Science.gov

Sample records for ag dendritic nanostructures

  1. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films.

    PubMed

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates. PMID:25483981

  2. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films

    NASA Astrophysics Data System (ADS)

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates.

  3. Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate

    NASA Astrophysics Data System (ADS)

    Jun Yin, Hong; Yang Chen, Zhao; Mei Zhao, Yong; Yang Lv, Ming; An Shi, Chun; Long Wu, Zheng; Zhang, Xin; Liu, Luo; Li Wang, Ming; Jun Xu, Hai

    2015-09-01

    Surface enhanced Raman scattering (SERS) substrate based on fabricated Ag@Au core-shell dendrite was achieved. Ag dendrites were grown on Si wafer by the hydrothermal corrosion method and Au nanofilm on the surface of Ag dendritic nanostructure was then fabricated by chemical reduction. With the help of sodium borohydride in water, Au surface absorbates such as thiophene, adenine, rhodamine, small anions (Br- and I-), and a polymer (PVP, poly(N-vinylpyrrolidone)) can be completely and rapidly removed. After four repeatable experiments, the substrate SERS function did not decrease at all, indicating that the Ag@Au dendrite should be of great significance to SERS application because it can save much resource. Six-month-duration stability tests showed that the Ag@Au core-shell dendrite substrate is much more stable than the Ag dendrite substrates. We have also experimented on fast detection of Cd2+ at 10-8  M concentration by decorating single-stranded DNA containing adenine and guanine bases on the surface of this Ag@Au dendrite. Finite-difference time-domain simulations were carried out to investigate the influence of Au nanolayer on Ag dendrites, which showed that the local electric fields and enhancement factor are hardly affected when a 4 nm Au nanolayer is coated on Ag dendrite surface.

  4. Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate.

    PubMed

    Yin, Hong Jun; Chen, Zhao Yang; Zhao, Yong Mei; Lv, Ming Yang; Shi, Chun An; Wu, Zheng Long; Zhang, Xin; Liu, Luo; Wang, Ming Li; Xu, Hai Jun

    2015-01-01

    Surface enhanced Raman scattering (SERS) substrate based on fabricated Ag@Au core-shell dendrite was achieved. Ag dendrites were grown on Si wafer by the hydrothermal corrosion method and Au nanofilm on the surface of Ag dendritic nanostructure was then fabricated by chemical reduction. With the help of sodium borohydride in water, Au surface absorbates such as thiophene, adenine, rhodamine, small anions (Br(-) and I(-)), and a polymer (PVP, poly(N-vinylpyrrolidone)) can be completely and rapidly removed. After four repeatable experiments, the substrate SERS function did not decrease at all, indicating that the Ag@Au dendrite should be of great significance to SERS application because it can save much resource. Six-month-duration stability tests showed that the Ag@Au core-shell dendrite substrate is much more stable than the Ag dendrite substrates. We have also experimented on fast detection of Cd(2+) at 10(-8) M concentration by decorating single-stranded DNA containing adenine and guanine bases on the surface of this Ag@Au dendrite. Finite-difference time-domain simulations were carried out to investigate the influence of Au nanolayer on Ag dendrites, which showed that the local electric fields and enhancement factor are hardly affected when a 4 nm Au nanolayer is coated on Ag dendrite surface. PMID:26412773

  5. Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate

    PubMed Central

    Jun Yin, Hong; Yang Chen, Zhao; Mei Zhao, Yong; Yang Lv, Ming; An Shi, Chun; Long Wu, Zheng; Zhang, Xin; Liu, Luo; Li Wang, Ming; Jun Xu, Hai

    2015-01-01

    Surface enhanced Raman scattering (SERS) substrate based on fabricated Ag@Au core-shell dendrite was achieved. Ag dendrites were grown on Si wafer by the hydrothermal corrosion method and Au nanofilm on the surface of Ag dendritic nanostructure was then fabricated by chemical reduction. With the help of sodium borohydride in water, Au surface absorbates such as thiophene, adenine, rhodamine, small anions (Br– and I–), and a polymer (PVP, poly(N-vinylpyrrolidone)) can be completely and rapidly removed. After four repeatable experiments, the substrate SERS function did not decrease at all, indicating that the Ag@Au dendrite should be of great significance to SERS application because it can save much resource. Six-month-duration stability tests showed that the Ag@Au core-shell dendrite substrate is much more stable than the Ag dendrite substrates. We have also experimented on fast detection of Cd2+ at 10−8  M concentration by decorating single-stranded DNA containing adenine and guanine bases on the surface of this Ag@Au dendrite. Finite-difference time-domain simulations were carried out to investigate the influence of Au nanolayer on Ag dendrites, which showed that the local electric fields and enhancement factor are hardly affected when a 4 nm Au nanolayer is coated on Ag dendrite surface. PMID:26412773

  6. Functionalizing Aluminum Oxide by Ag Dendrite Deposition at the Anode during Simultaneous Electrochemical Oxidation of Al.

    PubMed

    Rafailović, Lidija D; Gammer, Christoph; Rentenberger, Christian; Trišović, Tomislav; Kleber, Christoph; Karnthaler, Hans Peter

    2015-11-01

    A novel synthesis strategy is presented for depositing metallic Ag at the anode during simultaneous electrochemical oxidation of Al. This unexpected result is achieved based on galvanic coupling. Metallic dendritic nanostructures well-anchored in a high surface area supporting matrix are envisioned to open up a new avenue of applications. PMID:26398487

  7. Microscopy investigation of Ag-TCNQ micro/nanostructures synthesized via two solution routes.

    PubMed

    Cao, Guanying; Fang, Fang; Ye, Chunnuan; Xing, Xiaoyan; Xu, Huahua; Sun, Dalin; Chen, Guorong

    2005-01-01

    The micro/nanostructures of metal-organic complex Ag-TCNQ were successfully synthesized by the reaction between Ag film and TCNQ dissolved in acetonitrile via two solution routes, i.e. immerging and dipping reaction. X-ray diffraction confirmed that the obtained Ag-TCNQ micro/nanostructures were crystalline. The morphology of the as-grown structures varied from straight nanowires and microtubes to complex fractals and dendrites. The growth mechanism of the mainly dendrites may be considered within the framework of DLA model. PMID:15725599

  8. Synthesis and field emission properties of Cu dendritic nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Jianwen; Yu, Ke; Zhu, Ziqiang

    2010-03-01

    Cu dendritic nanostructures were synthesized on ITO glass substructure by electrochemical deposition. SEM images showed that these Cu dendritic nanostuctures revealed a clear and well-defined dendritic fractal structure with a pronounced trunk and highly ordered branches distributed on both sides of the trunk. The diffusion-limited aggregation (DLA) model was used to explain the fractal growth of Cu dendritic nanostructures. Field emission properties of these Cu dendritic nanostructures were measured, which have possessed good performance with the turn-on field of 7.5 V/μm (defined as the electric field required to be detected at a current density of 0.1 mA/cm 2) and the field enhancement factor β of 1094.

