Science.gov

Sample records for ag co-modified tio2

  1. Enhancement of stability of N-doped TiO2 photocatalysts with Ag loading

    NASA Astrophysics Data System (ADS)

    Gao, Yuanpeng; Fang, Pengfei; Chen, Feitai; Liu, Yang; Liu, Zhi; Wang, Dahai; Dai, Yiqun

    2013-01-01

    Various contents of Ag nanoparticles were successfully introduced into the N-doped TiO2 photocatalysts via a hydrothermal procedure in the silver-ammonia solutions with different Ag concentrations. Effects of Ag loading on the structure and properties of N-doped TiO2 photocatalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, fluorescence spectroscopy (FL), UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and N2 physical adsorption analysis. The relationship between the stability of N dopants in TiO2 lattice and the Ag loading content was investigated for the first time. The results confirm that Ag nanoparticles loading on TiO2 surfaces significantly restrain the escape of the N dopants from the oxide during the hydrothermal process, and the escape rate of N dopants decreased gradually with the increase of Ag loading amount. The dependence of photocatalytic activity on Ag content was also investigated through degradation of rhodamine B (RhB) under visible light irradiation. It was found that the photocatalytic activity increases gradually with increasing Ag content first, and then decreases after exceeding the optimal Ag content. Therefore, the photocatalytic activity of Ag/N co-modified TiO2 photocatalysts can be adjusted by the Ag content.

  2. Preparation and properties of antibacterial TiO2@C/Ag core-shell composite

    NASA Astrophysics Data System (ADS)

    Tan, San-Xiang; Tan, Shao-Zao; Chen, Jing-Xing; Liu, Ying-Liang; Yuan, Ding-Sheng

    2009-08-01

    An environment-friendly hydrothermal method was used to prepare TiO2@C core-shell composite using TiO2 as core and sucrose as carbon source. TiO2@C served as a support for the immobilization of Ag by impregnation in silver nitrate aqueous solution. The chemical structures and morphologies of TiO2@C and TiO2@C/Ag composite were characterized by x-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, energy dispersive x-ray spectroscopy and Brunauer-Emmett-Teller (BET) analysis. The antibacterial properties of the TiO2@C/Ag core-shell composite against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were examined by the viable cell counting method. The results indicate that silver supported on the surface of TiO2@C shows excellent antibacterial activity.

  3. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Demirci, Selim; Dikici, Tuncay; Yurddaskal, Metin; Gultekin, Serdar; Toparli, Mustafa; Celik, Erdal

    2016-12-01

    In this study, undoped and silver (Ag) doped titanium dioxide (TiO2) films were successfully synthesized by sol-gel spin coating technique on the Si substrates. Photocatalytic activities of the TiO2 films with different Ag content were investigated for the degradation of methylene blue (MB) under UV light irradiation. The crystal phase structure, surface morphology, chemical and optical properties of Ag-doped TiO2 films were characterized using an X-ray diffractometer (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV-vis spectrophotometer, and FTIR spectrophotometer. The results showed that the Ag-doped TiO2 films calcined at 500 °C had the crystalline anatase phases and the surface morphologies with some cracks. Ag substitution into TiO2 matrix enhanced the photocatalytic activity of TiO2 films under UV light irradiation as compared to the undoped TiO2 film. Furthermore, the results indicated that the 0.7% Ag doped TiO2 film exhibited a superior photocatalytic activity than that of undoped and other Ag-doped TiO2 films. This study demonstrated the potential of an application of Ag doped films to efficiently treat dissolved organic contaminants in water.

  4. Structural analysis of TiO2 and TiO2-Ag thin films and their antibacterial behaviors

    NASA Astrophysics Data System (ADS)

    Hsieh, J. H.; Yu, R. B.; Chang, Y. K.; Li, C.

    2012-01-01

    TiO2 (rutile and anatase) thin films was first prepared using reactive sputtering, in an Ar+O2 plasma. In the 2nd stage of the experiment, various amounts (3, 7, and 10 at. %) of Ag was doped into the rutile film in order to form TiO2-Ag thin films. These films were annealed for one hour in Ar atmosphere, at 300, 400, and 500 °C. The films' structures were then examined using X-ray diffractometry. FESEM (field-emission scaning electron microscopy) was used to investigate the surface emergence of Ag particles. As for the examination of optical band gaps and absorption of these films, UV-Vis-NIR photometer was used. The results show that, in as-deposited condition, the addition of Ag might disrupt the growth of crystalline structure and cause the formation of amorphous films. After annealing, it is found that the structure tends to become anatase phase which is a metastable phase between amorphous titanium oxide and rutile. More importantly, the absorption of the Ag-doped films would be enhanced in the visible-light range. Some of the enhancement is clearly due to plasmon resonance effect. The Ag-doped samples have shown some antibacterial effect in dark. When irradiated with light, the samples show a synergistic behavior combining the bactericidal effect of Ag ions and photocatalytic effect of TiO2.

  5. Photodegradation of nalidixic acid assisted by TiO(2) nanorods/Ag nanoparticles based catalyst.

    PubMed

    Petronella, F; Diomede, S; Fanizza, E; Mascolo, G; Sibillano, T; Agostiano, A; Curri, M L; Comparelli, R

    2013-05-01

    Two different nanosized TiO2-based catalysts supported onto glass with tailored photocatalytic properties upon irradiation by UV light were successfully employed for the degradation of nalidixid acid, a widely diffused antibacterial agent of environmental relevance known to be non-biodegradable. Anatase rod-like TiO2 nanocrystals (TiO2NRs) and a semiconductor oxide-noble metal nanocomposite TiO2 NRs/Ag nanoparticles (NPs), synthesized by colloidal chemistry routes, were cast onto glass slide and employed as photocatalysts. A commercially available catalyst (TiO2 P25), also immobilized onto a glass slide, was used as a reference material. It was found that both TiO2 NRs/Ag NPs composite and TiO2 NRs demonstrated a photocatalytic efficiency significantly higher than the reference TiO2 P25. Specifically, TiO2 NRs/Ag NPs showed a photoactivity in nalidixic acid degradation 14 times higher than TiO2 P25 and 4 times higher than bare TiO2 NRs in the first 60min of reaction. Several by-products were identified by HPLC-MS along the nalidixic acid degradation, thus getting useful insight on the degradation pathway. All the identified by-products resulted completely removed after 6h of reaction.

  6. Ag Nanorods Coated with Ultrathin TiO2 Shells as Stable and Recyclable SERS Substrates

    PubMed Central

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Xie, Zheng; Zhang, Zhengjun

    2015-01-01

    TiO2-coated Ag nanorods (Ag@TiO2 NRs) have been fabricated as multifunctional surface-enhanced Raman scattering (SERS) substrates. Uniform TiO2 shells could sufficiently protect the internal Ag NRs against oxidation and sulfuration, thus the temporal stability of SERS substrates was markedly improved. Meanwhile, due to the synergetic effect between crystalline TiO2 and Ag, the nanocomposites could clean themselves via photocatalytic degradation of the adsorbed molecules under ultraviolet irradiation and water dilution, making the SERS substrates renewable. Such Ag@TiO2 NRs were shown to serve as outstanding SERS sensors featuring high sensitivity, superior stability and recyclability. PMID:26486994

  7. Structural, morphological, optical and photocatalytic investigation of Ag-doped TiO2

    NASA Astrophysics Data System (ADS)

    Kundu, Virender Singh; Singh, Davender; Maan, A. S.; Tanwar, Amit

    2016-05-01

    The pure and Ag-doped TiO2 nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO2 and 8.86 nm for 6 mol % Ag doped TiO2. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO2 and Ag-doped TiO2 nanoparticles showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc's plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO2 and Ag-doped TiO2 nanoparticles showed that Ag-doped TiO2 degrades MB dye more efficiently than pure TiO2.

  8. Fabrication and photocatalytic activity of TiO2 derived nanotubes with Ag ions doping.

    PubMed

    Liu, Fang; Lai, Shuting; Huang, Peilin; Liu, Yingju; Xu, Yuehua; Fang, Yueping; Zhou, Wuyi

    2012-11-01

    Ag/TiO2 nanotubes with uniform distribution were successfully prepared by a hydrothermal-dipping method. The synthesized samples were characterized by XRD, TEM and FTIR, respectively. The results exhibited that the morphological structure of the TiO2 nanotubes was improved by the doping of Ag ions. The photocatalytic degradation experiment indicated that the photocatalytic activity of the Ag/TiO2 nanotubes indicated better photocatalytic activity than pure TiO2 nanotubes since silver was able to help the electron-hole separation by attracting photoelectrons. The optimal mol ration of TiO2 and AgNO3 was 25:1.

  9. Synthesis and characterization of TiO2 and Ag/TiO2 nanostructure

    NASA Astrophysics Data System (ADS)

    Gahlot, Swati; Thakur, Amit Kumar; Kulshrestha, Vaibhav; Shahi, V. K.

    2013-02-01

    Single phase anatase TiO2 nanoparticles were prepared using Titanium tertachloride (TiCl4) as precursor through an inexpensive method. Well dispersed nanocomposites of silver at TiO2 were synthesized successfully by photochemical route. Both TiO2 and Ag/TiO2 were characterized using X-Ray Diffraction (XRD) and transmission electron microscopy (TEM). The particle size of TiO2 is found to be ˜ 11 nm and ˜ 22 nm for Ag/TiO2, by XRD and confirmed by TEM. TEM micrographs also show the single phase crystal of TiO2 and confirm the deposition of silver among TiO2.

  10. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli

    PubMed Central

    Gupta, Kiran; Singh, R P; Pandey, Ashutosh

    2013-01-01

    Summary This paper reports the structural and optical properties and comparative photocatalytic activity of TiO2 and Ag-doped TiO2 nanoparticles against different bacterial strains under visible-light irradiation. The TiO2 and Ag-doped TiO2 photocatalysts were synthesized by acid catalyzed sol–gel technique and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–vis spectroscopy and photoluminescence (PL). The XRD pattern revealed that the annealed sample of TiO2 has both anatase and rutile phases while only an anatase phase was found in Ag-doped TiO2 nanoparticles. The decreased band-gap energy of Ag-doped TiO2 nanoparticles in comparison to TiO2 nanoparticles was investigated by UV–vis spectroscopy. The rate of recombination and transfer behaviour of the photoexcited electron–hole pairs in the semiconductors was recorded by photoluminescence. The antimicrobial activity of TiO2 and Ag-doped TiO2 nanoparticles (3% and 7%) was investigated against both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas aeruginosa, Escherichia coli) bacteria. As a result, the viability of all three microorganisms was reduced to zero at 60 mg/30 mL culture in the case of both (3% and 7% doping) concentrations of Ag-doped TiO2 nanoparticles. Annealed TiO2 showed zero viability at 80 mg/30 mL whereas doped Ag-TiO2 7% showed zero viability at 40 mg/30 mL culture in the case of P. aeruginosa only. PMID:23844339

  11. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli.

    PubMed

    Gupta, Kiran; Singh, R P; Pandey, Ashutosh; Pandey, Anjana

    2013-01-01

    This paper reports the structural and optical properties and comparative photocatalytic activity of TiO2 and Ag-doped TiO2 nanoparticles against different bacterial strains under visible-light irradiation. The TiO2 and Ag-doped TiO2 photocatalysts were synthesized by acid catalyzed sol-gel technique and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis spectroscopy and photoluminescence (PL). The XRD pattern revealed that the annealed sample of TiO2 has both anatase and rutile phases while only an anatase phase was found in Ag-doped TiO2 nanoparticles. The decreased band-gap energy of Ag-doped TiO2 nanoparticles in comparison to TiO2 nanoparticles was investigated by UV-vis spectroscopy. The rate of recombination and transfer behaviour of the photoexcited electron-hole pairs in the semiconductors was recorded by photoluminescence. The antimicrobial activity of TiO2 and Ag-doped TiO2 nanoparticles (3% and 7%) was investigated against both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas aeruginosa, Escherichia coli) bacteria. As a result, the viability of all three microorganisms was reduced to zero at 60 mg/30 mL culture in the case of both (3% and 7% doping) concentrations of Ag-doped TiO2 nanoparticles. Annealed TiO2 showed zero viability at 80 mg/30 mL whereas doped Ag-TiO2 7% showed zero viability at 40 mg/30 mL culture in the case of P. aeruginosa only.

  12. Formaldehyde degradation by photocatalytic Ag-doped TiO2 film of glass fiber roving.

    PubMed

    Ubolchonlakate, Kornkanok; Sikong, Lek; Tontai, Tienchai

    2010-11-01

    The photocatalytic Ag doped TiO2 porous films were prepared by sol-gel method and dip coated on glass fiber roving. The sol composed of titanium (IV) isopropoxide, triethanolamine, ethanol and nitric acid followed by calcination of the film at 500 degrees C for 1 hour with a heating rate of 3 degrees C/min. The surface morphology and properties of synthesized TiO2 films were characterized by X-ray diffraction, atomic forced microscope and scanning electron microscope. A laboratory photocatalytic reactor was set up to carry out photoactivity of the prepared catalysts. The results show that TiO2-Ag and TiO2-Ag-TEA porous films give highest rate of formaldehyde gas degradation. It can be noted that triethanolamine exhibits two effects on TiO2 composite films; one is its effect on porous film structure and second is a reverse effect of hindrance of anatase growth.

  13. Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties.

    PubMed

    Yu, Dong-Hui; Yu, Xiaodan; Wang, Changhua; Liu, Xian-Chun; Xing, Yan

    2012-05-01

    In this paper, TiO(2)/Ag sponge-like nanostructure composites have been prepared by the surface sol-gel method with the template of natural cellulose, which is relatively simple, low-cost, and environmentally friendly. The Ag nanoparticles are deposited on the TiO(2) nanosponges through UV irradiation photoreduction of silver nitrate solutions. The physicochemical properties of as-prepared composites are characterized by XRD, BET, SEM, TEM, XPS and UV-vis DRS techniques. The UV-light photocatalytic activities of the composites are evaluated through the photodegradation of two model organic molecules including RhB and salicylic acid. The experimental results show that the photocatalytic activities of TiO(2)/Ag nanosponge composites are superior to that of P25, pure TiO(2) nanoparticle aggregates synthesized by the hydrothermal method and pure TiO(2) nanosponge. The superior activities of TiO(2)/Ag nanosponge composite photocatalysts can be attributed to the unique nanosponge morphology, uniform dispersion of Ag nanoparticles, and strong interaction between Ag and TiO(2) nanosponges.

  14. Effects of TiO2 coating dosage and operational parameters on a TiO2/Ag photocatalysis system for decolorizing Procion red MX-5B.

    PubMed

    Lin, Yu-Chih; Lee, Ho-Shan

    2010-07-15

    In this study, titanium dioxide (TiO(2)) powder was coated onto the surface of a dendritic silver (Ag) carrier to synthesize TiO(2)/Ag for decolorizing Procion red MX-5B (MX-5B), and related operation factors were also studied. The results showed that even without ultraviolet-A (UVA) irradiation, the Ag carrier from the TiO(2)/Ag catalyst had oxidizing ability, which could effectively degrade MX-5B color, but TiO(2) was ineffective. In addition, TiO(2) from TiO(2)/Ag demonstrated photocatalysis performance when irradiated, and the Ag carrier further showed an electron-scavenging ability to mitigate electron-hole pair recombination, which can improve the photocatalytic efficacy. With the oxidization and electron-scavenging ability of Ag and the photocatalysis ability of TiO(2), TiO(2)/Ag can decolor MX-5B more efficiently than TiO(2). The heavier Ag carrier also improves the solid-liquid separation of nano-TiO(2), making TiO(2)/Ag more suitable for application in slurry systems of photocatalytic water treatment. When the TiO(2)/Ag coating ratio was 50% by weight, there was a sufficient amount of TiO(2) on Ag's surface with a good distribution, and it exhibited a good photocatalysis decolorizing effect. In a study of how operational factors impact the decolorizing of MX-5B in the TiO(2)/Ag photocatalysis system with UVA irradiation (UVA-TiO(2)/Ag), the decolorization efficiency was optimal when the solution was maintained at pH 6.35. The addition of 0.01 M hydrogen peroxide (H(2)O(2)) aided the photocatalysis decolorization efficiency, although excessive H(2)O(2) reacted with hydroxyl free radicals and decreased the active groups in the system, thereby reducing the photocatalysis activity. An operating temperature of 40 degrees C was conducive to MX-5B decolorization, which was better than operating at room temperature.

  15. Synthesis, characterization and photocatalytic behavior of Ag doped TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Bensouici, F.; Souier, T.; Dakhel, A. A.; Iratni, A.; Tala-Ighil, R.; Bououdina, M.

    2015-09-01

    In this study, structure, microstructure, optical properties and photocatalytic degradation of Rhodamine B (RhB) have been investigated in an aqueous heterogeneous media containing pure and Ag doped TiO2 nanostructures thin films which were prepared by a simple sol-gel route. Thermal analysis demonstrated that Ag content decreased the temperature of anatase-to-rutile phase transformation. X-ray diffraction analysis confirmed that the prepared nanostructures crystallize within anatase-type structure and that the dopant Ag ions were not fully incorporated within TiO2 host lattice, meanwhile both the refractive index and optical band gap were affected by Ag concentration. The photodegradation of Rhodamine B under UV-C radiation by using pure and Ag-doped TiO2 nanostructures showed that Ag played an important role in a significant improvement of the photodegradation efficiency and that the optimum content of Ag ions was found to be 0.5% molar ratio.

  16. Controlled preparation of porous TiO2-Ag nanostructures through supramolecular assembly for plasmon-enhanced photocatalysis.

    PubMed

    Fei, Jinbo; Li, Junbai

    2015-01-14

    By templating Ag(+)-induced supramolecular assembly at different temperatures, porous TiO2-Ag nanotubes and nanospheres are fabricated in a controlled manner due to the effect of Rayleigh instability. Compared with traditional TiO2 nanoparticles, TiO2-Ag nanostructures above show much more extensive visible light absorption and exhibit the noticeably plasmon-enhanced photocatalysis because of the existence of Ag nanoparticles.

  17. Both enhanced biocompatibility and antibacterial activity in Ag-decorated TiO2 nanotubes.

    PubMed

    Lan, Ming-Ying; Liu, Chia-Pei; Huang, Her-Hsiung; Lee, Sheng-Wei

    2013-01-01

    In this study, Ag is electron-beam evaporated to modify the topography of anodic TiO2 nanotubes of different diameters to obtain an implant with enhanced antibacterial activity and biocompatibility. We found that highly hydrophilic as-grown TiO2 nanotubes became poorly hydrophilic with Ag incorporation; however they could effectively recover their wettability to some extent under ultraviolet light irradiation. The results obtained from antibacterial tests suggested that the Ag-decorated TiO2 nanotubes could greatly inhibit the growth of Staphylococcus aureus. In vitro biocompatibility evaluation indicated that fibroblast cells exhibited an obvious diameter-dependent behavior on both as-grown and Ag-decorated TiO2 nanotubes. Most importantly, of all samples, the smallest diameter (25-nm-diameter) Ag-decorated nanotubes exhibited the most obvious biological activity in promoting adhesion and proliferation of human fibroblasts, and this activity could be attributed to the highly irregular topography on a nanometric scale of the Ag-decorated nanotube surface. These experimental results demonstrate that by properly controlling the structural parameters of Ag-decorated TiO2 nanotubes, an implant surface can be produced that enhances biocompatibility and simultaneously boosts antibacterial activity.

  18. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering.

    PubMed

    Uhm, Soo-Hyuk; Song, Doo-Hoon; Kwon, Jae-Sung; Lee, Sang-Bae; Han, Jeon-Geon; Kim, Kyoung-Nam

    2014-04-01

    To reduce the incidence of postsurgical bacterial infection that may cause implantation failure at the implant-bone interface, surface treatment of titanium implants with antibiotic materials such as silver (Ag) has been proposed. The purpose of this work was to create TiO2 nanotubes using plasma electrolytic oxidation (PEO), followed by formation of an antibacterial Ag nanostructure coating on the TiO2 nanotube layer using a magnetron sputtering system. PEO was performed on commercially pure Ti sheets. The Ag nanostructure was added onto the resulting TiO2 nanotube using magnetron sputtering at varying deposition rates. Field emission scanning electron microscopy and transmission electron microscopy were used to characterize the surface, and Ag content on the TiO2 nanotube layer was analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. Scanning probe microscopy for surface roughness and contact angle measurement were used to indirectly confirm enhanced TiO2 nanotube hydrophilicity. Antibacterial activity of Ag ions in solution was determined by inductively coupled plasma mass spectrometry and antibacterial testing against Staphylococcus aureus (S. aureus). In vitro, TiO2 nanotubes coated with sputtered Ag resulted in significantly reduced S. aureus. Cell viability assays showed no toxicity for the lowest sputtering time group in the osteoblastic cell line MC3T3-E1. These results suggest that a multinanostructured layer with a biocompatible TiO2 nanotube and antimicrobial Ag coating is a promising biomaterial that can be tailored with magnetron sputtering for optimal performance.

  19. Wavelength-switchable photocurrent in a hybrid TiO2-Ag nanocluster photoelectrode.

    PubMed

    Chen, Hongjun; Wang, Qiong; Lyu, Miaoqiang; Zhang, Zhi; Wang, Lianzhou

    2015-08-04

    A hybrid TiO2-Ag nanocluster (NC) photoelectrode demonstrates unique wavelength-switchable photocurrent. By simply tuning the light wavelength from ultraviolet (UV) to visible light, the photocurrent generated on a single electrode can be switched from anodic to cathodic current, in which the Ag NCs behave like a new type of visible light active photocatalyst.

  20. Ag-Si Co-doped TiO2 photocatalyst synthesized via a nonaqueous method.

    PubMed

    Chen, Qifeng; Shi, Weimei; Xu, Yao; Wu, Dong; Sun, Yuhan

    2010-11-01

    Ag-Si/TiO2 photocatalysts were synthesized in a nonaqueous system at 140 degrees C, and then annealed at different temperatures. The obtained photocatalysts were characterized by XRD, TEM, BET, TG-DTA, XPS, as well as UV-vis DRS. The results showed that All Ag-Si/TiO2 held an anatase phase and high thermal stability and the phase transformation from anatase to rutile was retarded to about 900 degrees C. The Ag-Si/TiO2 particles were highly mono-dispersed and the particles size became smaller compared to TiO2. Additionally, UV-vis light absorption shifted to visible region after Ag doping. Si weaved into the matrix of TiO2, while Ag dispersed on the surface of TiO2 particles. The visible light photocatalytic activity was evaluated by Rhodamine B (RhB) degradation in an aqueous solution under visible light irradiation. It was found that the photccatalytic activities of the obtained Ag-Si/TiO2 samples were all higher than those of pure TiO2 and Ag/TiO2, reaching the maximum at the Ag and Si content of 0.5 mol% and 20.0 mol%, respectively. The enhanced visible photocatalytic activity may be attributed to the simultaneous effects of silver and silicon co-doping.

  1. The Synthesis of Ag-Doped Mesoporous TiO2

    SciTech Connect

    Li, Xiaohong S.; Fryxell, Glen E.; Wang, Chong M.; Engelhard, Mark H.

    2008-04-15

    Ag-doped mesoporous titanium oxide was prepared using non-ionic surfactants and easily handled titanium precursors, under mild reaction conditions. In contrast to the stabilizing effect of Cd-doping on mesoporous TiO2, Ag-doping was found to significantly destabilize the mesoporous structure.

  2. Antibacterial effect of visible light reactive TiO2/Ag nanocomposite thin film on the orthodontic appliances.

    PubMed

    Yun, Kwidug; Oh, Gyejeong; Vang, Mongsook; Yang, Hongso; Lim, Hyunpil; Koh, Jeongtae; Jeong, Woonjo; Yoon, Dongjoo; Lee, Kyungku; Lee, Kwangmin; Park, Sangwon

    2011-08-01

    This study evaluated the antibacterial effect of a visible light reactive TiO2/Ag nanocomposite thin film on dental orthodontic wire (STS 304 wire). The growth of S. mutans and A. actinomycetemcomitans was suppressed on the specimens coated with TiO2/Ag compared to the uncoated specimens. The antibacterial effect of the TiO2/Ag nanocomposite thin film was improved under visible light irradiation.

  3. Nanostructured AgBr loaded TiO2: An efficient sunlight active photocatalyst for degradation of Reactive Red 120.

    PubMed

    Velmurugan, Rengasamy; Sreedhar, Bojja; Swaminathan, Meenakshisundaram

    2011-07-30

    The AgBr loaded TiO2 catalyst was prepared by a feasible approach with AgBr and tetraisopropyl orthotitanate and characterized by BET surface area measurement, diffuse reflectance spectra (DRS), scanning electron microscope (SEM), energy dispersive spectra (EDS), X-ray diffraction (XRD), transmission electron microscope (TEM) and atomic force microscope (AFM) analysis. The results of characterization reveal that AgBr loaded TiO2 has a nanostructure. Formation of the nanostructure in AgBr loaded TiO2 results in substantial shifting of the absorption edge of TiO2 to red and enhancement of visible light absorption. Electrochemical impedance spectroscopy measurements reveal that AgBr loaded TiO2 has a higher photoconductivity than prepared TiO2 due to higher separation efficiency of electron-hole pairs. Cyclic voltammetric studies reveal enhanced conductivity in AgBr loaded TiO2, which causes an increase in its photocatalytic activity. AgBr loaded TiO2 exhibited a higher photocatalytic activity than TiO2-P25 and prepared TiO2 in the photodegradation of Reactive Red 120 (RR 120).

  4. Antibacterial activity of TiO2 nanotubes: Influence of crystal phase, morphology and Ag deposition

    NASA Astrophysics Data System (ADS)

    Li, Huirong; Cui, Qiang; Feng, Bo; Wang, Jianxin; Lu, Xiong; Weng, Jie

    2013-11-01

    TiO2 nanotubes on Ti substrate were fabricated by electrochemical anodization. Ag nanoparticles were deposited on the TiO2 nanotubes by a silver mirror reaction. Antibacterial activity of the nanotubes with different structural features was evaluated by a culture test with Escherichia coli bacteria. The anatase nanotubes showed the highest antibacterial activity among three crystal phases including anatase, rutile and amorphous titania. The diameters of the nanotubes affected the antibacterial activity. The two nanotubes with 200 nm and 50 nm diameters had higher antibacterial rate than those with other diameters. The antibacterial activity of the nanotubes was independent on their lengths. Ag-deposited nanotubes exhibited excellent antibacterial activity and its antibacterial rate was up to approximately 100%. TiO2 nanotubes and Ag-deposited nanotubes on titanium should be potential for antibacterial applications in clinics and industry, especially regarding with their reusability.

  5. Investigation of Ag-TiO2 Interfacial Reaction of Highly Stable Ag Nanowire Transparent Conductive Film with Conformal TiO2 Coating by Atomic Layer Deposition.

    PubMed

    Yeh, Ming-Hua; Chen, Po-Hsun; Yang, Yi-Ching; Chen, Guan-Hong; Chen, Hsueh-Shih

    2017-03-29

    The atomic layer deposition (ALD) technique is applied to coat Ag nanowires (NWs) with a highly uniform and conformal TiO2 layer to improve the stability and sustainability of Ag NW transparent conductive films (TCFs) at high temperatures. The TiO2 layer can be directly deposited on Ag NWs with a surface polyvinylpyrrolidone (PVP) coat that acts a bed for TiO2 seeding in the ALD process. The ALD TiO2 layer significantly enhances the thermal stability at least 100 fold when aged between 200-400 °C and also provides an extra function of violet-blue light filtration for Ag NW TCFs. Investigation into the interaction between TiO2 and Ag reveals that the conformal TiO2 shell could effectively prevent Ag from 1D-to-3D ripening. However, Ag could penetrate the conformal TiO2 shell and form nanocrystals on the TiO2 shell surface when it is aged at 400 °C. According to experimental data and thermodynamic evaluation, the Ag penetration leads to an interlayer composed of mixed Ag-Ag2O-amorphous carbon phases and TiO2-x at the Ag-TiO2 interface, which is thought to be caused by extremely high vapor pressure of Ag at the Ag-TiO2 interface at a higher temperature (e.g., 400 °C).

  6. Efficient photon management with Ag nanoparticles coated TiO2 nanowire clusters for photodetector application

    NASA Astrophysics Data System (ADS)

    Ngangbam, Chitralekha; Mondal, Aniruddha; Choudhuri, Bijit

    2015-09-01

    TiO2 nanowire clusters (NWCs) covered with Ag nanoparticles (NPs) were synthesized on Si substrates using GLAD technique. Ag NPs/TiO2 NWCs showed enhanced optical absorption all over the spectrum compared to bare TiO2 NWCs. The leakage current of the TiO2 NWCs device (-10.8 μA) was reduced by ˜9 × 103 times for Ag NPs/TiO2 NWCs detector (-1.2 nA) at -1 V applied bias. Ag NPs/TiO2 NWCs detector exhibited maximum photoresponsivity ˜2.4 times (-2 V) as compared to the bare TiO2 NWCs detector. Using 10 K photocapacitance measurement, a sharp peak at 355 nm (˜3.5 eV) was detected due to the main band transition. The other sub band gap defects were observed within 410-490 nm along with a broad hump between 595-700 nm. The light dependent capacitance-time (I-T) characteristic of the Ag/TiO2 NWCs detector shows rise-time ( T r ) of 9.6 s and decay time ( T d ) of 10 s. [Figure not available: see fulltext.

  7. Synthesis and characterization of Ag deposited TiO2 particles by laser ablation in water

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Hong, M. H.; Zhou, Y.; Chen, G. X.; Saw, M. M.; Hor, A. T. S.

    2007-12-01

    Ag deposited TiO2 (Ag/TiO2) particles were synthesized by laser ablation of silver and titanium targets in de-ionized (DI) water. Post-annealing makes the structure stable and the materials change to crystalline state. It is a new approach to form Ag/TiO2 particles with a simple system and non-toxic materials. TiO2 particles with size from 20 to 30 nm coated with silver nano-clusters were observed. The silver nano-clusters can enhance the absorption capability of TiO2 photocatalysts. UV-vis spectrum analysis shows that there is a strong absorption peak at around 400 nm. It is attributed to Ag nanoparticles surface plasmon resonance (SPR) effect. This effect helps to improve the spectral characteristics of TiO2 nanoparticles with its absorption spectra shifted to a longer wavelength region. From the above properties, Ag/TiO2 nanoparticles would have new potential applications in photocatalyst and photo-anode.

  8. The effect of Fe segregation on the photocatalytic growth of Ag nanoparticles on rutile TiO2(001)

    NASA Astrophysics Data System (ADS)

    Busiakiewicz, Adam; Kisielewska, Aneta; Piwoński, Ireneusz; Batory, Damian

    2017-04-01

    The photocatalytic growth of silver nanoparticles (AgNPs) on rutile TiO2(001) and Fe-modified rutile TiO2(001) monocrystals was investigated. Various amount of Fe was segregated in a controlled way from the doped TiO2 substrates in ultra-high vacuum conditions resulting in low- medium- and high- content of Fe on TiO2 substrates. AgNPs were grown on pristine TiO2 and substrates containing Fe by photoreduction of Ag+ ions under UV illumination. It was found that the size of AgNPs was larger on Fe/TiO2 than on TiO2 while the surface density exhibited the opposite behavior - a large number of AgNPs were present on the TiO2 surface but only a few AgNPs were visible on the Fe/TiO2 substrates. The reason for the differences in size and number of AgNPs on TiO2 and Fe/TiO2 is the limited access of Ag+ to the TiO2 surface caused by the large number of Fe grains segregated onto the TiO2 surface. Another possible reason for the various AgNPs morphologies is alteration in the mechanism of Ag+ photoreduction caused by iron present as Fe3+ ions and by newly formed AgNPs playing the role of electron traps. The surface elemental analysis of the investigated materials was performed with the use of X-ray photoelectron spectroscopy (XPS) and confirmed the composition of AgNPs/Fe/TiO2 systems. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed sizes, morphology and distribution of the nanostructures.

  9. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-02-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the

  10. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites.

    PubMed

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-03-07

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.

  11. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity.

    PubMed

    Sun, Lan; Li, Jing; Wang, Chenglin; Li, Sifang; Lai, Yuekun; Chen, Hongbo; Lin, Changjian

    2009-11-15

    This work presents a novel approach for preparing TiO(2) nanotube array photocatalyst loaded with highly dispersed Ag nanoparticles through an ultrasound aided photochemical route. The Ag content loaded on the array was controlled by changing the concentration of AgNO(3) solution. The Ag-TiO(2) nanotube arrays were characterized by SEM, XRD, XPS and UV-vis absorption. The effects of Ag content on the photoelectrochemical (PEC) property and photocatalytic activity of TiO(2) nanotube array electrode were studied. The results showed that Ag loading significantly enhanced the photocurrent and photocatalytic degradation rate of TiO(2) nanotube array under UV-light irradiation. The photocurrent and photocatalytic degradation rate of Ag-TiO(2) nanotube array prepared in 0.006 M AgNO(3) solution were about 1.2 and 3.7 times as that of pure TiO(2) nanotube array, respectively.

  12. Synergistic effect of interfacial lattice Ag(+) and Ag(0) clusters in enhancing the photocatalytic performance of TiO2.

    PubMed

    Xu, Liming; Zhang, Dandan; Ming, Lufei; Jiao, Yanchao; Chen, Feng

    2014-09-28

    An interfacial lattice Ag(+) doped on TiO2 (Ag(+)/TiO2) was prepared by eluting Ag(0) clusters from a hydrothermally prepared Ag(0)/Ag(+)/TiO2 composite. An Ag(+)/TiO2@Ag(0) composite photocatalyst was subsequently obtained via a secondary Ag(0) clusters loading process to the Ag(+)/TiO2. The photocatalytic activity of Ag(+)/TiO2@Ag(0) was greatly improved compared to Ag(0)/Ag(+)/TiO2 and Ag(+)/TiO2. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) testing verified that Ag(+) ions occur as an interfacial lattice Ag(+) species in the composites. The enhancement effect of the interfacial lattice Ag(+) species is exhibited by the newly-formed Ag(+)/TiO2@Ag(0) as the interfacial lattice Ag(+) is fully exposed but not overlapped with the re-loaded Ag(0) clusters. The interfacial lattice Ag(+) ions and Ag(0) clusters are both responsible for the photocatalytic performance improvement of the catalyst, in either the photocatalytic degradation of methyl orange or photocurrent measurement.

  13. Characterization of nanostructured TiO2:Ag films: structural and optical properties

    NASA Astrophysics Data System (ADS)

    Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B.

    2016-10-01

    TiO2:Ag nanocomposites have been prepared by sol-gel method with varying silver concentration. Different technological approaches are employed to study the formation of Ag nanoparticles in titanium dioxide matrix. The obtained thin films are either thermally treated at temperatures from 300 to 600oC or UV irradiated for 15 minutes between layer deposition. XRD and FTIR studies reveal that Ag is incorporated in TiO2 films as nanoparticles and no Ag oxide phases are detected. Optical characterization performed by UV-VIS spectroscopy confirms the formation of silver nanoparticles. The influence of thermal treatment and UV radiation on the optical and structural properties is studied.

  14. Plasmonic Ag deposited TiO2 nano-sheet film for enhanced photocatalytic hydrogen production by water splitting

    NASA Astrophysics Data System (ADS)

    Liu, Enzhou; Kang, Limin; Yang, Yuhao; Sun, Tao; Hu, Xiaoyun; Zhu, Changjun; Liu, Hanchen; Wang, Qiuping; Li, Xinghua; Fan, Jun

    2014-04-01

    TiO2 nano-sheet film (TiO2 NSF) was prepared by a hydrothermal method. Ag nanoparticles (NPs) were then deposited on the surface of TiO2 NSF (Ag/TiO2 NSF) under microwave-assisted chemical reduction. The prepared samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) absorption spectroscopy, x-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, and Raman scattering spectroscopy. The results revealed that the Ag NPs were well dispersed on the anatase/rutile mixed-phase TiO2 nano-sheet surface with a metallic state. The visible light absorption and Raman scattering of TiO2 were enhanced by Ag NPs based on its surface plasmon resonance effect. Besides, Ag NPs could also effectively restrain the recombination of photogenerated electrons and holes. Photocatalytic water splitting was conducted on the films to obtain hydrogen, and the experimental results indicated that plasmonic Ag NPs could greatly enhance the photocatalytic activity of TiO2 due to the synergistic effect between electron transfer and surface plasmon resonance enhanced absorption. The hydrogen yield obtained from the optimal sample reached 8.1 μmol cm-2 and the corresponding energy efficiency was about 0.47%, which was 8.5 times higher than that of pure TiO2 film. Additionally, the formation mechanism of TiO2 nano-sheet film is preliminarily discussed.

  15. Disinfection of water using Pt- and Ag-doped TiO2 photocatalysts.

    PubMed

    Suri, Rominder P S; Thornton, Hilary M; Muruganandham, M

    2012-01-01

    In this article we have reported heterogeneous photocatalytic disinfection using pristine and Ag- and Pt-doped nano TiO2 under near-UV light and solar light irradiation. Disinfection experiments were conducted in slurry reactors with Escherichia coli, artificial light and sunlight. The influence of various amounts of Pt and Ag loading (0.5% to 5%) on the E. coli inactivation was examined and results indicated that 5% Pt-TiO2 and 0.5% Ag-TiO2 showed the highest photocatalytic E. coli inactivation. The Pt- and Ag-doped photocatalysts were characterized using XPS and TEM analysis. The influence of experimental parameters such as various photocatalysts, photocatalyst concentration, reactor geometry effect, pH and temperature on the photocatalytic disinfection was studied. The experimental results show that sunlight or near-UV light with TiO2 photocatalyst strongly inactivates E. coli. The Ag-TiO2 photocatalyst was the most efficient photocatalyst tested for bactericidal activity. A plausible mechanism ofphotocatalysed E. coli inactivation is discussed. In conclusion, the doped nano TiO2 photocatalysts is a potential candidate for E. coli inactivation.

  16. Plasmonic Control and Stabilization of Asymmetric Light Scattering from Ag Nanocubes on TiO2.

    PubMed

    Saito, Koichiro; Setoura, Kenji; Ito, Syoji; Miyasaka, Hiroshi; Mitsuda, Yoshitaka; Tatsuma, Tetsu

    2017-03-29

    When plasmonic nanoparticles are placed on a highly refractive semiconductor substrate, we can expect three different effects: (i) resonance mode splitting, (ii) asymmetric light scattering based on the split modes, and (iii) site-selective nanoetching due to plasmon-induced charge separation (PICS) at the nanoparticle-semiconductor interface. Here, we develop novel photofunctional materials by taking advantage of those three effects. More specifically, we control the asymmetric scattering of Ag nanocubes on TiO2 by PICS, so as to develop materials for photodrawing of one-way visible translucent images and multicolor scattering images. The one-way visible translucent images, which are translucent scattering images visible only from the back side, are drawn by anaerobic bottom-selective etching of the Ag nanocubes. For drawing the multicolor scattering images, a scattering color of Ag nanocubes is changed from yellow to green by the anaerobic bottom-selective etching and from yellow to red by aerobic nonselective etching. We also theoretically and experimentally examined the contribution of a possible thermal effect to the nanoetching, and revealed that the contribution is negligible; Ag nanocubes on TiO2 are stable even at 473 K for 2 h in the dark, whereas the theoretically expected temperature increase under light is less than 1 K. In addition, we developed methods to stabilize the Ag nanocubes by inactivating PICS. When Ag nanocubes on TiO2 are coated with a thin polymer layer, PICS is decelerated and the stability is improved. Replacing TiO2 with diamond, which does not accept electrons from plasmonic nanoparticles, is also an effective method to stabilize the nanocubes.

  17. TiO2 nanofibers coated with rGO and Ag2O for promoting visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Wang, Yuan; OuYang, Xiaoping; Liu, Lixin; Zhu, Wenjun

    2017-03-01

    Due to the increase in environmental pollution, highly efficient photocatalysts with enhanced visible light photocatalytic activity have attracted considerable attention. In this work, TiO2/reduced graphene oxide (rGO)/Ag2O nanoheterostructures (NHs) based photocatalysts are successfully synthesized and a markedly higher visible light photocatalytic activity is achieved, of which at least 96% of Rhodamine B (RhB) molecules are decomposed by the TiO2/rGO/Ag2O NHs after 120 min visible light irradiation, but only 30% of RhB molecules are decomposed by pure TiO2 nanofibers (NFs). Furthermore, the influence of rGO volume ratio in TiO2/rGO/Ag2O NHs photocatalysts on visible light photocatalysis is studied, and the result shows that the sample with 5 vol% rGO exhibits the highest visible light photocatalytic activity. The much enhanced visible light photocatalytic performance of the ternary TiO2/rGO/Ag2O NHs can be ascribed to the intense visible light absorption of Ag2O, the excellent electron conductivity of 2D rGO and the matched energy level of TiO2, Ag2O, and rGO, for efficient boost of the photogenerated charge carriers transfer and separation at the interface of hierarchical TiO2/rGO/Ag2O NHs.

  18. A Simple Method for the Preparation of TiO2 /Ag-AgCl@Polypyrrole Composite and Its Enhanced Visible-Light Photocatalytic Activity.

    PubMed

    Yao, Tongjie; Shi, Lei; Wang, Hao; Wang, Fangxiao; Wu, Jie; Zhang, Xiao; Sun, Jianmin; Cui, Tieyu

    2016-01-01

    A novel and facile method was developed to prepare a visible-light driven TiO2 /Ag-AgCl@polypyrrole (PPy) photocatalyst with Ag-AgCl nanoparticles supported on TiO2 nanofibers and covered by a thin PPy shell. During the synthesis, the PPy shell and Ag-AgCl nanoparticles were prepared simultaneously onto TiO2 nanofibers, which simplified the preparation procedure. In addition, because Ag-AgCl aggregates were fabricated via partly etching the Ag nanoparticles, their size was well controlled at the nanoscale, which was beneficial for improvement of the contact surface area. Compared with reference photocatalysts, the TiO2 /Ag-AgCl@PPy composite exhibited an enhanced photodegradation activity towards rhodamine B under visible-light irradiation. The superior photocatalytic property originated from synergistic effects between TiO2 nanofibers, Ag-AgCl nanoparticles and the PPy shell. Furthermore, the TiO2 /Ag-AgCl@PPy composite could be easily separated and recycled without obvious reduction in activity.

  19. Effect of Erbium on the Photocatalytic Activity of TiO2 /Ag Nanocomposites under Visible Light Irradiation.

    PubMed

    Prakash, Natarajan; Karthikeyan, Rajan; Thangaraju, Dheivasigamani; Navaneethan, Mani; Arivanandhan, Mukannan; Koyama, Tadanobu; Hayakawa, Yasuhiro

    2015-10-05

    Erbium co-doped TiO2 /Ag catalysts are synthesized by using a simple, one-step solvothermal method and characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Raman analysis, X-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy. The catalysts exhibit anatase crystal structures with increased visible light absorption compared with pure TiO2 . Enhanced photocatalytic activity is observed with Er co-doped TiO2 /Ag nanocomposites for Rhodamine B degradation under visible light irradiation. The photocatalytic activity of 1 % Er co-doped TiO2 /Ag is much higher than that of TiO2 /Ag, TiO2 /Er, pure TiO2 , and commercial Degussa P25. The kinetics of the degradation process are studied and the pseudo-first-order rate constant (k) and half-life time (t1/2 ) of the reaction are calculated. The enhanced activity might be accredited to the efficient separation of electron-hole pairs by silver and higher visible light absorption of TiO2 induced by Er.

  20. Using Ag-embedded TiO2 nanotubes array as recyclable SERS substrate

    NASA Astrophysics Data System (ADS)

    Ling, Yunhan; Zhuo, Yuqing; Huang, Liang; Mao, Duolu

    2016-12-01

    A simple strategy for synthesizing Ag-loaded TiO2 nanotube film for use as multifunctional photocatalyst and recyclable surface-enhanced Raman scattering (SERS) substrate is introduced. Highly aligned TiO2 nanotube arrays (TNTA) prepared via electrochemical anodization were used as a 3D rough host for silver nanoparticles. Ag deposits were sputtered in a vacuum, and it was found that their morphologies were mainly influenced by the diameters of nanotubes and the UV irradiation induced aging process, especially the self-migration of silver along the tubular wall. SERS and the self-cleaning effect were observed using Rhodamine 6G (R6G) as the probe molecule. The results showed that narrow nanotube and silver nanoparticles embedment contributed significantly to both the phenomenal SERS and recyclability.

  1. Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Vasilaki, E.; Georgaki, I.; Vernardou, D.; Vamvakaki, M.; Katsarakis, N.

    2015-10-01

    In this work, Ag nanoparticles were loaded by chemical reduction onto TiO2 P25 under different loadings ranging from 1 up to 4 wt% and hydrothermally deposited on reduced graphene oxide sheets. Chemical reduction was determined to be an effective preparation approach for Ag attachment to titania, leading to the formation of small silver nanoparticles with an average diameter of 4.2 nm. The photocatalytic performance of the hybrid nanocomposite materials was evaluated via methylene blue (MB) dye removal under visible-light irradiation. The rate of dye decolorization was found to depend on the metal loading, showing an increase till a threshold value of 3 wt%, above which the rate drops. Next, the as prepared sample of TiO2/Ag of better photocatalytic response, i.e., at a 3 wt% loading value, was hydrothermally deposited on a platform of reduced graphene oxide (rGO) of tunable content (mass ratio). TiO2/Ag/rGO coupled nanocomposite presented significantly enhanced photocatalytic activity compared to the TiO2/Ag, TiO2/rGO composites and bare P25 titania semiconductor photocatalysts. In particular, after 45 min of irradiation almost complete decolorization of the dye was observed for the TiO2/Ag/rGO nanocatalyst, while the respective removal efficiency was 92% for TiO2/Ag, 93% for TiO2/rGO and only 80% for the bare TiO2 nanoparticles. This simple step by step preparation strategy allows for optimum exploitation of the advanced properties of metal plasmonic effect and reduced graphene oxide as the critical host for boosting the overall photocatalytic activity towards visible-light.

  2. Synthesis of Ag2O and Ag co-modified flower-like SnS2 composites with enhanced photocatalytic activity under solar light irradiation

    NASA Astrophysics Data System (ADS)

    Deng, Lu; Zhu, Zhenfeng; Liu, Liu; Liu, Hui

    2017-01-01

    Three-dimensional Ag2O and Ag co-modified flower-like SnS2 composites have been synthesized through a facile hydrothermal and photoreduction process. The physical and chemical properties of Ag2O and Ag co-modified flower-like SnS2 composites were carefully studied by using XRD, SEM, TEM, UV-vis diffuse reflectance spectra (DRS) and XPS. The photocatalytic activity of the as-prepared products was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under solar light irradiation. The photocatalytic result shows that Ag2O and Ag co-modified flower-like SnS2 composites exhibit enhanced photocatalytic activity compared with that of pure SnS2. Three of the Ag2O and Ag co-modified flower-like SnS2 composites form the Z-scheme systems, because of their unique charge-carrier transfer process, the oxidation/reduction ability of photogenerated holes and electrons could be enhanced. Therefore, the new Ag2O and Ag co-modified flower-like SnS2 composites possess a favorable photocatalytic activity, and it can be a promising candidate for the solar energy conversion process.

  3. Fabrication of TiO2/Ag2O heterostructure with enhanced photocatalytic and antibacterial activities under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Bingkun; Mu, Lilong; Han, Bing; Zhang, Jingtao; Shi, Hengzhen

    2017-02-01

    TiO2/Ag2O heterostructure prepared by a facile in situ precipitation route was used as an effective visible light-driven photocatalyst for degradation of methylene blue (MB) and inactivation of E. coli. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) revealed that Ag2O nanoparticles were well distributed on the surface of TiO2 microspheres. The TiO2/Ag2O composite with optimal mass ratio of TiO2 and Ag2O displayed extremely good photodegradation ability and antibacterial capability under visible light irradiation, which was mainly ascribed to the synergistic effect between Ag2O and TiO2, including highly dispersed smaller Ag2O particles, increased visible light absorption and efficient separation of photo-induced charge carriers. Meanwhile, the roles of the radical species in the photocatalysis process were investigated. Our results showed that the TiO2/Ag2O could be used as a dual functional material in water treatment of removing the organic pollutant and killing the bacterium at the same time.

  4. Design of Ag-Modified TiO2-Based Films with Controlled Optical and Photocatalytic Properties

    NASA Astrophysics Data System (ADS)

    Smirnova, N. P.; Manuilov, E. V.; Korduban, O. M.; Gnatyuk, Yu. I.; Kandyba, V. O.; Eremenko, A. M.; Gorbyk, P. P.; Shpak, A. P.

    TiO2-based functional coatings doped with Ag nanoparticles were prepared via template assisted sol-gel method with an attempt to enhance the decomposition reaction rate of industrial water pollutants. The films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron (XPS), and UV-vis spectroscopies. Catalytic activity in photooxidative organic dyes decomposition remarkably enhances TiO2/ZnO samples with homogeneously distributed noble metal nanoparticles. Ag nanoparticles in TiO2 matrix improve an efficiency of charge separation and charge-transfer processes, acting as traps for photoinduced electrons.

  5. Synthesis and visible light photoactivity of anatase Ag, and garlic loaded TiO2 nanocrystalline catalyst

    EPA Science Inventory

    An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...

  6. Controlled synthesis of Ag-coated TiO2 nanofibers and their enhanced effect in photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Guan, Hongyu; Wang, Xiaohong; Guo, Yihang; Shao, Changlu; Zhang, Xintong; Liu, Yichun; Louh, Rong-Fuh

    2013-09-01

    Novel nanostructured Ag/TiO2 hybrid nanofibers (NFs) have been successfully prepared via a simple electrospinning process combined with silver mirror reaction. The Ag/TiO2 NFs demonstrated a unique morphology with evenly distributed Ag nanoparticles uniformly deposited onto the surface of each individual TiO2 NFs. The loading capacity and size of Ag NPs can be easily controlled by varying the silver mirror reaction time. Compared with pristine TiO2 NFs, such heterogeneous Ag/TiO2 nanocomposites exhibited preferable photocatalytic activity during photocatalytic degradation of rhodamine-B under the simulated sunlight irradiation and this enhanced photocatalytic performance was driven by combination and interaction between TiO2 and Ag NPs.

  7. Ag/WO3-codoped TiO2 nanoparticles: relation between structure, sorption, and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Xu, Jing Y.; Wen, Chen; Jia, Li M.; Xiao, Chang F.

    2009-07-01

    Nanostructured Ag/WO3-TiO2 particles responding to sunlight were synthesized by dissolving silver nitrate, sodium tungstate and tetrabutyl titanate precursors in a suitable solvent. The obtained powders were characterized by a series of analytical methods including X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, Zeta potential measurements and UV-vis diffuse reflectance spectra (UV-vis DRS) to demonstrate their physicochemical properties. The as-prepared Ag/WO3-TiO2 samples were evaluated for their photocatalytic activity towards the degradation of methylene blue (MB) under sunlight irradiations. Both silver (Ag) and tungsten (W) species were well dispersed over TiO2 surface with less than 6.0 mol % Ag and 3.0 mol % W to Ti element and contributed to a formation of crystalline WO3. XRD analysis particularly demonstrates the existence of mixed-phase TiO2 materials, to which the improvement in photocatalytic activity is attributed. Besides, the light absorption of doped samples is prominent red shifted relative to the pure TiO2 due to the synergetic effect among the components of Ag, WO3 and TiO2 in the codoped-TiO2. The particle size of the Ag/WO3-TiO2 powders was found to be a decrease which is accompanied with the increase of the surface area. The excellent stability and dispersity of the Ag/WO3-TiO2 powders in aqueous solution could be attributed to the enhanced Zeta potential. On the other hand, the adsorption performances of different samples were tested in the removal of two dyes from aqueous solution(congo red and methylene blue). The first-order adsorption equilibrium constants were determined and the results obtained were fitted by Langmuir monolayer formation. Thus, the Langmuir adsorption isotherm parameters were estimated from the experimental data.

  8. Facile one-pot synthesis of uniform TiO2-Ag hybrid hollow spheres with enhanced photocatalytic activity.

    PubMed

    Wang, Sunli; Qian, Huanhuan; Hu, Yong; Dai, Wei; Zhong, Yijun; Chen, Jiafu; Hu, Xiao

    2013-01-28

    TiO(2)-Ag hybrid hollow spheres (about 700 nm in diameter) with a highly uniform morphology and good structural stability were facilely prepared via a one-pot hydrothermal method, using carbon spheres as templates followed by an annealing treatment. Through this route, the as-prepared hybrid hollow spheres preserved the uniformity of the initial carbon sphere templates and the loading amount of the Ag nanocrystals can be conveniently varied or controlled by the concentration of the Ag precursor. The investigation of the photocatalytic ability demonstrated that the as-prepared TiO(2)-Ag hybrid hollow spheres possess excellent photocatalytic activity, superior to commercial TiO(2) nanoparticles (Degussa P25), for the degradation of rhodamine B (RhB) and methyl orange (MO) dyes under visible-light illumination. Furthermore, the ˙OH radicals formed during photocatalysis with different Ag content hybrids were revealed by means of a terephthalic acid fluorescence probe method, which uncovers that the Ag content in the TiO(2)-Ag hybrids was crucial to obtain an optimal synergistic effect between the Ag and TiO(2) for the degradation of organic pollutants. Accordingly, the optimum matching for the best photocatalytic activity was investigated thoroughly and a reasonable mechanism was also proposed.

  9. Photocatalytic comparison of Cu- and Ag-doped TiO2/GF for bioaerosol disinfection under visible light

    NASA Astrophysics Data System (ADS)

    Pham, Thanh-Dong; Lee, Byeong-Kyu

    2015-12-01

    Photocatalysts, TiO2/glass fiber (TiO2/GF), Cu-doped TiO2/glass fiber (Cu-TiO2/GF) and Ag-doped TiO2/glass fiber (Ag-TiO2/GF), were synthesized by a sol-gel method. They were then used to disinfect Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in bioaerosols under visible light irradiation. TiO2/GF did not show any significant disinfection effect. Both Cu and Ag acted as intermediate agents to enhance separation efficiency of electron-hole pairs of TiO2, leading to improved photocatalytic activity of Cu-TiO2/GF and Ag-TiO2/GF under visible light. Cu in Cu-TiO2/GF acted as a defective agent, increasing the internal quantum efficiency of TiO2, while Ag in Ag-TiO2/GF acted as a sensitive agent, enhancing the transfer efficiency of the electrons generated. The highest disinfection efficiencies of E. coli and S. aureus by Cu-TiO2/GF were 84.85% and 65.21%, respectively. The highest disinfection efficiencies of E. coli and S. aureus by Ag-TiO2/GF were 94.46% and 73.12%, respectively. Among three humidity conditions - 40±5% (dry), 60±5% (moderate), and 80±5% (humid) - the moderate humidity condition showed the highest disinfection efficiency for both E. coli and S. aureus. This study also showed that a Gram-negative bacterium (E. coli) were more readily disinfected by the photocatalysts than a Gram-positive bacterium (S. aureus).

  10. Enhanced visible-light photocatalytic performances of Ag3PO4 surface-modified with small amounts of TiO2 and Ag

    NASA Astrophysics Data System (ADS)

    Wang, Desong; Li, Lei; Luo, Qingzhi; An, Jing; Li, Xueyan; Yin, Rong; Zhao, Mangmang

    2014-12-01

    A novel approach has been developed to prepare an efficient visible-light photocatalyst using Ag3PO4 and TiO2 sol as precursors. First, Ag3PO4 particles were dipped into TiO2 sol for 5 min and were filtered quickly. Second, Ag3PO4 particles adsorbing a small amount of TiO2 sol were aged for 24 h to form TiO2 gel on their surface. Finally, Ag3PO4 particles covered by TiO2 gel were calcined at 450 °C for 2 h to obtain the surface-modified Ag3PO4 sample. The surface-modified Ag3PO4 was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, UV-vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The visible-light photocatalytic performances of the surface-modified Ag3PO4 were evaluated by the photodegradation of methyl orange or phenol solution. The results showed that the surface-modified Ag3PO4 exhibited much higher visible-light photocatalytic activity and stability than pure Ag3PO4. As the amount of TiO2 gel on the Ag3PO4 surface increased, the visible-light photocatalytic activity increased first and then decreased. The surface-modification of Ag3PO4 obviously decreased its solubility in water environment due to the protection of TiO2 and Ag nanocrystals on the surface. The visible-light photocatalytic mechanism of the surface-modified Ag3PO4 has been discussed.

  11. Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: photocatalytic and anti-bacterial activities.

    PubMed

    Goei, Ronn; Lim, Teik-Thye

    2014-08-01

    Ag-decorated TiO2 (Ag-TiO2) photocatalytic membranes have been fabricated by using Pluronic P-123 as a pore-forming and structure-directing agent. Six different hierarchical architectures were obtained by multilayer coating of different Ag-TiO2 sols. The porous structure of the resulting layers could be fine-tuned by altering the amounts of P-123 and AgNO3 added during the preparation of TiO2 sols. Physico-chemical and morphological properties of different Ag-TiO2 layers were thoroughly investigated. Ag nanoparticles were successfully incorporated into the TiO2 matrix. The Ag-TiO2 membranes possessed multi-functionality of membrane retention, Ag-enhanced TiO2 photocatalytic activity and anti-bacterial action. They were evaluated through experiments using a batch reactor and a photocatalytic membrane reactor (PMR). The best performing membrane was able to remove up to 1007 mg m(-2) h(-1) of Rhodamine B in the PMR. Two phenomena (photocatalytic degradation and adsorptive-membrane retention) that were responsible for the RhB removal were evaluated. In the batch reactor operated in dark, the membranes were able to remove greater than 5-logs of Escherichia coli. The membrane with the highest percentage of Ag incorporated was able to remove close to 7-logs of E. coli when operated in the PMR.

  12. Chemical assembly of TiO2 and TiO2@Ag nanoparticles on silk fiber to produce multifunctional fabrics.

    PubMed

    Li, Guohong; Liu, Hong; Zhao, Hongshi; Gao, Yuqiang; Wang, Jiyang; Jiang, Huaidong; Boughton, R I

    2011-06-01

    A carefully designed surface modification technique for the manufacture of multifunctional silk textile nanocomposite materials is successfully developed by the functionalization of silk with TiO(2) and TiO(2)@Ag nanoparticles (NPs). The NPs are assembled onto a silk substrate through covalent linkages, including enediol ligand-metal oxide bonding, resin dehydration and the acylation of silk. Owing to the strong chemical bonding, silk fibroin fabric (SFF) and the NPs form a stable composite system. The functionalized SFF, especially TiO(2)@Ag NP-functionalized SFF are endowed with remarkable UV protection properties, and an efficient anti-bacterial capability toward Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Furthermore, the nearly total photodegradation of methylene orange (MO) under UV illumination illustrates that functionalized SFF possesses high photocatalytic and self-cleaning capability. This multifunctional silk material satisfies the market demand for natural "smart" products, and is a promising practical material for use in the textile industry, hospital sterilization and environmental cleanup.

  13. Antibacterial activities of Nd doped and Ag coated TiO2 nanoparticles under solar light irradiation.

    PubMed

    Bokare, Anuja; Sanap, Avinash; Pai, Mrinal; Sabharwal, Sushma; Athawale, Anjali A

    2013-02-01

    Nanosized (8-9 nm) Nd doped and Ag coated TiO(2) nanoparticles have been synthesized by sol-gel method. The physicochemical properties of these particles were investigated by X-ray diffraction (XRD), diffuse reflectance UV-visible (DRUV) spectra and Brunauer-Emmett-Teller (BET) surface area analysis. The antibacterial activities of the samples were studied for Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) both, under the light and dark conditions. The results reveal that the extent of activity shows the order as undoped TiO(2)Ag coated TiO(2). The mechanism of bactericidal action of the nanoparticles, in presence of sunlight has been explained with the help of microscopic analyses. The bacterial damage is observed to proceed through initial perforation of the cell, damage of cell wall and finally the bacterial death.

  14. Preparation of Ag deposited TiO2 (Ag/TiO2) composites and investigation on visible-light photocatalytic degradation activity in magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Ma, C. H.; Wang, J.; Li, S. G.; Li, Y.

    2014-12-01

    In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes.

  15. Antimicrobial effect of TiO2 doped with Ag and Cu on Escherichia coli and Pseudomonas putida

    NASA Astrophysics Data System (ADS)

    Angelov, O.; Stoyanova, D.; Ivanova, I.

    2016-10-01

    Antimicrobial effect of TiO2 doped with Ag and Cu on Gram-negative bacteria Escherichia coli and Pseudomonas putida is studied. The thin films are deposited on glass substrates without heating during the deposition by r.f. magnetron co-sputtering of TiO2 target and pieces of Ag and Cu. The studied films, thickness about 65 nm, were as deposited and annealed (5200C, 4h, N2+5%H2, 4Pa). The as deposited thin films TiO2:Ag:Cu have band gap energy of 3.56 eV little higher than the band gap of crystalline anatase TiO2 which can be explained with the quantum effect of the granular structure of r.f. magnetron sputtered films. The annealed samples have band gap of 2.52 eV due to formation of donor levels from Ag and Cu atoms near the bottom of the conduction band. The toxic effect was determined through the classical Koch's method and the optical density measurements at λ=610 nm. The as deposited TiO2:Ag:Cu thin films demonstrate stronger inhibition effect - bactericidal for P. putida and bacteriostatic for E. coli (up to the 6th hour) in comparison with the annealed samples. The both methods of study show the same trends of the bacterial growth independently of their different sensitivity which confirms the observed effect.

  16. Sequential laser and ultrasonic wave generation of TiO2@Ag core-shell nanoparticles and their anti-bacterial properties.

    PubMed

    Hamad, Abubaker Hassan; Li, Lin; Liu, Zhu; Zhong, Xiang Li; Wang, Tao

    2016-02-01

    Core-shell nanoparticles have unusual physical, chemical and biological properties. Until now, for the Ag and TiO2 combination, only Ag core and TiO2 shell nanoparticles have been practically demonstrated. In this investigation, novel TiO2@Ag core-shell (TiO2 core and Ag shell) nanoparticles were produced via ultrasonic vibration of Ag-TiO2 compound nanoparticles. A bulk Ti/Ag alloy plate was used to generate colloidal Ag-TiO2 compound nanoparticles via picosecond laser ablation in deionised water. The colloidal nanoparticles were then sonicated in an ultrasonic bath to generate TiO2@Ag core-shell nanoparticles. They were characterised using a UV-VIS spectrometer, transmission electron microscopy (TEM), high-angle annular dark-field-Scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The Ag-TiO2 compound and the TiO2@Ag core-shell nanoparticles were examined for their antibacterial activity against Escherichia coli (E. coli) JM109 strain bacteria and compared with those of Ag and TiO2 nanoparticles. The antibacterial activity of the core-shell nanoparticles was slightly better than that of the compound nanoparticles at the same concentration under standard laboratory light conditions and both were better than the TiO2 nanoparticles but not as good as the Ag nanoparticles.

  17. Towards TiO2sbnd Ag porous nanocomposites based SERS sensors for chemical pollutant detection

    NASA Astrophysics Data System (ADS)

    Iancu, Vlad; Baia, Lucian; Tarcea, Nicolae; Popp, Jürgen; Baia, Monica

    2014-09-01

    Since the TiO2 environmental friendly character and the affinity of a large variety of molecules to bind to the silver surfaces are well-known, novel porous nanoarchitectures based on TiO2 aerogel and Ag colloidal particles deposited on a poly(methyl methacrylate) (PMMA) substrate were obtained. The ability of the deposited porous structures to detect by surface-enhanced Raman spectroscopy (SERS) contaminant species adsorbed from aqueous media was tested. The morphological particularities of the bulk samples during the deposition on the PMMA substrates were preserved. The SERS detection efficiency was assessed by using congo red as a test molecule. No matter the average size of the Ag nanoparticles, the lowest detectable concentrations were found be of around 5 × 10-6 M for all samples. The morphological parameters such as median pore diameter and cumulative pore volume were also taken into consideration when discussing the detection performances. Moreover, calibration curves have been obtained in order to estimate an unknown concentration of the analyte. The obtained results show the real potential of the prepared porous composites for further use in the development of new SERS-based sensors for monitoring of water quality, especially when the contaminants are dye molecules.

  18. Contributions of Ag Nanowires to the Photoelectric Conversion Efficiency Enhancement of TiO2 Dye-Sensitized Solar Cells.

    PubMed

    Liu, Yunyu; She, Guangwei; Qi, Xiaopeng; Mu, Lixuan; Wang, Xuesong; Shi, Wensheng

    2015-09-01

    Ag nanowires (AgNWs) were employed in mesoporous TiO2 dye-sensitized solar cells (DSSCs) to enhance the photoelectric conversion efficiency (PCE). The possible reasons for PCE improvement, i.e., improvement in electron transport and light harvesting due to light scattering and plasmonic resonance effect of AgNWs are investigated. Electrochemical impedance spectra (EIS) study proved that addition of AgNWs can enhance the conductivity of TiO2 thin film photoanode, which is an important reason for the increase of photocurrent. Furthermore, through the comparison experiments as well as the UV-Vis absorption and IPCE characterization, contributions of the light scattering and plasmonic resonance effect to the enhancement of light harvest, and thus PCE of the DSSCs were demonstrated. It was found that fast electron transport of AgNWs played more important role for the PCE improvement than the light harvest enhancement due to light scattering and plasmonic effect. Based on these investigations, the AgNWs modified TiO2 thin film DSSCs were optimized. After integrating AgNWs into the photoanode, the photocurrent increased significantly and PCE increased -50% comparing with the pure TiO2-based DSSCs.

  19. Synthesis of Ag-decorated porous TiO2 nanowires through a sunlight induced reduction method and its enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Yao, Yun-Chang; Dai, Xin-Rong; Hu, Xiao-Ye; Huang, Su-Zhen; Jin, Zhen

    2016-11-01

    In this work, Ag-decorated porous TiO2 nanowires were successfully synthesized via a facile and low-cost sunlight induced reduction method. The cooperation of sunlight irradiation and ethanol reduction results the formation and decoration of the Ag nanoparticles on the porous TiO2 nanowires. The structure of the Ag-decorated porous TiO2 nanowires were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Energy dispersive spectroscopy (EDS) measurements. It can be seen that the Ag nanoparticles are well dispersed within the porous TiO2 nanowires. The as-prepared Ag-decorated porous TiO2 nanowires exhibits excellent photocatalytic properties. The photocatalytic tests show that 10 ppm methylene blue can be photodegraded within 60 min. And the photodegradation ratio of the Ag-decorated porous TiO2 nanowires much higher than that of P25 and porous TiO2 nanowires. Moreover, the Ag-decorated porous TiO2 nanowires also reveal good photocatalytic activity towards to other organic pollutions, such as phenol and R6G. Therefore, it is believed that the Ag-decorated porous TiO2 nanowires can be used as a potential high performance photocatalyst in wastewater treatment.

  20. Preparation and use of photocatalytically active segmented Ag|ZnO and coaxial TiO2-Ag nanowires made by templated electrodeposition.

    PubMed

    Maijenburg, A Wouter; Rodijk, Eddy J B; Maas, Michiel G; Ten Elshof, Johan E

    2014-05-02

    Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution.

  1. Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition

    PubMed Central

    Maijenburg, A. Wouter; Rodijk, Eddy J.B.; Maas, Michiel G.; ten Elshof, Johan E.

    2014-01-01

    Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution. PMID:24837535

  2. Improved Wetting Characteristics in TiO2–Modified Ag-CuO Air Braze Filler Metals

    SciTech Connect

    Weil, K. Scott; Kim, Jin Yong Y.; Hardy, John S.; Darsell, Jens T.

    2006-01-01

    In this paper we report on the results of a series of sessile drop experiments designed to examine the effect of TiO2 on the wetting behavior of Ag-CuO air braze filler metals. It was found that TiO2 concentrations as small as 0.5 mol% can significantly decrease the contact angle of Ag-CuO on alumina over a compositional range of 1 – 34mol% CuO. The effect appears to maximize at a copper oxide concentration of ~4 mol% CuO regardless of the titania content.

  3. Highly active Ag clusters stabilized on TiO2 nanocrystals for catalytic reduction of p-nitrophenol

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhao, Zhe; Ou, Dingrong; Tu, Baofeng; Cui, Daan; Wei, Xuming; Cheng, Mojie

    2016-11-01

    Ag/TiO2 nanocomposites comprising of Ag clusters on TiO2 nanocrystal surfaces are of great significance in catalysts and advanced functional materials. Herein a novel method to synthesize Ag/TiO2 nanocomposites with Ag clusters under 2 nm on TiO2 nanocrystal surfaces have been developed. The success of this method relies on a silver mirror reaction in toluene, which refers to the reduction of silver-dodecylamine complexes by acetaldehyde in the presence of mono-dispersed TiO2 nanocrystals. The prepared Ag/TiO2 nanocomposites have been characterized by FT-IR spectra, UV-vis absorption spectra, X-ray diffraction (XRD) analysis, ultra high resolution scanning electron microscope (Ultra-HRSEM), high resolution transmission electron microscope (HRTEM) and X-ray photoelectron spectra (XPS). Catalytic activity of Ag/TiO2 nanocomposites is evaluated for the reduction of p-nitrophenol (4-NP) into p-aminophenol (4-AP) by NaBH4. Results demonstrate that Ag/TiO2 nanocomposites have shown an outstanding catalytic activity as well as a good stability in successive reduction of 4-NP. Noticeably, TOF of Ag/TiO2-0.75 nanocomposites obtained in this work is the highest among Ag based catalysts previously reported.

  4. Effective passivation of Ag nanowire-based flexible transparent conducting electrode by TiO2 nanoshell

    NASA Astrophysics Data System (ADS)

    Lee, Dong Geon; Lee, Dongjun; Yoo, Jin Sun; Lee, Sangwook; Jung, Hyun Suk

    2016-08-01

    Silver nanowire-based flexible transparent electrodes have critical problem, in spite of their excellent electrical and optical properties, that the electrical conductance and transparency degrade within several days in air because of oxidation of silver. To prevent the degradation of the silver nanowire, we encapsulated Ag-NWs with thin TiO2 barrier. Bar-coated silver nanowires on flexible polymer substrate were laminated at 120 °C, followed by atomic layer deposition of TiO2 nanoshell. With 20 nm of TiO2 nanoshells on silver nanowires, the transparent electrode keeps its electrical and optical properties over 2 months. Moreover, the TiO2-encapsulated silver nanowire-based transparent electrodes exhibit excellent bending durability.

  5. Synthesis and characterization of high photocatalytic activity and stable Ag3PO4/TiO2 fibers for photocatalytic degradation of black liquor

    NASA Astrophysics Data System (ADS)

    Cai, Li; Long, Qiyi; Yin, Chao

    2014-11-01

    The TiO2 fiber was prepared by using cotton fiber as a template, and then Ag3PO4/TiO2 fibers were synthesized via in situ Ag3PO4 particles onto the surface of TiO2 fiber. Their structure and physical properties were characterized by means of scanning electron microscopy (SEM), specific surface analyzer, X-ray diffraction (XRD), UV-vis absorption spectra and photoluminescence spectra (PL). SEM analysis indicated that the well-defined surface morphology of natural cotton fiber was mostly preserved in TiO2 and Ag3PO4/TiO2 fibers. Compared with TiO2 fiber, the absorbance wavelengths of Ag3PO4/TiO2 fibers were apparently red shifted and the PL intensities revealed a significant decrease. By using the photocatalytic degradation of black liquor as a model reaction, the visible light and ultraviolet light catalytic efficiencies of TiO2, Ag3PO4 and Ag3PO4/TiO2 fibers were evaluated. The reaction results showed that Ag3PO4/TiO2 fibers had stronger photocatalytic activity and excellent chemical stability in repeated and long-term applications. Therefore, the prepared Ag3PO4/TiO2 fibers could act as an efficient catalyst for the photocatalytic degradation of black liquor, which suggested their promising applications. It was proposed that the •OH radicals played the leading role in the photocatalytic degradation of the black liquor by Ag3PO4/TiO2 fibers system.

