, interspersed with globular nanoparticles and they were characterized by a face centered cubic lattice. Optimization of Ag nanostructures was achieved on the basis of a superior power conversion efficiency (PCE) obtained for the cell with a Ag/TiO2/CdS electrode encompassing a mixed morphology of Ag nano-rods and particles, relative to analogous cells with either Ag nanoparticles or Ag nanorods. Interfacial charge transfer kinetics was unraveled by fluorescence quenching and lifetime studies. Ag nanostructures improve the light harvesting ability of the TiO2/CdS photoanode via (a) plasmonic and scattering effects, which induce both near- and far-field enhancements which translate to higher photocurrent densities and (b) charging effects, whereby, photoexcited electron transfer from TiO2 to Ag is facilitated by Fermi level equilibration. Owing to the spectacular ability of Ag nanostructures to increase light absorption, a greatly increased PCE of 4.27% and a maximum external quantum efficiency of 55% (at 440 nm) was achieved for the cell based on Ag/TiO2/CdS, greater by 42 and 66%, respectively, compared to the TiO2/CdS based cell. In addition, the liquid S(2-) electrolyte was replaced by a S(2-) gel containing fumed silica, and the redox potential, conductivity and p-type conduction of the two were deduced to be comparable. Although the gel based cells showed diminished solar cell performances compared to their liquid counterparts, nonetheless, the Ag/TiO2/CdS electrode continued to outperform the TiO2/CdS electrode. Our studies demonstrate that Ag nanostructures effectively capture a significant chunk of the electromagnetic spectrum and aid QD

  8. Correlation Between Band Structure and Magneto- Transport Properties in HgTe/CdTe Two-Dimensional Far-Infrared Detector Superlattice

    NASA Astrophysics Data System (ADS)

    Braigue, M.; Nafidi, A.; Idbaha, A.; Chaib, H.; Sahsah, H.; Daoud, M.; Marí Soucase, B.; Mollar García, M.; Chander Singh, K.; Hartiti, B.

    2013-06-01

    Theoretical calculations of the electronic properties of n-type HgTe/CdTe superlattices (SLs) have provided an agreement with the experimental data on the magneto-transport behaviour. We have measured the conductivity, Hall mobility, Seebeck and Shubnikov-de Haas effects and angular dependence of the magneto-resistance. Our sample, grown by MBE, had a period d= d 1+ d 2 (124 layers) of d1=8.6 nm (HgTe) /d2=3.2 nm (CdTe). Calculations of the spectras of energy E( d 2), E( k z ) and E( k p ), respectively, in the direction of growth and in plane of the superlattice; were performed in the envelope function formalism. The energy E( d 2, Γ,4.2 K), shown that when d 2 increase the gap E g decrease to zero at the transition semiconductor to semimetal conductivity behaviour and become negative accusing a semimetallic conduction. At 4.2 K, the sample exhibits n type conductivity, confirmed by Hall and Seebeck effects, with a Hall mobility of 2.5 × 105 cm2/ V s. This allowed us to observe the Shubnikov-de Haas effect with n=3.20×1012 cm-2. Using the calculated effective mass (m^{*}_{E1}(EF) = 0.05 m0) of the degenerated electrons gas, the Fermi energy (2D) was E F =88 meV in agreement with 91 meV of thermoelectric power α. In intrinsic regime, α˜ T -3/2 and R H T 3/2 indicates a gap E g = E 1- HH 1=101 meV in agreement with calculated E g ( Γ,300 K)=105 meV. The formalism used here predicts that the system is semiconductor for d 1/ d 2=2.69 and d 2<100 nm. Here, d 2=3.2 nm and E g ( Γ,4.2 K)=48 meV so this sample is a two-dimensional modulated nano-semiconductor and far-infrared detector (12 μm< λ c <28 μm).

  9. Effect of adherent bacteria and bacterial extracellular polymers upon assimilation by Macoma balthica of sediment-bound Cd, Zn and Ag

    USGS Publications Warehouse

    Harvey, Ronald W.; Luoma, Samuel N.

    1985-01-01

    Effects of adherent bacteria and bacterial extracellular polymer (exopolymer) upon uptake of particle-bound Cd, Zn and Ag by the deposit-feeding clam Macoma balthica were studied in the laboratory. Amorphous iron oxyhydroxide and unaltered and alkaline-extracted sediments were used as model particulates in separate, controlled deposit-feeding experiments. In general, amounts of metal taken up from ingested particles varied dramatically with the nature of the particle surface. Ingestion of contaminated iron oxide particles did not contribute to overall uptake of Cd and Ag in feeding clams, but accounted for 89 to 99% of total Zn uptake. Exopolymer adsorbed on iron oxide particles caused an increase in the biological availability of particle-bound metals in the order Ag>Cd>Zn, whereas adherent bacteria up to 3.2 X 1011 g-1 had no effect upon amounts of metal taken up from ingested particulates. At the higher Cd and Ag concentrations employed (3.6 X 10-7M), feeding rates declined with increasing amounts of iron oxide-bound exopolymer, suggesting behavioral avoidance due to increased metal availability. Much of the Cd (57 %) taken up by clams feeding on unaltered estuarine sediments originated from particulates, even though particle/solute distribution of Cd (86%) was similar to that in experiments with iron oxide particles. Uptake of Cd from alkalineextracted sediments was insignificant, as it was from unamended iron oxide. However, addition of exopolymer (10 mgg-1 sediment) caused a restoration nn bioavailability of sediment-bound Cd.

  10. Temporal trends of Cd, Cu, Hg, Pb and Zn in mussel (Mytilus galloprovincialis) from the Spanish North-Atlantic coast 1991-1999.

    PubMed

    Besada, V; Fumega, J; Vaamonde, A

    2002-04-15

    Temporal trends for heavy metals (Cd, Cu, Hg, Pb and Zn) in mussel (Mytilus galloprovincialis) from the Galician and Cantabrian areas in Spain, where samples were yearly collected from 1991 to 1999, are presented. This study was carried out by the Centro Oceanográfico de Vigo of the Instituto Español de Oceanografia (I.E.O.) as part of the Spanish contribution to the Joint Assessment and Monitoring Programme (JAMP) of the OSPAR Convention. The experimental work and subsequent statistical treatment, following OSPAR procedures and guidelines, are described. In order to carry out the statistical treatment of the data, median values of the different shell length classes were used for each contaminant, year and area. The Kendall T-b correlation coefficient was used with the purpose of demonstrating the existence of a downward significant temporal trend in the pollution levels, according to the advice of ICES Working Group on Statistical Aspects of Environmental Monitoring. A decrease of copper levels was detected in Vigo, Pontevedra and Arosa, of mercury in Pontevedra and A Coruña, of lead in Vigo, Pontevedra, A Coruña and Bilbao and of zinc in Pontevedra and A Coruña. However, a cadmium positive trend was registered at Ria de Vigo. No significant trends were detected in the other cases.

  11. Temperature dependence of the carrier lifetime in narrow-gap Cd{sub x}Hg{sub 1–x}Te solid solutions: Radiative recombination

    SciTech Connect

    Bazhenov, N. L. Mynbaev, K. D.; Zegrya, G. G.

    2015-09-15

    The probability of the radiative recombination of carriers in narrow-gap semiconductors is analyzed for the example of Cd{sub x}Hg{sub 1–x}Te solid solutions. Expressions are derived for the imaginary part of the dielectric permittivity in terms of the three-band Kane’s model with consideration for the nonparabolic dependence of the carrier energy on the wave vector. It is shown that taking into account this nonparabolicity of the energy spectrum of carriers modifies the dependence of the imaginary part of the dielectric permittivity on frequency. Expressions for the probability of radiative recombination, derived in terms of the simple parabolic model and Kane’s model with and without the nonparabolicity effect taken into account, are compared. It is shown that the contributions to recombination from electron transitions to heavy- and light-hole bands are close and the contribution from light holes cannot be neglected when calculating the radiative-recombination probability.

  12. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    PubMed

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not.

  13. Ligational behavior of clioquinol antifungal drug towards Ag(I), Hg(II), Cr(III) and Fe(III) metal ions: Synthesis, spectroscopic, thermal, morphological and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Refat, Moamen S.

    2015-04-01

    This article presents a synthesis, characterization, theoretical and biological (anti-bacterial, and anti-fugal) evaluation studies of Ag(I), Hg(II), Cr(III) and Fe(III) complexes of clioquinol (CQ) drug ligand. Structures of the titled complexes cited herein were discussed using elemental analyses and spectral measurements e.g., IR, 1H NMR, and electronic studies. The results confirmed the formation of the clioquinol complexes by three molar ratios (1:1) for Ag(I), (1:2) for Hg(II) and (1:3) for both Cr(III) and Fe(III) metal ions. The clioquinol reacts as a bidentate chelate bound to all respected metal ions through the oxygen and nitrogen of quinoline-8-ol. The metal(II) ions coordinated to clioquinol ligand through deprotonation of sbnd OH terminal group. Infrared and 1H NMR spectral data confirm that coordination is via the oxygen of phenolic group and nitrogen atom of quinoline moiety. The molar conductance measurements of the CQ complexes in DMSO correspond to be non-electrolyte nature. Thus, these complexes may be formulated as [Ag(CQ)(H2O)2] H2O, [Hg(CQ)2]ṡ2H2O, [Cr(CQ)3] and [Fe(CQ)3]H2O. The Coats-Redfern method, the kinetic thermodynamic parameters like activation energies (E∗), entropies (ΔS∗), enthalpies (ΔH∗), and Gibbs free energies (ΔG∗) of the thermal decomposition reactions have been deduced from thermogravimetric curves (TG) with helpful of differential thermo gravimetric (DTG) curves. The narrow size distribution in nano-scale range for the clioquinol complexes have been discussed using X-ray powder diffraction (XRD), scanning electron microscope (SEM), and X-ray energy dispersive spectrometer (EDX) analyzer.

  14. Numerical calculation of plasmonic field absorption enhancement in CdSe-quantum dot sensitized ZnO nanorods by Ag nanoparticle periodic arrays

    NASA Astrophysics Data System (ADS)

    Kohnehpoushi, Saman; Eskandari, Mehdi; Nejand, Bahram Abdollahi; Ahmadi, Vahid

    2016-12-01

    Plasmonic field absorption enhancement (PFAE) of Ag nanoparticles (Ag NPs) periodic arrays in CdSe-quantum dot (QD) sensitized ZnO nanorods was numerically investigated by the three-dimensional finite difference time domain (FDTD). The Ag NPs with spherical morphology were found to have an optimum PFAE compared to other Ag NP morphologies such as cubic and pyramidal. The results also showed that PFAE intensity in CdSe-QD-sensitized ZnO nanorods is increased with the reduction of Ag NP diameter until 10 nm and decreases thereafter. Moreover, the optimum density of spherical Ag NPs for optimum PFAE was observed as 20%. PFAE in CdSe-QD-sensitized ZnO nanorods is improved with increasing space between ZnO nanorods until 180 nm and reduces thereafter. Finally, the results showed that PFAE of Ag NPs for the high distance between ZnO nanorods is dependent on radiation angle; while for the low distance between ZnO nanorods it is free of radiation angle.

  15. AC susceptibility of the Hg0.3La0.7Ba2Ca3(Cu0.95Ag0.5)4O10+δ superconductor

    NASA Astrophysics Data System (ADS)

    Mostafa, M. F.; Hassen, A.

    2016-09-01

    In this work, the temperature, magnetic field and frequency dependence of the ac susceptibility of Hg0.3La0.7Ba2Ca3(Cu0.95Ag0.5)4O10+δ were studied. The superconductivity still survives even at this amount of Ag. The magnetic field dependence of the irreversibility line (IL) and the flux pinning of this compound are discussed and compared with those of low Ag content. The IL exhibits thermally activated behaviour. A collective creep of the vortex bundle also occurs for this level of doping. A crossover from a two- to a three-dimensional system is suggested at T/Tc = 0.75 and a magnetic field, Hdc = 0.04 T. Based on vortex glass phase transition theory, the effective pinning energy, ueff, was calculated. The change in the characteristic temperature of the studied compound and that of low Ag content samples are summarised. Comparisons with similar materials are discussed.

  16. Direct and phonon-assisted indirect Auger and radiative recombination lifetime in HgCdTe, InAsSb, and InGaAs computed using Green's function formalism

    NASA Astrophysics Data System (ADS)

    Wen, Hanqing; Pinkie, Benjamin; Bellotti, Enrico

    2015-07-01

    Direct and phonon-assisted (PA) indirect Auger and radiative recombination lifetime in HgCdTe, InAsSb, and InGaAs is calculated and compared under different lattice temperatures and doping concentrations. Using the Green's function theory, the electron self energy computed from the electron-phonon interaction is incorporated into the quantum-mechanical expressions of Auger and radiative recombination, which renders the corresponding minority carrier lifetime in the materials due to both direct and PA indirect processes. Specifically, the results of two pairs of materials, namely, InAs0.91Sb0.09, Hg0.67Cd0.33Te and In0.53Ga0.47As, Hg0.38Cd0.62Te with cutoff wavelengths of 4 μm and 1.7 μm at 200 K and 300 K, respectively, are presented. It is shown that for InAs0.91Sb0.09 and Hg0.67Cd0.33Te, when the lattice temperature falls below 250 K the radiative process becomes the limiting factor of carrier lifetime in both materials at an n-type doping of 1015 cm-3, while at a constant temperature of 200 K, a high n-type doping (ND > 5 × 1015 cm-3 for InAs0.91Sb0.09 and 3 × 1015 cm-3 for Hg0.67Cd0.33Te) makes the Auger process dominate. For the Auger lifetime in In0.53Ga0.47As and Hg0.38Cd0.62Te, the calculation suggested that under all the temperatures and n-doping concentrations investigated in this paper, radiative process is always the limiting factor of the materials' minority carrier lifetime. The calculation of the PA indirect Auger process in the four materials further demonstrated its indispensable contribution to the materials' total Auger rate especially at low temperature, which is necessary to reproduce some experimental data. By fitting the Beattie-Landsberg-Blakemore (BLB) formula to the numerical Auger results, the corresponding overlap integral factors | F 1 F 2 | in BLB theory are evaluated and presented to facilitate fast and accurate Auger calculations in the IR detector simulations.

  17. Bright white-light emission from Ag/SiO2/CdS-ZnS core/shell/shell plasmon couplers

    NASA Astrophysics Data System (ADS)

    Liao, Chen; Tang, Luping; Gao, Xiaoqin; Xu, Ruilin; Zhang, Huichao; Yu, Yongya; Lu, Changgui; Cui, Yiping; Zhang, Jiayu

    2015-12-01

    Well-defined plasmon couplers (PCs) that comprise a Ag core overcoated with a SiO2 shell with controlled thickness, followed by a monolayer of CdS-ZnS core-shell quantum dots (QDs) were synthesized to modify the emission from trap-rich CdS-ZnS QDs by adjusting the distance between the QDs and Ag nanoparticles (NPs). When the thickness of the SiO2 shell was 10 nm, because the shell could effectively suppress the non-radiative energy transfer from the semiconductor QDs to the metal NPs and the localized surface plasmon resonance (LSPR) of the Ag NPs spectrally matched the emission peak of the CdS-ZnS QDs to bring about strong plasmon coupling, optimum enhancements of the surface state emission (SSE) (17 times) and band-edge emission (BEE) (4 times) were simultaneously realized and the SSE to BEE intensity ratio was increased to 55%. As a result, a bright white-light source with 1931 Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.32, 0.34) was realized by the superposition of the two emissions. The experimental results from Ag/SiO2/CdSe-ZnS and the Ag/SiO2/CdS:Mn-ZnS core/shell/shell PCs indicated that suppressing the non-radiative decay rate (knr) was the underlying mechanism for plasmon coupling fluorescence enhancement.

  18. Pb-Bi-Ag-Cu-(Hg) chemistry of galena and some associated sulfosalts. A review and some new data from Colorado California and Pennsylvania

    USGS Publications Warehouse

    Foord, Eugene E.; Shawe, Daniel R.

    1989-01-01

    Galena, associated with Pb-Bi-Ag sulfosalts and simple sulfides, contains varied amounts of Ag and Bi in the Dandy vein system, Idarado mine, Ouray, Colorado; the Jackass mine, Darwin District, California; and the Leadville district, Colorado. Silver- and bismuth-bearing galena associated with minor amounts of pyrite, chalcopyrite and sphalerite occur at the Pequea mine, Lancaster County, Pennsylvania. Ag and Bi contents in the Dandy suite of galena range from about 1.4 to 3.4 and 2.5 to 6.5 wt.% respectively, and are comparable or lower in galena from the other localities. Exsolved matildite is present in galena from the Dandy, Jackass and Leadville localities. The presence in significant amounts of both Ag and Bi in a Pb-rich sulfide system is necessary for formation of PbSss (galena solid-solution). If Ag (especially) and Bi (to a lesser extent) are absent, the galena formed will be essentially pure PbS. Some minor Sb may substitute for Bi. Compositional data for all of the galena samples are in agreement with a previously proposed linear relationship between a and Ag-Bi(Sb) content. Matildite and seven additional Pb-Bi-Ag-Cu sulfosalts have been identified from the Dandy vein system, based on electron-microprobe analyses and some X-ray powder-diffraction data.

  19. CdS-Nanowires Flexible Photo-detector with Ag-Nanowires Electrode Based on Non-transfer Process

    NASA Astrophysics Data System (ADS)

    Pei, Yanli; Pei, Ruihan; Liang, Xiaoci; Wang, Yuhao; Liu, Ling; Chen, Haibiao; Liang, Jun

    2016-02-01

    In this study, UV-visible flexible resistivity-type photo-detectors were demonstrated with CdS-nanowires (NWs) percolation network channel and Ag-NWs percolation network electrode. The devices were fabricated on Mixed Cellulose Esters (MCE) membrane using a lithographic filtration method combined with a facile non-transfer process. The photo-detectors demonstrated strong adhesion, fast response time, fast decay time, and high photo sensitivity. The high performance could be attributed to the high quality single crystalline CdS-NWs, encapsulation of NWs in MCE matrix and excellent interconnection of the NWs. Furthermore, the sensing performance was maintained even the device was bent at an angle of 90°. This research may pave the way for the facile fabrication of flexible photo-detectors with high performances.

  20. A thermodynamic model of the Hg(0.8)Cd(0.2)Te-iodine transport system. I - Te-saturated source material. II - Source material composition within the homogeneity range

    NASA Technical Reports Server (NTRS)

    Chandra, D.; Wiedemeier, H.