  9. Tilt boundary induced heteroepitaxy in chemically grown dendritic silver nanostructures on germanium and their optical properties.

    PubMed

    Ghosh, Tanmay; Das, Pabitra; Chini, Tapas Kumar; Ghosh, Tapas; Satpati, Biswarup

    2014-08-21

    Dendritic silver nanostructures were prepared by a simple dip-and-rinse galvanic displacement reaction directly on germanium surfaces. The formation and evolution of these dendrites were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX). The present results clearly show a new type of heteroepitaxy, where the large lattice mismatch between silver and germanium is accommodated at the interface by the formation of low-energy asymmetric tilt boundaries. The overgrown samples reduce the strain by introducing crystal defects. Additionally, by employing cathodoluminescence (CL) spectroscopy and imaging with a field emission gun scanning electron microscope (FEG-SEM), we provide information on the surface plasmon assisted photon emission of a stack of Ag hexagonal nanostructures. Surface enhanced Raman scattering (SERS) studies show the suitability of such Ag nanodendritic structures as SERS active substrates. PMID:25000224

  10. Development of Ag dendrites-reduced graphene oxide composite catalysts via galvanic replacement reaction

    NASA Astrophysics Data System (ADS)

    Fu, Li; Sokiransky, Mika Matsunaka; Wang, James; Lai, Guosong; Yu, Aimin

    2016-09-01

    Silver dendrites/reduced graphene oxide (AgD/RGO) composites were synthesized via a facile galvanic replacement method. The successful formation of Ag dendrites and the graphene oxide reduction were proved by a series of characterization techniques. The possible formation mechanism of Ag dendrites during the galvanic replacement reaction was discussed. The catalytic activity of the as-synthesized AgD/RGO composite was evaluated by its performance on the chemical reduction of an organic dye methylene blue. The AgD/RGO composite showed a much higher catalytic performance and stability than that of Ag dendrites.

  11. Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures

    NASA Astrophysics Data System (ADS)

    Tsai, Chi-Hang; Chen, Shih-Yun; Song, Jenn-Ming; Haruta, Mitsutaka; Kurata, Hiroki

    2015-11-01

    Au-Ag alloy nanostructures with various shapes were synthesized using a successive reduction method in this study. By means of galvanic replacement, twined Ag nanoparticles (NPs) and single-crystalline Ag nanowires (NWs) were adopted as templates, respectively, and alloyed with the same amount of Au+ ions. High angle annular dark field-scanning TEM (HAADF-STEM) images observed from different rotation angles confirm that Ag NPs turned into AuAg alloy rings with an Au/Ag ratio of 1. The shifts of surface plasmon resonance and chemical composition reveal the evolution of the alloy ring formation. On the other hand, single-crystalline Ag NWs became Ag@AuAg core-shell wires instead of hollow nanostructure through a process of galvanic replacement. It is proposed that in addition to the ratio of Ag templates and Au ion additives, the twin boundaries of the Ag templates were the dominating factor causing hollow alloy nanostructures.

  12. Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures.

    PubMed

    Tsai, Chi-Hang; Chen, Shih-Yun; Song, Jenn-Ming; Haruta, Mitsutaka; Kurata, Hiroki

    2015-12-01

    Au-Ag alloy nanostructures with various shapes were synthesized using a successive reduction method in this study. By means of galvanic replacement, twined Ag nanoparticles (NPs) and single-crystalline Ag nanowires (NWs) were adopted as templates, respectively, and alloyed with the same amount of Au(+) ions. High angle annular dark field-scanning TEM (HAADF-STEM) images observed from different rotation angles confirm that Ag NPs turned into AuAg alloy rings with an Au/Ag ratio of 1. The shifts of surface plasmon resonance and chemical composition reveal the evolution of the alloy ring formation. On the other hand, single-crystalline Ag NWs became Ag@AuAg core-shell wires instead of hollow nanostructure through a process of galvanic replacement. It is proposed that in addition to the ratio of Ag templates and Au ion additives, the twin boundaries of the Ag templates were the dominating factor causing hollow alloy nanostructures. PMID:26563266

  13. Ag-ZnO nanostructure for ANTA explosive molecule detection

    NASA Astrophysics Data System (ADS)

    Shaik, Ummar Pasha; Sangani, L. D. Varma; Gaur, Anshu; Mohiddon, Md. Ahamad; Krishna, M. Ghanashyam

    2016-05-01

    Ag/ZnO nanostructure for surface enhanced Raman scattering application in the detection of ANTA explosive molecule is demonstrated. A highly rough ZnO microstructure was achieved by rapid thermal annealing of metallic Zn film. Different thickness Ag nanostructures are decorated over these ZnO microstructures by ion beam sputtering technique. Surface enhanced Raman spectroscopic studies carried out over Ag/ZnO substrates have shown three orders higher enhancement compared to bare Ag nanostructure deposited on the same substrate. The reasons behind such huge enhancement are discussed based on the morphology of the sample.

  14. Enhanced photoluminescence of Alq3 via patterned array silver dendritic nanostructures

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Hsiu; Hsieh, Ming-Hao; Lo, Shih-Shou

    2012-04-01

    Various silver nanostructures, semi-ball, jungle, and dendritic, are demonstrated by an electrical deposition process. The formation of silver nanostructures with various morphologies is studied by the mechanism of the diffusion limited aggregation (DLA) model. A array pattern of silver nanostructures can be obtained when the conductive substrate was used in a uniform electrical filed. A thickness 500 nm of Alq3 thin-film was covered on the silver nanostructure by thermal evaporation method. The strongest intensity of Alq3 green emission was observed when the pattern-array dendritic silver nanostructure was covered by Alq3. It can be explained with the plasmonic coupling due to the Alq3 and dendritic nanostructure. The result can help us to further application the patterned-array silver dendritic nanostructure for advanced opto-electronic device.