  6. TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Zhou, Na; Polavarapu, Lakshminarayana; Gao, Nengyue; Pan, Yanlin; Yuan, Peiyan; Wang, Qing; Xu, Qing-Hua

    2013-05-01

    A facile method was used to prepare uniform Au NR/TiO2 and Au/Ag NR/TiO2 core-shell composite nanoparticles. Au/Ag NR/TiO2 nanoparticles were found to display significantly enhanced visible light photo-catalytic activity compared to Au NR/TiO2 and the commercially available TiO2 nanoparticles. The enhancement mechanism was ascribed to injection of hot electrons of photo-excited Au/Ag NRs to TiO2, which was confirmed by 633 nm laser induced reduction of silver ions on the surface of Au/Ag NR/TiO2 composite nanoparticles.A facile method was used to prepare uniform Au NR/TiO2 and Au/Ag NR/TiO2 core-shell composite nanoparticles. Au/Ag NR/TiO2 nanoparticles were found to display significantly enhanced visible light photo-catalytic activity compared to Au NR/TiO2 and the commercially available TiO2 nanoparticles. The enhancement mechanism was ascribed to injection of hot electrons of photo-excited Au/Ag NRs to TiO2, which was confirmed by 633 nm laser induced reduction of silver ions on the surface of Au/Ag NR/TiO2 composite nanoparticles. Electronic supplementary information (ESI) available: The details of experimental procedures, SEM and TEM images of various nanoparticles prepared, photographs of the samples, control experiments, reusability test, wavelength dependent photocatalytic activities of Au/Ag/TiO2 nanoparticles, and UV-Vis spectra of a Ag nanoparticle formed on the surface of Au/Ag/TiO2 under visible light irradiation. See DOI: 10.1039/c3nr00517h

  7. Antibacterial Activity of As-Annealed TiO2 Nanotubes Doped with Ag Nanoparticles against Periodontal Pathogens

    PubMed Central

    Yeniyol, Sinem; He, Zhiming; Yüksel, Behiye; Boylan, Robert Joseph; Ürgen, Mustafa; Özdemir, Tayfun; Ricci, John Lawrence

    2014-01-01

    It is important to develop functional transmucosal implant surfaces that reduce the number of initially adhering bacteria and they need to be modified to improve the anti-bacterial performance. Commercially pure Ti sheets were anodized in an electrolyte containing ethylene glycol, distilled water and ammonium fluoride at room temperature to produce TiO2 nanotubes. These structures were then annealed at 450°C to transform them to anatase. As-annealed TiO2 nanotubes were then treated in an electrolyte containing 80.7 g/L NiSO4·7H2O, 41 g/L MgSO4·7H2O, 45 g/L H3BO3, and 1.44 g/L Ag2SO4 at 20°C by the application of 9 V AC voltage for doping them with silver. As-annealed TiO2 nanotubes and as-annealed Ag doped TiO2 nanotubes were evaluated by SEM, FESEM, and XRD. Antibacterial activity was assessed by determining the adherence of A. actinomycetemcomitans, T. forsythia, and C. rectus to the surface of the nanotubes. Bacterial morphology was examined using an SEM. As-annealed Ag doped TiO2 nanotubes revealed intense peak of Ag. Bacterial death against the as-annealed Ag doped TiO2 nanotubes were detected against A. actinomycetemcomitans, T. forsythia, and C. rectus indicating antibacterial efficacy. PMID:25202230

  8. Degradation of microcystin-LR by highly efficient AgBr/Ag3PO4/TiO2 heterojunction photocatalyst under simulated solar light irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Utsumi, Motoo; Yang, Yingnan; Li, Dawei; Zhao, Yingxin; Zhang, Zhenya; Feng, Chuanping; Sugiura, Norio; Cheng, Jay Jiayang

    2015-01-01

    A novel photocatalyst AgBr/Ag3PO4/TiO2 was developed by a simple facile in situ deposition method and used for degradation of mirocystin-LR. TiO2 (P25) as a cost effective chemical was used to improve the stability of AgBr/Ag3PO4 under simulated solar light irradiation. The photocatalytic activity tests for this heterojunction were conducted under simulated solar light irradiation using methyl orange as targeted pollutant. The results indicated that the optimal Ag to Ti molar ratio for the photocatalytic activity of the resulting heterojunction AgBr/Ag3PO4/TiO2 was 1.5 (named as 1.5 BrPTi), which possessed higher photocatalytic capacity than AgBr/Ag3PO4. The 1.5 BrPTi heterojunction was also more stable than AgBr/Ag3PO4 in photocatalysis. This highly efficient and relatively stable photocatalyst was further tested for degradation of the hepatotoxin microcystin-LR (MC-LR). The results suggested that MC-LR was much more easily degraded by 1.5 BrPTi than by AgBr/Ag3PO4. The quenching effects of different scavengers proved that reactive h+ and •OH played important roles for MC-LR degradation.

  9. Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4

    NASA Astrophysics Data System (ADS)

    Kong, Dan; Tan, Jeannie Ziang Yie; Yang, Fei; Zeng, Jieliang; Zhang, Xiwen

    2013-07-01

    We employed the double-potentiostatic methodology to electrodeposit Ag nanoparticles on oriented single-crystalline rutile TiO2 nanorods synthesized by hydrothermal method. The synthesized composites were used as the photocatalyst to reduce CO2 to CH4 under UV irradiation, and tested by SEM, XRD, TEM, XPS, UV-vis and photoluminescence. Deposition with Ag nanoparticles was observed to enhance the photocatalytic activity (≈1.5-2.64 μmol (gcatal h)-1) up to 5 times with respect to undecorated TiO2 nanorods (≈0.5 μmol (gcatal h)-1). The increase in the CH4 yield was correlated with the surface morphology and structure of TiO2 nanorods.

  10. Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance.

    PubMed

    Hou, Xinggang; Ma, Huiyan; Liu, Feng; Deng, Jianhua; Ai, Yukai; Zhao, Xinlei; Mao, Dong; Li, Dejun; Liao, Bin

    2015-12-15

    TiO2 thin films were deposited by spin coating method. Silver ions were implanted into the films using a Metal Vapor Vacuum Arc implanter. The antibacterial ability of implanted films was tested using Escherichia coli removal under fluorescent irradiation and in the dark. The concentration of E. coli was evaluated by plating technique. The photocatalytic efficiency of the implanted films was studied by degradation of methyl orange under fluorescent illumination. The surface free energy of the implanted TiO2 films was calculated by contact angle testing. Vitamin C was used as radical scavengers to explore the antibacterial mechanism of the films. The results supported the model that both generation of reactive oxygen species and release of silver ions played critical roles in the toxic effect of implanted films against E. coli. XPS experimental results demonstrated that a portion of the Ag(Ag(3+)) ions were doped into the crystalline lattice of TiO2. As demonstrated by density functional theory calculations, the impurity energy level of subtitutional Ag was responsible for enhanced absorption of visible light. Ag ion-implanted TiO2 films with excellent antibacterial efficiency against bacteria and decomposed ability against organic pollutants could be potent bactericidal surface in moist environment.

  11. TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation.

    PubMed

    Zhou, Na; Polavarapu, Lakshminarayana; Gao, Nengyue; Pan, Yanlin; Yuan, Peiyan; Wang, Qing; Xu, Qing-Hua

    2013-05-21

    A facile method was used to prepare uniform Au NR/TiO2 and Au/Ag NR/TiO2 core-shell composite nanoparticles. Au/Ag NR/TiO2 nanoparticles were found to display significantly enhanced visible light photo-catalytic activity compared to Au NR/TiO2 and the commercially available TiO2 nanoparticles. The enhancement mechanism was ascribed to injection of hot electrons of photo-excited Au/Ag NRs to TiO2, which was confirmed by 633 nm laser induced reduction of silver ions on the surface of Au/Ag NR/TiO2 composite nanoparticles.

  12. Photoelectrocatalytic inactivation of fecal coliform bacteria in urban wastewater using nanoparticulated films of TiO2 and TiO2/Ag.

    PubMed

    Domínguez-Espíndola, Ruth Belinda; Varia, Jeet C; Álvarez-Gallegos, Alberto; Ortiz-Hernández, Ma Laura; Peña-Camacho, Justina Leticia; Silva-Martínez, Susana

    2017-03-01

    Photocatalysis has shown the ability to inactivate a wide range of harmful microorganisms with traditional use of chlorination. Photocatalysis combined with applied bias potential (photoelectrocatalysis) increases the efficiency of photocatalysis and decreases the charge recombination. This work examines the inactivation of fecal coliform bacteria present in real urban wastewater by photoelectrocatalysis using nanoparticulated films of TiO2 and TiO2/Ag (4%w/w) under UV light irradiation. The catalysts were prepared with different thicknesses by the sol-gel method and calcined at 400°C and 600°C. The urban wastewater samples were collected from the sedimentation tank effluent of the university sewage treatment facility. The rate of bacteria inactivation increases with increasing the applied potential and film thicknesses; also, the presence of silver on the catalyst surface annealed at 400°C shows better inactivation than that at 600°C. Finally, a structural cell damage of Escherichia coli (DH5α), inoculated in water, is observed during the photoelectrocatalytic process.

  13. Enhancement of the photoelectric performance of dye-sensitized solar cells using Ag-doped TiO2 nanofibers in a TiO2 film as electrode.

    PubMed

    Jin, En Mei; Zhao, Xing Guan; Park, Ju-Young; Gu, Hal-Bon

    2012-02-02

    For high solar conversion efficiency of dye-sensitized solar cells [DSSCs], TiO2 nanofiber [TN] and Ag-doped TiO2 nanofiber [ATN] have been extended to be included in TiO2 films to increase the amount of dye loading for a higher short-circuit current. The ATN was used on affected DSSCs to increase the open circuit voltage. This process had enhanced the exit in dye molecules which were rapidly split into electrons, and the DSSCs with ATN stop the recombination of the electronic process. The conversion efficiency of TiO2 photoelectrode-based DSSCs was 4.74%; it was increased to 6.13% after adding 5 wt.% ATN into TiO2 films. The electron lifetime of DSSCs with ATN increased from 0.29 to 0.34 s and that electron recombination was reduced.

  14. Enhancement of the photoelectric performance of dye-sensitized solar cells using Ag-doped TiO2 nanofibers in a TiO2 film as electrode

    PubMed Central

    2012-01-01

    For high solar conversion efficiency of dye-sensitized solar cells [DSSCs], TiO2 nanofiber [TN] and Ag-doped TiO2 nanofiber [ATN] have been extended to be included in TiO2 films to increase the amount of dye loading for a higher short-circuit current. The ATN was used on affected DSSCs to increase the open circuit voltage. This process had enhanced the exit in dye molecules which were rapidly split into electrons, and the DSSCs with ATN stop the recombination of the electronic process. The conversion efficiency of TiO2 photoelectrode-based DSSCs was 4.74%; it was increased to 6.13% after adding 5 wt.% ATN into TiO2 films. The electron lifetime of DSSCs with ATN increased from 0.29 to 0.34 s and that electron recombination was reduced. PMID:22297128

  15. Fabrication and enhanced visible light photocatalytic activity of fluorine doped TiO2 by loaded with Ag.

    PubMed

    Lin, Xiaoxia; Rong, Fei; Ji, Xiang; Fu, Degang; Yuan, Chunwei

    2011-11-01

    F-doped TiO2 loaded with Ag (Ag/F-TiO2) was prepared by sol-gel process combined with photoreduction method. The physical and chemical properties of the prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), UV-Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). XPS analysis indicated Ag species existed as Ag0 in the structure of Ag/F-TiO2 samples. UV-Vis diffuse reflectance spectra showed that the light absorption of Ag/F-TiO2 in the visible region had a significant enhancement compared with the F-doped TiO2 (F-TiO2). PL analysis indicated that the electron-hole recombination rate had been effectively inhibited when Ag loaded on the surface of F-TiO2. The photocatalytic activities of the samples were evaluated for the degradation of X-3B (Reactive Brilliant Red dye, C.I. reactive red 2) under visible light (lambda > 420 nm) irradiation. Compared with F-TiO2, the sample of 0.50 Ag/F-TiO2 showed the highest photocatalytic activity. The interaction between F species and metallic Ag was responsible for improving the visible light photocatalytic activity.

  16. In vitro antibacterial activity of porous TiO2-Ag composite layers against methicillin-resistant Staphylococcus aureus.

    PubMed

    Necula, Bogdan S; Fratila-Apachitei, Lidy E; Zaat, Sebastian A J; Apachitei, Iulian; Duszczyk, Jurek

    2009-11-01

    The aim of this study was the synthesis of a porous TiO(2)-Ag composite coating and assessment of its in vitro bactericidal activity against methicillin-resistant Staphylococcus aureus. The coating was produced by plasma electrolytic oxidation of Ti-6Al-7Nb medical alloy in a calcium acetate/calcium glycerophosphate electrolyte bearing Ag nanoparticles. Following oxidation, the surface of the titanium substrate was converted into the corresponding oxide (TiO(2)) bearing Ca and P species from the electrolyte. In addition, Ag was detected associated with particles present in the oxide layers. The coatings revealed a porous interconnected structure with pores up to 3 microm in size, a threefold increase in roughness and improved wettability relative to the non-oxidized specimens. The composite TiO(2)-Ag coating showed complete killing of methicillin-resistant S. aureus within 24h in all culture conditions, whereas a 1000-fold increase in bacterial numbers was recorded with the ground titanium specimens and the samples oxidized in the absence of Ag nanoparticles.

  17. The influence of temperature, pressure and Ag doping on the physical properties of TiO2 nanoceramics.

    PubMed

    Tran, V H; Głuchowski, P; Łukowiak, A; Stre Combining Cedilla K, W

    2016-12-01

    Undoped and Ag-doped TiO2 ceramics have been prepared at temperatures between 500-1000 °C and under pressures up to 8 GPa. Their crystal structures and physical properties were investigated by means of EDX, SEM, TEM, X-ray powder diffraction, and magnetization M, specific heat Cp and electrical resistance ρ measurements. It is found that the anatase-structured As-cast powder transforms into rutile and columbite-type at 500 °C and 5.5 GPa. The stabilization of the latter phase is fulfilled under a pressure of 8 GPa and at temperatures above 800 °C. On the basis of experimental results, we conclude that the physical properties of TiO2 can be tailored along with its crystal structure. In particular, magnetic properties change from paramagnetic in anatase and rutile to magnetic correlations and in all likelihood magnetic-field-induced antiferromagnetic short-range order in columbite-structured TiO2. Contrasting behaviour in the temperature dependences of specific heat between anatase/rutile and columbite-type TiO2 is obvious. Differently from anatase/rutile, the Cp of columbite-type TiO2 exhibits a low-temperature excess, being interpreted as due to magnetic correlations, or else the prevalence of soft modes. An analysis of ρ(T) for columbite-type TiO2 in the temperature range of 280-400 K reveals the presence of a new trapping state at an energy level of ∼28 meV within the originally forbidden gap. Furthermore, thermal fluctuation-induced tunnelling and hopping conductivities are suggested to govern in a lower temperature range. We recognize that the Ag-doped contents do not alter the crystal structure but considerably enhance magnetic correlations, compared to undoped samples.

  18. SiO2/TiO2/n-Si/Ag(Cr)/TiO2 thin films with superhydrophilicity and low-emissivity

    NASA Astrophysics Data System (ADS)

    Loka, Chadrasekhar; Ryeol Park, Kyoung; Lee, Kee-Sun

    2016-01-01

    In this study, SiO2/TiO2/n-Si/Ag(Cr)/TiO2 multilayer structures have been designed and deposited by the RF and DC magnetron sputtering at room temperature. The as-deposited TiO2/glass films which are initially amorphous in nature were subjected to post annealing at 673 K for anatase phase TiO2. The anatase TiO2 films showed an optical bandgap ˜3.32 eV. The Ag(Cr)/TiO2 showed very low-emissivity (low-e) value ˜0.081 which is evaluated by using the sheet resistance (6.51 Ω/□) of the films. All the deposited films showed high visible transmittance (˜81%) and high infrared reflectance (72%) which are recorded by using the UV-vis-NIR spectrophotometer. In addition, experimentally obtained optical properties were in good agreement with the simulation data. The TiO2/n-Si heterojunction concept has been employed to enhance the superhydrophilicity of the deposited multilayer stack, TiO2/n-Si/Ag(Cr)/TiO2 films exhibited best superhydrophilicity with water contact angle ˜2°. The deposited multilayer structures SiO2/TiO2/n-Si/Ag(Cr)/TiO2 and TiO2/n-Si/Ag(Cr)/TiO2 achieved significant low-e and superhydrophilicity.

  19. A novel P/Ag/Ag2O/Ag3PO4/TiO2 composite film for water purification and antibacterial application under solar light irradiation.

    PubMed

    Zhu, Qi; Hu, Xiaohong; Stanislaus, Mishma S; Zhang, Nan; Xiao, Ruida; Liu, Na; Yang, Yingnan

    2017-01-15

    TiO2-based thin films have been intensively studied in recent years to develop efficient photocatalyst films to degrade refractory organics and inactivate bacteria for wastewater treatment. In the present work, P/Ag/Ag2O/Ag3PO4/TiO2 composite films on the inner-surface of glass tube were successfully prepared via sol-gel approach. P/Ag/Ag2O/Ag3PO4/TiO2 composite films with 3 coating layers, synthesized at 400°C for 2h, showed the optimal photocatalytic performance for rhodamine B (Rh B) degradation. The results indicated that degradation ratio of Rh B by P/Ag/Ag2O/Ag3PO4/TiO2 composite film reached 99.9% after 60min under simulated solar light, while just 67.9% of Rh B was degraded by pure TiO2 film. Moreover, repeatability experiments indicated that even after five recycling runs, the photodegradation ratio of Rh B over composite film maintained at 99.9%, demonstrating its high stability. Photocatalytic inactivation of E. coli with initial concentration of 10(7)CFU/mL also showed around 100% of sterilization ratio under simulated solar light irradiation in 5min by the composite film. The radical trapping experiments implied that the major active species of P/Ag/Ag2O/Ag3PO4/TiO2 composite films were photo-generated holes and O2(-) radicals. The proposed photocatalytic mechanism shows that the transfer of photo-induced electrons and holes may reduce the recombination efficiency of electron-hole pairs and potential photodecomposition of composite film, resulting in enhanced photocatalytic ability of P/Ag/Ag2O/Ag3PO4/TiO2 composite films.

  20. Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells.

    PubMed

    Hu, Hongwei; Ding, Jianning; Zhang, Shuai; Li, Yan; Bai, Li; Yuan, Ningyi

    2013-01-03

    Ag2S quantum dots were deposited on the surface of TiO2 nanorod arrays by a two-step photodeposition. The prepared TiO2 nanorod arrays as well as the Ag2S deposited electrodes were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope, suggesting a large coverage of Ag2S quantum dots on the ordered TiO2 nanorod arrays. UV-vis absorption spectra of Ag2S deposited electrodes show a broad absorption range of the visible light. The quantum dot-sensitized solar cells (QDSSCs) based on these electrodes were fabricated, and the photoelectrochemical properties were examined. A high photocurrent density of 10.25 mA/cm2 with a conversion efficiency of 0.98% at AM 1.5 solar light of 100 mW/cm2 was obtained with an optimal photodeposition time. The performance of the QDSSC at different incident light intensities was also investigated. The results display a better performance at a lower incident light level with a conversion efficiency of 1.25% at 47 mW/cm2.

  1. Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells

    PubMed Central

    2013-01-01

    Ag2S quantum dots were deposited on the surface of TiO2 nanorod arrays by a two-step photodeposition. The prepared TiO2 nanorod arrays as well as the Ag2S deposited electrodes were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope, suggesting a large coverage of Ag2S quantum dots on the ordered TiO2 nanorod arrays. UV–vis absorption spectra of Ag2S deposited electrodes show a broad absorption range of the visible light. The quantum dot-sensitized solar cells (QDSSCs) based on these electrodes were fabricated, and the photoelectrochemical properties were examined. A high photocurrent density of 10.25 mA/cm2 with a conversion efficiency of 0.98% at AM 1.5 solar light of 100 mW/cm2 was obtained with an optimal photodeposition time. The performance of the QDSSC at different incident light intensities was also investigated. The results display a better performance at a lower incident light level with a conversion efficiency of 1.25% at 47 mW/cm2. PMID:23286551

  2. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.

    PubMed

    Fang, Hui; Zhang, Chang Xing; Liu, Luo; Zhao, Yong Mei; Xu, Hai Jun

    2015-02-15

    Multifunctional Ag nanoparticle-decorated TiO2 nanorod arrays were prepared by two simple processes. TiO2 nanorod arrays were first fabricated by the hydrothermal route and then Ag nanoparticles were decorated on the nanorods by the chemical reduction impregnation method. Three-dimensional Ag/TiO2 arrays were used as an active substrate for surface-enhanced Raman scattering (SERS). The results show that the detection limit for rhodamine 6G (R6G) was as low as 10(-7)M and the Raman enhancement factor was as large as 10(5). After calibrating the Raman peak intensities of R6G, it could be quantitatively detected. More importantly, the photocatalytic activity of TiO2 provides a self-cleaning capability to the SERS substrate, which can be recycled and used to degrade many Ag surface adsorbates such as R6G, methyl orange, Congo red, and methylene blue after exposure to visible light. The absorbed small molecules can all be rapidly and completely removed from the SERS substrate, which has been successfully reused four times without a decrease in accuracy or sensitivity. Our results reveal that the unique recyclable property not only paves a new way to solve the single-use problem of traditional SERS substrates but also provides more SERS platforms for multiple detections of other organic molecular species.

  3. Au or Ag nanoparticle-decorated 3D urchin-like TiO2 nanostructures: synthesis, characterization, and enhanced photocatalytic activity.

    PubMed

    Xiang, Liqin; Zhao, Xiaopeng; Shang, Chaohong; Yin, Jianbo

    2013-08-01

    The semiconductors decorated with noble metals have attracted increasing attention due to their interesting physical and chemical properties. Here, 3D urchin-like hierarchical TiO2 nanostructures decorated with Au or Ag nanoparticles were prepared by wet-chemical process. The morphology and structure were characterized by different techniques. It shows that Au or Ag nanoparticles with narrow distribution are uniformly loaded on urchin-like TiO2 nanostructures, and the resulted composite nanostructures show distinct surface plasmon absorption band and quenched photoluminence compared to pure TiO2 nanostructures. Photocatalytic tests show both Au-decorated TiO2 and Ag-decorated TiO2 exhibit enhanced photocatalytic activity for photodegradation of methyl blue in water.

  4. Synthesis of Ag or Pt nanoparticle-deposited TiO2 nanorods for the highly efficient photoreduction of CO2 to CH4

    NASA Astrophysics Data System (ADS)

    Wang, Qingli; Dong, Peimei; Huang, Zhengfeng; Zhang, Xiwen

    2015-10-01

    Ag or Pt-deposited TiO2 nanocomposites were prepared by a simple method, in which oriented TiO2 nanorods were synthesized by a hydrothermal method and a noble metal (Ag or Pt) was deposited on TiO2 by photocatalytic reduction under UV irradiation. The oriented TiO2 nanorods with Ag or Pt nanoparticles (<20 nm) exhibited high CO2 photoreduction efficiency, with CH4 yield rates up to 16.0 ppm/g h and 10.8 ppm/g h, respectively, considerably higher than that of the pure TiO2 nanorods (4.2 ppm/g h). The improvement in the CH4 yield was attributed to the formation of a Schottky barrier and surface plasmon resonance.

  5. Improved performance of Ag-doped TiO2 synthesized by modified sol-gel method as photoanode of dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Gupta, Arun Kumar; Srivastava, Pankaj; Bahadur, Lal

    2016-08-01

    Ag-doped TiO2 with Ag content ranging from 1 to 7 mol% was synthesized by a modified sol-gel route, and its performance as the photoanode of dye-sensitized solar cells (DSSCs) was compared with undoped TiO2 photoanode. Titanium(IV)isopropoxide was used as precursor and hexamethylenetetramine as the capping agent. XRD results show the formation of TiO2 nanoparticles with an average crystallite size of 5 nm (1 % Ag-doped TiO2) and 9 nm (undoped TiO2), respectively. The TiO2 nanopowder was used to prepare its thin film photoelectrode using doctor's blade method. Significant improvement in light-to-energy conversion efficiency was achieved when thin films of 1 % Ag-doped TiO2 were applied as photoanode in DSSC taking N719 as the sensitizer dye. As evidenced by EIS measurements, the electron lifetime of DSSC with Ag-doped TiO2 increased from 1.33 (for undoped TiO2) to 2.05 ms. The short-circuit current density ( J sc), open-circuit voltage ( V oc), fill factor (FF) and the overall energy conversion efficiency ( η) were 1.07 mA cm-2, 0.72 V, 0.73 and 0.40 %, respectively, with the use of 1 % Ag-doped TiO2 photoanode, whereas with undoped TiO2 under similar conditions, J sc = 0.63 mA cm-2, V oc = 0.70 V, fill factor 0.45 and conversion efficiency 0.14 % could be obtained. Therefore, compared with the reference DSSC containing an undoped TiO2 photoanode, the power conversion efficiency of the cell based on Ag-doped TiO2 has been remarkably enhanced by ~70 %. The substantial improvement in the device performance is attributed to the reduced band-gap energy, retarded charge recombination and greater surface coverage of the sensitizing dye over Ag-doped TiO2, which ultimately resulted in improved IPCE, J SC and η values.

  6. Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles and nanowires

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Kim, Yong Nam; Yoo, Seung Hwa; Cho, Sung Oh

    2010-01-01

    We present the synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles (NPs) and TiO2 nanowires (NWs). Through a simple wet chemical process from a mixture of peroxo titanic acid (PTA) solution, thiourea and AgAc, a composite of Ag2S NPs and TiO2 NPs with sizes of less than 7 nm was formed. When the NP composite was further treated with NaOH solution followed by annealing at ambient conditions, a new nanocomposite material comprising Ag2S NPs on TiO2 NWs was created. Due to the coupling with such a low bandgap material as Ag2S, the TiO2 nanocomposites could have a visible-light absorption capability much higher than that of pure TiO2. As a result, the synthesized Ag2S/TiO2 nanocomposites exhibited much higher catalytic efficiency for the decomposition of methyl orange than commercial TiO2 (Degussa P25, Germany) under visible light.

  7. Photocatalytic characteristics for the nanocrystalline TiO2 on the Ag-doped CaAl2O4:(Eu,Nd) phosphor

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Sik; Sung, Hyun-Je; Kim, Bum-Joon

    2015-04-01

    This study investigated the photocatalytic behavior of nanocrystalline TiO2 deposited on Ag-doped long-lasting phosphor (CaAl2O4:Eu2+,Nd3+). The CaAl2O4:Eu2+,Nd3+ phosphor powders were prepared via conventional sintering using CaCO3, Al2O3, Eu2O3, and Nd2O3 as raw materials according to the appropriate molar ratios. Silver nanoparticles were loaded on the phosphor by mixing with an aqueous Ag-dispersion solution. Nanocrystalline TiO2 was deposited on Ag-doped CaAl2O4:Eu2+,Nd3+ powders via low-pressure chemical vapor deposition (LPCVD). The TiO2 coated on the phosphor was actively photo-reactive under irradiation with visible light and showed much faster benzene degradation than pure TiO2, which is almost non-reactive. The coupling of TiO2 with phosphor may result in an energy band bending in the junction region, which then induces the TiO2 crystal at the interface to be photo-reactive under irradiation with visible light. In addition, the intermetallic compound of CaTiO3 that formed at the interface between TiO2 and the CaAl2O4:(Eu2+,Nd3+) phosphor results in the formation of oxygen vacancies and additional electrons that promote the photodecomposition of benzene gas. The addition of Ag nanoparticles enhanced the photocatalytic reactivity of the TiO2/CaAl2O4:Eu2+,Nd3+ phosphor. TiO2 on the Ag-doped phosphor presented a higher benzene gas decomposition rate than the TiO2 did on the phosphor without Ag-doping under both irradiation with ultraviolet and visible light.

  8. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells.

    PubMed

    Yun, Juyoung; Hwang, Sun Hye; Jang, Jyongsik

    2015-01-28

    Improving the light-harvesting properties of photoanodes is promising way to enhance the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). We synthesized Au@Ag core/shell nanoparticles decorated TiO2 hollow nanoparticles (Au@Ag/TiO2 HNPs) via sol-gel reaction and chemical deposition. The Au@Ag/TiO2 HNPs exhibited multifunctions from Au@Ag core/shell NPs (Au@Ag CSNPs) and TiO2 hollow nanoparticles (TiO2 HNPs). These Au@Ag CSNPs exhibited strong and broadened localized surface plasmon resonance (LSPR), together with a large specific surface area of 129 m(2) g(-1), light scattering effect, and facile oxidation-reduction reaction of electrolyte from TiO2 HNPs, which resulted in enhancement of the light harvesting. The optimum PCE of η = 9.7% was achieved for the DSSCs using photoanode materials based on TiO2 HNPs containing Au@Ag/TiO2 HNPs (0.2 wt % Au@Ag CSNPs with respect to TiO2 HNPs), which outperformed by 24% enhancement that of conventional photoanodes formed using P25 (η = 7.8%).

  9. Shape transformation and relaxation dynamics of photoexcited TiO2/Ag nanocomposites.

    PubMed

    Kim, Mee Rahn; Ah, Chil Seong; Shin, Dongha; Lee, Sang Kyung; Lee, Wan In; Jang, Du-Jeon

    2008-06-01

    The laser-induced sintering of TiO2 nanoparticles into larger nanospheres is accelerated by adsorbed silver particles. For the same weight fraction of silver, silver nanoparticles of 5 nm in diameter modify TiO2 nanoparticles more effectively than those of 1.5 nm do, suggesting that the photocatalysis of TiO2 nanoparticles as well as their stability is highly dependent on the sizes, the shapes, and the distribution of adsorbed metal nanoparticles. The photoexcited electrons of TiO2 nanoparticles are quenched at trap sites and surface states by transfer to the conduction band of silver, implying that the presence of adsorbed silver nanoparticles enhances the photocatalytic effect of TiO2.

  10. Synthesis of Ag-doped TiO2 nanoparticles by combining laser decomposition of titanium isopropoxide and ablation of Ag for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Al-Kamal, Ahmed Kamal

    Nanostructured powders of TiO2 and Ag-doped TiO2 are synthesized by a novel pulsed-laser process that combines laser ablation of a silver (Ag) disc with laser decomposition of a titanium tetra-isopropoxide (TTIP) solution. Nanoparticles are formed by rapid condensation of vaporized species in the plasma plume generated by the high power laser, resulting in the formation of rapidly quenched Ag-doped TiO2 nanoparticles that have far-from-equilibrium or metastable structures. The uniqueness of the new ablation process is that it is a one-step process, in contrast to the two-step process developed by previous researchers in the field. Moreover, its ability to synthesize an extended-solid solution phase of Ag in TiO 2 may also be unique. The present work implies that other oxide phases, such as Al2O3, MgO and MgAl2O4, can be doped with normally insoluble metals, such as Pt and Ir, thus opening new opportunities for catalytic applications. Again, there is the prospect of being able to synthesize nanopowders of diamond, c-BN, and mixtures thereof, which are of interest for applications in machine tools, rock-drill bits, and lightweight armor. A wet-chemistry method is also investigated, which has much in common with that adopted by previous workers in the field. However, photo-voltaic properties do not measure up to expectations based on published data. A possible explanation is that the selected Ag concentrations are too high, so that recombination of holes and electrons occurs via a quantum-tunneling mechanism reduces photo-activity. Future work, therefore, will investigate lower concentrations of Ag dopant in TiO2, while also examining the effects of metastable states, including extended solid solution, amorphous, and semi-crystalline structures.

  11. Removal of phenanthrene in aqueous solution containing photon competitors by TiO2-C-Ag film supported on fiberglass.

    PubMed

    González-Ramírez, Denisse Fabiola; Ávila-Pérez, Pedro; Torres-Bustillos, Luis G; Aguilar-López, Ricardo; Montes-Horcasitas, María C; Esparza-García, Fernando J; Rodríguez-Vázquez, Refugio

    2017-04-10

    Surface interactions with pollutants and photons are key factors that affect the applications of TiO2 in environmental remediation. In this study, the solubilizing agents dimethylsulfoxide and polyoxyethylene sorbitan monooleate, which act as photon competitors, had no effect on the photocatalytic activity of TiO2-C-Ag film in phenanthrene (PHE) removal. Fiberglass with TiO2-C-Ag coating removed 91.1 ± 5.2 and 99.7 ± 0.4% of PHE in treatments using UVA (365-465 nm) and UVC (254 nm) irradiation, respectively. The use of fiberglass as a support increased the superficial area, thus allowing PHE sorption. C and Ag, which are electrically active impurities in TiO2, enhanced its photocatalytic activity and thus the attraction of the pollutant to its surface. The use of high-frequency UV light (UVC) decreased the amount of carbon species deposited on the TiO2CAg film surface. X-ray photoelectron spectroscopy of the TiO2-C-Ag film revealed extensive oxidation of the carbon deposited on the film under UVC light and loss of electrons from Ag clusters by conversion of Ag(0) to Ag(3+).

  12. Correction: Enhancing carrier generation in TiO2 by a synergistic effect between plasmon resonance in Ag nanoparticles and optical interference.

    PubMed

    Cacciato, Giuseppe; Bayle, Maxime; Pugliara, Alessandro; Bonafos, Caroline; Zimbone, Massimo; Privitera, Vittorio; Grimaldi, Maria Grazia; Carles, Robert

    2015-12-28

    Correction for 'Enhancing carrier generation in TiO2 by a synergistic effect between plasmon resonance in Ag nanoparticles and optical interference' by Giuseppe Cacciato et al., Nanoscale, 2015, 7, 13468-13476.

  13. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods.

    PubMed

    Paul, Kamal Kumar; Ghosh, Ramesh; Giri, P K

    2016-08-05

    We report on the ultra-high rate of photodegradation of organic dyes under visible light illumination on Ag2O-nanoparticle-decorated (NP) porous pure B-phase TiO2 (TiO2(B)) nanorods (NRs) grown by a solvothermal route. The as-grown TiO2(B) NRs are found to be nanoporous in nature and the Ag2O NPs are uniformly decorated over its surface, since most of the pores work as nucleation sites for the growth of Ag2O NPs. The effective band gap of the TiO2(B)/Ag2O heterostructure (HS), with a weight ratio of 1:1, has been significantly reduced to 1.68 eV from the pure TiO2(B) band gap of 2.8 eV. Steady state and time-resolved photoluminescence (PL) studies show the reduced intensity of visible PL and slower recombination dynamics in the HS samples. The photocatalytic degradation efficiency of the TiO2(B)/Ag2O HS has been investigated using aqueous methyl orange and methylene blue as reference dyes under visible light (390-800 nm) irradiation. It is found that photodegradation by the TiO2(B)/Ag2O HS is about one order of magnitude higher than that of bare TiO2(B) NRs and Ag2O NPs. The optimized TiO2(B)/Ag2O HS exhibited the highest photocatalytic efficiency, with 88.2% degradation for 30 min irradiation. The corresponding first order degradation rate constant is 0.071 min(-1), which is four times higher than the reported values. Furthermore, cyclic stability studies show the high stability of the HS photocatalyst for up to four cycles of use. The major improvement in photocatalytic efficiency has been explained on the basis of enhanced visible light absorption and band-bending-induced efficient charge separation in the HS. Our results demonstrate the long-term stability and superiority of the TiO2(B)/Ag2O HS over the bare TiO2(B) NRs and other TiO2-based photocatalysts for its cutting edge application in hydrogen production and environmental cleaning driven by solar light photocatalysis.

  14. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods

    NASA Astrophysics Data System (ADS)

    Paul, Kamal Kumar; Ghosh, Ramesh; Giri, P. K.

    2016-08-01

    We report on the ultra-high rate of photodegradation of organic dyes under visible light illumination on Ag2O-nanoparticle-decorated (NP) porous pure B-phase TiO2 (TiO2(B)) nanorods (NRs) grown by a solvothermal route. The as-grown TiO2(B) NRs are found to be nanoporous in nature and the Ag2O NPs are uniformly decorated over its surface, since most of the pores work as nucleation sites for the growth of Ag2O NPs. The effective band gap of the TiO2(B)/Ag2O heterostructure (HS), with a weight ratio of 1:1, has been significantly reduced to 1.68 eV from the pure TiO2(B) band gap of 2.8 eV. Steady state and time-resolved photoluminescence (PL) studies show the reduced intensity of visible PL and slower recombination dynamics in the HS samples. The photocatalytic degradation efficiency of the TiO2(B)/Ag2O HS has been investigated using aqueous methyl orange and methylene blue as reference dyes under visible light (390-800 nm) irradiation. It is found that photodegradation by the TiO2(B)/Ag2O HS is about one order of magnitude higher than that of bare TiO2(B) NRs and Ag2O NPs. The optimized TiO2(B)/Ag2O HS exhibited the highest photocatalytic efficiency, with 88.2% degradation for 30 min irradiation. The corresponding first order degradation rate constant is 0.071 min-1, which is four times higher than the reported values. Furthermore, cyclic stability studies show the high stability of the HS photocatalyst for up to four cycles of use. The major improvement in photocatalytic efficiency has been explained on the basis of enhanced visible light absorption and band-bending-induced efficient charge separation in the HS. Our results demonstrate the long-term stability and superiority of the TiO2(B)/Ag2O HS over the bare TiO2(B) NRs and other TiO2-based photocatalysts for its cutting edge application in hydrogen production and environmental cleaning driven by solar light photocatalysis.

  15. Facile synthesis and enhanced magnetic, photocatalytic properties of one-dimensional Ag@Fe3O4-TiO2

    NASA Astrophysics Data System (ADS)

    Jia, Xiaohua; Dai, Rongrong; Lian, Dandan; Han, Song; Wu, Xiangyang; Song, Haojie

    2017-01-01

    Fe3O4-TiO2 heterostructures were synthesized through co-precipitation method based on TiO2 nanobelts. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibration sample magnetometry (VSM) were used to characterize the heterostructure nanocomposites. The results of XRD proved that the TiO2 nanobelt was anatase which was the most suitable crystal form for photocatalysis. SEM and TEM analysis indicated that Fe3O4 nanoparticles were adhere to TiO2 nanobelts which have one-dimensional structure with 100-200 nm in width. The VSM measurements showed that the photocatalyst can be easily recovered by an extemal magnetic field. X-ray photoelectron spectroscopy (XPS) of Ag@Fe3O4-TiO2 nanocomposites studies confirm that Ag is in Ag0 state. Finally, the photodegradation of rhodamine B (RhB) by the obtained magnetic photocatalyst was investigated via UV-vis absorption spectra. The photocatalytic activity of the composites was observed to be lower compared to bare TiO2 due to the higher degree of recombination reactions after combined with Fe3O4 nanoparticles. After coated the composite of 15% Fe3O4-TiO2 with Ag, the new nanocomposite of Ag@Fe3O4-TiO2 can be easily recovered after photocatalysis by an extemal magnetic field and showed enhanced photocatalytic activity. The mechanisms for the exhibited enhanced photocatalytic effect of Ag nanoparticle decorated Fe3O4-TiO2 nanocomposites with surface heterostructures are discussed.

  16. Two-dimensional TiO2-based nanosheets co-modified by surface-enriched carbon dots and Gd2O3 nanoparticles for efficient visible-light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Lu, Dingze; Fang, Pengfei; Ding, Junqian; Yang, Minchen; Cao, Yufei; Zhou, Yawei; Peng, Kui; Kondamareddy, Kiran Kumar; Liu, Min

    2017-02-01

    Two-dimensional TiO2-based nanosheets (TNSs) co-modified by surface-enriched carbon dots (CDs) and Gd2O3 nanoparticles: (Gd-C-TNSs), capable of exhibiting visible-light-driven photo catalysis were synthesized using a two-pot hydrothermal route. The samples had a sheet-like structure, thickness of approximately 3.6 nm, large specific surface area of 240-350 cm2/g. The CDs (2-3 nm) and Gd2O3 nanoparticles (1-2 nm) were highly dispersed over the surface of the nanosheets. The co-modification by Gd2O3 nanoparticles and CDs influenced the crystallinity, crystal structure, and surface area of the TNSs, and improved the visible-light absorption. Surface photocurrent and fluorescence spectral studies revealed that the photo-generated charge carrier separation efficiency could be improved by an appropriate amount of modification. A very high efficiency was obtained using 0.5 at% Gd/Ti and 3.0 g/L of CDs. The visible-light-induced photocatalytic activity is enhanced under the isolated Cr(VI) system, isolated Rhodamin B (RhB) system, and the synergism between RhB degradation and Cr(VI) reduction for the Gd-C-TNSs photocatalysts. Initially, the photocatalytic activity gradually increased with an increase in the amount of CDs, and then decreased after attaining a maximum, in the case where 0.5 at% Gd/Ti and 3.0 g/L of CDs were used. The enhancement in the photocatalytic activity was attributed to the synergetic effect of the Gd2O3 nanoparticles, TNSs, and CDs in the Gd-C-TNSs composites. The effect led to a fast separation and slow recombination of photo-induced electron-hole pairs. An alternate mechanism for enhanced visible-light photocatalytic activity was also considered.

  17. UV-visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline.

    PubMed

    Han, Changseok; Likodimos, Vlassis; Khan, Javed Ali; Nadagouda, Mallikarjuna N; Andersen, Joel; Falaras, Polycarpos; Rosales-Lombardi, Pablo; Dionysiou, Dionysios D

    2014-10-01

    Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol-gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV-visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV-vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol-gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV-visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV-visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L(-1)) issued by the US Environmental Protection Agency.

  18. Photocatalytic Properties of TiO2 Thin Films Modified with Ag and Pt Nanoparticles Deposited by Gas Flow Sputtering.

    PubMed

    Maicu, M; Glöss, D; Frach, Peter; Hecker, D; Gerlach, G; Córdoba, José M

    2015-09-01

    In this work, a gas flow sputtering (GFS) process which allows the production and deposition of metal nanoparticles (NPs) in a vacuum environment is described. Aim of the study is to prove the potential of this technology for the fabrication of new TiO2 films with enhanced photocatalytic properties. For this purpose, Ag and Pt NPs have been produced and deposited on photocatalytic float glass coated with TiO2 thin films by magnetron sputtering. The influence of the process parameters and of the metal amount on the final properties of the particles (quantity, size, size distribution, oxidation state etc.,) was widely investigated. Moreover, the effect of the NPs on the photocatalytic activity of the resulting materials was evaluated for the case of the decomposition of stearic acid (SA) during UV-A irradiation. The reduction of the water contact angle (WCA) during the irradiation period was measured in order to test the photo-induced super-hydrophilicity (PSH).

  19. Mechanism and experimental study on the photocatalytic performance of Ag/AgCl @ chiral TiO2 nanofibers photocatalyst: the impact of wastewater components.

    PubMed

    Wang, Dawei; Li, Yi; Li Puma, Gianluca; Wang, Chao; Wang, Peifang; Zhang, Wenlong; Wang, Qing

    2015-03-21

    The effect of the water matrix components of a secondary effluent of a urban wastewater treatment plant on the photocatalytic activity of Ag/AgCl @ chiral TiO2 nanofibers and the undergoing reaction mechanisms were investigated. These effects were evaluated through the water components-induced changes on the net rate of hydroxyl radical (˙OH) generation and modeled using a relative rate technique. Dissolved organic matter DOM (k=-2.8×10(8) M(-1) s(-1)) scavenged reactive oxygen species, Cl(-) (k=-5.3×10(8) M(-1) s(-1)) accelerated the transformation from Ag to AgCl (which is not photocatalytically active under visible-light irradiation), while Ca(2+) at concentrations higher than 50 mM (k=-1.3×10(9) M(-1) s(-1)) induced aggregation of Ag/AgCl and thus all of them revealed inhibitory effects. In contrast, NO3(-) (k=6.9×10(8) M(-1) s(-1)) and CO3(2-) (k=3.7×10(8) M(-1) s(-1)) improved the photocatalytic activity of Ag/AgCl slightly by improving the rate of HO˙ generation. Other ubiquitous secondary effluent components including SO4(2-) (k=3.9×10(5) M(-1) s(-1)), NH3(+) (k=3.5×10(5) M(-1) s(-1)) and Na(+) (k=2.6×10(4) M(-1) s(-1)) had negligible effects. 90% of 17-α-ethynylestradiol (EE2) spiked in the secondary effluent was removed within 12 min, while the structure and size of Ag/AgCl @ chiral TiO2 nanofibers remained stable. This work may be helpful not only to uncover the photocatalytic mechanism of Ag/AgCl based photocatalyst but also to elucidate the transformation and transportation of Ag and AgCl in natural water.

  20. TiO2 modified with Ag nanoparticles synthesized via ultrasonic atomization-UV reduction and the use of kinetic models to determine the acetic acid photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Xu, Yingcao; You, Hong

    2014-12-01

    TiO2 surfaces modified with noble metal nanoparticles have been found to effectively reduce the photogenerated carrier recombination rate and significantly extend the light absorption properties of TiO2, thereby greatly increasing its photocatalytic activity. In this paper, highly ordered, double-sided TiO2 nanotube arrays were prepared using an anodic oxidation method in a home-made reactor using glycerol/water (volume ratio 2:1) and NH4F (0.25 mol/L) as the electrolyte, titanium plates (10 cm × 2 cm × 0.5 mm) as the anode and graphite as the cathode at a constant voltage of 25 V. After a 2-h reaction, anatase TiO2 nanotubes were obtained upon calcination at 450 °C for 4 h. The Ag nanoparticles on the surfaces of the TiO2 were prepared via ultrasonic atomization-ultraviolet light reduction. First, a silver nitrate solution was sputtered into small droplets under ultrasonication. Then, the Ag+ droplets were reduced to Ag nanoparticles. The surface morphologies, structures and elemental compositions were characterized using SEM, EDS, XRD and XPS. The photocatalytic activities were determined in acetic acid solutions (40-200 mg/L), and a mathematical model for catalytic degradation was established based on a hyperbolic model. The SEM results showed that the diameters of the as-prepared Ag/TiO2 are approximately 100 nm and that the lengths are approximately 1.8 μm. The XRD crystal structure analysis shows that the anatase phase of the TiO2 does not change during the Ag modification, and there was a peak from Ag (2 2 0). The XPS determined that the Ag atom percentage was 1.11%. The degradation of acetic acid indicated that Ag/TiO2 has a higher photocatalytic activity than the undoped TiO2.

  1. Determination of TiO2 and AgTiO2 Nanoparticles in Artemia salina: Toxicity, Morphological Changes, Uptake and Depuration.

    PubMed

    Ozkan, Yesim; Altinok, Ilhan; Ilhan, Hasan; Sokmen, Munevver

    2016-01-01

    In this study, aquatic stability and toxic effects of TiO2 and AgTiO2 nanoparticles (NPs) were investigated on Artemia salina nauplii. AgTiO2 was found to be more toxic to nauplii compared to TiO2. The mortality rate in nauplii increased significantly with increasing concentrations and duration of exposure. TiO2 eliminations ranged between 27.8% and 96.5% at 50 and 1 mg/L TiO2 exposed to nauplii, respectively. Accumulation and elimination of Ag in AgTiO2 exposed nauplii were similar except at 1 mg/L AgTiO2. When NPs were mixed with water, the hydrodynamic dimensions of NPs significantly increased because of aggregation in saltwater but NP size decreased over time. NPs-exposed nauplii showed changes in eye formation, enlargement of the intestine, malformations in the outer shell and antennae loss were also observed. Since accumulation and toxicity of AgTiO2 NPs was higher than TiO2 alone, inevitably release of AgTiO2 into aqueous environments can cause ecological risks.

  2. Synthesis and characterization of cube-like Ag@AgCl-doped TiO2/fly ash cenospheres with enhanced visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Shaomin; Zhu, Jinglin; Yang, Qing; Xu, Pengpeng; Ge, Jianhua; Guo, Xuetao

    2016-03-01

    A cube-like Ag@AgCl-doped TiO2/fly ash cenosphere composite (denoted Ag@AgCl-TiO2/fly ash cenospheres) was successfully synthesized via a two-step approach. The as-prepared catalysts were characterized by scanning electron microscopy, X-ray diffraction, diffuse reflectance ultraviolet-visible spectroscopy, Brunauer-Emmett-Teller, and X-ray photoelectron spectroscopy. The photocatalytic experiment showed that the rhodamine B degradation rate with Ag@AgCl-TiO2/fly ash cenospheres was 1.56 and 1.33 times higher than that with AgCl-TiO2/fly ash cenospheres and Ag@AgCl, respectively. The degradation ratio of rhodamine B with Ag@AgCl-TiO2/fly ash cenospheres was nearly 100% within 120 min under visible light. Analysis of active species indicated that radO2- and h+ dominated the reaction, and radOH participated in the photocatalytic reactions as an active species. A mechanism for the photocatalytic degradation by the Ag@AgCl-TiO2/fly-ash cenospheres was also proposed based on the experimental results.

  3. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting

    NASA Astrophysics Data System (ADS)

    Ge, Ming-Zheng; Cao, Chun-Yan; Li, Shu-Hui; Tang, Yu-Xin; Wang, Lu-Ning; Qi, Ning; Huang, Jian-Ying; Zhang, Ke-Qin; Al-Deyab, S. S.; Lai, Yue-Kun

    2016-02-01

    An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ >= 420 nm). It was found that the hydrogen production rate of the Ag@TiO2 NTAs prepared with ultrasonication-assisted deposition for 5 min was approximately 15 times higher than that of its pristine TiO2 NTAs counterpart. The highly efficient photocatalytic hydrogen evolution is attributed to the SPR effect of Ag for enhanced visible light absorption and boosting the photogenerated electron-hole separation/transfer. This strategy is promising for the design and construction of high efficiency TiO2 based photocatalysts for solar energy conversion.An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ >= 420 nm

  4. A self-cleaning porous TiO2-Ag core-shell nanocomposite material for surface-enhanced Raman scattering.

    PubMed

    Zou, Xiaoxin; Silva, Rafael; Huang, Xiaoxi; Al-Sharab, Jafar F; Asefa, Tewodros

    2013-01-14

    A porous TiO(2)-Ag core-shell nanocomposite material with a large surface area was synthesized by in situ hydrolyzation of Sn(2+)-grafted titanium glycolate microspheres in the presence of Ag(+) ions. The as-prepared nanocomposite material was shown to serve as an efficient self-cleaning surface-enhanced Raman scattering (SERS) substrate.

  5. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures.

    PubMed

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-03-07

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.

  6. Ag Nanoparticle–Functionalized Open-Ended Freestanding TiO2 Nanotube Arrays with a Scattering Layer for Improved Energy Conversion Efficiency in Dye-Sensitized Solar Cells

    PubMed Central

    Rho, Won-Yeop; Chun, Myeung-Hwan; Kim, Ho-Sub; Kim, Hyung-Mo; Suh, Jung Sang; Jun, Bong-Hyun

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were fabricated using open-ended freestanding TiO2 nanotube arrays functionalized with Ag nanoparticles (NPs) in the channel to create a plasmonic effect, and then coated with large TiO2 NPs to create a scattering effect in order to improve energy conversion efficiency. Compared to closed-ended freestanding TiO2 nanotube array–based DSSCs without Ag or large TiO2 NPs, the energy conversion efficiency of closed-ended DSSCs improved by 9.21% (actual efficiency, from 5.86% to 6.40%) with Ag NPs, 6.48% (actual efficiency, from 5.86% to 6.24%) with TiO2 NPs, and 14.50% (actual efficiency, from 5.86% to 6.71%) with both Ag NPs and TiO2 NPs. By introducing Ag NPs and/or large TiO2 NPs to open-ended freestanding TiO2 nanotube array–based DSSCs, the energy conversion efficiency was improved by 9.15% (actual efficiency, from 6.12% to 6.68%) with Ag NPs and 8.17% (actual efficiency, from 6.12% to 6.62%) with TiO2 NPs, and by 15.20% (actual efficiency, from 6.12% to 7.05%) with both Ag NPs and TiO2 NPs. Moreover, compared to closed-ended freestanding TiO2 nanotube arrays, the energy conversion efficiency of open-ended freestanding TiO2 nanotube arrays increased from 6.71% to 7.05%. We demonstrate that each component—Ag NPs, TiO2 NPs, and open-ended freestanding TiO2 nanotube arrays—enhanced the energy conversion efficiency, and the use of a combination of all components in DSSCs resulted in the highest energy conversion efficiency. PMID:28335245

  7. Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites.

    PubMed

    Allahverdiyev, Adil M; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-08-01

    Nanotechnology is the creation of functional materials, devices and systems at atomic and molecular scales (1-100 nm), where properties differ significantly from those at a larger scale. The use of nanotechnology and nanomaterials in medical research is growing rapidly. Recently, nanotechnologic developments in microbiology have gained importance in the field of chemotherapy. Bacterial strains that are resistant to current antibiotics have become serious public health problems that raise the need to develop new bactericidal materials. Metal oxide nanoparticles, especially TiO(2) and Ag(2)O nanoparticles, have demonstrated significant antibacterial activity. Therefore, it is thought that this property of metal oxide nanoparticles could effectively be used as a novel solution strategy. In this review, we focus on the unique properties of nanoparticles, their mechanism of action as antibacterial agents and recent studies in which the effects of visible and UV-light induced TiO(2) and Ag(2)O nanoparticles on drug-resistant bacteria have been documented. In addition, from to previous results of our studies, antileishmanial effects of metal oxide nanoparticles are also demonstrated, indicating that metal oxide nanoparticles can also be effective against eukaryotic infectious agents. Conversely, despite their significant potential in antimicrobial applications, the toxicity of metal oxide nanoparticles restricts their use in humans. However, recent studies infer that metal oxide nanoparticles have considerable potential to be the first-choice for antibacterial and antiparasitic applications in the future, provided that researchers can bring new ideas in order to cope with their main problem of toxicity.

  8. Theoretical and photo-electrochemical studies of surface plasmon induced visible light absorption of Ag loaded TiO2 nanotubes for water splitting

    NASA Astrophysics Data System (ADS)

    Gross, P. A.; Javahiraly, N.; Geraldini Sabat, N.; Cottineau, T.; Savinova, E. R.; Keller, V.

    2016-10-01

    Vertically aligned TiO2 nanotubes (TiO2-NTs), obtained by anodization in organic electrolyte, are decorated with 15 nm Ag nanoparticles prepared by a micro-wave assisted polyol synthesis. The Ag/TiO2 system is characterized by electronic microscopies in order to build a Finite Differential Time Domain (FDTD) model to simulate the interaction of light with the system. By combining UV-visible spectroscopy and FDTD simulations, the observed red shift in the surface plasmon resonance wavelength of the Ag nanoparticles, deposited on TiO2, is explained. The Ag/TiO2-NT system is used as photoanode in a photoelectrochemical water splitting setup and shows an increasing Incident Photon to Current Conversion Efficiency (IPCE) in the visible light domain with an increasing amount of deposited Ag. The spectral position of this activity enhancement coincides with the one expected from the FDTD calculations for the surface plasmon resonance of the Ag nanoparticles deposited on TiO2.

  9. Synthesis of magnetically separable Ag3PO4/TiO2/Fe3O4 heterostructure with enhanced photocatalytic performance under visible light for photoinactivation of bacteria.

    PubMed

    Xu, Jing-Wen; Gao, Zhi-Da; Han, Kun; Liu, Yongmin; Song, Yan-Yan

    2014-09-10

    Silver orthophosphate (Ag3PO4) is a low-band-gap photocatalyst that has received considerable research interest in recent years. In this work, the magnetic Ag3PO4/TiO2/Fe3O4 heterostructured nanocomposite was synthesized. The nanocomposite was found to exhibit markedly enhanced photocatalytic activity, cycling stability, and long-term durability in the photodegradation of acid orange 7 (AO7) under visible light. Moreover, the antibacterial film prepared from Ag3PO4/TiO2/Fe3O4 nanocomposite presented excellent bactericidal activity and recyclability toward Escherichia coli (E. coli) cells under visible-light irradiation. In addition to the intrinsic cytotoxicity of silver ions, the elevated bactericidal efficiency of Ag3PO4/TiO2/Fe3O4 can be largely attributed to its highly enhanced photocatalytic activity. The photogenerated hydroxyl radicals and superoxide ions on the formed Ag/Ag3PO4/TiO2 interfaces cause considerable morphological changes in the microorganism's cells and lead to the death of the bacteria.

  10. Migration of Ag- and TiO2-(Nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling.

    PubMed

    von Goetz, N; Lorenz, C; Windler, L; Nowack, B; Heuberger, M; Hungerbühler, K

    2013-09-03

    Engineered nanoparticles (ENP) are increasingly used to functionalize textiles taking advantage, e.g., of the antimicrobial activity of silver (Ag)-ENP or the UV-absorption of titania (TiO2)-ENP. Mobilization and migration of ENPs from the textile into human sweat can result in dermal exposure to these nanoobjects and their aggregates and agglomerates (NOAA). In this study we assessed exposure to NOAA migrating from commercially available textiles to artificial sweat by an experimental setup that simulates wear-and-tear during physical activity. By combining physical stress with incubation in alkaline and acidic artificial sweat solutions we experimentally realized a worst case scenario for wearing functionalized textiles during sports activities. This experimental approach is not limited to NOAA, but can be used for any other textile additive. Out of four investigated textiles, one T-shirt and one pair of trousers with claimed antimicrobial properties were found to release Ag <450 nm in detectable amounts (23-74 μg/g/L). Textiles containing TiO2 for UV protection did not release significant amounts of TiO2 <450 nm, but the antimicrobial T-shirt released both TiO2 and Ag <450 nm. The silver was present in dissolved and particulate form, whereas TiO2 was mainly found as particulate. On the basis of our experimental results we calculated external dermal exposure to Ag and TiO2 for male and female adults per use. For silver, maximal amounts of 17.1 and 8.2 μg/kg body weight were calculated for total and particulate Ag <450 nm, respectively. For TiO2, the exposure levels amount to maximal 11.6 μg/kg body weight for total (mainly particulate) TiO2. In comparison with other human exposure pathways, dermal exposure to NOAA from textiles can be considered comparably minor for TiO2-NOAA, but not for Ag-NOAA.

  11. Disinfection of Escherichia coli Gram negative bacteria using surface modified TiO2: optimization of Ag metallization and depiction of charge transfer mechanism.

    PubMed

    Gomathi Devi, LakshmipathiNaik; Nagaraj, Basavalingaiah

    2014-01-01

    The antibacterial activity of silver deposited TiO2 (Ag-TiO2 ) against Gram negative Escherichia coli bacteria was investigated by varying the Ag metal content from 0.10 to 0.50% on the surface of TiO2 . Ag depositions by the photoreduction method were found to be stable. Surface silver metallization was confirmed by EDAX and XPS studies. Photoluminescence studies show that the charge carrier recombination is less for 0.1% Ag-TiO2 and this catalyst shows superior bactericidal activity under solar light irradiation compared to Sol gel TiO2 (SG-TiO2 ) due to the surface plasmon effect. The energy levels of deposited Ag are dependent on the Ag content and it varies from -4.64 eV to -1.30 eV with respect to the vacuum energy level based on atomic silver to bulk silver deposits. The ability of electron transfer from Ag deposit to O2 depends on the position of the energy levels. The 0.25% and 0.50% Ag depositions showed detrimental effect on bactericidal activity due to the mismatch of energy levels. The effect of the EROS (External generation of the Reactive Oxygen Species by 0.1% Ag-TiO2 ) and IROS (Interior generation of Reactive Oxygen Species within the bacteria) on the bactericidal inactivation is discussed in detail.

  12. Antibacterial properties and human gingival fibroblast cell compatibility of TiO2/Ag compound coatings and ZnO films on titanium-based material.

    PubMed

    Chang, Yin-Yu; Lai, Chih-Ho; Hsu, Jui-Ting; Tang, Chih-Hsin; Liao, Wan-Chuen; Huang, Heng-Li

    2012-02-01

    Titanium (Ti)-based materials are widely used in biomedical implant components and are applied successfully in various types of bone-anchored reconstructions. However, in dental implants the Ti materials contact not only bone but also gingival tissues, and are partially exposed to the oral cavity that includes bacteria. This study used titania and silver (TiO(2)/Ag) compound coatings and zinc oxide (ZnO) films to enhance the antibacterial activity of the Ti-based implant. The hydrophobicity of each sample was examined by measuring the contact angle. Streptococcus mutans and human gingival fibroblast (HGF) was cultured on the coated samples, and the antibacterial effects and cell compatibility were determined using a Syto9 fluorescence staining and MTT methods. For the TiO(2)/Ag samples, depositing Ag on the plate at a higher power (which increased the proportion of Ag) increased the contact angle and the hydrophobicity. The bacterial count was lowest for the 50 W TiO(2)/Ag sample, which contained 5.9% Ag. The contact angles of the ZnO samples did not show the same tendency. The antibacterial effect was higher on ZnO-coated samples since bacterial count was threefold lower on ZnO samples as compared to control samples (Ti plate). From the MTT assay test, the mean optical density values for TiO(2)/Ag-coated samples after 72 h of HGF adhesion were similar to the value obtained from the uncoated Ti. However, biocompatibility was lower on ZnO films than in control samples. Conclusively, the antibacterial activity was higher but the cell compatibility was lower on ZnO films than on TiO(2)/Ag coatings.

  13. Design of Ag@C@SnO2@TiO2 yolk-shell nanospheres with enhanced photoelectric properties for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Peilu; Li, Dan; Yao, Shiting; Zhang, Yiqun; Liu, Fengmin; Sun, Peng; Chuai, Xiaohong; Gao, Yuan; Lu, Geyu

    2016-06-01

    The hierarchical Ag@C@SnO2@TiO2 nanospheres (ACSTS) have been successfully synthesized by deposition of SnO2 and TiO2 on the Ag@C templates layer by layer. The size of ACSTS is ca. 360 nm while the Ag@C cores have an average diameter of about 300 nm. The rough and porous shell structure consisting of SnO2 and TiO2 ensures a large specific surface area (115.5 m2 g-1). To demonstrate how such a unique structure might lead to more excellent photovoltaic property, several kinds of dye-sensitized solar cells (DSSCs) are also fabricated using different nanospheres based photoanodes. It is found that the ACSTS based DSSC exhibits an obvious improvement in cell performance. According to various technical characterization, the ACSTS can provide dual-functions of light absorption and charge transfer, hence resulting in an enhanced short-circuit photocurrent density of 18.68 mA cm-2 and a higher FF of 63% compared with other DSSCs. The ACSTS cell finally obtains a PCE of up to 8.62%, increasing by 70.4% and 10.2% than hollow TiO2 nanospheres and Ag@C@TiO2 nanospheres based cells, respectively. The improved photovoltaic properties of ACSTS cell can be mainly ascribed to the unique microstructure and the synergistic effect of the encapsulated Ag@C cores.

  14. Synthesis and characterization of TiO 2/Ag/polymer ternary nanoparticles via surface-initiated atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Park, Jung Tae; Koh, Joo Hwan; Seo, Jin Ah; Cho, Yong Soo; Kim, Jong Hak

    2011-08-01

    We report on the novel ternary hybrid materials consisting of semiconductor (TiO 2), metal (Ag) and polymer (poly(oxyethylene methacrylate) (POEM)). First, a hydrophilic polymer, i.e. POEM, was grafted from TiO 2 nanoparticles via the surface-initiated atom transfer radical polymerization (ATRP) technique. These TiO 2-POEM brush nanoparticles were used to template the formation of Ag nanoparticles by introduction of a AgCF 3SO 3 precursor and a NaBH 4 aqueous solution for reduction process. Successful grafting of polymeric chains from the surface of TiO 2 nanoparticles and the in situ formation of Ag nanoparticles within the polymeric chains were confirmed using transmission electron microscopy (TEM), UV-vis spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). FT-IR spectroscopy also revealed the specific interaction of Ag nanoparticles with the C dbnd O groups of POEM brushes. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the semiconductor, producing ternary hybrid inorganic-organic nanomaterials.

  15. Efficiency Enhancement of Quantum Dot Sensitized TiO2/ZnO Nanorod Arrays Solar Cells by Plasmonic Ag Nanoparticles.

    PubMed

    Zhao, Haifeng; Huang, Fei; Hou, Juan; Liu, Zhiyong; Wu, Qiang; Cao, Haibin; Jing, Qun; Peng, Shanglong; Cao, Guozhong

    2016-10-12

    A high efficiency quantum dot sensitized solar cell (QDSC) based on Ag nanoparticles (NPs) decorated TiO2/ZnO nanorod arrays (NAs) photoelectrode has been constructed. The incorporation of Ag NPs to TiO2/ZnO NAs photoelectrode not only increases light harvesting efficiency and facilitates exciton dissociation but also decreases surface charge recombination and prolongs electron lifetime, which collectively contribute to improving the Jsc of the CdS/CdSe QDs cosensitized solar cells. The direct contact of Ag NPs with TiO2 NPs is undergoing Fermi level alignment; thus, the apparent Fermi level is supposed to trigger an upward shift of more negative potential, which results in an increase the Voc of the QDSCs. As a result, the power conversion efficiency of the QDSCs with Ag NPs decorated TiO2/ZnO NAs photoelectrode reached 5.92%, which is about 22% enhancement of the efficiency for the solar cells without Ag NPs (4.80%).

  16. Improving the visible light photocatalytic activity of mesoporous TiO2 via the synergetic effects of B doping and Ag loading

    NASA Astrophysics Data System (ADS)

    Tian, Baozhu; Shao, Zhimang; Ma, Yunfei; Zhang, Jinlong; Chen, Feng

    2011-11-01

    B-doped together with Ag-loaded mesoporous TiO2 (Ag/B-TiO2) was prepared by a two-step hydrothermal method in the presence of boric acid, triblock copolymer surfactant, and silver nitrate, followed by heat treatment. The obtained samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption. It was revealed that all samples consist of highly crystalline anatase with mesoporous structure. For Ag/B-TiO2, B was doped into TiO2 matrix in the form of both interstitial B and substitutional B while Ag was deposited on the surface of B-TiO2 in the form of metallic silver. Compared with the single B-doped or Ag-loaded TiO2 one, mesoporous Ag/B-TiO2 exhibits much higher visible light photocatalytic activity for the degradation of Rhodamine 6G, which can be ascribed to the synergistic effects of B doping and Ag loading by narrowing the band gap of the photocatalyst and preventing the fast recombination of the photogenerated charge carriers, respectively.

  17. A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO2/Ag-exchanged-zeolite-A nanocomposite

    NASA Astrophysics Data System (ADS)

    Nosrati, Rahimeh; Olad, Ali; Nofouzi, Katayoon

    2015-08-01

    The commercial grade polyacrylic latex was modified in order to prepare a self-cleaning coating. TiO2/Ag-exchanged-zeolite-A nanocomposite was prepared and used as additive in the matrix of polyacrylic latex to achieve a hydrophilic and photocatalytic coating. FTIR and UV-visible spectroscopy, X-ray diffraction patterns and FESEM were used to characterize the composition and structure of the nanocomposites and coatings. The acrylic coatings, were prepared by using of TiO2/Ag-exchanged-zeolite-A additive, had better UV and visible light absorption, hydrophilic, degradation of organic pollutants, stability in water and antimicrobial properties than pristine commercial grade polyacrylic latex coating. According to the results, the modified polyacrylic based coating containing 0.5 wt% of TiO2/Ag-exchanged-zeolite-A nanocomposite additive with TiO2 to Ag-exchanged-zeolite-A ratio of 1:2 was the best coating considering most of useful properties such as small band gap and low water contact angle. The water contact angle for unmodified polyacrylic latex coating was 68° which was decreased to less than 10° in modified coating after 24 h LED lamp illumination.

  18. Photochromic and self-cleaning properties of TiO2-AgCl/TiO2-xCu thin film.

    PubMed

    Sangchay, Weerachai; Sikong, Lek; Kooptarnond, Kalayanee

    2013-02-01

    The TiO2-AgCl/TiO2-xCu thin films were prepared by sol-gel method and dip coated on glass slide. The prepared films were synthesized at the temperature of 400 degrees C for 2 h with a heating rate of 10 degrees C/min. The microstructure and properties of synthesized TiO2-AgCl/TiO2-xCu thin films were characterized by X-ray diffraction, scanning electron microscopy, atomic forced microscope and UV-vis diffuse reflectance spectroscopy. Finally, the hydrophilic property was evaluated by means of contact angle of water droplet on the films. The results show all samples have film thickness in range of 400-500 nm and their surfaces are dense and strong with a large surface area according to the image of atomic forced microscope. It can be noted that TiO2-AgCl/TiO2-5Cu thin films exhibit the highest photochromic (or the lowest capability of light transmittance) at 250-400 nm. The TiO2-AgCl/TiO2-xCu thin films can block UV C, UV B and UV A rays and exhibit self-cleaning effect (small contact angle, 3.9 degrees ) under UV irradiation.

  19. Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays.

    PubMed

    Tang, Yanhong; Luo, Shenglian; Teng, Yarong; Liu, Chengbin; Xu, Xiangli; Zhang, Xilin; Chen, Liang

    2012-11-30

    A new photocatalyst, Ag nanoparticles (NPs) and reduced graphene oxide (RGO) co-decorated TiO(2) nanotube arrays (NTs) (Ag/RGO-TiO(2) NTs), was designed and facilely produced by combining electrodeposition and photoreduction processes. The structures and properties of the photocatalysts were characterized. The ternary catalyst exhibited almost 100% photocatalytic removal efficiency of typical herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from water under simulated solar light irradiation. The photodegradation rate toward 2,4-D over Ag/RGO-TiO(2) NTs is 11.3 times that over bare TiO(2) NTs. After 10 successive cycles with 1600 min of irradiation, Ag/RGO-TiO(2) NTs maintained as high 2,4-D removal efficiency as 97.3% with excellent stability and easy recovery, which justifies the photocatalytic system a promising application for herbicide removal from water.

  20. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell.

    PubMed

    Kumar, P Naresh; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-04-21

    A novel photoanode architecture with plasmonic silver (Ag) nanostructures embedded in titania (TiO2), which served as the wide band gap semiconducting support and CdS quantum dots (QDs), as light absorbers, is presented. Ag nanostructures were prepared by a polyol method and are comprised of clumps of nanorods, 15-35 nm wide, interspersed with globular nanoparticles and they were characterized by a face centered cubic lattice. Optimization of Ag nanostructures was achieved on the basis of a superior power conversion efficiency (PCE) obtained for the cell with a Ag/TiO2/CdS electrode encompassing a mixed morphology of Ag nano-rods and particles, relative to analogous cells with either Ag nanoparticles or Ag nanorods. Interfacial charge transfer kinetics was unraveled by fluorescence quenching and lifetime studies. Ag nanostructures improve the light harvesting ability of the TiO2/CdS photoanode via (a) plasmonic and scattering effects, which induce both near- and far-field enhancements which translate to higher photocurrent densities and (b) charging effects, whereby, photoexcited electron transfer from TiO2 to Ag is facilitated by Fermi level equilibration. Owing to the spectacular ability of Ag nanostructures to increase light absorption, a greatly increased PCE of 4.27% and a maximum external quantum efficiency of 55% (at 440 nm) was achieved for the cell based on Ag/TiO2/CdS, greater by 42 and 66%, respectively, compared to the TiO2/CdS based cell. In addition, the liquid S(2-) electrolyte was replaced by a S(2-) gel containing fumed silica, and the redox potential, conductivity and p-type conduction of the two were deduced to be comparable. Although the gel based cells showed diminished solar cell performances compared to their liquid counterparts, nonetheless, the Ag/TiO2/CdS electrode continued to outperform the TiO2/CdS electrode. Our studies demonstrate that Ag nanostructures effectively capture a significant chunk of the electromagnetic spectrum and aid QD

  1. Sonophotocatalytic degradation of dye C.I. Acid Orange 7 by TiO2 and Ag nanoparticles immobilized on corona pretreated polypropylene non-woven fabric.

    PubMed

    Marković, Darka; Šaponjić, Zoran; Radoičić, Marija; Radetić, Tamara; Vodnik, Vesna; Potkonjak, Branislav; Radetić, Maja

    2015-05-01

    This study discusses the possibility of using corona pre-treated polypropylene (PP) non-woven fabric as a support for immobilization of colloidal TiO2 and Ag nanoparticles in order to remove dye C.I. Acid Orange 7 from aqueous solution. Dye removal efficiency by sonocatalysis, photocatalysis and sonophotocatalysis was evaluated on corona pre-treated fabric loaded with TiO2 nanoparticles, corona pre-treated fabric double loaded with TiO2 nanoparticles and corona pre-treated fabrics loaded with TiO2 nanoparticles before and after deposition of Ag nanoparticles. In addition, the stability of PP non-woven fabric during these processes was investigated. The substrates were characterized by SEM, EDX and AAS analyses. The change of the dye concentration was evaluated by UV-VIS spectrophotometry. Unlike sonocatalysis and photocatalysis, complete dye removal from both solution and non-woven fabric was obtained already after 240-270 min of sonophotocatalysis. Corona pre-treated PP non-woven fabric loaded with Ag nanoparticles prior to deposition of TiO2 nanoparticles provided excellent degradation efficiency and superior reusability. Sonophotocatalytic degradation of dye in the presence of all investigated samples was the most prominent in acidic conditions. Although this nanocomposite system ensured fast discoloration of dye solution, TOC values of water measured after sonophotocatalysis were not satisfactory because of PP degradation. Therefore, it is suggested to include TOC evaluation in each case study where different supports for TiO2 nanoparticles are used since these nanoparticles may guarantee the dye removal from solution but the stability of support could be problematic causing even more serious environmental impact.

  2. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens

    NASA Astrophysics Data System (ADS)

    Sankar Boxi, Siddhartha; Mukherjee, Khushi; Paria, Santanu

    2016-02-01

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated •OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  3. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens.

    PubMed

    Boxi, Siddhartha Sankar; Mukherjee, Khushi; Paria, Santanu

    2016-02-26

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated (•)OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  4. A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures

    PubMed Central

    Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun

    2016-01-01

    Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance. PMID:27615429

  5. A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun

    2016-09-01

    Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance.