    1987-01-01

    A thermochemical analysis of the Hg(0.8)Cd(0.2)Te-iodine vapor transport system is presented, and theoretical calculations of diffusion-controlled mass transport rates are made. The predicted mass fluxes are compared with experimental data obtained from transport experiments under vertical, stabilizing conditions reported earlier and with results of additional transport experiments conducted during the present study. Experimental mass transport rate studies of the transport system for fixed amount of excess Hg as a function of transport agent pressure are presented. The mass fluxes are determined for the vertical, stabilizing orientation of the density gradient relative to the gravitational vector. In order to compare experimental mass transport rates with computed values, the thermochemical analysis is extended to take the formation of Hg vacancies in the above compound into account along with their effect on the partial pressure of the system.

  1. Low-Temperature Activation of Ion-Implanted Boron and Nitrogen Ions in Cd x Hg1- x Te Heteroepitaxial Layers

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Talipov, N. Kh.

    2013-12-01

    Processes of electrical activation of ion-implanted boron and nitrogen atoms in Cd x Hg1- x Te (CMT) heteroepitaxial layers grown by methods of molecular-beam epitaxy (HEL CMT MBE) and liquid-phase epitaxy (LPE CMT) have been investigated; likewise in bulk crystals of CMT with low-temperature annealings under anodic oxide. The possibility has been demonstrated of using anodic oxide as an efficient mask for postimplantation annealings of p-type HEL CMT MBE in the temperature interval Т = 200-250°C without disruption of the composition of the variband layer or alteration of the electrophysical properties of the structure. It has been established that in HEL CMT MBE the efficiency of activation of boron as a slowly diffusing donor impurity is lowered with growth of the dose of the B+ ions and is increased by thermal cycling from Т = 77 K to room temperature. Implanted nitrogen, in contrast to boron, is a rapidly diffusing acceptor impurity in CMT, efficiently compensating both radiation donor centers and activated boron. The degree of electrical activation of nitrogen grows substantially upon thermal cycling. It has been shown that the mobility spectrum is an efficient method for monitoring the process of electrical activation of boron in p-type HEL CMT MBE. Mesa photodiodes based on activated boron in p-type HEL CMT MBE with long-wavelength photosensitivity boundary λc = 11 μm, prepared here for the first time, had a high maximum value of the product of the differential resistance by the area of the photodiode R d A = (6 - 8)ṡ102 Ωṡcm2, product R 0 A = 5 - 6 Ωṡcm2 (at zero bias), and a diffusion ledge on the inverse branch of the current-voltage ( I- V) characteristic out to a bias voltage of 1.3 V.

  2. DNA Damage and Transcriptional Changes in the Gills of Mytilus galloprovincialis Exposed to Nanomolar Doses of Combined Metal Salts (Cd, Cu, Hg)

    PubMed Central

    Varotto, Laura; Domeneghetti, Stefania; Rosani, Umberto; Manfrin, Chiara; Cajaraville, Miren P.; Raccanelli, Stefano; Pallavicini, Alberto; Venier, Paola

    2013-01-01

    Aiming at an integrated and mechanistic view of the early biological effects of selected metals in the marine sentinel organism Mytilus galloprovincialis, we exposed mussels for 48 hours to 50, 100 and 200 nM solutions of equimolar Cd, Cu and Hg salts and measured cytological and molecular biomarkers in parallel. Focusing on the mussel gills, first target of toxic water contaminants and actively proliferating tissue, we detected significant dose-related increases of cells with micronuclei and other nuclear abnormalities in the treated mussels, with differences in the bioconcentration of the three metals determined in the mussel flesh by atomic absorption spectrometry. Gene expression profiles, determined in the same individual gills in parallel, revealed some transcriptional changes at the 50 nM dose, and substantial increases of differentially expressed genes at the 100 and 200 nM doses, with roughly similar amounts of up- and down-regulated genes. The functional annotation of gill transcripts with consistent expression trends and significantly altered at least in one dose point disclosed the complexity of the induced cell response. The most evident transcriptional changes concerned protein synthesis and turnover, ion homeostasis, cell cycle regulation and apoptosis, and intracellular trafficking (transcript sequences denoting heat shock proteins, metal binding thioneins, sequestosome 1 and proteasome subunits, and GADD45 exemplify up-regulated genes while transcript sequences denoting actin, tubulins and the apoptosis inhibitor 1 exemplify down-regulated genes). Overall, nanomolar doses of co-occurring free metal ions have induced significant structural and functional changes in the mussel gills: the intensity of response to the stimulus measured in laboratory supports the additional validation of molecular markers of metal exposure to be used in Mussel Watch programs. PMID:23355883

  3. Structure of the quantum spin Hall states in HgTe/CdTe and InAs/GaSb/AlSb quantum wells

    NASA Astrophysics Data System (ADS)

    Klipstein, P. C.

    2015-01-01

    A solution of the k . p model is presented for bulk and quantum spin hall (QSH) edge states in semiconductor topological insulator (TI) quantum wells (QWs), bounded at the edge by an infinite wall potential. The edge states are exponentially localized, with a nonzero amplitude at the QW edge, and obey standard boundary conditions for the wave function and its derivative. Single helical edge states with spin locked to the direction of motion are found in the TI band gap (ETI) of QWs with both strong (HgTe/CdTe) and weak (InAs/GaSb/AlSb) s -p hybridization, but in the second case only below a small critical band gap, Ecrit˜1.6 meV . For ETI>Ecrit , there appear to be two degenerate states for each spin direction. It is suggested that Z2-like topological properties can still be maintained if one of these states is spurious or suppressed by disorder. The effect of interface band mixing, and band mixing due to structural inversion asymmetry and bulk inversion asymmetry is also considered. Simple model Hamiltonians are developed for the bulk and edge states which are calibrated against a bulk eight-band k . p calculation close to the TI transition. At the transition, the zero gap bulk states exhibit a spin splitting, essentially changing the Dirac point to a circle. In the TI phase, there is a small change in the dispersion of the QSH edge states. These results confirm the robustness of the QSH edge states to spatial symmetry breaking interactions.

  4. Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles.

    PubMed

    Zhang, Qing; Shan, Xin-Yan; Feng, Xiao; Wang, Chun-Xiao; Wang, Qu-Quan; Jia, Jin-Feng; Xue, Qi-Kun

    2011-10-12

    Semiconductor nanowire (NW) cavities with tailorable optical modes have been used to develop nanoscale oscillators and amplifiers in microlasers, sensors, and single photon emitters. The resonance modes of NW could be tuned by different boundary conditions. However, continuously and reversibly adjusting resonance modes and improving Q-factor of the cavity remain a great challenge. We report a method to modulate resonance modes continuously and reversibly and improve Q-factor based on surface plasmon-exciton interaction. By placing single Ag nanoparticle (NP) nearby a CdS NW, we show that the wavelength and relative intensity of the resonance modes in the NW cavity can systematically be tuned by adjusting the relative position of the Ag NP. We further demonstrate that a 56% enhancement of Q-factor and an equivalent π-phase shift of the resonance modes can be achieved when the Ag NP is located near the NW end. This hybrid cavity has potential applications in active plasmonic and photonic nanodevices.

  5. Special Features of Admittance in Mis Structures Based on Graded-Gap MBE n-Hg1- x Cd x Te ( x = 0.31-0.32) in a Temperature Range OF 8-300 K

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Vasil'ev, V. V.; Varavin, V. S.; Dvoretskii, S. A.; Mikhailov, N. N.; Kuz'min, V. D.; Remesnik, V. G.

    2014-09-01

    Admittance of MIS structures based on graded-gap n-Hg1- х Cd х Te ( x = 0.31-0.32) grown by molecular beam epitaxy (MBE) is investigated in a wide temperature range (8-300 K). It is shown that the temperature and frequency dependences of the differential resistance of space charge region for structures with a graded-gap layer are qualitatively similar to those for structures without a graded-gap layer. It is found that for MIS structures based on MBE n-Hg1- х Cd х Te ( x = 0.31-0.32), regardless of the presence of a graded-gap layer, the differential resistance of space charge region is limited by the processes of Shockley-Read generation in the temperature range of 25-100 K.

  6. Comparison of a static and a dynamic in vitro model to estimate the bioaccessibility of As, Cd, Pb and Hg from food reference materials Fucus sp. (IAEA-140/TM) and Lobster hepatopancreas (TORT-2).

    PubMed

    Torres-Escribano, Silvia; Denis, Sylvain; Blanquet-Diot, Stéphanie; Calatayud, Marta; Barrios, Laura; Vélez, Dinoraz; Alric, Monique; Montoro, Rosa

    2011-01-01

    Bioaccessibility, the fraction of an element solubilized during gastrointestinal digestion and available for absorption, is a factor that should be considered when evaluating the health risk of contaminants from food. Static and dynamic models that mimic human physiological conditions have been used to evaluate bioaccessibility. This preliminary study compares the bioaccessibility of arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg) in two food certified reference materials (CRMs) (seaweed: Fucus sp., IAEA-140/TM; Lobster hepatopancreas: TORT-2), using two in vitro gastrointestinal digestion methods: a static method (SM) and a dynamic multicompartment method (TIM-1). There are significant differences (p<0.05) between the bioaccessible values of As, Cd, Pb and Hg obtained by SM and TIM-1 in the two CRMs. The specific form in which the elements studied are present in the CRM may help to explain the bioaccessibility values obtained.

  7. A set of d-polarization functions for pseudo-potential basis sets of the main group elements AlBi and f-type polarization functions for Zn, Cd, Hg

    NASA Astrophysics Data System (ADS)

    Höllwarth, A.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G.

    1993-06-01

    A set of five-component d-type polarization functions has been optimized for the main group elements AlBi at the energetically lowest lying s 2p n electronic states for use with the effective core potentials of Hay and Wadt at the CISD level of theory. Also a set of f-type polarization functions is suggested for the elements Zn, Cd and Hg.

  8. Ag nanoclusters could efficiently quench the photoresponse of CdS quantum dots for novel energy transfer-based photoelectrochemical bioanalysis.

    PubMed

    Zhang, Ling; Sun, Yue; Liang, Yan-Yu; He, Jian-Ping; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-11-15

    Herein the influence of ultrasmall Ag nanoclusters (Ag NCs) against CdS quantum dots (QDs) in a photoelectrochemical (PEC) nanosystem was exploited for the first time, based on which a novel PEC bioanalysis was successfully developed via the efficient quenching effect of Ag NCs against the CdS QDs. In a model system, DNA assay was achieved by using molecular beacon (MB) probes anchored on a CdS QDs modified electrode, and the MB probes contain two segments that can hybridize with both target DNA sequence and the label of DNA encapsulated Ag NCs. After the MB probe was unfolded by the target DNA sequence, the labels of oligonucleotide encapsulated Ag NCs would be brought in close proximity to the CdS QDs electrode surface, and efficient photocurrent quenching of QDs could be resulted from an energy transfer process that originated from NCs. Thus, by monitoring the attenuation in the photocurrent signal, an elegant and sensitive PEC DNA bioanalysis could be accomplished. The developed biosensor displayed a linear range from 1.0pM to 10nM and the detection limit was experimentally found to be of 0.3pM. This work presents a feasible signaling principle that could act as a common basis for general PEC bioanalysis development.

  9. Zirconia-coated graphite adsorption bar micro-extraction combined with ETV-ICP-MS for the determination of trace amounts of Cd, Hg and Pb in environmental and biological samples.

    PubMed

    Pu, Xuli; Jiang, Zucheng; Hu, Bin

    2006-07-01

    In this work, a new and simple micro-extraction method termed graphite adsorption bar micro-extraction was developed, for the first time, for electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) determination of trace Cd, Hg and Pb. In this method, the graphite bar was first coated with zirconia and then inserted into the sample solution for extraction. The graphite bar enriched with the analytes was inserted directly into a graphite tube, and subsequently analyzed by ETV-ICP-MS according to an established temperature program. The experimental parameters, which had influence on the extraction and vaporization, were systematically investigated and the optimal experimental conditions were established. Under the optimized conditions, the detection limits of the method were 0.05, 0.42 and 0.06 pg/ml for Cd, Hg and Pb and the relative standard deviations (RSDs) for 11 replicates at the 0.1 ng/ml level were 7.4, 8.2 and 7.7%, respectively. The proposed method was successfully applied to the determination of trace Cd, Hg and Pb in environmental and biological samples. The results of the experiments indicate that the method has a high enrichment factor and sample utilization efficiency. Furthermore, the method is fast and environment-friendly.

  10. Temperature and Field Dependences of Parameters of the Equivalent Circuit Elements of MIS Structures Based on MBE n-Hg0.775Cd0.225Te in the Strong Inversion Mode

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2016-11-01

    A technique is proposed for the determining the parameters of the equivalent circuit elements in strong inversion mode using the measurement results of the admittance of MIS structures based on n-Hg0.775Cd0.225Te grown by molecular beam epitaxy. It is shown that at 77 K and frequencies above 10 kHz, the capacitancevoltage characteristics of MIS structures based on n-Hg0.775Cd0.225Te with a near-surface graded gap layer have a high-frequency behavior with respect to the recharge time of surface states located near the Fermi level of intrinsic semiconductor. It is established that the electron concentration in the near-surface graded-gap layer exceeds an average concentration found by the Hall method by more than 2 times. The proposed technique was used for determining the temperature dependences of the insulator capacitance, capacitance and differential resistance of the space-charge region, and capacitance of the inversion layer in MIS structures based on n-Hg0.775Cd0.225Te without a graded-gap layer. The temperature and voltage dependences of the parameters of the equivalent circuit elements in strong inversion are calculated. The results of calculation are qualitatively consistent with the results obtained from the measurements of the admittance.

  11. Plasmon enhanced CdS-quantum dot sensitized solar cell using ZnO nanorods array deposited with Ag nanoparticles as photoanode

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Ahmadi, V.; Yousefi rad, M.; Kohnehpoushi, S.

    2015-04-01

    CdS-quantum dot sensitized solar cell using ZnO nanorods (ZnO NRs) array deposited with Ag nanoparticles (Ag NPs) as photoanode was fabricated. Light absorption effect of Ag NPs on improvement of the cell performance was investigated. Performance improvement of metal nanoparticles (MNPs) was controlled by the structure design and architecture. Different decorations and densities of Ag NPs were utilized on the photoanode. Results showed that using 5% Ag NPs in the photoanode results in the increased efficiency, fill factor, and circuit current density from 0.28% to 0.60%, 0.22 to 0.29, and 2.18 mA/cm2 to 3.25 mA/cm2, respectively. Also, incident photon-to-current efficiencies (IPCE) results showed that cell performance improvement is related to enhanced absorption in the photoanode, which is because of the surface plasmonic resonance and light scattering of Ag NPs in the photoanode. Measurements of electrochemical impedance spectroscopy revealed that hole transfer kinetics increases with introduction of Ag NPs into photoanode. Also, it is shown that chemical capacitance increases with introduction of Ag NPs. Such increase can be attributed to the surface palsmonic resonance of Ag NPs which leads to absorption of more light in the photoanode and generation of more photoelectron in the photoanode.

  12. Enhanced DSSCs efficiency via Cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@PVP)

    NASA Astrophysics Data System (ADS)

    Amiri, Omid; Salavati-Niasari, Masoud; Bagheri, Samira; Yousefi, Amin Termeh

    2016-05-01

    This paper describes cooperate the co-absorbance (CdS QDs) and the plasmonic core-shell nanoparticles (Ag@PVP) of dye synthesized solar cells in which CdS QDs and Ag@PVP are incorporated into the TiO2 layer. Cooperative nanoparticles show superior behavior on enhancing light absorption in comparison with reference cells. Cooperated DSSC exhibits the best performance with the power conversion efficiency of 7.64% which is superior to that of the free–modified DSSC with the PCE of 5%. Detailed studies offer an effective approach to enhance the efficiency of dye synthesized solar cells.

  13. Enhanced DSSCs efficiency via Cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@PVP)

    PubMed Central

    Amiri, Omid; Salavati-Niasari, Masoud; Bagheri, Samira; Yousefi, Amin Termeh

    2016-01-01

    This paper describes cooperate the co-absorbance (CdS QDs) and the plasmonic core-shell nanoparticles (Ag@PVP) of dye synthesized solar cells in which CdS QDs and Ag@PVP are incorporated into the TiO2 layer. Cooperative nanoparticles show superior behavior on enhancing light absorption in comparison with reference cells. Cooperated DSSC exhibits the best performance with the power conversion efficiency of 7.64% which is superior to that of the free–modified DSSC with the PCE of 5%. Detailed studies offer an effective approach to enhance the efficiency of dye synthesized solar cells. PMID:27143126

  14. Analysis of the auger recombination rate in P+N-n-N-N HgCdTe detectors for HOT applications

    NASA Astrophysics Data System (ADS)

    Schuster, J.; Tennant, W. E.; Bellotti, E.; Wijewarnasuriya, P. S.

    2016-05-01

    Infrared (IR) photon detectors must be cryogenically cooled to provide the highest possible performance, usually to temperatures at or below ~ 150K. Such low operating temperatures (Top) impose very stringent requirements on cryogenic coolers. As such, there is a constant push in the industry to engineer new detector architectures that operate at higher temperatures, so called higher operating temperature (HOT) detectors. The ultimate goal for HOT detectors is room temperature operation. While this is not currently possibly for photon detectors, significant increases in Top are nonetheless beneficial in terms of reduced size, weight, power and cost (SWAP-C). The most common HgCdTe IR detector architecture is the P+n heterostructure photodiode (where a capital letter indicates a wide band gap relative to the active layer or "AL"). A variant of this architecture, the P+N-n-N-N heterostructure photodiode, should have a near identical photo-response to the P+n heterostructure, but with significantly lower dark diffusion current. The P+N-n-N-N heterostructure utilizes a very low doped AL, surrounded on both sides by wide-gap layers. The low doping in the AL, allows the AL to be fully depleted, which drastically reduces the Auger recombination rate in that layer. Minimizing the Auger recombination rate reduces the intrinsic dark diffusion current, thereby increasing Top. Note when we use the term "recombination rate" for photodiodes, we are actually referring to the net generation and recombination of minority carriers (and corresponding dark currents) by the Auger process. For these benefits to be realized, these devices must be intrinsically limited and well passivated. The focus of this proceeding is on studying the fundamental physics of the intrinsic dark currents in ideal P+N-n-N-N heterostructures, namely Auger recombination. Due to the complexity of these devices, specifically the presence of multiple heterojunctions, numerical device modeling techniques must be

  15. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  16. Volatile (As and Hg) and non-volatile (Pb and Cd) toxic heavy metals analysis in rhizome of Zingiber officinale collected from different locations of North Western Himalayas by Atomic Absorption Spectroscopy.