  15. Synthesis and Functions of Ag2S Nanostructures.

    PubMed

    Cui, Chunyan; Li, Xiaoru; Liu, Jixian; Hou, Yongchao; Zhao, Yuqing; Zhong, Guocheng

    2015-12-01

    The paper presents a review about synthesis and applications of Ag2S nanostructures. As the modern photoelectric and biological materials, Ag2S nanomaterials are potentially useful for both structure and function purposes. Ag2S is a direction narrow band gap semiconductor with special properties. Ag2S nanostructures have been widely researched in chemistry and biochemistry fields because of their unusual optical, electrical, and mechanical properties. It can also be used in many fields, such as photovoltaic cells and infrared detector. In the past few years, Ag2S nanostructures have been synthesized by various methods. The article mainly discusses the four types of preparation methods. Moreover, this article shows a detailed review on the new properties, fabrication, and applications of Ag2S nanocrystals. PMID:26525702

  16. Synthesis and Functions of Ag2S Nanostructures

    NASA Astrophysics Data System (ADS)

    Cui, Chunyan; Li, Xiaoru; Liu, Jixian; Hou, Yongchao; Zhao, Yuqing; Zhong, Guocheng

    2015-11-01

    The paper presents a review about synthesis and applications of Ag2S nanostructures. As the modern photoelectric and biological materials, Ag2S nanomaterials are potentially useful for both structure and function purposes. Ag2S is a direction narrow band gap semiconductor with special properties. Ag2S nanostructures have been widely researched in chemistry and biochemistry fields because of their unusual optical, electrical, and mechanical properties. It can also be used in many fields, such as photovoltaic cells and infrared detector. In the past few years, Ag2S nanostructures have been synthesized by various methods. The article mainly discusses the four types of preparation methods. Moreover, this article shows a detailed review on the new properties, fabrication, and applications of Ag2S nanocrystals.

  17. Photoluminescence from quasi-dendritic ZnO nanostructures grown in anodic alumina nanochannels

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Yung; Chen, Wei-Liang; Ko, Chung-Ting; Lai, Ming-Yu; Li, Feng-Chieh; Lee, Yu-Yang; Tsai, Kun-Tong; Chen, Miin-Jang; Chang, Yu-Ming; Wang, Yuh-Lin

    2015-11-01

    Atomic layer deposition (ALD) has been used to grow zinc oxide (ZnO) into a template of anodic aluminum oxide with quasi-dendritic nanochannels to form quasi-dendritic nanostructures. The characteristic photoluminescence (PL) emission from the inner region of the quasi-dendritic ZnO nanostructure peaks at 397 nm while that from its outer region at 424 nm. In between the two regions, the PL peak shows monotonic shift. In other words, the different layers of the single quasi-dendritic ZnO nanostructure emit PL with graded wavelengths spontaneously. The red shift in the PL peak positions is likely to be caused by the change in local stoichiometry between Zn and O, which are resulted from the limited supply of materials through the quasi-dendritic nanochannels during the ALD. The process to fabricate such quasi-dendritic ZnO nanostructures with spontaneously graded emission could help expand applications of ZnO-based devices.

  18. Synthesis and characterization of nanostructured Ag on porous titania

    NASA Astrophysics Data System (ADS)

    Wen, Ming; Li, Yanqiong; Zhang, Junmin; Guan, Weiming; Li, Yuncang; Wen, Cui'e.; Hodgson, Peter

    2011-03-01

    In this work, porous titania was prepared on bulk Ti by chemical oxidation, and then nanostructured silver (Ag) was deposited on titania surface by ion beam sputtering. After annealing treatment, Ag/TiO 2 composites were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results indicated that a nano-porous titania layer with mean pore size of 150 nm and thickness of 1 μm was formed by chemical oxidation at 80 °C for 45 min. There were three Ag species (Ag (0), Ag (1+), and Ag (2+)) on composites surface after annealing treatment, and metallic Ag content achieved maximum value with annealing temperature of 500 °C in air. Ag showed high thermal stability being partly attributed to the inhibiting the diffusion of Ag by the underlying porous titania.

  19. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2016-07-01

    A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.

  20. Propagating and localized surface plasmons in Ag nanostructures

    NASA Astrophysics Data System (ADS)

    Dabrowski, Maciej; Dai, Yanan; Petek, Hrvoje

    Plasmonic excitations strongly depend on the size, geometry and dielectric environment of nanoscale metals. Here, we study an epitaxially grown Ag nanostructures on Si(001) and Si(111) surfaces by Low Energy Electron Microscopy/Photoemission Electron Microscopy (LEEM/PEEM). Using the combination of LEEM and broadly tunable femtosecond laser excited multiphoton PEEM we image how single crystalline metallic nanostructures form and how plasmon excitations depend on the particle structure and laser excitation parameters. For Ag pyramids with the dimensions of few hundreds nanometers, dipolar and quadrupolar localized surface plasmons are observed. For Ag wires with several micrometer lengths, both localized and propagating surface plasmons can be excited, depending on the polarization, particle orientation and energy of the excitation. Finally, in larger Ag islands, several micrometers in size, the interference patterns are created by plasmon waves excited at the island edges. In addition to plasmonic response, light diffraction patterns around the Ag nanostrutures are discussed.

  1. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity.

    PubMed

    He, Guo; Eckert, Jürgen; Löser, Wolfgang; Schultz, Ludwig

    2003-01-01

    Single-phase nanocrystalline materials undergo inhomogeneous plastic deformation under loading at room temperature, which results in a very limited plastic strain (smaller than 0-3%). The materials therefore display low ductility, leading to catastrophic failure, which severely restricts their application. Here, we present a new in situ-formed nanostructured matrix/ductile dendritic phase composite microstructure for Ti-base alloys, which exhibits up to 14.5% compressive plastic strain at room temperature. The new composite microstructure was synthesized on the basis of the appropriate choice of composition, and by using well-controlled solidification conditions. Deformation occurs partially through dislocation movement in dendrites, and partially through a shear-banding mechanism in the nanostructured matrix. The dendrites act as obstacles restricting the excessive deformation by isolating the highly localized shear bands in small, discrete interdendritic regions, and contribute to the plasticity. We suggest that microscale ductile crystalline phases might therefore be used to toughen nanostructured materials. PMID:12652670

  2. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area.

    PubMed

    Sotiriou, Georgios A; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E

    2011-06-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution. PMID:23730198

  3. Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis.