  6. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures

    NASA Astrophysics Data System (ADS)

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-02-01

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb

  7. Highly efficient and porous TiO2-coated Ag@Fe3O4@C-Au microspheres for degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Shen, Mao; Chen, Suqing; Jia, Wenping; Fan, Guodong; Jin, Yanxian; Liang, Huading

    2016-12-01

    In this paper, we reported a novel hierarchical porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres with a highly photocatalytic activity and magnetically separable properties. The synthesis method is included of a Fe3O4 magnetic embedded Ag core (Ag@Fe3O4), an interlayer of carbon modified by PEI to form sufficient amounts of amine functional groups (Ag@Fe3O4@C-PEI), the grafting of Au nanoparticles on the surface of Ag@Fe3O4@C-PEI (Ag@Fe3O4@C-Au), and an ordered porous TiO2 structured shell. As an example of the applications, the photocatalytic activities of the samples were investigated by the reduction of Rhodamine B (RhB) under visible-light irradiation. The results show that the porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres display higher adsorption and photocatalytic activities compared to the pure porous TiO2 and Ag@Fe3O4@C@TiO2 microspheres, which are attributed to the local surface plasmon resonance (LSPR) by the Ag and Au nanoparticles and the high specific surface area.

  8. Role of Ag2S coupling on enhancing the visible-light-induced catalytic property of TiO2 nanorod arrays

    PubMed Central

    Li, Zhengcao; Xiong, Shan; Wang, Guojing; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    In order to obtain a better photocatalytic performance under visible light, Ag2S-coupled TiO2 nanorod arrays (NRAs) were prepared through the electron beam deposition with glancing angle deposition (GLAD) technique, annealing in air, followed by the successive ionic layer absorption and reaction (SILAR) method. The properties of the photoelectrochemical and photocatalytic degradation of methyl orange (MO) were thus conducted. The presence of Ag2S on TiO2 NRAs was observed to have a significant improvement on the response to visible light. It’s resulted from that Ag2S coupling can improve the short circuit photocurrent density and enhance the photocatalytic activity remarkably. PMID:26790759

  9. Photoelectrical properties of Ag2S quantum dot-modified TiO2 nanorod arrays and their application for photovoltaic devices.

    PubMed

    Liu, Bingkun; Wang, Dejun; Zhang, Yu; Fan, Haimei; Lin, Yanhong; Jiang, Tengfei; Xie, Tengfeng

    2013-02-14

    Vertically aligned TiO(2) nanorod arrays (NRAs) modified with Ag(2)S quantum dots (QDs) have been successfully prepared via a successive ionic layer adsorption and reaction (SILAR) process. Ultraviolet-visible (UV-vis) absorption spectra and surface photovoltage (SPV) measurements reveal that the Ag(2)S sensitization extends the range of the photoresponse of the TiO(2) NRAs to the visible region and exhibits higher photovoltage responses. With a polysulfide electrolyte, a maximum conversion efficiency of 0.148% with a superior J(sc) of 1.177 mA cm(-2) are obtained after 6 SILAR cycles under illumination at 100 mW cm(-2). These results indicate that the Ag(2)S QDs/TiO(2) NRAs photoelectrode has a promising application in solar cells.

  10. Dissociation of N2O on anatase TiO2 (001) surface - The effect of oxygen vacancy and presence of Ag cluster

    NASA Astrophysics Data System (ADS)

    Sowmiya, M.; Senthilkumar, K.

    2016-12-01

    The increase in concentration of nitrous oxide (N2O) in the atmosphere is one of the major contributors to the greenhouse effect, ozone depletion and climate change. Therefore, it is important to decompose harmful N2O molecule into harmless N2. In the present work, we have studied the decomposition of N2O on anatase TiO2 (001) surface using first principle calculations. The results indicates that the N2O molecule is physisorbed on perfect TiO2 surface without any dissociation, and is dissociated into N2 and oxygen on the reduced TiO2 surface. In addition, it has been found that the interaction between N2O and TiO2 is augmented by the presence of Ag cluster on anatase (001) surface. On the basis of Bader charge analysis and electron density difference plot, it has been found that the excess charge in the reduced anatase TiO2 (001) surface is transferred to the adsorbed N2O molecule, which results the weakening of N

  11. Fabrication of pure and Ag-doped TiO2 nanorods and study of the lattice strain and the activation energy of the crystalline phases

    NASA Astrophysics Data System (ADS)

    Riazian, Mehran; Rad, Shima Daliri; Azinabadi, Reza Ramezani

    2013-02-01

    TiO2 nanorods can be used as dye-sensitized solar cells and as various sensors and photocatalysts. These nanorods are synthesized by using a thermal corrosion process in a NaOH solution at 200 °C with TiO2 powder as a source material. In the present work, the synthesis of TiO2 nanorods in anatase, rutile and Ti8O15 phases and the synthesis of TiO2 nanorods by using the sol-gel method and alkaline corrosion to incorporate silver and silver-oxide dopants are reported. The morphologies and the crystalline structures of the TiO2 nanorods are characterized using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), tunneling electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The obtained results show an aggregation structure at high calcining temperatures with spherical particles and with Ti-O-Ti, Ti-O and Ag-O bonds. The effects of the chemical composition and the calcining temperature on the surface topography, lattice strain and phase crystallization are studied. The activation energy (E) of nanoparticle formation in a pure state during thermal treatment is calculated.

  12. SiO(2) /TiO(2) hollow nanoparticles decorated with Ag nanoparticles: enhanced visible light absorption and improved light scattering in dye-sensitized solar cells.

    PubMed

    Hwang, Sun Hye; Shin, Dong Hoon; Yun, Juyoung; Kim, Chanhoi; Choi, Moonjung; Jang, Jyongsik

    2014-04-07

    Hollow SiO2 /TiO2 nanoparticles decorated with Ag nanoparticles (NPs) of controlled size (Ag@HNPs) were fabricated in order to enhance visible-light absorption and improve light scattering in dye-sensitized solar cells (DSSCs). They exhibited localized surface plasmon resonance (LSPR) and the LSPR effects were significantly influenced by the size of the Ag NPs. The absorption peak of the LSPR band dramatically increased with increasing Ag NP size. The LSPR of the large Ag NPs mainly increased the light absorption at short wavelengths, whereas the scattering from the SiO2 /TiO2 HNPs improved the light absorption at long wavelengths. This enabled the working electrode to use the full solar spectrum. Furthermore, the SiO2 layer thickness was adjusted to maximize the LSPR from the Ag NPs and avoid corrosion of the Ag NPs by the electrolyte. Importantly, the power conversion efficiency (PCE) increased from 7.1 % with purely TiO2 -based DSSCs to 8.1 % with HNP-based DSSCs, which is an approximately 12 % enhancement and can be attributed to greater light scattering. Furthermore, the PCEs of Ag@HNP-based DSSCs were 11 % higher (8.1 vs. 9.0 %) than the bare-HNP-based DSSCs, which can be attributed to LSPR. Together, the PCE of Ag@HNP-based DSSCs improved by a total of 27 %, from 7.1 to 9.0 %, due to these two effects. This comparative research will offer guidance in the design of multifunctional nanomaterials and the optimization of solar-cell performance.

  13. A robust super-paramagnetic TiO2:Fe3O4:Ag nanocomposite with enhanced photo and bio activities on polyester fabric via one step sonosynthesis.

    PubMed

    Harifi, Tina; Montazer, Majid

    2015-11-01

    High intensity ultrasound was used for the synthesis and simultaneous deposition of TiO2:Fe3O4:Ag nanocomposites on polyester surface providing a feasible route for imparting magnetic and enhanced antibacterial and self-cleaning activities with controllable hydrophilicity/hydrophobicity at low temperature. Synergistic impact of sonochemistry and physical effects of ultrasound originating from implosive collapse of bubbles were responsible for the formation and adsorption of nanomaterials on the fabric surface during ultrasound irradiation. The increase in photocatalytic activity of TiO2 was obtained attributing to the co-operation of iron oxide and silver nanoparticles nucleated on TiO2 surface boosting the electron-hole pair separation and prolonging their recombination rate. The process was further optimized in terms of reagents concentrations including Fe(2+)/TiO2 and Ag/TiO2 molar ratios using central composite design in order to achieve the best self-cleaning property of the treated fabric. The magnetic measurements indicated the super-paramagnetic behavior of the treated fabric with saturation magnetization of 4.5 (emu/g). Findings suggest the potential of the proposed facial method in producing an intelligent fabric with durable multi-functional activities that can be suitable for various applications including medical, military, bio-separation, bio-sensors, magneto graphic printing, magnetic screens and magnetic filters.

  14. Bonding and Anti-bonding Modes of Plasmon Coupling Effects in TiO2-Ag Core-shell Dimers

    PubMed Central

    Li, Quanshui; Zhang, Zhili

    2016-01-01

    Bonding and anti-bonding modes of plasmon coupling effects are numerically investigated in TiO2-Ag core-shell nano dimers. First, splitting phenomena of the coupled anti-bonding modes are observed under the longitudinal polarization when the distance between the monomers decreases to a certain level. Second, one of the split resonance modes is identified to be formed by the dipole anti-bonding mode of the monomers from charge density distribution patterns. Those split modes have similar redshift behaviors as the coupled dipole bonding modes in the same situations. Furthermore, the intensities of those anti-bonding modes weaken with decreasing distance between the monomers, because of the interaction of the induced dipole moment in the monomers and the charge distribution variation on the facing surfaces of the gap by the coulomb attraction. Other split bands are the higher-order mode (octupole-like or triakontadipole-like), which do not have obvious peak-shift behavior, and the intensities have very little attenuation with decreasing distance. Finally, the coupling of the bonding and anti-bonding modes under the longitudinal polarization is symmetric (bonding). PMID:26763719

  15. Bonding and Anti-bonding Modes of Plasmon Coupling Effects in TiO2-Ag Core-shell Dimers

    NASA Astrophysics Data System (ADS)

    Li, Quanshui; Zhang, Zhili

    2016-01-01

    Bonding and anti-bonding modes of plasmon coupling effects are numerically investigated in TiO2-Ag core-shell nano dimers. First, splitting phenomena of the coupled anti-bonding modes are observed under the longitudinal polarization when the distance between the monomers decreases to a certain level. Second, one of the split resonance modes is identified to be formed by the dipole anti-bonding mode of the monomers from charge density distribution patterns. Those split modes have similar redshift behaviors as the coupled dipole bonding modes in the same situations. Furthermore, the intensities of those anti-bonding modes weaken with decreasing distance between the monomers, because of the interaction of the induced dipole moment in the monomers and the charge distribution variation on the facing surfaces of the gap by the coulomb attraction. Other split bands are the higher-order mode (octupole-like or triakontadipole-like), which do not have obvious peak-shift behavior, and the intensities have very little attenuation with decreasing distance. Finally, the coupling of the bonding and anti-bonding modes under the longitudinal polarization is symmetric (bonding).

  16. Bonding and Anti-bonding Modes of Plasmon Coupling Effects in TiO2-Ag Core-shell Dimers.

    PubMed

    Li, Quanshui; Zhang, Zhili

    2016-01-14

    Bonding and anti-bonding modes of plasmon coupling effects are numerically investigated in TiO2-Ag core-shell nano dimers. First, splitting phenomena of the coupled anti-bonding modes are observed under the longitudinal polarization when the distance between the monomers decreases to a certain level. Second, one of the split resonance modes is identified to be formed by the dipole anti-bonding mode of the monomers from charge density distribution patterns. Those split modes have similar redshift behaviors as the coupled dipole bonding modes in the same situations. Furthermore, the intensities of those anti-bonding modes weaken with decreasing distance between the monomers, because of the interaction of the induced dipole moment in the monomers and the charge distribution variation on the facing surfaces of the gap by the coulomb attraction. Other split bands are the higher-order mode (octupole-like or triakontadipole-like), which do not have obvious peak-shift behavior, and the intensities have very little attenuation with decreasing distance. Finally, the coupling of the bonding and anti-bonding modes under the longitudinal polarization is symmetric (bonding).

  17. Enhanced photo-catalytic activity of Sr and Ag co-doped TiO2 nanoparticles for the degradation of Direct Green-6 and Reactive Blue-160 under UV & visible light.

    PubMed

    Naraginti, Saraschandra; Thejaswini, T V L; Prabhakaran, D; Sivakumar, A; Satyanarayana, V S V; Arun Prasad, A S

    2015-10-05

    This work is focused on sol-gel synthesis of silver and strontium co-doped TiO2 nanoparticles and their utilization as photo-catalysts in degradation of two textile dyes. Effect of pH, intensity of light, amount of photo-catalyst, concentration of dye, sensitizers, etc., were studied to optimize conditions for obtaining enhanced photo-catalytic activity of synthesized nanoparticles. XRD, BET, HR-TEM, EDAX and UV-Vis (diffused reflectance mode) techniques were used to characterize the nanoparticles. Interestingly, band gap of Sr and Ag co-doped TiO2 nanoparticles showed considerable narrowing (2.6 eV) when compared to Ag doped TiO2 (2.7 eV) and undoped TiO2 (3.17 eV) nanoparticles. Incorporation of Ag and Sr in the lattice of TiO2 could bring isolated energy levels near conduction and valence bands thus narrowing band gap. The XRD analysis shows that both Ag and Sr nanoparticles are finely dispersed on the surface of titania framework, without disturbing its crystalline structure. TEM images indicate that representative grain sizes of Ag-doped TiO2 & Sr and Ag co-doped TiO2 nanoparticles are in the range of 8-20 nm and 11-25 nm, respectively. Effective degradation of Direct Green-6 (DG-6) and Reactive Blue-160 (RB-160) under UV and visible light has been achieved using the photo-catalysts. Sr and Ag co-doped TiO2 photo-catalysts showed higher catalytic activity during degradation process in visible region when compared to Ag-doped and undoped TiO2 nanoparticles which could be attributed to the interactive effect caused by band gap narrowing and enhancement in charge separation. For confirming degradation of the dyes, total organic carbon (TOC) content was monitored periodically.

  18. Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate.

    PubMed

    Zhou, Wen; Yin, Bin-Cheng; Ye, Bang-Ce

    2017-01-15

    As one of the most toxic heavy metals, hexavalent chromium (Cr(VI)) has long been a concern due to its threats to human health and the environment. In this work, we develop a sensitive surface-enhanced Raman scattering (SERS) sensor for highly specific detection of Cr(VI) using hollow sea urchin-like TiO2@Ag nanoparticles (NPs). The TiO2@Ag NPs are functionalized with glutathione (GSH) and used as substrates with 2-mercaptopyridine (2-MPy) as a Raman reporter for a recyclable SERS-active sensor, enabling ultrasensitive detection of Cr(VI). Excellent SERS signals of 2-MPy reporters are detected when GSH complexation with Cr(VI) causes aggregation of the TiO2@Ag NPs. The developed sensor exhibits good linearity in the range from 10nM to 2μM for Cr(VI) with a detection limit of ca. 1.45nM. It features excellent selectivity to Cr(VI) over other interfering metal ions, and good application for quantitative analysis of Cr(VI) in water samples. Moreover, the proposed SERS sensor can be fully regenerated when exposed to UV light as a result of the self-cleaning ability of the substrates. In contrast to the traditional SERS detection, the present work shed new light on the design and synthesis of hierarchically self-assembled 3D substrate for SERS, catalysis and biosensor development.

  19. Correlation between the optical performance of TiO2-Ag-TiO2 multilayers and the interface roughness between the layers

    NASA Astrophysics Data System (ADS)

    von Blanckenhagen, Bernhard; Tonova, Diana

    2005-09-01

    Ag-dielectric multilayers are widely used in the production of heat reflecting filters, induced transmission filters, beam splitters, etc. The performance of such coatings in the visible part of the spectrum is sometimes strongly influenced by a plasmon absorption in the Ag-layer or a surface plasmon absorption in the Ag-dielectric interfaces. The strength of the plasmon absorption is very sensitive to the layer structure, the light polarization and the angle of incidence. As a result, the target specifications for reflection and transmission are not reached easily. We investigate PVD-deposited TiO2-Ag-TiO2 multilayers by means of optical reflection and transmission and Grazing Incidence X-ray Reflectometry (GIXR). The GIXR-method yields the individual layers thicknesses and the interface roughness. Some of the coatings have a broad absorption peak between 500 and 400nm that cannot be modeled using the bulk dielectric function of Ag. The magnitude of the absorption peak is correlated with the measured roughness of the TiO2-Ag interfaces. The analysis of the results shows the critical parameters for the deposition process.

  20. Ag Nanoparticles Located on Three-Dimensional Pine Tree-Like Hierarchical TiO2 Nanotube Array Films as High-Efficiency Plasmonic Photocatalysts

    NASA Astrophysics Data System (ADS)

    Xu, Jinxia; Wang, Zhenhuan; Li, Wenqing; Zhang, Xingang; He, Dong; Xiao, Xiangheng

    2017-01-01

    High specific surface area three-dimensional pine tree-like hierarchical TiO2 nanotube array films loaded with Ag nanoparticles were successfully prepared by one-step hydrothermal reaction combining with simple and feasible magnetron sputtering. The composite Ag/TiO2-branched nanotube arrays show outstanding photocatalytic property, which is attributed to the boost of plasmonic enhancement carrier generation and separation, higher specific surface area, higher organic pollutant absorption, faster charge transport, and superior light-harvesting efficiency for efficient charge collection. The work provides a cost-effective and flexible pathway to develop high-performance photocatalyst or optoelectronic devices.

  1. Visible-Light-Responsive Photocatalysis: Ag-Doped TiO2 Catalyst Development and Reactor Design Testing

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Meier, Anne; Shah, Malay G.; Devor, Robert W.; Surma, Jan M.; Maloney, Phillip R.; Bauer, Brint M.; Mazyck, David W.

    2016-01-01

    In recent years, the alteration of titanium dioxide to become visible-light-responsive (VLR) has been a major focus in the field of photocatalysis. Currently, bare titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Hg-vapor fluorescent light sources are used in photocatalytic oxidation (PCO) reactors to provide adequate levels of ultraviolet light for catalyst activation; these mercury-containing lamps, however, hinder the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. VLR-TiO2 would allow for use of ambient visible solar radiation or highly efficient visible wavelength LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Over the past three years, Kennedy Space Center has developed a VLR Ag-doped TiO2 catalyst with a band gap of 2.72 eV and promising photocatalytic activity. Catalyst immobilization techniques, including incorporation of the catalyst into a sorbent material, were examined. Extensive modeling of a reactor test bed mimicking air duct work with throughput similar to that seen on the International Space Station was completed to determine optimal reactor design. A bench-scale reactor with the novel catalyst and high-efficiency blue LEDs was challenged with several common volatile organic compounds (VOCs) found in ISS cabin air to evaluate the system's ability to perform high-throughput trace contaminant removal. The ultimate goal for this testing was to determine if the unit would be useful in pre-heat exchanger operations to lessen condensed VOCs in recovered water thus lowering the burden of VOC removal for water purification systems.

  2. Multi-functional TiO2/Si/Ag(Cr)/TiNx coatings for low-emissivity and hydrophilic applications

    NASA Astrophysics Data System (ADS)

    Loka, Chadrasekhar; Park, Kyoung Ryeol; Lee, Kee-Sun

    2016-02-01

    Multi-functional (coatings with some additional functional properties such as high transparency, antireflection, hydrophilicity and antifogging) coatings are indispensable for the modern energy saving systems. In this regard, we deposited TiO2/Si/Ag(Cr)/TiNx multilayer thin films on soda-lime glass by using RF and DC magnetron sputtering to achieve a multi-functional thin film stack with the combination low-emissivity (low-e) and hydrophilicity properties in addition to the high transparency. Primary deposition of Ag(Cr)/TiNx was tried for the low-e effect and successfully obtained a very low emissivity value of 0.067, and then Si and TiO2 films with different bandgap were subsequently deposited to provide the hydrophilic properties. X-ray diffraction results revealed the anatase phase formation of TiO2 after annealing the films at 673 K by using the rapid thermal annealing system. Rutherford Backscattering Spectrometry (RBS) was carried out to determine the chemical composition and elemental depth distribution. The multilayer stack exhibited superhydrophilicity with a water contact angle of about 5° after irradiation by UV light. A Heterojunction film with wide and narrow bandgap semiconductor materials was effective to improve the hydrophilicity. The films exhibited a high visible transmittance (∼85.5%, at 550 nm) and low infrared transmittance (7%, at 2000 nm) including low-e and superhydrophilicity.

  3. Synthesize and characterize of Ag3VO4/TiO2 nanorods photocatalysts and its photocatalytic activity under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Zou, Xuejun; Dong, Yuying; Zhang, Xiaodong; Cui, Yubo

    2016-03-01

    In this paper, in order to expand the light response range of TiO2, Ag3VO4/TiO2 nanorods photocatalysts were fabricated by a simple sol-gel method with microwave and hydrothermal method. The as-prepared samples were characterized by XRD, SEM, DRS, XPS and N2 adsorption-desorption. Meanwhile, their photocatalytic properties were investigated by the degradation of toluene under visible light irradiation. The degradation conversation of toluene had gotten to about 70% in 1% Ag3VO4/TiO2 nanorods after reaction 4 h. The predominant photocatalytic activity can be attributed to its strong absorption in visible light region and excellent charge separation characteristics. By using in situ FTIR, benzyl alcohol and benzaldehyde species could be observed during the reaction and the formed intermediates would be partially oxidized into CO2 and H2O. Electron spin resonance confirmed that OHrad and O2rad - were involved in the photocatalytic degradation of toluene.

  4. Ag nanoparticle-filled TiO2 nanotube arrays prepared by anodization and electrophoretic deposition for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Sugri Nbelayim, Pascal; Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2017-03-01

    A layer of TiO2 nanotube (TNT) arrays with a thickness of 13 μm is synthesized by a two-step anodic oxidation from Ti metal foil. Surface charged Ag nanoparticles (NPs) are prepared by chemical reduction. After a pretreatment of the TNT arrays by acetone vapor, Ag NP filled TNT arrays can be achieved by electrophoretic deposition (EPD). Effects of the applied voltage during EPD such as DC–AC difference, frequency and waveform are investigated by quantitative analysis using atomic absorption spectroscopy. The results show that the best EPD condition is using DC 2 V + AC 4 V and a square wave of 1 Hz as the applied voltage. Back illuminated dye-sensitized solar cells are fabricated from TNT arrays with and without Ag NPs. The efficiency increased from 3.70% to 5.01% by the deposition of Ag NPs.

  5. Ag nanoparticle-filled TiO2 nanotube arrays prepared by anodization and electrophoretic deposition for dye-sensitized solar cells.

    PubMed

    Wei, Xing; Nbelayim, Pascal Sugri; Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2017-03-01

    A layer of TiO2 nanotube (TNT) arrays with a thickness of 13 μm is synthesized by a two-step anodic oxidation from Ti metal foil. Surface charged Ag nanoparticles (NPs) are prepared by chemical reduction. After a pretreatment of the TNT arrays by acetone vapor, Ag NP filled TNT arrays can be achieved by electrophoretic deposition (EPD). Effects of the applied voltage during EPD such as DC-AC difference, frequency and waveform are investigated by quantitative analysis using atomic absorption spectroscopy. The results show that the best EPD condition is using DC 2 V + AC 4 V and a square wave of 1 Hz as the applied voltage. Back illuminated dye-sensitized solar cells are fabricated from TNT arrays with and without Ag NPs. The efficiency increased from 3.70% to 5.01% by the deposition of Ag NPs.

  6. CO 2 Adsorption on Anatase TiO 2 (101) Surfaces in the Presence of Subnanometer Ag/Pt Clusters: Implications for CO 2 Photoreduction

    DOE PAGES

    Yang, Chi-Ta; Wood, Brandon C.; Bhethanabotla, Venkat R.; ...

    2014-10-20

    We show how CO2 adsorption on perfect and reduced anatase TiO2 (101) surfaces can be substantially modified by the presence of surface Ag and Pt octamer clusters, using density functional theory calculations. Furthermore, we found that adsorption was affected even at sites where the adsorbate was not in direct contact with the octamer, which we attributed to charge donation to CO2 from the Ag/Pt-modified surface, as well as an electrostatic competition between attractive (Ti–O) and repulsive (Ti–C) interactions. Additionally, TiO2-supported Pt octamers offer key advantages that could be leveraged for CO2 photoreduction, including providing additional stable adsorption sites for bentmore » CO2 species and facilitating charge transfer to aid in CO2– anion formation. Electronic structure analysis suggests these factors arise primarily from the hybridization of the bonding molecular orbitals of CO2 with d orbitals of the Pt atoms. Our results show that, for adsorption on TiO2-supported Pt octamers, the O–C–O bending and C–O asymmetric stretching frequencies can be used as reliable indicators of the presence of the CO2– anion intermediate as well as to distinguish unique adsorption geometries or sites. Finally, we suggest a possible pathway for subsequent CO2 dissociation to CO at the surface of a reduced anatase TiO2 (101)-supported Pt octamer, which has a computed energy barrier of 1.01 eV.« less

  7. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses.

    PubMed

    Jia, Zhaojun; Xiu, Peng; Li, Ming; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Wei, Shicheng; Zheng, Yufeng; Xi, Tingfei; Cai, Hong; Liu, Zhongjun

    2016-01-01

    The therapeutic applications of silver nanoparticles (AgNPs) against biomedical device-associated infections (BAI), by local delivery, are encountered with risks of detachment, instability and nanotoxicity in physiological milieus. To firmly anchor AgNPs onto modified biomaterial surfaces through tight physicochemical interactions would potentially relieve these concerns. Herein, we present a strategy for hierarchical TiO2/Ag coating, in an attempt to endow medical titanium (Ti) with anticorrosion and antibacterial properties whilst maintaining normal biological functions. In brief, by harnessing the adhesion and reactivity of bioinspired polydopamine, silver nanoparticles were easily immobilized onto peripheral surface and incorporated into interior cavity of a micro/nanoporous TiO2 ceramic coating in situ grown from template Ti. The resulting coating protected the substrate well from corrosion and gave a sustained release of Ag(+) up to 28 d. An interesting germicidal effect, termed "trap-killing", was observed against Staphylococcus aureus strain. The multiple osteoblast responses, i.e. adherence, spreading, proliferation, and differentiation, were retained normal or promoted, via a putative surface-initiated self-regulation mechanism. After subcutaneous implantation for a month, the coated specimens elicited minimal, comparable inflammatory responses relative to the control. Moreover, this simple and safe functionalization strategy manifested a good degree of flexibility towards three-dimensional sophisticated objects. Expectedly, it can become a prospective bench to bedside solution to current challenges facing orthopedics.

  8. Conductive and transparent multilayer films for low-temperature TiO2/Ag/SiO2 electrodes by E-beam evaporation with IAD.

    PubMed

    Chiu, Po-Kai; Lee, Chao-Te; Chiang, Donyau; Cho, Wen-Hao; Hsiao, Chien-Nan; Chen, Yi-Yan; Huang, Bo-Ming; Yang, Jer-Ren

    2014-01-16

    Conductive and transparent multilayer thin films consisting of three alternating layers (TiO2/Ag/SiO2, TAS) have been fabricated for applications as transparent conducting oxides. Metal oxide and metal layers were prepared by electron-beam evaporation with ion-assisted deposition, and the optical and electrical properties of the resulting films as well as their energy bounding characteristics and microstructures were carefully investigated. The optical properties of the obtained TAS material were compared with those of well-known transparent metal oxide glasses such as ZnO/Ag/ZnO, TiO2/Ag/TiO2, ZnO/Cu/ZnO, and ZnO/Al/ZnO. The weathering resistance of the TAS film was improved by using a protective SiO2 film as the uppermost layer. The transmittance spectra and sheet resistance of the material were carefully measured and analyzed as a function of the layer thickness. By properly adjusting the thickness of the metal and dielectric films, a low sheet resistance of 6.5 ohm/sq and a high average transmittance of over 89% in the 400 to 700 nm wavelength regions were achieved. We found that the Ag layer played a significant role in determining the optical and electrical properties of this film.

  9. Conductive and transparent multilayer films for low-temperature TiO2/Ag/SiO2 electrodes by E-beam evaporation with IAD

    PubMed Central

    2014-01-01

    Conductive and transparent multilayer thin films consisting of three alternating layers (TiO2/Ag/SiO2, TAS) have been fabricated for applications as transparent conducting oxides. Metal oxide and metal layers were prepared by electron-beam evaporation with ion-assisted deposition, and the optical and electrical properties of the resulting films as well as their energy bounding characteristics and microstructures were carefully investigated. The optical properties of the obtained TAS material were compared with those of well-known transparent metal oxide glasses such as ZnO/Ag/ZnO, TiO2/Ag/TiO2, ZnO/Cu/ZnO, and ZnO/Al/ZnO. The weathering resistance of the TAS film was improved by using a protective SiO2 film as the uppermost layer. The transmittance spectra and sheet resistance of the material were carefully measured and analyzed as a function of the layer thickness. By properly adjusting the thickness of the metal and dielectric films, a low sheet resistance of 6.5 ohm/sq and a high average transmittance of over 89% in the 400 to 700 nm wavelength regions were achieved. We found that the Ag layer played a significant role in determining the optical and electrical properties of this film. PMID:24433437

  10. Antifungal activity of Ag:hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates

    NASA Astrophysics Data System (ADS)

    Eraković, S.; Janković, A.; Ristoscu, C.; Duta, L.; Serban, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Socol, M.; Iordache, O.; Dumitrescu, I.; Luculescu, C. R.; Janaćković, Dj.; Miškovic-Stanković, V.

    2014-02-01

    Hydroxyapatite (HA) is a widely used biomaterial for implant thin films, largely recognized for its excellent capability to chemically bond to hard tissue inducing the osteogenesis without immune response from human tissues. Nowadays, intense research efforts are focused on development of antimicrobial HA doped thin films. In particular, HA doped with Ag (Ag:HA) is expected to inhibit the attachment of microbes and contamination of metallic implant surface. We herewith report on nano-sized HA and Ag:HA thin films synthesized by pulsed laser deposition on pure Ti and Ti modified with 100 nm diameter TiO2 nanotubes (fabricated by anodization of Ti plates) substrates. The HA-based thin films were characterized by SEM, AFM, EDS, FTIR, and XRD. The cytotoxic activity was tested with HEp2 cells against controls. The antifungal efficiency of the deposited layers was tested against the Candida albicans and Aspergillus niger strains. The Ti substrates modified with TiO2 nanotubes covered with Ag:HA thin films showed the highest antifungal activity.

  11. Simple synthesis and size-dependent surface-enhanced Raman scattering of Ag nanostructures on TiO2 by thermal decomposition of silver nitrate at low temperature.

    PubMed

    Wang, Ruey-Chi; Gao, Yong-Siang; Chen, Shu-Jen

    2009-09-16

    A low-temperature dry-process was proposed to synthesize silver nanoparticles, nanorods, and nanoplates on TiO(2) films via thermal decomposition of silver nitrate. X-ray diffraction (XRD) shows only silver crystals were synthesized on the substrate without other byproducts remaining. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveal the Ag nanoparticles are single-crystalline face-centered cubic (FCC) structures and their average diameters decrease from 100 to 15 nm with the increase in distance from the source, which corresponds to a decrease of substrate temperature from 350 to 110 degrees C. The Ag nanorods are also single-crystalline FCC structures growing along the [110] direction with diameter and length around 40 and 500 nm, respectively. The morphology of silver nanostructures could be adjusted by varying the working pressure as well as the roughness of the substrates. An obvious size-dependent SERS effect on the TiO(2) substrate with silver nanoparticles was observed for the first time. The enhancement factor increases as the size of the Ag nanoparticles decreases, which is attributed to the increase of hot spots. In addition, fractional brookite in the anatase films could be detected only after being loaded with Ag nanoparticles, which demonstrates the application of SERS in detecting fractional and important features of semiconductors.

  12. TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles - an unexpected overdose effect decreasing their antibacterial efficacy.

    PubMed

    Roguska, A; Belcarz, A; Pisarek, M; Ginalska, G; Lewandowska, M

    2015-06-01

    Enhancement of biocompatibility and antibacterial properties of implant materials is potentially beneficial for their practical value. Therefore, the use of metallic and metallic oxide nanoparticles as antimicrobial coatings components which induce minimized antibacterial resistance receives currently particular attention. In this work, TiO2 nanotubes layers loaded with ZnO and Ag nanoparticles were designed for biomedical coatings and delivery systems and evaluated for antimicrobial activity. TiO2 nanotubes themselves exhibited considerable and diameter-dependent antibacterial activity against planktonic Staphylococcus epidermidis cells but favored bacterial adhesion. Loading of nanotubes with moderate amount of ZnO nanoparticles significantly diminished S. epidermidis cell adhesion and viability just after 1.5h contact with modified surfaces. However, an increase of loaded ZnO amount unexpectedly altered the structure of nanoparticle-nanolayer, caused partial closure of nanotube interior and significantly reduced ZnO solubility and antibacterial efficacy. Co-deposition of Ag nanoparticles enhanced the antibacterial properties of synthesized coatings. However, the increase of ZnO quantity on Ag nanoparticles co-deposited surfaces favored the adhesion of bacterial cells. Thus, ZnO/Ag/TiO2 nanotube composite layers may be promising delivery systems for combating post-operative infections in hard tissue replacement procedures. However, the amount of loaded antibacterial agents must be carefully balanced to avoid the overdose and reduced efficacy.

  13. In situ fabrication of Ag3PO4/TiO2 nanotube heterojunctions with enhanced visible-light photocatalytic activity.

    PubMed

    Tong, Zhen Wei; Yang, Dong; Sun, Yuan Yuan; Tian, Yao; Jiang, Zhong Yi

    2015-05-14

    Ag3PO4/TiO2 nanotube (TNT) heterojunctions were fabricated via a facile in situ growth method. Hemispherical Ag3PO4 nanocrystals were uniformly grown on the TNT surface, and their size was confined to 5-10 nm. A joint area was distinctly observed between the Ag3PO4 nanocrystals and TNT, indicating the formation of a Ag3PO4/TNT heterojunction. Compared with pure Ag3PO4, the Ag3PO4/TNT heterojunction possesses more active sites, less bulk defects, more efficient electron-hole separation, as well as better dye adsorption properties, and thus exhibits a significantly elevated photocatalytic activity for Rhodamine B (RhB) degradation. The study of the reactive species demonstrates that the photocatalytic degradation of RhB over the Ag3PO4/TNT heterojunction is primarily driven by both photogenerated h(+) and ˙OH radicals. This easily-fabricated Ag3PO4/TNT heterojunction with promising photocatalytic activity may find potential applications in energy and environmental related areas.

  14. Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity.

    PubMed

    Chi, Yue; Yuan, Qing; Li, Yanjuan; Zhao, Liang; Li, Nan; Li, Xiaotian; Yan, Wenfu

    2013-11-15

    Major efforts in modern material chemistry are devoted to the design and fabrication of nanostructured systems with tunable physical-chemical properties for advanced catalytic applications. Here, a novel Fe3O4@SiO2@TiO2-Ag nanocomposite has been synthesized and characterized by a series of techniques including SEM, TEM, XRD, XPS as well as magnetization measurement and subsequently tested for the photocatalytic activities. The well-designed nanocomposite exhibits significantly superior activity to that of the commercial Degussa P25 thanks to the suppression of electron-hole pairs from recombination by Ag nanoparticles, and can be easily recycled by applying an external magnetic field while maintaining the catalytic activity without significant decrease even after running 10 times. The unique nanostructure makes Fe3O4@SiO2@TiO2-Ag a highly efficient, recoverable, stable, and cost-effective photocatalytic system offering broad opportunities in the field of catalyst synthesis and application.

  15. Development of TiO2 electrical insulation coating on Ag-alloy sheathed Bi2Sr2CaCu2O8-x round-wire

    NASA Astrophysics Data System (ADS)

    Kandel, H.; Lu, J.; Jiang, J.; Chen, P.; Matras, M.; Craig, N.; Trociewitz, U. P.; Hellstrom, E. E.; Larbalestier, D. C.

    2015-03-01

    We have developed TiO2 coating on Ag-alloy sheathed Bi2Sr2CaCu2O8-x (Bi-2212) round-wire conductor for electrical insulation in Bi-2212 magnets. The green coating has a base layer comprised of TiO2, polyvinyl butyral (PVB) and a small amount of polysilicate and a top layer made of polyacrylic. The coating was applied on the conductor using a continuous reel-to-reel dip coating process and showed very good adherence and flexibility that is suitable for magnet coil winding. The thickness of the coating is a function of slurry viscosity, wire withdrawal speed and wire radius. Small test coils were built with the coated Bi-2212 round-wires and were heat treated at 100 atm pressure. During the heat treatment, the PVB and polyacrylic were removed from the green coating and the polysilicate decomposed to SiO2 that served as a sintering aid for TiO2. After the heat treatment, the coating remained strongly adhered to the conductor and did not have a detrimental effect on the critical current (Ic) values. The breakdown voltage was about 150 V across a 7 μm thick heat treated coating on Bi-22112 round-wire conductor, corresponding to a dc dielectric strength of about 21 MV m-1.

  16. An electron microscopical study on the growth of TiO2-Ag antibacterial coatings on Ti6Al7Nb biomedical alloy.

    PubMed

    Necula, B S; Apachitei, I; Tichelaar, F D; Fratila-Apachitei, L E; Duszczyk, J

    2011-06-01

    This research was aimed at investigating the growth mechanism of TiO(2)-Ag antibacterial coatings during plasma electrolytic oxidation (PEO) of Ti6Al7Nb biomedical alloy in an electrolyte based on calcium acetate/calcium glycerophosphate bearing Ag nanoparticles. The focus was on the mechanism of incorporation of Ag nanoparticles, their distribution and chemical composition within the porous coatings using high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) imaging techniques combined with energy dispersive X-ray spectroscopy (EDX) for chemical analyses. The PEO coatings were grown using different oxidation times, 10, 30, 60, 90, 120, 180, 240 and 300 s. The electron microscopy results confirmed the formation of a porous coating with incorporated Ag nanoparticles from the initial stages of oxidation (i.e. 10 s), with further Ag incorporation as the PEO process was continued for longer durations. The Ag nanoparticles were embedded in the dense oxide layer, fused into the pore walls and on the surface of the coatings without any change in their morphology or chemistry as detected by HRTEM, SEM and EDX. Ag seems to be delivered to the sites of coating growth (where dielectric breakdown occurs) through different transport pathways, i.e. open pores, cracks and short-circuit channels.

  17. UV-vis light activated Ag decorated monodisperse TiO2 for treatment of pharmaceuticals in water

    EPA Science Inventory

    Recently, many researchers have made a lot of effort to utilize the visible light portion of the solar spectrum to activate TiO2 photocatalyst for environmental applications, such as water, air, and soil remediation. The deposition of noble metals on photocatalysts is of great in...

  18. Time-resolved imaging of positive pulsed corona-induced surface streamers on TiO2 and γ-Al2O3-supported Ag catalysts

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Ha; Teramoto, Yoshiyuki; Ogata, Atsushi

    2016-10-01

    We report the first instance of time-resolved imaging of surface streamers in air propagating on the surface of titanium dioxide (TiO2) and alumina (γ-Al2O3) beads at ambient temperature and atmospheric pressure. The propagation velocity of primary streamers was found to be dependent primarily on the applied voltage and the type of catalyst. The presence of Ag nanoparticles enhanced the propagation velocity of primary streamers in both TiO2 and γ-Al2O3. Some of the primary streamers passed through a partial discharge, which resulted in enhanced discharge intensity. Through successive steps, the partial discharge served as a staging point for primary streamers, and promoted their propagation toward the next catalyst bead. For a given configuration and catalyst, the velocity of the primary streamer was largely influenced by applied voltage and catalyst type. For a mesh-to-mesh reactor with Ag/ TiO2 catalyst, the primary streamer reached about 660 km s-1. Secondary streamers occurred with much slower velocities after the primary streamer had disappeared. In contrast to primary streamers, secondary streamer velocities were almost completely independent of the applied voltage on both TiO2 (150  ±  50 km s-1) and γ-Al2O3 (70  ±  10 km s-1). Detailed time-resolved imaging data on surface streamers can provide important insight into understanding and modeling plasma-catalysis, which can accelerate the progress of research and development in this area.

  19. Dynamic Mechanisms of the Bactericidal Action of an Al2O3-TiO2-Ag Granular Material on an Escherichia coli Strain

    PubMed Central

    Tartanson, Marie-Anne; Rivallin, Matthieu; Pecastaings, Sophie; Chis, Cristian V.; Penaranda, Diego; Roques, Christine; Faur, Catherine

    2015-01-01

    The bactericidal activity of an Al2O3-TiO2-Ag granular material against an Escherichia coli strain was confirmed by a culture-based method. In particular, 100% of microorganisms were permanently inactivated in 30 to 45 min. The present work aimed to investigate the mechanisms of the bactericidal action of this material and their dynamics on Escherichia coli using different techniques. Observations by transmission electron microscopy (TEM) at different times of disinfection revealed morphological changes in the bacteria as soon as they were put in contact with the material. Notably highlighted were cell membrane damage; cytoplasm detachment; formation of vacuoles, possibly due to DNA condensation, in association with regions exhibiting different levels of electron density; and membrane lysis. PCR and flow cytometry analyses were used to confirm and quantify the observations of cell integrity. The direct exposure of cells to silver, combined with the oxidative stress induced by the reactive oxygen species (ROS) generated, was identified to be responsible for these morphological alterations. From the first 5 min of treatment with the Al2O3-TiO2-Ag material, 98% of E. coli isolates were lysed. From 30 min, cell viability decreased to reach total inactivation, although approximately 1% of permeable E. coli cells and 1% of intact cells (105 genomic units · ml−1) were evidenced. This study demonstrates that the bactericidal effect of the material results from a synergic action of desorbed and supported silver. Supported silver was shown to generate the ROS evidenced. PMID:26253665

  20. Adhesion and inactivation of Gram-negative and Gram-positive bacteria on photoreactive TiO2/polymer and Ag-TiO2/polymer nanohybrid films

    NASA Astrophysics Data System (ADS)

    Tallósy, Szabolcs Péter; Janovák, László; Nagy, Elisabeth; Deák, Ágota; Juhász, Ádám; Csapó, Edit; Buzás, Norbert; Dékány, Imre

    2016-05-01

    The aim of this study was to develop photoreactive surface coatings, possessing antibacterial properties and can be activated under visible light illumination (λmax = 405 nm) using LED-light source. The photocatalytically active titanium dioxide (TiO2) was functionalized with silver nanoparticles (Ag NPs) and immobilized in polyacrylate based nanohybrid thin film in order to facilitate visible light activity (λAg/TiO2,max = 500 nm). First, the photocatalytic activity was modelled by following ethanol vapor degradation. The plasmonic functionalization resulted in 15% enhancement of the activity compared to pure TiO2. The photoreactive antimicrobial (5 log reduction of cfu in 2 h) surface coatings are able to inactivate clinically relevant pathogen strains (methicillin resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa) within short time (60-120 min) due to the formed and quantified reactive oxygen species (ROS). The existence of electrostatic interactions between the negatively charged bacteria (from -0.89 to -3.19 μeq/109 cfu) and positively charged photocatalyst particles (in the range of +0.38 and +12.3 meq/100 g) was also proven by charge titration measurements. The surface inactivation of the bacteria and the photocatalytic degradation of the cell wall component were also confirmed by fluorescence and transmission electron microscopic observations, respectively. According to the results an effective sterilizing system and prevention strategy can be developed and carried out against dangerous microorganisms in health care.

  1. TiO2/Ag modified penta-bismuth hepta-oxide nitrate and its adsorption performance for azo dye removal.

    PubMed

    Abdullah, Eshraq Ahmed; Abdullah, Abdul Halim; Zainal, Zulkarnain; Hussein, Mohd Zobir; Ban, Tan Kar

    2012-01-01

    A modified hydrophilic penta-bismuth hepta-oxide nitrate (Bi5O7NO3) surface was synthesized via a precipitation method using TiO2 and Ag as modified agents. The synthesized product was characterized by different analytical techniques. The removal efficiency was evaluated using mono- and di-sulphonated azo dyes as model pollutants. Different kinetic, isotherm and diffusion models were chosen to describe the adsorption process. X-ray photoelectron spectroscopy (XPS) results revealed no noticeable differences in the chemical states of modified adsorbent when compared to pure Bi5O7NO3; however, the presence of hydrophilic centres such as TiO2 and Ag developed positively charged surface groups and improved its adsorption performance to a wide range of azo dyes. Dyes removal was found to be a function of adsorbent dosage, initial dye concentration, solution pH and temperature. The reduction of Langmuir 1,2-mixed order kinetics to the second or first-order kinetics could be successfully used to describe the adsorption of dyes onto the modified adsorbent. Mass transfer can be described by intra-particle diffusion at a certain stage, but it was not the rate limiting step that controlled the adsorption process. Homogenous behavior of adsorbent surface can be explored by applying Langmuir isotherm to fit the adsorption data.

  2. Cu2O/Ag co-deposited TiO2 nanotube array film prepared by pulse-reversing voltage and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Ding, Qi; Chen, Suiyuan; Shang, Fanmin; Liang, Jing; Liu, Changsheng

    2016-12-01

    In this experiment, Cu2O/Ag co-deposition TiO2 nanotube array (Cu2O-Ag-TNT) film was prepared on pure Ti substrate with the method of combining anodic oxidation and electrodeposition by pulse-reversing voltage power supply in the electrolyte of NH4F, ethylene glycol, CuNO3 · 3H2O and AgNO3. The morphology, phase, chemical composition, photocatalytic property and mechanism of the nanotube array film were studied by means of scanning electron microscopy, energy dispersive x-ray spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy, UV-vis diffuse reflectance spectra, photoluminescence and photocatalytic degradation under visible light. The results showed that the depositional Cu2O and Ag existed in two forms, being the small-particle dispersion and large-particle sedimentary phase in the nanotube arrays: Cu2O-Ag-TNTs for different doping amounts of Ag could be prepared by adjusting the concentration of AgNO3 and the reverse voltages; with changing of the doping amount of Ag, the band gap and photo-generated electron-hole pair recombination rate also changed, and under the conditions of annealing and the optimized process parameter, the band gap of the nanotube arrays narrowed 0.49 eV and the rate of electron and pair recombination decreased noticeably; the nanotube array film for the concentration of 0.5 cm2 ml-1 degraded the methylene blue of 8 mg L-1, and the degradation rate reached above 98%. The co-deposition Cu2O-Ag-TNT film prepared by the one-step method performed well in the field of photocatalysis under visible light.

  3. Ramification of variable thickness on MHD TiO2 and Ag nanofluid flow over a slendering stretching sheet using NDM

    NASA Astrophysics Data System (ADS)

    Acharya, Nilankush; Das, Kalidas; Kumar Kundu, Prabir

    2016-09-01

    The present investigation reveals the effect of variable thickness on the steady two-dimensional boundary layer flows of a TiO2-water and Ag-water nanofluid through a slendering stretching sheet. The whole analysis has been performed in the presence of variable magnetic field and variable surface temperature. Similarity transformation has been introduced to renovate the non-linear partial differential equations into ordinary ones and then they were solved using the innovative technique of Natural decomposition method (NDM). The influence of pertinent parameters on velocity and temperature distribution has been illustrated by means of graphs and tables approach. Our analysis conveys that the temperature of the nanofluid reduces due to enhancing of the variable thickness parameter. The rate of heat transfer is significantly reduced for the Ag-water nanofluid with the positive impact of nanoparticle volume fraction.

  4. AgInS2-ZnS Quantum Dots: Excited State Interactions with TiO2 and Photovoltaic Performance.

    PubMed

    Kobosko, Steven M; Jara, Danilo H; Kamat, Prashant V

    2017-02-03

    Multinary quantum dots such as AgInS2 and alloyed AgInS2-ZnS are an emerging class of semiconductor materials for applications in photovoltaic and display devices. The nanocrystals of (AgInS2)x-(ZnS)1-x (for x = 0.67) exhibit a broad emission with a maximum at 623 nm and interact strongly with TiO2 nanostructures by injecting electrons from the excited state. The electron transfer rate constant as determined from transient absorption spectroscopy was 1.8 × 10(10) s(-1). The photovoltaic performance was evaluated over a period of a few weeks to demonstrate the stability of AgInS2-ZnS when utilized as sensitizers in solar cells. We report a power conversion efficiency of 2.25% of our champion cell 1 month after its fabrication. The limitations of AgInS2-ZnS nanocrystals in achieving greater solar cell efficiency are discussed.

  5. A study on photocatalytic activity of micro-arc oxidation TiO2 films and Ag+/MAO-TiO2 composite films

    NASA Astrophysics Data System (ADS)

    Xiang, N.; Song, R. G.; Xiang, B.; Li, H.; Wang, Z. X.; Wang, C.

    2015-08-01

    First, micro-arc oxidation (MAO) TiO2 films have been prepared on pure titanium in a phosphate-based electrolyte, and then the Ag+/MAO-TiO2 composite films have been fabricated by Ag+ impregnation in this paper. The microstructure and composition of MAO-TiO2 films and Ag+/MAO-TiO2 composite films have been studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). The photocatalytic activity of both films was evaluated by photocatalytic decolorization of methylene blue (MB) in aqueous solution as a model pollutant under sunlight irradiation simulation with homemade ultraviolet-visible spectroscopy (UV-vis). The results showed that the photocatalytic activity of MAO-TiO2 films increased with increasing the applied voltage and concentration in a certain scope. The morphology of Ag+/MAO-TiO2 composite films were of significantly difference and superior photocatalytic activity compared to the MAO-TiO2 film. Also, Ag+ impregnation was able to enhance the photocatalytic efficiency of MAO-TiO2 film.

  6. AgBr and g-C3N4 co-modified Ag2CO3 photocatalyst: A novel multi-heterostructured photocatalyst with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Tang, Hua; Chang, Shufang; Tang, Guogang; Liang, Wei

    2017-01-01

    Novel and highly efficient visible-light-driven g-C3N4/Ag2CO3/AgBr multi-heterostructured photocatalysts are achieved from the surface modification of g-C3N4/Ag2CO3 with AgBr nanoparticles by a facile and efficient ion-exchange method. The as-prepared g-C3N4/Ag2CO3/AgBr photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scaning electron microscopy (SEM) and UV-vis diffuse reflectance spectrometry (DRS). Compared with g-C3N4/Ag2CO3, g-C3N4/Ag2CO3/AgBr hybrids exhibit enhanced the degradation activity for typical RhB, MB, and MO dyes under visible light excitation (>420 nm). Photoluminescence (PL), photo-induced current and electrochemical impedance spectroscopy (EIS) results demonstrate the g-C3N4/Ag2CO3/AgBr heterojunctions can effectively suppress the recombination of the generated electron-hole pairs. The higher photocatalytical performance of g-C3N4/Ag2CO3/AgBr can be ascribed to the efficient separation of photogenerated electron-hole pairs due to the formation of multi-heterojunctions, in which the Ag nanoparticles acted as the charge transmission bridge. In addition, the possible transferred and separated behavior of electron-hole pairs and photocatalytic mechanisms based on the experimental results are also proposed in detail.

  7. The structural studies of Ag containing TiO2-SiO2 gels and thin films deposited on steel

    NASA Astrophysics Data System (ADS)

    Adamczyk, Anna; Rokita, Magdalena

    2016-06-01

    FTIR spectroscopic structural studies of titania-silica monolith samples as well as thin films deposited on steel were described in this work. Thin films were synthesized by the sol-gel method applying the dip coating as separate one-component TiO2 and/or SiO2 layers or as two-component TiO2-SiO2 thin films. Silver nanoparticles were incorporated into the structure from pure SiO2 sol, deposited then as an additional layer in those hybrid multilayers systems. Except the spectroscopic studies, XRD diffraction, SEM microscopy with EDX analysis and AFM microscopy were applied. The structural studies allow to describe and compare the structure and the morphology of thin films, as well those Ag free as Ag containing ones, also by the comparison with the structure of bulk samples. In FTIR spectra, the band observed at about 613 cm-1 can be connected with the presence of the non-tetrahedral cation in the structure and is observed only in the spectra of Ag containing bulk samples and thin films. The bands at 435-467 cm-1 are due to the stretching vibrations of Ti-O bonds or as well to the bending vibrations of O-Si-O one. In the ranges of 779-799 cm-1 and 1027-1098 cm-1, the bands ascribed to the symmetric stretching vibrations and asymmetric vibrations of Si-O-Si connections, respectively, are observed. SEM and AFM images gave the information on the microstructure and the topography of samples surface. XRD measurements confirmed the presence of only amorphous phase in samples up to 500 °C and allowed to observe the tendency of their crystallization.

  8. Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro.

    PubMed

    Allahverdiyev, Adil M; Abamor, Emrah Sefik; Bagirova, Melahat; Baydar, Serap Yesilkir; Ates, Sezen Canim; Kaya, Figen; Kaya, Cengiz; Rafailovich, Miriam

    2013-09-01

    Leishmaniasis is a public health problem which is caused by protozoon parasites belonging to Leishmania species. The disease threatens approximately 350 million people in 98 countries all over the world. Cutaneous Leishmaniasis (CL) and Visceral Leishmaniasis (VL) are the mostly commonly seen forms of the disease. Treatment of the disease has remained insufficient since current antileishmanial drugs have several disadvantages such as toxicity, costliness and drug-resistance. Therefore, there is an immediate need to search for new antileishmanial compounds. TiO2@Ag nanoparticles (TiAg-Nps) have been demonstrated as promising antimicrobial agents since they provide inhibition of several types of bacteria. The basic antimicrobial mechanism of TiAg-Nps is the generation of reactive oxygen species (ROS). Even though Leishmania parasites are sensitive to ROS, there is no study in literature indicating antileishmanial activities of TiAg-Nps. Herein, in this study, TiAg-Nps are shown to possess antileishmanial effects on Leishmania tropica and Leishmania infantum parasites by inhibiting their biological properties such as viability, metabolic activity, and survival within host cells both in the dark and under visible light. The results indicate that TiAg-Nps decreased viability values of L. tropica, and L. infantum promastigotes 3- and 10-fold, respectively, in the dark, while these rates diminished approximately 20-fold for each species in the presence of visible light, in contrast to control. On the other hand, non-visible light-exposed TiAg-Nps inhibited survival of amastigotes nearly 2- and 2.5-fold; while visible light-exposed TiAg-Nps inhibited 4- and 4.5-fold for L. tropica and L. infantum parasites, respectively. Consequently, it was determined that non-visible light-exposed TiAg-Nps were more effective against L. infantum parasites while visible light-exposed TiAg-Nps exhibited nearly the same antileishmanial effect against both species. Therefore, we think that a

  9. Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction

    NASA Astrophysics Data System (ADS)

    Nischk, Michał; Mazierski, Paweł; Wei, Zhishun; Siuzdak, Katarzyna; Kouame, Natalie Amoin; Kowalska, Ewa; Remita, Hynd; Zaleska-Medynska, Adriana

    2016-11-01

    TiO2 nanotubes arrays (NTs), obtained via electrochemical anodization of Ti foil, were modified with monometallic (Cu, Bi) and bimetallic (AgCu) nanoparticles. Different amounts of metals' precursors were deposited on the surface of NTs by the spin-coating technique, and the reduction of metals was performed via gamma radiolysis. Surface modification of titania was studied by EDS and XPS analysis. The results show that AgCu nanoparticles exist in a Agcore-Cushell form. Photocatalytic activity was examined under UV irradiation and phenol was used as a model pollutant of water. Over 95% of phenol degradation was achieved after 60 min of irradiation for almost all examined samples, but only slight difference in degradation efficiency (about 3%) between modified and bare NTs was observed. However, the initial phenol degradation rate and TOC removal efficiency was significantly enhanced for the samples modified with 0.31 and 0.63 mol% of Bi as well as for all the samples modified with Cu and AgCu nanoparticles in comparison with bare titania nanotubes. The saturated photocurrent, under the influence of simulated solar light irradiation, for the most active Bi- and AgCu-modified samples, was over two times higher than for pristine NTs. All the examined materials were resistant towards photocorrosion processes that enables their application for long term processes induced by light.

  10. Necrosis of Staphylococcus aureus by the Electrospun Fe- and Ag-Doped TiO2 Nanofibers

    PubMed Central

    Aboelzahab, Asem; Azad, Abdul-Majeed; Goel, Vijay

    2012-01-01

    Postsurgery infections cause prolonged hospitalization, incurring increased patient and hospital costs, making it increasingly vital to develop an effective solution for the mitigation and elimination of infection buildup at these sites. Incorporation of a bactericidal device at the infection-prone sites provides the capability of attacking bacterial growth even after the patient has left the hospital. Polycrystalline titanium dioxide (TiO2) is photoactive and possesses antibacterial properties that can mitigate the onset of these infections and aid in wound healing. In this work, TiO2 nanofibers were synthesized by electrospinning. Doping with iron as well as with silver (5 wt% and 1 wt%, resp.) was also carried out to increase their effectiveness towards bactericidal properties. The electrospun fibers were processed and tested in the presence of light in the suspensions of methicillin-susceptible Staphylococcus aureus (MSSA) bacteria, which are the leading infection-inducing bacteria among hospital patients. It was found that upon brief activation (cf. 30 s) by an infrared laser source, greater than 90% of the S. aureus was rendered inactive within cf. 10 min. of exposure, thereby showing the potential of titania nanofibers for effective mitigation of infection. PMID:24977085

  11. Electroluminescence from perovskite LEDs with the structure of Ag/Spiro-OMeTAD/CH3NH3PbI3/TiO2/FTO

    NASA Astrophysics Data System (ADS)

    Wang, Minhuan; Shi, Yantao; Bian, Jiming; Dong, Qingshun; Sun, Hongjun; Liu, Hongzhu; Luo, Yingmin; Zhang, Yuzhi

    2016-10-01

    The perovskite light-emitting diodes (Pe-LEDs) with the structure of Ag/Spiro-OMeTAD/CH3NH3PbI3/TiO2/FTO were synthesized, where the CH3NH3PbI3 perovskite layer was deposited by a two-step spin-coating process. A dominant near-infrared electroluminescence (EL) at 773 nm was detected from the Pe-LEDs under forward bias at room temperature. The origin and mechanism of the EL were discussed in comparison with the photoluminescence (PL) spectra, and it was attributed to the radiative recombination of electrons and holes confined in the CH3NH3PbI3 emissive layer. Moreover, the corresponding energy band diagrams was proposed to illustrate the carrier transport mechanism in the Pe-LED device.

  12. Dynamic Mechanisms of the Bactericidal Action of an Al2O3-TiO2-Ag Granular Material on an Escherichia coli Strain.

    PubMed

    Tartanson, Marie-Anne; Soussan, Laurence; Rivallin, Matthieu; Pecastaings, Sophie; Chis, Cristian V; Penaranda, Diego; Roques, Christine; Faur, Catherine

    2015-10-01

    The bactericidal activity of an Al2O3-TiO2-Ag granular material against an Escherichia coli strain was confirmed by a culture-based method. In particular, 100% of microorganisms were permanently inactivated in 30 to 45 min. The present work aimed to investigate the mechanisms of the bactericidal action of this material and their dynamics on Escherichia coli using different techniques. Observations by transmission electron microscopy (TEM) at different times of disinfection revealed morphological changes in the bacteria as soon as they were put in contact with the material. Notably highlighted were cell membrane damage; cytoplasm detachment; formation of vacuoles, possibly due to DNA condensation, in association with regions exhibiting different levels of electron density; and membrane lysis. PCR and flow cytometry analyses were used to confirm and quantify the observations of cell integrity. The direct exposure of cells to silver, combined with the oxidative stress induced by the reactive oxygen species (ROS) generated, was identified to be responsible for these morphological alterations. From the first 5 min of treatment with the Al2O3-TiO2-Ag material, 98% of E. coli isolates were lysed. From 30 min, cell viability decreased to reach total inactivation, although approximately 1% of permeable E. coli cells and 1% of intact cells (10(5) genomic units·ml(-1)) were evidenced. This study demonstrates that the bactericidal effect of the material results from a synergic action of desorbed and supported silver. Supported silver was shown to generate the ROS evidenced.

  13. Thin films composed of Ag nanoclusters dispersed in TiO2: Influence of composition and thermal annealing on the microstructure and physical responses

    NASA Astrophysics Data System (ADS)

    Borges, J.; Rodrigues, M. S.; Lopes, C.; Costa, D.; Couto, F. M.; Kubart, T.; Martins, B.; Duarte, N.; Dias, J. P.; Cavaleiro, A.; Polcar, T.; Macedo, F.; Vaz, F.

    2015-12-01

    Noble metal powders containing gold and silver have been used for many centuries, providing different colours in the windows of the medieval cathedrals and in ancient Roman glasses. Nowadays, the interest in nanocomposite materials containing noble nanoparticles embedded in dielectric matrices is related with their potential use for a wide range of advanced technological applications. They have been proposed for environmental and biological sensing, tailoring colour of functional coatings, or for surface enhanced Raman spectroscopy. Most of these applications rely on the so-called localised surface plasmon resonance absorption, which is governed by the type of the noble metal nanoparticles, their distribution, size and shape and as well as of the dielectric characteristics of the host matrix. The aim of this work is to study the influence of the composition and thermal annealing on the morphological and structural changes of thin films composed of Ag metal clusters embedded in a dielectric TiO2 matrix. Since changes in size, shape and distribution of the clusters are fundamental parameters for tailoring the properties of plasmonic materials, a set of films with different Ag concentrations was prepared. The optical properties and the thermal behaviour of the films were correlated with the structural and morphological changes promoted by annealing. The films were deposited by DC magnetron sputtering and in order to promote the clustering of the Ag nanoparticles the as-deposited samples were subjected to an in-air annealing protocol. It was demonstrated that the clustering of metallic Ag affects the optical response spectrum and the thermal behaviour of the films.

  14. Improved Wetting Characteristics in TiO2–Modified Ag-CuO Air Braze Filler Metals

    SciTech Connect

    Weil, K. Scott; Kim, Jin Yong; Hardy, John S.; Darsell, Jens T.

    2006-01-04

    A silver-based joining technique referred to as reactive air brazing (RAB) has been recently developed for joining high temperature structural ceramic components of the type used in high-temperature electrochemical devices. In prior work, it was found that additions of CuO to silver have a significant effect on the wettability and joint strength characteristics of the resulting braze on polycrystalline alumina substrates. More recently, it has been found that by adding as little as 0.5 mol % titania to these Ag-CuO brazes, the wettability of the RAB on alumina surfaces is further enhanced. The results of wettabilty measurements of Ag-CuO-TiO2 RAB compositions on alumina will be presented along with the microstructural characterization of Ag-CuO-TiO2 braze joints in alumina.

  15. Evolution of structural and magnetic properties of Co-doped TiO2 thin films irradiated with 100 MeV Ag7+ ions

    NASA Astrophysics Data System (ADS)

    Mohanty, P.; Singh, V. P.; Mishra, N. C.; Ojha, S.; Kanjilal, D.; Rath, Chandana

    2014-08-01

    In continuation to our earlier studies where we have shown room temperature ferromagnetism observed in TiO2 and Co-doped TiO2 (CTO) thin films independent of their phase (Mohanty et al 2012 J. Phys. D: Appl. Phys. 45 325301), here the modifications in structure and magnetic properties in CTO thin films using 100 MeV Ag7+ ion irradiation are reported. Owing to the important role of defects in tailoring the magnetic properties of the material, we vary the ion fluence from 5 × 1011 to 1 × 1012 ions cm-2 to create post-deposition defects. While the film deposited under 0.1 mTorr oxygen partial pressure retains its crystallinity showing radiation-resistant behaviour even at a fluence of 1 × 1012 ions cm-2, films deposited under 1 to 300 mTorr oxygen partial pressure becomes almost amorphous at the same fluence. Using Poisson's law, the diameter of the amorphized region surrounding the ion path is calculated to be ˜4.2 nm from the x-ray diffraction peak intensity ((1 1 0) for rutile phase) as a function of ion fluence. The saturation magnetization (Ms) decreases exponentially similar to the decrease in x-ray peak intensity with fluence, indicating magnetic disordered region surrounding the ion path. The diameter of the magnetic disordered region is found to be ˜6.6 nm which is larger than the diameter of the amorphized latent track. Therefore, it is confirmed that swift heavy ion irradiation induces a more significant magnetic disorder than the structural disorder.

  16. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates.

    PubMed

    Hu, Xiaoye; Meng, Guowen; Huang, Qing; Xu, Wei; Han, Fangming; Sun, Kexi; Xu, Qiaoling; Wang, Zhaoming

    2012-09-28

    We present a surface-enhanced Raman scattering (SERS) substrate featured by large-scale homogeneously distributed Ag nanoparticles (Ag-NPs) with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO(2) film. The two-layered honeycomb-like TiO(2) film was achieved by a two-step anodization of pure Ti foil, with its upper layer consisting of hexagonally arranged shallow nano-bowls of 160 nm in diameter, and the lower layer consisting of arrays of about fifty vertically aligned sub-20 nm diameter nanopores. The shallow nano-bowls in the upper layer divide the whole TiO(2) film into regularly arranged arrays of uniform hexagonal nano-cells, leading to a similar distribution pattern for the ion-sputtered Ag-NPs in each nano-cell. The lower layer with sub-20 nm diameter nanopores prevents the aggregation of the sputtered Ag-NPs, so that the Ag-NPs can get much closer with gaps in the sub-10 nm range. Therefore, large-scale high-density and quasi-ordered sub-10 nm gaps between the adjacent Ag-NPs were achieved, which ensures homogeneously distributed 'hot spots' over a large area for the SERS effect. Moreover, the honeycomb-like structure can also facilitate the capture of target analyte molecules. As expected, the SERS substrate exhibits an excellent SERS effect with high sensitivity and reproducibility. As an example, the SERS substrate was utilized to detect polychlorinated biphenyls (PCBs, a kind of persistent organic pollutants as global environmental hazard) such as 3,3',4,4'-pentachlorobiphenyl (PCB-77) with concentrations down to 10(-9) M. Therefore the large-scale Ag-NPs with sub-10 nm gaps assembled on the two-layered honeycomb-like TiO (2) film have potentials in SERS-based rapid trace detection of PCBs.

  17. Microstructural and conductivity comparison of Ag films grown on amorphous TiO2 and polycrystalline ZnO

    SciTech Connect

    Dannenberg, Rand; Stach, Eric; Glenn, Darin; Sieck, Peter; Hukari, Kyle

    2001-03-26

    8 nm thick Ag films were sputter deposited onto amorphous TiO{sub 2} underlayers 25 nm thick, and also amorphous TiO{sub 2} (25 nm)/ZnO (5 nm) multiunderlayers. The substrates were back-etched Si with a 50 nm thick LPCVD Si{sub 3}N{sub 4} electron transparent membrane. The ZnO, sputtered onto amorphous TiO{sub 2}, formed a continuous layer with a grain size of 5 nm in diameter, on the order of the film thickness. There are several microstructural differences in the Ag dependent on the underlayers, revealed by TEM. First a strong {l_brace}0001{r_brace} ZnO to {l_brace}111{r_brace} Ag fibre-texture relationship exists. On TiO{sub 2} the Ag microstructure shows many abnormal grains whose average diameter is about 60-80 nm, whereas the films on ZnO show few abnormal grains. The background matrix of normal grains on the TiO{sub 2} is roughly 15 nm, while the normal grain size on the ZnO is about 25 nm. Electron diffraction patterns show that the film on ZnO has a strong {l_brace}111{r_brace} orientation, and dark field images with this diffraction condition have a grain size of about 30 nm. In a region near the center of the TEM grid where there is the greatest local heating during deposition, Ag films grown on amorphous TiO{sub 2} are discontinuous, whereas on ZnO, the film is continuous. When films 8 nm films are grown on solid glass substrates, those with ZnO underlayers have sheet resistances of 5.68 {Omega}/, whereas those on TiO{sub 2} are 7.56 {Omega}/, and when 16 nm thick, the corresponding sheet resistances are 2.7 {Omega}/ and 3.3 {Omega}/. The conductivity difference is very repeatable. The improved conductivity is thought to be a combined effect of reduced grain boundary area per unit volume, the predominance of low grain boundary resistivity Coincidence Site Lattice boundaries from the Ag {l_brace}111{r_brace} orientation, and Ag planarization on ZnO resulting in less groove formation on deposition, concluded from atomic force microscopy.

  18. Sensitively monitoring photodegradation process of organic dye molecules by surface-enhanced Raman spectroscopy based on Fe3O4@SiO2@TiO2@Ag particle.

    PubMed

    Qin, Suhua; Cai, Wenya; Tang, Xianghu; Yang, Liangbao

    2014-11-07

    Photodegradation of organic dye molecules has attracted extensive attention because of their high toxicity to water resources. Compared with traditional UV-visible spectroscopy, SERS technology can reflect more sensitively the catalytic degradation process occurring on the surface of the catalysts. In this paper, we report the synthesis and structure of Fe3O4@SiO2@TiO2@Ag composite, which integrates SERS active Ag nanostructure with catalytically active titania. The degradation of the typical dye molecule crystal violet (CV), as an example, is investigated in the presence of the as-prepared Fe3O4@SiO2@TiO2@Ag composite structure, which exhibits high catalytic activity and good SERS performance. At the same time, renewable photocatalytic activity was also investigated.

  19. A nanotechnology based new approach for chemotherapy of Cutaneous Leishmaniasis: TIO2@AG nanoparticles - Nigella sativa oil combinations.

    PubMed

    Abamor, Emrah Sefik; Allahverdiyev, Adil M

    2016-07-01

    Since toxicity and resistance are the major drawbacks of current antileishmanial drugs, studies have been recently focused on combination therapy in fight against leishmaniasis. Combination therapy generally provides opportunity to decrease toxicity of applied agents and enhance their antimicrobial performance. Moreover, this method can be effective in preventing drug resistance. Highly antileishmanial effects of silver doped titanium dioxide nanoparticles (TiAgNps) and Nigella sativa oil were demonstrated in previous studies. However, toxicity is still an important factor preventing use of these molecules in clinic. By considering high antileishmanial potential of each agent and basic principles of combination therapy, we propose that use of combinations including non-toxic concentrations of TiAgNps and N. sativa oil may compose more effective and safer formulations against Leishmania parasites. Therefore, the main goal of the present study was to investigate antileishmanial effects of non-toxic concentrations of TiAgNps and Nigella sativa oil combinations on promastigote and amastigote-macrophage culture systems and also to develop nanotechnology based new antileishmanial strategies against Cutaneous Leishmaniasis. Numerous parameters such as proliferation, metabolic activity, apoptosis, amastigote-promastigote conversion, infection index analysis and nitric oxide production were used to detect antileishmanial efficacies of combinations. Investigated all parameters demonstrated that TiAgNps-N. sativa oil combinations had significant antileishmanial effect on each life forms of parasites. Tested combinations were found to decrease proliferation rates of Leishmania tropica promastigotes in a range between 1,5-25 folds and metabolic activity values between 2 and 4 folds indicating that combination applications lead to virtually inhibition of promastigotes and elimination of parasites were directly related to apoptosis manner. TiAgNps-N. sativa combinations also

  20. Monte Carlo simulations of the transformation and removal of Ag, TiO2, and ZnO nanoparticles in wastewater treatment and land application of biosolids.

    PubMed

    Barton, Lauren E; Auffan, Melanie; Durenkamp, Mark; McGrath, Steve; Bottero, Jean-Yves; Wiesner, Mark R

    2015-04-01

    The use of nano-enabled materials in industry and consumer products is increasing rapidly and with it, the more imperative it becomes to understand the consequences of such materials entering the environment during production, use or disposal. The novel properties of engineered nanomaterials (ENMs) that make them desirable for commercial applications also present the possibility of impacting aquatic and terrestrial environments in ways that may differ from materials in bulk format. Modeling techniques are needed to proactively predict the environmental fate and transport of nanomaterials. A model for nanoparticle (NP) separation and transformation in water treatment was parameterized for three metal and metal-oxide NPs. Functional assays to determine NP specific distribution and transformation were used to parameterize the model and obtain environmentally relevant concentrations of NPs and transformation byproducts leaving WWTPs in effluent and biosolids. All three NPs were predicted to associate >90% with the solid phase indicating significant accumulation in the biosolids. High rates of transformation for ZnO and Ag NPs resulted in ~97% transformation of the NPs that enter the plant despite differences in transformation rate in aerobic versus anaerobic environments. Due to high insolubility and negligible redox transformation, the only process predicted to impact TiO2 NP fate and transport in WWTPs was distribution between the solid and liquid phases. Subsequent investigation of ZnO NP species fate and transport when land applied in biosolids indicated that steady state concentrations of ZnO phases would likely be achieved after approximately 150days under loading conditions of biosolids typical in current practice.

  1. A two-oxide nanodiode system made of double-layered p-type Ag2O@n-type TiO2 for rapid reduction of 4-nitrophenol.

    PubMed

    Ahmed Zelekew, Osman; Kuo, Dong-Hau

    2016-02-14

    The n-type TiO2 semiconductor nanoparticles were coated on the p-type Ag2O nanoparticles deposited on SiO2 spherical particles through a simple sol-gel method for catalytic reduction of 4-nitrophenol. The as-prepared spherical composite abbreviated as SiO2/Ag2O@TiO2 was characterized by different techniques and tested as a catalyst towards 4-nitrophenol (4-NP) reduction into 4-aminophenol (4-AP) with NaBH4 as a reducing agent at room temperature. This work combines an interesting design with the n-type TiO2 rich in electrons outward and the p-type Ag2O rich in electronic holes inward to form the p/n junction for the purpose of efficiently separating the charge carrier to have a longer lifetime of outward electrons for catalytic reduction reactions. The SiO2/Ag2O@TiO2 composite catalyst showed the best performance in the reduction of 4-NP to 4-AP within 30 seconds. Our results reveal that the p-n junction combined composite sphere was superior and efficient in reduction of 4-nitrophenol without using the light source. The conversion mechanism is proposed here. Overall, the SiO2/Ag2O@TiO2 composite can be used as a cost-effective reduction catalyst for converting the toxic 4-NP into useful 4-AP, an industrial organic intermediate compound.