    PubMed

    Gupta, S; Pandotra, P; Gupta, A P; Dhar, J K; Sharma, G; Ram, G; Husain, M K; Bedi, Y S

    2010-10-01

    Ginger is an important ingredient of spice and herbals. The monitoring of toxic heavy metals in the rhizome of ginger is important for protecting public health against the hazards of metal toxicity. The concentration of volatile and non-volatile metals (As, Hg, Pb and Cd), in the soil and rhizome of Zingiber officinale were analyzed using AAS. Soil analysis profile showed uniformity in the metal contents, in active root zone and subsoil, except mercury, which was present in higher quantity in one, out of the four sectors, of the field. The infield metal content in the soil in increasing order was, cadmium < arsenic < lead < mercury. In ginger rhizome the volatile toxic heavy metals arsenic (As) and mercury (Hg) varied from not detected to 0.13 μg/g and 0.01 to 0.42 μg/g, respectively. The non-volatile metals lead (Pb) and cadmium (Cd) ranged from 0.06 to 0.64 μg/g and 0.002 to 0.03 μg/g, respectively(.) The results illustrated the findings that soil is the major but not the only source of metal accumulation in the plants. In our study, the volatile metal content (As, Hg) was found more in rhizomes collected from Himachal Pradesh while the non-volatile metals were predominant in samples from Uttarakhand.

  17. Prevention of experimental autoimmune uveoretinitis and experimental autoimmune pinealitis in (Lewis x Brown-Norway) F1 rats by HgCl2 injections.

    PubMed Central

    Saoudi, A; Bellon, B; de Kozak, Y; Kuhn, J; Vial, M C; Thillaye, B; Druet, P

    1991-01-01

    Mercuric chloride (HgCl2) induces in Brown-Norway (BN) and (Lewis x Brown-Norway) F1 hybrid rats a transient autoimmune disease characterized by the production of various antibodies to self and non-self antigens and by a dramatic increase of serum IgE. Experimental autoimmune uveoretinitis (EAU) can be induced in Lewis (LEW) and (LEW x BN) F1 hybrid rats by a single immunization with retinal S-antigen (S-Ag). Besides uveoretinitis, animals immunized with S-Ag develop an autoimmune pinealitis (EAP). We demonstrate in this study that (LEW x BN) F1 hybrid rats, injected with HgCl2 7 days before S-Ag immunization, are quite efficiently protected against EAU and EAP. We also show that HgCl2-induced protection is neither due to a cytotoxic effect of HgCl2 nor to CD8+ T-cell dependent mechanisms nor to the HgCl2-induced increase of serum IgE concentration. The role of other hypothetical mechanisms, such as anti-S-Ag anti-idiotypic antibodies and/or HgCl2-induced unbalance between T-helper cell subsets, is discussed. Images Figure 1 Figure 2 PMID:1748484

  18. Theoretical assessment of the selective fluorescence quenching of 1-amino-8-naphthol-3,6-disulfonic acid (H-Acid) complexes with Zn(2+), Cd(2+), and Hg(2+): A DFT and TD-DFT study.

    PubMed

    Zarabadi-Poor, Pezhman; Barroso-Flores, Joaquín

    2014-12-26

    Density functional theory (DFT) and time-dependent (TD)-DFT calculations at the PBE0/6-31++G** aug-cc-PVDZ (along with corresponding ECP for metal ions) level of theory were carried out to investigate the differences in structure, bonding, and fluorescence behavior of 1-amino-8-naphthol-3,6-disulfonic acid (H-acid) (1) when coordinated to Zn(2+) (2), Cd(2+) (3), and Hg(2+) (4) in a simulated continuous aqueous media (PCM). Ground and excited state calculations were performed on all compounds in order to gain insight on their bonding properties, as well as on their photochemical behavior, since we previously reported that complexation of Hg(2+) quenches the fluorescence properties of ligand (1), while at the same time exhibits a different coordination pattern than the two other remaining complexes. Changes in the excited states' radiative lifetime upon coordination to different metals account for this selective quenching.

  19. Accumulation of Hg and other heavy metals in the Javan mongoose (Herpestes javanicus) captured on Amamioshima Island, Japan.

    PubMed

    Horai, Sawako; Minagawa, Mikiko; Ozaki, Hirokazu; Watanabe, Izumi; Takeda, Yasuo; Yamada, Katsushi; Ando, Tetsuo; Akiba, Suminori; Abe, Shintaro; Kuno, Katsuji

    2006-10-01

    Concentrations of 22 elements (Mg, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Cs, Ba, Tl, total Hg (T-Hg), Pb) and organic Hg (O-Hg) were examined in the liver, kidney and brain of the Javan mongoose (Herpestes javanicus) and in liver of the Amami rabbit (Pentalagus furnessi) from Amamioshima Island in Japan. Relatively high levels of T-Hg levels (from 1.75 to 55.5 microg g-1 wet wt.) were found in the Javan mongoose. As for a comparison of hepatic T-Hg concentrations between the two areas, there was no significant difference between the Javan mongoose in Amamioshima and those in the Okinawa islands. In addition, T-Hg levels in the livers of the Amami rabbit were the same as in the livers of other herbivorous mammals. Taken together, it suggested that T-Hg accumulation in the livers of the Javan mongoose was not affected by the environment but by a specific physiological mechanism. The comparison of Hg and other heavy metal accumulations between terrestrial mammals (13 species, 61 individuals) including the Javan mongoose and marine mammals (18 species, 508 individuals) were also discussed.

  20. Impacts of anthropogenic pressures on the water quality of the Gironde Estuary (SW France) from the Urban Agglomeration of Bordeaux: spatial characterization and inputs of trace metal elements (Ag, As, Cd, Cu, Pb and Zn)

    NASA Astrophysics Data System (ADS)

    Kessaci, Kahina; Coynel, Alexandra; Blanc, Gérard; Deycard, Victoria N.; Derriennic, Hervé; Schäfer, Jörg

    2014-05-01

    Recent European legislation (2000/60/CE) has listed eight trace metal elements as priority toxic substances for water quality. Urban metal inputs into hydrosystems are of increasing interest to both scientists and managers facing restrictive environmental protection policies, population increase and changing metal applications. The Gironde Estuary (SW France; 625 km2) is known for its metal/metalloid pollution originating from industrial (e.g. Cd, Zn, Cu, As, Ag, Hg) or agricultural sources (e.g. Cu) in the main fluvial tributaries (Garonne and Dordogne Rivers). However, little peer-reviewed scientific work has addressed the impact of urban sources on the Gironde Estuary, especially the Urban Agglomeration of Bordeaux (~1 million inhabitants) located on the downstream branch of the Garonne River. In this study, a snapshot sampling campaign was performed in 2011 for characterizing the spatial distribution of dissolved and particulate metal/metalloid (As, Ag, Cd, Pb, Zn, Cu) concentrations in three suburban watersheds: the Jalle of Blanquefort (330 km2), Eau Bourde (140 km2), and Peugue (112 km2). Furthermore, particulate metal Enrichment Factors (EF) were calculated using local geochemical background measured at the bottom of a sediment core (492 cm). Results indicated that metal concentrations displayed a high spatial variability depending on the suburban watershed and the studied element. Local concentrations anomalies were observed for: (i) As in the Eau Bourde River in dissolved (4.2 μg/l) and particulate phases (246 mg/kg; EF= 20) and attributed to a nearby industrial incinerator; (ii) Zn in the Peugue River with maximum dissolved and particulate concentrations of 87 μg/l and 1580 mg/kg (EF=17), respectively, probably due to urban habitation runoff; (iii) Ag in the Jalle of Blanquefort River with high dissolved (74 ng/l) and particulate concentrations (33.7 mg/kg; EF=117) due to industrial activities in the downstream part. Based on hydro

  1. Removal and recovery of Hg(II) from aqueous solution using chitosan-coated cotton fibers.

    PubMed

    Qu, Rongjun; Sun, Changmei; Ma, Fang; Zhang, Ying; Ji, Chunnuan; Xu, Qiang; Wang, Chunhua; Chen, Hou

    2009-08-15

    Two types of chitosan-coated cotton fibers (SCCH and RCCH) were applied to remove and recover Hg(II) ions in aqueous solution. The adsorption kinetics and isotherms of the two fibers for Hg(II) were investigated at different temperatures. The results revealed that the adsorption kinetic processes of SCCH and RCCH fibers for Hg(II) followed the pseudo second-order model at lower temperatures and the pseudo first-order model at higher temperatures. Both the Langmuir and Freundlich models well described the adsorption isotherms of SCCH and RCCH fibers for Hg(II) in the temperature range studied. SCCH and RCCH fibers selectively adsorbed Hg(II) from binary ion systems in the presence of Pb(II), Cu(II), Ni(II), Cd(II), Zn(II), Co(II), Mn(II) and Ag(I). Increased temperature was beneficial to adsorption. The recovery of Hg(II) from aqueous solutions was also studied as a function of sample flow rate and volume, concentration and volume of eluent, elution rate, quantity of adsorbents added and concomitant ions. The results showed that the two fibers efficiently enriched and recovered Hg(II) in the presence of alkali and alkaline earth metals and some heavy metals under optimum conditions. The RCCH fiber exhibited better stability than the SCCH fiber following repeated use.

  2. A sensitive and selective sensing platform based on CdTe QDs in the presence of l-cysteine for detection of silver, mercury and copper ions in water and various drinks.

    PubMed

    Gong, Tingting; Liu, Junfeng; Liu, Xinxin; Liu, Jie; Xiang, Jinkun; Wu, Yiwei

    2016-12-15

    Water soluble CdTe quantum dots (QDs) have been prepared simply by one-pot method using potassium tellurite as stable tellurium source and thioglycolic acid (TGA) as stabilizer. The fluorescence of CdTe QDs can be improved 1.3-fold in the presence of l-cysteine (Cys), however, highly efficiently quenched in the presence of silver or mercury or copper ions. A sensitive and selective sensing platform for analysis of silver, mercury and copper ions has been simply established based on CdTe QDs in the presence of l-cysteine. Under the optimum conditions, excellent linear relationships exist between the quenching degree of the sensing platform and the concentrations of Ag(+), Hg(2+) and Cu(2+) ranging from 0.5 to 40ngmL(-1). By using masking agents of sodium diethyldithiocarbamate (DDTC) for Ag(+) and Cu(2+), NH4OH for Ag(+) and Hg(2+) and 1-(2-Pyridylazo)-2-naphthol (PAN) for Hg(2+) and Cu(2+), Hg(2+), Cu(2+) and Ag(+) can be exclusively detected in coexistence with other two ions, and the detection limits (3σ) were 0.65, 0.063 and 0.088ngmL(-1) for Ag(+), Hg(2+) and Cu(2+), respectively. This effective sensing platform has been used to detection of Ag(+), Hg(2+) and Cu(2+) in water and various drinks with satisfactory results.

  3. γδ T cells support gut Ag-reactive colitogenic effector T-cell generation by enhancing Ag presentation by CD11b(+) DCs in the mesenteric LN.

    PubMed

    Do, Jeongsu; Visperas, Anabelle; Freeman, Michael L; Jang, Eunjung; Kim, Sohee; Malissen, Bernard; Min, Booki

    2016-02-01

    T cells expressing the γδ TCR are dominant T-cell subsets in the intestinal immune system. We previously demonstrated that γδ T cells play important roles in augmenting Th17-type colitogenic immune responses in a T-cell-induced colitic inflammation model. However, its underlying mechanism remains poorly understood. In this study, an in vitro coculture system using effector T cells enriched in gut Ag-reactive cells was employed as a readout tool to search for gut Ag presenting APCs. We found that the presence of γδ T cells dramatically enhances gut Ag presentation within the mLN in mice. Gut Ag presentation by CD11b(+) DC subsets was particularly controlled by γδ T cells. Interestingly, γδ T-cell entry to the lymph nodes was essential to improve the Ag presentation. Therefore, our results highlight that γδ T cells play a previously unrecognized role to support colitogenic immunity by regulating gut Ag presentation in the draining LN.

  4. Le gisement Ag sbnd Hg de Zgounder (Jebel Siroua, Anti-Atlas, Maroc) : un épithermal néoprotérozoïque de type Imiter

    NASA Astrophysics Data System (ADS)

    Marcoux, Éric; Wadjinny, Ahmed

    2005-12-01

    The Zgounder ore deposit (Anti-Atlas, Morocco), is hosted in a PII-PIII Proterozoic volcanosedimentary series. Disseminated mineralization is dominated by mercuriferous native silver (2 to 30 wt.% Hg), with few silver sulfosalts (acanthite, pearceite), arsenopyrite and base-metal sulfides. Arsenic grade of arsenopyrite and homogenisation temperatures of fluid inclusions indicate initial conditions of high temperature (above 400 °C). Lead isotope compositions comfort a Late-Proterozoic age and a crustal origin for metals. Similarities are obvious with the neighbouring silver ore deposit of Imiter and lead to consider Zgounder as another example of Neoproterozoic epithermal deposit in the Anti-Atlas of Morocco, a region that appears more and more as a silver metallogenic province. To cite this article: É. Marcoux, A. Wadjinny, C. R. Geoscience 337 (2005).

  5. Interaction of glutathione reductase with heavy metal: the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin.

    PubMed

    Picaud, Thierry; Desbois, Alain

    2006-12-26

    To determine the inhibition mechanism of yeast glutathione reductase (GR) by heavy metal, we have compared the electronic absorption and resonance Raman (RR) spectra of the enzyme in its oxidized (Eox) and two-electron reduced (EH2) forms, in the absence and the presence of Hg(II) or Cd(II). The spectral data clearly show a redox dependence of the metal binding. The metal ions do not affect the absorption and RR spectra of Eox. On the contrary, the EH2 spectra, generated by addition of NADPH, are strongly modified by the presence of heavy metal. The absorption changes of EH2 are metal-dependent. On the one hand, the main flavin band observed at 450 nm for EH2 is red-shifted at 455 nm for the EH2-Hg(II) complex and at 451 nm for the EH2-Cd(II) complex. On the other hand, the characteristic charge-transfer (CT) band at 540 nm is quenched upon metal binding to EH2. In NADPH excess, a new CT band is observed at 610 nm for the EH2-Hg(II)-NADPH complex and at 590 nm for EH2-Cd(II)-NADPH. The RR spectra of the EH2-metal complexes are not sensitive to the NADPH concentration. With reference to the RR spectra of EH2 in which the frequencies of bands II and III were observed at 1582 and 1547 cm-1, respectively, those of the EH2-metal complexes are detected at 1577 and 1542 cm-1, indicating an increased flavin bending upon metal coordination to EH2. From the frequency shifts of band III, a concomitant weakening of the H-bonding state of the N5 atom is also deduced. Taking into account the different chemical properties of Hg(II) and Cd(II), the coordination number of the bound metal ion was deduced to be different in GR. A mechanism of the GR inhibition is proposed. It proceeds primarily by a specific binding of the metal to the redox thiol/thiolate pair and the catalytic histidine of EH2. The bound metal ion then acts on the bending of the isoalloxazine ring of FAD as well as on the hydrophobicity of its microenvironment.

  6. A 1.5k x 1.5k class photon counting HgCdTe linear avalanche photo-diode array for low background space astronomy in the 1-5micron infrared

    NASA Astrophysics Data System (ADS)

    Hall, Donald

    Under a current award, NASA NNX 13AC13G "EXTENDING THE ASTRONOMICAL APPLICATION OF PHOTON COUNTING HgCdTe LINEAR AVALANCHE PHOTODIODE ARRAYS TO LOW BACKGROUND SPACE OBSERVATIONS" UH has used Selex SAPHIRA 320 x 256 MOVPE L-APD HgCdTe arrays developed for Adaptive Optics (AO) wavefront (WF) sensing to investigate the potential of this technology for low background space astronomy applications. After suppressing readout integrated circuit (ROIC) glow, we have placed upper limits on gain normalized dark current of 0.01 e-/sec at up to 8 volts avalanche bias, corresponding to avalanche gain of 5, and have operated with avalanche gains of up to several hundred at higher bias. We have also demonstrated detection of individual photon events. The proposed investigation would scale the format to 1536 x 1536 at 12um (the largest achievable in a standard reticule without requiring stitching) while incorporating reference pixels required at these low dark current levels. The primary objective is to develop, produce and characterize a 1.5k x 1.5k at 12um pitch MOVPE HgCdTe L-APD array, with nearly 30 times the pixel count of the 320 x 256 SAPHIRA, optimized for low background space astronomy. This will involve: 1) Selex design of a 1.5k x 1.5k at 12um pitch ROIC optimized for low background operation, silicon wafer fabrication at the German XFab foundry in 0.35 um 3V3 process and dicing/test at Selex, 2) provision by GL Scientific of a 3-side close-buttable carrier building from the heritage of the HAWAII xRG family, 3) Selex development and fabrication of 1.5k x 1.5k at 12 um pitch MOVPE HgCdTe L-APD detector arrays optimized for low background applications, 4) hybridization, packaging into a sensor chip assembly (SCA) with initial characterization by Selex and, 5) comprehensive characterization of low background performance, both in the laboratory and at ground based telescopes, by UH. The ultimate goal is to produce and eventually market a large format array, the L

  7. Effect of a valence-band barrier on the quantum efficiency and background-limited dynamic resistance of compositionally graded HgCdTe P-on-n heterojunction photodiodes

    NASA Astrophysics Data System (ADS)

    Weiler, M. H.; Reine, M. B.

    1995-09-01

    A new analytical model for the bias-dependent quantum efficiency of a HgCdTe P-on-n heterojunction photodiode with a valence band barrier elucidates the important physics of the phenomenon and shows that the background-induced shunt resistance is a result of the same mechanism, that is, a tendency of the light-induced carriers to pile up in the base layer due to the retarding field produced by the barrier. A parameterized version of the model agrees well with experimental current-vs-voltage and noise measurements.

  8. The evaluation of a HgCdTe photomixer with a Tunable Diode Laser (TDL) and the evaluation of TDL's as a local oscillator in a heterodyne detection system

    NASA Technical Reports Server (NTRS)

    Harward, C. N.; Kindle, E. C.

    1977-01-01

    Heterodyne systems would be much more versatile if a broadly tunable laser, such as a semiconductor diode laser (TDL), could be used as the local oscillator (LO). Previous studies have shown that while a TDL can be used as an LO, the TDL lack sufficient power to cause the signal-to-noise ratio to be shot noise limited. The heterodyne system with a HgCdTe photodiode as the LO was characterized and the beat frequency response of the heterodyne systems was mapped out.