    PubMed

    Pang, Huan; Gao, Feng; Chen, Qun; Liu, Rongmei; Lu, Qingyi

    2012-05-21

    Dendrite-like Co(3)O(4) nanostructure, made up of many nanorods with diameters of 15-20 nm and lengths of 2-3 μm, has been successfully prepared by calcining the corresponding nanostructured Co-8-hydroxyquinoline coordination precursor in air. The Co(3)O(4) nanostructure was evaluated as an electrochemical sensor for H(2)O(2) detection and the results reveal that it has good linear dependence and high sensitivity to H(2)O(2) concentration changes. As an electrode material of a supercapacitor, it was found that the nanostructured Co(3)O(4) electrode exhibits high specific capacitance and long cycle life. The Co(3)O(4) nanostructure also has good catalytic properties and is steadily active for CO oxidation, giving 100% CO conversion at low temperatures. The multifunctional Co(3)O(4) nanostructure would be a promising functional nanomaterial applied in multi industrialized fields. PMID:22453646

  4. Nanostructured lipid carriers loaded with resveratrol modulate human dendritic cells

    PubMed Central

    Barbosa, João P; Neves, Ana R; Silva, Andreia M; Barbosa, Mário A; Reis, M Salette; Santos, Susana G

    2016-01-01

    Dendritic cells (DCs) are promising targets for drug delivery, as they can induce immunity or tolerance. The current study aims to examine the potential of using nanostructured lipid carriers (NLC) as delivery systems for human DC by evaluating nanoparticle internalization, cell labeling, and drug activity. NLC were formulated incorporating the fluorochrome fluorescein isothiocyanate (FITC-NLC) or the natural anti-inflammatory molecule resveratrol (rsv-NLC). Primary human DCs were differentiated from peripheral blood monocytes, and the innovative imaging flow cytometry technique was used to examine FITC-NLC internalization. The capacity of rsv-NLC to inhibit DC activation in response to proinflammatory cytokine tumor necrosis factor-α (TNF- α) was investigated by conventional flow cytometry. A combination of imaging and conventional flow cytometry was used to assess NLC cytotoxicity. The results obtained indicate that both NLC formulations were stable over time, with mean diameter <200 nm and highly negative zeta potential (about −30 mV). When DCs were placed in contact with NLC, imaging flow cytometry clearly showed that DCs efficiently internalized FITC-NLC, with nearly 100% of cells internalizing nanoparticles upon 1 hour of incubation. Both immature and mature DCs internalized NLC to high and comparable levels, and without cytotoxicity. Stimulating DC with TNF-α in the presence of rsv-NLC revealed that, using these nanoparticles, very small concentrations of rsv were sufficient to significantly decrease surface expression of activation marker CD83 (5 µM) and major histocompatibility complex-class II molecule human leukocyte antigen – antigen D related (10 µM), both upregulated in response to TNF-α stimulation. Rsv-NLC were compared with free rsv; at 5 µM, rsv-NLC were able to inhibit nuclear factor κ beta phosphorylation and significantly decrease the level of interleukin-12/23, both upregulated in response to TNF-α, while 10 µM free rsv were

  5. Nanostructured lipid carriers loaded with resveratrol modulate human dendritic cells.

    PubMed

    Barbosa, João P; Neves, Ana R; Silva, Andreia M; Barbosa, Mário A; Reis, M Salette; Santos, Susana G

    2016-01-01

    Dendritic cells (DCs) are promising targets for drug delivery, as they can induce immunity or tolerance. The current study aims to examine the potential of using nanostructured lipid carriers (NLC) as delivery systems for human DC by evaluating nanoparticle internalization, cell labeling, and drug activity. NLC were formulated incorporating the fluorochrome fluorescein isothiocyanate (FITC-NLC) or the natural anti-inflammatory molecule resveratrol (rsv-NLC). Primary human DCs were differentiated from peripheral blood monocytes, and the innovative imaging flow cytometry technique was used to examine FITC-NLC internalization. The capacity of rsv-NLC to inhibit DC activation in response to proinflammatory cytokine tumor necrosis factor-α (TNF- α) was investigated by conventional flow cytometry. A combination of imaging and conventional flow cytometry was used to assess NLC cytotoxicity. The results obtained indicate that both NLC formulations were stable over time, with mean diameter <200 nm and highly negative zeta potential (about -30 mV). When DCs were placed in contact with NLC, imaging flow cytometry clearly showed that DCs efficiently internalized FITC-NLC, with nearly 100% of cells internalizing nanoparticles upon 1 hour of incubation. Both immature and mature DCs internalized NLC to high and comparable levels, and without cytotoxicity. Stimulating DC with TNF-α in the presence of rsv-NLC revealed that, using these nanoparticles, very small concentrations of rsv were sufficient to significantly decrease surface expression of activation marker CD83 (5 µM) and major histocompatibility complex-class II molecule human leukocyte antigen - antigen D related (10 µM), both upregulated in response to TNF-α stimulation. Rsv-NLC were compared with free rsv; at 5 µM, rsv-NLC were able to inhibit nuclear factor κ beta phosphorylation and significantly decrease the level of interleukin-12/23, both upregulated in response to TNF-α, while 10 µM free rsv were needed

  6. Dendritic macromolecules supported Ag nanoparticles as efficient catalyst for the reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Safari, Javad; Zarnegar, Zohre; Sadeghi, Masoud; Enayati-Najafabadi, Azadeh

    2016-12-01

    Polymer supported Ag nanoparticles, generated in situ by silver nitrate (AgNO3) reduction under reaction conditions, catalyzed the hydrogenation of 4-nitrophenol with high efficiency in water at room temperature in the presence of an excess amount of NaBH4. Amphiphilic linear-dendritic copolymers containing a poly(ethylene glycol) (PEG) core and poly(2-ethyl-2-oxazoline)-poly(ε-caprolactone) arms were able to load the Ag nanoparticles. The Ag nanoparticles with a diameter of 8-10 nm were found to show a comparable catalytic activity towards formation of the aromatic amine as single product with short reaction time.

  7. Facile synthesis of dendritic gold nanostructures with hyperbranched architectures and their electrocatalytic activity toward ethanol oxidation.

    PubMed

    Huang, Jianshe; Han, Xinyi; Wang, Dawei; Liu, Dong; You, Tianyan

    2013-09-25

    Gold dendritic nanostructures with hyperbranched architectures were synthesized by the galvanic replacement reaction between nickel wire and HAuCl4 in aqueous solution. The study revealed that the morphology of the obtained nanostructures strongly depended on experimental parameters such as the HAuCl4 solution concentration, reaction temperature, and time, as well as stirring or not. According to the investigation of the growth process, it was proposed that gold nanoparticles with rough surfaces were first deposited on the nickel substrate and that subsequent growth preferentially occurred on the preformed gold nanoparticles, finally leading to the formation of hyperbranched gold dendrites via a self-organization process under nonequilibrium conditions. The electrochemical experiment results demonstrated that the as-obtained gold dendrites exhibited high catalytic activity toward ethanol electrooxidation in alkaline solution, indicating that this nanomaterial may be a potential catalyst for direct ethanol fuel cells. PMID:23972030

  8. Preparation of dendritic-like Ag crystals using monocrystalline silicon as template

    SciTech Connect

    Wei, Yanlin; Chen, Yashao; Ye, Linjing; Chang, Pengmei

    2011-06-15

    Research highlights: {yields} Template-assisted method for synthesis of dendritic silver. {yields} Unique dendritic silver structure with stems, branches, and leaves. {yields} The morphology of silver depends on silicon surface roughness. {yields} Both diffusion and oriented attachment dominating the dendritic structure formation. -- Abstract: Symmetric dendritic silver structures with controlled morphology were successfully synthesized by a solvothermal method with the assistance of monocrystalline silicon. The morphology and structure of the dendritic silver were characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and scanning electron microscopy (SEM). It was found that the architecture of silver crystals could be controlled via simply adjusting the experiment parameters: AgNO{sub 3} concentration, reaction time and temperature. Moreover, structural characterizations suggested that the dendritic silver structures preferentially grew along (1 1 1) and (2 0 0) directions, leading to the formation of dendritic structures with 1-2 {mu}m in stem diameter and 10-50 {mu}m in length. Additionally, the formation process of the dendritic silver structures was studied, and a possible formation mechanism was proposed based on the experimental results.