  2. Optical Properties Of A Silver Layer In ZnO/Ag/ZnO and TiO2/Ag/TiO2 Systems

    NASA Astrophysics Data System (ADS)

    Belkind, Abraham; Koss, Valery A.; Memarzadeh, Kazem; Woollam, John A.

    1989-03-01

    Effective dielectric constants of the silver layers in three ZnO/Ag/ZnO and two Ti02/Ag/Ti02 coatings are determined using spectroscopic ellipsometry assuming a three-layer model for the coatings. Drude analysis of the data shows that the effective dielectric constants of silver in the red and near infrared regions are close to that of bulk silver, and both, bulk plasmon energy and core polarizability, depend on the layer thickness. Three peaks, at 3.8-3.9, 3.5-3.7 and 2.9-3.3 eV, are observed in the spectra of the imaginary part of the effective dielectric constant. Generation of surface plasmons, indicated by these peaks, is considered as a consequence of surface roughness which is not included in the original three-layer model. Analysis of data on transmittance and reflectance, measured at incidence angles of 45° and 60° , confirms surface plasmon generation.

  3. Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus.

    PubMed

    Zan, Ling; Fa, Wenjun; Peng, Tianyou; Gong, Zhen-Kui

    2007-02-01

    The photocatalysis effect of nanometer TiO2 particles and TiO2-coated ceramic plate on Hepatitis B virus surface antigen (HBsAg) was investigated. The ELISA (enzyme-linked immunosorbent assay) standard method was used to assess the efficiency of TiO2 material to destroy the HBsAg. The research has shown that the suspension of TiO2 (0.5g/L) can destroy most of the HBsAg under the irradiation of mercury lamp, with the light intensity of 0.6mW/cm(2) at 365nm wavelength, or under the sunlight irradiation for a few hours. TiO2-coated ceramic plates can also destroy the HBsAg under the irradiation of mercury lamp, with the light intensity of 0.05mW/cm(2) at 365nm wavelength or under the room daylight for a few hours.

  4. Tuning the charge state of Ag and Au atoms and clusters deposited on oxide surfaces by doping: a DFT study of the adsorption properties of nitrogen- and niobium-doped TiO2 and ZrO2.

    PubMed

    Schlexer, Philomena; Ruiz Puigdollers, Antonio; Pacchioni, Gianfranco

    2015-09-14

    The charge state of Ag and Au atoms and clusters (Ag4 and Au4, Ag5 and Au5) adsorbed on defective TiO2 anatase(101) and tetragonal ZrO2(101) has been systematically investigated as a function of oxide doping and defectivity using a DFT+U approach. As intrinsic defects, we have considered the presence of oxygen vacancies. As extrinsic defects, substitutional nitrogen- and niobium-doping have been investigated, respectively. Both surface and sub-surface defects and dopants have been considered. Whereas on surfaces with oxygen vacancies or Nb-doping, atoms and clusters may become negatively charged, N-doping always leads to the formation of positively charged adsorbates, independently of the supporting material (TiO2 or ZrO2). This suggests the possibility to tune the electronic properties of supported metal clusters by selective doping of the oxide support, an effect that may result in complete changes in chemical reactivity.

  5. Antibacterial effect of novel synthesized sulfated β-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating.

    PubMed

    Selvam, S; Rajiv Gandhi, R; Suresh, J; Gowri, S; Ravikumar, S; Sundrarajan, M

    2012-09-15

    Sulfated β-cyclodextrin was synthesized from sulfonation of β-cyclodextrin and sulfated polymer was crosslinked with cotton fabric using ethylenediaminetetraacetic acid as crosslinker. ZnO, TiO(2) and Ag nanoparticles were prepared and characterized by XRD, UV, DLS, SEM and PSA. The prepared nanoparticles were coated on crosslinked cotton fabric. The crosslinking and nanoparticles coating effects of cotton fabrics were studied by FTIR and SEM analysis. The antibacterial test was done against gram positive Staphylococcus aureus and gram negative Escherichia coli bacterium.

  6. Green synthesis of highly crystalline and visible-light sensitive C-, N- and S- codoped with Ag TiO2 nanocatalyst

    EPA Science Inventory

    Titanium dioxide (TiO2) has been a focus of attention as chemically stable, relatively nontoxic, inexpensive and highly efficient photocatalyst applicable for a wide array of uses. However, main disadvantage that severely limits its wider use is the large band gap, 3.0 eV and 3.2...

  7. On the lifetime of the transients (NP)-(CH3)n (NP = Ag0, Au0, TiO2 nanoparticles) formed in the reactions between methyl radicals and nanoparticles suspended in aqueous solutions.

    PubMed

    Bar-Ziv, Ronen; Zilbermann, Israel; Oster-Golberg, Olga; Zidki, Tomer; Yardeni, Guy; Cohen, Haim; Meyerstein, Dan

    2012-04-10

    Methyl radicals react in fast reactions, with rate constants k>1×10(8)  M(-1)  s(-1), with Au(0), Ag(0) and TiO(2) nanoparticles (NPs) dispersed in aqueous solutions to form intermediates, (NP)-(CH(3))(n), in which the methyl groups are covalently bound to the NPs. These intermediates decompose to form ethane. As n≥2 is required for the formation of C(2)H(6), the minimal lifetime (τ) of the methyls bound to the NPs, (NP)-CH(3), can be estimated from the rate of production of the CH(3)(·) radicals and the NPs concentration. The results obtained in this study, using a very low dose rate γ-source for NP = Ag(0), Au(0), and TiO(2) point out that τ of these intermediates is surprisingly long, for example, ≥8 and ≥188 sec for silver and gold, respectively. These data point out that the NP-C bond dissociation energies are ≥70 kJ  mol(-1). Under low rates of production of CH(3)(·), that is, when the rate of formation of ethane is very low, other reactions may occur, consequently the mechanism proposed is "broken". This is observed in the present study only for TiO(2) NPs. These results have to be considered whenever alkyl radicals are formed near surfaces. Furthermore, the results point out that the rate of reaction of methyl radicals with (NP)-(CH(3))(n) depends on n, that is, the number of methyl radicals bound to the NPs affect the properties of the NPs.

  8. Investigation of the in vitro photocatalytic antibacterial activity of nanocrystalline TiO2 and coupled TiO2/Ag containing copolymer on the surface of medical grade titanium.

    PubMed

    Györgyey, Ágnes; Janovák, László; Ádám, András; Kopniczky, Judit; Tóth, Krisztián L; Deák, Ágota; Panayotov, Ivan; Cuisinier, Frédéric; Dékány, Imre; Turzó, Kinga

    2016-07-01

    Antibacterial surfaces have been in the focus of research for years, driven by an unmet clinical need to manage an increasing incidence of implant-associated infections. The use of silver has become a topic of interest because of its proven broad-spectrum antibacterial activity and track record as a coating agent of soft tissue implants and catheters. However, for the time being, the translation of these technological achievements for the improvement of the antibacterial property of hard tissue titanium (Ti) implants remains unsolved. In our study, we focused on the investigation of the photocatalysis mediated antibacterial activity of silver (Ag), and Ti nanoparticles instead of their pharmacological effects. We found that the photosensitisation of commercially pure titanium discs by coating them with an acrylate-based copolymer that embeds coupled Ag/Ti nanoparticles can initiate the photocatalytic decomposition of adsorbed S. salivarius after the irradiation with an ordinary visible light source. The clinical isolate of S. salivarius was characterised with MALDI-TOF mass spectrometer, while the multiplication of the bacteria on the surface of the discs was followed-up by MTT assay. Concerning practical relevance, the infected implant surfaces can be made accessible and irradiated by dental curing units with LED and plasma arc light sources, our research suggests that photocatalytic copolymer coating films may offer a promising solution for the improvement of the antibacterial properties of dental implants.

  9. Fast diffusion of silver in TiO2 nanotube arrays.

    PubMed

    Zhang, Wanggang; Liu, Yiming; Zhou, Diaoyu; Wang, Hui; Liang, Wei; Yang, Fuqian

    2016-01-01

    Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10(-18) m(2)/s, which is three orders of magnitude larger than the diffusivities for the diffusion of Ag through amorphous TiO2 films. The activation energy for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes in the temperature range of 300 to 500 °C is 157 kJ/mol, which is less than that for the lattice diffusion of Ag and larger than that for the grain boundary diffusion. The diffusion of Ag atoms leads to the formation of Ag nanocrystals on the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag.

  10. Fast diffusion of silver in TiO2 nanotube arrays

    PubMed Central

    Zhang, Wanggang; Liu, Yiming; Zhou, Diaoyu; Wang, Hui

    2016-01-01

    Summary Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10−18 m2/s, which is three orders of magnitude larger than the diffusivities for the diffusion of Ag through amorphous TiO2 films. The activation energy for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes in the temperature range of 300 to 500 °C is 157 kJ/mol, which is less than that for the lattice diffusion of Ag and larger than that for the grain boundary diffusion. The diffusion of Ag atoms leads to the formation of Ag nanocrystals on the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag. PMID:27547630

  11. Photocatalytic performance of the SiO2 sphere/ n-type TiO2/ p-type CuBiS2 composite catalysts coated with different contents of Ag nanoparticles under ultraviolet and visible light irradiations

    NASA Astrophysics Data System (ADS)

    Abdullah, Hairus; Kuo, Dong-Hau

    2016-08-01

    Photocatalytic performance of the SiO2 sphere/ n-type TiO2/ p-type CuBiS2 composite catalysts with different contents of silver nanoparticles (abbreviated as SiO2/ n-TiO2/ p-CuBiS2/Ag) toward the photodegradation of Acid Black 1 ( AB 1) dye under ultraviolet (UV) and visible light was investigated. The composite catalyst spheres were analyzed their crystal structure, microstructure, optical absorbance capabilities, and photodegradation capabilities of AB 1 dye. The best photodegradation performances of the 20 mg composite powder with only ~5 mg photoactive catalysts showed the degradation of AB 1 dye in 5 min under UV and 60 min under visible light irradiations. The concept of composite catalyst with numerous nano p- n diodes and its photodegradation mechanism were proposed.

  12. Studies on photocatalytic activity of the synthesised TiO2 and Ag/TiO2 photocatalysts under UV and sunlight irradiations.

    PubMed

    Vaithiyanathan, R; Sivakumar, T

    2011-01-01

    Photocatalytic decolorisation and degradation of Reactive Red 120 (RR 120) has been investigated under UV (365 nm) and solar light as radiation sources using synthesised nano titania catalyst prepared via sol-gel method. The study encompassed calcination of synthesised titania catalyst at a range of temperature up to 1,000°C. The effects of calcination temperature on titania catalyst have been evaluated on the decolorisation of RR 120. The analysis revealed complete decolorisation of dye solution in 100 min under UV light with the TiO2 catalyst calcined at 200°C. Only a maximum of 47% dye decolorisation was achieved under sunlight in 4 h with no improvement even after prolonged irradiation. In an endeavour to improve the catalytic activity, bare titania was modified with silver metal and a comprehensive study on the characteristics of silver modified catalyst was made. The result was an enhancement of the rate of decolorisation of dye under both UV and solar light sources. All the catalysts were characterised by XRD and BET analyses. Optimisation of the degradation of RR 120 has been carried out using the unmodified catalyst by varying the amount of catalyst, substrate concentration, pH of dye solution. Effects of addition of small amounts of various oxidants such as H2O2, KBrO3 and (NH4)2S2O8 have also been studied. Pseudo first order kinetics was observed in the photocatalytic decolorisation of dye. The mineralisation of RR 120 was monitored by TOC analysis.

  13. Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum).

    PubMed

    Song, Uhram; Jun, Heeju; Waldman, Bruce; Roh, Jinkyu; Kim, Younghun; Yi, Jongheop; Lee, Eun Ju

    2013-07-01

    Engineered nanoparticles (NPs), increasingly used in industry, enter and migrate through biological ecosystems. NPs may create some acute toxicity, but their overall effects on living organisms remain largely unknown. In particular, the behavior of NPs in natural conditions and their consequent ecological effects are still poorly understood. In this study, we developed methods to test the phytotoxicity of two distinctly different NPs, one aerosol (nano-TiO2), and the other colloidal silver (AgNP), by specifically considering their tendencies to agglomerate and form precipitates. First we examined effects of these NPs on germination and root elongation. While exposure to neither of these NPs resulted in acute toxicity on germination, silver NPs caused significantly decreased root elongation at every concentration we tested. We found that the hydrodynamic diameters of AgNPs were much smaller than those of nano-TiO2, which induced higher uptake and phytotoxicity. Based on the agglomeration behavior of the NPs, greenhouse trials were run using commercial soil, for nano-TiO2, and Hoagland's solution, for AgNP. Phytotoxicity of silver NPs in the mature plants was demonstrated by lower chlorophyll contents, higher superoxide dismutase activity and less fruit productivity, while nano-TiO2 resulted in higher superoxide dismutase activity at the highest concentration (5000mg/kg). Both nano-TiO2 and AgNPs were taken up into plant stems, leaves and fruits. Our results suggest that further studies of the ecological effects of nanoparticles and steps to mitigate appropriate management strategies are required.

  14. Visible-light photoactivity of plasmonic silver supported on mesoporous TiO2 nanoparticles (Ag-MTN) for enhanced degradation of 2-chlorophenol: Limitation of Ag-Ti interaction

    NASA Astrophysics Data System (ADS)

    Jaafar, N. F.; Jalil, A. A.; Triwahyono, S.

    2017-01-01

    Various weight loadings of Ag (1-10 wt.%) were introduced to mesoporous titania nanoparticles (MTN) via a direct in-situ electrochemical method. The catalysts were characterized by XRD, surface area analysis, FTIR, ESR, FESEM-EDX and TEM. Characterization results indicated that the introduction of Ag onto MTN decreased the particles size and band gap of the MTN while increasing the number of oxygen vacancies (OV) and Ti3+ site defects (TSD). The activity performance of Ag-MTN on photodegradation of 2-chlorophenol (2-CP) under visible light irradiation was in the following order: 5 wt% Ag-MTN> 1 wt% Ag-MTN > MTN > 10 wt% Ag-MTN, with degradation percentages of 97, 88, 80 and 63%, respectively. The synergistic effect between Ag0 and MTN seemed to play an important role in the system. The Ag0 acted as both an electron trap and a plasmonic sensitizer which suppressed the electron-hole recombination, while OV and TSD in the MTN accelerated the production of hydroxyl radicals for enhanced degradation of 2-CP. However, the formation of Ti-O-Ag in 10 wt% Ag-MTN was found to decrease the photoactivity due to the decrease in the formation of Ag0, TSD and OV as well as the increase in band gap energy. The photodegradation of 5 wt% Ag-MTN followed a pseudo-first-order Langmuir- Hinshelwood model and the catalyst was still stable after five cycles.

  15. Noble metal nanoparticle-decorated TiO2 nanobelts for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    He, Haiyan; Yang, Ping; Jia, Changchao; Miao, Yanping; Zhao, Jie; Du, Yingying

    2014-07-01

    TiO2 nanobelts have been fabricated through a hydrothermal method and subsequently sulfuric-acid-corrosion-treated for a rough surface. Noble metal nanoparticles such as Ag and Au were deposited on the coarse surface of TiO2 nanobelts via a coprecipitation procedure. Ag-TiO2 nanobelts were prepared in ethanolic solution contained silver nitrate (AgNO3) and sodium hydroxide (NaOH). Au-TiO2 nanobelts were obtained in chloroauric acid (HAuCl4) using sodium borohydride (NaBH4) as the reductant. It is confirmed by the results of XRD patterns together with the SEM images that the composite of noble metal and TiO2 nanobelts were obtained successfully and the Ag or Au nanoparticles were well-dispersed on the TiO2 nanobelts. Moreover, the as-prepared Ag and Au nanoparticle-decorated TiO2 nanobelts represent an enhanced photocatalytic activity compared with pure TiO2 nanobelts, which is due to the fact that the Ag and Au nanoparticles on the surface of TiO2 nanobelts act as sinks for the photogenerated electrons and promote the separation of the electrons and holes.

  16. Influence of silver doping on surface defect characteristics of TiO2

    NASA Astrophysics Data System (ADS)

    Tripathi, S. K.; Rani, Mamta

    2015-08-01

    In the present work, we proposed a novel silver doped TiO2 polyethylene conjugated films to improve the performance of DSSCs. Oxides nanoparticles dispersed in a semiconducting polymer form the active layer of a solar cell. Localized surface plasmon resonance effects associated with spatially dispersed silver (Ag) nanoparticles can be exploited to enhance the light-harvesting efficiency, the photocurrent density and the overall light-to electrical-energy-conversion efficiency of high-area DSSCs based TiO2 photoanodes. Silver doped titanium dioxide (TiO2:Ag) is prepared by sol-gel technique and deposited on fluorine doped indium oxide (FTO) coated glass substrates by using doctor blade technique at 550°C from aqueous solutions of titanium butoxide and silver nitrate precursors. The effect of Ag doping on electrical properties of films is studied. The Ag-TiO2 films are about 548 times more photosensitive as compare to the pure TiO2 sample. The presence of metallic Ag nanoparticles and oxygen vacancy on the surface of TiO2 nanoparticles promotes the separation of photogenerated electron-hole pairs and thus enhances the photosensitivity. Photoconduction mechanism of all prepared samples is investigated by performing transient photoconductivity measurements on TiO2 and Ag-TiO2 films keeping intensity of light constant.

  17. Atomic layer deposition in nanometer-level replication of cellulosic substances and preparation of photocatalytic TiO2/cellulose composites.

    PubMed

    Kemell, Marianna; Pore, Viljami; Ritala, Mikko; Leskelä, Markku; Lindén, Mika

    2005-10-19

    TiO2 replicas of filter paper with nanometer-level accuracy were prepared by atomic layer deposition of thin conformal TiO2 coating, followed by a removal of the paper by air-anneal at 450 degrees C. Photocatalytic anatase TiO2/cellulose composites were also made by leaving the paper intact. The TiO2 films were deposited from Ti(OMe)4 and H2O at 150-250 degrees C. The photocatalytic activity of the TiO2/cellulose composite was verified by photocatalytic reduction of Ag(I) from an aqueous solution to Ag nanoparticles on the TiO2 surface. The TiO2/cellulose composites are mechanically more stable than the free-standing TiO2 replicas and are therefore potentially suitable as lightweight, high surface area photocatalysts.

  18. Photovoltaic properties of TiO2 loaded with glutathione-protected silver clusters.

    PubMed

    Sakai, Nobuyuki; Nakamura, Satoshi; Tatsuma, Tetsu

    2013-12-07

    Glutathione-protected Ag clusters (Ag15, Ag25 and Ag29) function as photosensitizers when they are adsorbed on TiO2 electrodes. [Co(bpy)3](2+) is the most appropriate electron donor among the cobalt complexes examined. Ag15 clusters yielded the highest internal quantum efficiency of 28% at 460 nm in the presence of [Co(bpy)3](2+) as a donor.

  19. Improving the efficiency of ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag inverted solar cells by sensitizing TiO2 nanocrystalline film with chemical bath-deposited CdS quantum dots

    PubMed Central

    2013-01-01

    An improvement in the power conversion efficiency (PCE) of the inverted organic solar cell (ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag) is realized by depositing CdS quantum dots (QDs) on a nanocrystalline TiO2 (nc-TiO2) film as a light absorption material and an electron-selective material. The CdS QDs were deposited via a chemical bath deposition (CBD) method. Our results show that the best PCE of 3.37% for the ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag cell is about 1.13 times that (2.98%) of the cell without CdS QDs (i.e., ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag). The improved PCE can be mainly attributed to the increased light absorption and the reduced recombination of charge carriers from the TiO2 to the P3HT:PCBM film due to the introduced CdS QDs. PMID:24172258

  20. Improving the efficiency of ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag inverted solar cells by sensitizing TiO2 nanocrystalline film with chemical bath-deposited CdS quantum dots.

    PubMed

    Chen, Chong; Li, Fumin

    2013-10-31

    An improvement in the power conversion efficiency (PCE) of the inverted organic solar cell (ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag) is realized by depositing CdS quantum dots (QDs) on a nanocrystalline TiO2 (nc-TiO2) film as a light absorption material and an electron-selective material. The CdS QDs were deposited via a chemical bath deposition (CBD) method. Our results show that the best PCE of 3.37% for the ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag cell is about 1.13 times that (2.98%) of the cell without CdS QDs (i.e., ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag). The improved PCE can be mainly attributed to the increased light absorption and the reduced recombination of charge carriers from the TiO2 to the P3HT:PCBM film due to the introduced CdS QDs.

  1. Constructing inverse V-type TiO2-based photocatalyst via bio-template approach to enhance the photosynthetic water oxidation

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghui; Zhou, Han; Ding, Jian; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2015-08-01

    Bio-template approach was employed to construct inverse V-type TiO2-based photocatalyst with well distributed AgBr in TiO2 matrix by making dead Troides Helena wings with inverse V-type scales as the template. A cross-linked titanium precursor with homogenous hydrolytic rate, good liquidity, and low viscosity was employed to facilitate a perfect duplication of the template and the dispersion of AgBr based on appropriate pretreatment of the template by alkali and acid. The as-synthesized inverse V-type TiO2/AgBr can be turned into inverse V-type TiO2/Ag0 from AgBr photolysis during photocatalysis to achieve in situ deposition of Ag0 in TiO2 matrix, by this approach, to avoid the deformation of surface microstructure inherited from the template. The result showed that the cooperation of perfect inverse V-type structure and the well distributed TiO2/Ag0 microstructures can efficiently boost the photosynthetic water oxidation compared to non-inverse V-type TiO2/Ag0 and TiO2/Ag0 without using template. The anti-reflection function of inverse V-type structure and the plasmatic effect of Ag0 might be able to account for the enhanced photon capture and efficient photoelectric conversion.

  2. Optimized dispersion of conductive agents for enhanced Li-storage performance of TiO2

    NASA Astrophysics Data System (ADS)

    Han, Moyan; Chen, Ge

    2016-12-01

    Novel TiO2/carbon (TiO2/C) composites have been synthesized by a layer-by-layer deposition method, with electrostatic interaction. The addition of carbon conductive agents enhances the electrochemical performance of TiO2. Carbon for these has been sourced 0D nitrogen-doped carbon, 1D carbon nanotubes and 2D graphene. The as-obtained TiO2/C composites show carbon nanotubes and titanium dioxide coaxial nanocables anchored on the graphene. The nitrogen-doped carbon is uniformly dispersed on the nanocables. As anode materials for Li-ion batteries, the TiO2/C composites exhibit excellent rate capability and cycling stability. A capacity of 150 mAh/g is retained at a current density of 4 A/g. The enhanced electrochemical performance may be attributed to the well-dispersed carbon conductive framework, which facilitates charge transfer during the lithium insertion/extraction process.

  3. Design and Synthesis of TiO2 Hollow Spheres with Spatially Separated Dual Cocatalysts for Efficient Photocatalytic Hydrogen Production

    PubMed Central

    Jiang, Qianqian; Li, Li; Bi, Jinhong; Liang, Shijing; Liu, Minghua

    2017-01-01

    TiO2 hollow spheres modified with spatially separated Ag species and RuO2 cocatalysts have been prepared via an alkoxide hydrolysis–precipitation method and a facile impregnation method. High-resolution transmission electron microscopy studies indicate that Ag species and RuO2 co-located on the inner and outer surface of TiO2 hollow spheres, respectively. The resultant catalysts show significantly enhanced activity in photocatalytic hydrogen production under simulated sunlight attributed to spatially separated Ag species and RuO2 cocatalysts on TiO2 hollow spheres, which results in the efficient separation and transportation of photogenerated charge carriers. PMID:28336859

  4. Large-Sized Dye-Sensitized Solar Cells with TiO2 Cemented and Protected Silver Grids

    NASA Astrophysics Data System (ADS)

    Lan, Zhang; Wu, Jihuai; Lin, Jianming; Miaoliang

    2012-03-01

    Large-sized dye-sensitized solar cells were prepared with TiO2 cemented and protected Ag grids in the photo and counter electrodes. The addition of high conductive TiO2 cemented Ag grids can maintain high performance with the enlargement of the cells. The preparation of the compact TiO2 layer on the Ag grids can prevent the corrosion of the electrolyte, moreover, when it is prepared on the whole area of the photo electrode, it also can play as the blocking layer for further enhancing the performance of cells. The presented method shows a simple and efficient way to prepare high performance large single cells.

  5. Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation.

    PubMed

    Cheng, Chuanwei; Karuturi, Siva Krishna; Liu, Lijun; Liu, Jinping; Li, Hongxing; Su, Liap Tat; Tok, Alfred Iing Yoong; Fan, Hong Jin

    2012-01-09

    A new nanoarchitecture photoelectrode design comprising CdS quantum-dot-sensitized, optically and electrically active TiO(2) inverse opals is developed for photoelectrochemical water splitting. The photoelectrochemical performance shows high photocurrent density (4.84 mA cm(-2) at 0 V vs. Ag/AgCl) under simulated solar-light illumination.

  6. Silver enhanced TiO2 thin films: photocatalytic characterization using aqueous solutions of tris(hydroxymethyl)aminomethane.

    PubMed

    Diesen, Veronica; Dunnill, Charles W; Österberg, Elin; Parkin, Ivan P; Jonsson, Mats

    2014-01-07

    The photocatalytic activity in aqueous solutions of TiO2 and Ag enhanced TiO2 sol-gel produced films was characterized using tris(hydroxymethyl)aminomethane (Tris) under black light (365 nm) and the observed differences in efficiency were further investigated by O2 adsorption studies using the same probe. Hydrogen abstracting species, such as hydroxyl radicals formed upon photocatalysis, are able to abstract hydrogen from Tris. This reaction leads to the formation of formaldehyde which was detected and quantified through a modified version of the Hantzsch reaction. It was found that the Ag enhanced TiO2 film increased the apparent quantum yield from 7% to 12%, partly as a result of a Schottky barrier formation at the metal-semiconductor interface and partly as the sensitizing effect of Ag nanoparticles extends the visible light absorption, which through electron transfer processes enable an efficient charge separation in the TiO2 by attracting acceptor species more efficiently than pure TiO2. The O2 adsorption studies in this paper showed that the Ag enhanced TiO2 film has a stronger adsorption affinity than pure TiO2 towards O2, which make the reduction of O2 more efficient with a subsequent enhanced electron-hole lifetime. It was also found that the Ag enhanced TiO2 film had a poorer adsorption affinity for Tris than the pure TiO2 film, which is a consequence of fewer available surface adsorption sites due to the Ag coverage at 64% which agrees well with the obtained adsorption equilibrium constants (K(LH(TiO2)) = 615 M(-1) and K(LH(Ag-TiO2)) = 320 M(-1)).

  7. Sterilization effect of UV light on Bacillus spores using TiO(2) films depends on wavelength.

    PubMed

    Nhung, Le Thi Tuyet; Nagata, Hirofumi; Takahashi, Akira; Aihara, Mutsumi; Okamoto, Toshihiro; Shimohata, Takaaki; Mawatari, Kazuaki; Akutagawa, Masatake; Kinouchi, Yhosuke; Haraguchi, Masanobu

    2012-01-01

    UV light and photocatalysts such as titanium dioxide (TiO(2)) and silver (Ag) are useful for disinfection of water and surfaces. However, the effect of UV wavelength on photocatalytic disinfection of spores is not well understood. Inactivation of Bacillus spores has been examined using different UV wavelengths and TiO(2) or TiO(2)/Ag composite materials. The level of UVA disinfection of Bacillus anthracis and Bacillus brevis vegetative cells increased with the presence of the TiO(2) and Ag photocatalysts, but had little effect on their spores. B. brevis spores were slightly more sensitive to UVB and UVC than the spores of B. atrophaeus. Photocatalytic sterilization against spores was strongest in UVC and UVB and weakest in UVA. The rate of inactivation of Bacillus spores was significantly increased by the presence of TiO(2), but was not markedly different from that induced by the presence of Ag. Therefore, TiO(2)/Ag plus UVA can be used for the sterilization of vegetative cells, while TiO(2) and UVC are effective against spores.

  8. Hydrogen plasma reduced black TiO2sbnd B nanowires for enhanced photoelectrochemical water-splitting

    NASA Astrophysics Data System (ADS)

    Tian, Zhangliu; Cui, Huolei; Zhu, Guilian; Zhao, Wenli; Xu, JiJian; Shao, Feng; He, Jianqiao; Huang, Fuqiang

    2016-09-01

    Black TiO2 with various nanostructures and phase constitutions have been reported to exhibit excellent photocatalytic and photoelectrochemical (PEC) performance. Here, we report the fabrication of black nanostructured TiO2sbnd B through hydrogen plasma assisted reduction and its enhanced PEC properties for the first time. Both the obtained TiO2sbnd B and black TiO2sbnd B are single crystalline nanowires, while the black TiO2sbnd B samples exhibit much stronger visible and infrared light absorption. The optimal black TiO2sbnd B sample obtained by hydrogen plasma treatment at 425 °C yields a photocurrent density of 0.85 mA cm-2, a rather low onset potential of -0.937 VAg/AgCl and a high applied bias photon-to-current efficiency (ABPE) of 0.363%, which is far superior to the TiO2sbnd B (0.15 mA cm-2 photocurrent, -0.917 VAg/AgCl onset potential and 0.138% ABPE). The significantly enhanced PEC performance of the black TiO2sbnd B is ascribed to the introduction of moderate surface oxygen vacancies. These results indicate that the black TiO2sbnd B is a promising material for PEC application and solar energy utilization.

  9. Novel phosphorus doped carbon nitride modified TiO2 nanotube arrays with improved photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Su, Jingyang; Geng, Ping; Li, Xinyong; Zhao, Qidong; Quan, Xie; Chen, Guohua

    2015-10-01

    Novel phosphorus-doped graphitic-carbon nitride (P-C3N4) modified vertically aligned TiO2 nanotube arrays (NTs) were designed and synthesized. They can significantly enhance the conduction and utilization of photogenerated charge carriers of TiO2 NTs. The heterostructure was successfully fabricated through a three-step process: electrochemical anodization and wet-dipping followed by thermal polymerization. The prepared P-C3N4/TiO2 NTs exhibit enhanced light-absorption characteristics and improved charge separation and transfer ability, thus resulting in a 3-fold photocurrent (1.98 mA cm-2 at 0 V vs. Ag/AgCl) compared with that of pure TiO2 NTs (0.66 mA cm-2 at 0 V vs. Ag/AgCl) in 1 M NaOH solution. The prepared P-C3N4/TiO2 NT photoelectrodes also present excellent photocatalytic and photoelectrocatalytic capabilities in the degradation of methylene blue (MB). The kinetic rate of P-C3N4/TiO2 NTs in the photoelectrocatalytic process for MB is 2.7 times that of pristine TiO2 NTs. Furthermore, the prepared sample was used as a photoanode for solar-driven water splitting, giving a H2 evolution rate of 36.6 μmol h-1 cm-2 at 1.0 V vs. RHE under simulated solar light illumination. This novel structure with a rational design for a visible light response shows potential for metal free materials in photoelectrochemical applications.Novel phosphorus-doped graphitic-carbon nitride (P-C3N4) modified vertically aligned TiO2 nanotube arrays (NTs) were designed and synthesized. They can significantly enhance the conduction and utilization of photogenerated charge carriers of TiO2 NTs. The heterostructure was successfully fabricated through a three-step process: electrochemical anodization and wet-dipping followed by thermal polymerization. The prepared P-C3N4/TiO2 NTs exhibit enhanced light-absorption characteristics and improved charge separation and transfer ability, thus resulting in a 3-fold photocurrent (1.98 mA cm-2 at 0 V vs. Ag/AgCl) compared with that of pure TiO2 NTs (0

  10. Enhanced photoelectrochemical activity by nanostructured V2O5/TiO2 bilayer

    NASA Astrophysics Data System (ADS)

    Mumtaz, Asad; Mohamed, Norani Muti; Saheed, Mohamed Shuaib Mohamed; Yar, Asfand; Irshad, Muhammad Imran

    2016-11-01

    Hydrogen production by splitting of water using solar means is a renewable alternative and is a need of the hour. The generation of hydrogen is studied using nanostructured V2O5/TiO2 bilayer photoctatalyst synthesized by two different methods. The solution deposition followed by annealing and flame oxidized methods are applied to deposit the nanostructured V2O5 onto TiO2 nanorod arrays. These two methods are compared and studied using X-ray diffraction, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), electron energy loss spectrum and photoelectrochemical study. The morphological study provides the optimized surface area of the TiO2 nanorod arrays. It shows that 0.45 mL tetra butyl titanate at 180C shows the improved surface area. It also differentiates the 3D network as morphology of nanostructured V2O5/TiO2 bilayer photoctatalyst synthesized by flame oxidation method. Electron energy loss spectrum confirms the presence of respective elemental states of V2O5/TiO2 bilayer photoctatalyst. Photoelectrochemical studies show the photocurrent density of 7.89µA/cm2 at 0 V vs Ag/AgCl using flame oxidized nanostructured V2O5/TiO2 nanorod arrays. This study explores the potential of flame oxidized synthesis of nanostructured photocatalysts.

  11. Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Jinwei; Chen, Xi; Ai, Nan; Hao, Jumin; Chen, Qi; Strauf, Stefan; Shi, Yong

    2011-09-01

    Silver nanoparticle doped TiO2 nanofibers, prepared by the electrospinning process were used as the photoanode to fabricate dye sensitized solar cells. It was found that the nanoparticle doped solar cells have a significantly increased photocurrent density resulting in a 25% improved conversion efficiency compared to undoped solar cells. The improved performance is attributed to two factors: (1) the increased light harvesting efficiency due to the plasmon enhanced optical absorption induced by Ag nanoparticles, and (2) the improved electron collection efficiency as a result of faster electron transport in the Ag doped TiO2 nanofiber photoanode.

  12. TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application.

    PubMed

    Yuan, Yali; Ding, Jianqiang; Xu, Jinsheng; Deng, Jian; Guo, Jianbo

    2010-08-01

    We have prepared a series of TiO2 nanoparticles for antibacterial applications. These TiO2 nanoparticles were prepared by the hydrolysis precipitation method with Ti(OBu)4, silver nitrate and ammonia. Crystal structure, particle size, interfacial structure and UV-visible light response of the prepared nanoparticles were characterized by X-ray diffraction measurements (XRD), Transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRs). The XRD spectra showed that all samples were anatase structure calcined at 450 degrees C for 3 hours. The Ag doping made the peak of diffraction wider. The results of TEM showed that the nanoparticles of TiO2, N-TiO2 and 1% Ag-N-TiO2 were all spherical in shape and well distributed with a mean size of 19.8 nm, 39.2 nm and 20.7 nm, respectively. N doping caused the nanoparticle size to increase, while, when the doped amount of Ag+ increased, the TiO2 particle size decreased. The FTIR revealed that Ag and N doping of TiO2 appeared to have strong absorption by -OH group and showed the characteristic absorption band of NH4+ and Ag. The UV-Vis-DRs indicated that the absorption band of Ag-N co-doped TiO2 had red shift and that the optical absorption response (between 400 nm and 700 nm) had obvious enhancement. The antibacterial properties of nanoparticles were investigated by agar diffusion method toward Escherichia coli and Bacillus subtilis. The results indicated that both Ag- and N-doped TiO2 could increase the antibacterial properties of TiO2 nanoparticles under fluorescent light irradiation. A 1% Ag-N-TiO2 had the highest antibacterial activity with a clear antibacterial circle of 33.0 mm toward Escherichia coli and 22.8 mm toward Bacillus subtilis after cultivation for 24 hours.

  13. The effect of polyaniline on TiO2 nanoparticles as anode materials for lithium ion batteries.

    PubMed

    Zheng, Haitao; Ncube, Ntombizodwa M; Raju, Kumar; Mphahlele, Nonhlanhla; Mathe, Mkhulu

    2016-01-01

    Polyaniline (PANI) additives have been shown to have a significant effect on titanium dioxide (TiO2) nanoparticles as lithium ion battery anode materials. TiO2/PANI composites were prepared using a solid coating method with different ratios of PANI and then characterized using XRD and SEM. These composites have shown increased reversible capacity compared with pure TiO2. At the current rate of 20 and 200 mAg(-1), maximum capacities were also found on 15 % PANI incorporated TiO2 composite with 281 mAh g(-1) and 168.2 mAh g(-1), respectively, and 230 and 99.6 mAh g(-1) were obtained in the case of pure TiO2. Among all the composite materials, 10 % PANI incorporated TiO2 composite exhibited the highest reversible capacity with cycle stability after 100 cycles at the current rate of 200 mAg(-1), suggestive that the optimal ratio is 10 % PANI of TiO2/polyaniline. The cycle stability showed swift fade when the ratio of PANI in the composites exceeded 10 % though the highest initial capacity was achieved on 15 % PANI in the composites. These results suggest that PANI has effectively enhanced the reversible capacity of commercial TiO2, and may be a promising polymer matrix materials for lithium ion batteries.

  14. Photocatalytic production of 1O2 and *OH mediated by silver oxidation during the photoinactivation of Escherichia coli with TiO2.

    PubMed

    Castro, Camilo A; Osorio, Paula; Sienkiewicz, Andrzej; Pulgarin, Cesar; Centeno, Aristóbulo; Giraldo, Sonia A

    2012-04-15

    Ag loaded TiO(2) was applied in the photocatalytic inactivation of Escherichia coli under ultraviolet (UV) and visible (Vis) light irradiations. Ag enhanced the TiO(2) photodisinfecting effect under Vis irradiation promoting the formation of singlet oxygen and hydroxyl radicals as identified by EPR analyses. Ag nanoparticles, determined on TEM analyses, undergo an oxidation process on the TiO(2)'s surface under UV or Vis irradiation as observed by XPS. In particular, UV pre-irradiation of the material totally diminished its photodisinfection activity under a subsequent Vis irradiation test. Under UV, photodegradation of dichloroacetic acid (DCA), attributed to photoproduced holes in TiO(2), was inhibited by the presence of Ag suggesting that oxidation of Ag(0) to Ag(+) and Ag(2+) is faster than the oxidative path of the TiO(2)'s holes on DCA molecules. Furthermore, photoassisted increased of Ag(+) concentration on TiO(2)'s surface enhances the bacteriostatic activity of the material in dark periods. Indeed, this latter dark contact of Ag(+)-TiO(2) and E. coli seems to induce recovering of the Vis light photoactivity promoted by the surface Ag photoactive species.

  15. Antibacterial activity of single crystalline silver-doped anatase TiO2 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyu; Li, Meng; He, Xiaojing; Hang, Ruiqiang; Huang, Xiaobo; Wang, Yueyue; Yao, Xiaohong; Tang, Bin

    2016-05-01

    Well-ordered, one-dimensional silver-doped anatase TiO2 nanowire (AgNW) arrays have been prepared through a hydrothermal growth process on the sputtering-deposited AgTi layers. Electron microscope analyses reveal that the as-synthesized AgNW arrays exhibit a single crystalline phase with highly uniform morphologies, diameters ranging from 85 to 95 nm, and lengths of about 11 μm. Silver is found to be doped into TiO2 nanowire evenly and mainly exists in the zerovalent state. The AgNW arrays show excellent efficient antibacterial activity against Escherichia coli (E. coli), and all of the bacteria can be killed within 1 h. Additionally, the AgNW arrays can still kill E. coli after immersion for 60 days, suggesting the long-term antibacterial property. The technique reported here is environmental friendly for formation of silver-containing nanostructure without using any toxic organic solvents.

  16. BiVO4/TiO2(N2) Nanotubes Heterojunction Photoanode for Highly Efficient Photoelectrocatalytic Applications

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Bai, Jing; Li, Yunpo; Zeng, Qingyi; Li, Jinhua; Zhou, Baoxue

    2017-04-01

    We report the development of a novel visible response BiVO4/TiO2(N2) nanotubes photoanode for photoelectrocatalytic applications. The nitrogen-treated TiO2 nanotube shows a high carrier concentration rate, thus resulting in a high efficient charge transportation and low electron-hole recombination in the TiO2-BiVO4. Therefore, the BiVO4/TiO2(N2) NTs photoanode enabled with a significantly enhanced photocurrent of 2.73 mA cm-2 (at 1 V vs. Ag/AgCl) and a degradation efficiency in the oxidation of dyes under visible light. Field emission scanning electron microscopy, X-ray diffractometry, energy-dispersive X-ray spectrometer, and UV-Vis absorption spectrum were conducted to characterize the photoanode and demonstrated the presence of both metal oxides as a junction composite.

  17. Clean TiO2 nanocuboid film tightly attached on a conductive substrate for highly efficient photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Meng, Ming; Liu, Kuili; Gan, Zhixing; Zhang, Xiantu; Zhang, Honghui; Sun, Xianke; Zhou, Xiaodong; Chen, Yuanyuan; Feng, Yamin

    2016-12-01

    Anatase TiO2 film consisting of nanocuboids with co-exposed {1 0 1}, {0 0 1} and {1 0 0} facets have been successfully synthesized via thermally annealing amorphous anodized TiO2 nanotube arrays in ambient fluorine. When employed as a photoanode material in photoelectrochemical water splitting, the film of the clean TiO2 nanocuoboids yields a photocurrent density of up to 0.65 mA cm-2 at 0.22 V versus the Ag/AgCl electrode with Faradic efficiency of 100% and exhibits excellent stability, which can be attributed to enhanced photogenerated charge separation and transport to the collecting electrode. This film could also potentially be used for other facet-related applications such as TiO2 based dye-sensitized solar cells, sensors and lithium batteries.

  18. Homogeneous Photosensitization of Complex TiO2 Nanostructures for Efficient Solar Energy Conversion

    PubMed Central

    Luo, Jingshan; Karuturi, Siva Krishna; Liu, Lijun; Su, Liap Tat; Tok, Alfred Iing Yoong; Fan, Hong Jin

    2012-01-01

    TiO2 nanostructures-based photoelectrochemical (PEC) cells are under worldwide attentions as the method to generate clean energy. For these devices, narrow-bandgap semiconductor photosensitizers such as CdS and CdSe are commonly used to couple with TiO2 in order to harvest the visible sunlight and to enhance the conversion efficiency. Conventional methods for depositing the photosensitizers on TiO2 such as dip coating, electrochemical deposition and chemical-vapor-deposition suffer from poor control in thickness and uniformity, and correspond to low photocurrent levels. Here we demonstrate a new method based on atomic layer deposition and ion exchange reaction (ALDIER) to achieve a highly controllable and homogeneous coating of sensitizer particles on arbitrary TiO2 substrates. PEC tests made to CdSe-sensitized TiO2 inverse opal photoanodes result in a drastically improved photocurrent level, up to ~15.7 mA/cm2 at zero bias (vs Ag/AgCl), more than double that by conventional techniques such as successive ionic layer adsorption and reaction. PMID:22693653

  19. Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO2 electron-selective layer on FTO and MoO3/Ag/MoO3 transparent electrode.

    PubMed

    Li, Fumin; Chen, Chong; Tan, Furui; Li, Chunxi; Yue, Gentian; Shen, Liang; Zhang, Weifeng

    2014-01-01

    We report a new semitransparent inverted polymer solar cell (PSC) with a structure of glass/FTO/nc-TiO2/P3HT:PCBM/MoO3/Ag/MoO3. Because high-temperature annealing which decreased the conductivity of indium tin oxide (ITO) must be handled in the process of preparation of nanocrystalline titanium oxide (nc-TiO2), we replace glass/ITO with a glass/fluorine-doped tin oxide (FTO) substrate to improve the device performance. The experimental results show that the replacing FTO substrate enhances light transmittance between 400 and 600 nm and does not change sheet resistance after annealing treatment. The dependence of device performances on resistivity, light transmittance, and thickness of the MoO3/Ag/MoO3 film was investigated. High power conversion efficiency (PCE) was achieved for FTO substrate inverted PSCs, which showed about 75% increase compared to our previously reported ITO substrate device at different thicknesses of the MoO3/Ag/MoO3 transparent electrode films illuminated from the FTO side (bottom side) and about 150% increase illuminated from the MoO3/Ag/MoO3 side (top side).

  20. Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO2 electron-selective layer on FTO and MoO3/Ag/MoO3 transparent electrode

    PubMed Central

    2014-01-01

    We report a new semitransparent inverted polymer solar cell (PSC) with a structure of glass/FTO/nc-TiO2/P3HT:PCBM/MoO3/Ag/MoO3. Because high-temperature annealing which decreased the conductivity of indium tin oxide (ITO) must be handled in the process of preparation of nanocrystalline titanium oxide (nc-TiO2), we replace glass/ITO with a glass/fluorine-doped tin oxide (FTO) substrate to improve the device performance. The experimental results show that the replacing FTO substrate enhances light transmittance between 400 and 600 nm and does not change sheet resistance after annealing treatment. The dependence of device performances on resistivity, light transmittance, and thickness of the MoO3/Ag/MoO3 film was investigated. High power conversion efficiency (PCE) was achieved for FTO substrate inverted PSCs, which showed about 75% increase compared to our previously reported ITO substrate device at different thicknesses of the MoO3/Ag/MoO3 transparent electrode films illuminated from the FTO side (bottom side) and about 150% increase illuminated from the MoO3/Ag/MoO3 side (top side). PMID:25332693

  1. Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Ganesh, Ibram; Kumar, Polkampally P.; Annapoorna, Ibram; Sumliner, Jordan M.; Ramakrishna, Mantripragada; Hebalkar, Neha Y.; Padmanabham, Gade; Sundararajan, Govindan

    2014-02-01

    The Cu-doped TiO2 (Cu = 0-50 wt.%) powders and thin films were prepared by following a homogeneous co-precipitation method and sol-gel dip-coating technique, respectively, and were treated through 400-800 °C, and then thoroughly investigated by following various characterization techniques. The characterization results suggest that the pure TiO2 powder formed at 550 °C is in rutile phase, whereas the 0.1-10 wt.% Cu-doped TiO2 powders formed at 550 °C are mainly in anatase phase. These latter powders possess low band-gap energies (3.247-3.265 eV) and flat-band potentials amenable to water oxidation reaction. The 0.5-wt.% Cu-doped TiO2 thin film formed at 550 °C exhibited n-type semiconducting behavior and considerable photocurrent among various investigated powders. The CO2 reduction with a Faradaic efficiency of 82% and ˜ 96% CO selectivity in a two-compartment electrochemical cell was noted at -2500 mV (vs. Ag/Ag+) on pre-reduced (at -2000 mV vs. Ag/AgCl) 50 wt.% Cu-doped TiO2 thin film electrode in conjunction with an ionic liquid. The UV-light-induced TiO2 was found to be responsible for photocatalytic methylene blue (MB) degradation, and TiO2 is not sensitized by MB. The in situ formed compounds of TiO2 and CuO/Cu2O were found to absorb visible light, but showed little visible-light-induced photocatalytic activity.

  2. Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination.

    PubMed

    Kyung, Hyunsook; Lee, Jaesang; Choi, Wonyong

    2005-04-01

    This study reports synergistic effects in the simultaneous conversion of dyes and heavy metal ions in aqueous TiO2/dye/metal ion systems (ternary components) under visible light (lambda > 420 nm). TiO2/Cr(VI)/Acid Orange 7 (AO7), TiO2/Cr(VI)/Rhodamine B (RhB), TiO2/Ag+/AO7, and TiO2/Ag+/RhB were chosen as test systems. Although dyes can be degraded in TiO2 suspensions under visible light, their removal rates were markedly enhanced in the presence of metal ions. Similarly, the reduction rates of metal ions in visible-light-illuminated TiO2 suspensions were negligible, but they were highly accelerated with dyes present. In particular, the synergistic effect in the ternary system of TiO2/Cr(VI)/AO7 was outstanding. The presence of dissolved oxygen increased the photoreduction rate of Cr(VI) despite the fact that Cr(VI) and O2 are competing electron acceptors. This is ascribed to in-situ photogenerated H2O2 from O2, which acts as a reductant of Cr(VI). RhB and Ag+ ions could be also converted simultaneously under visible light both in the presence and absence of TiO2. The visible-light-induced reduction of Ag+ did not occur at all in TiO2/Ag+ system, but it was enabled in both TiO2/Ag+/ RhB and TiO2/Ag+/AO7 to generate Ag particles. On the other hand, the binary systems of Cr(VI)/AO7, Ag+/AO7, and Ag+/RhB show significant visible-light activities for the conversion of both dye and metal ion. In this case, metal ions and dyes seem to form complexes that induce intracomplex electron transfers upon visible-light absorption. The Cr(VI)/RhB system, however, exhibited insignificant visible-light reactivity.

  3. Biomimetic TiO2 formation from interfacial sol-gel chemistry leading to new photocatalysts

    NASA Astrophysics Data System (ADS)

    Jaffer Al-Timimi, Iman A.; Onwukwe, Uche K.; Worsley, Myles P.; Sermon, Paul A.

    2016-09-01

    The surfaces of Portobello mushroom spores (PMS) have been used to produce Au and Ag nanoparticles, which are held thereon. They have then been overcoated with TiOx. These adsorbed more methyl orange (MO) pollutant from water than commercial P25 TiO2. After calcination they form biomimetic TiO2 (PMS) and removal of the biotemplate, they catalyse faster rates of MO from water (molecules/mg/s) than P25 anataserutile. Other biotemplates are now anticipated that will yield biomimetic photocatalysts with higher turnover number (s-1) removal of endocrine disrupters from water.

  4. TiO2 nanofibrous interface development for Raman detection of environmental pollutants

    NASA Astrophysics Data System (ADS)

    Maznichenko, D.; Selvaganapathy, P. R.; Venkatakrishnan, K.; Tan, B.

    2012-12-01

    Sensor development has been reliant on planar Au and Ag nanoparticle research. The current findings explored a unique 3-D network of crystalline TiO2 nanoparticles linked as nanofibers. In addition to the favorability of using TiO2 for chemical and bio-molecular sensing, the nanofiber network provides molecular diffusion control and an increased confocal volume signal. Controlled femtosecond laser synthesis is also demonstrated that directly impacts surface-enhanced Raman spectroscopy detection of two common environmentally harmful chemicals: bisphenol A and diclofenac sodium salt. These findings assert that 3-D nanofibrous network porosity optimization is crucial for Raman monitoring of drinking water.

  5. Localized control of light-matter interactions by using nanoscale asymmetric TiO2

    NASA Astrophysics Data System (ADS)

    Zhou, Shifeng; Matsuoka, Tomoyo; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Nishi, Masayuki; Hong, Zhanglian; Qiu, Jianrong; Hirao, Kazuyuki; Miura, Kiyotaka

    2012-11-01

    This paper reports an asymmetry structure-mediated route for highly localized control of light-matter interactions by using tapered TiO2. We demonstrate for the first time that the growth habit of Ag nanostructures on tapered TiO2 can be tuned by controllable photolysis. Site-selective anchoring of Ag nanoparticles or nanowires on tapered TiO2 can be achieved by simply changing the external light. We further show that the obtained tapered TiO2-Ag hetero-nanostructures present excellent light-trapping ability over a wide range of wavelengths which is considered to originate from the unique synergistic effects of graded waveguiding and plasmonic light trapping. This improved photon-management capability renders the prepared substrate a very promising candidate for optical sensing application. For this purpose, an enhanced sensitivity for trace detection is confirmed. These findings open up promising avenues for tailoring of light-matter interactions which are of special interest for studying controllable photolysis activation processes and diverse applications such as nanostructure growth, trace detection, photocatalysis and solar cells.

  6. Synthesis of silver quantum dots decorated TiO2 nanotubes and their incorporation in organic hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Tan, Furui; Qu, Shengchun; Zhang, Xingwang; Liu, Kong; Wang, Zhanguo

    2013-08-01

    Uniform silver quantum dots decorated TiO2 nanotubes (Ag-TiO2 NTs) were synthesized via a simple reduction reaction in ethanol solvent. The size distribution of composite NTs arranges from 3 to 5 nm for Ag quantum dots and about 10 nm for TiO2 NTs in diameter. The composite Ag-TiO2 nanoparticles were incorporated in organic hybrid solar cells through doping into the active layer. Both the optical and electrical properties of the solar cells were improved. The photocurrent and fill factor of the devices were obviously increased after the Ag-TiO2 NTs were introduced, accompanied with a greatly reduced series resistance as well as enlarged shunt resistance. Suppressed recombination due to efficient charge transfer from plasmonic Ag quantum dots to the attached TiO2 NTs made contribution to the charge collection and transportation so that the fill factor was increased. Meanwhile, the enhanced light absorption resulted from effective incident light scattering by the Ag-TiO2 NTs composite played a role in increasing photocurrent. As a result, solar cells with Ag-TiO2 NTs generated an enhanced conversion efficiency up to 20 and 50 % compared to that adopting TiO2 NTs and that without doping, respectively.

  7. Porous TiO2 Assembled from Monodispersed Nanoparticles.

    PubMed

    Liu, Xu; Duan, Weijie; Chen, Yan; Jiao, Shihui; Zhao, Yue; Kang, Yutang; Li, Lu; Fang, Zhenxing; Xu, Wei; Pang, Guangsheng

    2016-12-01

    Porous TiO2 were assembled by evaporating or refluxing TiO2 colloid, which was obtained by dispersing the TiO2 nanoparticles with a crystallite size (d XRD) of 3.2 nm into water or ethanol without any additives. Porous transparent bulk TiO2 was obtained by evaporating the TiO2-C2H5OH colloid at room temperature for 2 weeks, while porous TiO2 nanospheres were assembled by refluxing the TiO2-H2O colloid at 80 °C for 36 h. Both of the porous TiO2 architectures were pore-size-adjustable depending on the further treating temperature. Porous TiO2 nanospheres exhibited enhanced photocatalysis activity compared to the nanoparticles.

  8. Classification of Electrochemical Characteristics of Microorganisms and Antibacterial Effects of Powdered TiO2 Depending on the Kind of Microorganism for Application to Sensors

    NASA Astrophysics Data System (ADS)

    Nagame, Seigo; Kambara, Masaki; Onoe, Takatoshi; Kamada, Aiko; Yoshino, Katsumi

    2003-10-01

    Electrochemical characteristics and antibacterial effects of powdered semiconductor TiO2 on the viability of several cariogenic oral microorganisms and other communicable microorganisms have been studied. The microorganisms examined showed an irreversible oxidation current at approximately 0.1-1.2 V vs Ag/AgCl in aqueous buffer solution. These electrochemical characteristics and antibacterial effects of TiO2 have been found to depend on the kind of microorganism and the type of TiO2, suggesting the possibility of the sensing of various types of oral micoroorganisms.

  9. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  10. Instability of Hydrogenated TiO2

    SciTech Connect

    Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep; Schwarz, Ashleigh M.; Oxenford, Lucas S.; Kennedy, John V.; Thevuthasan, Suntharampillai; Henderson, Michael A.

    2015-11-06

    Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  11. Enhanced photocatalytic activity for titanium dioxide by co-modifying with silica and fluorine.

    PubMed

    Yang, Shaogui; Sun, Cheng; Li, Xinyong; Gong, Zhongqiang; Quan, Xie

    2010-03-15

    F-Si-co-modified TiO(2) (FST) samples with different ratios of fluorine to titanium (R(F)) and silica to titanium (R(x)), were successfully synthesized by ultrasound-assisted hydrolysis. The structure and properties of the as-prepared codoped titania were characterized by means of XRD, TEM, XPS, BET, UV-Vis diffuse reflectance spectra and ESR. XRD analysis showed that Si and F atoms prevented phase transition of anatase to rutile and suppressed the growth of titania crystalline. ESR results showed that the concentration of the active species (.OH) on 1%-FST(R(x)=10%) was higher than that on other FST samples and P25 titania. The improvement in photocatalytic activity relative to titania can be achieved by co-modifying fluorine and silica to fabricate FST composite material. The photocatalytic activity of FST powders for decomposition of methyl orange was affected by the content of fluorine and the content of silica. When the ratios of R(F) and R(x) were 1 and 10%, respectively, 1%-FST(R(x)=10%) shows the best among photocatalytic activity, which is much superior to P25 under UV-Vis irradiation. The possible reasons for the high photocatalytic activity of the FST powders were proposed in the paper. In addition, the stability of the FST powders in photocatalytic process was confirmed based on the XPS analysis.

  12. Removal of 4-Nitrophenol from Water Using Ag–N–P-Tridoped TiO2 by Photocatalytic Oxidation Technique

    PubMed Central

    Achamo, Temesgen; Yadav, O. P.

    2016-01-01

    Photocatalytic oxidation using semiconductor nanoparticles is an efficient, eco-friendly, and cost-effective process for the removal of organic pollutants, such as dyes, pesticides, phenols, and their derivatives in water. In the present study, nanosize Ag–N–P-tridoped titanium(IV) oxide (TiO2) was prepared by using sol–gel-synthesized Ag-doped TiO2 and soybean (Glycine max) or chickpea (Cicer arietinum) seeds as nonmetallic bioprecursors. As-synthesized photocatalysts were characterized using X-ray diffraction, Fourier transform infrared, and ultra violet (UV)–visible spectroscopic techniques. Average crystallite size of the studied photocatalysts was within 39–46 nm. Whereas doped Ag in TiO2 minimized the photogenerated electron–hole recombination, doped N and P extended its photoabsorption edge to visible region. Tridoping of Ag, N, and P in TiO2 exhibited synergetic effect toward enhancing its photocatalytic degradation of 4-nitrophenol (4-NP), separately, under UV and visible irradiations. At three hours, degradations of 4-NP over Ag–N–P-tridoped TiO2 under UV and visible radiations were 73.8 and 98.1%, respectively. PMID:27081309

  13. Feasibility of Silver Doped TiO2/Glass Fiber Photocatalyst under Visible Irradiation as an Indoor Air Germicide

    PubMed Central

    Pham, Thanh-Dong; Lee, Byeong-Kyu

    2014-01-01

    This study investigated the feasibility of using Ag-TiO2 photocatalyst supported on glass fiber (Ag-TiO2/GF) prepared by a sol-gel method as an indoor air germicide. An experimental model was designed to investigate the bacterial disinfection efficiency of Staphylococcus (Staph), the most popular bacterium in hospitals in Korea, by the Ag-TiO2/GF photocatalyst. The silver content in Ag/TiO2 was altered from 1 to 10% to investigate the optimal ratio of Ag doped on TiO2/glass fiber (TiO2/GF) for photocatalytic disinfection of Staph. This study confirmed that Ag in Ag-TiO2/GF could work as an electron sink or donor to increase photocatalytic activity and promote the charge separation of electron-hole pairs generated from TiO2 after photon absorption. Ag also acts as an intermediate agent for the transfer of photo-generated electrons from the valence band of TiO2 to an acceptor (O2 gas) to promote photo-oxidation processes. The photocatalytic disinfection activity of Ag-TiO2/GF under visible light increased with the increase in silver content up to 7.5% and then slightly decreased with further increasing silver content. The highest disinfection efficiency and disinfection capacity of Staph using 7.5% Ag-TiO2/GF were 75.23% and 20 (CFU∙s−1∙cm−2) respectively. The medium level of humidity of 60% ± 5% showed better photocatalytic disinfection than the lower (40% ± 5%) or higher (80% ± 5%) levels. PMID:24658408

  14. Feasibility of silver doped TiO2/glass fiber photocatalyst under visible irradiation as an indoor air germicide.

    PubMed

    Pham, Thanh-Dong; Lee, Byeong-Kyu

    2014-03-20

    This study investigated the feasibility of using Ag-TiO2 photocatalyst supported on glass fiber (Ag-TiO2/GF) prepared by a sol-gel method as an indoor air germicide. An experimental model was designed to investigate the bacterial disinfection efficiency of Staphylococcus (Staph), the most popular bacterium in hospitals in Korea, by the Ag-TiO2/GF photocatalyst. The silver content in Ag/TiO2 was altered from 1 to 10% to investigate the optimal ratio of Ag doped on TiO2/glass fiber (TiO2/GF) for photocatalytic disinfection of Staph. This study confirmed that Ag in Ag-TiO2/GF could work as an electron sink or donor to increase photocatalytic activity and promote the charge separation of electron-hole pairs generated from TiO2 after photon absorption. Ag also acts as an intermediate agent for the transfer of photo-generated electrons from the valence band of TiO2 to an acceptor (O2 gas) to promote photo-oxidation processes. The photocatalytic disinfection activity of Ag-TiO2/GF under visible light increased with the increase in silver content up to 7.5% and then slightly decreased with further increasing silver content. The highest disinfection efficiency and disinfection capacity of Staph using 7.5% Ag-TiO2/GF were 75.23% and 20 (CFU∙s-1∙cm-2) respectively. The medium level of humidity of 60% ± 5% showed better photocatalytic disinfection than the lower (40% ± 5%) or higher (80% ± 5%) levels.

  15. Preparation, characterization and visible light photocatalytic activity of silver, nitrogen co-doped TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Khan, Matiullah; Ramin Gul, Sahar; Li, Jing; Cao, Wenbin; Mamalis, Athanasios G.

    2015-06-01

    TiO2 photocatalyst codoped with Silver (Ag) and Nitrogen (N) with different Ag doping concentrations is successfully synthesized by hydrothermal method. The as-synthesized samples are characterized through x-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-vis. absorption spectra and x-ray photoelectron spectroscopy (XPS). The photocatalytic response is evaluated by the photodegradation of methylene blue under visible light irradiations. All synthesized samples are composed of pure anatase phase with good crystallinity. The absorption edge of codoped TiO2 is shifted towards visible light region. X-ray photoelectron spectroscopy confirmed the existence of silver and nitrogen in the codoped samples. All the codoped samples demonstrated improved photocatalytic activity compared to pure TiO2. Among the different codoped samples, the one with silver doping concentration of 4 at. % exhibited the highest photoactivity.

  16. TiO2-TiO2 composite resistive humidity sensor: ethanol crosssensitivity

    NASA Astrophysics Data System (ADS)

    Ghalamboran, Milad; Saedi, Yasin

    2016-03-01

    The fabrication method and characterization results of a TiO2-TiO2 composite bead used for humidity sensing along with its negative cross-sensitivity to ethanol vapor are reported. The bead shaped resistive sample sensors are fabricated by the drop-casting of a TiO2 slurry on two Pt wire segments. The dried bead is pre-fired at 750°C and subsequently impregnated with a Ti-based sol. The sample is ready for characterization after a thermal annealing at 600°C in air. Structurally, the bead is a composite of the micron-sized TiO2 crystallites embedded in a matrix of nanometric TiO2 particle aggregates. The performance of the beads as resistive humidity sensors is recorded at room temperature in standard humidity level chambers. Results evince the wide dynamic range of the sensors fabricated in the low relative humidity range. While the sensor conductance is not sensitive to ethanol vapor in dry air, in humid air, sensor's responses are negatively affected by the contaminant.

  17. Double-Shelled TiO2 Hollow Spheres Assembled with TiO2 Nanosheets.

    PubMed

    Zhang, Chao; Zhou, Yuming; Zhang, Yiwei; Zhao, Shuo; Fang, Jiasheng; Sheng, Xiaoli; Zhang, Tao; Zhang, Hongxing

    2017-02-08

    High-quality double-shelled TiO2 hollow spheres (DHS-Ti) assembled with TiO2 nanosheets have been synthesized for the first time through a simple hydrothermal treatment of sSiO2 @TiO2 (TiO2 -coated solid SiO2 spheres). The double-shelled structure shows a high BET surface area up to 417.6 m(2)  g(-1) . Anatase DHS-Ti of high crystallinity can be obtained without structural collapse by calcination treatment. The effects of cetyl trimethylammonium bromide (CTAB) concentration, pH, and hydrothermal reaction temperature have also been investigated with a series of contrast experiments. A formation mechanism involving the in situ growth of amorphous TiO2 nanosheets followed by the redeposition of dissolved silica species is proposed. Lastly, the DHS-Ti forming strategy can be extended as a general strategy to fabricate various morphological hollow nanostructures and double-shelled Pt nanocatalysts by rationally selecting functional sSiO2 nanoparticles as core materials. This work could open up a new strategy for controllable synthesis of complex hollow structures and other functional materials.

  18. Evolution of damage fraction due to dense ionizing irradiation on TiO2 film

    NASA Astrophysics Data System (ADS)

    Kumar, Avesh; Kanjilal, D.; Mohanty, T.

    2013-10-01

    The evolution of damage fraction during dense ionizing irradiation at various fluences using 100 MeV Ag ion is studied. Irradiation induced modification of surface roughness and surface potential of titanium dioxide nanocrystalline thin films are estimated. TiO2 thin films deposited on Si (1 0 0) substrate were irradiated by 100 MeV Ag ion beam with varying fluences. Ion bombardment generates point and extended defects in TiO2 thin films due to dense electronic excitation. The surface morphology and surface roughness of irradiated and pristine thin films were measured using atomic force microscopy. The changes in surface potential of pristine as well as Ag ion beam irradiated thin films were measured from contact potential difference between TiO2 thin film (one electrode) of unknown work function and Au (reference electrode) of known work function using scanning Kelvin probe microscopy. The defect size and damage fraction are calculated from exponential fitting of variation of both contact surface potential difference and roughness exponent with fluence.

  19. Photocatalytic degradation of chloramphenicol in an aqueous suspension of silver-doped TiO2 nanoparticles.

    PubMed

    Shokri, Mohammad; Jodat, Akbar; Modirshahla, Nasser; Behnajady, Mohammad A

    2013-01-01

    In this work, silver-doped TiO2 (Ag/TiO2) nanoparticles were synthesized using a photodeposition technique. The prepared Ag/TiO2 nanoparticles were characterized using TEM, SEM, XRD, and EDX techniques. The characterization of Ag/TiO2 nanoparticles using SEM and EDX techniques revealed the dispersion of Ag metal on the surface of TiO2. The photocatalytic activity of Ag/TiO2 and bare TiO2 in the presence of ultraviolet irradiation was investigated in the removal of chloramphenicol (CAP) as an antibiotic. CAP is a broad-spectrum antibiotic exhibiting activity against both Gram-positive and Gram-negative bacteria, as well as other groups of microorganisms. However, it is, in certain susceptible individuals, associated with serious toxic effects in humans including bone marrow depression, particularly severe in the form of fatal aplastic anaemia. The effects of the operational factors, such as doping content of Ag, photocatalyst dosage and calcination temperature were evaluated in the catalytic activity of Ag/TiO2. The results showed that the photocatalytic efficiency of TiO2 nanoparticles for the degradation of CAP, can be significantly improved by deposition an optimum amount of Ag nanoparticles (0.96 wt%) in the calcination temperature 300 degrees C. It was found that 900 mg/L of Ag/TiO2 is the optimum dosage in the removal of CAP with 20 mg/L initial concentration. The highest removal efficiency of CAP (-100%) at the optimum conditions was observed in 20 min. A mineralization study under optimum conditions showed about 88% reduction in total organic carbon after 120 min of irradiation time.

  20. Synergistic effects of graphene quantum dot sensitization and nitrogen doping of ordered mesoporous TiO2 thin films for water splitting photocatalysis(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Islam, Syed Z.; Wanninayake, Namal; Reed, Allen D.; Kim, Doo-Young; Rankin, Stephen E.

    2016-10-01

    The optical and electronic properties of TiO2 thin films provide tremendous opportunities in several applications including photocatalysis, photovoltaics and photoconductors for energy production. Despite many attractive features of TiO2, critical challenges include the innate inability of TiO2 to absorb visible light and the fast recombination of photoexcited charge carriers. In this study, we prepared ordered mesoporous TiO2 films co-modified by graphene quantum dot sensitization and nitrogen doping (GQD-N-TiO2) for hydrogen production from photoelectrochemical water splitting under visible light irradiation. First, cubic ordered mesoporous TiO2 films were prepared by a surfactant templated sol-gel method. Then, TiO2 films were treated with N2/Ar plasma for the incorporation of substitutional N atoms into the lattice of TiO2. GQDs were prepared by chemically oxidizing carbon nano-onions. The immobilization of GQDs was accomplished by reacting carboxyl groups of GQDs with amine groups of N-TiO2 developed by the prior immobilization of (3-aminopropyl)triethoxysilane (APTES). Successful immobilization of GQDs onto N-TiO2 was probed by UV-Vis, FT-IR, and scanning electron microscopy. Further, zeta potential and contact angle measurements showed enhanced surface charge and hydrophilicity, confirming the successful immobilization of GQDs. The GQD-N-TiO2, N-TiO2 and GQD-TiO2 films showed 400 times, 130 times and 8 times photocurrent enhancement, respectively, compared to TiO2 films for water splitting with a halogen bulb light source. This outstanding enhancement is attributed to the high surface area of mesoporous films and synergistic effects of nitrogen doping and GQD sensitization resulting in enhanced visible light absorption, efficient charge separation and transport.

  1. Characterization and environmental implications of nano- and larger TiO(2) particles in sewage sludge, and soils amended with sewage sludge.

    PubMed

    Kim, Bojeong; Murayama, Mitsuhiro; Colman, Benjamin P; Hochella, Michael F

    2012-04-01

    Titanium dioxide (TiO(2)) is the most extensively used engineered nanoparticle to date, yet its fate in the soil environment has been investigated only rarely and is poorly understood. In the present study, we conducted two field-scale investigations to better describe TiO(2) nano- and larger particles in their most likely route of entry into the environment, i.e., the application of biosolids to soils. We particularly concentrated on the particles in the nano-size regime due to their novel and commercially useful properties. First, we analyzed three sewage sludge products from the US EPA TNSSS sampling inventory for the occurrence, qualitative abundance, and nature of TiO(2) nano- and larger particles by using analytical scanning electron microscopy and analytical (scanning) transmission electron microscopy. Nano- and larger particles of TiO(2) were repeatedly identified across the sewage sludge types tested, providing strong evidence of their likely concentration in sewage sludge products. The TiO(2) particles identified were as small as 40 nm, and as large as 300 nm, having faceted shapes with the rutile crystal structure, and they typically formed small, loosely packed aggregates. Second, we examined surface soils in mesocosms that had been amended with Ag nanoparticle-spiked biosolids for the occurrence of TiO(2) particles. An aggregate of TiO(2) nanoparticles with the rutile structure was again identified, but this time TiO(2) nanoparticles were found to contain Ag on their surfaces. This suggests that TiO(2) nanoparticles from biosolids can interact with toxic trace metals that would then enter the environment as a soil amendment. Therefore, the long-term behavior of TiO(2) nano- and larger particles in sewage sludge materials as well as their impacts in the soil environment need to be carefully considered.

  2. The Effect of TiO2 on the Wetting Behavior of Silver-copper Oxide Braze Filler Metals

    SciTech Connect

    Weil, K. Scott; Kim, Jin Yong Y.; Hardy, John S.; Darsell, Jens T.

    2006-03-01

    A series of silver-copper oxide ceramic brazing alloys was compositionally modified by doping with small amounts of titania. Subsequent contact angle measurements indicate that concentrations as low as 0.5 mol% TiO2 can significantly enhance wettability over a wide range of binary Ag-CuOx compositions.

  3. Efficient photodegradation of methyl violet dye using TiO2/Pt and TiO2/Pd photocatalysts

    NASA Astrophysics Data System (ADS)

    Saeed, Khalid; Khan, Idrees; Gul, Tamanna; Sadiq, Mohammad

    2017-02-01

    Titanium oxide supported palladium (TiO2/Pd) and titanium oxide supported platinum (TiO2/Pt) nanoparticles were prepared from their precursors through the incipient wetness method. The TiO2/Pd and TiO2/Pt nanoparticles were characterized by scanning electron microscopy (SEM), and energy dispersive X-rays (EDX), while the photodegradation study of methyl violet was performed by UV/VIS spectrophotometry. The morphological study shows that the Pd and Pt were well deposited on the surface of TiO2, which was confirmed by EDX. Both TiO2/Pd and TiO2/Pt nanoparticles were used as photocatalysts for the photodegradation of methyl violet in aqueous media under UV-light irradiation. The photodegradation study revealed that the TiO2/Pd and TiO2/Pt nanoparticles degraded about 95 and 78% of dye within 20 min, respectively. The effect of various parameters such as catalyst dosage, concentration of dye, and medium on the photocatalytic degradation was examined. The activity of recovered TiO2/Pd and TiO2/Pt nanoparticles was studied.

  4. TiO2 and SnO2 magnetic nanocomposites: influence of semiconductors and synthetic methods on photoactivity.

    PubMed

    Mourão, Henrique A J L; Ribeiro, Caue

    2011-09-01

    A number of reports have been published on use of TiO2 in thin films, magnetic nanocomposites, or heterostructures such as TiO2/Ag and TiO2/SnO2, as catalysts for water decontamination. Hence, semiconductor materials such as SnO2, associated with TiO2 in such nanocomposites, should be assessed in depth for such applications, especially those involving complex structures, such as magnetic photocatalytic nanocomposites. The present study describes the synthesis, characterization and testing of the photocatalytic potential of TiO2 or SnO2 magnetic nanocomposites obtained by the polymeric precursor and the hydrolytic sol-gel methods. The nanocomposites TiO2/CoFe2O4 and SnO2/CoFe2O4 were synthesized from polymeric precursors while TiO2/Fe3O4 and SnO2/Fe3O4 were synthesized by the hydrolytic sol-gel method. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (FEG/SEM) and transmission electron microscopy (TEM). The photocatalytic potentials were evaluated by rhodamine B dye photodegradation under UV-C radiation. Compared to SnO2, the nanocomposites with a coating of TiO2 were found to show better photocatalytic activity, but the SnO2 magnetic nanocomposites showed some photocatalytic activity, even though SnO2 is reported to be inactive for these purposes. As for the synthesis method, the nanocomposites obtained from polymeric precursors had smaller surface areas, but higher photocatalytic activity, than those obtained by the hydrolytic sol-gel method. This observation was attributed to the higher crystallinity and a more active surface resulting from calcination of the polymeric precursor material.