  9. Application of hybrid SiO2-coated CdTe nanocrystals for sensitive sensing of Cu2+ and Ag+ ions.

    PubMed

    Cao, Yongqiang; Zhang, Aiyu; Ma, Qian; Liu, Ning; Yang, Ping

    2013-01-01

    A new ion sensor based on hybrid SiO2 -coated CdTe nanocrystals (NCs) was prepared and applied for sensitive sensing of Cu(2+) and Ag(+) for the selective quenching of photoluminescence (PL) of NCs in the presence of ions. As shown by ion detection experiments conducted in pure water rather than buffer solution, PL responses of NCs were linearly proportional to concentrations of Cu(2+) and Ag(+) ions < 3 and 7 uM, respectively. Much lower detection limits of 42.37 nM for Cu(2+) and 39.40 nM for Ag(+) were also observed. In addition, the NC quenching mechanism was discussed in terms of the characterization of static and transient optical spectra. The transfer and trapping of photoinduced charges in NCs by surface energy levels of CuS and Ag2 S clusters as well as surface defects generated by the exchange of Cu(2+) and Ag(+) ions with Cd(2+) ion in NCs, resulted in PL quenching and other optical spectra changes, including steady-state absorption and transient PL spectra. It is our hope that these results will be helpful in the future preparation of new ion sensors.

  10. The behaviors of metal ions in the CdTe quantum dots-H2O2 chemiluminescence reaction and its sensing application.

    PubMed

    Sheng, Zonghai; Han, Heyou; Liang, Jiangong

    2009-01-01

    The behaviors of 15 kinds of metal ions in the thiol-capped CdTe quantum dots (QDs)-H2O2 chemiluminescence (CL) reaction were investigated in detail. The results showed that Ag+, Cu2+ and Hg2+ could inhibit CdTe QDs and H2O2 CL reaction. A novel CL method for the selective determination of Ag+, Cu2+ and Hg2+ was developed, based on their inhibition of the reaction of CdTe QDs and H2O2. Under the optimal conditions, good linear relationships were realized between the CL intensity and the logarithm of concentrations of Ag+, Cu2+ and Hg2+. The linear ranges were from 2.0 x 10(-6) to 5.0 x 10(-8) mol L(-1) for Ag+, from 5.0 x 10-6 to 7.0 x 10(-8) mol L(-1) for Cu2+ and from 2.0 x 10(-5) to 1.0 x 10(-7) mol L(-1) for Hg2+, respectively. The limits of detection (S/N = 3) were 3.0 x 10(-8), 4.0 x 10(-8) and 6.7 x 10(-8) mol L(-1) for Ag+, Cu2+ and Hg2+, respectively. A possible mechanism for the inhibition of CdTe QDs and H2O2 CL reaction was also discussed.

  11. Theoretical and experimental investigation of doping M in ZnSe (M = Cd, Mn, Ag, Cu) clusters: optical and bonding characteristics.

    PubMed

    Xu, Shuhong; Xu, Xiaojing; Wang, Chunlei; Zhao, Zengxia; Wang, Zhuyuan; Cui, Yiping

    2016-03-01

    The optical and bonding characteristics of doping ZnSe quantum dots (QDs) were investigated. Cd-, Mn-, Ag- and Cu-doped ZnSe were synthesized in aqueous solution. Theoretically, the intensity of the Cd-Se bond was similar to that of the Zn-Se bond, which illustrates that Cd can be doped into ZnSe materials at any ratio. We found that Mn-Se bonding was stronger than Zn-Se bonding. Ag-doped ZnSe nanoclusters show the same bonding and configuration as Cu-doped ZnSe. Moreover, Cd can be doped into ZnSe using both the substitution- and vacancy-doping method. For Mn-doped ZnSe clusters, small amounts of Mn impurity lead to stronger bonding with Se, but larger amounts of Mn impurity led to the formation of a Mn-Mn metal bond. The theoretical results show that it is difficult to form a vacancy-doping cluster for Mn-doped ZnSe materials. In experiments, the absorption and photoluminescence (PL) spectral wavelengths of Mn-doped ZnSe nanocrystals were the same as those of pure ZnSe nanocrystals, showing that the Mn impurity is not doped into ZnSe nanocrystals. Ag- and Cu-doped ZnSe nanocrystals have the same PL characteristics. The doping of an impurity is related to the solubility product, and not the bonding intensity.

  12. Bioaccumulation of Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in trophosome and vestimentum of the tube worm Riftia pachyptila from Guaymas basin, Gulf of California

    NASA Astrophysics Data System (ADS)

    Ruelas-Inzunza, J.; Páez-Osuna, F.; Soto, Luis A.

    2005-07-01

    Twenty two specimens of vestimentiferan tube worms Riftia pachyptila were collected from Guaymas Basin. The distribution of ten trace metals in trophosome and vestimentum was investigated. Highest mean concentrations of Co, Cu and Fe were detected in the trophosome; while higher mean levels of Cd, Hg, Mn, Ni, Pb and Zn were measured in the vestimentum. However, the t-student test resulted in significant differences (p<0.05) only in the case of Co. Cd and Fe concentrations in vestimentum increased accordingly with the size of specimens. With respect to vent fluids, extreme uptake seems to be a characteristic of R. pachyptila in the case of Cu and Zn but not for the rest of the analyzed metals. Studies concerning accumulation mechanisms of trace metals in R. pachyptila are needed, particularly on the capacity of this organism to tolerate elevated levels of elements considered as non-essential.

  13. "Naked-eye" colorimetric and "turn-on" fluorometric chemosensors for reversible Hg2+ detection.

    PubMed

    Wanichacheva, Nantanit; Praikaew, Panida; Suwanich, Thanapat; Sukrat, Kanjarat

    2014-01-24

    Two new Hg(2+)-colorimetric and fluorescent sensors based on 2-[3-(2-aminoethylsulfanyl) propylsulfanyl]ethanamine covalently bound to one and two units of rhodamine-6G moieties, 1 and 2, were synthesised, and their sensing behaviors toward metal ions were investigated by UV/Vis and fluorescence spectroscopy. Upon the addition of Hg(2+), the sensors exhibited highly sensitive "turn-on" fluorescence enhancement as well as a color change from colorless to pink, which was readily noticeable for naked eye detection. Especially, 1 exhibited the reversible behavior and revealed a very high selectivity in the presence of competitive ions, particularly Cu(2+), Ag(+), Pb(2+), Ca(2+), Cd(2+), Co(2+), Fe(2+), Mn(2+), Na(+), Ni(2+), K(+), Ba(2+), Li(+) and Zn(2+), with a low detection limit of 1.7 ppb toward Hg(2+).

  14. Molecular structures, charge distributions, and vibrational analyses of the tetracoordinate Cu(II), Zn(II), Cd(II), and Hg(II) bromide complexes of p-toluidine investigated by density functional theory in comparison with experiments

    NASA Astrophysics Data System (ADS)

    Bardakçı, Tayyibe; Kumru, Mustafa; Altun, Ahmet

    2016-07-01

    The Cu(II), Zn(II), Cd(II), and Hg(II) bromide complexes of p-toluidine have been studied with B3LYP calculations by using def2-TZVP basis set at the metal atoms and using def2-TZVP and 6-311G+(d,p) basis sets at the remaining atoms. Both basis set combinations give analogous results, which validate the use of quickly converging 6-311G+(d,p) basis set in future studies. The molecular structures, atomic charge and spin distributions, and harmonic vibrational frequencies of the complexes have been calculated. The Zn, Cd and Hg complexes have been found to have distorted tetrahedral environments around the metal atoms whereas Cu complex has a square planar geometry. The NBO charge analysis have been found more accurate and less misleading compared with the Mulliken scheme. The present vibrational spectra calculations allow accurate assignment of the vibrational bands, which otherwise assigned tentatively in previous experimental-only studies.

  15. Capacitance-voltage characteristics of the p-Cd{sub 0.27}Hg{sub 0.73}Te-based structures with a wide-gap graded-gap surface layer

    SciTech Connect

    Vasil'ev, V. V.; Mashukov, Yu. P.

    2007-01-15

    Capacitance-voltage characteristics of the structure In-SiO{sub 2}-(graded-gap layer Cd{sub 0.71-0.27}Hg{sub 0.29-0.73}Te)-p-Cd{sub 0.27}Hg{sub 0.73}Te-GaAs are investigated at temperatures of 80 K and higher. The characteristics have the hysteresis, specifically, the characteristic is similar to a forward portion of the usual high-frequency characteristic (from enrichment to inversion), while the reverse portion has an extended plateau, in which the capacitance of the space-charge region is larger by a factor of approximately 2. To interpret the capacitance-voltage characteristic, the effect of partial screening of the graded-gap part of the space-charge region from the electric field of the test signal, as well as the effect of formation of the potential electron well near the surface due to the recharging of donor levels are considered.

  16. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water.

    PubMed

    Guo, Xiaoyao; Du, Bin; Wei, Qin; Yang, Jian; Hu, Lihua; Yan, Liangguo; Xu, Weiying

    2014-08-15

    In the present study, a kind of graphenes magnetic material (Fe3O4-GS) was prepared by compositing graphene sheet with ferroferric oxide, and shown to be effective for removing Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) ions from aqueous solution. The synthesized sorbent was characterized by SEM, TEM, FTIR, XRD, XPS and BET, respectively. The pHZPC value of the sorbent was estimated to be 3.5 by alkaline-titration methods. Fe3O4-GS can be simply recovered from water with magnetic separation at low magnetic field within one minute. The sorption capacities of the metals were 17.29, 27.95, 23.03, 27.83 and 22.07 mg g(-1) for Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II), respectively. Kinetic data showed good correlation with pseudo-second-order equation and the Freundlich model was found to fit for the isotherm data of all the heavy metal ions. It was found that the metals sorption was accomplished mainly via chelation or ion exchange. The results of thermodynamic studies illustrate that the adsorption process was endothermic and spontaneous in nature.

  17. Impact of D2O/H2O Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects.

    PubMed

    Wen, Qiannan; Kershaw, Stephen V; Kalytchuk, Sergii; Zhovtiuk, Olga; Reckmeier, Claas; Vasilevskiy, Mikhail I; Rogach, Andrey L

    2016-04-26

    We have studied light emission kinetics and analyzed carrier recombination channels in HgTe quantum dots that were initially grown in H2O. When the solvent is replaced by D2O, the nonradiative recombination rate changes highlight the role of the vibrational degrees of freedom in the medium surrounding the dots, including both solvent and ligands. The contributing energy loss mechanisms have been evaluated by developing quantitative models for the nonradiative recombination via (i) polaron states formed by strong coupling of ligand vibration modes to a surface trap state (nonresonant channel) and (ii) resonant energy transfer to vibration modes in the solvent. We conclude that channel (i) is more important than (ii) for HgTe dots in either solution. When some of these modes are removed from the relevant spectral range by the H2O to D2O replacement, the polaron effect becomes weaker and the nonradiative lifetime increases. Comparisons with CdTe quantum dots (QDs) served as a reference where the resonant energy loss (ii) a priori was not a factor, also confirmed by our experiments. The solvent exchange (H2O to D2O), however, is found to slightly increase the overall quantum yield of CdTe samples, probably by increasing the fraction of bright dots in the ensemble. The fundamental study reported here can serve as the foundation for the design and optimization principles of narrow bandgap quantum dots aimed at applications in long wavelength colloidal materials for infrared light emitting diodes and photodetectors.

  18. Synthesis, spectroscopic, antimicrobial and DNA cleavage studies of new Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes with naphthofuran-2-carbohydrazide Schiff base

    NASA Astrophysics Data System (ADS)

    Halli, Madappa B.; Sumathi, R. B.

    2012-08-01

    A series of Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes have been synthesized with newly synthesized Schiff base derived from naphthofuran-2-carbohydrazide and cinnamaldehyde. The elemental analyses of the complexes are confined to the stoichiometry of the type MLCl2 [M = Co(II) and Cu(II)], ML2Cl2 [M = Ni(II), Cd(II), Zn(II) and Hg(II)] respectively, where L is Schiff base ligand. Structures have been proposed from elemental analyses, IR, electronic, mass, 1H NMR, ESR spectral data, magnetic, and thermal studies. The measured low molar conductance values in DMF indicate that the complexes are non-electrolytes. Spectroscopic studies suggest coordination occurs through azomethine nitrogen and carbonyl oxygen of the ligand with the metal ions. The Schiff base and its complexes have been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal (Aspergillus niger, Aspergillus flavus, Cladosporium and Candida albicans) activities by minimum inhibitory concentration (MIC) method. The DNA cleavage studies by agarose gel electrophoresis method was studied for all the complexes.

  19. Calculations of photo-induced X-ray production cross-sections in the energy range 1-150 keV and average fluorescence yields for Zn, Cd and Hg

    NASA Astrophysics Data System (ADS)

    Sampaio, J. M.; Guerra, M.; Parente, F.; Madeira, T. I.; Indelicato, P.; Santos, J. P.; Marques, J. P.

    2016-09-01

    In this paper, we calculate the K-, L- and M-shells X-ray production, and X-ray fluorescence cross-sections after photo-induced ionization, for Zn, Cd, and Hg, and for incident photon energy range from 1 to 150 keV. For this purpose, the corresponding average fluorescence yields for Zn, Cd, and Hg as well as the photoionization cross-sections were calculated using the Dirac-Fock method. Subshell fluorescence, intrashell and intershell yields are obtained consistently from radiative and radiationless transitions calculated in the exact same method. A comprehensive account of the relations between the X-ray production, X-ray fluorescence cross-sections and the photoionization cross-sections and these yields is presented. Comparisons are made with results from other authors. The obtained values for the photoionization cross-sections are in good agreement with the widely used data of Scofield in the studied energy range. However our results for the X-ray fluorescence cross sections seem to favor some data relatively to others. The energy dependence of the average fluorescence yields is discussed, in particular, the reliability of extrapolated data for lighter elements from measurements and calculations in heavier elements above the inner shell absorption edges is questioned. Tabulated data on photoionization and X-ray production cross-sections are presented for the incident photon energy range 1-150 keV in steps of 1 keV.

  20. The energy band diagram and photovoltaic characteristic of nano p-AgInTe2/n-CdS{0.4}Se{0.6} heterojunction

    NASA Astrophysics Data System (ADS)

    El-Barry, A. M. A.

    2007-12-01

    Nano p-AgInTe{2}/n-CdS{0.4}Se{0.6} heterojunction was constructed. The dark current voltage characteristics of the prepared junction have been investigated in a temperature range from 303 to 423 K. The operating conduction mechanism was found to be Pool-Frenkel emission for T > 323 K and V < +0.8 volt. The supposed band diagram of p-AgInTe{2}/n-CdS{0.4}Se{0.6} heterojunction is exhibited. Analysis of the photovoltaic characteristic, at room temperature and under illumination of 2.7 W/m2, lead to the determination of some solar cell parameters, such as; the short circuit current, the open circuit voltage, the fill factor and the power conversion efficiency.

  1. Environmentally benign and efficient Ag2S-ZnO nanowires as photoanodes for solar cells: comparison with CdS-ZnO nanowires.

    PubMed

    Hwang, Insung; Yong, Kijung

    2013-02-04

    In this work, we develop a low-temperature, facile solution reaction route for the fabrication of quantum-dot-sensitized solar cells (QDSSCs) containing Ag(2)S-ZnO nanowires (NWs), simultaneously ensuring low manufacturing costs and environmental safety. For comparison, a CdS-ZnO NW photoanode was also prepared using the layer-by-layer growth method. Ultraviolet photoelectron spectroscopy analysis revealed type-II band alignments for the band structures of both photoanodes which facilitate electron transfer/collection. Compared to CdS-ZnO QDSSCs, Ag(2)S-ZnO QDSSCs exhibit a considerably higher short-circuit current density (J(sc)) and a strongly enhanced light-harvesting efficiency, but lower open-circuit voltages (V(oc)), resulting in almost the same power-conversion efficiency of 1.2 %. Through this work, we demonstrate Ag(2)S as an efficient quantum-dot-sensitizing material that has the potential to replace Cd-based sensitizers for eco-friendly applications.

  2. Mono and binuclear Ag(I), Cu(II), Zn(II) and Hg(II) complexes of a new azo-azomethine as ligand: synthesis, potentiometric, spectral and thermal studies.

    PubMed

    Ahmed, Ibrahim S; Moustafa, Moustafa M; Abd El Aziz, Mohamed M

    2011-05-01

    New azo-azomethine dyes were prepared by reaction of p-aminobenzoic acid, o-anisidine, o-nitroaniline, and p-bromoaniline with salicylaldehyde respectively to form azo compounds and then condensation by urea to form 4-(R-arylazo 2-salicylaldene)-urea azo-azomethine derivatives (I(a-d)). The complexes of these ligands with Ag(I), Cu(II), Zn(II) and Hg(II) metal ions were prepared. The structure of the free ligands and their complexes were characterized by using elemental analysis (C, H, N), (1)H NMR, IR and UV-Vis-spectra. The proton dissociation constants of the ligands and the stability constant of their complexes have been determined potentiometrically in 40% (v/v) alcohol-water medium as well as the stoichiometry of complexes were determined conductometrically. The data reveal that the stoichiometries for all complexes were prepared in molar ratios (1:1) and (1:2) (M:L). The electrolytic and nonelectrolytic natures of the complexes were assigned based on molar conductance measurements. The thermogravimetric (TG), and differential thermal analyses (DTA) were studied in nitrogen atmosphere with heating rate 10°C/min. The kinetic and thermodynamic parameters for thermal decomposition of complexes have been calculated by graphical method using Coats-Redfern (CR) method.

  3. Influences of dissolved and colloidal organic carbon on the uptake of Ag, Cd, and Cr by the marine mussel Perna viridis.

    PubMed

    Pan, Jin-Fen; Wang, Wen-Xiong

    2004-06-01

    The cross-flow ultrafiltration and radiotracer techniques were used to study the influences of natural dissolved organic carbon (DOC) and colloidal organic carbon (COC) on the bioavailability of Ag, Cd, and Cr to the green mussel Perna viridis. We examined the uptake of these metals by the mussels at different concentrations of DOC and COC from different origins (estuarine, coastal, and diatom decomposed). Using the DOC originating from the decomposed diatom (Thalassiosira pseudonana), we demonstrated that Cd and Cr uptake, quantified by the concentration factor (DCF), increased linearly with increasing DOC concentration. There was, however, no consistent influence of natural DOC concentration on the metal uptake when the DOC was obtained from different sources of seawater (coastal and estuarine). The influences of COC on metal bioavailability were metal-specific and dependent on the geochemical properties of colloids and colloid-metal complexation. Cd uptake rate was not influenced by the COC concentrations. Uptake of diatom-decomposed colloidal Cr was enhanced by 3.4x, whereas the uptake of diatom-decomposed colloidal Ag was decreased by 8.2x compared with the uptake of low molecular weight Cr and Ag (<1 kDa). The uptake of diatom-decomposed colloidal Cr and Ag was generally lower than the uptake of metals bound with the same type of colloids for 2 days. Further aging of the colloid-metal binding reduced metal bioavailability to the mussels. In the presence of different sizes of colloidal particles where there was no major binding of colloids with the metals, metal uptake by the mussels was not influenced by different COC concentrations. Overall, our study suggests that although metal dissociation from colloids may be an important step for the uptake of colloidal metals, other mechanisms such as pinocytosis and co-transport may also be involved in the uptake of these metals, especially in aquatic environments with high DOC and COC concentrations.