  9. Controllable fabrication of PS/Ag core-shell-shaped nanostructures

    PubMed Central

    2012-01-01

    In this paper, based on the previous steps, a facile in situ reduction method was developed to controllably prepare polystyrene/Ag (PS/Ag) core-shell-shaped nanostructures. The crucial procedure includes surface treatment of polystyrene core particles by cationic polyelectrolyte polyethyleneimine, in situ formation of Ag nanoparticles, and immobilization of the Ag nanoparticles onto the surface of the polystyrene colloids via functional group NH from the polyethyleneimine. The experimental parameters, such as the reaction temperature, the reaction time, and the silver precursors were optimized for improvement of dispersion and Ag coat coverage of the core-shell-shaped nanostructures. Ultimately, the optimum parameters were obtained through a series of experiments, and well-dispersed, uniformly coated PS/Ag core-shell-shaped nanostructures were successfully fabricated. The formation mechanism of the PS/Ag core-shell-shaped nanostructures was also explained. PMID:23092195

  10. Synthesis, Study, and Discrete Dipole Approximation Simulation of Ag-Au Bimetallic Nanostructures

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Zhang, An-Qi; Li, Hui-Jun; Qian, Dong-Jin; Chen, Meng

    2016-04-01

    Water-soluble Ag-Au bimetallic nanostructures were prepared via co-reduction and seed-mediated growth routes employing poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as both a reductant and a stabilizer. Ag-Au alloy nanoparticles were obtained by the co-reduction of AgNO3 and HAuCl4, while Ag-Au core-shell nanostructures were prepared through seed-mediated growth using PSSMA-Au nanoparticle seeds in a heated AgNO3 solution. The optical properties of the Ag-Au alloy and core-shell nanostructures were studied, and the growth mechanism of the bimetallic nanoparticles was investigated. Plasmon resonance bands in the range 422 to 517 nm were observed for Ag-Au alloy nanoparticles, while two plasmon resonances were found in the Ag-Au core-shell nanostructures. Furthermore, discrete dipole approximation theoretical simulation was used to assess the optical property differences between the Ag-Au alloy and core-shell nanostructures. Composition and morphology studies confirmed that the synthesized materials were Ag-Au bimetallic nanostructures.

  11. Synthesis, Study, and Discrete Dipole Approximation Simulation of Ag-Au Bimetallic Nanostructures.

    PubMed

    Hu, Yang; Zhang, An-Qi; Li, Hui-Jun; Qian, Dong-Jin; Chen, Meng

    2016-12-01

    Water-soluble Ag-Au bimetallic nanostructures were prepared via co-reduction and seed-mediated growth routes employing poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as both a reductant and a stabilizer. Ag-Au alloy nanoparticles were obtained by the co-reduction of AgNO3 and HAuCl4, while Ag-Au core-shell nanostructures were prepared through seed-mediated growth using PSSMA-Au nanoparticle seeds in a heated AgNO3 solution. The optical properties of the Ag-Au alloy and core-shell nanostructures were studied, and the growth mechanism of the bimetallic nanoparticles was investigated. Plasmon resonance bands in the range 422 to 517 nm were observed for Ag-Au alloy nanoparticles, while two plasmon resonances were found in the Ag-Au core-shell nanostructures. Furthermore, discrete dipole approximation theoretical simulation was used to assess the optical property differences between the Ag-Au alloy and core-shell nanostructures. Composition and morphology studies confirmed that the synthesized materials were Ag-Au bimetallic nanostructures. PMID:27094823

  12. In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy.

    PubMed

    Zhu, Guomin; Jiang, Yingying; Lin, Fang; Zhang, Hui; Jin, Chuanhong; Yuan, Jun; Yang, Deren; Zhang, Ze

    2014-08-28

    We investigated the growth of two-dimensional (2D) palladium dendritic nanostructures (DNSs) using in situ liquid-cell transmission electron microscopy (TEM). Detailed in situ and ex situ high-resolution scanning TEM (S/TEM) characterization and fractal dimension analyses reveal that the diffusion-limited aggregation and direct atomic deposition are responsible for the growth of palladium dendritic nanostructures. PMID:24938863

  13. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    SciTech Connect

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo Zhang, Wendong Li, Gang; Hu, Jie; Zhou, Zhaoying Yang, Xing; Dong, Hualai

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.

  14. Solid-State Synthesized Nanostructured Au Dendritic Aggregates Towards Surface-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gentile, A.; Ruffino, F.; D'Andrea, C.; Gucciardi, P. G.; Reitano, R.; Grimaldi, M. G.

    2016-06-01

    Micrometric Au structures, presenting a dendritic nano-structure, have been fabricated on a Si-based substrate. The fabrication method involves the deposition of a thin Au film on the substrate and a high-temperature annealing (1100°C) using fast heating and cooling ramps. The thermal process produces the growth, from the substrate, of Si micro-pillars whose top surfaces, covered by a crystalline Au layer, present a nanodendritic morphology. In addition to the micro-pillars, the sample surface presents a complex structural and chemical composition including Si3N4 regions due to the silicon-nitrogen intermixing during the heating stage. By studying the kinetic processes at the Au-Si interface during the thermal treatment, we describe the stages involved in the micro-pillars growth, in the dendritic morphology development, and in the Au atoms entrapment at the top of the dendritic surfaces. Finally, we present the analyses of the optical and surface enhanced Raman scattering properties of the Au dendritic aggregates. We show, in particular, that: (1) the Au dendrites aggregates act as effective scattering elements for the electromagnetic radiation in the infrared spectral region; and (2) the higher surface area due to the branched dendritic structure is responsible for the improvement in the sensitivity of the surface enhanced Raman scattering activity.