  5. Synthesis and characterization of TiO 2/Fe 2O 3 core-shell nanocomposition film and their photoelectrochemical property

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Fu, Wuyou; Yang, Haibin; Xu, Yang; Zhao, Wenyan; Zhang, Yanyan; Chen, Hui; Jing, Qiang; Qi, Xuefeng; Cao, Jing; Zhou, Xiaoming; Li, Yixing

    2011-08-01

    TiO 2/Fe 2O 3 core-shell nanocomposition film has been fabricated via two-step method. TiO 2 nanorod arrays are synthesized by a facile hydrothermal method, and followed by Fe 2O 3 nanoparticles deposited on TiO 2 nanorod arrays through an ordinary chemical bath deposition. The phase structures, morphologies, particle size, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and ultraviolet-visible (UV-vis) spectrophotometer. The results confirm that Fe 2O 3 nanoparticles of mean size ca. 10 nm coated on the surface of TiO2 NRs. After depositing Fe 2O 3, UV-vis absorption property is induces the shift to the visible-light range, the annealing temperature of 600 °C is the best condition for UV-vis absorption property of TiO 2/Fe 2O 3 nanocomposite film, and increasing Fe content, optical activity are enhanced one by one. The photoelectrochemical (PEC) performances of the as-prepared composite nanorods are determined by measuring the photo-generated currents under illumination of UV-vis light. The TiO 2 NRs modified by Fe 2O 3 show the photocurrent value of 1.36 mA/cm 2 at 0 V vs Ag/AgCl, which is higher than those of unmodified TiO 2 NRs.

  6. Super-hydrophobic Silver-Doped TiO2 @ Polycarbonate Coatings Created on Various Material Substrates with Visible-Light Photocatalysis for Self-Cleaning Contaminant Degradation

    NASA Astrophysics Data System (ADS)

    Li, Zhengjian; Sun, Zongzhao; Duan, Zhiqiang; Li, Rui; Yang, Yanli; Wang, Jingyi; Lv, Xiaoxia; Qi, Wei; Wang, Hua

    2017-02-01

    In the present work, a facile and efficient fabrication method has been developed for creating super-hydrophobic coatings of silver-doped TiO2@polycarbonate (TiO2 (Ag)@PC) on the substrates of different materials with photocatalytic self-cleaning performances simply by the “dipping and drying” process. The substrates were first patterned with glue and then deposited with the dopamine-capped TiO2 (Ag)@PC (DA-TiO2 (Ag)@PC) nanocomposites, followed by the further etching with dimethylbenzene. The so prepared super-hydrophobic E-DA-TiO2(Ag)@PC coatings could present the lotus leaf-like porous architectures, high adhesion stability, and especially the visible-light photocatalysis for organic contaminant degradation, thus promising the wide outdoor and indoor applications like water proofing, metal erosion protection, and surface self-cleaning.

  7. Super-hydrophobic Silver-Doped TiO2 @ Polycarbonate Coatings Created on Various Material Substrates with Visible-Light Photocatalysis for Self-Cleaning Contaminant Degradation.

    PubMed

    Li, Zhengjian; Sun, Zongzhao; Duan, Zhiqiang; Li, Rui; Yang, Yanli; Wang, Jingyi; Lv, Xiaoxia; Qi, Wei; Wang, Hua

    2017-02-20

    In the present work, a facile and efficient fabrication method has been developed for creating super-hydrophobic coatings of silver-doped TiO2@polycarbonate (TiO2 (Ag)@PC) on the substrates of different materials with photocatalytic self-cleaning performances simply by the "dipping and drying" process. The substrates were first patterned with glue and then deposited with the dopamine-capped TiO2 (Ag)@PC (DA-TiO2 (Ag)@PC) nanocomposites, followed by the further etching with dimethylbenzene. The so prepared super-hydrophobic E-DA-TiO2(Ag)@PC coatings could present the lotus leaf-like porous architectures, high adhesion stability, and especially the visible-light photocatalysis for organic contaminant degradation, thus promising the wide outdoor and indoor applications like water proofing, metal erosion protection, and surface self-cleaning.

  8. Super-hydrophobic Silver-Doped TiO2 @ Polycarbonate Coatings Created on Various Material Substrates with Visible-Light Photocatalysis for Self-Cleaning Contaminant Degradation

    PubMed Central

    Li, Zhengjian; Sun, Zongzhao; Duan, Zhiqiang; Li, Rui; Yang, Yanli; Wang, Jingyi; Lv, Xiaoxia; Qi, Wei; Wang, Hua

    2017-01-01

    In the present work, a facile and efficient fabrication method has been developed for creating super-hydrophobic coatings of silver-doped TiO2@polycarbonate (TiO2 (Ag)@PC) on the substrates of different materials with photocatalytic self-cleaning performances simply by the “dipping and drying” process. The substrates were first patterned with glue and then deposited with the dopamine-capped TiO2 (Ag)@PC (DA-TiO2 (Ag)@PC) nanocomposites, followed by the further etching with dimethylbenzene. The so prepared super-hydrophobic E-DA-TiO2(Ag)@PC coatings could present the lotus leaf-like porous architectures, high adhesion stability, and especially the visible-light photocatalysis for organic contaminant degradation, thus promising the wide outdoor and indoor applications like water proofing, metal erosion protection, and surface self-cleaning. PMID:28218285

  9. Influence of Au and TiO2 structures on hydrogen dissociation over TiO2/Au(100)

    NASA Astrophysics Data System (ADS)

    Nakamura, I.; Mantoku, H.; Furukawa, T.; Takahashi, A.; Fujitani, T.

    2012-11-01

    We performed H2-D2 exchange reactions over TiOx/Au(100) and compared the observed reaction kinetics with those reported for TiOx/Au(111) in order to clarify the influence of the Au and TiO2 structures on dissociation of H2 molecules. Low energy electron diffraction observations showed that the TiO2 produced on Au(100) was disordered, in contrast to the comparatively ordered TiO2 structure formed on Au(111). The activation energies and the turnover frequencies for HD formation over TiO2/Au(100) agreed well with those for TiO2/Au(111), clearly indicating that the hydrogen dissociation sites created over TiO2/Au(100) were the perimeter interface between stoichiometric TiO2 and Au, as was previously concluded for TiO2/Au(111). We concluded that the creation of active sites for hydrogen dissociation was independent of the Au and TiO2 structures consisting perimeter interface, and that local bonds that formed between Au and O atoms of stoichiometric TiO2 were essential for the creation of active sites.

  10. Preparation of platinum- and silver-incorporated TiO2 coatings in thin-film photoreactor for the photocatalytic decomposition of o-cresol.

    PubMed

    Kuo, Yu-Lin; Su, Te-Li; Chuang, Kai-Jen; Chen, Hua-Wei; Kung, Fu-Chen

    2011-12-01

    Platinum-incorporated TiO2 (Pt-TiO2) and silver-incorporated TiO2 (Ag-TiO2) coatings on sapphire tubes of a thin-film photoreactor were prepared using a photoreduction process. Results of X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) revealed that the Ag-TiO2 coatings consisted of a mixture of Ag2O, Ag and TiO2 particles, owing to the partial oxidization of silver particles on the TiO2 coatings, while the Pt-TiO2 coating contained a mixture of Pt and TiO2 particles. Diffuse reflectance UV-Vis spectra (DRS) showed that metal particles (Ag or Pt) incorporated into the TiO2 coatings promoted optical absorption in the visible region and made it possible for the coatings to be excited by visible light. Photoluminescence (PL) spectra showed that the PL intensity of the Pt-TiO2 coating was lower than that of the Ag-TiO2 and TiO2 coatings, indicating that the Pt-TiO2 coating had a higher efficiency of charge carrier trapping, immigration and transfer, which subsequently promoted the pseudo-first-order rate constants after the UV/TiO2 process. The Pt-TiO2 coatings for the photocatalytic decomposition of o-cresol under UV light irradiation corresponded to a higher pseudo-first-order rate constant (k) of 0.02 min(-1) when compared with the photocatalytic decomposition rates of pure TiO2 coatings (k = 0.0062 min(-1)) and Ag-TiO2 coatings (k = 0.01 min(-1)). The experimental results also indicated that the photodegradation rate of the Pt-TiO2 coating under visible light irradiation was significantly higher than the photodegradation rates of the Ag-TiO2 and pure TiO2 coatings.

  11. Nanoengineering the antibacterial activity of biosynthesized nanoparticles of TiO2, Ag, and Au and their nanohybrids with Portobello mushroom spore (PMS) (TiOx/PMS, Ag/PMS and Au/PMS) and making them optically self-indicating

    NASA Astrophysics Data System (ADS)

    Jaffer Al-Timimi, Iman A.; Sermon, Paul A.; Burghal, Ahmed A.; Salih, Afrodet A.; Alrubaya, Inaam M. N.

    2016-09-01

    Results show that nanoparticles (NPs) can be biosynthesized at room temperature on the reductive and chelating surfaces of Portobello mushroom spores (PMS). Using this green approach TiOx, Ag, Au, Ag-TiOx and Au-TiOx NPs have been prepared. These were characterized by TEM, SIMS and μFTIR-FTIR. TiOx/PMS, Ag-TiOx/PMS, Au-TiOx/PMS and Ag/PMS were active in bacterial inhibition towards Eschericia coli and Staphylococcus aureus, but Au/PMS was not active (suggesting a strong Au-PMS interaction). TiOx/PMS, Ag/PMS and Ag-TiOx/PMS were equally active in an antibacterial and an antifungal sense when tested against Asperillus and Candide. All samples (except Ag-TiOx/PMS and Au-TiOx/PMS) showed an interesting interaction with DNA. We report on the process of fine-tuning these antibacterial properties, progress on making these nanomaterials optically self-indicating and movement towards optical control of their antibacterial activity. Au-TiOx/PMS shows a surface plasmon resonance (SPR) with a maximum at 518 nm that might be useful in following its anti-bacterial properties (i.e. making the bionanomaterial self-indicating). The future of such green bio-nanomaterials is strong.

  12. Correlation between dispersion properties of TiO2 colloidal sols and photoelectric characteristics of TiO2 films.

    PubMed

    Jung, Hyun Suk; Lee, Sang-Wook; Kim, Jin Young; Hong, Kug Sun; Lee, Young Cheol; Ko, Kyung Hyun

    2004-11-15

    TiO2 film for use as dye-sensitized solar cell was prepared using the TiO2 colloidal sols (unpeptized sol and peptized sol). The optical properties and photocurrent-voltage characteristics of the resultant films were investigated. The optical transmittance of TiO2 thin film prepared from the peptized colloidal sol was over 90%, while that of TiO2 film from the unpeptized sol was under 80%. The TiO2 photoelectrode prepared from the peptized colloidal sol showed low photoelectric conversion efficiency (eta), 1.30%, whereas the efficiency of photoelectrode from the unpeptized sol was 2.21%. The high optical transmittance and low conversion efficiency of TiO2 film from the peptized sol are discussed in terms of dense microstructure due to the drying nature of well-dispersed colloidal sol.

  13. Tuning of optical and dielectric properties of nanoscale TiO2 using swift heavy ions

    NASA Astrophysics Data System (ADS)

    Trivedi, Sinny J.; Khan, S. A.; Joshi, U. S.

    2013-08-01

    We have investigated the influence of swift heavy ion (SHI) irradiation on the optical and dielectric properties of TiO2 thin films. Films with thickness of 80-100 nm were prepared by spin coating of sol precursor onto quartz substrates and were irradiated by 100 MeV Ag7+ ions at different fluences. The pristine sample was crystallized into single TiO2 anatase phase, exhibiting better than 80% transparency in the visible region. The optical absorption edge was found to decrease with the SHI fluence. The general behavior of the dielectric constant was found to obey Drude's theory. The effect of the SHI irradiation and fluence dependence on several optical parameters such as extinction coefficient, real and imaginary parts of dielectric constants, dispersive energy and packing density has been studied.

  14. Photoelectrochemical Water Splitting of Nitrogen and Hydrogen Treated P25 TiO2 Films

    NASA Astrophysics Data System (ADS)

    Zavodivker, Liat S.

    Photoelectrochemical data is reported for P25 TiO2 films deposited as a pristine film on FTO. The pristine P25 films show a photocurrent of 0.06 mA/cm2 and an onset potential of -0.5 V vs. Ag/AgCl. After TiCl4 Treatment to form a compact TiO 2 layer on the bottom and the surface layer, the TiCl4 sandwich films have a photocurrent of 0.19 mA/cm2 and an onset potential of -0.8 V. We have also investigated the effects of hydrogen treatment, ammonia treatment, and the combination of hydrogen treatment followed by ammonia treatment (co-treatment) on the photocurrent, the incident photon-to-current efficiency (IPCE), and the electron donor density of the P25 TiCl4 sandwich films. Treating the P25 films had almost no effect on the size and d-spacing of the particles, but EPR evidence, as well as color change, indicated the formation of N 2p nitrogen sites and oxygen vacancies (VO) for each film treatment. I-V data for the treated TiCl4 sandwich films show an increase in photocurrent from 0.19 mA/cm2 for the pristine P25 TiO2 film to 0.4 mA/cm 2 for the co-treated TiO2 film compared to 0.23 mA/cm 2 for hydrogen treatment and 0.25 mA/cm2 for ammonia treatment. For the P25 treated films, there is negligible increase of UV absorption in the visible for the singly treated films as well as the co-treated films. However, the improved photocurrent for the ammonia treated, hydrogen treated, and co-treated films may be explained by increased donor density. Mott-Schottky plots are used to characterize donor density, showing that the co-treated P25 TiCl4 sandwich films have an increased donor density over the nitrogen-treated P25 TiO2 and pristine P25 TiO2 films. The improved donor density of the treated P25 films over the untreated films may prove to be useful when completing future dye or semiconducting quantum dot sensitization experiments.

  15. Assessing Photocatalytic Oxidation Using Modified TiO 2 Nanomaterials for Virus Inactivation in Drinking Water: Mechanisms and Application

    NASA Astrophysics Data System (ADS)

    Liga, Michael Vincent

    Photocatalytic oxidation is an alternative water treatment method under consideration for disinfecting water. Chlorine disinfection can form harmful byproducts, and some viruses (e.g. adenoviruses) are resistant to other alternative disinfection methods. Photocatalytic oxidation using nano-sized photocatalytic particles (e.g. TiO2, fullerene) holds promise; however, it is limited by its low efficiency and long required treatment times. This research focuses on improving virus inactivation by photocatalytic oxidation by modifying catalysts for improved activity, by analyzing virus inactivation kinetics, and by elucidating the inactivation mechanisms of adenovirus serotype 2 (AdV2) and bacteriophage MS2. Modifying TiO2 with silver (nAg/TiO2) or silica (SiO2-TiO2) improves the inactivation kinetics of bacteriophage MS2 by a factor of 3-10. nAg/ TiO2 increases hydroxyl radical (HO·) production while SiO2 increases the adsorption of MS2 to TiO 2. These results suggest that modifying the photocatalyst surface to increase contaminant adsorption is an important improvement strategy along with increasing HO· production. The inactivation kinetics of AdV2 by P25 TiO2 is much slower than the MS2 inactivation kinetics and displays a strong shoulder, which is not present in the MS2 kinetics. nAg/TiO2 initially improves the inactivation rate of AdV2. SiO2-TiO2 reduces the AdV2 inactivation kinetics since adsorption is not significantly enhanced, as it is with MS2. Amino-C60 is highly effective for AdV2 inactivation under visible light irradiation, making it a good material for use in solar disinfection systems. The efficacy of amino-fullerene also demonstrates that singlet oxygen is effective for AdV2 inactivation. When exposed to irradiated TiO2, AdV2 hexon proteins are heavily damaged resulting in the release of DNA. DNA damage is also present but may occur after capsids break. With MS2, the host interaction protein is rapidly damaged, but not the coat protein. The kinetics

  16. Nanocrystalline TiO2 films containing sulfur and gold: Synthesis, characterization and application to immobilize and direct electrochemistry of cytochrome c

    NASA Astrophysics Data System (ADS)

    Rafiee-Pour, Hossain-Ali; Hamadanian, Masood; Koushali, Samaneh Katebi

    2016-02-01

    In this paper, nanoporous titanium dioxide (TiO2) film was used for cytochrome c (cyt c) immobilization as an electrode substrate for electrochemical redox activity of the adsorbed cyt c. The result of cyclic voltammetry exhibited a pair of well-defined and quasi-reversible peaks for direct electron transfer of cyt c (formal potential [E0‧ = (Epa + Epc)/2] of 53 mV versus Ag/AgCl). In addition the effect of metal and nonmetal ions (Au, S) co-doping on the efficiency of TiO2 nanoparticles (prepared by combining sol-gel and photo-deposition methods) on the cyt c immobilization process was investigated. The results exhibited that the Au, S-co-doped TiO2 (Au/S-TiO2) with a spheroidal shape demonstrates a smaller grain size than the pure TiO2. Meanwhile, the UV-vis DRS of Au/S-TiO2 showed a considerable red shift to the visible region. As a result, it was found that 4% Au/0.1% S-TiO2 had the highest efficiency for cytochrome c immobilization. The results showed that the peak currents were higher after the annealing of the TiO2 film. This observation suggests that the use of TiO2 films may be advantageous for the development of nanoporous biosensors employing reductive electrochemistry.

  17. Ellipsoidal TiO2 hierarchitectures with enhanced photovoltaic performance.

    PubMed

    Peng, Wenqin; Yanagida, Masatoshi; Chen, Han; Han, Liyuan

    2012-04-23

    Hierarchical TiO(2) ellipsoids 250-500 nm in size have been synthesized on a large scale by a template-free hydrothermal route. The submicrometer-sized hierarchitectures are assembled from highly crystallized anatase nanorods about 17 nm in diameter with macroporous cavities on the outer shells. Based on the time-dependent morphological evolution under hydrothermal conditions, an oriented attachment process is proposed to explain formation of the hierarchical structures. Such hierarchical TiO(2) not only adsorbs large amounts of dye molecules due to high surface area, but also shows good light scattering caused by the submicrometer size. The TiO(2) hierarchitectures were deposited on top of a transparent TiO(2) nanocrystalline main layer to construct a double-layered photoanode for dye-sensitized solar cell (DSC) application, exhibiting enhanced light harvesting and power-conversion efficiency compared to a commercial TiO(2)-based electrode.

  18. Distortion induced band gap and phase transformation in Tix Ag(1 - x) O2 system

    NASA Astrophysics Data System (ADS)

    Mathpal, Mohan Chandra; Tripathi, Anand Kumar; Kumar, Promod; Agrahari, Vivek; Singh, Manish Kumar; Agarwal, Arvind

    2014-10-01

    The polymorphic crystallization and optical properties of Ag-doped TiO2 nanoparticles have been investigated. Sol-gel method has been used to prepare anatase, rutile, and the anatase-rutile mixed phase of TiO2 nanoparticles by Ag doping on Ti(4+) sites. The doped TiO2 nanoparticles exhibit different phase of TiO2 for the different concentration of dopants. The Ag-doping affects the luminescence and morphological properties of TiO2 nanoparticles. The anatase to rutile phase transformation temperature (ART) has reduced significantly. The Ag doping in TiO2 lattice gives a large red shift for a particular concentration of Ag dopants.

  19. Effect of TiO2 blocking layer on TiO2 nanorod arrays based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sivakumar, R.; Paulraj, M.

    2016-05-01

    Highly ordered rutile titanium dioxide nanorod (TNR) arrays (1.2 to 6.2 μm thickness) were grown on TiO2 blocking layer chemically deposited on fluorine doped tin oxide (FTO) substrate and were used as photo-electrodes to fabricate dye sensitized solar cells (DSSC's). Homogeneous layer of TiO2 on FTO was achieved by using aqueous peroxo- titanium complex (PTC) solutions via chemical bath deposition. Structural and morphological properties of the prepared samples were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) measurements. TNR arrays (6.2 μm) with TiO2 blocking layer showed higher energy conversion efficiency (1.46%) than that without TiO2 blocking layer. The reason can be ascertained to the suppression of electron-hole recombination at the semiconductor/electrolyte interface by the effect of TiO2 blocking layer.

  20. Visible and UV functionality of TiO2 ternary nanocomposites on cotton

    NASA Astrophysics Data System (ADS)

    Pakdel, Esfandiar; Daoud, Walid A.; Sun, Lu; Wang, Xungai

    2014-12-01

    This research intends to increase the photocatalytic efficiency of cotton fabrics coated with TiO2-based nanocomposites under illumination particularly visible light. The fabrics were functionalized using a low-temperature sol-gel method of TiO2/Metal/SiO2 nanocomposite systems. Integrating silica and noble metals into TiO2 sol was put forth for boosting its functionality. Three noble metals (gold (Au), platinum (Pt) and silver (Ag)) with four different concentrations were employed. The photocatalytic activity of the functionalized fabrics was assessed through coffee stain-removal test and photodecomposition of methylene blue (MB) under UV and visible light. The impact of coating layers on fabrics' hydrophilicity was analyzed through measuring the water contact angle as well as the water absorption time. The fabrics were characterized using XRD, SEM and EDS. It was corroborated that the presence of silica enhanced the self-stain-removal capability of fabrics under UV. Moreover, the self-cleaning property of fabrics improved under both UV and visible light after integrating the metals into the colloids. In the same line, the self-cleaning activity threshold of fabrics was shifted to visible region.

  1. Optimized nanostructured TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Topcu, Selda; Jodhani, Gagan; Gouma, Pelagia

    2016-07-01

    Titania is the most widely studied photocatalyst. In it’s mixed-phase configuration (anatase-rutile form) -as manifested in the commercially available P25 Degussa material- titania was previously found to exhibit the best photocatalytic properties reported for the pure system. A great deal of published research by various workers in the field have not fully explained the underlying mechanism for the observed behavior of mixed-phase titania photocatalysts. One of the prevalent hypothesis in the literature that is tested in this work involves the presence of small, active clusters of interwoven anatase and rutile crystallites or “catalytic “hot-spots””. Therefore, non-woven nanofibrous mats of titania were produced and upon calcination the mats consisted of nanostructured fibers with different anatase-rutile ratios. By assessing the photocatalytic and photoelectrochemical properties of these samples the optimized photocatalyst was determined. This consisted of TiO2 nanostructures annealed at 500˚C with an anatase /rutile content of 90/10. Since the performance of this material exceeded that of P25 complete structural characterization was employed to understand the catalytic mechanism involved. It was determined that the dominant factors controlling the photocatalytic behavior of the titania system are the relative particle size of the different phases of titania and the growth of rutile laths on anatase grains which allow for rapid electron transfer between the two phases. This explains how to optimize the response of the pure system.

  2. The effect of silver nanoparticles/graphene-coupled TiO2 beads photocatalyst on the photoconversion efficiency of photoelectrochemical hydrogen production.

    PubMed

    Ke, Chun-Ren; Guo, Jyun-Sheng; Su, Yen-Hsun; Ting, Jyh-Ming

    2016-10-28

    In this work, a novel configuration of the photoelectrochemical hydrogen production device is demonstrated. It is based on TiO2 beads as the primary photoanode material with the addition of a heterostructure of silver nanoparticles/graphene. The heterostructure not only caters to a great improvement in light harvesting efficiency (LHE) but also enhances the charge collection efficiency. For LHE, the optimized cell based on TiO2 beads/Ag/graphene shows a 47% gain as compared to the cell having a photoanode of commercial P25 TiO2 powders. For the charge collection efficiency, there is a pronounced improvement of an impressive value of 856%. The reason for the improvement in light absorption is attributed to either the light scattering of TiO2 beads or the surface plasmonic resonance on the Ag nanoparticles/graphene. The photoconversion efficiency (PCE) of the resulting cells is also presented and discussed. The PCE of the TiO2 beads/Ag/graphene cell is approximately 2.5 times than that of pure P25 cell.

  3. Highly active nanocrystalline TiO(2) photoelectrodes.

    PubMed

    Paronyan, Tereza M; Kechiantz, A M; Lin, M C

    2008-03-19

    A simple method for the fabrication of highly photoactive nanocrystalline two-layer TiO(2) electrodes for solar cell applications is presented. Diluted titanium acetylacetonate has been used as a precursor for covering SnO(2):F (FTO) films with dense packed TiO(2) nanocrystallites. The nanoporous thick TiO(2) film follows the dense packed thin TiO(2) film as a second layer. For the latter, amorphous TiO(2) nanoparticles have been successfully synthesized by a sol-gel technique in an acidic environment with pH<1 and hydrothermal growth at a temperature of 200 °C. The acidic nanoparticle gel was neutralized by basic ammonia and a TiO(2) gel of pH 5 was obtained; this pH value is higher than the recently reported value of 3.1 (Park et al 2005 Adv. Mater. 17 2349-53). Highly interconnected, nanoporous, transparent and active TiO(2) films have been fabricated from the pH 5 gel. SEM, AFM and XRD analyses have been carried out for investigation of the crystal structure and the size of nanoparticles as well as the surface morphology of the films. Investigation of the photocurrent-voltage characteristics has shown improvement in cell performance along with the modification of the surface morphology, depending on pH of the TiO(2) gel. Increasing the pH of the gel from 2.1 to 5 enhanced the overall conversion efficiency of the dye-sensitized solar cells by approximately 30%. An energy conversion efficiency of 8.83% has been achieved for the cell (AM1.5, 100  mWcm(-2) simulated sunlight) compared to 6.61% efficiency in the absence of ammonia in the TiO(2) gel.

  4. Photocatalytic TiO2 nanoparticles enhanced polymer antimicrobial coating

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojin; Yang, Zhendi; Tay, See Leng; Gao, Wei

    2014-01-01

    Copper (Cu) containing coatings can provide sustainable protection against microbial contamination. However, metallic Cu coatings have not been widely used due to the relatively high cost, poor corrosion resistance, and low compatibility with non-metal substrates. Titanium dioxide (TiO2) possesses antibacterial functions by its photocatalytic properties which can destroy bacteria or suppress their reproduction. TiO2 also has the function of improving the mechanical properties through particle dispersion strengthening. We have recently developed an innovative polymer based coating system containing fine particles of Cu and TiO2 nanoparticles. These polymer based coatings simultaneously display excellent antimicrobial and good mechanical properties. The results showed that the addition of TiO2 has improved the antimicrobial property under sunlight, which provides extended applications in outdoor environment. The elimination of 106 bacterial by contacting the coatings without TiO2 needs 5 h, while contacting with the Cu/TiO2- 1 wt.% TiO2 took only 2 h to kill the same amount of bacteria. The coatings also presented enhanced hardness and wear resistance after adding TiO2. The width of wear track decreased from 270 μm of the Cu-polymer coating to 206 μm of Cu/TiO2-polymer coatings with 10 wt.% TiO2. Synchrotron Infrared Microscopy was used to in-situ and in-vivo study the bacteria killing process at the molecular level. The real-time chemical images of bacterial activities showed that the bacterial cell membranes were damaged by the Cu and TiO2 containing coatings

  5. Anatase TiO2 sheet-assisted synthesis of Ti(3+) self-doped mixed phase TiO2 sheet with superior visible-light photocatalytic performance: Roles of anatase TiO2 sheet.

    PubMed

    Zhang, Xiaojie; Zuo, Guoqing; Lu, Xin; Tang, Changqing; Cao, Shuo; Yu, Miao

    2017-03-15

    On the basis of measurements, such as field emission scanning electron microscope, UV-Vis diffuse reflectance spectra, X-ray diffraction, electron paramagnetic resonance, photoluminescence spectra, and photocurrent measurements, the roles of anatase TiO2 sheet on synthesizing Ti(3+) self-doped mixed phase TiO2 nanosheets (doped TiO2 (A/R, TiO2 (A))) and on improving the performance for photocatalytic CO2 reduction were explored systematically. High surface area anatase TiO2 nanosheets (TiO2 (A)) as a substrate, structure directing agent, and inhibitor, mediated the synthesis of Ti(3+) self-doped mixed phase TiO2 nanosheets. Addition of TiO2 (A) significantly improved not only visible light absorption of doped TiO2 (A/R, TiO2 (A)), but also the efficiency of photo-excited charges separations due to the existence of interfacial regions of anatase-rutile TiO2 junctions. Finally, a possible mechanism for interfacial charge transfer at the anatase-rutile TiO2 interface and for photocatalytic CO2 reduction over Pt loaded doped TiO2 (A/R, TiO2 (A)) were proposed.

  6. Growth of TiO2 nanoparticles under heat treatment

    NASA Astrophysics Data System (ADS)

    Bahadur, J.; Sen, D.; Mazumder, S.; Sastry, P. U.; Paul, B.

    2013-02-01

    The effect of heat treatment, on growth of NiO doped TiO2, have been investigated. The nanoparticle size has been estimated by small-angle x-ray scattering. The average particle size increases with increasing temperature. The growth of crystallite size has been probed by X-ray diffraction. A polymorphic phase transition of TiO2 is observed beyond 600°C due to growth of TiO2 nanoparticles beyond 14 nm of size.

  7. Photoinduced underwater superoleophobicity of TiO2 thin films.

    PubMed

    Sawai, Yusuke; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Fujii, Eiji; Miyake, Michihiro

    2013-06-11

    The photoinduced wettabilities of water, n-hexadecane, dodecane, and n-heptane on a flat TiO2 surface prepared by a sol-gel method-based coating were investigated. An amphiphilic surface produced by UV irradiation exhibited underwater superoleophobicity with an extremely high static oil contact angle (CA) of over 160°. The TiO2 surface almost completely repelled the oil droplet in water. A robust TiO2 surface with no fragile nanomicrostructure was fabricated on a Ti mesh with a pore size of approximately 150 μm. The fabricated mesh was found to be applicable as an oil/water separation filter.

  8. Photocatalytic activity of hydrogenated TiO2.

    PubMed

    Leshuk, Tim; Parviz, Roozbeh; Everett, Perry; Krishnakumar, Harish; Varin, Robert A; Gu, Frank

    2013-03-01

    Photocatalysis is a promising advanced water treatment technology, and recently the possibility of using hydrogenation to improve the photocatalytic efficiency of titanium dioxide has generated much research interest. Herein we report that the use of high-temperature hydrogenation to prepare black TiO2 primarily results in the formation of bulk defects in the material without affecting its electronic band structure. The hydrogenated TiO2 exhibited significantly worse photocatalytic activity under simulated sunlight compared to the unhydrogenated control, and thus we propose that high-temperature hydrogenation can be counterproductive to improving the photocatalytic activity of TiO2, because of its propensity to form bulk vacancy defects.

  9. Enhanced photocatalytic activity of Ag-TiO2/Ag heterogeneous films

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Wang, ShaoHua; Guo, PengFeng

    2015-11-01

    Ag-deposited TiO2 and Ag (Ag-TiO2/Ag) films coated on glass substrates were prepared using a simple sol-gel and dip-coating method. The Ag chemical state was investigated through X-ray diffractometry and X-ray photoelectron spectroscopy. Results showed that the Ag mainly exists in metallic state in the Ag-TiO2 film. Ag-TiO2/Ag exhibits higher photocatalytic activity than individual Ag-TiO2 and TiO2/Ag films. This enhanced photocatalytic activity was attributed to high surface plasmon resonance effects and separation rates of photoinduced electron-hole pairs of Ag nanoparticles. Results were verified by photoluminescence and UV-Vis spectroscopy.

  10. Photocatalytic metamaterials: TiO2 inverse opals.

    PubMed

    Sordello, Fabrizio; Duca, Clara; Maurino, Valter; Minero, Claudio

    2011-06-07

    The study of the photocatalytic activity of TiO(2) inverse opals showed that these structures behave as metamaterials: their properties arise principally from the 3D periodic structure of the material and marginally from porosity, reflectivity and scattering.

  11. SYNTHESIZING ORGANIC COMPOUNDS USING LIGHT-ACTIVATED TIO2

    EPA Science Inventory

    High-value organic compounds have been synthesized successfully from linear and cyclic hydrocarbons, by photocatalytic oxidation using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxgenated in both liquid and gaseous phase reactors usi...

  12. The effect of TiO2/aluminosilicate nanocomposite additives on the mechanical and thermal properties of polyacrylic coatings

    NASA Astrophysics Data System (ADS)

    Nosrati, Rahimeh; Olad, Ali

    2015-12-01

    The commercial grade polyacrylic latex was modified in order to prepare a mechanical and thermal improved coating. TiO2/Ag-exchanged-aluminosilicate nanocomposites with montmorillonite, zeolite-A and clinoptilolite aluminosilicates were prepared and used as additive in the matrix of polyacrylic latex to achieve a coating with proper mechanical and thermal properties. X-ray diffraction patterns and FESEM were used to characterize the composition, structure, and morphology of the nanocomposite additives. Polyacrylic coatings modified by TiO2/Ag-exchanged-aluminosilicate nanocomposite additives showed higher adhesion strength and hardness compared to unmodified commercial grade polyacrylic coatings. Differential Scanning Calorimetry (DSC) analysis showed lower glass transition temperature for modified polyacrylic coatings than that of unmodified polyacrylic coatings. The tensile tests were also carried out for unmodified and modified polyacrylic coatings. According to the results, the modified polyacrylic based coating with TiO2/Ag-exchanged-clinoptilolite nanocomposite additive was the best coating considering most of useful properties.

  13. Reliable metal deposition into TiO(2) nanotubes for leakage-free interdigitated electrode structures and use as a memristive electrode.

    PubMed

    Liu, Ning; Lee, Kiyoung; Schmuki, Patrik

    2013-11-18

    Nearly 100 % filling of TiO2 nanotubes with metals, including Ag, Cu, Au, and Pt, was achieved by defect-sealing treatment at the bottom of the nanotubes, followed by metal deposition using nuclei formation/coalescence. The resulting short-circuit-free interdigitated electrode configurations can, for example, be used to fabricate memristive electrodes.

  14. TiO2-ITO and TiO2-ZnO nanocomposites: application on water treatment

    NASA Astrophysics Data System (ADS)

    Chorfi, H.; Saadoun, M.; Bousselmi, L.; Bessais, B.

    2012-06-01

    One of the most promising ideas to enhance the photocatalytic efficiency of the TiO2 is to couple this photocatalyst with other semiconductors. In this work, we report on the development of photo-catalytic properties of two types of composites based on TiO2 - ITO (Indium Tin Oxide) and TiO2 - ZnO deposited on conventional ceramic substrates. The samples were characterized by X-ray diffraction (XRD) and transmission Electron Microscopy (TEM). The photo-catalytic test was carried out under UV light in order to reduce/oxidize a typical textile dye (Cibacron Yellow). The experiment was carried out in a bench scale reactor using a solution having a known initial dye concentration. After optimization, we found that both nanocomposites exhibit better photocatalytic activity compared to the standard photocatalyst P25 TiO2.

  15. Dye-sensitized TiO2 nanotube solar cells: rational structural and surface engineering on TiO2 nanotubes.

    PubMed

    Wang, Jun; Lin, Zhiqun

    2012-12-01

    Owing to well-defined structural parameters and enhanced electronic properties, highly ordered TiO(2) nanotube arrays have been employed to substitute TiO(2) nanoparticles for use in dye-sensitized solar cells. To further improve the performance of dye-sensitized TiO(2) nanotube solar cells, efforts have been directed toward the optimization of TiO(2) photoanodes, dyes, electrolytes, and counter electrodes. Herein, we highlight recent progress in rational structural and surface engineering on anodic TiO(2) nanotube arrays and their effects on improving the power conversion efficiency of dye-sensitized TiO(2) nanotube solar cells.

  16. Improvement of the bio-functional properties of TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Roguska, A.; Pisarek, M.; Belcarz, A.; Marcon, L.; Holdynski, M.; Andrzejczuk, M.; Janik-Czachor, M.

    2016-12-01

    Titanium oxide nanotubes with diameters from ca. 40-120 nm fabricated by the anodic oxidation of Ti at a constant voltage (10-28 V) were investigated to identify factors improving their bio-functional properties. Prepared substrates were subsequently annealed at 450 °C and 650 °C to obtain nanotubes having a crystalline structure, and were then examined by SEM, XRD, XPS, BET and contact angle measurement techniques. The thermally stabilized surfaces were subjected to bidirectional functionalization: by deposition of a thin layer of Ca-P and by loading with silver nanoparticles. Three factors were found to promote the proliferation of osteoblast (U2OS) cells: a larger nanotube diameter, a higher annealing temperature, and the presence of a thin Ca-P layer. Differentiation of these cells (by ALP test) was stimulated by a higher (650 °C) nanotube annealing temperature, but not by a thin Ca-P layer. The TiO2 nanotubes-modified samples exhibited noticeable antibacterial properties. Moreover, the additional deposition of Ag nanoparticles almost completely inhibited the survivability of S. epidermidis cells beyond 3 h of contact. In conclusion, TiO2 nanotubes-modified surfaces exhibit distinct bone forming ability and significant antibacterial properties, and can be easily functionalized by a thin Ca-P layer or nano-Ag deposition for further improvement of the above functionalities.

  17. Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light.

    PubMed

    Sahoo, Chittaranjan; Gupta, Ashok K

    2015-01-01

    Commercially available microcrystalline TiO2 was doped with silver, ferrous and ferric ion (1.0 mol %) using silver nitrate, ferrous sulfate and ferric nitrate solutions following the liquid impregnation technology. The catalysts prepared were characterised by FESEM, XRD, FTIR, DRS, particle size and micropore analysis. The photocatalytic activity of the prepared catalysts was tested on the degradation of two model dyes, methylene blue (3,7-bis (Dimethylamino)-phenothiazin-5-ium chloride, a cationic thiazine dye) and methyl blue (disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate, an anionic triphenyl methane dye) under irradiation by UV and visible light in a batch reactor. The efficiency of the photocatalysts under UV and visible light was compared to ascertain the light range for effective utilization. The catalysts were found to have the anatase crystalline structure and their particle size is in a range of 140-250 nm. In the case of Fe(2+) doped TiO2 and Fe(3+) doped TiO2, there was a greater shift in the optical absorption towards the visible range. Under UV light, Ag(+) doped TiO2 was the most efficient catalyst and the corresponding decolorization was more than 99% for both the dyes. Under visible light, Fe(3+) doped TiO2 was the most efficient photocatalyst with more than 96% and 90% decolorization for methylene blue and methyl blue, respectively. The kinetics of the reaction under both UV and visible light was investigated using the Langmuir-Hinshelwood pseudo-first-order kinetic model. Kinetic measurements confirmed that, Ag(+) doped TiO2 was most efficient in the UV range, while Fe(3+) doped TiO2 was most efficient in the visible range.

  18. Evidence for the intrinsic nature of band-gap states electrochemically observed on atomically flat TiO2(110) surfaces.

    PubMed

    Takata, Shintaro; Miura, Yoshihiro; Matsumoto, Yuji

    2014-12-07

    Using an ultra-high vacuum (UHV) electrochemistry approach with pulsed laser deposition (PLD), we investigated the band-gap state for TiO2(110). In the PLD chamber, a TiO2(110) surface was cleaned by annealing in O2 enough for it to exhibit a sharp (1 × 1) reflection high energy electron diffraction (RHEED) pattern. The cleaned TiO2(110)-(1 × 1) sample then underwent electrochemical measurements without exposure to air, showing the band-gap state at -0.14 V vs. Ag by Mott-Schottky plot analysis. The band-gap state gradually disappeared under UV illumination at +0.6 V vs. Ag due to photoetching, and reappeared on reduction in a vacuum and/or deposition of a fresh TiO2 film. These results indicated that the electrochemically observed band-gap state for TiO2(110) was a defect state due to oxygen deficiency, most probably identical to that observed under UHV, which does not necessarily exist on the surface. A quantitative analysis of the defect density suggests that the origin of this defect state is not the surface bridging hydroxyls or oxygen vacancies, but rather the interstitial Ti(3+) ions in the subsurface region.

  19. Selective aerobic oxidation mediated by TiO(2) photocatalysis.

    PubMed

    Lang, Xianjun; Ma, Wanhong; Chen, Chuncheng; Ji, Hongwei; Zhao, Jincai

    2014-02-18

    TiO2 is one of the most studied metal oxide photocatalysts and has unparal-leled efficiency and stability. This cheap, abundant, and non-toxic material has the potential to address future environmental and energy concerns. Understanding about the photoinduced interfacial redox events on TiO2 could have profound effect on the degradation of organic pollutants, splitting of H2O into H2 and O2, and selective redox organic transformations. Scientists traditionally accept that for a semiconductor photocatalyst such as TiO2 under the illumination of light with energy larger than its band gap, two photocarriers will be created to carry out their independent reduction and oxidation processes. However, our recent discoveries indicate that it is the concerted rather than independent effect of both photocarriers of valence band hole (hvb(+)) and conduction band electron (ecb(-)) that dictate the product formation during interfacial oxidation event mediated by TiO2 photocatalysis. In this Account, we describe our recent findings on the selective oxidation of organic substrates with O2 mediated by TiO2 photocatalysis. The transfer of O-atoms from O2 to the corresponding products dominates the selective oxidation of alcohols, amines, and alkanes mediated by TiO2 photocatalysis. We ascribe this to the concerted effect of both hvb(+) and ecb(-) of TiO2 in contribution to the oxidation products. These findings imply that O2 plays a unique role in its transfer into the products rather than independent role of ecb(-) scavenger. More importantly, ecb(-) plays a crucial role to ensure the high selectivity for the oxygenation of organic substrates. We can also use the half reactions such as those of the conduction band electron of TiO2 for efficient oxidation reactions with O2. To this end, efficient selective oxidation of organic substrates such as alcohols, amines, and aromatic alkanes with O2 mediated by TiO2 photocatalysis under visible light irradiation has been achieved. In summary, the concerted effect of hvb(+) and ecb(-) to implement one oxidation event could pave the way for selective oxofunctionalization of organic substrates with O2 by metal oxide photocatalysis. Furthermore, it could also deepen our understanding on the role of O2 and the elusive nature of oxygen species at the interface of TiO2, which, in turn, could shed new light on avant-garde photocatalytic selective redox processes in addressing the energy and environmental challenges of the future.

  20. Nanofibrous TiO2 improving performance of mesoporous TiO2 electrode in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Zukalová, Markéta; Kavan, Ladislav; Procházka, Jan; Zukal, Arnošt; Yum, Jun-Ho; Graetzel, Michael

    2013-05-01

    A method of direct coating of conducting glass by electrospinning was developed. Electrospun fibrous TiO2 consisting of closely packed anatase nanocrystals of 40-50 nm in size was incorporated into mesoporous TiO2 thin film stabilized by phosphorus. The mesoporous framework formed by walls with 5-6 nm TiO2 nanocrystals surrounding 20 nm mesopores exhibits extreme porosity and consequently limited number of necking points. TiO2 with fibrous morphology was found to solidify mesoporous titania and to be beneficial for the performance of corresponding photoanode in dye-sensitized solar cell (DSC). Obviously, its wire-like structure suitably interconnects mesoporous network and thus increases the electron collection efficiency from the TiO2 layer to the F-doped SnO2 electrode. The solar conversion efficiency of a DSC employing optimized photoanode consisting of nanocrystalline fibrous bottom layer, four mesoporous layers, and one nanocrystalline anatase scattering top layer sensitized with the N945 dye reached 5.35 %. This represents an improvement of about 9 % compared to the solar conversion efficiency of a DSC employing purely mesoporous TiO2 layer prepared by means of phosphorus doping (5.05 %).

  1. Enhance photoelectrochemical hydrogen-generation activity and stability of TiO2 nanorod arrays sensitized by PbS and CdS quantum dots under UV-visible light

    NASA Astrophysics Data System (ADS)

    Li, Lei; Dai, Haitao; Feng, Liefeng; Luo, Dan; Wang, Shuguo; Sun, Xiaowei

    2015-10-01

    We develop a composite photoanode by sensitizing TiO2 nanorod arrays with PbS quantum dots (QDs) and CdS QDs. Benefitted from additional introduced PbS QDs and CdS QDs onto TiO2, the absorption of the composite photoanodes are broaden from UV to visible region. The experimental results showed that the PbS sandwiched between TiO2 and CdS cannot only broad the absorption properties but also improve the stability. The stability can be explained by the hole facile transmission from PbS to CdS because of the valence band offsets between PbS and CdS which cause a small energy barrier and reduce the hole accumulation. The photocurrent density reached 1.35 mA cm-2 at 0.9716 V vs. RHE (0 V vs. Ag/AgCl, under 60 mW cm-2 illumination) for TiO2/PbS/CdS. The highest photocurrent of TiO2/PbS/CdS can be explained by the smallest of total resistance (138 Ω cm-2) compared to TiO2/CdS and pristine TiO2.

  2. Enhance photoelectrochemical hydrogen-generation activity and stability of TiO2 nanorod arrays sensitized by PbS and CdS quantum dots under UV-visible light.

    PubMed

    Li, Lei; Dai, Haitao; Feng, Liefeng; Luo, Dan; Wang, Shuguo; Sun, Xiaowei

    2015-12-01

    We develop a composite photoanode by sensitizing TiO2 nanorod arrays with PbS quantum dots (QDs) and CdS QDs. Benefitted from additional introduced PbS QDs and CdS QDs onto TiO2, the absorption of the composite photoanodes are broaden from UV to visible region. The experimental results showed that the PbS sandwiched between TiO2 and CdS cannot only broad the absorption properties but also improve the stability. The stability can be explained by the hole facile transmission from PbS to CdS because of the valence band offsets between PbS and CdS which cause a small energy barrier and reduce the hole accumulation. The photocurrent density reached 1.35 mA cm(-2) at 0.9716 V vs. RHE (0 V vs. Ag/AgCl, under 60 mW cm(-2) illumination) for TiO2/PbS/CdS. The highest photocurrent of TiO2/PbS/CdS can be explained by the smallest of total resistance (138 Ω cm(-2)) compared to TiO2/CdS and pristine TiO2.

  3. Lithium insertion in nanostructured TiO(2)(B) architectures.

    PubMed

    Dylla, Anthony G; Henkelman, Graeme; Stevenson, Keith J

    2013-05-21

    Electric vehicles and grid storage devices have potentialto become feasible alternatives to current technology, but only if scientists can develop energy storage materials that offer high capacity and high rate capabilities. Chemists have studied anatase, rutile, brookite and TiO2(B) (bronze) in both bulk and nanostructured forms as potential Li-ion battery anodes. In most cases, the specific capacity and rate of lithiation and delithiation increases as the materials are nanostructured. Scientists have explained these enhancements in terms of higher surface areas, shorter Li(+) diffusion paths and different surface energies for nanostructured materials allowing for more facile lithiation and delithiation. Of the most studied polymorphs, nanostructured TiO2(B) has the highest capacity with promising high rate capabilities. TiO2(B) is able to accommodate 1 Li(+) per Ti, giving a capacity of 335 mAh/g for nanotubular and nanoparticulate TiO2(B). The TiO2(B) polymorph, discovered in 1980 by Marchand and co-workers, has been the focus of many recent studies regarding high power and high capacity anode materials with potential applications for electric vehicles and grid storage. This is due to the material's stability over multiple cycles, safer lithiation potential relative to graphite, reasonable capacity, high rate capability, nontoxicity, and low cost (Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem., Int. Ed.2008, 47, 2930-2946). One of the most interesting properties of TiO2(B) is that both bulk and nanostructured forms lithiate and delithiate through a surface redox or pseudocapacitive charging mechanism, giving rise to stable high rate charge/discharge capabilities in the case of nanostructured TiO2(B). When other polymorphs of TiO2 are nanostructured, they still mainly intercalate lithium through a bulk diffusion-controlled mechanism. TiO2(B) has a unique open crystal structure and low energy Li(+) pathways from surface to subsurface sites, which many chemists believe to contribute to the pseudocapacitive charging. Several disadvantages exist as well. TiO2(B), and titania in general, suffers from poor electronic and ionic conductivity. Nanostructured TiO2(B) also exhibits significant irreversible capacity loss (ICL) upon first discharge (lithiation). Nanostructuring TiO2(B) can help alleviate problems with poor ionic conductivity by shortening lithium diffusion pathways. Unfortunately, this also increases the likelihood of severe first discharge ICL due to reactive Ti-OH and Ti-O surface sites that can cause unwanted electrolyte degradation and irreversible trapping of Li(+). Nanostructuring also results in lowered volumetric energy density, which could be a considerable problem for mobile applications. We will also discuss these problems and proposed solutions. Scientists have synthesized TiO2(B) in a variety of nanostructures including nanowires, nanotubes, nanoparticles, mesoporous-ordered nanostructures, and nanosheets. Many of these structures exhibit enhanced Li(+) diffusion kinetics and increased specific capacities compared to bulk material, and thus warrant investigation on how nanostructuring influences lithiation behavior. This Account will focus on these influences from both experimental and theoretical perspectives. We will discuss the surface charging mechanism that gives rise to the increased lithiation and delithiation kinetics for TiO2(B), along with the influence of dimensional confinement of the nanoarchitectures, and how nanostructuring can change the lithiation mechanism considerably.

  4. Enhancement of visible-light photocatalytic activity of silver and mesoporous carbon co-modified Bi2WO6

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Gong, Ming; Liu, Wangping; Mao, Yulin; Le, Shukun; Ju, Shang; Long, Fei; Liu, Xiufang; Liu, Kai; Jiang, Tingshun

    2015-03-01

    Ordered mesoporous carbon CMK-3 was prepared by hard template method using SBA-15 as template, sucrose as carbon source. Flower/sphere-like Bi2WO6 and CMK-3/Bi2WO6 photocatalysts were synthesized by hydrothermal method, and then Ag/Bi2WO6 and Ag/Bi2WO6/CMK-3 composite photocatalysts were prepared via a photoreduction process. The samples were characterized by XRD, UV-vis, TEM (HR-TEM), SEM, N2 physical adsorption and PL and their photocatalytic activities were evaluated by the photocatalytic degradation of methylene blue (MB) under visible light irradiation. The results show that both incorporating of CMK-3 and Ag loading greatly improved the photocatalytic activity of Bi2WO6, and the content of CMK-3 and silver have an impact on the photocatalytic activity of Bi2WO6. The photocatalytic activity of Ag/Bi2WO6/CMK-3 photocatalyst is superior to the activities of CMK-3/Bi2WO6 and Ag/Bi2WO6 under comparable conditions, and Ag/Bi2WO6/CMK-3 photocatalyst has high stability and is easy to be recycled. Also, the mechanism for the enhancement of the photocatalytic activity of CMK-3 and Ag co-modified Bi2WO6 was also investigated.

  5. Photocatalytic performance of TiO2-zeolite templated carbon composites in organic contaminant degradation.

    PubMed

    Donphai, Waleeporn; Kamegawa, Takashi; Chareonpanich, Metta; Nueangnoraj, Khanin; Nishihara, Hirotomo; Kyotani, Takashi; Yamashita, Hiromi

    2014-12-07

    TiO2 composites with zeolite templated carbon (TiO2-ZTC) and activated carbon (TiO2-AC) were prepared and used as the photocatalysts for comparative studies with pure TiO2. TiO2-ZTC exhibited the highest rate of methylene blue degradation with a rate approximately 4 and 400 times higher than those of TiO2-AC and pure TiO2, respectively. Moreover, the highest catalytic performance of TiO2-ZTC in gas-phase degradation of acetone was approximately 1.1 and 12.9 times higher than TiO2-AC and pure TiO2, respectively. These outstanding performances could be attributed to high surface area, pore volume, and hydrophobic surface properties, leading to improvement in the adsorption properties of organic molecules.

  6. Dynamics of fibronectin adsorption on TiO2 surfaces.

    PubMed

    Sousa, S R; Brás, M Manuela; Moradas-Ferreira, P; Barbosa, M A

    2007-06-19

    In the present work we analyze the dynamics of fibronectin (FN) adsorption on two different stable titanium oxides, with varied surface roughness, and chemically similar to those used in clinical practice. The two types of titanium oxide surfaces used were TiO2 sputtered on Si (TiO2 sp) and TiO2 formed on commercially pure titanium after immersion in H2O2 (TiO2 cp). Surface characterization was previously carried out using different techniques (Sousa, S. R.; Moradas-Ferreira, P.; Melo, L. V.; Saramago, B.; Barbosa, M. A. Langmuir 2004, 20 (22), 9745-9754). Imaging and roughness analysis before and after FN adsorption used atomic force microscopy (AFM) in tapping mode, in air, and in magnetic alternating current mode, in liquid (water). FN adsorption as a function of time was followed by X-ray photoelectron spectroscopy (XPS), by radiolabeling of FN with 125I (125I-FN), and by ellipsometry. Exchangeability studies were performed using FN and HSA. AFM roughness analysis revealed that, before FN adsorption, both TiO2 surfaces exhibited a lower root-mean-square (Rq) and maximum peak with the depth of the maximum valley (Rmax) roughness in air than in water, due to TiO2 hydration. After protein adsorption, the same behavior was observed for the TiO2 sp substrate, while Rq and Rmax roughness values in air and in water were similar in the case of the TiO2 cp substrate, for the higher FN concentration used. Surface roughness was always significantly higher on the TiO2 cp surfaces. AFM led to direct visualization of adsorbed FN on both surfaces tested, indicating that after 10 min of FN incubation the TiO2 sp surface was partially covered by FN. The adsorbed protein seems to form globular aggregates or ellipsoids, and FN aggregates coalesce, forming clusters as the time of adsorption and the concentration increase. Radiolabeling of FN revealed that a rapid adsorption occurs on both surfaces and the amount adsorbed increased with time, reaching a maximum after 60 min of incubation. Time dependence is also observed for the evolution of the atomic (%) of N determined by XPS and by the increase of the thickness by ellipsometry. TiO2 cp adsorbs more FN than the TiO2 sp surfaces, after 60 min of adsorption, as shown by the radiolabeling data. FN molecules are also more strongly attached to the former surface as indicated by the exchangeability studies. The overall results provide novel evidence that FN spontaneously adsorbs as a self-assembly at TiO2 surfaces as a function of time. The aggregate structure is an intermediate feature shared by some protein fibrillar assemblies at interfaces, which is believed to promote cell adhesion and cytoskeleton organization (Pellenc, D.; Berry, H.; Gallet, O. J. Colloid Interface Sci. 2006, 298 (1), 132-144. Maheshwari, G.; Brown, G.; Lauffenburger, D. A.; Wells, A.; Griffith, L. G. J. Cell Sci. 2000, 113 (10), 1677-1686).

  7. Tailoring of electron diffusion through TiO2 nanowires

    NASA Astrophysics Data System (ADS)

    Jose, R.; Yusoff, M. M.

    2012-11-01

    Charge transport through a random network of onedimensional TiO2 nanostructures such as nanorods, nanowires, and nanofibers developed by electrospinning technique has been studied in the presence of an electrolyte by electrochemical impedance spectroscopy and transient photocurrent measurements. The results have been compared with the charge transport parameters of random TiO2 nanoparticle (25 nm) network. The charge transport was discussed under the framework of hopping transport. Continuous nanofibers had longer charge collecting times and short nanorods have enhanced scattering losses. The TiO2 films containing random network of nanowires of aspect ratio 10:1 can have an order of magnitude higher diffusion coefficient than other morphologies. Furthermore, charge transport through Nb-doped anatase TiO2 nanofibers was studied. It was observed that the Fermi level of TiO2 rise close to its conduction band and result in a band-edge type diffusion mechanism even at low bias voltages when 2 wt% Nb atoms replaces the Ti atoms in the anatase lattice. The Nb-doped anatase electrospun nanofibers showed high chemical capacitance, high effective diffusion coefficient, and lower transport resistance compared to the undoped samples and conventional nanoparticles.

  8. Hydrogen Impurity Defects in Rutile TiO2

    PubMed Central

    Mo, Li-Bin; Wang, Yu; Bai, Yang; Xiang, Qing-Yun; Li, Qun; Yao, Wen-Qing; Wang, Jia-Ou; Ibrahim, Kurash; Wang, Huan-Hua; Wan, Cai-Hua; Cao, Jiang-Li

    2015-01-01

    Hydrogen-related defects play crucial roles in determining physical properties of their host oxides. In this work, we report our systematic experimental and theoretical (based on density functional theory) studies of the defect states formed in hydrogenated-rutile TiO2 in gaseous H2 and atomic H. In gas-hydrogenated TiO2, the incorporated hydrogen tends to occupy the oxygen vacancy site and negatively charged. The incorporated hydrogen takes the interstitial position in atom-hydrogenated TiO2, forming a weak O-H bond with the closest oxygen ion, and becomes positive. Both states of hydrogen affect the electronic structure of TiO2 mainly through changes of Ti 3d and O 2p states instead of the direct contributions of hydrogen. The resulted electronic structures of the hydrogenated TiO2 are manifested in modifications of the electrical and optical properties that will be useful for the design of new materials capable for green energy economy. PMID:26627134

  9. Water - Based TiO2 Suspensions: A Raman Study

    NASA Astrophysics Data System (ADS)

    Rangel, Roberto; Chipara, Dorina; Yust, Brian; Padilla, Desiree; Chipara, Mircea

    The antibacterial features of TiO2 are under scrutiny due to the UV radiation, which contributes to the generation of reactive oxygen species, mainly in water environments. A study of TiO2 suspensions in water and broth is reported. TiO2 has a low solubility in water. TiO2 (anatase), with average diameter of 15 nm from Nanostructured & Amorphous Materials, Inc. has been added to the fluid (water, broth) and the mixture was stirred for 1-10 h, followed by a 10-60 minutes sonication. The suspension was left to sediment for 1 day before measurements. Quasistable suspensions of TiO2 in water and broth were investigated by Raman spectroscopy using a Renishaw InVia spectrometer operating at 532 and 785 nm. The spectra of the nanofiller have been simulated by a collection of Breit-Wigner Fano line shapes and the effect of the preparation conditions (stirring and sonication time) on the parameters of Raman lines are reported. The differences are explained by observing that the sonication destroys the agglomerates of anatase resulting in a better dispersion of nanoparticles and consequently a longer sedimentation time. Sample preparation/storage have been done both under dark and UV light conditions.

  10. Lunar Prospector neutron spectrometer constraints on TiO2

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Lawrence, D. J.; Feldman, W. C.; Barraclough, B. L.; Gasnault, O. M.; Maurice, S.; Lucey, P. G.; Blewett, D. T.; Binder, A. B.

    2002-04-01

    Lunar Prospector neutron spectrometer measurements of the epithermal and thermal neutron leakage fluxes are used to provide constraints on TiO2 abundances in lunar surface materials. We use FeO abundance estimates based on both Clementine spectral reflectance techniques and preliminary Lunar Prospector gamma ray spectrometer determinations to first establish a model thermal neutron absorption due to all major elements except titanium. Then we remove the additional absorbing effects due to the rare earth elements gadolinium and samarium by using Lunar Prospector gamma ray spectrometer thorium abundances as a rare earth element proxy. The result can be compared to the ratio of epithermal to thermal neutron fluxes, which point to the presence of the additional thermal neutron absorber, titanium. We can derive abundance estimates of TiO2 and compare to other estimates derived spectroscopically. Our results show a significantly lower abundance of TiO2 than has been derived using Clementine data.

  11. Different methods in TiO2 photodegradation mechanism studies: gaseous and TiO2-adsorbed phases.

    PubMed

    Deveau, Pierre-Alexandre; Arsac, Fabrice; Thivel, Pierre-Xavier; Ferronato, Corinne; Delpech, Françoise; Chovelon, Jean-Marc; Kaluzny, Pascal; Monnet, Christine

    2007-06-18

    The development of photocatalysis processes offers a significant number of perspectives especially in gaseous phase depollution. It is proved that the photo-oxidizing properties of photocatalyst (TiO(2)) activated by UV plays an important role in the degradation of volatile organic compounds (VOC). Heterogeneous photocatalysis is based on the absorption of UV radiations by TiO(2). This phenomenon leads to the degradation and the oxidation of the compounds, according to a mechanism that associates the pollutant's adsorption on the photocatalyst and radical degradation reactions. The main objective of the study is the understanding of the TiO(2)-photocatalysis phenomenon including gaseous and adsorbed phase mechanisms. Results obtained with three different apparatus are compared; gaseous phases are analysed and mechanisms at the gaseous phase/photocatalyst interface are identified. This study leads to improve understanding of various mechanisms during pollutant photodegradation: adsorption of pollutants on TiO(2) first takes place, then desorption and/or photodegradation, and finally, desorption of degradation products on TiO(2). The association of analytical methods and different processes makes the determination of all parameters that affect the photocatalytic process possible. Mastering these parameters is fundamental for the design and construction of industrial size reactors that aim to purify the atmosphere.

  12. A Surface Science Perspective on TiO2 Photocatalysis

    SciTech Connect

    Henderson, Michael A.

    2011-06-15

    The field of surface science provides a unique approach to understanding bulk, surface and interfacial phenomena occurring during TiO2 photochemistry and photocatalysis. This review highlights, from a surface science perspective, recent literature providing molecular-level insights into phonon-initiated events on TiO2 surfaces obtained in seven key scientific issues: (1) photon absorption, (2) charge transport and trapping, (3) electron transfer dynamics, (4) the adsorbed state, (5) mechanisms, (6) poisons and promoters, and (7) phase and form.

  13. Optical and photocatalytic properties of TiO2 nanoplumes

    PubMed Central

    Scuderi, Viviana; Miritello, Maria; Nicotra, Giuseppe; Impellizzeri, Giuliana; Privitera, Vittorio

    2017-01-01

    Here we report the photocatalytic efficiency of hydrogenated TiO2 nanoplumes studied by measuring dye degradation in water. Nanoplumes were synthesized by peroxide etching of Ti films with different thicknesses. Structural characterization was carried out by scanning electron microscopy and transmission electron microscopy. We investigated in detail the optical properties of the synthesized material and related them to the efficiency of UV photodegradation of methylene blue dye. The obtained results show that TiO2 nanoplumes act as an effective antireflective layer increasing the UV photocatalytic yield of the film. PMID:28243556

  14. The antibacterial and hydrophilic properties of silver-doped TiO2 thin films using sol-gel method

    NASA Astrophysics Data System (ADS)

    Wang, Xuemin; Hou, Xinggang; Luan, Weijiang; Li, Dejun; Yao, Kun

    2012-08-01

    Ag-TiO2 composite thin films were deposited on glass slides by sol-gel spin coating technique. The surface structure, chemical components and transmittance spectra were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis spectrophotometer. The TiO2 thin films with silver molar ratio from 0 to 10% were tested for its antibacterial property by using Escherichia coliform (E. coli) under irradiation of UV light. The concentration of E. coli was evaluated by plating technique. The influences of different molar ratio of Ag on hydrophilicity and long-term durability of the films were also investigated by measuring the water contact angle. The results showed that the antibacterial ability was significantly improved by increasing silver content comparing with pure TiO2 thin film, and the best molar ratio of Ag was 5%. While the hydrophilicity of films increased with increasing silver content, and the best molar ratio of Ag was 1%.

  15. Photocatalytic degradation of methylene blue under UV light irradiation on prepared carbonaceous TiO2.

    PubMed

    Ramli, Zatil Amali Che; Asim, Nilofar; Isahak, Wan N R W; Emdadi, Zeynab; Ahmad-Ludin, Norasikin; Yarmo, M Ambar; Sopian, K

    2014-01-01

    This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m(2) g(-1)). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples.

  16. Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems.

    PubMed

    Lin, Cheng-Fang; Wu, Chung-Hsin; Onn, Zong-Nan

    2008-06-15

    The present study was undertaken to evaluate the degradation performance of 4-chlorophenol (4-CP) using TiO2/WO3 and TiO2/SnO2 systems. A BET surface area analyzer, UV-vis spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron spectroscopy for chemical analysis (ESCA) were employed to characterize the photocatalyst. The band edge wavelength increased to 475 nm and gap energy decreased to 2.61 eV in the TiO2/WO3 system as compare to the single TiO2. Although the specific surfaces area of TiO2/WO3 decreases due to its larger size as compared to either TiO2 or WO3, the 4-CP degradation efficiency significantly increased as compared to single TiO2 or WO3 system at 435 nm wavelength. The TiO2/WO3 degradation of 4-CP at 369 nm was in fact inhibited. For TiO2/SnO2, the degradation efficiency also suffered at 369 nm, and only slightly increased compared to otherwise hardly 4-CP degraded in single TiO2 or SnO2 system. Since there is a significant accumulation of byproducts, the buildup of these intermediates on the catalyst surface may be responsible for their poor performance.

  17. Antibacterial and Photodegradative Properties of Metal Doped TiO2 thin Films Under Visible Light.

    PubMed

    Ogorevc, Jerneja Šauta; Tratar-Pirc, Elizabeta; Matoh, Lev; Peter, Bukovec

    2012-06-01

    Doped (Au, Ag) and undoped TiO2 thin films were prepared on soda-lime glass via the sol-gel method by dip-coating from TiCl4 precursor, followed by 30 minutes calcination at 500 °C to obtain transparent thin films with good adhesion to the substrate. XRD analysis showed that the particle size of samples heat treated at 500 °C was ~10 nm for all of the samples prepared, both doped and undoped ones. SEM images revealed that the thin film surface was homogeneous and nano-porous. The hydrophilicity of the thin films was estimated by contact angle measurements. The photodegradation rate of an aqueous solution of the azo dye Plasmocorinth B on the thin films was tested by in-situ UV-Vis spectroscopic measurements of the dye solution. The best photocatalytic activity under visible and UVA light was exhibited by undoped TiO2 thin films, whereas Au doped thin films were slightly less active. On the other hand, the best antimicrobial activity toward the E. coli strain DH5a under visible light was displayed by the Au/TiO2 thin films.

  18. Influence of TiO2 nanofiber additives for high efficient dye-sensitized solar cells.

    PubMed

    Hwang, Kyung-Jun; Lee, Jae-Wook; Park, Ju-Young; Kim, Sun-Il

    2011-02-01

    TiO2 nanofibers were prepared from a mixture of titanium-tetra-isopropoxide and poly vinyl pyrrolidone by applying the electrospinning method. The samples were characterized by XRD, FE-SEM, TEM and BET analyses. The diameter of electrospun TiO2 nanofibers is in the range of 70 approximately 160 nm. To improve the short-circuit photocurrent, we added the TiO2 nanofibers in the TiO2 electrode of dye-sensitized solar cells (DSSCs). TiO2 nanofibers added in DSSCs can make up to 20% more conversion energy than the conventional DSSC with only TiO2 films only.

  19. Doping of TiO2 for sensitized solar cells.

    PubMed

    Roose, Bart; Pathak, Sandeep; Steiner, Ullrich

    2015-11-21

    This review gives a detailed summary and evaluation of the use of TiO2 doping to improve the performance of dye sensitized solar cells. Doping has a major effect on the band structure and trap states of TiO2, which in turn affect important properties such as the conduction band energy, charge transport, recombination and collection. The defect states of TiO2 are highly dependent on the synthesis method and thus the effect of doping may vary for different synthesis techniques, making it difficult to compare the suitability of different dopants. High-throughput methods may be employed to achieve a rough prediction on the suitability of dopants for a specific synthesis method. It was however found that nearly every employed dopant can be used to increase device performance, indicating that the improvement is not so much caused by the dopant itself, as by the defects it eliminates from TiO2. Furthermore, with the field shifting from dye sensitized solar cells to perovskite solar cells, the role doping can play to further advance this emerging field is also discussed.

  20. Photocatalytic bacterial inactivation by TiO2-coated surfaces

    PubMed Central

    2013-01-01

    The aim of this study was the evaluation of the photoactivated antibacterial activity of titanium dioxide (TiO2)-coated surfaces. Bacterial inactivation was evaluated using TiO2-coated Petri dishes. The experimental conditions optimized with Petri dishes were used to test the antibacterial effect of TiO2-coated ceramic tiles. The best antibacterial effect with Petri dishes was observed at 180, 60, 30 and 20 min of exposure for Escherichia coli, Staphylococcus aureus, Pseudomonas putida and Listeria innocua, respectively. The ceramic tiles demonstrated a photoactivated bactericidal effect at the same exposure time. In general, no differences were observed between the antibacterial effect obtained with Petri dishes and tiles. However, the photochemical activity of Petri dishes was greater than the activity of the tiles. Results obtained indicates that the TiO2-coated surfaces showed a photoactivated bactericidal effect with all bacteria tested highlighting that the titania could be used in the ceramic and building industry for the production of coated surfaces to be placed in microbiologically sensitive environments, such as the hospital and food industry. PMID:24090112

  1. ALMA observations of TiO2 around VY CMa

    NASA Astrophysics Data System (ADS)

    De Beck, Elvire; Vlemmings, Wouter; Muller, Sébastien; Black, John H.; O'Gorman, Eamon; Richards, Anita M. S.; Baudry, Alain; Maercker, Matthias; Decin, Leen; Humphreys, Elizabeth M.

    2016-07-01

    Titanium dioxide, TiO2, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. We present and discuss the detections of 15 emission lines of TiO2 with ALMA in the complex environment of the red supergiant VY CMa. The observations reveal a highly clumpy, anisotropic outflow in which the TiO2 emission likely traces gas exposed to the stellar radiation field. We find evidence for a roughly east-west oriented, accelerating bipolar-like structure, of which the blue component runs into and breaks up around a solid continuum component. We see a distinct tail to the south-west for some transitions, consistent with features seen in the optical and near-infrared. We find that a significant fraction of TiO2 remains in the gas phase outside the dust-formation zone and suggest that this species might play only a minor role in the dust-condensation process around extreme oxygen-rich evolved stars like VY CMa.

  2. Protein Corona Prevents TiO2 Phototoxicity

    PubMed Central

    Garvas, Maja; Testen, Anze; Umek, Polona; Gloter, Alexandre; Koklic, Tilen; Strancar, Janez

    2015-01-01

    Background & Aim TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations. Methods & Results Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles’ surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes’ surface. Conclusion These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired – as for efficient photodynamic cancer therapy. PMID:26083725

  3. The Synthesis of Cadmium Doped Mesoporous TiO2

    SciTech Connect

    Li, Xiaohong S.; Fryxell, Glen E.; Engelhard, Mark H.; Wang, Chong M.

    2007-06-01

    Cd doped mesoporous titanium oxide was prepared using non-ionic surfactants and easily handled titanium precursors. The Cd doping was found to be able to significantly inhibit the growth of anatase crystal size, stabilize the mesoporous structure, and retard the densification of nanoporous TiO2 at elevated temperatures.

  4. Synthesis and bactericidal ability of Ag/TiO 2 composite films deposited on titanium plate

    NASA Astrophysics Data System (ADS)

    Mai, Lixiang; Wang, Dawei; Zhang, Sheng; Xie, Yongjian; Huang, Chunming; Zhang, Zhiguang

    2010-11-01

    In this study, we develop a bactericidal coating material for micro-implant, TiO 2 films with Ag deposited on were prepared on titanium plates by sol-gel process. Their anti-microbial properties were analyzed as a function of the annealed temperature using Escherichia coli as a benchmark microorganism. Ag nanoparticles deposited on TiO 2 film were of metallic nature and could grow to larger ones when the annealed temperature increased. The results indicated that the smaller size of Ag nanoparticles, the better bactericidal ability. On the other hand, the positive antibacterial effect of TiO 2 enhanced the bactericidal effect of Ag.

  5. Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films

    NASA Astrophysics Data System (ADS)

    Cordova, Isvar A.; Peng, Qing; Ferrall, Isa L.; Rieth, Adam J.; Hoertz, Paul G.; Glass, Jeffrey T.