  4. Optical and electrical studies of arsenic-implanted HgCdTe films grown with molecular beam epitaxy on GaAs and Si substrates

    NASA Astrophysics Data System (ADS)

    Izhnin, I. I.; Voitsekhovsky, A. V.; Korotaev, A. G.; Fitsych, O. I.; Bonchyk, A. Yu.; Savytskyy, H. V.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Jakiela, R.

    2017-03-01

    A defect study was performed on arsenic-implanted Hg1-xCdxTe (x = 0.23-0.30) films with graded-gap surface layers, grown with molecular-beam epitaxy on GaAs and Si substrates and designed for fabrication of 'p+-n'-type photodiodes. First, formation of n+-p structure was investigated in p-type material, in order to study radiation-induced donor defects. Next, formation of p+-n structure was investigated in the course of implantation in n-type material and arsenic activation annealing. Influence of the graded-gap surface layer was found to be expressed in the degree of saturation of the concentration of radiation-induced defects, with results obtained on arsenic- and boron-implanted material differing due to the difference in the ion masses.

  5. Application of the ALE and MBE Methods to the Growth of Layered Hg sub x Cd sub 1-x Te Films.

    DTIC Science & Technology

    1986-09-26

    grain - boundary structures. GaAs is an attrac- tive alternative because large-area wafers of high structural _ ALE CdTe (11, perfection [dislocation...single-crystal X-ray diffracto- metry Nomarsky microscopy, Auger and ESCA spectroscopy, Rutherford backscattering and Hall mobility measurements...high growth rate observed. dow) position by a rotating part, most of the boundary layer will be sheared off by a fixed plate placed above the rotating

  6. Temperature dependence of the carrier lifetime in Cd{sub x}Hg{sub 1−x}Te narrow-gap solid solutions with consideration for Auger processes

    SciTech Connect

    Bazhenov, N. L. Mynbaev, K. D.; Zegrya, G. G.

    2015-04-15

    The temperature dependence of the carrier lifetime in Cd{sub x}Hg{sub 1−x}Te narrow-gap solid solutions in the temperature range 5 K < T < 300 K is analyzed within the scope of a microscopic model. Main attention is given to an analysis of the Auger recombination mechanism governing the carrier lifetime at high temperatures. The Auger-recombination rates are calculated with consideration for specific features of the band structure of the narrow-gap semiconductor in microscopic theory. It is shown that strict account of the non-parabolicity of the electronic structure in terms of Kane’s model leads to a substantially different temperature dependence of the Auger-recombination rates, compared with the approach in which nonparabolicity is disregarded.

  7. A change in the electro-physical properties of narrow-band CdHgTe solid solutions acted upon by a volume discharge induced by an avalanche electron beam in the air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Grigor'ev, D. V.; Korotaev, A. G.; Kokhanenko, A. P.; Tarasenko, V. F.; Shulepov, M. A.

    2012-03-01

    The effect of a nanosecond volume discharge forming in an inhomogeneous electrical field at atmospheric pressure on the CdHgTe (MCT) epitaxial films of the p-type conduction with the hole concentration 2·1016 cm3 and mobility 500 cm2·V-1·s-1 is studied. The measurement of the electrophysical parameters of the MCT specimens upon irradiation shows that a layer exhibiting the n-type conduction is formed in the near-surface region of the epitaxial films. After 600 pulses and more, the thickness and the parameters of the layer are such that the measured field dependence of the Hall coefficient corresponds to the material of the n-type conduction. Analysis of the preliminary results reveals that the foregoing nanosecond volume discharge in the air at atmospheric pressure is promising for modification of electro-physical MCT properties.

  8. Effect of Pulse Nanosecond Volume Discharge in Air at Atmospheric Pressure on Electrical Properties of Mis Structures Based on p-HgCdTe Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Grigor'ev, D. V.; Tarasenko, V. F.; Shulepov, M. A.

    2015-11-01

    The effect of the pulse nanosecond volume discharge in air at atmospheric pressure on the admittance of MIS structures based on MBE graded-gap p-Hg0.78Cd0.22Te is studied in a wide range of frequencies and temperatures. It is shown that the impact of the discharge leads to significant changes in electrical characteristics of MIS structures (the density of positive fixed charge increases), to the changes in the nature of the hysteresis of capacitance-voltage characteristics, and to an increase in the density of surface states. A possible reason for the changes in the characteristics of MIS structures after exposure to the discharge is substantial restructuring of the defect-impurity system of the semiconductor near the interface.

  9. Optical and magneto-optical effects in Hg{sub 1-x}Cd{sub x}Cr{sub 2}Se{sub 4} (0 ⩽ x ⩽ 1) single crystals

    SciTech Connect

    Sukhorukov, Yu. P. Telegin, A. V.; Bebenin, N. G.; Zainullina, R. I.; Mostovshchikova, E. V.; Viglin, N. A.; Gan’shina, E. A.; Zykov, G. S.; Fedorov, V. A.; Menshchikova, T. K.; Buchkevich, A. A.

    2015-09-15

    The concentration, temperature, and magnetic-field dependences of the magnetoreflection and magnetotransmission of natural light in the infrared spectral range and the Kerr effect in single crystals of ferromagnetic Hg{sub 1-x}Cd{sub x}Cr{sub 2}Se{sub 4} (0 ⩽ x ⩽ 1) spinels have been studied. A relationship of the magneto-optical properties to the electronic band structure of spinels has been established. The most significant changes in the spectra of magnetoreflection, magnetotransmission, and the Kerr effect are shown to be observed for 0.1 < x < 0.25 and are attributable to a rearrangement of the band structure as the composition changes.

  10. High activity of Ag-doped Cd0.1Zn0.9S photocatalyst prepared by the hydrothermal method for hydrogen production under visible-light irradiation

    PubMed Central

    Kimi, Melody; Shamsuddin, Mustaffa

    2014-01-01

    Summary Background: The hydrothermal method was used as a new approach to prepare a series of Ag-doped Cd0.1Zn0.9S photocatalysts. The effect of Ag doping on the properties and photocatalytic activity of Cd0.1Zn0.9S was studied for the hydrogen production from water reduction under visible light irradiation. Results: Compared to the series prepared by the co-precipitation method, samples prepared by the hydrothermal method performed with a better photocatalytic activity. The sample with the optimum amount of Ag doping showed the highest hydrogen production rate of 3.91 mmol/h, which was 1.7 times higher than that of undoped Cd0.1Zn0.9S. With the Ag doping, a red shift in the optical response was observed, leading to a larger portion of the visible light absorption than that of without doping. In addition to the larger absorption in the visible-light region, the increase in photocatalytic activity of samples with Ag doping may also come from the Ag species facilitating electron–hole separation. Conclusion: This study demonstrated that Ag doping is a promising way to enhance the activity of Cd0.1Zn0.9S photocatalyst. PMID:24991495

  11. Dynamically tuning emission band of CdSe/ZnS quantum dots assembled on Ag nanorod array: plasmon-enhanced Stark shift.

    PubMed

    Peng, Xiao-Niu; Zhou, Zhang-Kai; Zhang, Wei; Hao, Zhong-Hua

    2011-11-21

    We demonstrate tuning emission band of CdSe/ZnS semiconductor quantum dots (SQDs) closely-packed in the proximity of Ag nanorod array by dynamically adjusting exciton-plasmon interaction. Large red-shift is observed in two-photon luminescence (TPL) spectra of the SQDs when the longitudinal surface plasmon resonance (LSPR) of Ag nanorod array is adjusted to close to excitation laser wavelength, and the spectral red-shift of TPL reaches as large as 101 meV by increasing excitation power, which is slightly larger than full width at half-maximum of emission spectrum of the SQDs. The observed LSPR-dependent spectral shifting behaviors are explained by a theoretical model of plasmon-enhanced quantum-confined Stark effect. These observations could find the applications in dynamical information processing in active plasmonic and photonic nanodevices.

  12. Preparation, spectroscopic, thermal, antihepatotoxicity, hematological parameters and liver antioxidant capacity characterizations of Cd(II), Hg(II), and Pb(II) mononuclear complexes of paracetamol anti-inflammatory drug

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2014-10-01

    Keeping in view that some metal complexes are found to be more potent than their parent drugs, therefore, our present paper aimed to synthesized Cd(II), Hg(II) and Pb(II) complexes of paracetamol (Para) anti-inflammatory drug. Paracetamol complexes with general formula [M(Para)2(H2O)2]·nH2O have been synthesized and characterized on the basis of elemental analysis, conductivity, IR and thermal (TG/DTG), 1H NMR, electronic spectral studies. The conductivity data of these complexes have non-electrolytic nature. Comparative antimicrobial (bacteria and fungi) behaviors and molecular weights of paracetamol with their complexes have been studied. In vivo the antihepatotoxicity effect and some liver function parameters levels (serum total protein, ALT, AST, and LDH) were measured. Hematological parameters and liver antioxidant capacities of both Para and their complexes were performed. The Cd2+ + Para complex was recorded amelioration of antioxidant capacities in liver homogenates compared to other Para complexes treated groups.

  13. Preparation, spectroscopic, thermal, antihepatotoxicity, hematological parameters and liver antioxidant capacity characterizations of Cd(II), Hg(II), and Pb(II) mononuclear complexes of paracetamol anti-inflammatory drug.

    PubMed

    El-Megharbel, Samy M; Hamza, Reham Z; Refat, Moamen S

    2014-10-15

    Keeping in view that some metal complexes are found to be more potent than their parent drugs, therefore, our present paper aimed to synthesized Cd(II), Hg(II) and Pb(II) complexes of paracetamol (Para) anti-inflammatory drug. Paracetamol complexes with general formula [M(Para)2(H2O)2]·nH2O have been synthesized and characterized on the basis of elemental analysis, conductivity, IR and thermal (TG/DTG), (1)H NMR, electronic spectral studies. The conductivity data of these complexes have non-electrolytic nature. Comparative antimicrobial (bacteria and fungi) behaviors and molecular weights of paracetamol with their complexes have been studied. In vivo the antihepatotoxicity effect and some liver function parameters levels (serum total protein, ALT, AST, and LDH) were measured. Hematological parameters and liver antioxidant capacities of both Para and their complexes were performed. The Cd(2+)+Para complex was recorded amelioration of antioxidant capacities in liver homogenates compared to other Para complexes treated groups.

  14. A highly selective and sensitive fluorescent sensor for the rapid detection of Hg2 + based on phenylamine-oligothiophene derivative

    NASA Astrophysics Data System (ADS)

    Niu, Qingfen; Wu, Xingxing; Zhang, Shanshan; Li, Tianduo; Cui, Yuezhi; Li, Xiaoyan

    2016-01-01

    A fast-responsive fluorescent phenylamine-oligothiophene sensor 3TDDA was reported. This sensor exhibited highly selective and sensitive detection of Hg2 + ion in aqueous solution (THF/CH3CN/H2O, 45/50/5, v/v) through fluorescence quenching. The detection was not affected by the coexistence of other competitive metal ions such as Na+, K+, Ag+, Ca2 +, Fe3 +, Al3 +, Co2 +, Ni2 +, Zn2 +, Pb2 +, Cd2 +, Fe2 + and Cr3 +. A stoichiometric ratio (1:1) of the sensor and Hg2 + was determined by a Job's plot and mole-ratio curves. The binding of sensor 3TDDA and Hg2 + was also chemically reversible with EDTA. The detection limit was calculated as low as 4.392 × 10- 7 M.

  15. “Naked-eye” colorimetric and “turn-on” fluorometric chemosensors for reversible Hg2+ detection

    NASA Astrophysics Data System (ADS)

    Wanichacheva, Nantanit; Praikaew, Panida; Suwanich, Thanapat; Sukrat, Kanjarat

    2014-01-01

    Two new Hg2+-colorimetric and fluorescent sensors based on 2-[3-(2-aminoethylsulfanyl) propylsulfanyl]ethanamine covalently bound to one and two units of rhodamine-6G moieties, 1 and 2, were synthesised, and their sensing behaviors toward metal ions were investigated by UV/Vis and fluorescence spectroscopy. Upon the addition of Hg2+, the sensors exhibited highly sensitive “turn-on” fluorescence enhancement as well as a color change from colorless to pink, which was readily noticeable for naked eye detection. Especially, 1 exhibited the reversible behavior and revealed a very high selectivity in the presence of competitive ions, particularly Cu2+, Ag+, Pb2+, Ca2+, Cd2+, Co2+, Fe2+, Mn2+, Na+, Ni2+, K+, Ba2+, Li+ and Zn2+, with a low detection limit of 1.7 ppb toward Hg2+.

  16. Effects of metal-bearing nanoparticles (Ag, Au, CdS, ZnO, SiO2) on developing zebrafish embryos

    NASA Astrophysics Data System (ADS)

    María Lacave, José; Retuerto, Ander; Vicario-Parés, Unai; Gilliland, Douglas; Oron, Miriam; Cajaraville, Miren P.; Orbea, Amaia

    2016-08-01

    Due to the increasing commercialization of consumer and industrial products containing nanoparticles (NPs), an increase in the introduction of these materials into the environment is expected. NP toxicity to aquatic organisms depends on multiple biotic and abiotic factors, resulting in an unlimited number of combinations impossible to test in practice. The zebrafish embryo model offers a useful screening tool to test and rank the toxicity of nanomaterials according to those diverse factors. This work aims to study the acute and sublethal toxicity of a set of metal-bearing NPs displaying different properties, in comparison to that of the ionic and bulk forms of the metals, in order to establish a toxicity ranking. Soluble NPs (Ag, CdS and ZnO) showed the highest acute and sublethal toxicity, with LC50 values as low as 0.529 mg Ag l-1 for Ag NPs of 20 nm, and a significant increase in the malformation prevalence in embryos exposed to 0.1 mg Cd l-1 of CdS NPs of ˜4 nm. For insoluble NPs, like SiO2 NPs, acute effects were not observed during early embryo development due to the protective effect of the chorion. But effects on larvae could be expected, since deposition of fluorescent SiO2 NPs over the gill lamella and excretion through the intestine were observed after hatching. In other cases, such as for gold NPs, the toxicity could be attributed to the presence of additives (sodium citrate) in the NP suspension, as they displayed a similar toxicity when tested separately. Overall, the results indicated that toxicity to zebrafish embryos depends primarily on the chemical composition and, thus, the solubility of the NPs. Other characteristics, such as size, played a secondary role. This was supported by the observation that ionic forms of the metals were always more toxic than the nano forms, and bulk forms were the least toxic to the developing zebrafish embryos.

  17. Interaction of β-cyclodextrin-capped CdSe quantum dots with inorganic anions and cations.

    PubMed

    Shang, Zhuo Bin; Hu, Shuang; Wang, Yu; Jin, Wei Jun

    2011-01-01

    A facile method was developed for the preparation of water soluble β-Cyclodextrin (β-CD)-modified CdSe quantum dots (QDs) (β-CD-QDs) by directly replacing the oleic acid ligands on the QDs surface with β-CD in an alkaline aqueous solution. The as-prepared QDs show good stability in aqueous solution for several months. Oxoanions, including phosphoric acid ion, sulphite acid ion and carbonic acid ion, affect the fluorescence of β-CD-QDs. Among them, H(2)PO(4)(-) exhibited the largest quenching effect. For the polyprotic acids (HO)(3)AO, the effect of acidic anions on the fluorescence of β-CD-QDs was in the order: monoanion (HO)(2)AO(2)(-) > dianion (HO)AO(3)(2-) > trianion AO(4)(3-). After photoactivation for several days in the presence of anions at alkaline pH, the β-CD-QDs exhibited strong fluorescence emission. The effect of various heavy and transition metal ions on the fluorescence properties of the β-CD-QDs was investigated further. It was found that Ag(+), Hg(2+) and Co(2+) have significant quenching effect on the fluorescence of the β-CD-QDs. The Stern-Volmer quenching constants increased in the order: Hg(2+) < Co(2+) <Ag(+). The adsorption model of metal ions on β-CD-QDs was explored.

  18. HgZnTe-based detectors for LWIR NASA applications

    NASA Technical Reports Server (NTRS)

    Patten, Elizabeth A.; Kalisher, Murray H.

    1990-01-01

    The initial goal was to grow and characterize HgZnTe and determine if it indeed had the advantageous properties that were predicted. Researchers grew both bulk and liquid phase epitaxial HgZnTe. It was determined that HgZnTe had the following properties: (1) microhardness at least 50 percent greater than HgCdTe of equivalent bandgap; (2) Hg annealing rates of at least 2 to 4 times longer than HgCdTe; and (3) higher Hg vacancy formation energies. This early work did not focus on one specific composition (x-value) of HgZnTe since NASA was interested in HgZnTe's potential for a variety of applications. Since the beginning of 1989, researchers have been concentrating, however, on the liquid phase growth of very long wavelength infrared (VLWIR) HgZnTe (cutoff approx. equals 17 microns at 65K) to address the requirements of the Earth Observing System (EOS). Since there are no device models to predict the advantages in reliability one can gain with increased microhardness, surface stability, etc., one must fabricate HgZnTe detectors and assess their relative bake stability (accelerated life test behavior) compared with HgCdTe devices fabricated in the same manner. Researchers chose to fabricate HIT detectors as a development vehicle for this program because high performance in the VLWIR has been demonstrated with HgCdTe HIT detectors and the HgCdTe HIT process should be applicable to HgZnTe. HIT detectors have a significant advantage for satellite applications since these devices dissipate much less power than conventional photoconductors to achieve the same responsivity.

  19. The effect of TiO{sub 2} and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice

    SciTech Connect

    Philbrook, Nicola A.; Winn, Louise M.; Afrooz, A.R.M. Nabiul; Saleh, Navid B.; Walker, Virginia K.

    2011-12-15

    In the last two decades, nanoparticles (NPs) have found applications in a wide variety of consumer goods. Titanium dioxide (TiO{sub 2}) and silver (Ag) NPs are both found in cosmetics and foods, but their increasing use is of concern due to their ability to be taken up by biological systems. While there are some reports of TiO{sub 2} and Ag NPs affecting complex organisms, their effects on reproduction and development have been largely understudied. Here, the effects of orally administered TiO{sub 2} or Ag NPs on reproduction and development in two different model organisms were investigated. TiO{sub 2} NPs reduced the developmental success of CD-1 mice after a single oral dose of 100 or 1000 mg/kg to dams, resulting in a statistically significant increase in fetal deformities and mortality. Similarly, TiO{sub 2} NP addition to food led to a significant progeny loss in the fruit fly, Drosophila, as shown by a decline in female fecundity. Ag NP administration resulted in an increase in the mortality of fetal mice. Similarly in Drosophila, Ag NP feeding led to a significant decrease in developmental success, but unlike TiO{sub 2} NP treatment, there was no decline in fecundity. The distinct response associated with each type of NP likely reflects differences in NP administration as well as the biology of the particular model. Taken together, however, this study warns that these common NPs could be detrimental to the reproductive and developmental health of both invertebrates and vertebrates.