  15. Ag Nanoparticles Decorated Cactus-Like Ag Dendrites/Si Nanoneedles as Highly Efficient 3D Surface-Enhanced Raman Scattering Substrates toward Sensitive Sensing.

    PubMed

    Huang, Jian; Ma, Dayan; Chen, Feng; Bai, Min; Xu, Kewei; Zhao, Yongxi

    2015-10-20

    Surface-enhanced Raman scattering (SERS) has been considered as a promising sensing technique to detect low-level analytes. However, its practical application was hindered owing to the lack of uniform SERS substrates for ultrasensitive and reproducible assay. Herein, inspired by the natural cactus structure, we developed a cactus-like 3D nanostructure with uniform and high-density hotspots for highly efficient SERS sensing by both grafting the silicon nanoneedles onto Ag dendrites and subsequent decoration with Ag nanoparticles. The hierarchical scaffolds and high-density hotspots throughout the whole substrate result in great amplification of SERS signal. A high Raman enhancement factor of crystal violet up to 6.6 × 10(7) was achieved. Using malachite green (MG) as a model target, the fabricated SERS substrates exhibited good reproducibility (RSD ∼ 9.3%) and pushed the detection limit down to 10(-13) M with a wide linear range of 10(-12) M to 10(-7) M. Excellent selectivity was also demonstrated by facilely distinguishing MG from its derivative, some organics, and coexistent metal ions. Finally, the practicality and reliability of the 3D SERS substrates were confirmed by the quantitative analysis of spiked MG in environmental water with high recoveries (91.2% to 109.6%). By virtue of the excellent performance (good reproducibility, high sensitivity, and selectivity), the cactus-like 3D SERS substrate has great potential to become a versatile sensing platform in environmental monitoring, food safety, and medical diagnostics. PMID:26406111

  16. Controllable growth of dendrite-like CuO nanostructures by ethylene glycol assisted hydrothermal process

    SciTech Connect

    Zhang Hui; Li Shenzhong; Ma Xiangyang; Yang Deren

    2008-05-06

    The dendrite-like CuO nanostructures, consisting of a rod-like main stem and some rod-like sub-branches, have been synthesized by a simple ethylene glycol (EG) assisted hydrothermal method. The X-ray diffraction (XRD) and the selected area electron diffraction (SAED) patterns indicate that the dendrite-like CuO nanostructures are of monoclinic phase and the individual branch of CuO is single crystalline in nature. The effects of the growth conditions such as temperature and pH value on the morphology and structures of CuO have also been investigated. It is indicated that different temperature and pH value result in the morphology and structure evolution of CuO. Moreover, a possible mechanism for the morphology and structures evolution of CuO has been primarily presented.

  17. Strong magnetization damping induced by Ag nanostructures in Ag/NiFe/Ag trilayers

    NASA Astrophysics Data System (ADS)

    Ley Domínguez, D.; da Silva, G. L.; Rodríguez-Suárez, R. L.; Rezende, S. M.; Azevedo, A.

    2013-07-01

    Ferromagnetic resonance has been used to investigate the magnetization relaxation in trilayers of Ag(t)/NiFe(10 nm)/Ag(t), sputter deposited on Si(001) where the thickness of the Ag layer varied from 0 nm to 24 nm. In the first stages of formation, the Ag layers form islands that work as mold to imprint defects or inhomogeneities on the NiFe film surface. The magnetic inhomogeneities and defects imprinted on the surface of the NiFe film act as extrinsic sources of magnetization relaxation in addition to the intrinsic Gilbert damping mechanism. Weak inhomogeneities are associated to the two-magnon scattering source and the strong inhomogeneities are associated to the fluctuations of the local magnetization. By adding the three different sources of magnetization damping, we were able to explain the azimuthal dependence of the ferromagnetic resonance linewidth.

  18. Morphologically manipulated Ag/ZnO nanostructures as surface enhanced Raman scattering probes for explosives detection

    NASA Astrophysics Data System (ADS)

    Shaik, Ummar Pasha; Hamad, Syed; Ahamad Mohiddon, Md.; Soma, Venugopal Rao; Ghanashyam Krishna, M.

    2016-03-01

    The detection of secondary explosive molecules (e.g., ANTA, FOX-7, and CL-20) using Ag decorated ZnO nanostructures as surface enhanced Raman scattering (SERS) probes is demonstrated. ZnO nanostructures were grown on borosilicate glass substrates by rapid thermal oxidation of metallic Zn films at 500 °C. The oxide nanostructures, including nanosheets and nanowires, emerged over the surface of the Zn film leaving behind the metal residue. We demonstrate that SERS measurements with concentrations as low as 10 μM, of the three explosive molecules ANTA, FOX-7, and CL-20 over ZnO/Ag nanostructures, resulted in enhancement factors of ˜107, ˜107, and ˜104, respectively. These measurements validate the high sensitivity of detection of explosive molecules using Ag decorated ZnO nanostructures as SERS substrates. The Zn metal residue and conditions of annealing play an important role in determining the detection sensitivity.

  19. Targeted Cellular Drug Delivery using Tailored Dendritic Nanostructures

    NASA Astrophysics Data System (ADS)

    Kannan, Rangaramanujam; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary

    2002-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorble, ‘peripheral’ functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug and gene delivery. The large number of end groups can also be tailored to create special affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, in-vitro drug loading, in-vitro drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Polyamidoamine and Polyol dendrimers, with different generations and end-groups are studied, with drugs such as Ibuprofen and Methotrexate. Our results indicate that a large number of drug molecules can be encapsulated/attached to the dendrimers, depending on the end groups. The drug-encapsulated dendrimer is able to enter the cells rapidly and deliver the drug. Targeting strategies being explored

  20. Aqueous solution synthesis and photoluminescence properties of two-dimensional dendritic PbWO{sub 4} nanostructures

    SciTech Connect

    Wang, W.S.; Zhen, L.; Xu, C.Y.; Yang, L.; Shao, W.Z.; Chen, Z.L.