    2015-04-01

    TiO2 is an exemplary semiconductor anode material for photoelectrochemical (PEC) water-splitting electrodes due to its functionality, long-term stability in corrosive environments, nontoxicity, and low cost. In this study, TiO2 photoanodes with enhanced photocurrent density were synthesized by atomic layer deposition (ALD) of TiO2 onto a porous, transparent, and conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold fabricated by solution processing. The simplicity and disordered nature of the nanoFTO nanostructure combined with the ultrathin conformal ALD TiO2 coatings offers advantages including decoupling charge carrier diffusion length from optical penetration depth, increased photon absorption probability through scattering, complimentary photon absorption, and favorable interfaces for charge separation and transfer across the various junctions. We examine the effects of porosity of the nanoFTO scaffold and thickness of the TiO2 coating on PEC performance and achieve an optimal photocurrent of 0.7 mA cm-2 at 0 V vs. Ag/AgCl under 100 mW cm-2 AM 1.5 G irradiation in a 1 M KOH aqueous electrolyte. Furthermore, the fundamental mechanisms behind the improvements are characterized via cyclic voltammetry, incident photon-to-current efficiency, transient photocurrent spectroscopy, and electrochemical impedance spectroscopy and are contrasted with those of single crystal rutile TiO2 nanowires. The strategies employed in this work highlight the opportunities inherent to these types of heteronanostructures, where the lessons may be applied to improve the PEC conversion efficiencies of other promising semiconductors, such as hematite (α-Fe2O3) and other materials more sensitive to visible light.TiO2 is an exemplary semiconductor anode material for photoelectrochemical (PEC) water-splitting electrodes due to its functionality, long-term stability in corrosive environments, nontoxicity, and low cost. In this study, TiO2 photoanodes with enhanced photocurrent

  6. Detection of nicotine based on molecularly imprinted TiO2-modified electrodes.

    PubMed

    Wu, Cheng-Tar; Chen, Po-Yen; Chen, Jian-Ging; Suryanarayanan, Vembu; Ho, Kuo-Chuan

    2009-02-02

    Amperometric detection of nicotine (NIC) was carried out on a titanium dioxide (TiO(2))/poly(3,4-ethylenedioxythiophene) (PEDOT)-modified electrode by a molecular imprinting technique. In order to improve the conductivity of the substrate, PEDOT was coated onto the sintered electrode by in situ electrochemical polymerization of the monomer. The sensing potential of the NIC-imprinted TiO(2) electrode (ITO/TiO(2)[NIC]/PEDOT) in a phosphate-buffered saline (PBS) solution (pH 7.4) containing 0.1M KCl was determined to be 0.88 V (vs. Ag/AgCl/saturated KCl). The linear detection range for NIC oxidation on the so-called ITO/TiO(2)[NIC]/PEDOT electrode was 0-5mM, with a sensitivity and limit of detection of 31.35 microA mM(-1)cm(-2) and 4.9 microM, respectively. When comparing with the performance of the non-imprinted one, the sensitivity ratio was about 1.24. The sensitivity enhancement was attributed to the increase in the electroactive area of the imprinted electrode. The at-rest stability of the ITO/TiO(2)[NIC]/PEDOT electrode was tested over a period of 3 days. The current response remained about 85% of its initial value at the end of 2 days. The ITO/TiO(2)[NIC]/PEDOT electrode showed reasonably good selectivity in distinguishing NIC from its major interferent, (-)-cotinine (COT). Moreover, scanning electrochemical microscopy (SECM) was employed to elucidate the surface morphology of the imprinted and non-imprinted electrodes using Fe(CN)(6)(3-)/Fe(CN)(6)(4-) as a redox probe on a platinum tip. The imprinted electrode was further characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR).

  7. TiO2 anode materials for lithium-ion batteries with different morphology and additives

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Ng, Yip Hang; Leung, Yu Hang; Liu, Fangzhou; Djurišic, Aleksandra B.; Xie, Mao Hai; Chan, Wai Kin

    2014-03-01

    Electrochemical performances of different TiO2 nanostructures, TiO2/CNT composite and TiO2 with titanium isopropoxide (TTIP) treatment anode were investigated. For different TiO2 nanostructures, we investigated vertically aligned TiO2 nanotubes on Ti foil and TiO2 nanotube-powders fabricated by rapid breakdown anodization technique. The morphology of the prepared samples was characterized by scanning probe microscopy (SEM). The electrochemical lithium storage abilities were studied by galvanostatic method. In addition, carbon nanotubes (CNT) additives and solution treatment process of TiO2 anode were investigated, and the results show that the additives and treatment could enhance the cycling performance of the TiO2 anode on lithium ion batteries.

  8. Dielectric and Infrared Properties of TiO2 Films Containing Anatase and Rutile

    DTIC Science & Technology

    2005-07-18

    properties of TiO2 films containing anatase and rutile 2. Experimental details Thin films of TiO2 were deposited onto Si(1 0 0) wafers...annealed) and 7.4 nm (225 nm, deposited with a bias 872 Dielectric and infrared properties of TiO2 films containing anatase and rutile then annealed...Article POSTPRINT 3. DATES COVERED (From - To) 2001 - 2004 4. TITLE AND SUBTITLE Dielectric and infrared properties of TiO2 films

  9. Electrospinning directly synthesized metal nanoparticles decorated on both sidewalls of TiO2 nanotubes and their applications.

    PubMed

    Zhang, Guanhua; Duan, Huigao; Lu, Bingan; Xu, Zhi

    2013-07-07

    The hybrid structure of nanoparticle-decorated nanotubes has the advantage of both large specific surface areas of nanoparticles and anisotropic properties of nanotubes, which is desirable for many applications. In this study, Ag nanoparticles on highly porous TiO2 nanotubes (NTs) on both internal and external sidewalls (Ag@TiO2@Ag NTs) are directly synthesized by emulsion electrospinning and thermal evaporation for the first time. The Ag@TiO2@Ag NT heterostructures, which have large surface-to-volume ratios, improved electrical conductivity, and an excellent material synergetic effect, demonstrate excellent electrochemical properties and superior photocatalytic performance. The new method for the synthesis of Ag@TiO2@Ag NT heterostructures can be applied to fabricate various types of other novel metal nanoparticles (for example Au and Pt) on highly porous nanotubes on both internal and external sidewalls. The possible growth mechanism and reasons for excellent electrochemical properties and superior photocatalytic performance were discussed in detail.

  10. Silver nanoparticles decorated anatase TiO2₂nanotubes for removal of pentachlorophenol from water.

    PubMed

    Yu, Lian; Yang, Xiaofang; Ye, Yushi; Peng, Xianjia; Wang, Dongsheng

    2015-09-01

    One-dimensional nanotubes are promising materials for environmental applications. In this study, anatase TiO2 nanotubes (TNTs) were fabricated using an alkaline hydrothermal method at 130°C and then calcinated at 400°C for 2h. Ag nanoparticles were photo-deposited onto the TNTs for enhanced photodegradation of pentachlorophenol (PCP) under simulated solar light. The samples were characterized using transmission electron microscopy, physical adsorption of nitrogen, X-ray diffraction, X-ray photoelectron spectroscopy and UV-Visible diffuse reflectance spectroscopic techniques. The as-synthesized TNTs showed tubular structures with the outer and inner diameter of 9-10 and 5-6 nm, respectively. The results showed that metallic Ag nanoparticles were uniformly dispersed on the TNTs surface, and Ag/TNTs exhibited significant visible-light absorption. After 180 min irradiation, about 99% PCP was removed by Ag/TNTs (5.4 at.%), compared to 54.3% by P25 and 59.4% by pure TNTs. This is attributed to the synergistic effects between Ag nanoparticles acting as traps to effectively capture the photo-generated electrons, and the localized surface plasmon resonance (LSPR) of Ag nanoparticles promoting the absorption of visible light. The intermediates during the PCP photodegradation were systematically analyzed, ruling out the existence of high toxic polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Ag/TNTs showed excellent stability even after five cycles.

  11. Preparation of silver nanowires coated with TiO2 using chemical binder and their applications as photoanodes in dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Jang, Inseok; Kang, Taeho; Cho, Woohyung; Kang, Yong Soo; Oh, Seong-Geun; Im, Seung Soon

    2015-11-01

    In this study, the core-shell structured Ag@TiO2 wire was prepared for application to dye-sensitized solar cell (DSSC). The Ag nanowire, having an excellent electrical conductivity, was synthesized by using the facile microwave-assisted polyol reduction process. The diameter and length of Ag wires were 40-50 nm and 20-30 μm, respectively, and the face-centered cubic silver crystal structure was obtained. In the presence of 2-mercaptoethanol as a chemical binder, the entire surface of Ag wire was coated with the TiO2 shell, which has thickness of 20 nm, through solvothermal method. The crystalline structure of TiO2 shell was the anatase phase possessing an advantage to achieve the high efficiency in DSSC. The core-shell structured Ag@TiO2 wire exhibited the high thermal stability. The high conversion efficiency (5.56%) in fabricated device with Ag@TiO2 electrode, which is about 10% higher than reference cell, was achieved by enhancement of short-current density (Jsc) value. The core-shell structured Ag@TiO2 wire could effectively reduce the charge recombination through the contribution to electron shortcut for improvement in the electron transfer rate and lifetime.

  12. White-light-controlled resistive switching chearacteristics of TiO2/Cu2O composite nanorods array

    NASA Astrophysics Data System (ADS)

    Sun, Bai; Liu, Yonghong; Lou, Fangming; Chen, Peng

    2015-08-01

    TiO2/Cu2O composite nanorods array were grown on fluorine-doped tin oxide (FTO) substrate by hydrothermal process, and white-light-controlled resistive switching characteristics of Ag/[TiO2/Cu2O]/FTO structure were further investigated. The current-voltage characteristics of the composite nanorods array represent a good rectifying property and bipolar resistive switching behavior. Specially, the resistive switching behavior can be regulated by white-light illuminating at room temperature. This study is helpful for exploring the memory materials and their applications in nonvolatile light-controlled memory devices.

  13. Atomic layer deposited (ALD) TiO(2) and TiO(2-x)-N(x) thin film photocatalysts in salicylic acid decomposition.

    PubMed

    Vilhunen, S H; Sillanpää, M E T

    2009-01-01

    Degradation of salicylic acid (SA) with thin film photocatalyst, titanium dioxide (TiO(2)) and nitrogen-doped TiO(2) (TiO(2-x)-N(x)) combined with ultraviolet (UV) radiation was studied. TiO(2) film with thickness of 15 and 65 nm was tested. The TiO(2-x)-N(x) film had thickness of 15 nm on top of TiO(2) (50 nm). Photocatalysts were prepared on glass substrate by atomic layer deposition (ALD) technique. The effect of initial pH (3-10) was studied with SA concentration of 10 mg/l. Decomposition of SA was fastest at pH 6 with both films and the rate was equal at initial pH values 3 and 4.3. However, at higher pH values the non-doped film was more efficient.

  14. Efficient CO2 capture and photoreduction by amine-functionalized TiO2.

    PubMed

    Liao, Yusen; Cao, Shao-Wen; Yuan, Yupeng; Gu, Quan; Zhang, Zhenyi; Xue, Can

    2014-08-11

    Amine-functionalization of TiO2 nanoparticles, through a solvothermal approach, substantially increases the affinity of CO2 on TiO2 surfaces through chemisorption. This chemisorption allows for more effective activation of CO2 and charge transfer from excited TiO2 , and significantly enhances the photocatalytic rate of CO2 reduction into methane and CO.

  15. Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres with enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Jiang, Zhifeng; Wei, Wei; Mao, Danjun; Chen, Cheng; Shi, Yunfei; Lv, Xiaomeng; Xie, Jimin

    2014-12-01

    Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres (Ag-N-TiO2-YSM) were prepared by employing acetic acid as the hollowing controller and triethanolamine as the N source for the first time. Ag nanoparticles (NPs) were uniformly deposited by a simple in situ photo-reduction method, which can prevent the aggregation of Ag NPs. The efficiency of the as-prepared samples was investigated by monitoring the degradation of rhodamine B and ciprofloxacin under visible light irradiation. The experimental results indicate that N-doped yolk-shell mesoporous TiO2 hollow microspheres show higher photocatalytic activity than P25 TiO2 under visible light irradiation because of N doping and the unique yolk-shell structure. In addition, Ag-N-TiO2-YSM shows enhanced activity compared with N-TiO2-YSM due to the SPR absorption of silver NPs and the fast generation, separation and transportation of the photogenerated carriers. Moreover, the Ag contents can affect the photocatalytic activity of the Ag-N-TiO2-YSM composite. A suitable amount of Ag deposition gives the highest photocatalytic activity. A higher loading does not improve the photocatalytic activity of N-TiO2-YSM further. The active species generated in the photocatalytic system were also investigated. Based on our experimental results, a possible photocatalytic mechanism was proposed. The strategy presented here gives a promising route towards the development of delicate metal@hollow semiconductor composites for many applications in photocatalysis.Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres (Ag-N-TiO2-YSM) were prepared by employing acetic acid as the hollowing controller and triethanolamine as the N source for the first time. Ag nanoparticles (NPs) were uniformly deposited by a simple in situ photo-reduction method, which can prevent the aggregation of Ag NPs. The efficiency of the as-prepared samples was investigated by monitoring the degradation of rhodamine B and

  16. Photocatalytic properties of nanostructured TiO2 surfaces

    NASA Astrophysics Data System (ADS)

    Moore, Lauren; Luttrell, Timothy; Batzill, Matthias

    2012-02-01

    Photocatalytic chemical reactions are actively explored for direct production of chemical fuels from sun light through electrolysis or for the clean-up of organic pollutants through photocatalysis. Titanium dioxide is a prototypical photocatalyst which has been studied extensively. However, there are still unanswered questions regarding the relationship between surface morphology and photocatalytic properties. In this study, we used ion beam assisted surface nanopatterning and UV-catalysis to investigate the dependence of photoreactivity on surface nanostructures. Energetic argon gas ions were used to induce self-formation of nanopatterns on TiO2 surfaces and the structure formation was characterized by atomic force microscopy. The influence of the surface structure on the photochemical properties was assessed through photocatalytic degradation of methyl orange in aqueous solution with a flat sample and a nanopatterned sample of TiO2, respectively. The resulting absorbance spectrums were then compared.

  17. Hydroxyapatite growth on anodic TiO2 nanotubes.

    PubMed

    Tsuchiya, Hiroaki; Macak, Jan M; Müller, Lenka; Kunze, Julia; Müller, Frank; Greil, Peter; Virtanen, Sannakaisa; Schmuki, Patrik

    2006-06-01

    In the present work, we study the growth of hydroxyapatite formation on different TiO(2) nanotube layers. The nanotube layers were fabricated by electrochemical anodization of titanium in fluoride-containing electrolytes. To study various nanotube lengths, layers with an individual tube diameter of 100 nm were grown to a thickness of approximately 2 mum or 500 nm. The ability to form apatite on the nanotube layers was examined by immersion tests combined with SEM, XRD and FT-IR investigations. For reference, experiments were also carried out on compact anodic TiO(2) layers. The results clearly show that the presence of the nanotubes on a titanium surface enhances the apatite formation and that the 2-mum thick nanotube layer triggers deposition faster than the thinner layers. Tubes annealed to anatase, or a mixture of anatase and rutile are clearly more efficient in promoting apatite formation than the tubes in their "as-formed" amorphous state.

  18. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers.

    PubMed

    Lin, Lu; Wang, Huiyao; Jiang, Wenbin; Mkaouar, Ahmed Radhi; Xu, Pei

    2017-03-08

    Incorporating reduced graphene oxide (rGO) or Fe(3+) ions in TiO2 photocatalyst could enhance photocatalytic degradation of organic contaminants in aqueous solutions. This study characterized the photocatalytic activities of TiO2-Fe and TiO2-rGO nanocomposites immobilized on optical fibers synthesized by polymer assisted hydrothermal deposition method. The photocatalysts presented a mixture phase of anatase and rutile in the TiO2-rGO and TiO2-Fe nanocomposites. Doping Fe into TiO2 particles (2.40eV) could reduce more band gap energy than incorporating rGO (2.85eV), thereby enhancing utilization efficiency of visible light. Incorporating Fe and rGO in TiO2 decreased significantly the intensity of TiO2 photoluminescence signals and enhanced the separation rate of photo-induced charge carriers. Photocatalytic performance of the synthesized nanocomposites was measured by the degradation of three pharmaceuticals under UV and visible light irradiation, including carbamazepine, ibuprofen, and sulfamethoxazole. TiO2-rGO exhibited higher photocatalytic activity for the degradation of pharmaceuticals under UV irradiation, while TiO2-Fe demonstrated more suitable for visible light oxidation. The results suggested that the enhanced photocatalytic performance of TiO2-rGO could be attributed to reduced recombination rate of photoexcited electrons-hole pairs, but for TiO2-Fe nanocomposite, narrower band gap would contribute to increased photocatalytic activity.

  19. Non-UV based germicidal activity of metal-doped TiO2 coating on solid surfaces.

    PubMed

    Liu, Li-fen; Barford, John; Yeung, King Lun; Si, Grace

    2007-01-01

    A stain-based screening method was developed to screen different catalyst coatings for their germicidal activity. A Baclight dead/live bacteria viability kit (invitrogen, molecular probes) was used for staining the cell. The screening was carried out following a standard procedure. This included loading cell suspension to solid surface and maintaining contact for 30 min, then staining with a mixture containing dyes. The stained cells were observed using an epifluorescent microscope and photographed with a CCD camera under UV. Metal-doped TiO2 coatings on Al plates were prepared and tested for non-UV germicidal activity without using UV. It was tested using model microorganisms such as Bakers Yeast (Saccharomyces cerevisiae), Bacillus subtilis, Pseudomonas putida, and Escherichia coli. On the basis of the germicidal activity of catalyst and the degree of damage caused to the cells, the stained cells may appear green (viable), green with red or yellow nuclei and yellow (compromised) or red (nonviable). According to their stained color, cells were counted to calculate the percentage of dead, live, and compromised cells. Compromised cells are cells that grow very slowly after reculturing indicating a degree of reversible cell damage. Screening the germicidal activity using this staining method is accurate and efficient, and requires less time than the culture-based method. A modification to the procedure for measuring germicidal activity of rough surfaces or fibrous coatings was developed. Both TiO2 and metal-doped TiO2 (Ag, Pt, Au, Cu) possess non-UV based germicidal activity. The germicidal activity of TiO2 was found to be related with its wetting property and can be improved by UV irradiation before testing. It is not greatly affected by contact time, indicating a fast acting germicidal activity.

  20. Dealloying-driven synthesis and characterization of AgCl/Ag/TiO2 nanocomposites with enhanced photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Wang, Tongyang; Wang, Yan; Zhao, Zhengfeng; Zhang, Lanxiang; Huang, Shifeng

    2017-03-01

    The combination of dealloying with acid treatment was used to fabricate mesoporous anatase TiO2 with high specific surface area of 233 m2/g. Using anatase TiO2 as a matrix, a photoreduction strategy was developed to synthesize AgCl/Ag/TiO2 nanocomposites with different Ti/Ag molar ratios. The morphology and properties of AgCl/Ag/TiO2 nanocomposites were investigated by X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. The AgCl/Ag/TiO2 nanocomposites showed an enhanced photocatalytic activity for the degradation of methyl orange solution under visible light irradiation. The optimum Ti/Ag molar ratio in the AgCl/Ag/TiO2 nanocomposites was shown to be 6:1, which was attributed to its high specific surface area of 207 m2/g and the surface plasmon resonance effect.

  1. Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue

    NASA Astrophysics Data System (ADS)

    Naraginti, Saraschandra; Stephen, Finian Bernard; Radhakrishnan, Adhithya; Sivakumar, A.

    2015-01-01

    Catalytic activity of Zr and Ag co-doped TiO2 nanoparticles on the reduction of 4-nitrophenol, degradation of methylene blue and methyl orange was studied using sodium borohydride as reducing agent. The nanoparticles were characterized using X-ray diffraction, energy dispersive X-ray, high resolution transmission electron microscopy, selected area electron diffraction and UV-Vis spectroscopy. The rate of the reduction/degradation was found to increase with increasing amount of the photocatalyst which could be attributed to higher dispersity and small size of the nanoparticles. The catalytic activity of Zr and Ag co-doped TiO2 nanoparticles showed no significant difference even after recycling the catalyst four times indicating a promising potential for industrial application of the prepared photocatalyst.

  2. Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue.

    PubMed

    Naraginti, Saraschandra; Stephen, Finian Bernard; Radhakrishnan, Adhithya; Sivakumar, A

    2015-01-25

    Catalytic activity of Zr and Ag co-doped TiO2 nanoparticles on the reduction of 4-nitrophenol, degradation of methylene blue and methyl orange was studied using sodium borohydride as reducing agent. The nanoparticles were characterized using X-ray diffraction, energy dispersive X-ray, high resolution transmission electron microscopy, selected area electron diffraction and UV-Vis spectroscopy. The rate of the reduction/degradation was found to increase with increasing amount of the photocatalyst which could be attributed to higher dispersity and small size of the nanoparticles. The catalytic activity of Zr and Ag co-doped TiO2 nanoparticles showed no significant difference even after recycling the catalyst four times indicating a promising potential for industrial application of the prepared photocatalyst.

  3. Tunable Polaronic Conduction in Anatase TiO2

    NASA Astrophysics Data System (ADS)

    Moser, S.; Moreschini, L.; Jaćimović, J.; Barišić, O. S.; Berger, H.; Magrez, A.; Chang, Y. J.; Kim, K. S.; Bostwick, A.; Rotenberg, E.; Forró, L.; Grioni, M.

    2013-05-01

    Oxygen vacancies created in anatase TiO2 by UV photons (80-130 eV) provide an effective electron-doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photoemission reveals that the quasiparticles are large polarons. These results indicate that anatase can be tuned from an insulator to a polaron gas to a weakly correlated metal as a function of doping and clarify the nature of conductivity in this material.

  4. Nanomechanical properties of TiO2 granular thin films.

    PubMed

    Yaghoubi, Houman; Taghavinia, Nima; Alamdari, Eskandar Keshavarz; Volinsky, Alex A

    2010-09-01

    Post-deposition annealing effects on nanomechanical properties of granular TiO2 films on soda-lime glass substrates were studied. In particular, the effects of Na diffusion on the films' mechanical properties were examined. TiO2 photocatalyst films, 330 nm thick, were prepared by dip-coating using a TiO2 sol, and were annealed between 100 °C and 500 °C. Film's morphology, physical and nanomechanical properties were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, differential thermo-gravimetric analysis, and nanoindentation. Contrary to expectations, the maximum film hardness was achieved for 300°C annealing, with a value of 0.69±0.05 GPa. Higher annealing temperatures resulted in inferior mechanical properties. No pile-up or sink-in effects were observed with minimal creep for the 300 °C annealed sample. Considerable decrease in the amount of chemisorbed water was found with increasing annealing temperature, causing gel films densification, explaining the increasing trend of hardness with annealing temperature between 100 °C and 300 °C. DTA/TGA results also confirmed the weight loss and the endothermic reaction due to desorption of chemisorbed water. Decrease in hardness above 300 °C annealing is attributed to thermal diffusion of Na ions from the glass substrate, confirmed by nanoindentation tests on TiO2 films deposited on fused quartz, which did not exhibit hardness decrease after 300 °C annealing.

  5. Photocatalytic Activity of Immobilized Geometries of TiO2

    NASA Astrophysics Data System (ADS)

    Koohestani, Hassan; Sadrnezhaad, Sayed Khatiboleslam

    2015-07-01

    Photocatalysts that are used for waste water treatment are often suspended in the waste water during processing and then must be removed from the water after treatment. To reduce the post-degradation expenses and time, separation is facilitated by an immobilization process. The effect of immobilized TiO2 geometries on the photocatalytic behavior of the photocatalyst is investigated in this work. Powder, fiber, film, and network-shaped TiO2 nanocatalysts were produced by using different templates. The cellulose fiber and ceramic templates were used as substrates for fiber and film/network geometry production. The products were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area measurement. The photocatalytic performance was determined by methyl orange degradation and cyanide photo-oxidation under ultraviolet irradiation. From the SEM images, the size range of the TiO2 particles in the film and in the network geometries were 20-60 nm. The nanoparticles had covered the surface of the substrate, uniformly. Removal of the cellulose substrate by heat treatment yielded hollow TiO2 fibers with diameters of 0.5-1 µm and lengths of 30 µm. The efficiencies of both photocatalytic reactions were obtained in the following order: powder > network > film > fiber geometry. The rate constant of the dye degradation reaction using powder catalyst was 0.0118 min-1. For network catalyst, it was 0.0083 min-1. Corresponding results for cyanide disinfection were 0.0055 and 0.0046 min-1. Although powder samples had higher rate constants, network geometry was preferred due to its higher immobility.

  6. COMMUNICATION: Drug loading of nanoporous TiO2 films

    NASA Astrophysics Data System (ADS)

    Ayon, Arturo A.; Cantu, Michael; Chava, Kalpana; Mauli Agrawal, C.; Feldman, Marc D.; Johnson, Dave; Patel, Devang; Marton, Denes; Shi, Emily

    2006-12-01

    The loading of therapeutic amounts of drug on a nanoporous TiO2 surface is described. This novel drug-loading scheme on a biocompatible surface, when employed on medical implants, will benefit patients who require the deployment of drug-eluting implants. Anticoagulants, analgesics and antibiotics can be considered on the associated implants for drug delivery during the time of maximal pain or risk for patients undergoing orthopedic procedures. Therefore, this scheme will maximize the chances of patient recovery.

  7. Methanethiol chemistry on TiO 2-supported Ni clusters

    NASA Astrophysics Data System (ADS)

    Ozturk, O.; Park, J. B.; Black, T. J.; Rodriguez, J. A.; Hrbek, J.; Chen, D. A.

    2008-10-01

    The thermal decomposition of methanethiol on Ni clusters grown on TiO 2(1 1 0) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). On all of the Ni surfaces investigated, methane and hydrogen were observed as gaseous products in the TPD experiments, and the only sulfur-containing species that desorbed from the surface was methanethiol itself at low temperatures. The two pathways for methanethiol reaction were hydrodesulfurization to produce methane and nonselective decomposition, which leaves atomic carbon and sulfur on the surface. From high resolution XPS studies, methyl thiolate was identified as the surface intermediate for reaction on TiO 2 and on all of the Ni surfaces investigated, similar to what is observed on single-crystal Ni surfaces. However, the binding sites for methyl thiolate on the 1 ML (monolayer) Ni clusters were different from those on the Ni clusters at coverages of 2.5 ML and higher, based on the S(2p) binding energies for methyl thiolate. No distinct changes in activity or selectivity were observed for the smaller Ni clusters grown at low coverage compared to the more film-like Ni surfaces other than what could be accounted for by changes in total surface area. Interactions between the Ni clusters and the TiO 2 support had two main effects on chemical activity. First, carbon was oxidized by oxygen from the TiO 2 lattice to produce CO at temperatures above 800 K. Second, annealing induced encapsulation of the Ni clusters by reduced TiO x and chemisorbed oxygen. At 800 K, the Ni clusters were totally encapsulated, resulting in a complete loss of methanethiol activity; partial encapsulation at 700 K caused a smaller decrease in activity accompanied by increased oxidation of carbon by lattice oxygen.

  8. Methanethiol Chemistry on TiO2-Supported Ni Clusters

    SciTech Connect

    Ozturk,O.; Park, J.; Black, T.; Rodriguez, J.; Hrbek, J.; Chen, D.

    2008-01-01

    The thermal decomposition of methanethiol on Ni clusters grown on TiO2(1 1 0) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). On all of the Ni surfaces investigated, methane and hydrogen were observed as gaseous products in the TPD experiments, and the only sulfur-containing species that desorbed from the surface was methanethiol itself at low temperatures. The two pathways for methanethiol reaction were hydrodesulfurization to produce methane and nonselective decomposition, which leaves atomic carbon and sulfur on the surface. From high resolution XPS studies, methyl thiolate was identified as the surface intermediate for reaction on TiO2 and on all of the Ni surfaces investigated, similar to what is observed on single-crystal Ni surfaces. However, the binding sites for methyl thiolate on the 1 ML (monolayer) Ni clusters were different from those on the Ni clusters at coverages of 2.5 ML and higher, based on the S(2p) binding energies for methyl thiolate. No distinct changes in activity or selectivity were observed for the smaller Ni clusters grown at low coverage compared to the more film-like Ni surfaces other than what could be accounted for by changes in total surface area. Interactions between the Ni clusters and the TiO2 support had two main effects on chemical activity. First, carbon was oxidized by oxygen from the TiO2 lattice to produce CO at temperatures above 800 K. Second, annealing induced encapsulation of the Ni clusters by reduced TiOx and chemisorbed oxygen. At 800 K, the Ni clusters were totally encapsulated, resulting in a complete loss of methanethiol activity; partial encapsulation at 700 K caused a smaller decrease in activity accompanied by increased oxidation of carbon by lattice oxygen.

  9. Photocatalytic TiO2/glass nanoflake array films.

    PubMed

    Ho, Wingkei; Yu, Jimmy C; Yu, Jiaguo

    2005-04-12

    A new approach for the fabrication of oriented TiO2/glass nanoflake arrays has been developed. The ceramic nanoflake array was formed on a glass substrate via a simple, low temperature, and one-step hydrothermally induced phase separation approach without using any templates or additives. The factors affecting the formation of ceramic nanoflakes were examined by various characterization techniques. The results showed that the leaching of the soluble phase from the glass surface through hydrothermal processes resulted in oriented uniform ceramic nanoflake arrays. Electron microscope observations revealed that the nanoflakes formed a continuous porous three-dimensional-network array with a large surface-to-volume ratio. In addition, an anatase TiO2 film was successfully coated onto the nanoflake array by the sol-gel method. The TiO2/glass nanoflake array exhibited high activity for the photocatalytic degradation of acetone and for photoinduced hydrophilic conversion. Such enhancements were attributed to the beneficial effects of the new continuous porous three-dimensional-interconnected nanoflake network and its surface geometrical nanostructure. The present approach provides a convenient route to modify a photocatalytic coating with a porous nano-architectured substrate. This opens extensive new opportunities in the design of semiconductor/ceramic nanostructural array thin films with unusual properties for future optical and electronic applications.

  10. Band alignment of rutile and anatase TiO2

    NASA Astrophysics Data System (ADS)

    Scanlon, David O.; Dunnill, Charles W.; Buckeridge, John; Shevlin, Stephen A.; Logsdail, Andrew J.; Woodley, Scott M.; Catlow, C. Richard A.; Powell, Michael. J.; Palgrave, Robert G.; Parkin, Ivan P.; Watson, Graeme W.; Keal, Thomas W.; Sherwood, Paul; Walsh, Aron; Sokol, Alexey A.

    2013-09-01

    The most widely used oxide for photocatalytic applications owing to its low cost and high activity is TiO2. The discovery of the photolysis of water on the surface of TiO2 in 1972 launched four decades of intensive research into the underlying chemical and physical processes involved. Despite much collected evidence, a thoroughly convincing explanation of why mixed-phase samples of anatase and rutile outperform the individual polymorphs has remained elusive. One long-standing controversy is the energetic alignment of the band edges of the rutile and anatase polymorphs of TiO2 (ref. ). We demonstrate, through a combination of state-of-the-art materials simulation techniques and X-ray photoemission experiments, that a type-II, staggered, band alignment of ~ 0.4 eV exists between anatase and rutile with anatase possessing the higher electron affinity, or work function. Our results help to explain the robust separation of photoexcited charge carriers between the two phases and highlight a route to improved photocatalysts.

  11. Characterization of nanocrystalline anatase TiO(2) thin films.

    PubMed

    Huber, Bernd; Gnaser, Hubert; Ziegler, Christiane

    2003-04-01

    Nanoporous thin films were deposited onto glass substrates by painting with a solution of nanocrystalline anatase TiO(2) particles (with a size of either 6 nm or 16 nm) suspended in an organic solvent. Upon drying in air for about 1 day, the films were tempered at 450 degrees C in air for 1 h. This procedure results in stoichiometric TiO(2) films with a thickness of several micro m and a milky whitish appearance. Scanning force microscopy of the surface revealed that the nanoparticles of the films agglomerated into structures with lateral dimensions of some 100 nm. Transmission electron microscopy was utilized to investigate the structural arrangement of the crystallites in the films. High-resolution electron diffraction and X-ray diffraction analyses demonstrated, furthermore, that the material consists exclusively of a single TiO(2) phase, namely anatase, and that the films do not exhibit any preferential texture. The elemental stoichiometry and the possible presence of impurities were monitored throughout the films by means of secondary-ion mass spectrometry depth profiling. Electrical measurements have been carried out as a function of both the sample temperature T and the ambient oxygen partial pressure p(O(2)). From these data the electrical conductivity sigma of the porous films was determined in dependence of those parameters.

  12. BIOLOGICAL RESPONSE TO NANO-SCALE TIO2: ROLE OF PARTICLE DOSE, SHAPE AND RETENTION

    PubMed Central

    Silva, Rona M.; TeeSy, Christel; Franzi, Lisa; Weir, Alex; Westerhoff, Paul; Evans, James E.; Pinkerton, Kent E.

    2015-01-01

    TiO2 is one of the most widely used nanomaterials, valued for its highly refractive, photocatalytic and pigmenting properties. TiO2 is also classified by the International Agency for Research on Cancer (IARC) as a possible human carcinogen. The objectives of this study were to establish a lowest observed effect level (LOEL) for nano-scale TiO2, determine TiO2 uptake in the lungs, and estimate toxicity based on physico-chemical properties and retention in the lungs. In vivo lung toxicity of nano-scale TiO2 using varying forms of well-characterized, highly-dispersed TiO2 was assessed. Anatase/rutile P25 spheres (TiO2-P25), pure anatase spheres (TiO2-A), and anatase nanobelts (TiO2-NB) were tested. To determine the effects of dose and particle characteristics, male Sprague-Dawley rats were given TiO2 (0, 20, 70, or 200 µg) via intratracheal instillation. Broncho-alveolar lavage fluid (BALF) and lung tissue were obtained for analysis 1 and 7 days post exposure. Despite abundant TiO2 inclusions in all exposed animals, only TiO2-NB elicited any significant degree of inflammation seen in BALF at the 1-day time-point. This inflammation resolved by 7 days; although, TiO2 particles had not cleared from alveolar macrophages recovered from the lung. Histological examination showed TiO2-NB caused cellular changes at day 1 which were still evident at day 7. We conclude TiO2-NB is the most inflammatory with a lowest observable effect level of 200 µg at 1 day post instillation. PMID:24156719

  13. Characteristics of dye-sensitized solar cell with TiO2 anode under UV irradiation

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Hsiao, Chih-Chen; Weng, Hao-Wei

    2016-03-01

    The anatase phase crystalline quality of commercial TiO2 (P25) nanoparticle sintered in air and N2 is improved. Compared DSSC with air-sintered TiO2 anode, DSSC with N2-sintered TiO2 anode has better performance mainly from high optical absorption efficiency. Under UV irradiation, organic contaminants adsorbed on TiO2 are dissociated by the photocatalysis, and the dye adsorption is enhanced. The DSSC performance with UV-treated/N2-sintered TiO2 anode is further improved.

  14. Fabrication and characterization of photovoltaic devices based on perovskite compounds with TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kanayama, Masato; Oku, Takeo; Suzuki, Atsushi; Yamada, Masahiro; Fukunishi, Sakiko; Kohno, Kazufumi; Sakamoto, Hiroki

    2015-02-01

    Perovskite-type photovoltaic devices were fabricated by a spin-coating method using a mixture solution. The compact and meso-porous TiO2 of the solar cells were fabricated from TiO2 nanoparticles and sol, and the photovoltaic properties and microstructures were characterized. The conversion efficiencies were improved by the combination of TiO2 nanoparticles and sol. Current density was also improved by increasing numbers of spin-coatings of meso-porous TiO2. Thick meso-porous TiO2 layers would assist the construction of perovskite layers and block of the leak current.

  15. Fabrication and characterization of perovskite photovoltaic devices with TiO2 nanoparticle layers

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Ueoka, Naoki; Suzuki, Kohei; Suzuki, Atsushi; Yamada, Masahiro; Sakamoto, Hiroki; Minami, Satoshi; Fukunishi, Sakiko; Kohno, Kazufumi; Miyauchi, Shinsuke

    2017-01-01

    TiO2/CH3NH3PbI3-based photovoltaic devices were fabricated by a spin-coating method using mixture solutions with TiO2 nanoparticles. Compact TiO2 layers were prepared from titanium diisopropoxide bis(acetyl acetonate) and TiO2 nanoparticles with different particle sizes. The performance of the photovoltaic devices was improved by sequential deposition of the TiO2 layers, which resulted in microstructural change of the perovskite layers.

  16. Photochemistry on TiO2: Mechanisms Behind the Surface Chemistry

    DTIC Science & Technology

    2009-01-21

    photoinduced antimicrobial [11,13] properties of TiO2 films have recently been discovered and these ideas are now employed for new photochemically acti...ation in air causes water droplets to wet the TiO2 film surface, resulting in a lowering of the contact angle over time. The anatase TiO2 film was...Hydrophilic H2O Hydrocarbon film a b s t r a c t Photochemistry from TiO2 surfaces is described for two cases: The UV-induced photodesorption of O2 from TiO2

  17. Synthesis, characterization and photocatalytic activity of noble metal-modified TiO2 nanosheets with exposed {0 0 1} facets

    NASA Astrophysics Data System (ADS)

    Diak, Magdalena; Grabowska, Ewelina; Zaleska, Adriana

    2015-08-01

    Pt, Pd, Ag and Au nanoparticles were photodeposited on the {0 0 1} crystal facets of the TiO2 anatase nanosheets. Morphological and surface characterization of the samples as well as photocatalytic activity were studied. The influence of metal precursor concentration used during photodeposition (0.05-0.5%) on size of formed metal nanoparticles together with UV and vis-mediated activity of Pt, Pd, Ag or Au-TiO2 was investigated. Generally, samples obtained by photodeposition of noble metal nanoparticles using their 0.2% precursor solutions revealed highest activity in phenol degradation reaction under visible light (λ > 420 nm). The photoactivity of the as-prepared samples with respect to the modified metal species was ordered Ag≅Pd > Au > Pt. TEM analysis showed that photodeposited metal nanoparticles appeared only on {0 0 1} facets of TiO2. The average degradation rate of phenol in the presence of Pd and Ag-TiO2 was 0.5 μmol dm-3 min-1 after 60 min of irradiation under visible light, and was five times higher than that of pure TiO2 nanosheets.

  18. Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions.

    PubMed

    Shih, Yang-Hsin; Liu, Wei-Szu; Su, Yuh-Fan

    2012-08-01

    The present study aims to evaluate the effect of inorganic ions on the aggregation kinetics of stabilized titanium dioxide (TiO(2) ) nanoparticle (NP) suspension, an NP mode widely used in consumer goods and in aquatic environments. The point of zero charge of stabilized TiO(2) NPs was approximately pH 6.5. The particle size of the stabilized TiO(2) NP suspensions increased with the increase in salt concentrations. The additional salts caused the shift of zeta potentials of TiO(2) suspensions to a lower value. The TiO(2) NPs aggregated more obviously in the presence of anions than cations, and the effect of divalent anions was larger than that of monovalent anions. The critical coagulation concentration (CCC) values for commercial TiO(2) NP suspensions with positive surfaces were estimated as 290 and 2.3 meq/L for Cl(-) and SO 42-, respectively. These CCC values of stabilized TiO(2) NP suspensions are higher than those of TiO(2) NP powders, indicating greater stability of the commercial stabilized TiO(2) NP suspensions. The effects of commercial TiO(2) NP suspensions still need to be explored and defined. Derjaguin-Landau-Verwey-Overbeek (DLVO) analysis can explain the aggregation behaviors of stabilized TiO(2) NP suspensions. Such an understanding can facilitate the prediction of NP fate in the environment.

  19. A theoretical investigation on photocatalytic oxidation on the TiO2 surface

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoshi; Tsuneda, Takao; Hirao, Kimihiko

    2012-01-01

    The TiO2 photocatalytic oxidation mechanism was theoretically investigated by using long-range corrected time-dependent density functional theory (LC-TDDFT) with a cluster model of the anatase TiO2(001) surface. We found that LC-TDDFT with the cluster model quantitatively reproduces the photoexcitations of the TiO2 surface by calculating the electronic spectra of a clean TiO2 surface and one with oxygen defects. We calculated the electronic spectra of a molecularly adsorbed TiO2 surface for the adsorptions of phenol, methanol, and methane molecules as typical organic molecules. We obtained the surprising result that the main peak of the phenol-adsorbed TiO2 surface, which overlaps with the main peak of the clean TiO2 surface, corresponds to charge transfers from the phenol molecule to the TiO2 surface. This indicates that the TiO2 photocatalytic oxidation proceeds through direct charge transfer excitation from the substrate molecules to the TiO2 surface. In contrast, we found slight and no charge transfer for methanol and methane adsorption, respectively, in agreement with the experimental findings for their reactivities. In light of these results, we propose a new mechanism for heterogeneous TiO2 photocatalytic oxidations.

  20. A theoretical investigation on photocatalytic oxidation on the TiO2 surface.

    PubMed

    Suzuki, Satoshi; Tsuneda, Takao; Hirao, Kimihiko

    2012-01-14

    The TiO(2) photocatalytic oxidation mechanism was theoretically investigated by using long-range corrected time-dependent density functional theory (LC-TDDFT) with a cluster model of the anatase TiO(2)(001) surface. We found that LC-TDDFT with the cluster model quantitatively reproduces the photoexcitations of the TiO(2) surface by calculating the electronic spectra of a clean TiO(2) surface and one with oxygen defects. We calculated the electronic spectra of a molecularly adsorbed TiO(2) surface for the adsorptions of phenol, methanol, and methane molecules as typical organic molecules. We obtained the surprising result that the main peak of the phenol-adsorbed TiO(2) surface, which overlaps with the main peak of the clean TiO(2) surface, corresponds to charge transfers from the phenol molecule to the TiO(2) surface. This indicates that the TiO(2) photocatalytic oxidation proceeds through direct charge transfer excitation from the substrate molecules to the TiO(2) surface. In contrast, we found slight and no charge transfer for methanol and methane adsorption, respectively, in agreement with the experimental findings for their reactivities. In light of these results, we propose a new mechanism for heterogeneous TiO(2) photocatalytic oxidations.

  1. Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution.

    PubMed

    Lian, Zichao; Wang, Wenchao; Xiao, Shuning; Li, Xin; Cui, Yingying; Zhang, Dieqing; Li, Guisheng; Li, Hexing

    2015-06-12

    A plasmonic Ag/TiO2 photocatalytic composite was designed by selecting Ag quantum dots (Ag QDs) to act as a surface plasmon resonance (SPR) photosensitizer for driving the visible-light driven photoelectrocatalytic hydrogen evolution. Vertically oriented hierarchical TiO2 nanotube arrays (H-TiO2-NTAs) with macroporous structure were prepared through a two-step method based on electrochemical anodization. Subsequently, Ag QDs, with tunable size (1.3-21.0 nm), could be uniformly deposited on the H-TiO2 NTAs by current pulsing approach. The unique structure of the as-obtained photoelectrodes greatly improved the photoelectric conversion efficiency. The as-obtained Ag/H-TiO2-NTAs exhibited strong visible-light absorption capability, high photocurrent density, and enhanced photoelectrocatalytic (PEC) activity toward photoelectrocatalytic hydrogen evolution under visible-light irradiation (λ>420 nm). The enhancement in the photoelectric conversion efficiency and activity was ascribed to the synergistic effects of silver and the unique hierarchical structures of TiO2 nanotube arrays, strong SPR effect, and anti-shielding effect of ultrafine Ag QDs.

  2. Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation.

    PubMed

    Wu, Chung-Hsin; Kuo, Chao-Yin; Chen, Shih-Ting

    2013-01-01

    This study synthesized a TiO2/carbon nanotubes (CNTs) composite via the sol-gel method. The surface characteristics of the TiO2/CNTs composite were determined by X-ray diffraction, transmission electron microscopy, specific surface area analyser, ultraviolent (UV)-vis spectroscopy, X-ray photoelectron spectroscopy and Raman spectrometer. The photocatalytic activity ofthe TiO2/CNTs composite was evaluated by decolourizing C.I. Reactive Red 2 (RR2) under visible light irradiation. Furthermore, the effects of calcination temperature, pH, RR2 concentration, and the TiO2/CNTs composite dosage on RR2 decolourization were determined simultaneously. The optimal calcination temperature to generate TiO2 and the TiO2/CNTs composite was 673 K, as the percentage of anatase crystallization at this temperature was highest. The specific surface area of the TiO2/CNTs composite and TiO2 were 45 and 42 m2/g, respectively. The band gap of TiO2 and the TiO2/CNTs composite was 2.97 and 2.71 eV by UV-vis measurements, respectively. Experimental data indicate that the Ti-O-C bond formed in the TiO2/CNTs composite. The RR2 decolourization rates can be approximated by pseudo-first-order kinetics; moreover, only the TiO2/CNTs composite had photocatalytic activity under visible light irradiation. At pH 7, the RR2 decolourization rate constant of 0.5, 1 and 2 g/L TiO2/CNTs addition was 0.005, 0.0015, and 0.0047 min(-1), respectively. Decolourization rate increased as pH and the RR2 concentration decreased. The CNTs functioned as electron acceptors, promoting separation of photoinduced electron-hole pairs to retard their recombination; thus, photocatalytic activity of the TiO2/CNTs composite exceeded that of TiO2.

  3. Enhanced efficiency of dye-sensitized solar cells with novel synthesized TiO2.

    PubMed

    Ju, Ki-Young; Cho, Jung-Min; Cho, Sung-June; Yun, Je-Jung; Mun, Soo-San; Han, Eun-Mi

    2010-05-01

    An anatase TiO2 and three kinds of novel TiO2 nanoparticles were prepared by a hydrothermal method for dye-sensitized solar cells (DSSCs), which were obtained by mixing NaOH (10 M), KOH (14 M) and LiOH (10 M) solution with an anatase TiO2 powder, respectively. The TiO2 working electrodes of DSSCs were prepared and the photoelectric properties of the cells were characterized. The influence of different poly(ethylene glycol) contents in TiO2 films with and without HNO3 treatment on the electron transfer in DSSCs were investigated. It is found that the DSSC with HNO3 (0.002 mol/l)-treated film containing 16.7 wt% PEG shows the higher power conversion efficiency of 6.0%, which was mainly depended on the degrees of TiO2 pore size and uniformity of TiO2 films.

  4. Photocatalytic antibacterial performance of Sn(4+)-doped TiO(2) thin films on glass substrate.

    PubMed

    Sayilkan, Funda; Asiltürk, Meltem; Kiraz, Nadir; Burunkaya, Esin; Arpaç, Ertuğrul; Sayilkan, Hikmet

    2009-03-15

    Pure anatase, nanosized and Sn(4+) ion doped titanium dioxide (TiO(2)) particulates (TiO(2)-Sn(4+)) were synthesized by hydrothermal process. TiO(2)-Sn(4+) was used to coat glass surfaces to investigate the photocatalytic antibacterial effect of Sn(4+) doping to TiO(2) against gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus). Relationship between solid ratio of TiO(2)-Sn(4+) in coatings and antibacterial activity was reported. The particulates and the films were characterized using particle size analyzer, zeta potential analyzer, Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), SEM, AAS and UV/VIS/NIR techniques. The results showed that TiO(2)-Sn(4+) is fully anatase crystalline form and easily dispersed in water. Increasing the solid ratio of TiO(2)-Sn(4+) from 10 to 50% in the coating solution increased antibacterial effect.

  5. 130-fold enhancement of TiO2 photocatalytic activities by ball milling

    NASA Astrophysics Data System (ADS)

    Saitow, Ken-ichi; Wakamiya, Tomoji

    2013-07-01

    Submicrometer TiO2 particles were prepared by changing the mechanochemical parameters in planetary ball milling. The TiO2 particles before and after milling were characterized by five experimental methods. The photocatalytic activities of the TiO2 particles were evaluated by the photoreduction of an aqueous solution of methylene blue. The activity of milled TiO2 was 136 times that of TiO2 (anatase) before milling and 62 times that of commercial available TiO2 photocatalyst (P25). In addition to the reduction in particle size and increase in specific surface area due to milling, the disorder TiO2, involving amorphous and srilankite phases, significantly increased the catalytic performance.

  6. Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures

    PubMed Central

    Cheng, Chun; Amini, Abbas; Zhu, Chao; Xu, Zuli; Song, Haisheng; Wang, Ning

    2014-01-01

    We studied the photocatalytic properties of rational designed TiO2-ZnO hybrid nanostructures, which were fabricated by the site-specific deposition of amorphous TiO2 on the tips of ZnO nanorods. Compared with the pure components of ZnO nanorods and amorphous TiO2 nanoparticles, these TiO2-ZnO hybrid nanostructures demonstrated a higher catalytic activity. The strong green emission quenching observed from photoluminescence of TiO2-ZnO hybrid nanostructures implied an enhanced charge transfer/separation process resulting from the novel type II heterostructures with fine interfaces. The catalytic performance of annealing products with different TiO2 phase varied with the annealing temperatures. This is attributed to the combinational changes in Eg of the TiO2 phase, the specific surface area and the quantity of surface hydroxyl groups. PMID:24566978

  7. Photocatalytic hydrogen generation over lanthanum doped TiO2 under UV light irradiation.

    PubMed

    Liu, Y; Xie, L; Li, Y; Qu, J L; Zheng, J; Li, X G

    2009-02-01

    TiO2 nanoparticles doped with different amount of lanthanum were obtained by sol-gel approach and followed annealing at different temperature. The crystal size of TiO2 doped with lanthanum was smaller than that of pure TiO2. Photocatalytic activity of TiO2 doped with lanthanum for water splitting into H2 was investigated. The photocatalytic activity of TiO2 doped with lanthanum for water splitting into H2 is higher than that of pure TiO2. It was found that the optimal photocatalyst was TiO2 doped with 2 wt% lanthanum and calcined at 600 degrees C for 4 h which had hydrogen generation rate 700.6 micromol h(-1).

  8. Biodistribution and Clearance of TiO2 Nanoparticles in Rats after Intravenous Injection

    PubMed Central

    Elgrabli, Dan; Beaudouin, Remy; Jbilou, Nawel; Floriani, Magali; Pery, Alexandre; Rogerieux, Françoise; Lacroix, Ghislaine

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles are used in many applications. Due to their small size, easy body penetration and toxicological adverse effects have been suspected. Numerous studies have tried to characterize TiO2 translocation after oral, dermal or respiratory exposure. In this study, we focused on TiO2 nanoparticle biodistribution, clearance and toxicological effects after intravenous injection, considering TiO2 translocation in the blood occurs. Using ICP-OES, transmission electron microscopy, and histological methods, we found TiO2 accumulation in liver, lungs and spleen. We estimated TiO2 nanoparticles’ half life in the body to about 10 days. Clinical biomarkers were also quantified for 56 days to identify potential toxicological impact on lungs, blood, liver, spleen and kidneys. Results showed absence of toxicological effects after TiO2 intravenous injection at concentrations of 7.7 to 9.4 mg/kg. PMID:25909957

  9. Study of TiO2 nanotubes as an implant application

    NASA Astrophysics Data System (ADS)

    Hazan, Roshasnorlyza; Sreekantan, Srimala; Mydin, Rabiatul Basria S. M. N.; Abdullah, Yusof; Mat, Ishak

    2016-01-01

    Vertically aligned TiO2 nanotubes have become the primary candidates for implant materials that can provide direct control of cell behaviors. In this work, 65 nm inner diameters of TiO2 nanotubes were successfully prepared by anodization method. The interaction of bone marrow stromal cells (BMSC) in term of cell adhesion and cell morphology on bare titanium and TiO2 nanotubes is reported. Field emission scanning electron microscopy (FESEM) analysis proved interaction of BMSC on TiO2 nanotubes structure was better than flat titanium (Ti) surface. Also, significant cell adhesion on TiO2 nanotubes surface during in vitro study revealed that BMSC prone to attach on TiO2 nanotubes. From the result, it can be conclude that TiO2 nanotubes are biocompatible to biological environment and become a new generation for advanced implant materials.

  10. Reaction pathways of dimethyl phthalate degradation in TiO2-UV-O2 and TiO2-UV-Fe(VI) systems.

    PubMed

    Yuan, Bao-ling; Li, Xiang-zhong; Graham, Nigel

    2008-05-01

    The photocatalytic degradation of dimethyl phthalate (DMP) in aqueous TiO2 suspension under UV illumination has been investigated using oxygen (O2) and ferrate (Fe(VI)) as electron acceptors. The experiments demonstrated that Fe(VI) was a more effective electron acceptor than O2 for scavenging the conduction band electrons from the surface of the catalyst. Some major intermediate products from DMP degradation were identified by HPLC and GC/MS analyses. The analytical results identified dimethyl 3-hydroxyphthalate and dimethyl 2-hydroxyphthalate as the two main intermediate products from the DMP degradation in the TiO2-UV-O2 system, while in contrast phthalic acid was found to be the main intermediate product in the TiO2-UV-Fe(VI) system. These findings indicate that DMP degradation in the TiO2-UV-O2 and TiO2-UV-Fe(VI) systems followed different reaction pathways. An electron spin resonance analysis confirmed that hydroxyl radicals existed in the TiO2-UV-O2 reaction system and an unknown radical species (most likely an iron-oxo species) is suspected to exist in the TiO2-UV-Fe(VI) reaction system. Two pathway schemes of DMP degradation in the TiO2-UV-O2 and TiO2-UV-Fe(VI) reaction systems are proposed. It is believed that the radicals formed in the TiO2-UV-O2 reaction system preferably attack the aromatic ring of the DMP, while in contrast the radicals formed in the TiO2-UV-Fe(VI) reaction systems attack the alkyl chain of DMP.

  11. Visible light catalysis of rhodamine B using nanostructured Fe(2)O(3), TiO(2) and TiO(2)/Fe(2)O(3) thin films.

    PubMed

    Mahadik, M A; Shinde, S S; Mohite, V S; Kumbhar, S S; Moholkar, A V; Rajpure, K Y; Ganesan, V; Nayak, J; Barman, S R; Bhosale, C H

    2014-04-05

    The Fe(2)O(3), TiO(2) and TiO(2)/Fe(2)O(3) composite films are deposited using spray pyrolysis method onto glass and FTO coated substrates. The structural, morphological, optical and photocatalytic properties of Fe(2)O(3), TiO(2) and TiO(2)/Fe(2)O(3) thin films are studied. XRD analysis confirms that films are polycrystalline with rhombohedral and tetragonal crystal structures for Fe2O3 and TiO(2) respectively. The photocatalytic activity was tested for the degradation of Rhrodamine B (Rh B) in aqueous medium. The rate constant (-k) was evaluated as a function of the initial concentration of species. Substantial reduction in concentrations of organic species was observed from COD and TOC analysis. Photocatalytic degradation effect is relatively higher in case of the TiO(2)/Fe(2)O(3) than TiO(2) and Fe(2)O(3) thin film photoelectrodes in the degradation of Rh B and 98% removal efficiency of Rh B is obtained after 20min. The photocatalytic experimental results indicate that TiO(2)/α-Fe(2)O(3) photoelectrode is promising material for removing of water pollutants.

  12. Positive role of incorporating P-25 TiO2 to mesoporous-assembled TiO2 thin films for improving photocatalytic dye degradation efficiency.

    PubMed

    Sreethawong, Thammanoon; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2014-09-15

    In this work, a simple and effective strategy to improve the photocatalytic dye degradation efficiency of the mesoporous-assembled TiO2 nanoparticle thin films by incorporating small contents of commercial P-25 TiO2 during the thin film preparation was developed. The mesoporous-assembled TiO2 nanoparticles were synthesized by a sol-gel method with the aid of a mesopore-directing surfactant, followed by homogeneously mixing with P-25 TiO2 prior to the thin film coating on glass substrate. The mesoporous-assembled TiO2 film with 5 wt.% P-25 TiO2 incorporation and calcined at 400°C provided an improved photocatalytic Acid Black (AB) dye degradation efficiency. The increase in number of coated layers to the optimum four layers of the aforementioned film was found to further improve the degradation efficiency. The recyclability test of this 5 wt.% P-25 TiO2-incorporated mesoporous-assembled TiO2 film with four coated layers revealed that it can be reused for multiple cycles without a requirement of post-treatment while the degradation efficiency was retained.

  13. Bimodal TiO2 Contents of Mare Basalts at Apollo and Luna Sites and Implications for TiO2 Derived from Clementine Spectral Reflectance

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Jolliff, B. L.

    2001-01-01

    A revised algorithm to estimate Ti contents of mare regions centered on Apollo and Luna sites shows a bimodal distribution, consistent with mare-basalt sample data. A global TiO2 map shows abundant intermediate TiO2 basalts in western Procellarum. Additional information is contained in the original extended abstract.

  14. Self-standing Hybrid Nanofibers of TiO2 and TiO2/Hydroxyapatite: Application in Photocatalytic and Photovoltatic Systems

    NASA Astrophysics Data System (ADS)

    Rouhani, Parvaneh

    2012-02-01

    A Hybrid fibers of Hydroxyapatite TiO2, HAp/TiO2 with modified photocatalytic properties were synthesized using a template method. Liquid phase deposition (LPD) technique was employed to grow TiO2 layers on cellulose fibers, followed by deposition of HAp from a pseudo body solution, and finally heat removing the cellulose template. The resulting material has a fibrous structure, mimicking the cellulose fibers shape, and have a typical surface area of 114 m^2/g, compared to 74 m^2/g for pure TiO2 fibers. Adsorption and photocatalytic degradation tests showed that addition of HAp to TiO2 fibers increased the adsorptive from 17% to 35%. Nano particulated TiO2 fibers as one-dimensional long structures were introduced into TiO2 P25 nano particle films using co-electrophoretic deposition. This resulted in less porosity and higher roughness factor of the films that provided more favorable conditions for electron transport. The films used as the photoanode of a dye solar cell (DSC) produced 65% higher photovoltaic efficiency. TiO2 fibers can be excellent binders in single-step, organic-free electrophoretic deposition of TiO2 for DSC photoanode.

  15. Synthesis and characterization of sulfated TiO2 nanorods and ZrO2/TiO2 nanocomposites for the esterification of biobased organic acid.

    PubMed

    Li, Zhonglai; Wnetrzak, Renata; Kwapinski, Witold; Leahy, James J

    2012-09-26

    TiO(2) nanorods and ZrO(2)-modified TiO(2) nanocomposites have been prepared by hydrothermal synthesis and the deposition-precipitation method. Their sulfated products were tested as solid superacid catalysts for the esterification of levulinic acid which was used as a model bio-oil molecule. SEM and TEM characterization showed that TiO(2) nanorods with diameters ranging from 20 to 200 nm and with lengths of up to 5 μm were synthesized by a hydrothermal method at 180 °C. ZrO(2) nanoparticles with the diameters ranging from 10 to 20 nm were evenly deposited on TiO(2) nanorods. IR and XPS results suggested that sulfated ZrO(2)/TiO(2) nanocomposite has higher content of sulfate groups on the surface with a S/(Zr+Ti) ratio of 13.6% than sulfated TiO(2) nanorods with a S/Ti ratio of 4.9%. The HPLC results showed that sulfated ZrO(2)/TiO(2) nanocomposite have enhanced catalytic activity for esterification reaction between levulinic acid and ethanol compared to sulfated TiO(2) nanorods. The conversion of levulinic acid to ethyl levulinate can reach to 90.4% at the reaction temperature of 105 °C after 180 min.

  16. Photocatalytic oxidation of selected gas-phase VOCs using UV light, TiO2, and TiO2/Pd.

    PubMed

    Fujimoto, Tânia M; Ponczek, Milena; Rochetto, Ursula L; Landers, Richard; Tomaz, Edson

    2016-03-30

    Heterogeneous photocatalytic oxidation systems using titanium dioxide (TiO2) have been extensively studied for the removal of several volatile organic compounds (VOCs). The addition of noble metals such as palladium on TiO2 may improve photocatalytic activity by increasing charge separation efficiency. In this work, palladium was impregnated on TiO2 and the efficiency of the new catalyst was tested and compared with that of pure TiO2. Pd was impregnated on TiO2 by the reduction method, using NaBH4, and was characterized by XRD, XPS, UV-Vis, and H2 chemisorption. The photocatalytic tests were performed in an annular coated-wall reactor using octane, isooctane, n-hexane, and cyclohexane at inlet concentrations varying from 100 to 120 ppmv. Compared with pure TiO2 film, the photocatalytic activity of TiO2 impregnated with 1 wt% of palladium was improved. All the aforementioned analytical techniques confirmed the presence of Pd incorporated into the structure of TiO2, and the conversion rates were studied in a broad range of residence times, yielding up to 90 % or higher rates in 40 s of residence time, thus underscoring the relevant contribution of the technology.

  17. Coating stainless steel plates with Ag/TiO2 for chlorpyrifos decontamination

    NASA Astrophysics Data System (ADS)

    Abdel Fattah, Wafa I.; Gobara, Mohammed M.; El-Hotaby, Walid; Mostafa, Sherif F. M.; Ali, Ghareib W.

    2016-05-01

    Spray coatings of either nanosilver (Ag), titanium (TiO2) or nanosilver titanium (Ag/TiO2) on stainless steel substrates prepared by sol-gel process were successfully achieved. The efficiency of the Ag/TiO2 coat onto 316 stainless steel surface towards cloropyrifos degradation as a chemical warfare agent (CWA) was proved. The crystalline structure and morphological characterization, as well as surface roughness measurements, were assessed. X-ray diffraction results proved the crystalline TiO2 anatase phase. The uniform distribution of Ag along with TiO2 nanoparticles was evidenced through transmission electron microscopy and scanning electron microscopy mapping. The hydrophilic nature of individual Ag, TiO2 and Ag/TiO2 coats was proved by contact angle measurements. The loading of Ag nanoparticles influenced positively the Ag/TiO2 coats surface roughness. The photocatalytic cloropyrifos degradation achieved about 50% within one-hour post UV treatment proving, therefore, the promising Ag/TiO2 continued decontamination efficiency. In conclusion, tuning the physical and morphological properties of TiO2 coated on stainless steel surface could be significantly enhanced by Ag nanoparticles incorporation. The developed Ag/TiO2 coat could be conveniently applied as CWA decontaminant.

  18. Anchoring Nitrogen-Doped TiO2 Nanocrystals on Nitrogen-Doped 3D Graphene Frameworks for Enhanced Lithium Storage.

    PubMed

    Liu, Xiao-Wu; Yang, Zhen-Zhong; Pan, Fu-Sen; Gu, Lin; Yu, Yan

    2017-02-03

    An advanced architecture design of nitrogen-doped TiO2 anchored on nitrogen-doped 3D graphene framework composites (denoted as N-TiO2 /N-3D GFs) have been fabricated by a facile template process and further NH3 treatment. The 3D graphene framework allows the electrolyte to penetrate into the inverse opal structure, and possesses high electronic conductivity. The close contact between the N-TiO2 and the graphene suppresses the growth and aggregation of TiO2 nanoparticles during heating process, leading to decreased Li(+) diffusion length. The N-doping in both TiO2 and the graphene matrix could improve the electronic conductivity on the TiO2 particle surface and between adjacent particles. As expected, when used as an anode for Li-ion batteries (LIBs), the N-TiO2 /N-3D GFs composite delivers an excellent reversible capacity of 165 mA h g(-1) after 200 cycles at 100 mA g(-1) and an outstanding rate capability of 114 mA h g(-1) after 1000 cycles at 1 Ag(-1) . With rational design, this strategy could be extended to other electrode materials that may hold great promise for the development of high energy storage systems.

  19. Deactivation of the TiO2 photocatalyst by coupling with WO3 and the electrochemically assisted high photocatalytic activity of WO3.

    PubMed

    Tada, Hiroaki; Kokubu, Akio; Iwasaki, Mitsunobu; Ito, Seisihro

    2004-05-25

    Patterned TiO2 stripes were formed on a sol-gel crystalline WO3 film by using a chemically modified sol-gel method (pat-TiO2/WO3), and the coupling effect on the photocatalytic activity was studied. Although the photoinduced electron transfer from TiO2 to WO3 was confirmed by labeling and visualization of the reduction sites with Ag particles, the photocatalytic activities of TiO2 for both the gas-phase oxidation of CH3CHO and the liquid-phase oxidation of 2-naphthol decreased significantly with the coupling. This finding was rationalized in terms of the decrease in the rate of the electron transfer from the semiconductor-(s) to 02 with the coupling, which was estimated from the kinetic analysis of the photopotential relaxation. When the excited electrons were removed by a SnO2 underlayer, the WO3 film exhibited a high photocatalytic activity exceeding that of TiO2 for the oxidation of 2-naphthol.

  20. Enhanced Dispersion of TiO2 Nanoparticles in a TiO2/PEDOT:PSS Hybrid Nanocomposite via Plasma-Liquid Interactions

    PubMed Central

    Liu, Yazi; Sun, Dan; Askari, Sadegh; Patel, Jenish; Macias-Montero, Manuel; Mitra, Somak; Zhang, Richao; Lin, Wen-Feng; Mariotti, Davide; Maguire, Paul

    2015-01-01

    A facile method to synthesize a TiO2/PEDOT:PSS hybrid nanocomposite material in aqueous solution through direct current (DC) plasma processing at atmospheric pressure and room temperature has been demonstrated. The dispersion of the TiO2 nanoparticles is enhanced and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased electrical conductivity was observed for the plasma treated TiO2/PEDOT:PSS nanocomposite. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are proposed to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer binding. PMID:26497265

  1. A TiO2/CNT coaxial structure and standing CNT array laminated photocatalyst to enhance the photolysis efficiency of TiO2.

    PubMed

    Wang, Gou-Jen; Lee, Ming-Way; Chen, Yi-Hong

    2008-01-01

    In this study a TiO2/CNT coaxial structure and standing CNT array laminated photocatalyst to enhance the photolysis efficiency of TiO2 is presented. An electrochemical bath that used a nanoporous anodic aluminum oxide membrane as the separation grating to separate two vessels with a transmembrane concentration gradient was constructed. The catalyzed photolysis efficiency was measured in terms of the photolysis-induced ion current. The experimental results demonstrate that the photolysis efficiency of TiO2 could be increased by the high electron conductibility of the standing CNT array. The experimental results also indicate that photolysis efficiency could be enhanced by increasing the height of the standing CNT array substrate; however, it degraded as the thickness of the TiO2/CNT coaxial structure and the TiO2 shell increased.

  2. A computational study of the TiO2 molecule

    NASA Technical Reports Server (NTRS)

    Ramana, M. V.; Phillips, D. H.

    1988-01-01

    A computational investigation of the ground 1A1 and lowest energy B2 states of the titanium dioxide molecule has been carried out. The treatment utilized SCF calculations in an extended basis followed by a CI treatment for each geometry. The ground state geometry agrees well with experiment, while the agreement between the computed vibrational frequency nu1 and the experimental value for a matrix isolated TiO2 is less satisfactory. Population analysis for the ground state indicates less than one excess electron on each oxygen atom. The first excited state has a linear geometry and the singlet and triplet are essentially degenerate.

  3. Immobilization of TiO2 nanofibers on reduced graphene sheets: Novel strategy in electrospinning.

    PubMed

    Pant, Hem Raj; Adhikari, Surya Prasad; Pant, Bishweshwar; Joshi, Mahesh K; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2015-11-01

    A simple and efficient approach is developed to immobilize TiO2 nanofibers onto reduced graphene oxide (RGO) sheets. Here, TiO2 nanofiber-intercalated RGO sheets are readily produced by two-step procedure involving the use of electrospinning process to fabricate TiO2 precursor containing polymeric fibers on the surface of GO sheets, followed by simultaneous TiO2 nanofibers formation and GO reduction by calcinations. GO sheets deposited on the collector during electrospinning/electrospray can act as substrate on to which TiO2 precursor containing polymer nanofibers can be deposited which give TiO2 NFs doped RGO sheets on calcinations. Formation of corrugated structure cavities of graphene sheets decorated with TiO2 nanofibers on their surface demonstrates that our method constitutes an alternative top-down strategy toward fabricating verities of nanofiber-decorated graphene sheets. It was found that the synthesized TiO2/RGO composite revealed a remarkable increased in photocatalytic activity compared to pristine TiO2 nanofibers. Therefore, engineering of TiO2 nanofiber-intercalated RGO sheets using proposed facile technique can be considered a promising method for catalytic and other applications.

  4. TiO2 coated microfluidic devices for recoverable hydrophilic and hydrophobic patterns

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Hyung; Kim, Sang Kyung; Park, Hyung-Ho; Kim, Tae Song

    2015-03-01

    We report a simple method for modifying the surfaces of plastic microfluidic devices through dynamic coating process with a nano-colloidal TiO2 sol. The surface of the thermoplastic, cyclic olefin copolymer (COC) was coated with the TiO2 film, that displayed an effective photocatalytic property. The hydrophilic surface is obtained in the TiO2-coated zone of a microfluidic channel, and TiO2 coated surface degradation can be reversed easily by UV irradiation. The present work shows a photocatalytic activity concerning the effect of TiO2 coating density, which is controlled by the number of coating cycles. The hydrophilized surface was characterized by the contact angle of water and the TiO2 coated COC surface reduced the water contact angle from 85° to less than 10° upon UV irradiation. The photocatalytic effect of the layer that was coated five times with TiO2 was excellent, and the super-hydrophilicity of the TiO2 surface could be promptly recovered after 10 months of storage at atmospheric conditions. The COC microfluidic devices, in which TiO2 has been freshly deposited and aged for 10 months, were capable of generating water-in oil-in water (W/O/W) double emulsions easily and uniformly by simple control of the flow rates for demonstration of excellent hydrophilic patterning and recovery of the TiO2 coated in the microchannels.

  5. Surface Properties and Catalytic Performance of Activated Carbon Fibers Supported TiO2 Photocatalyst

    NASA Astrophysics Data System (ADS)

    Yang, Huifen; Fu, Pingfeng

    Activated carbon fibers supported TiO2 photocatalyst (TiO2/ACF) in felt-form was successfully prepared with a dip-coating process using organic silicon modified acrylate copolymer as a binder followed by calcination at 500°C in a stream of Ar gas. The photocatalyst was characterized by SEM, XRD, XPS, FTIR, and BET surface area. Most of carbon fibers were coated with uniformly distributed TiO2 clusters of nearly 100 nm. The loaded TiO2 layer was particulate for the organic binder in the compact film was carbonized. According to XPS and FTIR analysis, amorphous silica in carbon grains was synthesized after carbonizing organic silicon groups, and the Ti-O-Si bond was formed between the interface of loaded TiO2 and silica. Additionally, the space between adjacent carbon fibers still remained unfilled after TiO2 coating, into which both UV light and polluted solutions could penetrate to form a three-dimensional environment for photocatalytic reactions. While loaded TiO2 amount increased to 456 mg TiO2/1 g ACF, the TiO2/ACF catalyst showed its highest photocatalytic activity, and this activity only dropped about 10% after 12 successive runs, exhibiting its high fixing stability of coated TiO2.

  6. Improved photoelectrical performance of graphene supported highly crystallized anatase TiO2

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Sun, Qiong; Zhao, Mei; Li, Yang; Liu, Qiuhong; Dong, Lifeng

    2015-08-01

    In this study, titanium oxysulfate (TiOSO4) and graphene were used as titanium source and supporter, respectively, to synthesize anatase TiO2-graphene (TiO2-G) composite. Crystal structure, morphology, and composition of TiO2-G were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope, and thermogravimetric analysis. Both TiO2-G and blank TiO2 powders exhibit spindle-shaped structure with the long axis along [001]. Compared to unsupported TiO2, TiO2 nanoparticles uniformly formed on graphene surface. When fabricated into dye-sensitized solar cells, photoelectrical conversion efficiency of TiO2-G (2.3 %) was much higher than that of blank TiO2 (0.89 %) prepared at the same conditions. Moreover, high sintering temperature enhanced photoelectrical performance of the composite. When the temperature was increased from 450 to 600 °C, the efficiency was improved from 1.5 to 2.6 %. The findings above demonstrate that TiO2-G has great potential for applications in dye-sensitized solar cells.

  7. Activity of Laccase Immobilized on TiO2-Montmorillonite Complexes

    PubMed Central

    Wang, Qingqing; Peng, Lin; Li, Guohui; Zhang, Ping; Li, Dawei; Huang, Fenglin; Wei, Qufu

    2013-01-01

    The TiO2-montmorillonite (TiO2-MMT) complex was prepared by blending TiO2 sol and MMT with certain ratio, and its properties as an enzyme immobilization support were investigated. The pristine MMT and TiO2-MMT calcined at 800 °C (TiO2-MMT800) were used for comparison to better understand the immobilization mechanism. The structures of the pristine MMT, TiO2-MMT, and TiO2-MMT800 were examined by HR-TEM, XRD and BET. SEM was employed to study different morphologies before and after laccase immobilization. Activity and kinetic parameters of the immobilized laccase were also determined. It was found that the TiO2 nanoparticles were successfully introduced into the MMT layer structure, and this intercalation enlarged the “d value” of two adjacent MMT layers and increased the surface area, while the calcination process led to a complete collapse of the MMT layers. SEM results showed that the clays were well coated with adsorbed enzymes. The study of laccase activity revealed that the optimum pH and temperature were pH = 3 and 60 °C, respectively. In addition, the storage stability for the immobilized laccase was satisfactory. The kinetic properties indicated that laccase immobilized on TiO2-MMT complexes had a good affinity to the substrate. It has been proved that TiO2-MMT complex is a good candidate for enzyme immobilization. PMID:23771020

  8. The Visible-Light Photocatalytic Activity and Antibacterial Performance of Ag/AgBr/TiO2 Immobilized on Activated Carbon.

    PubMed

    Yang, Lu; Ye, Fangyun; Liu, Peng; Wang, Fazhou

    2016-11-01

    Visible-light-driven Ag/AgBr/TiO2 /activated carbon (AC) composite was prepared by solgel method coupled with photoreduction method. For comparison, TiO2 , TiO2 /AC, and Ag/AgBr/TiO2 were also synthesized. Their characteristics were analyzed by XRD, SEM-EDS, TG-DSC and UV-vis techniques. Photocatalytic activity and antibacterial performance under visible-light irradiation were investigated by ICP-AES, ATR-FT-IR and spectrophotometry methods using methylene blue and Escherichia coli as target systems, respectively. The results showed that Ag/AgBr was successfully deposited on anatase TiO2 /AC surface, and exhibited a distinct light absorption in the visible region. Ag/AgBr/TiO2 /AC displayed excellent antibacterial performance both in dark and under visible-light illumination. The growth of E. coli cell was inhibited in the presence of Ag/AgBr/TiO2 /AC in dark. Moreover, upon visible-light illumination, a significant damage of cell membrane was noticed. Ag/AgBr/TiO2 /AC was also shown higher photocatalytic efficiency for methylene blue degradation than those of TiO2 , TiO2 /AC, and Ag/AgBr/TiO2 . This is attributed to the synergetic effect between AC and Ag/AgBr/TiO2 , of which AC acts as the role of increasing reaction areas, continuous enriching, and transferring the adsorbed MB molecules to the surface of supported photocatalysts, and the Ag/AgBr/TiO2 acts as a highly active photocatalyst for degrading MB molecules under visible-light irradiation.