  20. Hg0 absorption in potassium persulfate solution*

    PubMed Central

    Ye, Qun-feng; Wang, Cheng-yun; Wang, Da-hui; Sun, Guan; Xu, Xin-hua

    2006-01-01

    The aqueous phase oxidation of gaseous elemental mercury (Hg0) by potassium persulfate (KPS) catalyzed by Ag+ was investigated using a glass bubble column reactor. Concentration of gaseous mercury and potassium persulfate were measured by cold vapor atom absorption (CVAA) and ion chromatograph (IC), respectively. The effects of pH value, concentration of potassium persulfate and silver nitrate (SN), temperature, Hg0 concentration in the reactor inlet and tertiary butanol (TBA), free radical scavenger, on the removal efficiency of Hg0 were studied. The results showed that the removal efficiency of Hg0 increased with increasing concentration of potassium persulfate and silver nitrate, while temperature and TBA were negatively effective. Furthermore, the removal efficiency of Hg0 was much better in neutral solution than in both acidic and alkaline solution. But the influence of pH was almost eliminated by adding AgNO3. High Hg0 concentration has positive effect. The possible reaction mechanism of gaseous mercury was also discussed. PMID:16615172

  1. Highly selective, sensitive and fast-responsive fluorescent sensor for Hg2 +

    NASA Astrophysics Data System (ADS)

    Niu, Qingfen; Wu, Xingxing; Li, Tianduo; Cui, Yuezhi; Zhang, Shanshan; Li, Xiaoyan

    2016-06-01

    A phenylamine-oligothiophene-based fluorescent sensor 2TBEA was reported. This sensor exhibited highly selective, sensitive and rapid detection of Hg2 + ion in THF/H2O (7/3, v/v) solution through fluorescence quenching. The detection was unaffected by the coexistence of other competitive metal cations including Na+, K+, Ag+, Ca2 +, Fe3 +, Al3 +, Co2 +, Cu2 +, Ni2 +, Zn2 +, Pb2 +, Cd2 +, Fe2 + and Cr3 +. A1:1 binding ratio for 2TBEA - Hg2 + was demonstrated by Job's plot and mole-ratio curves. The coordination process was chemically reversible with EDTA. The detection limit was evaluated to be as low as 6.164 × 10- 8 M.

  2. Retention of Ag-specific memory CD4(+) T cells in the draining lymph node indicates lymphoid tissue resident memory populations.

    PubMed

    Marriott, Clare L; Dutton, Emma E; Tomura, Michio; Withers, David R

    2017-03-15

    Several different memory T-cell populations have now been described based upon surface receptor expression and migratory capabilities. Here we have assessed murine endogenous memory CD4(+) T cells generated within a draining lymph node and their subsequent migration to other secondary lymphoid tissues. Having established a model response targeting a specific peripheral lymph node, we temporally labelled all the cells within draining lymph node using photoconversion. Tracking of photoconverted and non-photoconverted Ag-specific CD4(+) T cells revealed the rapid establishment of a circulating memory population in all lymph nodes within days of immunisation. Strikingly, a resident memory CD4(+) T cell population became established in the draining lymph node and persisted for several months in the absence of detectable migration to other lymphoid tissue. These cells most closely resembled effector memory T cells, usually associated with circulation through non-lymphoid tissue, but here, these cells were retained in the draining lymph node. These data indicate that lymphoid tissue resident memory CD4(+) T-cell populations are generated in peripheral lymph nodes following immunisation.

  3. Effect of the Graded-Gap Layer Composition on the Formation of n + -n - -p Structures in Boron-Implanted Heteroepitaxial Cd x Hg1- x Te Layers

    NASA Astrophysics Data System (ADS)

    Talipov, N. Kh.; Voitsekhovskii, А. V.; Grigor'ev, D. V.

    2014-07-01

    Processes of formation of n + -n--p-structures in boron-implanted heteroepitaxial (HEL) CdxHg1-xTe (CMT) layers of p-type grown by molecular beam epitaxy (HEL CMT MBE) with different compositions of the upper graded-gap layer are studied. It is shown that the surface composition (xs) of HEL CMT MBE significantly affects both the electrical parameters of the implanted layer and the spatial distribution of radiation defects of donor type. For HEL CMT MBE with the small surface composition xs = 0.22-0.33, it is found that the layer electron concentration (Ns) is decreased after saturation with accumulation of radiation defects, as the dose of B+ ions is increased in the range of D = 1ṡ1011-3ṡ1015 сm-2. An increase of the surface composition up to xs = 0.49-0.56 results in a significant decrease in Ns and a disappearance of the saturation of concentration in the whole dose range. The value of Ns monotonically increases with the energy (E) of boron ions and composition xs. It is found that for B+-ion energies E = 20-100 keV, the depth of the surface n + -layer increases with increasing energy and exceeds the total projected path of boron ions. However, in the energy range E = 100-150 keV, the depth of n+-layer stops increasing with the increase of the surface composition. The depth (dn) of a lightly doped n--layer monotonically decreases with increasing energy of boron ions in the entire range of E = 20-150 keV. With increasing dose (D) of B+ ions in the interval D = 1ṡ1014-1ṡ1015сm-2, deep n--layers with dn = 4-5 μm are formed only in the HEL CMT MBE with xs = 0.22-0.33. For the samples with xs = 0.49-0.56, the depth changes in the interval dn = 1.5-2.5 μm. At D ≤ 3ṡ1013сm-2, n + -n--p-structure is not formed for all surface compositions, if implantation is performed at room temperature. However, implantation at T = 130°C leads to the formation of a deep n--layer. Planar photodiodes with the n-p-junction area of A = 35×35 μm2 made on the basis of

  4. Pirquitasite, Ag2ZnSnS4

    PubMed Central

    Schumer, Benjamin N.; Downs, Robert T.; Domanik, Kenneth J.; Andrade, Marcelo B; Origlieri, Marcus J.

    2013-01-01

    Pirquitasite, ideally Ag2ZnSnS4 (disilver zinc tin tetra­sulfide), exhibits tetra­gonal symmetry and is a member of the stannite group that has the general formula A2BCX 4, with A = Ag, Cu; B = Zn, Cd, Fe, Cu, Hg; C = Sn, Ge, Sb, As; and X = S, Se. In this study, single-crystal X-ray diffraction data are used to determine the structure of pirquitasite from a twinned crystal from the type locality, the Pirquitas deposit, Jujuy Province, Argentina, with anisotropic displacement parameters for all atoms, and a measured composition of (Ag1.87Cu0.13)(Zn0.61Fe0.36Cd0.03)SnS4. One Ag atom is located on Wyckoff site Wyckoff 2a (symmetry -4..), the other Ag atom is statistically disordered with minor amounts of Cu and is located on 2c (-4..), the (Zn, Fe, Cd) site on 2d (-4..), Sn on 2b (-4..), and S on general site 8g. This is the first determination of the crystal structure of pirquitasite, and our data indicate that the space group of pirquitasite is I-4, rather than I-42m as previously suggested. The structure was refined under consideration of twinning by inversion [twin ratio of the components 0.91 (6):0.09 (6)]. PMID:23424398

  5. A novel cellulose-dioctyl phthate-baker's yeast biosorbent for removal of Co(II), Cu(II), Cd(II), Hg(II) and Pb(II).

    PubMed

    Mahmoud, Mohamed E; Yakout, Amr A; Abed El Aziz, Marwa T; Osman, Maher M; Abdel-Fattah, Tarek M

    2015-01-01

    In this work, dioctyl phthalate (Dop) was used as a highly plasticizing material to coat and link the surface of basic cellulose (Cel) with baker's yeast for the formation of a novel modified cellulose biosorbent (Cel-Dop-Yst). Characterization was accomplished by Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric analysis (TGA) and Scanning Electron Microscope (SEM) measurements. The feasibility of using Cel-Dop-Yst biosorbent as an efficient material for removal of Co(II), Cu(II), Cd(II), Hg(II) and Pb(II) ions was explored using the batch equilibrium technique along with various experimental controlling parameters. The optimum pH values for removal of these metal ions were characterized in the range of 5.0-7.0. Cel-Dop-Yst was identified as a highly selective biosorbent for removal of the selected divalent metal ions. The Cel-Dop-Yst biosorbent was successfully implemented in treatment and removal of these divalent metal ions from industrial wastewater, sea water and drinking water samples using a multistage microcolumn technique.

  6. Structure and isomerization comparison of Zn(II), Cd(II) and Hg(II) perchlorate complexes of 2,6-bis([(2-pyridyl-methyl)amino]methyl)pyridine.

    PubMed

    Carra, Bradley J; Berry, Steven M; Pike, Robert D; Bebout, Deborah C

    2013-10-28

    The divalent zinc triad perchlorate coordination chemistry of 2,6-bis([(2-pyridyl-methyl)amino]methyl)pyridine (L) was investigated by X-ray crystallography and solution state (1)H NMR. New complexes [HgL(ClO4)2] (1) and [CdL(ClO4)2] (2) were isolated as bicapped distorted square pyramidal racemates, contrasting with the approximate trigonal bipyramidal structure of [ZnL](ClO4)2 (3). Although rapid inter- and intramolecular exchange is common for simple complexes of zinc triad metal ions, conditions for slow intramolecular isomerization on both the δ and J(HH) time scales were established for 1, 2 and 3. Trends in geminal (1)H coupling suggested that an asymmetric structure was favored for all three metal ions at or below 40 °C. Contributions of a symmetric structure to solution equilibria were both temperature- and metal ion-dependent. Spectral trends were consistent with interconversion of a pair of enantiomeric square pyramidal ligand conformers through a symmetric trigonal bipyramidal ligand conformer by M-N bond cleavage and nitrogen inversion. Racemization was slower than the coupling constant time scale up to 40 °C for all complexes. Differential stabilization of specific small ligand conformations in solution has potential toxicological significance.

  7. Admittance measurements in the temperature range (8-77) K for characterization of MIS structures based on MBE n-Hg0.78Cd0.22Te with and without graded-gap layers

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2017-03-01

    Admittance of MIS structures based on MBE n-Hg1-xCdxTe (x=0.22-0.23) with Al2O3 as insulator is experimentally investigated for the cases of the presence and absence of near-surface graded-gap layers with high content of CdTe. It is shown that the structures with graded-gap layers are characterized by a significant hysteresis of electrical characteristics, a deep and broad dip in the low-frequency capacitance-voltage characteristic, and high values of the differential resistance of the space charge region in the strong inversion. It is found that already at 77 K, the capacitance-voltage characteristics of structures with graded-gap layers have a high-frequency behavior relative to the recharge time of surface states in the frequency range of (1-2000) kHz. At frequencies exceeding 200 kHz and a temperature of (9-15) K, the capacitance-voltage characteristics of the structures without graded-gap layers have a high-frequency behavior relative to the recharge time of surface states located near the Fermi energy for an intrinsic semiconductor. Peculiarities of determining the density of surface states and the electron concentration in MIS structures with and without graded-gap layers are studied.

  8. Structural studies on some dithiophosphonato complexes of Ni(II), Cd(II), Hg(II) and theoretical studies on a dithiophosphonato Ni(II) complex using density functional theory

    NASA Astrophysics Data System (ADS)

    Sağlam, Ertuğrul Gazi; Ebinç, Ahmet; Zeyrek, Celal Tuğrul; Ünver, Hüseyin; Hökelek, Tuncer

    2015-11-01

    In this study, three dithiophosphonic acid complexes, namely, trans-bis-[O-3-methylbutyl (4-methoxyphenyl)dithiophosphonato]nickel(II), Ni(L)2; bis-{bis-[O-3-phenylpropyl (4-methoxyphenyl)dithiophosphonato]cadmium(II)}, [Cd(L)2]2 and bis-{bis-[O-3-methylbutyl (4-methoxyphenyl)dithiophosphonato]mercury(II)}, [Hg(L)2]2 were prepared. The compounds were characterized by elemental analysis; MS; FTIR and Raman spectroscopies and were also investigated by 1H-, 13C- and 31P- NMR. The Ni(L)2 complex was elucidated by X-ray crystallography, molecular characterization and density functional modelling studies. The molecular structure obtained from X-ray single-crystal analysis of the Ni(L)2 complex in the ground state has been compared using density functional theory (DFT), B3LYP functional with 6-311G(d,p) basis set. In addition to the optimized geometrical structures, atomic charges and nonlinear optical (NLO) effects have been investigated by using DFT. The experimental (spectroscopic) and calculated vibrational frequencies (using DFT) of the Ni(L)2 have been compared. There exists a good correlation between experimental and theoretical data for the Ni(L)2 complex.

  9. Study of damage induced by room-temperature Al ion implantation in Hg{sub 0.8}Cd{sub 0.2}Te by x-ray diffuse scattering

    SciTech Connect

    Renault, P.O.; Declemy, A.; Leveque, P.; Fayoux, C.; Bessiere, M.; Lefebvre, S.; Corbel, C.; Baroux, L.

    1997-07-01

    Ion-implantation is a widely used doping technique in II{endash}VI semiconductors. Nevertheless, ion-implantation damage has to be better understood to properly control this process. In order to investigate the implantation-induced defects in such compounds, room-temperature implantations of 320 keV Al ions have been performed on crystalline samples of [111] Hg{sub 1{minus}x}Cd{sub x}Te (x{approx}20{percent}) for doses ranging from 10{sup 13} to 10{sup 15}cm{sup {minus}2}. We report the first measurements of x-ray diffuse scattering close to different Bragg reflections on such as-implanted samples. The evolution of the diffuse intensity as a function of the dose has been observed. The defect-induced diffuse intensity arises mainly from interstitial dislocation loops. Nevertheless, vacancy loops are observed above 3{times}10{sup 14}Al/cm{sup 2}. The mean radius of the dislocation loops increases in size by three to four times when the dose rises from 10{sup 13} to 10{sup 15}cm{sup {minus}2}. Finally, the saturation of point defects has been observed independently of their clustering at about 5{times}10{sup 13}Al/cm{sup 2}, that is in the same range as the saturation dose of the sheet electron concentration. {copyright} {ital 1997 American Institute of Physics.}

  10. First-principles study of the mechanical properties of NiAl microalloyed by M (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd)

    NASA Astrophysics Data System (ADS)

    Zhang, Caili; Han, Peide; Li, Jinmin; Chi, Mei; Yan, Lingyun; Liu, Yanping; Liu, Xuguang; Xu, Bingshe

    2008-05-01

    Structural, electronic and elastic properties for NiAl with 4d alloying elements M (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd) have been studied using the first-principles pseudopotential density functional method within a generalized gradient approximation. From the elastic constants, C11, C12, C44, bulk modulus B0, Young's modulus E, the shear modulus G, the ratios of shear modulus to bulk modulus G/B0, negative Cauchy pressure parameter (C12 - C44) and Poisson's ratio ν calculated after structural full relaxation, M (Tc, Ru, Rh, Pd) alloying addition in NiAl has been shown to increase the stiffness of NiAl and improve its ductility. The density of states and charge density contour involving alloying additions of Ru were further investigated to clarify the electronic causes of the alloying additions.

  11. HgCdTe Surface Study Program

    DTIC Science & Technology

    1982-09-01

    Spectroscopy, in: Optical Properties of Solids , Ed. Berlin, 1976). B.O. Seraphin (North-Holland, Amsterdam, 1976). [31 S.P. Kowalczyk and J.T. Cheung, J... Optical Properties of Solids -New Developments, work edited by B. 0. Seraphin (North-Holland, Amsterdam, This work was supported by U. S. Defense Ad

  12. Fluorometric selective detection of fluoride ions in aqueous media using Ag doped CdS/ZnS core/shell nanoparticles.

    PubMed

    Boxi, Siddhartha Sankar; Paria, Santanu

    2016-01-14

    The presence of fluoride ions in drinking water plays an important role in human health. For that reason, maintaining the optimum concentration of fluoride ions in drinking water is essential, as both low and excess (above the permissible level) concentrations can cause different health problems, such as fluorosis, urolithiasis, kidney failure, cancer, and can even lead to death. So, development of a simple and low cost method for the detection of fluoride ions in water is highly desirable. In this study, a fluorometric method based on Ag-CdS/Ag-ZnS core/shell nanoparticles is developed for fluoride ion detection. The method was tested in aqueous solution at different pH values. The selectivity and sensitivity of the fluorescence probe was checked in the presence of other anions (Cl(-), Br(-), I(-), NO3(-) SO4(2-), HCO3(-), HPO4(2-), CH3COO(-), and H2PO4(-)) and found there is no significant interference of these associated ions. The fluoride ion concentration was varied in the range 190-22 800 μg L(-1) and a lower detection limit was obtained as 99.7 μg L(-1).

  13. Synthesis, characterization and antimicrobial activity of Fe(II), Zn(II), Cd(II) and Hg(II) complexes with 2,6-bis(benzimidazol-2-yl) pyridine ligand.

    PubMed

    Aghatabay, Naz M; Neshat, A; Karabiyik, T; Somer, M; Haciu, D; Dülger, B

    2007-02-01

    2,6-Bis(benzimidazol-2-yl)pyridine (L) ligand and complexes [M(L)Cl(2)] and [Fe(L)(2)](ClO(4))(2) (M=Zn, Cd, Hg) have been synthesized. The geometries of the [M(L)Cl(2)] complexes were derived from theoretical calculation in DGauss/DFT level (DZVP basis set) on CACHE. The central M(II) ion is penta-coordinated and surrounded by N(3)Cl(2) environment, adopting a distorted trigonal bipyramidal geometry. The ligand is tridentate, via three nitrogen atoms to metal centre and two chloride ions lie on each side of the distorted benzimidazole ring. In the [Fe(L)(2)](ClO(4))(2) complex, the central Fe(II) ion is surrounded by two (3N) units, adopting a octahedral geometry. The elemental analysis, molecular conductivity, FT-Raman, FT-IR (mid-, far-IR), (1)H, and (13)C NMR were reported. The antimicrobial activities of the free ligand, its hydrochloride salt, and the complexes were evaluated using the disk diffusion method in dimethyl sulfoxide (DMSO) as well as the minimal inhibitory concentration (MIC) dilution method, against 10 bacteria and the results compared with that for gentamycin. Antifungal activities were reported for Candida albicans, Kluyveromyces fragilis, Rhodotorula rubra, Debaryomyces hansenii, Hanseniaspora guilliermondii, and the results were referenced against nystatin, ketaconazole, and clotrimazole antifungal agents. In most cases, the compounds tested showed broad-spectrum (Gram positive and Gram negative bacteria) activities that were either more effective than or as potent as the references. The binding of two most biologically effective compounds of zinc and mercury to calf thymus DNA has also been investigated by absorption spectra.