    2014-08-15

    Graphical abstract: PbWO{sub 4} two-dimensional dendritic nanostructures (2DDNs) were prepared at room temperature through a facile aqueous solution route using only Pb(NO{sub 3}){sub 2} and Na{sub 2}WO{sub 4} as reaction reagents and distilled water as solvent. - Highlights: • Two-dimensional dendritic PbWO4 nanostructures were prepared through a facile aqueous solution route at room temperature. • A “two-step” growth mechanism was proposed for the formation of two-dimensional dendritic PbWO4 nanostructures. • The two-dimensional dendritic PbWO4 nanostructures exhibit good photoluminescence properties. - Abstract: PbWO{sub 4} two-dimensional dendritic nanostructures (2DDNs) were prepared at room temperature through a facile aqueous solution route. X-ray diffraction, scanning electron microscope, transmission electron microscope and X-ray energy dispersive spectrometer were used to characterize the obtained samples. The PbWO{sub 4} 2DDN was in one plane, with a nearly circular shape and sizes of ∼10 μm. The PbWO{sub 4} 2DDNs were composed of curved nanowires around 200 nm in diameters, which were connected together to form a network nanostructure. The effects of reaction conditions including the concentration of react reagents, the reaction temperature, and the reaction time were systematically investigated and a possible formation mechanism for the formation of 2DDNs was proposed. The optical properties, such as UV–vis spectra and photoluminescence spectra of PbWO{sub 4}, were studied. The advantages of this synthetic route include the first synthesis of PbWO{sub 4} 2DDNs, simple synthetic procedure, room reaction temperature, and high reproducibility of the process.

  1. A facile synthesis of Ag/AgCl hybrid nanostructures with tunable morphologies and compositions as advanced visible light plasmonic photocatalysts.

    PubMed

    Shahzad, Aasim; Kim, Woo-Sik; Yu, Taekyung

    2016-05-31

    This paper describes a simple and fast aqueous-phase route to the synthesis of Ag/AgCl hybrid nanostructures. These hybrid nanostructures were synthesized by reduction of AgCl nanoparticles with controlled shapes prepared by reacting Ag(+) with Cl(-) in the presence of polyethyleneimine (PEI) in an aqueous-phase. We could easily control the morphology and composition of the nanostructures by varying the experimental conditions, including the reaction temperature and the amount of the reducing agent. The as-synthesized Ag/AgCl hybrid nanostructures exhibited enhanced photocatalytic activity and stability during the degradation of methyl orange under visible light irradiation because of their strong surface plasmon resonance (SPR) effect. PMID:27169749

  2. Hierarchical Ag/ZnO micro/nanostructure: Green synthesis and enhanced photocatalytic performance

    SciTech Connect

    Gao, Shuyan; Jia, Xiaoxia; Yang, Shuxia; Li, Zhengdao; Jiang, Kai

    2011-04-15

    Ag/ZnO metal-semiconductor nanocomposites with hierarchical micro/nanostructure have been prepared by the hydrothermal synthesis in the presence of bovine serum albumin (BSA). The results suggest that this biomolecule-assisted hydrothermal method is an efficient route for the fabrication of Ag/ZnO nanocomposites by using BSA both a shape controller and a reducing agent of Ag{sup +} ions. Moreover, Ag nanoparticles on the ZnO act as electron sinks, improving the separation of photogenerated electrons and holes, increasing the surface hydroxyl contents of ZnO, facilitating trapping the photoinduced electrons and holes to form more active hydroxyl radicals, and thus, enhancing the photocatalytic efficiency of ZnO. This is a good example for the organic combination of green chemistry and functional materials. -- Graphical Abstract: A green strategy is report to construct Ag/ZnO metal-semiconductor nanocomposites with hierarchical micro/nanostructure and enhanced photocatalytic activity. Display Omitted Research highlights: > Hierarchical micro/nanostructured Ag/ZnO nanocomposites have been prepared via a green route. > Ag nanoparticles improve the separation of photogenerated electrons and holes. > This facilitates trapping the photoinduced electrons and holes to form more hydroxyl radicals. Therefore, it enhances the photocatalytic efficiency of ZnO.

  3. Nanostructured YbAgCu4 for potentially cryogenic thermoelectric cooling.

    PubMed

    Koirala, Machhindra; Wang, Hui; Pokharel, Mani; Lan, Yucheng; Guo, Chuanfei; Opeil, Cyril; Ren, Zhifeng

    2014-09-10

    We have studied the thermoelectric properties of nanostructured YbAgCu4 materials. A high power factor of ∼131 μW cm(-1) K(-2) has been obtained at 22 K for nanostructured samples prepared by ball milling the arc melted ingot into nanopowder and hot pressing the nanopowder. The implementation of nanostructuring method decreased the thermal conductivity at 42 K by 30-50% through boundary scattering comparing with the previously reported value of polycrystalline YbAgCu4. A peak dimensionless thermoelectric figure-of-merit, ZT, of 0.11 has been achieved at 42 K, which may find potential applications for cryogenic cooling below 77 K. The nanostructuring approach can be extended to other heavy Fermion materials to achieve high power factor and low thermal conductivity and ultimately higher ZT. PMID:25079115

  4. Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy.

    PubMed

    Li, Da; Liu, Jingquan; Wang, Hongbin; Barrow, Colin J; Yang, Wenrong

    2016-09-21

    Here, we for the first time synthesized bimetallic Cu/Ag dendrites on graphene paper (Cu/Ag@G) using a facile electrodeposition method to achieve efficient SERS enhancement. Cu/Ag@G combined the electromagnetic enhancement of Cu/Ag dendrites and the chemical enhancement of graphene. SERS was ascribed to the rough metal surface, the synergistic effect of copper and silver nanostructures and the charge transfer between graphene and the molecules. PMID:27522964

  5. From DVD to dendritic nanostructure silver electrode for hydrogen peroxide detection.

    PubMed

    Wen, Ying; Lin, Ai-Jing; Chen, Hui-Fen; Jiao, Ying-Zhi; Yang, Hai-Feng

    2013-03-15

    A facile method of multi-potential step-scan has been employed to fabricate the dendritic silver nanostructures on a silver thin film based digital video disc (DVD) electrode. The morphologies of the nanostructures, the chemical composition, and the crystal structure have been characterized by field-emission scanning electron microscopy, energy-dispersed x-ray spectroscopy, and x-ray diffraction, respectively. The electrocatalytic activity of the resulting electrode toward the electro-reduction of hydrogen peroxide (H(2)O(2)) has been examined via cyclic voltammetry and amperometric analysis. The excellent linear relationship between current response and H(2)O(2) concentration is observed in the range from 5.88×10(-7) to 6.73×10(-5) mol L(-1) and the detection limit is 2×10(-7) mol L(-1) (S/N=3). The as-developed method has been employed to determine H(2)O(2) concentration in real samples. PMID:23017675

  6. Alloyed Crystalline Au-Ag Hollow Nanostructures with High Chemical Stability and Catalytic Performance.

    PubMed

    Liu, Renxiao; Guo, Jianhua; Ma, Gang; Jiang, Peng; Zhang, Donghui; Li, Dexing; Chen, Lan; Guo, Yuting; Ge, Guanglu