  9. Photocatalytic degradation properties of V-doped TiO2 to automobile exhaust.

    PubMed

    Wang, Tong; Shen, Dongya; Xu, Tao; Jiang, Ruiling

    2017-05-15

    To improve the photocatalytic degradation properties of titanium dioxide (TiO2) used as raw materials for purifying automobile exhaust (AE), the vanadium (V)-doped TiO2 samples were prepared. The photocatalytic degradation efficiencies of V-doped TiO2 to each component in AE were evaluated under ultraviolet (UV) and visible light irradiation, respectively. Results indicated that the photocatalytic activity of V-doped TiO2 to AE was higher than that of pure TiO2, and the optimal V dopant content of TiO2 was 1.0% under UV light irradiation. The degradation efficiencies of V-doped TiO2 to NOx and HC were higher than those to CO2 and CO in AE because of the reversible reaction between CO2 and CO. In addition, it was found that the photocatalytic degradation efficiencies of V-doped TiO2 to each component in AE were also increased under visible light irradiation. The V-doped TiO2 also showed higher degradation efficiencies to NOx and HC than those to CO2 and CO under visible light irradiation. The V doped TiO2 presented higher photocatalytic activity to CO2 than that to CO, but the reversible reaction between CO and CO2 was not found under visible light irradiation. The photocatalytic reactions of pure and V-doped TiO2 samples to each component in AE followed the first order kinetic pathway under the two light irradiations. It is concluded that the V doping is a feasible method to improve the photocatalytic degradation properties of TiO2 to AE for air purification, developing a sustainable environmental purification technology based on TiO2 materials.

  10. Hyaluronic acid immobilization on the poly-allylamine coated nano-network TiO2 surface.

    PubMed

    Shim, Jae-Won; Lee, Kang; Jeong, Moon-Jin; Jung, Sang-Chul; Kim, Byung-Hoon

    2011-08-01

    Recently, biocompatibility report revealed that the TiO2 nano-network (TiO2 NT) structure has much higher cells colonization than the native TiO2 on Ti surface. In this study, we prepared the hyaluronic acid (HA) immobilized TiO2 NT layer by plasma surface modification and then evaluated biological behavior of MC3T3-E1 on the Ti, TiO2 NT and TiO2 NT/NH2/HA surface. The cell viability tests revealed slightly enhanced viability on the TiO2 NT/NH2/HA surfaces than on the untreated Ti surfaces.

  11. Ultrasensitive photoelectrochemical immunoassay for CA19-9 detection based on CdSe@ZnS quantum dots sensitized TiO2NWs/Au hybrid structure amplified by quenching effect of Ab2@V(2+) conjugates.

    PubMed

    Zhu, Hua; Fan, Gao-Chao; Abdel-Halim, E S; Zhang, Jian-Rong; Zhu, Jun-Jie

    2016-03-15

    A novel, enhanced photoelectrochemical immunoassay was established for sensitive and specific detection of carbohydrate antigen 19-9 (CA19-9, Ag). In this protocol, TiO2 nanowires (TiO2NWs) were first decorated with Au nanoparticles to form TiO2NWs/Au hybrid structure, and then coated with CdSe@ZnS quantum dots (QDs) via the layer-by-layer method, producing TiO2NWs/Au/CdSe@ZnS sensitized structure, which was employed as the photoelectrochemical matrix to immobilize capture CA19-9 antibodies (Ab1); whereas, bipyridinium (V(2+)) molecules were labeled on signal CA19-9 antibodies (Ab2) to form Ab2@V(2+) conjugates, which were used as signal amplification elements. The TiO2NWs/Au/CdSe@ZnS sensitized structure could adequately absorb light energy and dramatically depress electron-hole recombination, resulting in evidently enhanced photocurrent intensity of the immunosensing electrode. While target Ag were detected, the Ab2@V(2+) conjugates could significantly decrease the photocurrent detection signal because of strong electron-withdrawing property of V(2+) coupled with evident steric hindrance of Ab2. Thanks to synergy effect of TiO2NWs/Au/CdSe@ZnS sensitized structure and quenching effect of Ab2@V(2+) conjugates, the well-established photoelectrochemical immunoassay exhibited a low detection limit of 0.0039 U/mL with a wide linear range from 0.01 U/mL to 200 U/mL for target Ag detection. This proposed photoelectrochemical protocol also showed good reproducibility, specificity and stability, and might be applied to detect other important biomarkers.

  12. Antibacterial effect of silver modified TiO2/PECVD films

    NASA Astrophysics Data System (ADS)

    Hájková, P.; Patenka, P. Å.; Krumeich, J.; Exnar, P.; Kolouch, A.; Matoušek, J.; Kočí, P.

    2009-08-01

    This paper deals with photocatalytic activity of silver treated TiO2 films. The TiO2 films were deposited on glass substrates by plasma enhanced chemical vapor deposition (PECVD) in a vacuum reactor with radio frequency (RF) low temperature plasma discharge in the mixture of oxygen and titanium isopropoxide vapors (TTIP). The depositions were performed under different deposition conditions. Subsequently, the surface of TiO2 films was modified by deposition of silver nanoparticles. Photocatalytic activity of both silver modified and unmodified TiO2 films was determined by decomposition of the model organic matter (acid orange 7). Selected TiO2 samples were used for tests of antibacterial activity. These tests were performed on Gram-negative bacteria Escherichia coli. The results clearly proved that presence of silver clusters resulted in enhancement of the photocatalytic activity, which was up to four times higher than that for pure TiO2 films.

  13. Microwave irradiation induced band gap tuning of MoS2-TiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Shakya, Jyoti; Mohanty, T.

    2016-05-01

    The MoS2-TiO2 nanocomposites have been synthesized by sol-gel method and characterized by different microscopic and spectroscopic techniques. The crystallinity of these nanocomposites has been confirmed by X-ray diffraction (XRD) analysis. The Raman spectrum of MoS2-TiO2 nanocomposites consists of three distinct peaks (E1 g, E1 2g and A1g) which are associated with TiO2 and MoS2. The morphological study is carried out by scanning electron microscope. The effect of microwave irradiation on the band gap of MoS2-TiO2 nanocomposites has been investigated; it is observed that the microwave irradiation causes decrease in the band gap of MoS2-TiO2 nanocomposites. The microwave treated MoS2-TiO2 thin films offers a novel process route in treating thin films for commercial applications.

  14. Engineering of highly ordered TiO2 nanopore arrays by anodization

    NASA Astrophysics Data System (ADS)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  15. Photocatalytic degradation of monoethanolamine in wastewater using nanosized TiO2 loaded on clinoptilolite

    NASA Astrophysics Data System (ADS)

    Khodadoust, Saeid; Sheini, Azarmidokht; Armand, Nezam

    2012-06-01

    The use of titanium dioxide (TiO2) as photocatalyst to degrade the organic compounds is an effective method of oxidation process and has been widely studied in environmental engineering. In this investigation photocatalytic degradation of monoethanolamine (MEA) using TiO2 (in form of anatase) loaded on surface of clinoptilolite (CP) (TiO2-CP) in wastewater was studied. The surface interaction between TiO2 and CP was investigated by means of transmission electron microscope (TEM), atom force microscope (AFM), IR and X-ray diffraction (XRD). Then the effects of some parameters such as pH, amount of photocatalyst, and initial concentration of MEA on degradation percentage of MEA were examined. The obtained results show that the TiO2-CP is an active photocatalyst as compared with TiO2 nanopowders. All these results indicated that this proposed method can be useful for the development of wastewater treatment applications.

  16. Structural and Optical Characterization of Synthesized TiO2 Nanopowder Using Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Lourduraj, S.; Williams, R. Victor

    2016-02-01

    The nanocrystalline TiO2 powder was synthesized by sol-gel method. The XRD analysis reveals that TiO2 powder was highly crystalline (anatase phase) and nanostructured with tetragonal system. The average crystallite size after calcined at 673K is found to be 7.7nm. The surface morphological studies using scanning electron microscopy (SEM) exhibit that the formation of nanosized TiO2 particles with less densification nature. Atomic force microscopy (AFM) topography exhibits the uniform distribution of spherical-shaped particles. The energy dispersive X-ray spectroscopy (EDX) confirms the presence of Titanium and Oxygen in synthesized TiO2 nanopowder. The value of optical bandgap of TiO2 nanopowder calculated from UV-Visible spectrum is 3.45eV. The presence of TiO2 particles is confirmed from the dominant fourier transform infrared (FTIR) peaks at 621cm-1 and 412cm-1.

  17. Surface Treatment for Effective Dye Adsorption on Nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Yanagida, Masatoshi; Han, Chen; Han, Liyuan

    2012-10-01

    To improve the efficiency of dye-sensitized solar cells (DSCs) by controlling dye adsorption on TiO2 surface, the effect of surface treatments on the properties of [NBu4]2[Ru(Htcterpy)(NCS)3] (black dye; [NBu4]: tetrabutylammonium cation; H3tcterpy: 4,4',4''-tricarboxy-2,2':6',2''-terpyridine) on nanocrystalline TiO2 films was investigated by analysis of the photovoltaic performance and the electron transport properties. Although the surface treatments do not affect on the condition band edge of TiO2, the amount of dye on TiO2 increases. The enhancement of dye adsorption by treatment of TiO2 in HCl solution is more effective than that by dipping the dye solution containing deoxycholic acid (DCA) as additive. But the charge recombination between an electron in TiO2 and I3- in the electrolyte can be reduced by the DCA treatment.

  18. Review of the progress in preparing nano TiO2: an important environmental engineering material.

    PubMed

    Wang, Yan; He, Yiming; Lai, Qinghua; Fan, Maohong

    2014-11-01

    TiO2 nanomaterial is promising with its high potential and outstanding performance in photocatalytic environmental applications, such as CO2 conversion, water treatment, and air quality control. For many of these applications, the particle size, crystal structure and phase, porosity, and surface area influence the activity of TiO2 dramatically. TiO2 nanomaterials with special structures and morphologies, such as nanospheres, nanowires, nanotubes, nanorods, and nanoflowers are thus synthesized due to their desired characteristics. With an emphasis on the different morphologies of TiO2 and the influence factors in the synthesis, this review summarizes fourteen TiO2 preparation methods, such as the sol-gel method, solvothermal method, and reverse micelle method. The TiO2 formation mechanisms, the advantages and disadvantages of the preparation methods, and the photocatalytic environmental application examples are proposed as well.

  19. Ammonia sensing behaviors of TiO2-PANI/PA6 composite nanofibers.

    PubMed

    Wang, Qingqing; Dong, Xianjun; Pang, Zengyuan; Du, Yuanzhi; Xia, Xin; Wei, Qufu; Huang, Fenglin

    2012-12-12

    Titanium dioxide-polyaniline/polyamide 6 (TiO(2)-PANI/PA6) composite nanofibers were prepared by in situ polymerization of aniline in the presence of PA6 nanofibers and a sputtering-deposition process with a high purity titanium sputtering target. TiO(2)-PANI/PA6 composite nanofibers and PANI/PA6 composite nanofibers were fabricated for ammonia gas sensing. The ammonia sensing behaviors of the sensors were examined at room temperature. All the results indicated that the ammonia sensing property of TiO(2)-PANI/PA6 composite nanofibers was superior to that of PANI/PA6 composite nanofibers. TiO(2)-PANI/PA6 composite nanofibers had good selectivity to ammonia. It was also found that the content of TiO(2) had a great influence on both the morphology and the sensing property of TiO(2)-PANI/PA6 composite nanofibers.

  20. Effect of calcination temperature on the photocatalytic properties of electrospun TiO2 nanofibers.

    PubMed

    Lee, Young-In; Lee, Jong-Sik; Park, Eun-Sil; Jang, Dae-Hwan; Lee, Jae-Eun; Kim, Kahee; Myung, Nosang V; Choa, Yong-Ho

    2014-10-01

    In this study, TiO2 nanofibers with a high aspect ratio and a large specific surface area were synthesized using the electrospinning technique, and the effect of calcination temperature on their crystal structure, diameter, specific surface area and photocatalytic activity was systematically investigated. The electrospun, as-prepared PVP/TTIP nanofibers were several tens of micrometers in length with a diameter of 74 nm. TiO2 nanofibers with an average diameter of 50 nm were prepared after calcination at various temperatures. The calcination temperature significantly influenced the photocatalytic and material properties of TiO2 including grain size and specific surface area. When compared to other nanostructured TiO2 materials, such as commercial TiO2 nanoparticles (P25, Degussa), the TiO2 nanofibers exhibited greater photocatalytic activity for the degradation of acetaldehyde and ammonia.

  1. Effect of TiO2 pigment gradation on the properties of thermal insulation coatings

    NASA Astrophysics Data System (ADS)

    Shen, Lu-wei; Zhang, Ya-mei; Zhang, Pei-gen; Shi, Jin-jie; Sun, Zheng-ming

    2016-12-01

    This study was designed to evaluate the thermal performance and mechanical properties of coatings with different gradations of TiO2 pigments. The solar reflectance, cooling performance, wash resistance, and film adhesion strength of the coatings were investigated. The influence of TiO2 powder gradation on the final properties of the coatings was studed. The solar reflectance and the thermal insulation were observed to increase with increasing content of nanosized TiO2. The mechanical properties of the coatings, such as their wash resistance and film adhesion strength, were observed to increase with increased incorporation of nanosized TiO2. Such improvements in the properties of the coatings were attributed to the greater specific surface area and lower thermal conductivity of nanosized TiO2 particles compared to normal TiO2 particles.

  2. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.

    2016-04-01

    Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.

  3. In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2-graphene with enhanced photocatalytic activity.

    PubMed

    Jiang, Baojiang; Tian, Chungui; Zhou, Wei; Wang, Jianqiang; Xie, Ying; Pan, Qingjiang; Ren, Zhiyu; Dong, Youzhen; Fu, Dan; Han, Jiale; Fu, Honggang

    2011-07-18

    We present a facile route for the preparation of TiO(2)-graphene composites by in situ growth of TiO(2) in the interlayer of inexpensive expanded graphite (EG) under solvothermal conditions. A vacuum-assisted technique combined with the use of a surfactant (cetyltrimethylammonium bromide) plays a key role in the fabrication of such composites. Firstly, the vacuum environment promotes full infusion of the initial solution containing Ti(OBu)(4) and the surfactant into the interlayers of EG. Subsequently, numerous TiO(2) nanoparticles uniformly grow in situ in the interlayers with the help of the surfactant, which facilitates the exfoliation of EG under the solvothermal conditions in ethanol, eventually forming TiO(2)-graphene composites. The as-prepared samples have been characterized by Raman and FTIR spectroscopies, SEM, TEM, AFM, and thermogravimetic analysis. It is shown that a large number of TiO(2) nanoparticles homogeneously cover the surface of high-quality graphene sheets. The graphene exhibits a multi-layered structure (5-7 layers). Notably, the TiO(2)-graphene composite (only 30 wt % of which is TiO(2)) synthesized by subsequent thermal treatment at high temperature under nitrogen shows high photocatalytic activity in the degradation of phenol under visible and UV lights in comparison with bare Degussa P25. The enhanced photocatalytic performance is attributed to increased charge separation, improved light absorbance and light absorption width, and high adsorptivity for pollutants.

  4. Photocatalytical removal of fluorouracil using TiO2-P25 and N/S doped TiO2 catalysts: A kinetic and mechanistic study.

    PubMed

    Koltsakidou, Α; Antonopoulou, M; Εvgenidou, Ε; Konstantinou, I; Giannakas, A E; Papadaki, M; Bikiaris, D; Lambropoulou, D A

    2017-02-01

    In the present study, the photocatalytic activity of TiO2-based photocatalysts toward degradation and mineralization of the anti-cancer drug 5-fluorouracil (5-FU) in aqueous phase was investigated under simulated solar and visible irradiation. Commercial TiO2 (P25) and N/S-doped TiO2 catalysts synthesized by a simple sol-gel method were used as photocatalysts. TiO2 P-25 was found to be the most photoactive catalyst for the removal of 5-FU, under simulated solar irradiation. Among N/S-doped TiO2 catalysts, the one with molar Ti:N/S ratio equal to 0.5 was the most efficient under simulated solar irradiation. In contrast, under visible irradiation the catalyst with equimolar Ti:N/S ratio showed the highest performance for the removal of 5-FU. Scavenging experiments revealed that HO radicals and h(+) were the major reactive species mediating photocatalytic degradation of 5-FU using TiO2 P-25 and N/S-doped TiO2 catalysts, under simulated solar irradiation. On the other hand, the essential contribution of (1)O2 and O2(-) in the degradation of 5-FU under visible light was proved. The transformation products (TPs) of 5-FU, were identified by LC-MS-TOF suggesting that defluorination followed by hydroxylation and oxidation are the main transformation pathways, under all the studied photocatalytic systems.

  5. Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles.

    PubMed

    Nahar, Mst Shamsun; Hasegawa, Kiyoshi; Kagaya, Shigehiro

    2006-12-01

    Fe-doped TiO2 was prepared by the calcination of Fe(x)TiS(2) (x=0, 0.002, 0.005, 0.008, 0.01) and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible diffuse reflectance spectra. All the Fe-doped TiO2 were composed of an anatase crystal form and showed red shifts to a longer wavelength. The activity of the Fe-doped TiO2 for the degradation of phenol was investigated by varying the iron content during UV (365nm) and visible light (405nm and 436nm) irradiation. The degradation rate depended on the Fe content and the Fe-doped TiO2 was responsive to the visible light as well as the elevated activity toward UV light. The molar ratio of 0.005 was the optimum for both the UV and visible light irradiations. The result was discussed on the basis of the balance of the excited electron-hole trap by the doped Fe(3+) and their charge recombination on the doped Fe(3+) level. The Fe-doped TiO2 (x=0.005) was more active than P25 TiO2 under solar light irradiation. The suspended Fe-doped TiO2 spontaneously precipitated once the stirring of the reaction mixture was terminated.

  6. One-pot synthesis of peacock-shaped TiO2 light scattering layer with TiO2 nanorods film for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Sik; Kim, Young-Jea; Lee, Wonjoo; Kang, Soon Hyung

    2013-05-01

    A titanium dioxide (TiO2) film, showing distinctive functions and morphology, was prepared using the hydrothermal method by controlling the ratio of HCl:CH3COOH in acidic medium. A one-dimensional (1-D) TiO2 nanorod (NR) film was synthesized with a length of 2 μm using a 1:2 ratio of HCl:CH3COOH, whereas a 1-D TiO2 NR film with peacock shaped TiO2 nanobundles as a light scattering layer (LSL) was acquired by employing a 2:1 ratio of HCl:CH3COOH. This LSL exhibited remarkable dual functions with respect to high light harvesting, which was attributable to the large surface area of the micrometer-sized TiO2 nanobundles, consisting of small-sized TiO2 NRs of 30-40 nm in diameter and a light scattering effect in the long wavelength region of 550-700 nm. Accordingly, the dual functions of the LSL resulted in a sharp increase in conversion efficiency (3.93%) that was about twice that (1.49%) of TiO2 NR film synthesized using a 1:2 ratio of HCl:CH3COOH. In particular, a considerably enhanced short-circuit photocurrent (Jsc) was mainly responsible for the resulting increase in overall efficiency with a moderate increase in fill factor and slightly reduced open-circuit voltage.

  7. Tunable TiO2 Nanotube Arrays for Flexible Bio-Sensitized Solar Cells

    DTIC Science & Technology

    2012-08-01

    Tunable TiO2 Nanotube Arrays for Flexible Bio-Sensitized Solar Cells by Joshua J. Martin, Mark H. Griep, Anit Giri, Samuel G. Hirsch... Tio2 Nanotube Arrays for Flexible Bio-Sensitized Solar Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...pathway vs. TiO2 nanoparticles in dye-sensitized solar cell (DSSC) designs. TiNT arrays prepared by electrochemical anodization of Ti foils and

  8. [TiO2-Induced Photodegradation of Levofloxacin by Visible Light and Its Mechanism].

    PubMed

    Guo, Hong-sheng; Liu, Ya-nan; Qiao, Qi; Wei, Hong; Dong, Cheng-xing; Xue, Jie; Li, Ke-bin

    2015-05-01

    Levofloxacin is an emerging pollutant. Single levofloxacin and TiO2 have no visible-light activity. However, photodegradation of levofloxacin dramatically enhanced in the presence of TiO2 under visible light irradiation. Considering this finding, he photodegradation of levofloxacin over TiO2 was investigated under visible light irradiation. Effects of TiO2 dosage, levofloxacin concentration, and solution pH on levofloxacin photodegradation were examined by monitoring its concentration decay with time. The results showed that levofloxacin photodegradation fitted the Langmuir-Hinshelwood kinetic model. Solution pH, TiO2 dose, and levofloxacin concentration had significant effects on the photodegradation rates. In addition, batch adsorption experiments revealed that adsorption of levofloxacin on TiO2 conformed to the pseudo-second-order kinetics and the Langmuir isotherm. DRS spectrum of levofloxacin-adsorbed TiO2 suggested that a surface complex was formed between levofloxacin and TiO2. Addition of radical scavengers and N2-degassing affecting levofloxacin photodegradation indicated that the superoxide ion radical was mainly active species. UV-Vis spectra of a deaerated TiO2 and levofloxacin suspensions further confirmed that the electron injection into TiO2 conduction band took place under visible light irradiation. Based on these results, a charge-transfer mechanism initiated by photoexcitation of TiO2/ levofloxacin surface complex was proposed for levofloxacin photocatalytic degradation over TiO2 under visible light. This study indicates that the charge-transfer-complex-mediated photocatalytic technique has promising applications in the removal of colorless organic pollutants.

  9. Rapid detection of TiO2 (E171) in table sugar using Raman spectroscopy.

    PubMed

    Tan, Chen; Zhao, Bin; Zhang, Zhiyun; He, Lili

    2017-02-01

    The potential toxic effects of titanium dioxide (TiO2) to humans remain debatable despite its broad application as a food additive. Thus, confirmation of the existence of TiO2 particles in food matrices and subsequently quantifying them are becoming increasingly critical. This study developed a facile, rapid (< 30 min) and highly reliable method to detect and quantify TiO2 particles (E171) from food products (e.g., table sugar) by Raman spectroscopy. To detect TiO2 particles from sugar solution, sequential centrifugation and washing procedures were effectively applied to separate and recover 97% of TiO2 particles from the sugar solution. The peak intensity of TiO2 sensitively responded to the concentration of TiO2 with a limit of detection (LOD) of 0.073 mg kg(-1). In the case of sugar granules, a mapping technique was applied to directly estimate the level of TiO2, which can be potentially used for rapid online monitoring. The plot of averaged intensity to TiO2 concentration in the sugar granules exhibited a good linear relationship in the wide range of 5-2000 mg kg(-1), with an LOD of 8.46 mg kg(-1). Additionally, we applied Raman spectroscopy to prove the presence of TiO2 in sugar-coated doughnuts. This study begins to fill in the analytical gaps that exist regarding the rapid detection and quantification of TiO2 in food, which facilitate the risk assessment of TiO2 through food exposure.

  10. Photoresponse and Donor Concentration of Plasma-Sprayed TiO2 and TiO2-ZnO Electrodes

    NASA Astrophysics Data System (ADS)

    Ye, F.-X.; Ohmori, A.; Li, C.-J.

    2005-12-01

    The photoelectrochemical characteristics of plasma-sprayed porous TiO2, TiO2-5%ZnO, and TiO2-10%ZnO electrodes in 0.1 N NaOH solution were studied through a three-electrode cell system. The microstructure, morphology, and composition of the electrodes were analyzed using an electron probe surface roughness analyzer (ERA-8800FE), scanning electron microscopy, and x-ray diffraction. The results indicate that the sprayed electrodes have a porous microstructure, which is affected by the plasma spray parameters and composition of the powders. The TiO2-ZnO electrodes consist of anatase TiO2, rutile TiO2, and Zn2Ti3O8 phase. The photoresponse characteristics of the plasma-sprayed electrodes are comparable to those of single-crystal TiO2, but the breakdown voltage is close to 0.5 V (versus that of a saturated calomel electrode). The short-circuit photocurrent density ( J SC) increases with a decrease of donor concentration, which was calculated according to the Gartner-Butler model. For the lowest donor concentration of a TiO2-5%ZnO electrode sprayed under an arc current of 600 A, the short-circuit J SC is approximately 0.4 mA/cm2 higher than that of the TiO2 electrodes under 30 mW/cm2 xenon light irradiation. The J SC increases linearly with light intensity.

  11. Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles

    PubMed Central

    2014-01-01

    In this study Fe (III)-doped TiO2 nanoparticles were synthesized by sol–gel method at two atomic ratio of Fe/Ti, 0.006 and 0.034 percent. Then the photoactivity of them was investigated on degradation of phenol under UV (<380 nm) irradiation and visible light (>380 nm). Results showed that at appropriate atomic ratio of Fe to Ti (% 0.034) photoactivity of Fe(III)–doped TiO2 nanoparticles increased. In addition, the effects of various operational parameters on photocatalytic degradation, such as pH, initial concentration of phenol and amount of photocatalyst were examined and optimized. At all different initial concentration, highest degradation efficiency occurred at pH = 3 and 0.5 g/L Fe(III)–doped TiO2 dosage. With increase in initial concentration of phenol, photocatalytic degradation efficiency decreased. Photoactivity of Fe (III)-doped TiO2 under UV irradiation and visible light at optimal condition (pH = 3 and catalyst dosage = and 0.5 g/L) was compared with P25 TiO2 nanoparticles. Results showed that photoactivity of Fe(III)-doped TiO2 under visible light was more than P25 TiO2 photoactivity, but it was less than P25 TiO2 photoactivity under UV irradiation. Also efficiency of UV irradiation alone and amount of phenol adsorption on Fe(III)-doped TiO2 at dark condition was investigated. PMID:25105016

  12. Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles.

    PubMed

    Hemmati Borji, Saeedeh; Nasseri, Simin; Mahvi, Amir Hossein; Nabizadeh, Ramin; Javadi, Amir Hossein

    2014-01-01

    In this study Fe (III)-doped TiO2 nanoparticles were synthesized by sol-gel method at two atomic ratio of Fe/Ti, 0.006 and 0.034 percent. Then the photoactivity of them was investigated on degradation of phenol under UV (<380 nm) irradiation and visible light (>380 nm). Results showed that at appropriate atomic ratio of Fe to Ti (% 0.034) photoactivity of Fe(III)-doped TiO2 nanoparticles increased. In addition, the effects of various operational parameters on photocatalytic degradation, such as pH, initial concentration of phenol and amount of photocatalyst were examined and optimized. At all different initial concentration, highest degradation efficiency occurred at pH = 3 and 0.5 g/L Fe(III)-doped TiO2 dosage. With increase in initial concentration of phenol, photocatalytic degradation efficiency decreased. Photoactivity of Fe (III)-doped TiO2 under UV irradiation and visible light at optimal condition (pH = 3 and catalyst dosage = and 0.5 g/L) was compared with P25 TiO2 nanoparticles. Results showed that photoactivity of Fe(III)-doped TiO2 under visible light was more than P25 TiO2 photoactivity, but it was less than P25 TiO2 photoactivity under UV irradiation. Also efficiency of UV irradiation alone and amount of phenol adsorption on Fe(III)-doped TiO2 at dark condition was investigated.

  13. Interstitial Boron-Doped TiO2 Thin Films: The Significant Effect of Boron on TiO2 Coatings Grown by Atmospheric Pressure Chemical Vapor Deposition.

    PubMed

    Quesada-González, Miguel; Boscher, Nicolas D; Carmalt, Claire J; Parkin, Ivan P

    2016-09-28

    The work presented here describes the preparation of transparent interstitial boron-doped TiO2 thin-films by atmospheric pressure chemical vapor deposition (APCVD). The interstitial boron-doping, on TiO2, proved by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), is shown to enhance the crystallinity and significantly improve the photocatalytic activity of the TiO2 films. The synthesis, highly suitable for a reel-to-reel process, has been carried out in one step.

  14. Improvement of solar energy conversion with Nb-incorporated TiO2 hierarchical microspheres.

    PubMed

    Hoang, Son; Ngo, Thong Q; Berglund, Sean P; Fullon, Raymond R; Ekerdt, John G; Mullins, C Buddie

    2013-07-22

    Niobium-modified TiO2 hierarchical spherical micrometer-size particles, which consist of many nanowires, are synthesized by solvothermal synthesis and studied as photoelectrodes for water photo-oxidation and dye-sensitized solar cell (DSSC) applications. Incorporation of Nb leads to a rutile-to-anatase TiO2 phase transition in the TiO2 hierarchical spheres (HSs), with the anatase percentage increasing from 0% for the pristine TiO2 HSs to 47.6% for the 1.82 at.% Nb-incorporated TiO2 sample. Incorporation of Nb leads to significant improvements in water photo-oxidation with the photocurrents reaching 70.5 μA cm(-2) at 1.23 V versus the reversible hydrogen electrode, compared with 28.3 μA cm(-2) for the pristine TiO2 sample. The photoconversion efficiency of Nb:TiO2 HS-based DSSCs reaches 6.09±0.15% at 0.25 at.% Nb, significantly higher than that for the pristine TiO2 HS cells (3.99±0.02%). In addition, the incident-photon-to-current efficiency spectra for DSSCs show that employing TiO2 and Nb:TiO2 HSs provides better light harvesting, especially of long-wavelength photons, than anatase TiO2 nanoparticle-based DSSCs.

  15. Tuning hydrophobicity of TiO2 layers with silanization and self-assembled nanopatterning.

    PubMed

    Van, Trong Nghia; Lee, Young Keun; Lee, Jaesang; Park, Jeong Young

    2013-03-05

    The wettability of TiO2 layers is controlled by forming highly ordered arrays of nanocones using nanopatterning, based on self-assembly and dry etching. Nanopatterning of TiO2 layers is achieved via formation of self-assembled monolayers of SiO2 spheres fabricated using the Langmuir-Blodgett technique, followed by dry etching. Three types of TiO2 layers were fabricated using the sol-gel technique, sputtering, and thermal process in order to address the relationship between the wettability and the structure of TiO2 nanostructures. Compared to a thin film TiO2 layer, the nanopatterned TiO2 samples show a smaller static water contact angle (i.e., where the water contact angle decreases as the etching time increases), which is attributed to the Wenzel equation. When TiO2 layers are coated by 1H,1H,2H,2H-perfluorooctyltrichlorosilane, we observed the opposite behavior, exhibiting superhydrophobicity (up to contact angle of 155°) on the nanopatterned TiO2 layers. Self-assembled nanopatterning of the TiO2 layer may provide an advanced method for producing multifunctional transparent layers with self-cleaning properties.

  16. Controllable Synthesis and Tunable Photocatalytic Properties of Ti(3+)-doped TiO2.

    PubMed

    Ren, Ren; Wen, Zhenhai; Cui, Shumao; Hou, Yang; Guo, Xiaoru; Chen, Junhong

    2015-06-05

    Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein report a facile route for controllable synthesis of Ti(3+)-doped TiO2 with tunable photocatalytic properties using a hydrothermal method with varying amounts of reductant, i.e., sodium borohydride (NaBH4). The resulting TiO2 showed color changes from light yellow, light grey, to dark grey with the increasing amount of NaBH4. The present method can controllably and effectively reduce Ti(4+) on the surface of TiO2 and induce partial transformation of anatase TiO2 to rutile TiO2, with the evolution of nanoparticles into hierarchical structures attributable to a high pressure and strong alkali environment in the synthesis atmosphere; in this way, the photocatalytic activity of Ti(3+)-doped TiO2 under visible-light can be tuned. The as-developed strategy may open up a new avenue for designing and functionalizing TiO2 materials for enhancing visible light absorption, narrowing band gap, and improving photocatalytic activity.

  17. Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2

    PubMed Central

    Ren, Ren; Wen, Zhenhai; Cui, Shumao; Hou, Yang; Guo, Xiaoru; Chen, Junhong

    2015-01-01

    Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein report a facile route for controllable synthesis of Ti3+-doped TiO2 with tunable photocatalytic properties using a hydrothermal method with varying amounts of reductant, i.e., sodium borohydride (NaBH4). The resulting TiO2 showed color changes from light yellow, light grey, to dark grey with the increasing amount of NaBH4. The present method can controllably and effectively reduce Ti4+ on the surface of TiO2 and induce partial transformation of anatase TiO2 to rutile TiO2, with the evolution of nanoparticles into hierarchical structures attributable to a high pressure and strong alkali environment in the synthesis atmosphere; in this way, the photocatalytic activity of Ti3+-doped TiO2 under visible-light can be tuned. The as-developed strategy may open up a new avenue for designing and functionalizing TiO2 materials for enhancing visible light absorption, narrowing band gap, and improving photocatalytic activity. PMID:26044406

  18. TiO2 micro-devices fabricated by laser direct writing.

    PubMed

    Wang, Yongsheng; Miao, Junjie; Tian, Ye; Guo, Chuanfei; Zhang, Jianming; Ren, Tianling; Liu, Qian

    2011-08-29

    Constructing micro/nanostructures based on TiO2 has attracted increasing attention due to the excellent properties of TiO2. In this study, we report a simple method to directly fabricate TiO2 micro-devices, including Fresnel lens, gear structures and suspended beams only by laser direct writing and selective-etching processing. This route shows great potential in fabricating TiO2 structures for micro-electro-mechanical systems, diffractive optical elements and bio-applications, owing to its maskless process, low cost, and flexible dry/wet alternative etching treatment.

  19. Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Kanemitsu, Yoshihiko

    2012-09-01

    The dynamical behavior of photoexcited states of TiO2 governs the activities of TiO2-based solar cells and photocatalysts. We determined the lifetimes of photoexcited electrons and holes in rutile and anatase TiO2 single crystals by combining advantages of time-resolved photoluminescence, photoconductance, and transient absorption spectroscopy. Electrons and holes in rutile show exponential decays with the lifetime of a few tens of nanoseconds, while non-exponential decays are observed in anatase, indicating the presence of multiple carrier trapping processes. We revealed the generic features of the carrier recombination processes in rutile and anatase TiO2.

  20. Atomic-scale investigation of a new phase transformation process in TiO2 nanofibers.

    PubMed

    Lei, Yimin; Li, Jian; Wang, Zhan; Sun, Jun; Chen, Fuyi; Liu, Hongwei; Ma, Xiaohua; Liu, Zongwen

    2017-03-21

    Crystallography of phase transformation combining transmission electron microscopy (TEM) with in situ heating techniques and X-ray diffraction (XRD) can provide critical information regarding solid-state phase transitions and the transition-induced interfaces in TiO2 nanomaterials theoretically and experimentally. Two types of reduced titanium oxides (Ti3O5, Ti6O11) are found during ex situ and in situ heating of TiO2 (B) nanofibers with a specific morphology of the {100} single form (SF) in air and vacuum. The results indicate that the phase transformation process from TiO2 (B) follows the TiO2 (B) → Ti3O5 → Ti6O11 → anatase sequence for the nanofibers with the {100} SF. The occurrence of such a phase transition is selective to the morphology of TiO2 (B) nanofibers. The corresponding orientation relationships (COR) between the four phases are revealed according to the TEM characterization. Four types of coherent interfaces, following the CORs are also found. They are TiO2 (B)/Ti3O5, TiO2 (B)/Ti6O11, Ti6O11/anatase and TiO2 (B)/anatase respectively. The habit plane for the TiO2 (B) to Ti3O5 transition is calculated as the {100}TB by using the invariant line model. The detailed atomic transformation mechanism is elucidated based on the crystallographic features of the four phases.

  1. Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites.

    PubMed

    Kovacic, Marin; Salaeh, Subhan; Kusic, Hrvoje; Suligoj, Andraz; Kete, Marko; Fanetti, Mattia; Stangar, Urska Lavrencic; Dionysiou, Dionysios D; Bozic, Ana Loncaric

    2016-09-01

    The study is aimed at evaluating the potential of immobilized TiO2-based zeolite composite for solar-driven photocatalytic water treatment. In that purpose, TiO2-iron-exchanged zeolite (FeZ) composite was prepared using commercial Aeroxide TiO2 P25 and iron-exchanged zeolite of ZSM5 type, FeZ. The activity of TiO2-FeZ, immobilized on glass support, was evaluated under solar irradiation for removal of diclofenac (DCF) in water. TiO2-FeZ immobilized in a form of thin film was characterized for its morphology, structure, and composition using scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDX). Diffuse reflectance spectroscopy (DRS) was used to determine potential changes in band gaps of prepared TiO2-FeZ in comparison to pure TiO2. The influence of pH, concentration of hydrogen peroxide, FeZ wt% within the composite, and photocatalyst dosage on DCF removal and conversion efficiency by solar/TiO2-FeZ/H2O2 process was investigated. TiO2-FeZ demonstrated higher photocatalytic activity than pure TiO2 under solar irradiation in acidic conditions and presence of H2O2.

  2. Influence of TiO2 nanostructures on the optical absorption of organic-inorganic perovskite

    NASA Astrophysics Data System (ADS)

    Liu, Zongyi; Ye, Mao; Ostrowski, Michel; Yi, Ya Sha

    2016-04-01

    This work aims to reveal the strong influence of TiO2 nanostructures on the light absorption property of TiO2 and perovskite mixture. Three TiO2 nanostructures, i.e., nanoparticles (S1), ultrapure nanorods (S2), and ultrasmall nanorods (S3), were studied: S1 was selected as a baseline; S2 and S3 were synthesized from S1 by using modified hydrothermal processes. Mesoporous TiO2 thin films were spin-coated from solutions containing these TiO2 nanorods and nanoparticles (S1 as baseline). Organic-inorganic hybrid perovskite CH3NH3PbI3 was then incorporated into these mesoporous TiO2 thin films. Optical absorption results showed that the perovskite mixture with ultrasmall TiO2 nanostructures (S3) has significantly higher optical absorption coefficient. Finite-difference time domain models were built based on three distinct nanostructures of TiO2 and CH3NH3PbI3 mixtures fabricated (S1 to S3) to understand their optical absorption properties. Our work is promising to fabricate TiO2 nanostructures, as a backbone structure, for a series of applications including photovoltaics and photodetection.

  3. Synthesis, characterization and photocatalytic activity of 1D TiO2 nanostructures.

    PubMed

    Cabrera, Julieta; Alarcón, Hugo; López, Alcides; Candal, Roberto; Acosta, Dwight; Rodriguez, Juan

    2014-01-01

    Nanowire/nanorod TiO(2) structures of approximately 8 nm in diameter and around 1,000 nm long were synthesized by alkaline hydrothermal treatment of two different TiO(2) nanopowders. The first precursor was TiO(2) obtained by the sol-gel process (SG-TiO(2)); the second was the well-known commercial TiO(2) P-25 (P25-TiO(2)). Anatase-like 1D TiO(2) nanostructures were obtained in both cases. The one-dimensional (1D) nanostructures synthesized from SG-TiO(2) powders turned into rod-like nanostructures after annealing at 400 °C for 2 h. Conversely, the nanostructures synthesized from P25-TiO(2) preserved the tubular structure after annealing, displaying a higher Brunauer-Emmett-Teller surface area than the first system (279 and 97 m²/g, respectively). Despite the higher surface area shown by the 1D nanostructures, in both cases the photocatalytic activity was lower than for the P25-TiO(2) powder. However, the rod-like nanostructures obtained from SG-TiO(2) displayed slightly higher efficiency than the sol-gel prepared powders. The lower photocatalytic activity of the nanostructures with respect to P-25 can be associated with the lower crystallinity of 1D TiO(2) in both materials.

  4. AC conductivity studies of Fe doped TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Vijayan, P. P.; Thomas, M.; George, K. C.

    2015-02-01

    Fe-doped TiO2 nanotubes are prepared by the combination of sol-gel process with hydrothermal treatment. The morphology and crystalline structure of TiO2 nanotubes are characterized by transmission electron microscopy (TEM), X-ray diffraction respectively (XRD). Fe doping induces a structural transformation from anatase to rutile. The temperature dependence of the ac electrical conductivity is investigated in the temperature range 303-413 K. Positive temperature coefficient of resistance is observed in the Fe doped TiO2 nanotubes. PL spectrum shows the presence of oxygen vacancies and self trapped excitons in Fe doped TiO2 nanotubes and undoped samples.

  5. Optical absorption and electrical transport in hybrid TiO2 and polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Zhou, Xi-Song; Li, Zheng; Wang, Ning; Lin, Yuan-Hua; Nan, Ce-Wen

    2006-06-01

    Hybrid nanofilms of poly(2-methoxy-5-ethylhexyloxy-1,4-phenylene)vinylene (MEH-PPV) and anatase-TiO2 nanoparticles were prepared. The results showed that the optical absorption spectra and electrical transport properties of the TiO2/MEH-PPV nanocomposite films were strongly dependent on the particle size and concentration of TiO2 nanoparticles in the hybrid films. In comparison with pure TiO2 nanofilms, the hybrid TiO2/MEH-PPV films presented a shift of the absorption edge to the lower-energy region, and an obvious nonlinear current-voltage characteristic.

  6. The electronic and optical properties of Eu/Si-codoped anatase TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Lin, Yanming; Jiang, Zhenyi; Hu, Xiaoyun; Zhang, Xiaodong; Fan, Jun

    2012-03-01

    The electronic and optical properties of Eu/Si-codoped anatase TiO2 are investigated using the density functional theory. The calculated results show that the synergistic effects of Eu/Si codoping can effectively extend the optical absorption edge, which can lead to higher visible-light photocatalytic activities than pure anatase TiO2. To verify the reliability of our calculated results, nanocrystalline Eu/Si-codoped TiO2 is prepared by a sol-gel-solvothermal method, and the experimental results also indicate that the codoping sample exhibits better absorption performance and higher photocatalytic activities than pure TiO2.

  7. Alternative structure of TiO2 with higher energy valence band edge

    NASA Astrophysics Data System (ADS)

    Coh, Sinisa; Yu, Peter Y.; Aoki, Yuta; Saito, Susumu; Louie, Steven G.; Cohen, Marvin L.

    2017-02-01

    We propose an alternative structure of TiO2 anatase that has a higher energy oxygen p -like valence band maximum than pristine TiO2 anatase and thus has a much better alignment with the water splitting levels. This alternative structure is unique when considering a large subspace of possible structural distortions of TiO2 anatase. We propose two routes towards this state and argue that one of them might have been realized in the recently discovered so-called black TiO2.

  8. A comparative study of TiO2 nanoparticles synthesized in premixed and diffusion flames

    NASA Astrophysics Data System (ADS)

    Ma, Hsiao-Kang; Yang, Hsiung-An

    2010-12-01

    Previous studies have been shown that synthesis of titania (TiO2) crystalline phase purity could be effectively controlled by the oxygen concentration through titanium tetra-isopropoxide (TTIP) via premixed flame from a Bunsen burner. In this study, a modified Hencken burner was used to synthesize smaller TiO2 nanoparticles via short diffusion flames. The frequency of collisions among particles would decrease and reduce TiO2 nanoparticle size in a short diffusion flame height. The crystalline structure of the synthesized nanoparticles was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Barrett-Joyner-Halenda (BJH) and Brunauer-Emmett-Teller (BET) measurements. The characteristic properties of TiO2 nanoparticles synthesized from a modified Hencken burner were compared with the results from a Bunsen burner and commercial TiO2 (Degussa P25). The results showed that the average particle size of 6.63 nm from BET method was produced by a modified Hencken burner which was smaller than the TiO2 in a Bunsen burner and commercial TiO2. Moreover, the rutile content of TiO2 nanoparticles increased as the particle collecting height increased. Also, the size of TiO2 nanoparticles was highly dependent on the TTIP loading and the collecting height in the flame.

  9. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoyang; Yang, Min-Quan; Fu, Xianzhi; Zhang, Nan; Xu, Yi-Jun

    2013-04-01

    Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications.Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00476g

  10. Amorphous TiO2 nanotube-derived synthesis of highly ordered anatase TiO2 nanorod arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Cong; Zhu, Dachuan; Cao, Shixiu

    2016-02-01

    A facile method by combining anodic oxidation and hydrothermal method was developed to construct highly ordered anatase TiO2 nanorods (TNRs) and nanotubes (TNTs). In this method, the anodic oxidation was used for preparing highly ordered amorphous TNTs, which subsequently served as highly ordered template for next reaction process. Upon hydrothermal treatment, the as-anodized amorphous template got converted to highly ordered anatase TNTs (blank sample) in without cobalt nitrate solution and TNRs (doped sample) in cobalt nitrate solution, respectively. To our best knowledge, this is first successful attempt to prepare highly ordered anatase TNRs based on the above amorphous template. The scanning electron microscope (SEM) and transmission electron microscope (TEM) observations indicate that the as-prepared anatase TNRs are composed by a large number of anatase TiO2 nanoparticles (TNPs) and the morphology at top of TNRs is different from that of its trunk. Details of the morphology, phase transformation, and growth mechanism of the obtained TNRs are discussed. In addition, the role of Co2+ in the crystallization process had been also discussed.

  11. Synthesis of beta-cyclodextrin-modified water-dispersible Ag-TiO2 core-shell nanoparticles and their photocatalytic activity.

    PubMed

    Shown, Indrajit; Ujihara, Masaki; Imae, Toyoko

    2011-04-01

    The beta-cyclodextrin-modified Ag-TiO2 core-shell nanoparticles were prepared by sodium borohydrate reduction of AgNO3 and the subsequent hydrolysis of the tetraisopropyl orthotitanate in an aqueous medium. Inversely in the preparation of beta-cyclodextrin-modified TiO2-Ag core-shell nanoparticles, first hydrolysis and then following reduction were carried out. The synthesized spherical core-shell nanoparticles were highly water-dispersible and had an average diameter in the range of 9 to 12 nm. A significant shifting of surface plasmon band was observed for the synthesized Ag-TiO2 and TiO2-Ag core-shell nanoparticles. On a model reaction, namely, the photodegradation of phenol by the UV light irradiation, the photocatalytic property of TiO2 nanoparticles was enhanced, when the Ag nanoparticle was embedded in the core of TiO2 nanoparticles but TiO2 nanoparticles coated by Ag shell decreased the photocatalytic property of TiO2 nanoparticles. The mechanism is ascribed to the surface plasmon characteristics of Ag in the core of the TiO2 nanoparticles under the acceleration by host-guest inclusion characteristics.

  12. Characterization of manufactured TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Motzkus, C.; Macé, T.; Vaslin-Reimann, S.; Ausset, P.; Maillé, M.

    2013-04-01

    Technological advances in nanomaterials have allowed the development of new applications in industry, increasing the probability of finding airborne manufactured and engineered nano-objects in the workplace, as well as in ambient air. Scientific studies on health and environmental risks have indicated that airborne nano-objects in ambient air have potential adverse effects on the health of exposed workers and the general population. For regulatory purposes, ambient measurements of particulate matter are based on the determination of mass concentrations for PM10 and PM2.5, as regulated in the European Directive 2008/50/EC. However, this legislation is not suitable for airborne manufactured and engineered nano-objects. Parameters characterising ultrafine particles, such as particle number concentration and size distribution, are under consideration for future health-based legislation, to monitor workplaces and to control industrial processes. Currently, there are no existing regulations covering manufactured airborne nano-objects. There is therefore a clear, unaddressed need to focus on the toxicology and exposure assessment of nano-objects such as titanium dioxide (TiO2), which are manufactured and engineered in large quantities in industry. To perform reliable toxicology studies it is necessary to determine the relevant characteristics of nano-objects, such as morphology, surface area, agglomeration, chemical composition, particle size and concentration, by applying traceable methods. Manufacturing of nanomaterials, and their use in industrial applications, also require traceable characterisation of the nanomaterials, particularly for quality control of the process. The present study arises from the OECD WPMN sponsorship programme, supported by the French Agency for Environmental and Occupational Health Safety (ANSES), in order to develop analytical methods for the characterization of TiO2 nanoparticles in size and count size distribution, based on different techniques to characterize five different manufactured TiO2 nanoparticles. In this study, different measurement techniques have been implemented: Transmission Electron Microscopy (TEM), Scanning Mobility Particle Sizer (SMPS) and Aerodynamic Particle Sizer (APS). The TEM results lead to a relatively good agreement between data from the manufacturer and our characterizations of primary particle size. With regard to the dustiness, the results show a strong presence of agglomerates / aggregates of primary particles and a significant presence of emitted airborne nanoparticles with a diameter below 100 nm (composed of isolated primary particles and small aggregates / agglomerates formed from a few primary particles): the number proportion of these particles varies from 0 to 44 % in the measurement range 14-360 nm depending on the types of powders and corrections of measurements.

  13. Surface acidity scales: Experimental measurements of Brønsted acidities on anatase TiO2 and comparison with coinage metal surfaces

    NASA Astrophysics Data System (ADS)

    Silbaugh, Trent L.; Boaventura, Jaime S.; Barteau, Mark A.

    2016-08-01

    The first quantitative surface acidity scale for Brønsted acids on a solid surface is presented through the use of titration-displacement and equilibrium experiments on anatase TiO2. Surface acidities of species on TiO2 correlated with gas phase acidities, as was previously observed in qualitative studies of Brønsted acid displacement on Ag(110), Cu(110) and Au(111). A 90% compression of the surface acidity scale relative to the gas phase was observed due to compensation from the covalent component of the conjugate base - surface bond. Adsorbed conjugate bases need not be completely anionic for correlations with gas phase acidities to hold. Positive and negative substituent effects, such as substituted fluorine and hydrocarbon sidechain dispersion interactions with the surface, may modify the surface acidity scale, in agreement with previous experimental and theoretical work on Au(111).

  14. Synthesis of spindle-shaped AgI/TiO2 nanoparticles with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Gao, Minggang; Dai, Bin; Guo, Xuhong; Liu, Zhiyong; Peng, Banghua

    2016-11-01

    A novel synthetic route has been developed to prepare silver iodide (AgI) loaded spindle-shaped TiO2 nanoparticles (NPs). The morphology and crystallinity characterization revealed that small AgI NPs, with an average diameter of 15 nm were dispersed on the surface and interior of nanoporous anatase TiO2 support. High-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET) surface area, Raman and X-ray photoelectron spectroscopy (XPS) were used to identify the nanoporous structure of TiO2 and the existence of AgI NPs. Diffuse reflectance spectra (DRS) showed that AgI/TiO2 composite exhibited a remarkable enhancement of visible light absorption, which is ascribed to the addition of AgI. For illustrating the superior property of this hybrid as photocatalyst, the degradation experiments were carried out for processing rhodamine B (RhB) solution under visible light irradiation and it was found that the photocatalytic activity was dramatically improved for AgI/TiO2 compared with nanoporous TiO2 and commercial P25 TiO2. The enhanced photocatalytic properties could be attributed to the large surface area of porous TiO2, good stability of AgI particles, and the effective charge separation due to the synergetic effect between AgI and TiO2 that can facilitate the separation of electron-hole pairs. Our novel composite based on nanoporous spindle-shaped TiO2 represents a promising new pathway for the design of high-performance photocatalysts for environmental applications.

  15. Ultrasensitive photoelectrochemical immunoassay for matrix metalloproteinase-2 detection based on CdS:Mn/CdTe cosensitized TiO2 nanotubes and signal amplification of SiO2@Ab2 conjugates.

    PubMed

    Fan, Gao-Chao; Han, Li; Zhu, Hua; Zhang, Jian-Rong; Zhu, Jun-Jie

    2014-12-16

    An ultrasensitive photoelectrochemical sandwich immunoassay was developed to detect matrix metalloproteinase-2 (MMP-2, antigen, Ag) based on CdS:Mn/CdTe cosensitized TiO2 nanotubes (TiO2-NTs) and signal amplification of SiO2@Ab2 conjugates. Specifically, the TiO2-NTs electrode was first deposited with CdS:Mn by successive ionic layer adsorption and reaction technique and then further coated with CdTe quantum dots (QDs) via the layer-by-layer method, forming TiO2-NTs/CdS:Mn/CdTe cosensitized structure, which was employed as a matrix to immobilize capture MMP-2 antibodies (Ab1); whereas, SiO2 nanoparticles were coated with signal MMP-2 antibodies (Ab2) to form SiO2@Ab2 conjugates, which were used as signal amplification elements via the specific antibody-antigen immunoreaction between Ag and Ab2. The ultrahigh sensitivity of this immunoassay derived from the two major reasons as below. First, the TiO2-NTs/CdS:Mn/CdTe cosensitized structure could adequately absorb the light energy, dramatically promote electron transfer, and effectively inhibit the electron-hole recombination, resulting in significantly enhanced photocurrent intensity of the sensing electrode. However, in the presence of target Ag, the immobilized SiO2@Ab2 conjugates could evidently increase the steric hindrance of the sensing electrode and effectively depress the electron transfer, leading to obviously decreased photocurrent intensity. Accordingly, the well-designed photoelectrochemical immunoassay exhibited a low detection limit of 3.6 fg/mL and a wide linear range from 10 fg/mL to 500 pg/mL for target Ag detection. Meanwhile, it also presented good reproducibility, specificity, and stability and might open a new promising platform for the detection of other important biomarkers.

  16. A signal-off sandwich photoelectrochemical immunosensor using TiO2 coupled with CdS as the photoactive matrix and copper (II) ion as inhibitor.

    PubMed

    Liu, Yixin; Li, Rongxia; Gao, Picheng; Zhang, Yong; Ma, Hongmin; Yang, Jiaojiao; Du, Bin; Wei, Qin

    2015-03-15

    In this work, a novel sandwich photoelectrochemical (PEC) biosensor was developed based on a signal-off strategy using TiO2 coupled with CdS quantum dots (QDs) as the photoactive matrix and copper (II) ion (Cu(2+)) as inhibitor. TiO2/CdS modified indium tin oxide (ITO) electrode was employed for primary antibody (Ab1) immobilization and the subsequent sandwich-type antibody-antigen (Ab-Ag) affinity interactions. Flower-like copper oxide (CuO) was used as labels of secondary antibody (Ab2) and immobilized on the modified electrode via specific affinity interactions between Ab2 and Ag. Cu(2+) was released by dissolving CuO with HCl, and then reacted with CdS to form CuxS (x=1, 2), which would create new energy levels for electron-hole recombination and resulted in a decrease of the photocurrent. CuO, as the labels of Ab2, was first applied in PEC biosensor based on the signal-off strategy of the Cu(2+) for CdS. Greatly enhanced sensitivity was achieved through the coupling of CdS QDs with TiO2. Besides, the introduction of polythiophene (PT-Cl) on the surface of TiO2 made the PEC signal more stable. Under 405nm irradiation at 0.1V, the PEC biosensor for H-IgG determination exhibited a linear range from 0.1pgmL(-1) to 100ngmL(-1) with a low detection limit of 0.03pgmL(-1). The proposed biosensor showed high sensitivity, stability and selectivity, which opens up a new promising signal-off PEC platform for future bioassay.

  17. Growth Morphologies of Nanostructured Rutile TiO2

    NASA Astrophysics Data System (ADS)

    Huang, Yuan-Sheng; Liu, Hong-Wei

    2014-04-01

    The morphological and structural characteristics of nanostructure rutile TiO2 were investigated by using x-ray diffraction, scanning electron microscopy, electron diffraction, conventional and high resolution transmission electron microscopy. As a product of the precursor template of hydrogen titanate nanofibers, rutile could exhibit forms like tree, sheaf, or bundle. Both the branch and trunk of tree-like rutile have the same growth axis of [001]. The sheaf-like rutile forms while it grows along both [001] and [] directions. The bundle-like rutile grows along only one [001] direction. Tree-like morphology of nanocrystals rutile is revealed to be controlled by (101) twin structure. Twin formation is a possible mechanism to decrease the density of defects and reduce the system energy as the crystal grows.

  18. Hydrogen donor in anatase TiO2

    NASA Astrophysics Data System (ADS)

    Lavrov, E. V.

    2016-01-01

    An IR absorption study of hydrogen-related defects in natural single-crystalline anatase TiO2 has been carried out. A complex with IR absorption lines at 3412 and 3417 cm-1 is shown to act as a donor with ionization energy of tens of meV. The two lines are identified as stretching local vibrational modes of the O-H bonds of the donor in the neutral and positive charge states, respectively. The defect is unstable against annealing at approximately 300 ∘C and a storage at room temperature on the time scale of a few weeks. These findings suggest that interstitial hydrogen is a plausible model of this defect.

  19. TiO2 doped with nitrogen: synthesis and characterization.

    PubMed

    Abazović, Nadica D; Montone, Amelia; Mirenghi, Luciana; Janković, Ivana A; Comor, Mirjana I

    2008-02-01

    In this study, nitrogen-doped titanium dioxide (TiO2) powders were synthesized in two ways: by heating of titanium hydroxide with urea and by direct hydrolysis of titanium tetraisopropoxide (TTIP) with ammonium hydroxide. The samples were characterized by structural (XRD), analytical (XPS), optical (UV/Vis absorption/reflection and Raman spectroscopy) and morphological (SEM, TEM) techniques. The characterization suggested that the doped materials have anatase crystalline form without any detectable peaks that correspond to dopants. The absorption threshold of titanium dioxide was moved in the visible range of optical spectrum from 3.2 eV to 2.20 eV. Particle sizes of synthesized powders were obtained from XRD measurements and from TEM data ranging from 6-20 nm. XPS and Raman spectroscopy were used for detection of nitrogen in doped samples.

  20. Surface structures of rutile TiO2(114)

    NASA Astrophysics Data System (ADS)

    Kubo, Toshitaka; Orita, Hideo; Nozoye, Hisakazu

    2016-11-01

    The surface structures of rutile TiO2(114) have been studied using a combination of scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Depending on the sample preparation, the surface exhibits many complicated local nanostructures, e.g., dot-like, missing row, row-like (1 × 3), and twin dotted (2 × 2) structures. After several cycles of sputtering and high-temperature annealing, all samples exhibit triangular pyramidal structure. Microfaceted structural models, which are composed of combinations of {111} and (001) microfacets, can explain all experimental results as well as the structural variety. The calculated STM images are in good agreement with the experimental results. The decreasing density of dangling bonds, the increasing coordination number, and the evolution of non-polar structures stabilize the surface energy, which results in the microfaceted reconstructions. The formation of various nanostructures and the surface stoichiometric changes are discussed.

  1. Structure and stability of small TiO2 nanoparticles.

    PubMed

    Hamad, S; Catlow, C R A; Woodley, S M; Lago, S; Mejías, J A

    2005-08-25

    The effect of the nanostructure on the photochemistry of TiO2 is an active field of research owing to its applications in photocatalysis and photovoltaics. Despite this interest, little is known of the structure of small particles of this oxide with sizes at the nanometer length scale. Here we present a computational study that locates the global minima in the potential energy surface of Ti(n)O2n clusters with n = 1-15. The search procedure does not refer to any of the known TiO2 polymorphs, and is based on a novel combination of simulated annealing and Monte Carlo basin hopping simulations, together with genetic algorithm techniques, with the energy calculated by means of an interatomic potential. The application of several different methods increases our confidence of having located the global minimum. The stable structures are then refined by means of density functional theory calculations. The results from the two techniques are similar, although the methods based on interatomic potentials are unable to describe some subtle effects. The agreement is especially good for the larger particles, with n = 9-15. For these sizes the structures are compact, with a preference for a central octahedron and a surrounding layer of 4- and 5-fold coordinated Ti atoms, although there seems to be some energy penalty for particles containing the 5-fold coordinated metal atoms with square base pyramid geometry and dangling Ti=O bonds. The novel structures reported provide the basis for further computational studies of the effect of nanostructure on adsorption, photochemistry, and nucleation of this material.

  2. Water diffusion on TiO2 anatase surface

    NASA Astrophysics Data System (ADS)

    Agosta, L.; Gala, F.; Zollo, G.

    2015-06-01

    Compatibility between biological molecules and inorganic materials, such as crystalline metal oxides, is strongly dependent on the selectivity properties and the adhesion processes at the interface between the two systems. Among the many different aspects that affect the adsorption processes of peptides or proteins onto inorganic surfaces, such as the charge state of the amino acids, the peptide 3D structure, the surface roughness, the presence of vacancies or defects on and below the surface, a key role is certainly played by the water solvent whose molecules mediate the interaction. Then the surface hydration pattern may strongly affect the adsorption behavior of biological molecules. For the particular case of (101) anatase TiO2 surface that has a fundamental importance in the interaction of biocompatible nano-devices with biological environment, it was shown, both theoretically and experimentally, that various hydration patterns are close in energy and that the water molecules are mobile at as low temperature values as 190 K. Then it is important to understand the dynamical behavior of first hydration layer of the (101) anatase surface. As a first approach to this problem, density functional calculations are used to investigate water diffusion on the (101) anatase TiO2 surface by sampling the potential energy surface of water molecules of the first hydration layer thus calculating the water molecule migration energy along some relevant diffusion paths on the (101) surface. The measured activation energy of water migration seems in contrast with the observed surface mobility of the water molecules that, as a consequence could be explained invoking a strong role of the entropic term in the context of the transition state theory.

  3. TiO2@carbon core/shell nanofibers: Controllable preparation and enhanced visible photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Shao, Changlu; Zhang, Zhenyi; Zhang, Mingyi; Mu, Jingbo; Guo, Zengcai; Liu, Yichun

    2011-07-01

    TiO2@carbon core/shell nanofibers (TiO2@C NFs) with different thinkness of carbon layers (from 2 to 8 nm) were fabricated by combining the electrospinning technique and hydrothermal method. The results showed that a uniform graphite carbon layer was formed around the electrospun TiO2 nanofiber via C-O-Ti bonds. By adjusting the hydrothermal fabrication parameters, the thickness of carbon layer could be easily controlled. Furthermore, the TiO2@C NFs had remarkable light absorption in the visible region. The photocatalytic studies revealed that the TiO2@C NFs exhibited enhanced photocatalytic efficiency of photodegradation of Rhodamine B (RB) compared with the pure TiO2 nanofibers under visible light irradiation, which might be attributed to high separation efficiency of photogenerated electrons and holes based on the synergistic effect between carbon as a sensitizer and TiO2 with one dimension structure. Notably, the TiO2@C NFs could be easily recycled due to their one-dimensional nanostructural property.TiO2@carbon core/shell nanofibers (TiO2@C NFs) with different thinkness of carbon layers (from 2 to 8 nm) were fabricated by combining the electrospinning technique and hydrothermal method. The results showed that a uniform graphite carbon layer was formed around the electrospun TiO2 nanofiber via C-O-Ti bonds. By adjusting the hydrothermal fabrication parameters, the thickness of carbon layer could be easily controlled. Furthermore, the TiO2@C NFs had remarkable light absorption in the visible region. The photocatalytic studies revealed that the TiO2@C NFs exhibited enhanced photocatalytic efficiency of photodegradation of Rhodamine B (RB) compared with the pure TiO2 nanofibers under visible light irradiation, which might be attributed to high separation efficiency of photogenerated electrons and holes based on the synergistic effect between carbon as a sensitizer and TiO2 with one dimension structure. Notably, the TiO2@C NFs could be easily recycled due to their one-dimensional nanostructural property. Electronic supplementary information (ESI) available: See DOI: 10.1039/c1nr10269a

  4. The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on TiO2 by radiolytic method

    NASA Astrophysics Data System (ADS)

    Klein, Marek; Nadolna, Joanna; Gołąbiewska, Anna; Mazierski, Paweł; Klimczuk, Tomasz; Remita, Hynd; Zaleska-Medynska, Adriana

    2016-08-01

    TiO2 (P25) was modified with small and relatively monodisperse mono- and bimetallic clusters (Ag, Pd, Pt, Ag/Pd, Ag/Pt and Pd/Pt) induced by radiolysis to improve its photocatalytic activity. The as-prepared samples were characterized by X-ray fluorescence spectrometry (XRF), photoluminescence spectrometry (PL), diffuse reflectance spectroscopy (DRS), X-ray powder diffractometry (XRD), scanning transition electron microscopy (STEM) and BET surface area analysis. The effect of metal type (mono- and bimetallic modification) as well as deposition method (simultaneous or subsequent deposition of two metals) on the photocatalytic activity in toluene removal in gas phase under UV-vis irradiation (light-emitting diodes- LEDs) and phenol degradation in liquid phase under visible light irradiation (λ > 420 nm) were investigated. The highest photoactivity under Vis light was observed for TiO2 co-loaded with platinum (0.1%) and palladium (0.1%) clusters. Simultaneous addition of metal precursors results in formation of larger metal nanoparticles (15-30 nm) on TiO2 surface and enhances the Vis-induced activity of Ag/Pd-TiO2 up to four times, while the subsequent metal ions addition results in formation of metal particle size ranging from 4 to 20 nm. Subsequent addition of metal precursors results in formation of BNPs (bimetallic nanoparticle) composites showing higher stability in four cycles of toluene degradation under UV-vis. Obtained results indicated that direct electron transfer from the BNPs to the conduction band of the semiconductor is responsible for visible light photoactivity, whereas superoxide radicals (such as O2rad- and rad OOH) are responsible for pollutants degradation over metal-TiO2 composites.

  5. Flame-made ultra-porous TiO2 layers for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Osorio Mayon, Yahuitl; Duong, The; Nasiri, Noushin; White, Thomas P.; Tricoli, Antonio; Catchpole, Kylie R.

    2016-12-01

    We report methyl ammonium lead iodide (MAPbI3) solar cells with an ultra-porous TiO2 electron transport layer fabricated using sequential flame aerosol and atomic layer depositions of porous and compact TiO2 layers. Flame aerosol pyrolysis allows rapid deposition of nanostructured and ultra-porous TiO2 layers that could be easily scaled-up for high-throughput low-cost industrial solar cell production. An efficiency of 13.7% was achieved with a flame-made nanostructured and ultra-porous TiO2 electrode that was coated with a compact 2 nm TiO2 layer. This demonstrates that MAPbI3 solar cells with a flame-made porous TiO2 layer can have a comparable efficiency to that of the control MAPbI3 solar cell with the well-established spin-coated porous TiO2 layer. The combination of flame aerosol and atomic layer deposition provides precise control of the TiO2 porosity. Notably, the porosity of the as-deposited flame-made TiO2 layers was 97% which was then fine-tuned down to 87%, 56% and 35% by varying the thickness of the subsequent compact TiO2 coating step. The effects of the decrease in porosity on the device performance are discussed. It is also shown that MAPbI3 easily infiltrates into the flame-made porous TiO2 nanostructure thanks to their high porosity and large pore size.

  6. Flame-made ultra-porous TiO2 layers for perovskite solar cells.

    PubMed

    Mayon, Yahuitl Osorio; Duong, The; Nasiri, Noushin; White, Thomas P; Tricoli, Antonio; Catchpole, Kylie R

    2016-12-16

    We report methyl ammonium lead iodide (MAPbI3) solar cells with an ultra-porous TiO2 electron transport layer fabricated using sequential flame aerosol and atomic layer depositions of porous and compact TiO2 layers. Flame aerosol pyrolysis allows rapid deposition of nanostructured and ultra-porous TiO2 layers that could be easily scaled-up for high-throughput low-cost industrial solar cell production. An efficiency of 13.7% was achieved with a flame-made nanostructured and ultra-porous TiO2 electrode that was coated with a compact 2 nm TiO2 layer. This demonstrates that MAPbI3 solar cells with a flame-made porous TiO2 layer can have a comparable efficiency to that of the control MAPbI3 solar cell with the well-established spin-coated porous TiO2 layer. The combination of flame aerosol and atomic layer deposition provides precise control of the TiO2 porosity. Notably, the porosity of the as-deposited flame-made TiO2 layers was 97% which was then fine-tuned down to 87%, 56% and 35% by varying the thickness of the subsequent compact TiO2 coating step. The effects of the decrease in porosity on the device performance are discussed. It is also shown that MAPbI3 easily infiltrates into the flame-made porous TiO2 nanostructure thanks to their high porosity and large pore size.

  7. Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays.

    PubMed

    Xu, Zhihua; Yu, Jiaguo

    2011-08-01

    Fe-modified TiO(2) nanotube arrays (TiO(2) NTs) were prepared by annealing amorphous TiO(2) NTs whose surface was covered with Fe(3+) by a dip-coating procedure, and characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV-visible reflectance spectroscopy. The photoelectrochemical properties were evaluated by the photocurrent response and photoelectrocatalytic (PEC) degradation of methylene orange (MO) and 4-chlorophenol in water under visible-light irradiation (λ > 420 nm). The results showed that a Fe-modified TiO(2) NTs electrode exhibited a larger photocurrent response and higher PEC activity for the degradation of organic pollutants than a pure TiO(2) NTs electrode. At a bias potential of 0.4 V, the photocurrent response of a 0.5 M Fe-modified TiO(2) NTs electrode exceeded that of a pure TiO(2) NTs electrode by a factor of about 10, and the PEC degradation rates of MO and 4-chlorophenol on a 0.5 M Fe-modified TiO(2) NTs electrode exceeded those on a pure TiO(2) NTs electrode by a factor of about 2.5. The larger photocurrent response and higher PEC activity of Fe-modified TiO(2) NTs could be attributed to the enhancement of separation of charge-carriers at the external electric field and the extension of the light response range of TiO(2) to the visible-light region with the narrowing of the band gap.

  8. High pressure structural phase transitions of TiO2 nanomaterials

    NASA Astrophysics Data System (ADS)

    Quan-Jun, Li; Bing-Bing, Liu

    2016-07-01

    Recently, the high pressure study on the TiO2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO2-B nanoribbons. Various TiO2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO2 nanoribbons, α-PbO2-type TiO2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. Project supported by the National Basic Research Program of China (Grant No. 2011CB808200), the National Natural Science Foundation of China (Grant Nos. 11374120, 11004075, 10979001, 51025206, 51032001, and 21073071), and the Cheung Kong Scholars Programme of China.

  9. Highly recoverable TiO2-GO nanocomposites for stormwater disinfection.

    PubMed

    Wang, Gen; Feng, Wenjun; Zeng, Xiangkang; Wang, Zhouyou; Feng, Chuanping; McCarthy, David T; Deletic, Ana; Zhang, Xiwang

    2016-05-01

    A highly recoverable titanium dioxide-graphene oxide (TiO2-GO) composite was developed by a facile method of ultrasonic treatment of GO nanosheets and TiO2 nanoparticles, which should overcome the separation problem of nanosized TiO2 from treated water. Separability of the prepared samples was systematically investigated by gravity settling experiments. The samples' photocatalytic activity for stormwater disinfection was also studied under the irradiation of a solar simulator. The results demonstrated that TiO2-GO showed high efficient separability due to its accelerated settling behaviour. Zeta-potential analysis showed that the accelerated sedimentation of the catalyst was attributed to the aggregation of TiO2-GO resulting from the electrostatic attraction between TiO2 and GO. The TiO2-GO composite with a mass ratio of 100:2 (TiO2-2%GO) achieved both higher separability and good photocatalytic activity for stormwater disinfection. Its suspension became clear (turbidity < 50 NTU) after 8 h of sedimentation, while 99.5% of E.coli were deactivated in 90 min. The TiO2-GO composite exhibited excellent durability; no apparent change in the separability of TiO2-2%GO was observed after 10 treatment cycles (15 h in total), while only slight decrease in the photocatalytic activity was noted. In conclusion, the developed TiO2-GO composite showed promising results for stormwater disinfection.

  10. Tunable Pseudocapacitance in 3D TiO2-δ Nanomembranes Enabling Superior Lithium Storage Performance.

    PubMed

    Huang, Shaozhuan; Zhang, Lin; Lu, Xueyi; Liu, Lifeng; Liu, Lixiang; Sun, Xiaolei; Yin, Yin; Oswald, Steffen; Zou, Zhaoyong; Ding, Fei; Schmidt, Oliver G

    2017-01-24

    Nanostructured TiO2 of different polymorphs, mostly prepared by hydro/solvothermal methods, have been extensively studied for more than a decade as anode materials in lithium ion batteries. Enormous efforts have been devoted to improving the electrical conductivity and lithium ion diffusivity in chemically synthesized TiO2 nanostructures. In this work we demonstrate that 3D Ti(3+)-self-doped TiO2 (TiO2-δ) nanomembranes, which are prepared by physical vapor deposition combined with strain-released rolled-up technology, have a great potential to address several of the long-standing challenges associated with TiO2 anodes. The intrinsic electrical conductivity of the TiO2 layer can be significantly improved by the in situ generated Ti(3+), and the amorphous, thin TiO2 nanomembrane provides a shortened Li(+) diffusion pathway. The fabricated material shows a favorable electrochemical reaction mechanism for lithium storage. Further, post-treatments are employed to adjust the Ti(3+) concentration and crystallinity degree in TiO2 nanomembranes, providing an opportunity to investigate the important influences of Ti(3+) self-doping and amorphous structures on the electrochemical processes. With these experiments, the pseudocapacitance contributions in TiO2 nanomembranes with different crystallinity degree are quantified and verified by an in-depth kinetics analysis. Additionally, an ultrathin metallic Ti layer can be included, which further improves the lithium storage properties of the TiO2, giving rise to the state-of-the-art capacity (200 mAh g(-1) at 1 C), excellent rate capability (up to 50 C), and ultralong lifetime (for 5000 cycles at 10 C, with an extraordinary retention of 100%) of TiO2 anodes.