  14. Distribution and age-related bioaccumulation of lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As) in tissues of common carp (Cyprinus carpio) and European catfish (Sylurus glanis) from the Buško Blato reservoir (Bosnia and Herzegovina).

    PubMed

    Has-Schön, Elizabeta; Bogut, Ivan; Vuković, Rosemary; Galović, Dalida; Bogut, Ante; Horvatić, Janja

    2015-09-01

    The purpose of this study was to quantify the bioaccumulation of Pb, Hg, Cd, and As in tissues of carp (Cyprinus carpio) and catfish (Silurus glanis) from Buško Blato in Bosnia and Herzegovina. Arsenic concentrations were below the Maximal Admissible Concentration (MAC) for Croatia and other countries. Mercury concentrations were below 1 mg kg(-1), but in most muscle samples of both species and all catfish liver samples, the values were higher than 0.5 mg kg(-1) (higher than the MAC for many countries including Croatia). Lead concentrations were higher than 1 mg kg(-1) (the MAC for Croatia) in most muscle samples; all kidney and most catfish liver samples also exceeded 1 mg kg(-1). Cadmium concentrations in all tissues, other than the gonads, were higher than 0.1 mg kg(-1) (MAC for Croatia), with the highest concentrations found in the kidneys. The only gender difference was found in carp, where a 68.4% higher concentration of As was found in the fry compared to the milt (P<0.05). Concentrations of all of the elements were higher in catfish compared to carp for most tissues. Significant correlations were found between all of the elements in the muscles and the liver of carp. In catfish, the muscles were the only tissue in which multiple correlations were found. Linear positive correlations with age and body mass were demonstrated for the concentrations of all heavy metals for all tissues except the gonads in both fish species. We concluded that significant heavy metal accumulation in carp and a catfish tissues correlates with age and body mass; bioaccumulation is species- and tissue-specific and is different for each element.

  15. Establishing a cost-per-result of laboratory-based, reflex Cryptococcal antigenaemia screening (CrAg) in HIV+ patients with CD4 counts less than 100 cells/μl using a Lateral Flow Assay (LFA) at a typical busy CD4 laboratory in South Africa

    PubMed Central

    Cassim, Naseem; Schnippel, Kathryn; Coetzee, Lindi Marie

    2017-01-01

    Introduction Cryptococcal meningitis is a major cause of mortality and morbidity in countries with high HIV prevalence, primarily affecting patients whose CD4 are < = 100 cells/μl. Routine Cryptococcal Antigen (CrAg) screening is thus recommended in the South African HIV treatment guidelines for all patients with CD4 counts < = 100 cells/μl, followed by pre-emptive anti-fungal therapy where CrAg results are positive. A laboratory-based reflexed CrAg screening approach, using a Lateral Flow Assay (LFA) on remnant EDTA CD4 blood samples, was piloted at three CD4 laboratories. Objectives This study aimed to assess the cost-per-result of laboratory-based reflexed CrAg screening at one pilot CD4 referral laboratory. Methods CD4 test volumes from 2014 were extracted to estimate percentage of CD4 < = 100 cells/μl. Daily average volumes were derived, assuming 12 months per/year and 21.73 working days per/month. Costing analyses were undertaken using Microsoft Excel and Stata with a provider prospective. The cost-per-result was estimated using a bottom-up method, inclusive of test kits and consumables (reagents), laboratory equipment and technical effort costs. The ZAR/$ exchange of 14.696/$1 was used, where applicable. One-way sensitivity analyses on the cost-per-result were conducted for possible error rates (3%– 8%, reductions or increases in reagent costs as well as test volumes (ranging from -60% to +60%). Results The pilot CD4 laboratory performed 267000 CD4 tests in 2014; ~ 9.3% (27500) reported CD4< = 100 cells/μl, equivalent to 106 CrAg tests performed daily. A batch of 30-tests could be performed in 1.6 hours, including preparation and analysis time. A cost-per-result of $4.28 was reported, with reagents contributing $3.11 (72.8%), while technical effort and laboratory equipment overheads contributed $1.17 (27.2%) and $0.03 (<1%) respectively. One-way sensitivity analyses including increasing or decreasing test volumes by 60% revealed a cost-per-result range

  16. Hyperemesis Gravidarum (HG)

    MedlinePlus

    ... Support Forums BlogHER Research Contact Us Understanding Hyperemesis Theories Diagnosis Treatments Risks Complications Impact Take a Poll ... to and worsen ongoing nausea. There are numerous theories regarding the etiology of hyperemesis gravidarum. Unfortunately, HG ...

  17. Metal ion displacements in noncentrosymmetric chalcogenides La3Ga1.67S7, La3Ag0.6GaCh7 (Ch=S, Se), and La3MGaSe7 (M=Zn, Cd)

    NASA Astrophysics Data System (ADS)

    Iyer, Abishek K.; Yin, Wenlong; Rudyk, Brent W.; Lin, Xinsong; Nilges, Tom; Mar, Arthur

    2016-11-01

    The quaternary Ga-containing chalcogenides La3Ag0.6GaS7, La3Ag0.6GaSe7, La3ZnGaSe7, and La3CdGaSe7, as well as the related ternary chalcogenide La3Ga1.67S7, were prepared by reactions of the elements at 950 °C. They adopt noncentrosymmetric hexagonal structures (space group P63, Z=2) with cell parameters (a=10.2 Å, c=6.1 Å for the sulfides; a=10.6 Å, c=6.4 Å for the selenides) that are largely controlled by the geometrical requirements of one-dimensional stacks of Ga-centered tetrahedra separated by the La atoms. Among these compounds, which share the common formulation La3M1-xGaCh7 (M=Ga, Ag, Zn, Cd; Ch=S, Se), the M atoms occupy sites within a stacking of trigonal antiprisms formed by Ch atoms. The location of the M site varies between extremes with trigonal antiprismatic (CN6) and trigonal planar (CN3) geometry. Partial occupation of these sites and intermediate ones accounts for the considerable versatility of these structures and the occurrence of large metal displacement parameters. The site occupations can be understood in a simple way as being driven by the need to satisfy appropriate bond valence sums for both the M and Ch atoms. Band structure calculations rationalize the substoichiometry observed in the Ag-containing compounds (La3Ag0.6GaS7, La3Ag0.6GaSe7) as a response to overbonding. X-ray photoelectron spectroscopy supports the presence of monovalent Ag atoms in these compounds, which are not charge-balanced.

  18. Structural, spectral, thermal and biological studies on (Z)-N-benzoyl-N‧-(2-oxo-2-(phenylamino)acetyl)carbamohydrazonothioic acid (H2PABT) and its Cd(II), Hg(II), Zn(II) and U(VI)O22+ complexes

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Ahmed, Sara F.; El-Gammal, O. A.; Abu El-Reash, G. M.

    2015-07-01

    A new metal complexes formed by the reaction of (Z)-N-benzoyl-N‧-(2-oxo-2-(phenylamino)acetyl)carbamohydrazonothioic acid (H2PABT) and Cd(II), Hg(II), Zn(II) and U(VI)O22+ ions. The isolated complexes were prepared and characterized by conventional techniques. The IR data revealed that the ligand behaves as mononegative tridentate in Zn(II) and U(VI)O22+ complexes also, binegative tetradentate on Cd(II) and Hg(II) complexes. On the basis of magnetic and electronic spectral data an octahedral geometry for the U(VI)O22+ complex, a tetrahedral structure for the Cd(II), Zn(II) and Hg(II) complexes have been proposed. The IR spectrum of ligand which determined experimentally is compared with those obtained theoretically from DFT calculations. Also, the bond lengths, bond angles, HOMO, LUMO and dipole moments have been calculated. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the ligand molecules. The calculated values of binding energies indicates the stability of complexes is higher that of ligand. Also, the kinetic and thermodynamic parameters for the different thermal degradation steps of the complexes were determined by Coats-Redfern and Horowitz-Metzger methods. Moreover, the ligand and its complexes were screened against Bacillus subtilis as Gram positive bacteria and Escherichia coli Gram negative bacteria using the inhibitory zone diameter. Also the antitumor activities of the ligand and its complexes have been evaluated against liver (HePG2) and breast (MCF-7) cancer cells. Out of all the synthesized compounds, [Hg2(PABT)Cl2(H2O)2] and [(UO2)(HPABT)(OAc)(H2O)] complexes showed high antibacterial activity with 55.5% while H2PABT showed the best cytotoxic effect on liver and breast cancer cells with IC50 2.10 and 5.91 of cytotoxicity respectively.

  19. Improving the efficiency of ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag inverted solar cells by sensitizing TiO2 nanocrystalline film with chemical bath-deposited CdS quantum dots

    PubMed Central

    2013-01-01

    An improvement in the power conversion efficiency (PCE) of the inverted organic solar cell (ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag) is realized by depositing CdS quantum dots (QDs) on a nanocrystalline TiO2 (nc-TiO2) film as a light absorption material and an electron-selective material. The CdS QDs were deposited via a chemical bath deposition (CBD) method. Our results show that the best PCE of 3.37% for the ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag cell is about 1.13 times that (2.98%) of the cell without CdS QDs (i.e., ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag). The improved PCE can be mainly attributed to the increased light absorption and the reduced recombination of charge carriers from the TiO2 to the P3HT:PCBM film due to the introduced CdS QDs. PMID:24172258

  20. Improving the efficiency of ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag inverted solar cells by sensitizing TiO2 nanocrystalline film with chemical bath-deposited CdS quantum dots.

    PubMed

    Chen, Chong; Li, Fumin

    2013-10-31

    An improvement in the power conversion efficiency (PCE) of the inverted organic solar cell (ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag) is realized by depositing CdS quantum dots (QDs) on a nanocrystalline TiO2 (nc-TiO2) film as a light absorption material and an electron-selective material. The CdS QDs were deposited via a chemical bath deposition (CBD) method. Our results show that the best PCE of 3.37% for the ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag cell is about 1.13 times that (2.98%) of the cell without CdS QDs (i.e., ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag). The improved PCE can be mainly attributed to the increased light absorption and the reduced recombination of charge carriers from the TiO2 to the P3HT:PCBM film due to the introduced CdS QDs.

  1. Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis

    NASA Astrophysics Data System (ADS)

    Lacoue-Labarthe, T.; Martin, S.; Oberhänsli, F.; Teyssié, J.-L.; Markich, S.; Jeffree, R.; Bustamante, P.

    2009-05-01

    Cephalopods play a key role in many marine trophic networks and constitute alternative fisheries resources, especially given the ongoing decline in finfish stocks. Along the European coast, the eggs of the cuttlefish Sepia officinalis are characterized by an increasing permeability of the eggshell during development, which leads to selective accumulation of essential and non-essential elements in the embryo. Temperature and pH are two critical factors that affect the metabolism of marine organisms in the coastal shallow waters. In this study, we are testing the effects of pH and temperature through a crossed (3×2) laboratory experiment. Seawater pH showed a strong effect on the egg weight and non-significant impact on the hatchlings weight at the end of development implying egg swelling process and embryo growth disturbances. The lower pH of incubation seawater of eggs, the more the hatchlings accumulated 110m Ag in their tissues. The 109Cd CF decreased with increasing pH and 65Zn CF reached the maximal values pH 7.85, independent of temperature. Our results suggest that pH and temperature affected both the permeability properties of the eggshell and the embryo metabolism. To the best of our knowledge, this is one of the first studies on the ocean acidification and ocean warming consequences on the metal uptake in marine organisms, stimulating further interest to evaluate the likely ecotoxicological impact of the global change on the early-life stage of the cuttlefish.

  2. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles

    SciTech Connect

    Yantasee, Wassana; Hongsirikarn, Kitiya; Warner, Cynthia L.; Choi, Daiwon; Sangvanich, Thanapon; Toloczko, Mychailo B.; Warner, Marvin G.; Fryxell, Glen E.; Addleman, Raymond S.; Timchalk, Chuck

    2008-03-01

    Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics including toxic metals. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) has been developed. The metal detection involves rapid collection of dispersed metal-bound nanoparticles from a sample solution at a magnetic or electromagnetic electrode, followed by the stripping voltammetry of the metal in acidic medium. The sensors were evaluated as a function of solution pH, the binding affinity of Pb to DMSA-Fe3O4, the ratio of nanoparticles per sample volume, preconcentration time, and Pb concentrations. The effect of binding competitions between the DMSA-Fe3O4 and urine constituents for Pb on the sensor responses was studied. After 90s of preconcentration in samples containing 25 vol.% of rat urine and 0.1 g/L of DMSA-Fe3O4, the sensor could detect background level of Pb (< 1 ppb) and yielded linear responses from 0 to 50 ppb of Pb, excellent reproducibility (%R.S.D of 5.3 for seven measurements of 30 ppb Pb), and Pb concentrations comparable to those measured by ICP-MS. The sensor could also simultaneously detect background levels (< 1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.

  3. Modeling interactions of Hg(II) and bauxitic soils.

    PubMed

    Weerasooriya, Rohan; Tobschall, Heinz J; Bandara, Atula

    2007-11-01

    The adsorptive interactions of Hg(II) with gibbsite-rich soils (hereafter SOIL-g) were modeled by 1-pK surface complexation theory using charge distribution multi-site ion competition model (CD MUSIC) incorporating basic Stern layer model (BSM) to account for electrostatic effects. The model calibrations were performed for the experimental data of synthetic gibbsite-Hg(II) adsorption. When [NaNO(3)] > or = 0.01M, the Hg(II) adsorption density values, of gibbsite, Gamma(Hg(II)), showed a negligible variation with ionic strength. However, Gamma(Hg(II)) values show a marked variation with the [Cl(-)]. When [Cl(-)] > or = 0.01M, the Gamma(Hg(II)) values showed a significant reduction with the pH. The Hg(II) adsorption behavior in NaNO(3) was modeled assuming homogeneous solid surface. The introduction of high affinity sites, i.e., >Al(s)OH at a low concentration (typically about 0.045 sites nm(-2)) is required to model Hg(II) adsorption in NaCl. According to IR spectroscopic data, the bauxitic soil (SOIL-g) is characterized by gibbsite and bayerite. These mineral phases were not treated discretely in modeling of Hg(II) and soil interactions. The CD MUSIC/BSM model combination can be used to model Hg(II) adsorption on bauxitic soil. The role of organic matter seems to play a role on Hg(II) binding when pH>8. The Hg(II) adsorption in the presence of excess Cl(-) ions required the selection of high affinity sites in modeling.

  4. Methylmercury (MeHg)

    Integrated Risk Information System (IRIS)

    Methylmercury ( MeHg ) ; CASRN 22967 - 92 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  5. M{sub 1-x}[W{sub 2}O{sub 2}X{sub 6}] with M=K{sup +}, Tl{sup +}, Ag{sup +}, Hg{sup 2+}, Pb{sup 2+}; X=Cl, Br-A class of mixed valence tungsten (IV,V) compounds with layered structures, W-W bonds and high conductivity

    SciTech Connect

    Beck, Johannes . E-mail: j.beck@uni-bonn.de; Kusterer, Christian; Hoffmann, Rolf-Dieter; Poettgen, Rainer

    2006-08-15

    The crystal structure of WOCl{sub 3}, determined on the basis of powder diffraction data (tetragonal, P4{sub 2}/mnm, a=10.6856(6), c=3.8537(2)), is isotypic to WOI{sub 3} and contains one-dimensional strands of edge-sharing double-octahedral W{sub 2}O{sub 4/2}Cl{sub 6} groups connected via common corners in trans position. A W-W bond of 2.99A is present within the planar W{sub 2}Cl{sub 6} groups. A series of non-stochiometric, mixed valence W(IV,V) compounds M{sub 1-x}[W{sub 2}O{sub 2}Cl{sub 6}] can be obtained from WOCl{sub 3} by reaction with metal halides (TlCl, KCl, PbCl{sub 2}) or by reaction of elemental Hg with WOCl{sub 4}. All were characterized by single crystal structure determinations and EDX measurements (Tl{sub 0.981(2)}[W{sub 2}O{sub 2}Cl{sub 6}]: monoclinic, C2/m, a=12.7050(4), b=3.7797(1), c=10.5651(3)A, {beta}=107.656(1){sup o}; K{sub 0.84(2)}[W{sub 2}O{sub 2}Cl{sub 6}]: monoclinic, C2/m, a=12.812(3), b=3.7779(6), c=10.196(3)A, {beta}=107.422(8){sup o}; Pb{sub 0.549(3)}[W{sub 2}O{sub 2}Cl{sub 6}]: orthorhombic, Immm,a=3.7659(1), b=9.8975(4), c=12.1332(6)A; Hg{sub 0.554(6)}[W{sub 2}O{sub 2}Cl{sub 6}]: monoclinic, C2/m, a=12.8361(8), b=3.7622(3), c=10.2581(9)A, {beta}=113.645(3){sup o}). Two representatives of this family of compounds have already been reported: Na[W{sub 2}O{sub 2}Br{sub 6}] [Y.-Q. Zhang, K. Peters, H.G. von Schnering, Z. Anorg. Allg. Chem. 624 (1998) 1415-1418] and Ag{sub 0.74}[W{sub 2}O{sub 2}Br{sub 6}] [S. Imhaine, C. Perrin, M. Sergent, Mat. Res. Bull. 33 (1998) 927-933]. The Ag containing compound can be obtained from elemental Ag and WOBr{sub 3}. The crystal structure, originally reported in the triclinic system, was redetermined and shown to be monoclinic with space group C2/m (a=13.7338(10), b=3.7769(3), c=10.7954(9)A, {beta}=112.401(3){sup o}). The crystal structures of these compounds are in close relationship to the structure of WOCl{sub 3} and all contain W{sub 2}O{sub 4/2}X{sub 6} (X=Cl, Br) double strands with the mono

  6. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles.