  11. For the inactivation of mold spores by UVC irradiation, with ozone acting as a promoter, TiO2 nanoparticles may act better as a "sun block" than as a photocatalytic disinfectant.

    PubMed

    Gong, Jia-You; Chen, Yen-Chi; Huang, Yi-Ting; Tsai, Ming-Chien; Yu, Kuo-Pin

    2014-09-01

    Fungal spores are known as critical indoor allergens, and indoor air purification techniques including photocatalytic disinfection using titanium dioxide (TiO2), ultraviolet germicidal irradiation (UVGI) and ozonation, have been considerably investigated. However, most of the research is in regard to photocatalytic disinfection, focused on the anti-bacterial efficacy of TiO2 nanoparticles (NPs). Furthermore, some research even showed that the photocatalytic antifungal efficacy of TiO2 NPs may not be that significant. Thus, investigating the reasons behind the non-significant antifungal efficacy of TiO2 photocatalytic disinfection and enhancing the antifungal efficacy is indispensable. In this study, ozone was employed to improve the photocatalytic antifungal efficacy of the TiO2 NPs and nano-metal supported on TiO2 NPs. The commercial TiO2 NPs (Degussa (Evonik) P25) served as a good support, and incipient wetness impregnation was successfully exploited to prepare oxidized nano-metals (Ag, Cu and Ni) in this study. There were two surfaces (quartz and putty) used in the inactivation experiments of Aspergillus niger spores which were manipulated under two conditions: exposed to ultraviolet (UVC) light , and exposed to UVC and ozone simultaneously. The SEM images demonstrated that the spores were sheltered from UVC light in the microcracks between TiO2 agglomerates. When irradiating with UVC, the A. niger spores on the two testing surfaces, without TiO2 NPs, were inactivated faster than those with TiO2 NPs, implying a "sun block" effect of this material and a lower photocatalytic antifungal efficacy than UVGI. On both surfaces, the inactivation rate constants (k) of A. niger spores exposed to UVC and ozone simultaneously (on quartz: k = 2.09-6.94 h(-1), on putty: k = 3.17-6.66 h(-1)) were better than those exposed to only UVC (on quartz: k = 1.80-5.89 h(-1); on putty: k = 2.97-3.98 h(-1)), indicating ozone can enhance the UVGI antifungal efficacy.

  12. Electronic properties of silver and nickel doped TiO2 anatase (100) surface

    NASA Astrophysics Data System (ADS)

    Jensen, Stephanie

    Using computational approaches, one is able to better understand electron transfer and specific atomistic behaviors in semiconductor materials; it is often more cost and time effective than experimental methods. If computed characteristics of a material show promise, experimentalists can synthesize and further examine the structure of such material. In the computational study, TiO2 anatase thin film (100) surface is doped with silver or nickel. The formulas used are Ti32O72H16, Ag 2Ti30O72H16, and Ni2Ti 30O72H16 with the (100) crystallographic surface exposed and covered with a monolayer of water. Optimization is completed by DFT and PBE functional in VASP software with and without spin polarization. The density of states, absorption spectra, partial density of states, partial charge densities, molecular dynamics, and non adiabatic couplings are compared between the doped models and un-doped as the standard. According to our calculations, holes relax faster than electrons. The information can be used to show the mechanism of how doping the titanium dioxide nanocrystals facilitates photo induced charge transfer at the surfaces, which is useful in understanding photoelectrochemical water splitting.

  13. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: A comparative study of photo catalysis on acid red 88

    NASA Astrophysics Data System (ADS)

    Balachandran, K.; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P.

    2014-07-01

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m2/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4 h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88.

  14. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: a comparative study of photo catalysis on acid red 88.

    PubMed

    Balachandran, K; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P

    2014-07-15

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m(2)/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88.

  15. In3+-doped TiO2 and TiO2/In2S3 nanocomposite for photocatalytic and stoichiometric degradations.

    PubMed

    Stengl, Václav; Opluštil, František; Němec, Tomáš

    2012-01-01

    A novel In(3+)-doped TiO(2) and TiO(2)/In(2)S(3) nanocomposites for photocatalytic degradation of environmental pollutants and stoichiometric degradation of warfare agents were prepared by a homogeneous hydrolysis with urea and thioacetamide, respectively. The prepared samples series TiInTAA were annealed at 600°C. The prepared samples were characterized by X-ray powder diffraction, IR spectroscopy, Raman spectroscopy, specific surface area (BET) and porosity determination. The method of UV-Vis diffuse reflectance spectroscopy was employed to estimate band-gap energies. The photocatalytic activity (PCA) was tested by degradation of Orange dye, whereas stoichiometric activity was studied by degradation of sulfur mustard. Incorporation of In(3+) into titania lattice increases PCA of TiO(2) in the visible light and increases stoichiometric decomposition of sulfur mustard against nondoped TiO(2) as well. PCA of TiO(2)/In(2)S(3) composite depends on the optimal ratio of TiO(2):In(2)S(3) in composite, while the activity for stoichiometric decomposition of sulfur mustards depends on the content of In(2)S(3) in nanocomposite.

  16. A novel 3D structure composed of strings of hierarchical TiO2 spheres formed on TiO2 nanobelts with high photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Jiang, Yongjian; Li, Meicheng; Song, Dandan; Li, Xiaodan; Yu, Yue

    2014-03-01

    A novel hierarchical titanium dioxide (TiO2) composite nanostructure with strings of anatase TiO2 hierarchical micro-spheres and rutile nanobelts framework (TiO2 HSN) is successfully synthesized via a one-step hydrothermal method. Particularly, the strings of hierarchical spheres are assembled by very thin TiO2 nanosheets, which are composed of highly crystallized anatase nanocrystals. Meanwhile, the HSN has a large surface area of 191 m2/g, which is about 3 times larger than Degussa P25. More importantly, the photocatalytic activity of HSN and P25 were evaluated by the photocatalytic oxidation decomposition of methyl orange (MO) under UV light illumination, and the TiO2 HSN shows enhanced photocatalytic activity compared with Degussa P25, as result of its continuous hierarchical structures, special conductive channel and large specific surface area. With these features, the hierarchical TiO2 may have more potential applications in the fields of dye-sensitized solar cells and lithium ion batteries.

  17. Analysis of the electron transport properties in dye-sensitized solar cells using highly ordered TiO2 nanotubes and TiO2 nanoparticles.

    PubMed

    Kao, Mu-Jung; Chang, Ho; Cho, Kun-Ching; Kuo, Chin-Guo; Chien, Shu-Hua; Liang, Shi-Sheng

    2012-04-01

    This study uses TiO2 nanoparticles and highly ordered anatase TiO2 nanotubes (AOTnt) as thin film photoanodes for dye-sensitized solar cells (DSSCs). DSSCs are assembled by single-layer and double-layer films of photoanodes and their electron transfer performance is compared. TiO2 nanoparticles were fabricated by the sol-gel method, and AOTnts were grown on titanium foil. This study uses TiO2 nanoparticles or AOTnts to prepare single-layer photoanodes and TiO2 nanoparticles coated on an AOTnt film to fabricate double-layer photoanodes. These three different photoanodes are soaked in dye and assembled into DSSCs, and their open-loop voltage recession, electrochemical impedance, lifetime, life cycle, and effective diffusion coefficient are measured. Electron transfer efficiency of the photoanodes and light harvesting efficiency are further analyzed. The results show that the electron transfer efficiency, open-loop voltage recession, lifetime, life cycle, and effective diffusion coefficient of the DSSCs assembled using double-layer photoanodes (AOTnt-TiO2) are superior to those of single-layer photoanodes (TiO2 or AOTnt).

  18. Interference effects in photoacoustic and reflectance spectroscopies on TiO2/Si structures and TiO2 band gap.

    PubMed

    Conde-Gallardo, A; Cruz-Orea, A; Tomas, S A

    2004-08-01

    Experimental results of photoacoustic (PAS) and reflectance (RS) spectroscopies of titanium dioxide thin films (TiO2), deposited on Si substrates, are compared in a wide optical range including transparent and absorbent regions of TiO2. Due to the fact that the light modulation frequency f used in the photoacoustic experiments was so low that the thermal diffusion length of the TiO2 (mu = 100 microm) is always larger than the thickness of the studied films, the PAS turns out to be complementary to RS over the entire range. The presence of multiple reflection interference effects makes difficult a direct evaluation of the TiO2 band gap from the PAS signal. However, by employing k(lambda) values, obtained from transmission experiments on equivalent TiO2 films deposited on transparent fused quartz substrates, the PAS spectra for the films deposited on silicon are reconstructed by using those theoretical models that consider multiple reflections. The reasonable agreement of the simulated and experimental PAS spectra allows one to obtain reliable Eg values for the TiO2 films deposited on opaque silicon substrates.

  19. Hydrothermal Etching Treatment to Rutile TiO2 Nanorod Arrays for Improving the Efficiency of CdS-Sensitized TiO2 Solar Cells

    NASA Astrophysics Data System (ADS)

    Wan, Jingshu; Liu, Rong; Tong, Yuzhu; Chen, Shuhuang; Hu, Yunxia; Wang, Baoyuan; Xu, Yang; Wang, Hao

    2016-01-01

    Highly ordered TiO2 nanorod arrays (NRAs) were directly grown on an F:SnO2 (FTO) substrate without any seed layer by hydrothermal route. For a larger surface area, the second-step hydrothermal treatment in hydrochloric acid was carried out to the as-prepared TiO2 NRAs. The results showed that the center portion of the TiO2 nanorods were dissolved in the etching solution to form a nanocave at the initial etching process. As the etching time extended, the tip parts of the nanocave wall split into lots of nanowires with a reduced diameter, giving rise to a remarkable increase of specific surface area for the TiO2 NRAs. The TiO2 films after etching treatment were sensitized by CdS quantum dots (QDs) to fabricate quantum dot-sensitized solar cells (QDSSCs), which exhibited a significant improvement in the photocurrent density in comparison with that of the un-treated device, this mainly attributed to the enhancement of QD loading and diffused reflectance ability. Through modifying the etching TiO2 films with TiCl4, a relatively high power conversion efficiency (PCE) of 3.14 % was obtained after optimizing the etching time.

  20. Hydrothermal Etching Treatment to Rutile TiO2 Nanorod Arrays for Improving the Efficiency of CdS-Sensitized TiO2 Solar Cells.

    PubMed

    Wan, Jingshu; Liu, Rong; Tong, Yuzhu; Chen, Shuhuang; Hu, Yunxia; Wang, Baoyuan; Xu, Yang; Wang, Hao

    2016-12-01

    Highly ordered TiO2 nanorod arrays (NRAs) were directly grown on an F:SnO2 (FTO) substrate without any seed layer by hydrothermal route. For a larger surface area, the second-step hydrothermal treatment in hydrochloric acid was carried out to the as-prepared TiO2 NRAs. The results showed that the center portion of the TiO2 nanorods were dissolved in the etching solution to form a nanocave at the initial etching process. As the etching time extended, the tip parts of the nanocave wall split into lots of nanowires with a reduced diameter, giving rise to a remarkable increase of specific surface area for the TiO2 NRAs. The TiO2 films after etching treatment were sensitized by CdS quantum dots (QDs) to fabricate quantum dot-sensitized solar cells (QDSSCs), which exhibited a significant improvement in the photocurrent density in comparison with that of the un-treated device, this mainly attributed to the enhancement of QD loading and diffused reflectance ability. Through modifying the etching TiO2 films with TiCl4, a relatively high power conversion efficiency (PCE) of 3.14 % was obtained after optimizing the etching time.

  1. Preparation of hollow TiO2 nanoparticles through TiO2 deposition on polystyrene latex particles and characterizations of their structure and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Jingang; Yu, Jiemei; Zhu, Xiaoli; Kong, Xiang Zheng

    2012-11-01

    In a mixed solvent of water and ethanol, polystyrene/titanium dioxide (PSt/TiO2) composite particles of core-shell structure were prepared by hydrolysis of tetrabutyl titanate in the presence of cationic PSt particles or anionic PSt particles surface-treated using γ-aminopropyl triethoxysilane. Hollow TiO2 particles were obtained through calcination of the PSt/TiO2 core-shell particles to burn off the PSt core or through dissolution of the core by tetrahydrofuran (THF). An alternative process constituted of preheating the PSt/TiO2 particles at 200°C to allow partial crystallization followed by calcination or PSt dissolution by THF. The outcome TiO2 particles thus prepared were examined by TEM, and hollow TiO2 particles were observed. The crystalline phase structure and phase transformation were characterized, which revealed that preheating before the removal of the PSt core was useful to achieve the desired hollow TiO2 particles, and the calcination process was beneficial to the formation of anatase and rutile structures. The tests of TiO2 particles as catalyst in the photodegradation of Rhodamine B demonstrated that a much higher catalytic activity was observed with the TiO2 hollow particles prepared through calcination combined with preheating.

  2. An efficient photoanode consisting of TiO2 nanoparticle-filled TiO2 nanotube arrays for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Quantong; Li, Siqian; Wang, Yi; Ye, Cong; Ruterana, Pierre; Wang, Hao

    2014-12-01

    An efficient photoanode consisting of TiO2 nanoparticle-filled TiO2 nanotube (TNT) arrays is prepared by a sol-gel process through hydrolysis and condensation of titaniumtetrachloride in an aqueous medium containing alcohol and ammonia. By introducing the TiO2 nanoparticles of proper particle size ∼20 nm into TNT arrays, the surface area, dye adsorption, short-circuit photocurrent density (Jsc), open circuit voltage (Voc) and the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs) are significantly improved (up to 107% enhancement on PCE). Particularly, the addition of alcohol and ammonia in TiO2 sol results in more hydroxyl groups chemisorbed onto the surface of the photoanodes, which is favorable for achieving large amount of dye adsorption. The influence of sol-treating time on the microstructure, morphology of photoanodes and the corresponding photovoltaic performance of DSSCs are investigated. It is found that immersing the TNT arrays into TiO2 sol for 0.5-2 h gives PCE of DSSC higher than 9.6%, and the highest PCE of 9.86% is achieved in DSSC when treating the TNT arrays with TiO2 sol for 2 h.

  3. Nano-TiO2@Ag/PVC film with enhanced antibacterial activities and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Liu, Fajia; Liu, Hu; Li, Xiaoyun; Zhao, Huanyu; Zhu, Danping; Zheng, Yingying; Li, Chaorong

    2012-03-01

    The antibacterial and photocatalytic PVC film was prepared by doping heteronanostructure of TiO2 nanowire@Ag nanoparticles. TiO2 nanowire with 50-60 nm in diameter and 0.1 mm in length was prepared by a hydrothermal method, and Ag nanopartical about 5-10 nm in diameter was grafted on the surface of TiO2 nanowire evenly in the solution. The antimicrobial ability and the photocatalytic properties of the nano-TiO2@Ag/PVC film were systematically investigated by changing the influence factors such as the content of nano-TiO2@Ag, pH value and the cultivation condition. It confirmed that the nano-TiO2@Ag nanostructure could increase the antibacterial efficiency of the PVC film. Further, nano-TiO2@Ag/PVC film also showed enhanced photocatalytic activity to decompose Rhodmine B (RhB).

  4. Uniformly dispersed and controllable ligand-free silver-nanoparticle-decorated TiO2 nanotube arrays with enhanced photoelectrochemical behaviors.

    PubMed

    Bian, Haidong; Shu, Xia; Zhang, Jianfang; Yuan, Bao; Wang, Yan; Liu, Lingjuan; Xu, Guangqing; Chen, Zhong; Wu, Yucheng

    2013-11-01

    Homogeneously dispersed silver nanoparticles (AgNPs) were successfully decorated onto the surface of TiO2 nanotube arrays (TNTA) by means of an in situ photoreduction method. TNTA films as supports exhibit excellent properties to prevent agglomeration of AgNPs, and they also avoid using polymer ligands, which is deleterious to enhancing the properties of the fabricated NPs. The silver particle size and its content could be controlled just by changing the immersion time. Detailed SEM and TEM analyses combined with energy-dispersive X-ray spectroscopy analyses with different immersion times (5, 10, 30, 60 min) have revealed the variation tendency. The prepared Ag/TNTA composite films were also characterized by XRD, X-ray photoelectron spectroscopy, and high-resolution TEM. The UV/Vis diffuse reflectance spectra displayed a redshift of the absorption peak with the growth of AgNPs. The photocurrent response and the photoelectrocatalytic degradation of methyl orange (MO) were used to evaluate the photoelectrochemical properties of the fabricated samples. The results showed that the photocurrent response and photoelectrocatalytic activity largely depended on the loaded Ag particle size and content. TNTA films with a diameter of 17.92 nm and silver content of 1.15 at% showed the highest photocurrent response and degradation rate of MO. The enhanced properties could be attributed to the synergistic effect between AgNPs and TiO2. To make good use of this effect, particle size and silver content should be well controlled to develop the electron charge and discharge process during the photoelectrical process. Neither smaller nor larger AgNPs caused decreased photoelectrical properties.

  5. Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Yao, Shuhua; Song, Shuangping; Shi, Zhongliang

    2014-06-01

    Photocatalysts of titanium dioxide (TiO2) and TiO2/activated carbon fiber (TiO2/ACF) composite were prepared by sol-gel method, followed by calcining the pure TiO2 sols and the TiO2/ACF sols at 500°C for 2 h in a N2 atmosphere, respectively. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms measurement. Batch experiments were conducted to study the adsorption property of TiO2/ACF composite using methylene blue as adsorbate. The adsorption data obtained from different batch experiments were analyzed using pseudo-second-order kinetic model, the experimental data can be adequately described by the pseudo-second-order equation. The photodecomposition behavior of TiO2/ACF was investigated in aqueous solution using methylene blue as target pollutant. It was found that methylene blue could be removed rapidly from water by TiO2/ACF, the photocatalytic decomposition was obviously improved when the photocatalyst was used. Kinetics analysis revealed that the photocatalytic decomposition reaction can be described well by a first-order rate equation.

  6. Mo + C codoped TiO(2) using thermal oxidation for enhancing photocatalytic activity.

    PubMed

    Zhang, Jun; Pan, Chunxu; Fang, Pengfei; Wei, Jianhong; Xiong, Rui

    2010-04-01

    The photocatalytic activity of TiO(2) is enhanced mainly through heightening absorption of UV-vis light and improving the separation efficiency of photoinduced electrons and holes. The recent new theoretical research revealed that the TiO(2) codoped with Mo + C is considered to be an optimal doping system. On the basis of this theory, the Mo + C codoped TiO(2) powders were first experimentally synthesized by thermal oxidizing a mixture of TiC and MoO(3) powders in the air. The XRD patterns and the XPS survey spectrum showed that carbon (C) acted as a Ti-O-C band structure and molybdenum (Mo) existed as Mo(6+) in anatase TiO(2). The Mo+C codoped TiO(2) had a 32 nm red shift of the spectrum onset compared with pure anatase TiO(2), and its band gap was reduced from 3.20 to 2.97 eV. The photocurrent of the Mo + C codoped TiO(2) was about 4 times as high as that of pure anatase TiO(2), and its photocatalytic activity on decomposition of methylene blue was enhanced.

  7. Investigating the antifungal activity of TiO2 nanoparticles deposited on branched carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Darbari, S.; Abdi, Y.; Haghighi, F.; Mohajerzadeh, S.; Haghighi, N.

    2011-06-01

    Branched carbon nanotube (CNT) arrays were synthesized by plasma-enhanced chemical vapour deposition on a silicon substrate. Ni was used as the catalyst and played an important role in the realization of branches in vertically aligned nanotubes. TiO2 nanoparticles on the branched CNTs were produced by atmospheric pressure chemical vapour deposition followed by a 500 °C annealing step. Transmission and scanning electron microscopic techniques were used to study the morphology of the TiO2/branched CNT structures while x-ray diffraction and Raman spectroscopy were used to verify the characteristics of the prepared nanostructures. Their antifungal effect on Candida albicans biofilms under visible light was investigated and compared with the activity of TiO2/CNT arrays and thin films of TiO2. The TiO2/branched CNTs showed a highly improved photocatalytic antifungal activity in comparison with the TiO2/CNTs and TiO2 film. The excellent visible light-induced photocatalytic antifungal activity of the TiO2/branched CNTs was attributed to the generation of electron-hole pairs by visible light excitation with a low recombination rate, in addition to the high surface area provided for the interaction between the cells and the nanostructures. Scanning electron microscopy was used to observe the resulting morphological changes in the cell body of the biofilms existing on the antifungal samples.

  8. TiO2@C core-shell nanoparticles formed by polymeric nano-encapsulation.

    PubMed

    Vasei, Mitra; Das, Paramita; Cherfouth, Hayet; Marsan, Benoît; Claverie, Jerome P

    2014-01-01

    TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e., the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN) around each TiO2 nanoparticles. Upon pyrolysis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent.

  9. Superstructure of TiO2 Crystalline Nanoparticles Yields Effective Conduction Pathways for Photogenerated Charges.

    PubMed

    Bian, Zhenfeng; Tachikawa, Takashi; Majima, Tetsuro

    2012-06-07

    Materials with intricate nanostructures display fascinating properties, which have inspired extensive research on the synthesis of materials with controlled structures. In this study, we investigated the properties of superstructures of TiO2 to understand the inter-relationship between structural ordering and photocatalytic performance. The nanoplate anatase TiO2 mesocrystals were chosen as the typical investigation objects, which were newly synthesized by a topotactic structural transformation. The TiO2 mesocrystals displayed the superstructure of crystallographically ordered alignment of anatase TiO2 nanocrystals with high surface area and large high-energy surface {001} planes exposed. The photoconductive atomic force microscopy and time-resolved diffuse reflectance spectroscopy were utilized to determine the charge transport properties of TiO2 mesocrystals, and their features were highlighted by a comparison with reference TiO2 samples, for example, anatase TiO2 nanocrystals with similar surface area and single crystal structure. Consequently, it was found for the first time that such a superstructure of TiO2 could largely enhance charge separation and had remarkably long-lived charges, thereby exhibiting greatly increased photoconductivity and photocatalytic activity.

  10. A TiO2 abundance map for the northern maria

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Saunders, R. S.; Matson, D. L.; Mosher, J. A.

    1977-01-01

    A map of TiO2 abundance for most of the northern maria is presented. The telescopic data base used is the 0.38/0.56-micron ratio mosaic from Johnson et at. (1977). The titanium content has been estimated using the correlation established by Charette et al. (1974). The combination of observational, processing, and calibration errors indicates that the TiO2 map is accurate to + or - 2% (wt% TiO2) for high TiO2 content (more than 5%) and + or - 1% for low values of TiO2. Analysis of the lunar sample and telescopic data suggests strongly that the spectral parameter mapped is sensitive primarily to TiO2 abundance in the range 3-9% and does not correlate directly with iron content. It is suggested, however, that for the low TiO2 mare regions (less than 2-3% TiO2) there may be a relation between the spectral ratio and iron content and that some of the reddest mare areas in the Imbrium region may have low iron contents as well as low titanium abundances.

  11. Photoassisted NO reduction with NH3 over TiO2 photocatalyst.

    PubMed

    Tanaka, Tsunehiro; Teramura, Kentaro; Arakaki, Kyoko; Funabiki, Takuzo

    2002-11-21

    Photoassisted selective catalytic reduction of NO with ammonia (photo-SCR) at low temperature over irradiated TiO2 in a flow reactor was confirmed to proceed efficiently and the adsorbed ammonia reacted with NO under irradiation of TiO2.

  12. Preparation of nanorod-like anatase TiO2 nanocrystals and their photovoltaic properties.

    PubMed

    Zhang, Qinghong; Li, Shuang; Li, Yaogang; Wang, Hongzhi

    2011-12-01

    Anatase TiO2 nanocrystals with the high specific surface area were prepared by the hydrothermal treatment of anatase TiO2 sols at the temperature of 150 degrees C and above. When TiO2 sols with a lower content of TiO2 and at a relatively high pH value were hydrothermal treated, the dispersible and nanorod-like TiO2 nanocrystals were formed via the oriented attachment. The nanorod-like TiO2 nanocrystals with an aspect ratio of larger than 5 and a mean diameter of less than 7 nm were obtained in the absence of organic compounds. The as-prepared TiO2 nanocrystals were characterized with X-ray diffraction, transmission electron microscopy and BET surface area techniques. The TiO2 nanostructures were deposited on the FTO conductive glass as the anodic electrode for the dye-sensitized solar cells (DSSCs) and assembled into solar cells. The derived solar cells showed a conversion efficiency of 6.12% under 1 sun illumination of simulated sunlight and external quantum efficiency (EQE) of more than 60% at the wavelength of 550 nm. The DSSCs from the anatase nanorods has a higher open circuit voltage compared to the spherical nanocrystals.

  13. Shock induced phase transition of different TiO2 precursors

    NASA Astrophysics Data System (ADS)

    Chen, Pengwan; Gao, Xiang; Liu, Jianjun; Zhou, Qiang

    2011-06-01

    To investigate the effects of phase composition and particle size on shock-induced phase transition of TiO2, different TiO2 precursors including MC-150 TiO2(pure anatase,5nm), P25 TiO2(85% anatase/15% rutile,15nm), T2 TiO2(pure anatase,35nm) and T1 TiO2(pure rutile, 24nm) were impacted by detonation-driven high velocity flyers. Powder X-ray diffraction(XRD) was used to characterize the phase composition of recovered samples. Two types of phase transition were observed, including anatase to rutile transition and anatase to high pressure phase of srilankite transition. The phase transition mechanisms and effects of shock conditions, initial phase composition and particle size were analyzed. Complete transition from anatase to srilankite can be obtained by adjusting the shock conditions. In the case of impacting pure P25 TiO2, anatase to srilankite transition was hardly observed, which may be due to the restraint of initial phase of thermodynamically stable rutile. However, in the case of impacting a mixture of P25 TiO2 and dicyandiamide(C2N4H4) , it is interesting to observe anatase to srilankite transition and the mechanisms was analyzed. National Natural Science Foundation of China

  14. Structural and photocatalytic studies of Mn doped TiO2 nanoparticles.

    PubMed

    Chauhan, Ruby; Kumar, Ashavani; Chaudhary, Ram Pal

    2012-12-01

    Mn-doped TiO(2) nanoparticles (Ti(1-)(x)Mn(x)O(2); where x=0.00-0.10) were synthesized by sol-gel method. The synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV-Vis spectrometer. The SEM and TEM micrographs revealed the agglomerated spherical-like morphology and measurements show that the size of crystallites is in the range of 10-20 nm. Optical measurements indicated a red shift in the absorption band edge after Mn doping. Direct allowed band gap of undoped and Mn-doped TiO(2) nanoparticles measured by UV-Vis spectrometer were 3.00 and 2.95 eV at 300 °C, respectively. Photocatalytic activities of TiO(2) and Mn doped TiO(2) were evaluated by irradiating the sample solution of methylene blue (MB) dye under ultraviolet and visible light exposure. It was found that Mn-doped TiO(2) bleaches MB much faster than undoped TiO(2) upon its exposure to the visible light as comparison to ultraviolet light. The experiment demonstrated that the photodegradation efficiency of Mn-doped TiO(2) was significantly higher than that of undoped TiO(2) upon its exposure to visible light.

  15. Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee; Juan, Joon Ching; Basirun, Wan Jefrey; Centi, Gabriele

    2016-05-01

    The synergistic effect between fluorine and hydrogen in hydrogenated F-doped TiO2 photocatalysts is evaluated for the photocatalytic degradation of atrazine. The interaction between fluorine and hydrogen species in hydrogenated F-doped TiO2 overcomes the limitations of individual F-doped TiO2 and hydrogenated TiO2 photocatalyst properties. Hydrogenated F-doped TiO2 is photo-active under UV, visible and infrared light illumination with efficient electrons and holes separations. The optimized concentration of surface vacancies and Ti3+ centers coupled with enhanced surface hydrophilicity facilitates the production of surface-bound and free hydroxyl radicals. The surface of the catalyst contains dbnd Tisbnd F, dbnd Tisbnd OH, dbnd Tisbnd Ovacancy and dbnd Tisbnd H bonds as evidenced by XPS, Raman, FTIR and HR-TEM analysis. This combination also triggers the formation of new Ti3+ occupied states under the conduction band of hydrogenated F-doped TiO2. Moreover, the change in the pore structure from cylindrical to slits and larger surface area facilitates surface charge interactions. The thermal stability is also enhanced and a single anatase phase is obtained. The size of the particles of hydrogenated F-doped TiO2 is also uniform with defined and homogeneous crystal structure. This synergetic effect between fluorine and hydrogen opens up new alternatives in improving the properties of TiO2 and its photocatalytic activity.

  16. TiO2@C core-shell nanoparticles formed by polymeric nano-encapsulation

    PubMed Central

    Vasei, Mitra; Das, Paramita; Cherfouth, Hayet; Marsan, Benoît; Claverie, Jerome P.

    2014-01-01

    TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e., the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN) around each TiO2 nanoparticles. Upon pyrolysis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent. PMID:25072054

  17. Enhancement in photo-induced hydrophilicity of TiO2/CNT nanostructures by applying voltage

    NASA Astrophysics Data System (ADS)

    Abdi, Yaser; Khalilian, Maryam; Arzi, Ezatollah

    2011-06-01

    Carbon nanotube (CNT) arrays were synthesized by plasma-enhanced chemical vapour deposition on a silicon substrate. Cabbage-like TiO2 nanostructures on the CNTs were produced by atmospheric-pressure chemical vapour deposition. Scanning electron microcopy was used to study the morphology of the TiO2/CNT structures while x-ray diffraction and Fourier transform infrared (FTIR) spectroscopy were used to verify the characteristics of the prepared nanostructures. Their hydrophilicity under UV and visible light was investigated and compared with the activity of thin films of TiO2. The TiO2/CNTs showed a highly improved photocatalytic activity in comparison with the TiO2 film. The excellent visible-light-induced hydrophilicity of the TiO2/CNTs was attributed to the generation of electron-hole pairs by visible light excitation with a low recombination rate. The results of this study showed that the fabricated cabbage-like TiO2/CNT nanostructures have a super-hydrophilic surface without further UV irradiation. Electrical measurements showed that a p-n junction was formed at the interface of the TiO2/CNTs. Consequently, a super-hydrophilic surface was achieved by applying an electric bias voltage. Visible-light- and electro-induced hydrophilicity of the obtained nanostructure was reported in this work.

  18. Comparison of photocatalytic properties of TiO2 thin films and fibers

    NASA Astrophysics Data System (ADS)

    Ozdemir, Mehtap; Kurt, Metin; Ozyuzer, Lutfi; Aygun, Gulnur

    2016-10-01

    Efficiency of solar panels degrades as a result of organic contamination such as airborne particles, bird droppings and leaves. Any foreign object on photovoltaic panels reduces the sunlight entering the absorbing surface of the solar panels. Since this leads to a major problem decreasing in energy production, solar panels should be cleaned. The self-cleaning method can be preferred. There are some methods to clean the surface of solar panels. Among the self-cleaning materials, TiO2 is the most preferable ones because of its powerful photocatalytic properties. In this study, photocatalytic TiO2 were produced in two different nanostructures: nanofibers and thin films. TiO2 nanofibers were successfully produced by electrospinning. TiO2 thin films were fabricated by reactive magnetron sputtering technique. Both TiO2 nanofiber and thin film structures were heat-treated to form TiO2 in anatase phase at 600 °C for 2 h in air. Then, they were evaluated by SEM analyses for morphology, X-ray diffraction (XRD) analyses for phase structures, X-ray photoelectron spectroscopy (XPS) for the chemical state and atomic concentration, and UV-spectrometer for photocatalytic performance. The results indicate that photocatalytic and transmittance properties of TiO2 thin films are better than those of nanofibers. Consequently, TiO2 based thin films exhibit better performance for solar cell applications due to the surface cleanliness.

  19. Structuring a TiO2-based photonic crystal photocatalyst with Schottky junction for efficient photocatalysis.

    PubMed

    Chen, Huan; Chen, Shuo; Quan, Xie; Zhang, Yaobin

    2010-01-01

    Facile and effective approaches were developed to fabricate the inverse TiO2/Pt opals Schottky structures on the Ti substrate. The as-prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and diffuse reflectance UV-vis spectra (DRS), respectively. The results indicate that these samples were of ordered network, which was built by the Pt skeleton frame and the outer TiO2 layer. The TiO2 layer was identified as anatase with the preferential orientation of (101) plane. The experiments of short-circuit photocurrent (SCPC) and photocatalytic degradation of phenol were also conducted under the UV irradiation in order to evaluate the photoactivity of the samples. By tuning the red edge of photonic stop-band overlapping the absorption maximum of anatase (at 360 nm), both the UV absorption and the carrier separation of the samples were improved. The kinetic constant using the optimal inverse TiO2/Pt opals (0.992 h(-1)) was about 1.5 times as great as that of the disordered inverse TiO2/Pt opals (TiO2/Pt-mix) and was 3.3 times as great as that of pristine TiO2 nanocrystalline film (TiO2-nc) on Ti substrate.

  20. Neurotoxicity and biochemical responses in the earthworm Pheretima hawayana exposed to TiO2NPs.

    PubMed

    Khalil, Abdelmonem M

    2015-12-01

    Serious concerns have been expressed about potential risks of manufactured TiO2NPs. In this research, toxicity of nanoparticulate and bulk TiO2 were examined to the earthworm Pheretima hawayana. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic. The 24-h LC50 for TiO2NPs (145.36 mg kg(-1)) was highly toxic than that of bulk TiO2 (357.77 mg kg(-1)). The aim of the present work is to evaluate the suitability of P. hawayana and its biochemical responses to be used as a bioindicator organism and biomarkers of TiO2 toxicity. Earthworms were exposed to three sublethal concentrations of TiO2NPs (1, 10 and 100 µg kg(-1)) for 28 days to test acetylcholinesterase (AChE), antioxidant enzymes (superoxide dismutase: SOD and catalase: CAT) activities and MDA content. The response of the antioxidant enzymes combined with AChE inhibition and MDA accumulation indicated that TiO2NPs could induce significant impairments to the earthworms at the actual environment tested concentrations. The results pointed out the high sensitivity of the antioxidant and oxidative stress related responses to TiO2NPs exposure, demonstrating their usefulness in environmental monitoring and risk assessment. The study highlights also the usefulness of earthworm P. hawayana as potential bioindicator species for assessing the risk of nanoparticles environmental contamination.

  1. Synthesis of hierarchical TiO2 nanowires with densely-packed and omnidirectional branches.

    PubMed

    Lee, Daeho; Rho, Yoonsoo; Allen, Frances I; Minor, Andrew M; Ko, Seung Hwan; Grigoropoulos, Costas P

    2013-11-21

    In this study, a hierarchical TiO2 nanostructure with densely-packed and omnidirectional branches grown by a hydrothermal method is introduced. This morphology is achieved via high-concentration TiCl4 treatment of upright backbone nanowires (NWs) followed by hydrothermal growth. Secondary nanobranches grow in all directions from densely distributed, needle-like seeds on the jagged round surface of the backbone NWs. In addition, hierarchical, flower-like branches grow on the top surface of each NW, greatly increasing the surface area. For dye-sensitized solar cell (DSSC) applications, the TiO2 nanostructure demonstrated a photoconversion efficiency of up to 6.2%. A parametric study of the DSSC efficiency showed that branched TiO2 DSSCs can achieve nearly four times the efficiency of non-branched TiO2 nanowire DSSCs, and up to 170% the efficiency of previously-reported sparsely-branched TiO2 NW DSSCs.

  2. Hierarchical structured TiO2 photoanodes for dye-sensitized solar cells.

    PubMed

    Shih, Yen-Chen; Chu, Ann-Kuo; Huang, Wen-Yao

    2012-04-01

    A novel approach has been developed to fabricate hills-like hierarchical structured TiO2 photoanodes for dye-sensitized solar cells (DSSCs). The appropriately aggregated TiO2 clusters in the photoanode layer could cause stronger light scattering and higher dye loading that increases the efficiency of photovoltaic device. For detailed light-harvesting study, different molecular weights of polyvinyl alcohol (PVA) were used as binders for TiO2 nanoparticles (P-25 Degussa) aggregation. A series of TiO2 films with dissimilar morphology, the reflection of TiO2 films, absorbance of attached dye, amount of dye loading, and performance of fabricated DSSC devices, were measured and investigated. An optimized device had energy conversion efficiency of 4.47% having a higher dye loading and good light harvesting, achieving a 23% increase of short-circuit current J(sc) in DSSCs.

  3. Micro-twins TiO2 nanorods grown on seeded ZnO film

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Xia, Maosheng; Liu, Yuhua; Zheng, Biju; Jiang, Qing; Lian, Jianshe

    2012-04-01

    TiO2 anatase nanorods (NRs) epitaxially grew along the [001] direction at 600 °C on seeded c-axis oriented ZnO films which were deposited on a quartz glass substrate. The length of TiO2 NRs was about 450 nm. Micro-twins (MTs) were found in the TiO2 NRs with the (103) plane as the twin planes. The possible growth mechanisms of these TiO2 MTs have been studied using X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The photo-degradation experiment showed that the TiO2 NRs have a high degradation efficiency of 32.9%. The effects of structural defects and MTs on the photocatalytic activity have been discussed.

  4. Sandwich structure of Pd doped nanostructure TiO2 film as O2 sensor.

    PubMed

    Wang, Hairong; Sun, Quantao; Chen, Lei; Zhao, Yulong

    2013-09-01

    In this paper, we investigated the sensing properties of sandwich structure of TiO2/Pd/TiO2 thin films at various operating temperatures and oxygen partial pressures. The nanostructure TiO2 thin films were prepared by the sol-gel method. Various thickness of Pd buried layer was deposited by magnetron sputtering of a pure Pd target. The films were characterized using X-ray diffraction analysis and SEM. It was found that TiO2/Pd/TiO2 thin films have the p-type behavior while the pure TiO2 thin film is n-type semiconductor materials. We found that the structure of TiO2/Pd/TiO2 thin films with 10 s sputtering Pd layer has a better stability at 240 °C.

  5. Effect of Porosity on Photocatalytic Activity of Plasma-Sprayed TiO2 Coating

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Chaudhary, Ujwal; Das, Santanu; Godavarty, Anuradha; Agarwal, Arvind

    2013-10-01

    The effect of porosity on photocatalytic activity of plasma-sprayed TiO2 coating on steel substrate is studied by varying processing parameters viz. plasma power and powder feed rate. The relationship between porosity content and methylene blue (MB) dye decomposition rate was established to correlate coating microstructure and its photocatalytic activity. The coating with the highest porosity content exhibited best photocatalytic efficiency. The same processing parameters were used to deposit TiO2 coating on FTO glass. The photocatalytic activity of TiO2 coating on FTO was 2.5 times better than TiO2 coating on the steel substrate. TiO2 coating on FTO glass contains bimodal porosity distribution (micropores and submicron pores) which accelerated MB decomposition by accelerated diffusion of ionic species.

  6. Photoconductivity studies on amorphous and crystalline TiO2 films doped with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Valverde-Aguilar, G.; García-Macedo, J. A.; Rentería-Tapia, V.; Aguilar-Franco, M.

    2011-06-01

    In this work, amorphous and crystalline TiO2 films were synthesized by the sol-gel process at room temperature. The TiO2 films were doped with gold nanoparticles. The films were spin-coated on glass wafers. The crystalline samples were annealed at 100°C for 30 minutes and sintered at 520°C for 2 h. All films were characterized using X-ray diffraction, transmission electronic microscopy and UV-Vis absorption spectroscopy. Two crystalline phases, anatase and rutile, were formed in the matrix TiO2 and TiO2/Au. An absorption peak was located at 570 nm (amorphous) and 645 nm (anatase). Photoconductivity studies were performed on these films. The experimental data were fitted with straight lines at darkness and under illumination at 515 nm and 645 nm. This indicates an ohmic behavior. Crystalline TiO2/Au films are more photoconductive than the amorphous ones.

  7. One-Step Solvothermal Synthesis of Black TiO2 Films for Enhanced Visible Absorption.

    PubMed

    Chen, Shanlong; Tao, Jie; Tao, Haijun; Wang, Chen; Shen, Yizhou; Jiang, Jiajia; Zhu, Lumin; Zeng, Xiaofei; Wang, Tao

    2016-03-01

    An economic and facile solvothermal method was reported to prepare black TiO2 films on Ti foils that possessed the property of optical absorption in the visible region. The UV-vis spectra showed that the black TiO2 samples exhibited highly enhanced visible-light absorption from 400-600 nm. The black TiO2 films were compact and uniform, composed of nanoparticles and nanosheets. Moreover, a mixed structure of anatase and rutile was present in black TiO2 films. The electron paramagnetic resonance (EPR) spectra confirmed the presence of Ti3+ in samples, which accounted for longer wavelength optical absorption. The results showed that the TiO2 films had retained their black color upon storage in ambient atmosphere for more than one month. Therefore, it was supposed that the ethylene glycol in solvothermal reaction was the key factor for the extension of the absorption spectrum.

  8. Surface morphology of titanium dioxide (TiO2) nanoparticles on aluminum interdigitated device electrodes (IDEs)

    NASA Astrophysics Data System (ADS)

    Azizah, N.; Hashim, U.; Arshad, M. K. Md.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Ayub, R. M.

    2016-07-01

    Titanium dioxide (TiO2) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO2 was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO2 on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.

  9. A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells.

    PubMed

    Gao, Xianfeng; Li, Jianyang; Gollon, Sam; Qiu, Ming; Guan, Dongsheng; Guo, Xiaoru; Chen, Junhong; Yuan, Chris

    2017-02-15

    The electron transport layer (ETL) plays a critical role in high efficiency perovskite solar cells. In this study, an anodic TiO2 nanotube film was transformed into a TiO2 nanotube network film, which maintained its advantage as an efficient ETL for perovskite solar cells. Compared with the mesoporous TiO2 nanoparticle ETL, the TiO2 nanotube network ETL can increase the efficiency of perovskite solar cells by 26.6%, which is attributed to its superior charge collection property and light trapping ability. The results confirm the importance of optimizing the electron collecting layer and suggest another way to design and fabricate novel perovskite solid state solar cells, potentially by using a TiO2 nanotube network film as an alternative high efficiency electrode.

  10. Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles

    PubMed Central

    Xie, Zheng; Liu, Xiangxuan; Wang, Weipeng; Liu, Can; Li, Zhengcao; Zhang, Zhengjun

    2014-01-01

    TiO2 nanorod arrays (TiO2 NRAs) sensitized with CdS nanoparticles were fabricated via successive ion layer adsorption and reaction (SILAR), and TiO2 NRAs were obtained by oxidizing Ti NRAs obtained through oblique angle deposition. The TiO2 NRAs decorated with CdS nanoparticles exhibited excellent photoelectrochemical and photocatalytic properties under visible light, and the one decorated with 20 SILAR cycles CdS nanoparticles shows the best performance. This can be attributed to the enhanced separation of electrons and holes by forming heterojunctions of CdS nanoparticles and TiO2 NRAs. This provides a promising way to fabricate the material for solar energy conversion and wastewater degradation. PMID:27877718

  11. Mechanochemical Synthesis of TiO2 Nanocomposites as Photocatalysts for Benzyl Alcohol Photo-Oxidation

    PubMed Central

    Ouyang, Weiyi; Kuna, Ewelina; Yepez, Alfonso; Balu, Alina M.; Romero, Antonio A.; Colmenares, Juan Carlos; Luque, Rafael

    2016-01-01

    TiO2 (anatase phase) has excellent photocatalytic performance and different methods have been reported to overcome its main limitation of high band gap energy. In this work, TiO2-magnetically-separable nanocomposites (MAGSNC) photocatalysts with different TiO2 loading were synthesized using a simple one-pot mechanochemical method. Photocatalysts were characterized by a number of techniques and their photocatalytic activity was tested in the selective oxidation of benzyl alcohol to benzaldehyde. Extension of light absorption into the visible region was achieved upon titania incorporation. Results indicated that the photocatalytic activity increased with TiO2 loading on the catalysts, with moderate conversion (20%) at high benzaldehyde selectivity (84%) achieved for 5% TiO2-MAGSNC. These findings pointed out a potential strategy for the valorization of lignocellulosic-based biomass under visible light irradiation using designer photocatalytic nanomaterials. PMID:28335221

  12. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-02-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed.

  13. Improvement of Ultrasonic Disinfection Power Using TiO2 Photocatalyst

    NASA Astrophysics Data System (ADS)

    Dadjour, Mahmoud Farshbaf; Ogino, Chiaki; Matsumura, Susumu; Nakamura, Shinichi; Shimizu, Nobuaki

    2005-03-01

    The disinfection power of an ultrasonic system was enhanced using TiO2-photocatalyst in the irradiating solutions. Cultures of Legionella were used in the irradiation system with and without TiO2. A significant decrease in the concentration of viable cells was observed during irradiation in the presence of TiO2. The rate of cell killing was higher in the presence of TiO2 than it was with Al2O3, and was proportional to the amount of TiO2 used in the irradiating samples. There was no significant effect of cell concentration on the rate of cell killing in the range of 103 to 107 CFU/ml. Addition of OH radical scavengers such as glutathione, ascorbic acid and histidine to the irradiating solutions reduced the rate of disinfection, thus indicating the primary role of OH radicals in this process.

  14. Photocatalytic treatment of municipal wastewater using modified neodymium doped TiO(2) hybrid nanoparticles.

    PubMed

    Shahmoradi, Behzad; Ibrahim, Ibrahim A; Sakamoto, Naonori; Ananda, Sannaiah; Somashekar, Rudrappa; Row, Tagur N Guru; Byrappa, Kullaiah

    2010-08-01

    Photocatalytic degradation of municipal wastewater was investigated using reagent grade TiO(2) and modified neodymium doped TiO(2) hybrid nanoparticles. For the first time, surface modification of Nd(3 +) doped TiO(2) hybrid nanoparticles were carried out with n-butylamine as surface modifier under mild hydrothermal conditions. The modified nanoparticles obtained were characterized by Powder XRD, FTIR, DLS, TEM, BET surface area, zeta potential and UV-Vis Spectroscopy. The characterization results indicated better morphology, particle size distribution and low agglomeration of the nanoparticles synthesized. It was found that photodegradation of wastewater using surface modified neodymium doped TiO(2) nanoparticles was more compared to pure TiO(2), which can be attributed to the doping and modification with n-butylamine.

  15. Fabrication and photovoltaic properties of heterostructured TiO2 nanowires.

    PubMed

    Noh, Suk-In; Park, Dong-Won; Shim, Hee-Sang; Ahn, Hyo-Jin

    2012-07-01

    One-dimensional heterostructured TiO2 nanowires were successfully fabricated by an electrospinning technique and modified by hydrolysis. We investigated their structure, morphology, chemical composition, and optical properties by using the X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy. In the case of the photovoltaic performance, the short-circuit current density and cell efficiency of the DSSCs employing single TiO2 nanowires and heterostructured TiO2 nanowires improve from 6.90 to 11.38 mA/cm2 and from 2.56 to 4.29%, respectively. The results show that the photoconversion efficiency of the heterostructured TiO2 nanowires could be improved by more than approximately 67% compared to that of the single TiO2 nanowires because of the enhanced specific surface area that facilitates dye adsorption.

  16. Enhanced adsorption of atrazine from aqueous solution by molecularly imprinted TiO2 film

    NASA Astrophysics Data System (ADS)

    Zhang, Chunjing; Yan, Jinlong; Zhang, Chunxiao; Yang, Zhengpeng

    2012-07-01

    TiO2 film imprinted by atrazine molecule at the surface of quartz crystal was prepared using molecular imprinting and surface sol-gel process. The molecularly imprinted TiO2 film was characterized by scanning electron microscopy and cyclic voltammetry, and the atrazine adsorption was investigated by quartz crystal microbalance (QCM) technique. In comparison with non-imprinted TiO2 film, the molecularly imprinted TiO2 film exhibits high selectivity for atrazine, better reversibility and a much higher adsorption capacity for the target molecule, the adsorption equilibrium constant estimated from the in situ frequency measurement is about 6.7 × 104 M-1, which is thirteen times higher than that obtained on non-imprinted TiO2 film.

  17. Fundamental reactions in TiO 2 nanocrystallite aqueous solutions studied by pulse radiolysis

    NASA Astrophysics Data System (ADS)

    Gao, Ruomei; Safrany, Agnes; Rabani, Joseph

    2002-12-01

    Reactions of the hydrated electron, H atoms, 2-propanol, and methanol radicals with the TiO 2 nano-particles have been studied either directly or by competition kinetics. The radicals were produced by radiolysis of 2-propanol, t-butanol, or methanol aqueous solutions in acid pH's. The reactions involve electron injection to the conduction band. As expected, the t-butanol radical is inert towards TiO 2 under our conditions, while the other reducing radicals react with TiO 2. The reactivity decreases in the order: e aq->H>CH 3COHCH 3>CH 2OH. Two TiO 2 nanocrystallite sizes, with average diameters of 1.0 and 4.7 nm were compared. For equal concentrations (in terms of TiO 2 molecules), the rate of electron injection shows relatively little dependency on particle size. The rates of interfacial electron transfer and transfer coefficient are also reported.

  18. Nb doping effect on TiO2-x films for bolometer applications

    NASA Astrophysics Data System (ADS)

    Shin, Young Bong; Kumar Reddy, Y. Ashok; Kang, In-Ku; Lee, Hee Chul

    2016-04-01

    Nb-doped TiO2-x thin films were deposited using a 1 at% niobium doped titanium target by RF reactive magnetron sputtering at various oxygen partial pressures (pO2). The films appeared amorphous in the pO2 range of 4.4-4.7% with resistivity ranging from 0.39 Ω cm to 2.48 Ω cm. Compared to pure TiO2-x films, the resistivity of the Nb-doped TiO2-x films did not change sensitively with the oxygen partial pressure, indicating that the resistivity of the films can be accurately controlled. 1/f noise parameter of Nb-doped TiO2-x films were found to decrease largely while the measured temperature coefficient of resistance (TCR) of the films was still high. The obtained results indicate that Nb-doped TiO2-x films have great potential as an alternative bolometric material.

  19. Effects of annealed temperature on the properties of TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Avesh

    2016-05-01

    In this work, the structural, morphological and electrical properties of TiO2 thin films are studied. The phase transformation of TiO2 from anatase to rutile is occurred at a certain temperature. This transformation increases defects concentration onthe surface of the film which acts as trapping sites for carriers, thereby affecting the Fermi level of TiO2 film.Quantitative estimation of Fermi level shifting is measured in terms of work function measurement using scanning Kelvin probe measurement. Work function of TiO2 was found to decrease with increasing annealed temperature indicating shifting of Fermi level towards conduction band. Position of Fermi level plays an important role in phase transformation and electronic properties of TiO2.

  20. Origin of photoactivity of oxygen-deficient TiO2 under visible light

    NASA Astrophysics Data System (ADS)

    Lo, Hsin-Hsi; Gopal, Neeruganti O.; Ke, Shyue-Chu

    2009-08-01

    As it is now well established that oxygen vacancies are spontaneously introduced during nitrogen doping of anatase TiO2, there is a lively debate on whether nitrogen dopant or oxygen vacancy contributes to the visible light photoactivity of the doped catalyst. We showed that the coordinately unsaturated Ti site is integral to the visible light photoactivity in anatase oxygen-deficient TiO2 catalyst. Accordingly, oxygen vacancies may contribute to the visible light photoactivities in N-doped TiO2 and other nonmetallic ion-doped TiO2 as well. A redox active visible light photocatalyst has been developed based on oxygen-deficient structure in anatase TiO2.

  1. Photocatalytic oxidation of propylene on La and N codoped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Jinfeng; Li, Haiyan; Zong, Lanlan; Li, Qiuye; Wang, Xiaodong; Zhang, Min; Yang, Jianjun

    2015-02-01

    Lanthanum- and nitrogen-codoped TiO2 photocatalysts was synthesized using orthorhombic nanotubes titanic acid as the precursor by a simple impregnation and subsequent calcination method. The morphology, phase structure, and properties of La- and N-codoped TiO2 were well characterized by transmission electron microscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra. The La-/N-codoped TiO2 showed excellent photoactivity of propylene oxidation compared with the single-doped TiO2 and La-/N-codoped P25 TiO2 nanoparticles under visible light irradiation. The origin of the enhancement of the visible light-responsive photocatalytic activity was discussed in detail.

  2. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Yoo, Seung Hwa; Ali, Ghafar; Cho, Sung Oh

    2010-03-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV-visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.

  3. Influence of annealing on optical and photovoltaic properties of nanostructured TiO2 films

    NASA Astrophysics Data System (ADS)

    Serikov, T. M.; Ibrayev, N. Kh; Smagulov, Zh Kh; Kuterbekov, К. А.

    2017-01-01

    Spectral and kinetic characteristics of the photoluminescence of TiO2 films obtained from TiO2 nanoparticles and nanotubes were studied. Luminescence spectra typical for the TiO2 with anatase structure were observed under UV excitation of the films. Heat treatment of the films at T=1273 K leads to a long-wavelength shift of the photoluminescence band with maximum at 850 nm, which corresponds to the rutile structure. The luminescence duration of rutile films is longer than the luminescence duration of the anatase films as for nanoparticles and for nanotubes. The photovoltaic properties of TiO2 films with different structures were investigated. It was established that anatase structured films have a higher photocurrent than the rutile structured film. By impedance spectroscopy method it was found that the electron transport resistance in the nanotube films is higher but the recombination rate is lower than in the TiO2 nanoparticle films.

  4. UV protection afforded by gel-trapped TiO2 particles.

    PubMed

    Sojka, Milan F; Cummins, Phillip G; Declercq, Lieve A G; Fthenakis, Christina G; Ionita-Manzatu, Mirela C; Lee, Wilson A; Maes, Daniel H; McKeever-Alfieri, Mary Ann; Najdek, Linda J; Pernodet, Nadine; Sente, Ilse M E; Teta, Lawrence P; Van Rillaer, Katrin; Yarosh, Daniel B; Giacomoni, Paolo U

    2011-07-01

    We have developed a technology to incorporate micronized titanium dioxide (TiO(2)), together with antioxidants, in particles of a UV-visible transparent polymer gel. These particles are coated with silica to avoid clustering and the size of the micronized TiO(2) reduces the back scattering of white light. gel-trapped TiO(2) minimizes the oxidative stress exerted by UV radiation, increases the photo-stability of some accompanying ingredients, such as avobenzone. The size of the particles is in the micrometre range. This favors their permanence on the top of the stratum corneum. Gel-trapped TiO(2)-based sunscreens provide a larger SPF and two-fold larger UVA protection than equal-composition sunscreens that contain larger amounts of untrapped TiO(2).

  5. Synthesis of anatase and rutile TiO2 nanostructures from natural ilmenite

    NASA Astrophysics Data System (ADS)

    Wahyuingsih, Sayekti; Ramelan, Ari Handono; Pramono, Edi; Sulistya, Ariantama Djati; Argawan, Panji Rofa; Dharmawan, Frenandha Dwi; Rinawati, Ludfiaastu; Hanif, Qonita Awliya; Sulistiyono, Eko; Firdiyono, Florentinus

    2016-02-01

    Nanostructure anatase and rutile type TiO2 were synthesized from dissolution roasted ilmenite from natural ilmenite sand as the starting materials. Anatase TiO2 and rutile TiO2 (high crystallinity) with the diameters of 20-100 nm were obtained by calcined soluble ilmenite sand produced by leaching process. Calcinations of the xerogel TiO2 from liquor products were conducted for 4 hours at temperature of 450 °C. The samples were characterized by XRD (X-ray diffraction), STA (simultant thermal analysis), TEM (Transmission Electron Microscopy), and BET surface area. Titania Anatase-Rutile form as a mixture were produced by titania slag with the hydrolysis product. While, in another route, complete titania anatase phase was produced through hydrolysis and condensation steps of leach liquors. This synthesis methods provide a simple route to fabricate nanostructure TiO2 from low cost material.

  6. The morphological characterizations of titanium dioxide (TiO2) via sol-gel method

    NASA Astrophysics Data System (ADS)

    Nordin, N. K. S.; Hashim, U.; Vijayakumaran, T.

    2017-03-01

    Titanium Dioxide (TiO2) has comes with many fascinating properties in environmental purification, photocatalytic activity and in sensor application. TiO2 is prepared by sol-gel method and been coated on the silicon oxide (SiO) and glasses for 1 layer, 3 layers, 5 layers and finally 7 layers to find the best layer for coating purpose. A few characterizations had been carried out such as Scanning Electron Microscope (SEM), Photoluminescence (PL) and Current-Voltage (I-V) measurement for TiO2. The I-V recorded for the presence of Interdigitated Electrode (IDE) is 2.46×10-10 at 1V increased from 2.24×10-10 without the coating of TiO2. TiO2 coated on IDE triggered more sensitive sensor compared to IDE without metal oxides coated.

  7. A study of bactericidal effect and optimization of pathogenic bacteria using TiO2 photocatalyst.

    PubMed

    Kim, Tae-Young; Park, Seung-Shik; Kim, Seung-Jai; Cho, Sung-Young

    2011-02-01

    The photocatalytic degradation of Salmonella choleraesuis subsp. and Vibrio parahaemolyticus in water by TiO2 catalysts was investigated in a batch reactor. After 30 min of irradiation with UV light in the presence of 1 mg/ml of TiO2, death ratio of S. choleraesuis subsp. and V. parahaemolyticus was 60% and 83%, respectively. And complete killing of the cells was achieved after 3 h of illumination in the presence of TiO2. We established the response surface methodology to investigate the effect of principal parameters on the pathogenic bacteria sterilization such as TiO2 concentration, pH and temperature. By applying response surface analysis to the bactericidal effect of S. almonella choleraesuis subsp. and V. parahaemolyticus, we found that the cell death ratio was influenced significantly by the first order term of TiO2 concentration.

  8. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering.

    PubMed

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-01-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed.

  9. Ag/TiO2 nanofiber heterostructures: Highly enhanced photocatalysts under visible light

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Liu, Lixin; Xu, Liang; Meng, Chuanmin; Zhu, Wenjun

    2013-05-01

    Photocatalysis of TiO2 has recently drawn considerable attention, while the photoefficiency of TiO2 is limited by its large band-gap energy and usually fast electron-hole recombination. Here, we present an unconventional heterostructure of Ag nanoparticles modified TiO2 nanofibers synthesized by one-step electrospinning process, to improve the photoefficiency of TiO2 host. The efficient promotion of the visible light photocatalysis of Ag/TiO2 nanofiber heterostructures can be ascribed to the electronic excitation of Ag nanoparticles under visible light and the transfer of the electrons to TiO2 conduction band, which deeply depends on the number of Ag/TiO2 junctions and the height of Schottky barrier. The Ag/Ti molar ratio can be easily controlled by the electrospinning process and the Ag/TiO2 nanofibers with Ag/Ti molar ratio of 0.05 exhibit the highest photocatalytic activity. Simultaneously, the Ag/TiO2 nanofiber heterostructures show excellent photocatalytic stability.

  10. Photocatalytic synthesis and photovoltaic application of Ag-TiO2 nanorod composites.

    PubMed

    Lu, Qipeng; Lu, Zhenda; Lu, Yunzhang; Lv, Longfeng; Ning, Yu; Yu, Hongxia; Hou, Yanbing; Yin, Yadong

    2013-01-01

    A photocatalytic strategy has been developed to synthesize colloidal Ag-TiO2 nanorod composites in which each TiO2 nanorod contains a single Ag nanoparticle on its surface. In this rational synthesis, photoexcitation of TiO2 nanorods under UV illumination produces electrons that reduce Ag(I) precursor and deposit multiple small Ag nanoparticles on the surface of TiO2 nanorods. Prolonged UV irradiation induces an interesting ripening process, which dissolves the smaller nanoparticles by photogenerated oxidative species and then redeposits Ag onto one larger and more stable particle attached to each TiO2 nanorod through the reduction of photoexcited electrons. The size of the Ag nanoparticles can be precisely controlled by varying the irradiation time and the amount of alcohol additive. The Ag-TiO2 nanorod composites were used as electron transport layers in the fabrication of organic solar cells and showed notable enhancement in power conversion efficiency (6.92%) than pure TiO2 nanorods (5.81%), as well as higher external quantum efficiency due to improved charge separation and transfer by the presence of Ag nanoparticles.

  11. An in-situ synthesis of Ag/AgCl/TiO2/hierarchical porous magnesian material and its photocatalytic performance

    PubMed Central

    Yang, Lu; Wang, Fazhou; Shu, Chang; Liu, Peng; Zhang, Wenqin; Hu, Shuguang

    2016-01-01

    The absorption ability and photocatalytic activity of photocatalytic materials play important roles in improving the pollutants removal effects. Herein, we reported a new kind of photocatalytic material, which was synthesized by simultaneously designing hierarchical porous magnesian (PM) substrate and TiO2 catalyst modification. Particularly, PM substrate could be facilely prepared by controlling its crystal phase (Phase 5, Mg3Cl(OH)5·4H2O), while Ag/AgCl particles modification of TiO2 could be achieved by in situ ion exchange between Ag+ and above crystal Phase. Physiochemical analysis shows that Ag/AgCl/TiO2/PM material has higher visible and ultraviolet light absorption response, and excellent gas absorption performance compared to other controls. These suggested that Ag/AgCl/TiO2/PM material could produce more efficient photocatalytic effects. Its photocatalytic reaction rate was 5.21 and 30.57 times higher than that of TiO2/PM and TiO2/imporous magnesian substrate, respectively. Thus, this material and its intergration synthesis method could provide a novel strategy for high-efficiency application and modification of TiO2 photocatalyst in engineering filed. PMID:26883972

  12. TiO2 crystal facet-dependent antimony adsorption and photocatalytic oxidation.

    PubMed

    Song, Jiaying; Yan, Li; Duan, Jinming; Jing, Chuanyong

    2017-02-24

    Anatase TiO2 crystal facets are garnering increasing attention due to their unique surface property. However, no specific linear relationship had been derived between the facet exposed on TiO2 and the surface adsorption capacity as well as photocatalytic performance. This study systematically explored the facet effects on antimony (Sb) adsorption and photocatalytic oxidation using high-index {201} and low-index {101}, {001}, and {100} TiO2. The results suggest that high-index {201} TiO2 exhibits the best Sb(III) adsorption and photocatalytic activity compared to the low-index TiO2. Both the Sb(III) adsorption density and the amount of OH and O2(-) generated in solution were correlated to the magnitude of surface energy on TiO2 facets. Photocatalytically generated OH and O2(-) were responsible for Sb(III) photooxidation as evidenced by radical-trapping experiments. The great contribution of OH was observed only on {201}, not on low-index TiO2. This phenomenon was found to be attributable to the high surface energy on {201}, which enables the generation of a large amount of photogeneration OH to compensate for the fast rate of OH dissipation. Therefore, the predominant participation of OH in Sb(III) photooxidation was only possible on high-index {201} TiO2, which resulted in an enhanced photocatalytic rate. On the other hand, O2(-) dominated the Sb(III) photocatalytic oxidation on low-index TiO2. The intrinsic facet-dependent adsorption and photocatalytic mechanism obtained from this study would be useful for developing TiO2-based environmental technologies.

  13. Synthesis and photo-degradation application of WO3/TiO2 hollow spheres.

    PubMed

    Lv, Kezhen; Li, Jie; Qing, Xiaoxia; Li, Wenzhang; Chen, Qiyuan

    2011-05-15

    A WO(3)/TiO(2) composite, hollow-sphere photocatalyst with average diameter of 320 nm and shell thickness of 50 nm was successfully prepared using a template method. UV-vis diffuse reflectance spectra illustrated that the main absorption edges of the WO(3)/TiO(2) hollow spheres were red-shifted compared to the TiO(2) hollow spheres, indicating an extension of light absorption into the visible region of the composite photocatalyst. The WO(3) and TiO(2) phases were confirmed by X-ray diffraction analysis. BET isotherms revealed that the specific surface area and average pore diameter of the hollow spheres were 40.95 m(2)/g and 19 nm, respectively. Photocatalytic experiments indicate that 78% MB was degraded by WO(3)/TiO(2) hollow spheres under visible light within 80 min. Under the same conditions, only 24% MB can be photodegraded by TiO(2). The photocatalytic mineralization of MB, catalyzed by TiO(2) and WO(3)/TiO(2), proceeded at a significantly higher rate under UV irradiation than that under visible light, and more significant was the increase in the apparent rate constant with the WO(3)/TiO(2) composite semiconductor material which was 3.2- and 3.5-fold higher than with the TiO(2) material under both UV and visible light irradiation. The increased photocatalytic activity of the coupled nanocomposites was attributed to photoelectron/hole separation efficiency and the extension of the wavelength range of photoexcitation.

  14. High photocatalytic activity of immobilized TiO2 nanorods on carbonized cotton fibers.

    PubMed

    Wang, Bin; Karthikeyan, Rengasamy; Lu, Xiao-Ying; Xuan, Jin; Leung, Michael K H

    2013-12-15

    In this study, TiO2 nanorods were successfully immobilized on carbon fibers by a facile pyrolysis of natural cotton in nitrogen atmosphere followed by a one-pot hydrothermal method. Carbonized cotton fibers (CCFs) and TiO2-CCFs composites were characterized using field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffractometer (XRD), diffuse reflectance UV-vis spectroscopy (DRS) and photoluminescence (PL) spectroscopy. Results implied that the band gap narrowing of TiO2 was achieved after integration of CCFs. Dye adsorption isotherm indicated that the maximum dye adsorption capacity (qm) of CCFs-1000 (13.4 mg/g) was 2 times higher than that of cotton fibers and qm of TiO2-CCFs-1000 (9.0mg/g) was 6-7 times higher than that of TiO2 nanorods. Photocatalytic activity of TiO2 nanorods prepared with 3 mL Ti(OBu)4 showed the highest photocatalytic activity. TiO2-CCFs-1000 exhibited higher activity than TiO2 immobilized on CCFs-400, CCFs-600 and CCFs-800. Good photostability of TiO2-CCFs-1000 was found for dye degradation under visible light irradiation. The enhancement of photocatalytic dye degradation was due to the high adsorptivity of dye molecules, enhanced light adsorption and effective separation of electron-hole pairs. This work provides a low-cost and sustainable approach to immobilize nanostructured TiO2 on carbon fibers for environmental remediation.

  15. Characteristics of ionic polymer-metal composite with chemically doped TiO2 particles

    NASA Astrophysics Data System (ADS)

    Jung, Youngsoo; Kim, Seong Jun; Kim, Kwang J.; Lee, Deuk Yong

    2011-12-01

    Many studies have investigated techniques to improve the bending performance of ionic polymer-metal composite (IPMC) actuators, including 'doping' of metal particles in the polymer membrane usually by means of physical processes. This study is mainly focused on the characterization of the physical, electrochemical and electromechanical properties of TiO2-doped ionic polymer membranes and IPMCs prepared by the sol-gel method, which results in a uniform distribution of the particles inside the polymer membrane. X-ray and UV-visible spectra indicate the presence of anatase-TiO2 in the modified membranes. TiO2-doped membranes (0.16 wt%) exhibit the highest level of water uptake. The glass transition temperature of these membranes, measured using differential scanning calorimetry (DSC), increases with the increase of the amount of TiO2 in the membrane. Dynamic mechanical analysis (DMA) demonstrated that the storage modulus of dried TiO2-doped ionic polymer membranes increases as the amount of TiO2 in the membrane increases, whereas the storage modulus of hydrated samples is closely related to the level of water uptake. Electrochemical impedance spectroscopy (EIS) shows that the conductivity of TiO2-doped membranes decreases with increasing TiO2 content in spite of an internal resistance drop in the samples. Above all, bending deflection of TiO2-doped IPMC decreased with higher TiO2 content in the membrane while the blocking force of each sample increased with the higher TiO2 content. Additionally, it was determined that the lifetime of IPMC is strongly dependent on the level of water uptake.

  16. Monodisperse TiO2 Spheres with High Charge Density and Their Self-Assembly.

    PubMed

    Xia, Hongbo; Wu, Suli; Su, Xin; Zhang, Shufen

    2017-01-03

    Titanium dioxide (TiO2 ) spheres are potential candidates to fabricate three-dimensional (3D) photonic crystals owing to their high refractive index and low absorption in the visible and near-infrared regions. Here, TiO2 spheres with both high surface charge density and uniform size, which are necessary for the self-assembly of TiO2 spheres, have been prepared by means of sol-gel methods in ethanol in the presence of thioglycolic acid as ligand. Thioglycolic acid, which contains two functional groups, not only acts as coordinating ligand for stabilizing and controlling the growth of TiO2 spheres but also endows the resulting TiO2 spheres with high charge density as based on ζ-potential analysis when the pH of the TiO2 aqueous dispersion was 6.5 or higher. The SEM images illustrate that the diameter of the prepared TiO2 spheres can be tuned from 100 to 300 nm by simply controlling the concentration of H2 O. FTIR spectra confirm that thioglycolic acid bonded to the surface of TiO2 spheres through carboxylic groups. As anticipated, the obtained TiO2 spheres could self-assemble to form a 3D opal photonic crystal structure by means of a simple gravity sedimentation method. Then the TiO2 spheres in the 3D opal photonic crystal structure were able to transform into a pure anatase phase by annealing at different temperatures.

  17. Inverted organic solar cells based on Cd-doped TiO2 as an electron extraction layer

    NASA Astrophysics Data System (ADS)

    Ranjitha, A.; Muthukumarasamy, N.; Thambidurai, M.; Velauthapillai, Dhayalan; Madhan Kumar, A.; Gasem, Zuhair M.

    2014-10-01

    Nanocrystalline Cd-doped TiO2 thin films have been prepared by sol-gel method. X-ray diffraction analysis reveals that TiO2 and Cd-doped TiO2 nanocrystalline thin films are of anatase phase. The average grain size of TiO2 and Cd-doped TiO2 nanocrystalline thin films was found to lie in the range of 15-18 nm. Solar cells have been fabricated with a device structure of ITO/Cd-doped TiO2/P3HT:PC71BM/MoO3/Al configuration. The power conversion efficiency of the inverted organic solar cell with Cd-doped TiO2 is 3.06% and is higher than that of TiO2 based organic solar cell (2.64%).

  18. Synthesis, characterization and photocatalytic activity of fluorine doped TiO2 nanoflakes synthesized using solid state reaction method.

    PubMed

    Umadevi, M; Parimaladevi, R; Sangari, M

    2014-01-01

    Fluorine doped TiO2 were synthesized by solid state reaction method. Optical and structural properties of fluorine doped TiO2 were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, UV-vis diffusion reflectance spectroscopy and scanning electron microscopic techniques. The prepared fluorine doped TiO2 was smaller in size with respect to pure TiO2 and it is tetragonal in crystalline structure. Nanoflakes like structure of pure and fluorine doped TiO2 was confirmed from SEM image. Fluorine doped TiO2 shows smaller band gap, high strain and dislocation density when compared to pure TiO2. It also has higher photocatalytic activity with respect to pure TiO2.

  19. Dye-Sensitized Solar Cell with Photoanode Made with Polystyrene-Ball-Embedded TiO2 Pastes

    NASA Astrophysics Data System (ADS)

    Hsu, Yu-Ching; Wu, Tony Chang Chi; Cheng, I.-Chun; Chen, Jian-Zhang; Yang, Mu-Rong

    2011-06-01

    We report the effect of varying the concentration of polystyrene (PS) balls embedded in TiO2 paste during the fabrication of TiO2 photoanodes on the performance of dye-sensitized solar cells (DSSCs). We fabricated porous photoanodes using TiO2 pastes mixed with various concentrations of PS balls in aqueous solution. During the TiO2 sintering processes, the PS evaporated, leaving behind large cavities (>1 µm) in the photoanodes. These cavities enhance the scattering of light, leading to improved absorption of light by N3 dyes. DSSC efficiency increases with the increase in PS ball concentration during TiO2 fabrication. As with classical devices, TiCl4 treatment of TiO2 and the use of a compact TiO2 layer both improve the cell efficiency of DSSC devices with our large-cavity TiO2 photoanodes.

  20. Plasmonic enhancement of low cost mesoporous Fe2O3-TiO2 loaded with palladium, platinum or silver for dye sensitized solar cells (DSSCs)

    NASA Astrophysics Data System (ADS)

    Sanad, M. M. S.; Shalan, Ahmed E.; Rashad, M. M.; Mahmoud, M. H. H.

    2015-12-01

    In this article, a low cost mesoporous Fe2O3-TiO2 nanoparticles has been synthesized from Abu Ghalaga ilmenite ore, Egypt using simple hydrothermal route. Meanwhile, silver, platinum and palladium metals nanoparticles from spent catalysts have been extracted and deposited between the anatase TiO2 particles using in situ reduction step. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscopic (TEM), N2 adsorption-desorption isotherm (SBET) and X-ray photoelectron spectroscopy (XPS). The as-prepared materials were applied as photoanodes in dye-sensitized solar cells (DSSCs), whose photocurrent-voltage J-V characteristic curves measurements were consistently performed. The 0.5% precious metal doped samples NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths which also exhibited very good and enhanced photovoltaic performance as a result of the strong scattering lightresulting of noticeable enhancement of charge transfer rates. Indeed, the Ag@Fe2O3-TiO2 sample exhibited the maximum overall conversion efficiency (η % = 4.5%) and it can be considered as a cost-effective photoanode for DSSCs.