    PubMed

    Yantasee, Wassana; Hongsirikarn, Kitiya; Warner, Cynthia L; Choi, Daiwon; Sangvanich, Thanapon; Toloczko, Mychailo B; Warner, Marvin G; Fryxell, Glen E; Addleman, R Shane; Timchalk, Charles

    2008-03-01

    Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics, including toxic metals. Detection of metal ions in urine has been problematic due to the protein competition and electrode fouling. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) has been developed. The metal detection involves rapid collection of dispersed metal-bound nanoparticles from a sample solution at a magnetic or electromagnetic electrode, followed by the stripping voltammetry of the metal in acidic medium. The sensors were evaluated as a function of solution pH, the binding affinity of Pb to DMSA-Fe3O4, the ratio of nanoparticles per sample volume, preconcentration time, and Pb concentrations. The effect of binding competitions between the DMSA-Fe3O4 and urine constituents for Pb on the sensor responses was studied. After 90 s of preconcentration in samples containing 25 vol.% of rat urine and 0.1 g L(-1) of DMSA-Fe3O4, the sensor could detect background level of Pb (0.5 ppb) and yielded linear responses from 0 to 50 ppb of Pb, excellent reproducibility (%RSD of 5.3 for seven measurements of 30 ppb Pb), and Pb concentrations comparable to those measured by ICP-MS. The sensor could also simultaneously detect background levels (<1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.

  7. Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis

    NASA Astrophysics Data System (ADS)

    Lacoue-Labarthe, T.; Martin, S.; Oberhänsli, F.; Teyssié, J.-L.; Markich, S.; Ross, J.; Bustamante, P.

    2009-11-01

    Cephalopods play a key role in many marine trophic networks and constitute alternative fisheries resources, especially given the ongoing decline in finfish stocks. Along the European coast, the eggs of the cuttlefish Sepia officinalis are characterized by an increasing permeability of the eggshell during development, which leads to selective accumulation of essential and non-essential elements in the embryo. Temperature and pH are two critical factors that affect the metabolism of marine organisms in the coastal shallow waters. In this study, we investigated the effects of pH and temperature through a crossed (3×2; pH 8.1 (pCO2, 400 ppm), 7.85 (900 ppm) and 7.6 (1400 ppm) at 16 and 19°C, respectively) laboratory experiment. Seawater pH showed a strong effect on the egg weight and non-significant impact on the weight of hatchlings at the end of development implying an egg swelling process and embryo growth disturbances. The lower the seawater pH, the more 110 mAg was accumulated in the tissues of hatchlings. The 109Cd concentration factor (CF) decreased with decreasing pH and 65Zn CF reached maximal values pH 7.85, independently of temperature. Our results suggest that pH and temperature affected both the permeability properties of the eggshell and embryonic metabolism. To the best of our knowledge, this is one of the first studies on the consequences of ocean acidification and ocean warming on metal uptake in marine organisms, and our results indicate the need to further evaluate the likely ecotoxicological impact of the global change on the early-life stages of the cuttlefish.

  8. Hg(+) Frequency Standards

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2000-01-01

    In this paper we review the development of Hg(+) microwave frequency standards for use in high reliability and continuous operation applications. In recent work we have demonstrated short-term frequency stability of 3 x 10(exp -14)/nu(sub tau) when a cryogenic oscillator of stability 2-3 x 10(exp 15) was used a the local oscillator. The trapped ion frequency standard employs a Hg-202 discharge lamp to optically pump the trapped Hg(+)-199 clock ions and a helium buffer gas to cool the ions to near room temperature. We describe a small Hg(+) ion trap based frequency standard with an extended linear ion trap (LITE) architecture which separates the optical state selection region from the clock resonance region. This separation allows the use of novel trap configurations in the resonance region since no optical pumping is carried out there. A method for measuring the size of an ion cloud inside a linear trap with a 12-rod trap is currently being investigated. At approx. 10(exp -12), the 2nd order Doppler shift for trapped mercury ion frequency standards is one of the largest frequency offsets and its measurement to the 1% level would represent an advance in insuring the very long-term stability of these standards to the 10(exp -14) or better level. Finally, we describe atomic clock comparison experiments that can probe for a time variation of the fine structure constant, alpha = e(exp 2)/2(pi)hc, at the level of 10(exp -20)/year as predicted in some Grand Unified String Theories.

  9. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    SciTech Connect

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona; and others

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.

  10. Nondestructive Investigation of Heterojunction Interfacial Properties Using Two-Wavelength Raman Spectroscopy on Thin-Film CdS/CdTe Solar Cells.

    PubMed

    Zeng, Guanggen; Harrison, Paul; Kidman, Ali; Al-Mebir, Alaa; Feng, Lianghuan; Wu, Judy

    2016-09-01

    Raman spectra specific to CdS and CdTe were obtained on the CdS/CdTe heterojunction interface by employing two excitation wavelengths of λ1 = 488 nm and λ2 = 633 nm, respectively, from the glass side of Glass/FTO/CdS/CdTe/HgTe:Cu:graphite/Ag solar cells fabricated using pulsed-laser deposition (PLD). This two-wavelength Raman spectroscopy approach, with one wavelength selected below the absorption edge of the window layer (λ2 in this case), allows nondestructive characterization of the CdS/CdTe heterojunction and therefore correlation of the interfacial properties with the solar cell performance. In this study, the evolution of the interfacial strain relaxation during cell fabrication process was found to be affected not only by the inter-diffusion of S and Te corresponding to the formation of CdSxTe1-x ternary alloy with a various x from ∼0.01 to ∼0.067, but also by the variation in misfit dislocations (MDs) at CdS/CdTe interface from Raman TO/LO ratio ∼2.85 for as-deposited sample to TO/LO ∼4.44 for the cells post treatment. This is consistent with the change of the Urbach energy from 0.03 eV to 0.09 eV, indicative of the deterioration of crystalline quality of CdTe at interface although improved CdTe crystalline quality was observed away from the interface after the CdCl2 annealing. This difference crucially impacted on the rectification characteristics of the CdS/CdTe heterojunction and therefore the solar cell performance.

  11. Temperature- and frequency-dependent dielectric properties of organic–inorganic hybrid compound: (C{sub 6}H{sub 9}N{sub 2}){sub 2}(Hg{sub 0.75}Cd{sub 0.25})Cl{sub 4}

    SciTech Connect

    Elwej, R. Hamdi, M.; Hannachi, N.; Hlel, F.

    2015-02-15

    Highlights: • We have synthesized a new hybrid compound of composition (C6H9N2)2(Hg0.75Cd0.25)Cl4. • The Ac conductivity of the title material was studied as a function of frequency and temperature. • The dielectric data have been analyzed in modulus formalism using KWW. - Abstract: The bis-2-amino-4-picolinium tetrachloromercurate-cadmate compound (C{sub 6}H{sub 9}N{sub 2}){sub 2}(Hg{sub 0.75}Cd{sub 0.25})Cl{sub 4} was prepared by hydrothermal method and characterized by X-ray diffraction (XRD) technique. The electrical properties of the compound were studied using impedance spectroscopy in the frequency and temperature range of 200 Hz–5 MHz and 308–403 K, respectively. The equivalent circuit is modeled by a combination of a parallel Rp//CPE circuit to explain the impedance results. The dielectric data were analyzed using complex electrical modulus M* at various temperatures. The activation energy responsible for the relaxation calculated from the modulus spectra is found to be almost the same as the value obtained from the temperature variation of dc conductivity. The electrical modulus and its scaling behavior are also investigated.

  12. Methylation of Hg downstream from the Bonanza Hg mine, Oregon

    USGS Publications Warehouse

    Gray, John E.; Hines, Mark E.; Krabbenhoft, David P.; Thoms, Bryn

    2012-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62ng/g and were highly elevated compared to regional baseline concentrations (0.11-0.82ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2=0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270ng/L and were also elevated compared to baselines, but all were below the 770ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8ng/L, which were elevated compared to regional baseline sites upstream and downstream

  13. Interface Chemistry of Ternary Semiconductors: Local Morphology of the Hg(1-x)CdxTe-Cr Interface.

    DTIC Science & Technology

    1985-10-15

    a modified Bridgman method. Several oriented (110) posts (3x3x15 " mm3 ) were cut from the center of the cylindrical portion of a boule. Samples cut...levels. Deconvolution of two doublets was performed using the experimental lineshape of the Hg 5d and Cd 4d levels obtained from cleaved HgSe and CdSe ...lineshape of the Hg 5d and Cd 4d levels obtained from cleaved HgSe and CdSe samples. As an example, the result of the decomposition for the clean

  14. Admittance Investigation of MIS Structures with HgTe-Based Single Quantum Wells.

    PubMed

    Izhnin, Ihor I; Nesmelov, Sergey N; Dzyadukh, Stanislav M; Voitsekhovskii, Alexander V; Gorn, Dmitry I; Dvoretsky, Sergey A; Mikhailov, Nikolaj N

    2016-12-01

    This work presents results of the investigation of admittance of metal-insulator-semiconductor structure based on Hg1 - x Cd x Te grown by molecular beam epitaxy. The structure contains a single quantum well Hg0.35Cd0.65Te/HgTe/Hg0.35Cd0.65Te with thickness of 5.6 nm in the sub-surface layer of the semiconductor. Both the conductance-voltage and capacitance-voltage characteristics show strong oscillations when the metal-insulator-semiconductor (MIS) structure with a single quantum well based on HgTe is biased into the strong inversion mode. Also, oscillations on the voltage dependencies of differential resistance of the space charge region were observed. These oscillations were related to the recharging of quantum levels in HgTe.

  15. Hg-Mask Coronagraph

    NASA Astrophysics Data System (ADS)

    Bourget, P.; Veiga, C. H.; Vieira Martins, R.; Assus, P.; Colas, F.

    In order to optimize the occulting process of a Lyot coronagraph and to provide a high dynamic range imaging, a new kind of occulting disk has been developed at the National Observatory of Rio de Janeiro. A mercury (Hg) drop glued onto an optical window by molecular cohesion and compressed by a pellicle film is used as the occulting disk. The minimum of the superficial tension potential function provides an optical precision (lambda/100) of the toric free surface of the mercury. This process provides a size control for the adaptation to the seeing conditions and to the apparent diameter of a resolved object, and in the case of adaptive optics, to the Airy diameter fraction needed. The occultation is a three dimensional process near the focal plane on the toric free surface that provides an apodization of the occultation. The Hg-Mask coronagraph has been projected for astrometric observations of faint satellites near to Jovian planets and works since 2000 at the 1.6 m telescope of the Pico dos Dias Observatory (OPD - Brazil).

  16. Boosting BCG-primed mice with chimeric DNA vaccine HG856A induces potent multifunctional T cell responses and enhanced protection against Mycobacterium tuberculosis.

    PubMed

    Ji, Ping; Hu, Zhi-Dong; Kang, Han; Yuan, Qin; Ma, Hui; Wen, Han-Li; Wu, Juan; Li, Zhong-Ming; Lowrie, Douglas B; Fan, Xiao-Yong

    2016-02-01

    The tuberculosis pandemic continues to rampage despite widespread use of the current Bacillus Calmette-Guerin (BCG) vaccine. Because DNA vaccines can elicit effective antigen-specific immune responses, including potent T cell-mediated immunity, they are promising vehicles for antigen delivery. In a prime-boost approach, they can supplement the inadequate anti-TB immunological memory induced by BCG. Based on this, a chimeric DNA vaccine HG856A encoding Mycobacterium tuberculosis (M. tuberculosis) immunodominant antigen Ag85A plus two copies of ESAT-6 was constructed. Potent humoral immune responses, as well as therapeutic effects induced by this DNA vaccine, were observed previously in M. tuberculosis-infected mice. In this study, we further evaluated the antigen-specific T cell immune responses and showed that repeated immunization with HG856A gave modest protection against M. tuberculosis challenge infection and significantly boosted the immune protection primed by BCG vaccination. Enhanced protection was accompanied by increased multifunctional Th1 CD4(+) T cell responses, most notably by an elevated frequency of M. tuberculosis antigen-specific IL-2-producing CD4(+) T cells post-vaccination. These data confirm the potential of chimeric DNA vaccine HG856A as an anti-TB vaccine candidate.

  17. Highly selective and quantitative colorimetric detection of mercury(II) ions by carrageenan-functionalized Ag/AgCl nanoparticles.

    PubMed

    Narayanan, Kannan Badri; Han, Sung Soo

    2017-03-15

    The natural algal polysaccharide carrageenan was used for the greener synthesis of silver/silver chloride nanoparticles (Carr-Ag/AgCl NPs) without any toxic chemicals. We report the robust, highly selective, and sensitive colorimetric sensing of Hg(2+) ions using Carr-Ag/AgCl NPs without any further surface modification. The dark-brown color of a solution of Carr-Ag/AgCl NPs turned to white in a concentration-dependent manner with the addition of Hg(2+) ions, confirming the interaction of Carr-Ag/AgCl NPs with Hg(2+) ions. The plot of the extinction ratio of absorbance at 350nm to 450nm (A350/A450) for Carr-Ag/AgCl NPs against the concentration of [Hg(2+)] ions was linear, and the calibration curve was A350/A450=1.05254+0.00318×CHg with a lower detection limit of 1μM. This portable and cost-effective method for mercury(II) ion sensing is widely applicable in on-field qualitative and quantitative measurements of [Hg(2+)] ions in environmental or biological samples.

  18. Coordination of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) with 2,5-hexanedione bis(thiosemicarbazone), HBTS: Crystal structure of cis-[Pd(HBTS)]Cl2 and 1-(2,5-dimethyl-1H-pyrrol-yl)-thiourea

    NASA Astrophysics Data System (ADS)

    Jeragh, Bakir; El-Asmy, Ahmed A.

    2014-09-01

    Metal complexes of Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pd2+ or Pt2+ with 2,5-hexanedione bis(thiosemicarbazone), HBTS; have been prepared and spectroscopically investigated. The empirical formulae of the complexes were suggested based on the elemental analysis. Single crystal of Pd(II) has been solved to be cis-form of square-planar geometry by the X-ray crystallography. 1H and 13C NMR spectra have been recorded for HBTS, Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) complexes, in DMSO-d6, showing the mode of chelation. The ligand acts as a neutral or a binegative tetradentate (N2S2) or neutral bidentate on the basis of FT-IR. The magnetic moments and electronic spectra provide information about the geometry of the complexes which supported by calculating the ligand field parameters for the Co(II) and Fe(III) complexes. The Ni(II) complex has subnormal magnetic moment (0.71 BM) indicative of a mixed stereochemistry of square-planar and tetrahedral structure. [Cu(HBTS-2H)] measured 0.93 BM indicating high interaction between the copper centers. The ligand may be ordered at the top of the spectrochemical series which giving high ligand field splitting energy (10Dq = 17,900 cm-1 for Co2+ complex). The mass spectra of some complexes proved their stable chemical formulae while the TGA depicts the degradation steps and the final residue. In evaporating the mother liquor during the preparation of HBTS, new compound is obtained naming 1-(2,5-dimethyl-1H-pyrrol-yl)thiourea and its crystal was solved.

  19. From Ag{sub 2}Sb{sub 2}O{sub 6} to Cd{sub 2}Sb{sub 2}O{sub 7}: Investigations on an anion-deficient to ideal pyrochlore solid solution

    SciTech Connect

    Laurita, Geneva; Vielma, Jason; Winter, Florian; Berthelot, Romain; Largeteau, Alain; Pöttgen, Rainer; Schneider, G.; Subramanian, M.A.

    2014-02-15

    A complete solid solution between the anion-deficient pyrochlore Ag{sub 2}Sb{sub 2}O{sub 6} and the ideal pyrochlore Cd{sub 2}Sb{sub 2}O{sub 7} has been synthesized through the standard solid state ceramic method. Each composition has been characterized by various different techniques, including powder X-ray diffraction, optical spectroscopy, electron paramagnetic resonance and {sup 121}Sb Mössbauer spectroscopy. Computational methods based on density functional theory complement this investigation. Photocatalytic activity has been studied, and transport properties have been measured on pellets densified by spark plasma sintering. The analysis of the data collected from these various techniques enables a comprehensive characterization of the complete solid solution and revealed an anomalous behavior in the Cd-rich end of the solid solution, which has been proposed to arise from a possible radical O{sup −} species in small concentrations. - Graphical abstract: A complete solid solution between the anion-deficient pyrochlore Ag{sub 2}Sb{sub 2}O{sub 6} and the ideal pyrochlore Cd{sub 2}Sb{sub 2}O{sub 7} has been synthesized and investigated through various techniques including X-ray diffraction, electron paramagnetic spectroscopy, and {sup 121}Sb-Mössbauer spectroscopy. Optical and electrical measurements have been performed, and computational methods have been applied to determine the density of states. Photocatalytic activity was monitored by the degradation of Methylene Blue, and upon cadmium substitution, the degradation amount decreased, which is attributed primarily to the changing optical and electrical properties of the solid solution. Display Omitted - Highlights: • A complete solid solution between Ag{sub 2}Sb{sub 2}O{sub 6} and Cd{sub 2}Sb{sub 2}O{sub 7} has been synthesized. • XRD reveals a relatively constant lattice parameter as the series progresses. • Optical and electrical properties have been measured for the solid solution.

  20. Synthesis and crystal structures of HgFAsF6, Hg(HF)2(AsF6)2, Hg(HF)(AsF6)2 and Hg(AsF6)(SO3F)

    NASA Astrophysics Data System (ADS)

    Mazej, Zoran; Goreshnik, Evgeny A.

    2015-08-01

    The colourless HgFAsF6 was synthesized by oxidation of Hg2(AsF6)2 with elemental fluorine in anhydrous hydrogen fluoride. It crystallizes in the monoclinic space group P21/c with a=7.0645(3) Å, b=9.9023(3) Å, c=7.8686(3) Å, β=102.960(4)° V=536.43(3) Å3, and Z=4 at 150 K. The structure of HgFAsF6 consists of infinite zig-zag -[Hg-F-Hg]- chains oriented parallel to each other along the b axis and interconected by AsF6 groups. Hg(HF)2(AsF6)2 crystallizes in the triclinic space group P 1 bar with a=5.0781(3) Å, b=6.6907(5) Å, c=7.7135(5) Å, α=84.045(5), β=79.277(5)°, γ=80.612(6), V=253.32(3) Å3, and Z=1 at 150 K. The crystal structure is composed of infinite columns of Hg atoms linked by AsF6 groups. Each pair of adjacent Hg atoms is bridged by two AsF6 groups. The coordination of Hg is completed by two F atoms provided by HF molecules. Hg(HF)(AsF6)2 crystallizes in the monoclinic space group P21/c with a=9.4921(8) Å, b=9.2834(6) Å, c=10.5448(7) Å, β=103.795(7)°, V=902.53(12) Å3, and Z=4 at 150 K and it is isotypic to Cd(HF)(AsF6)2. The new mixed-anion compound Hg(AsF6)(SO3F) crystallizes in the monoclinic space group P21/c with a=5.1975(8) Å, b=18.046(3) Å, c=15.873(5) Å, β=93.614(13)°, V=1485.9(6) Å3, and Z=4 at 200 K. All three oxygen atoms from each SO3F group utilize for bonding with three Hg atoms. The Hg1 (Hg2) atoms are coordinated by two (four) oxygen atoms from two (four) SO3F groups and by six (three) fluorine atoms from AsF6 groups forming on that way tridimensional framework.