    2016-07-01

    For bimetallic nanoparticles (NPs), the degree of alloying is beginning to be recognized as a significant factor affecting the NP properties. Here, we report an alloyed crystalline Au-Ag hollow nanostructure that exhibits a high catalytic performance, as well as structural and chemical stability. The Au-Ag alloyed hollow and porous nanoshell structures (HPNSs) with different morphologies and subnanoscale crystalline structures were synthesized by adjusting the size of the sacrificial Ag NPs via a galvanic replacement reaction. The catalytic activities of the nanomaterials were evaluated by the model reaction of the catalytic reduction of p-nitrophenol by NaBH4 to p-aminophenol. The experimental results show that the subnanoscale crystalline structure of the Au-Ag bimetallic HPNSs has much greater significance than the apparent morphology does in determining the catalytic ability of the nanostructures. The Au-Ag alloyed HPNSs with better surface crystalline alloying microstructures and open morphologies were found to exhibit much higher catalytic reaction rates and better cyclic usage efficiencies, probably because of the better dispersion of active Au atoms within these materials. These galvanic replacement-synthesized alloyed Au-Ag HPNSs, fabricated by a facile method that avoids Ag degradation, have potential applications in catalysis, nanomedicine (especially in drug/gene delivery and cancer theranostics), and biosensing. PMID:27268019

  7. Natural nanostructure and superlattice nanodomains in AgSbTe{sub 2}

    SciTech Connect

    Carlton, Christopher E.; De Armas, Ricardo; Shao-Horn, Yang E-mail: shaohorn@mit.edu; Ma, Jie; May, Andrew F.; Delaire, Olivier E-mail: shaohorn@mit.edu

    2014-04-14

    AgSbTe{sub 2} has long been of interest for thermoelectric applications because of its favorable electronic properties and its low lattice thermal conductivity of ∼0.7 W/mK. In this work, we report new findings from a high-resolution transmission electron microscopy study revealing two nanostructures in single crystal Ag{sub 1−x}Sb{sub 1+x}Sb{sub 2+x} (with x = 0, 0.1, 0.2); (i) a rippled natural nanostructure with a period of ∼2.5–5 nm and (ii) superlattice ordered nanodomains consistent with cation ordering predicted in previous density functional theory studies. These nanostructures, combined with point-defects, probably serve as sources of scattering for phonons, thereby yielding a low lattice thermal conductivity over a wide temperature range.

  8. Preparation of Ag/Au bimetallic nanostructures and their application in surface-enhanced fluorescence.

    PubMed

    Dong, Jun; Ye, Yanyan; Zhang, Wenhui; Ren, Zebin; Huo, Yiping; Zheng, Hairong

    2015-11-01

    An effective substrate for surface-enhanced fluorescence, which consists of cluster Ag/Au bimetallic nanostructures on a copper surface, was synthesized via a multi-stage galvanic replacement reaction of a Ag cluster in a chlorauric acid (HAuCl4) solution at room temperature. The fabricated silver/gold bimetallic cluster were found to yield large surface-enhanced fluorescence (SEF) enhancement factors for rhodamine 6G probe molecules deposited on the substrate, and also the fluorescence efficiency is critically dependent on the period of nanostructure growth. With the help of proper control reaction conditions, such as the reaction time, and concentration of reaction solutions, the maximum fluorescence enhanced effect was obtained. Therefore, the bimetallic nanostructure substrate also can be adapted to studies in SEF, which will expand the application of SEF. PMID:25691287

  9. Laser-nanostructured Ag films as substrates for surface-enhanced Raman spectroscopy

    SciTech Connect

    Henley, S.J.; Carey, J.D.; Silva, S.R.P.

    2006-02-20

    Pulsed-laser (248 nm) irradiation of Ag thin films was employed to produce nanostructured Ag/SiO{sub 2} substrates. By tailoring the laser fluence, it was possible to controllably adjust the mean diameter of the resultant near-spherical Ag droplets. Thin films of tetrahedral amorphous carbon (ta-C) were subsequently deposited onto the nanostructured substrates. Visible Raman measurements were performed on the ta-C films, where it was observed that the intensity of the Raman signal was increased by nearly two orders of magnitude, when compared with ta-C films grown on nonstructured substrates. The use of laser annealing as a method of preparing substrates, at low macroscopic temperatures, for surface-enhanced Raman spectroscopy on subnanometer-thick films is discussed.

  10. Novel investigation on nanostructure Ni-P-Ag composite coatings

    NASA Astrophysics Data System (ADS)

    Alirezaei, S.; Vaghefi, S. M. Monir; Ürgen, M.; Saatchi, A.; Kazmanli, K.

    2012-11-01

    In this research, silver particles with different contents were co-deposited within Ni-P coating on AISI 1045 steel samples by electroless plating process and then Ni-P-Ag composite coatings were heat treated at 400 °C for 1 h. The concentration of silver particles in Ni-P metallic matrix was determined by using scanning electron microscopy (SEM) and image analysis software. The phase transformation of deposits was analyzed by X-ray diffraction (XRD) and differential thermal analysis (DTA). Also, the mechanical properties of coatings were evaluated by microhardness and indentation tests. The results showed that the content of silver particles and heat treatment have the great effects on hardness and mechanical properties of Ni-P-Ag electroless composite coatings. Also, heat treatment can lead only to phase transformation in metallic matrix of nanostucture Ni-P-Ag composite coatings.

  11. The unusual effect of AgNO3 on the growth of Au nanostructures and their catalytic performance

    NASA Astrophysics Data System (ADS)

    Li, Xingliang; Yang, Yun; Zhou, Guangju; Han, Shuhua; Wang, Wenfang; Zhang, Lijie; Chen, Wei; Zou, Chao; Huang, Shaoming

    2013-05-01

    Au nanostructures attract much attention due to their potential applications in many fields. The controlled synthesis is critical to their properties modulation and applications. AgNO3-assisted synthesis is a widely used method for controllably preparing Au nanostructures in aqueous system. Herein, the effect of AgNO3 on the growth of Au nanostructures in polyol is studied. We observe an unusual effect that AgNO3 can induce the formation of pentatwinned Au nanostructures (nanorods and decahedra) and block the growth of Au nanorods. More interestingly, this blocking effect can be tuned through controlling the amount of AgNO3. A moderate amount of AgNO3 facilitates the formation of Au nanorods. A large amount of AgNO3 completely blocks the growth of nanorods and favors the formation of high quality decahedra (decahedra can be considered as nanorods with 0 nm longitudinal length). Besides, this blocking effect also allows preparation of different high-index-faceted Au nanobipyramids. These prepared Au nanostructures further serve as starting templates to fabricate other heterostructured Au/Ag nanomaterials, such as Ag-Au-Ag segmental nanorods, Au@Ag core-shelled nanostructures. The prepared nanostructures exhibit size- and structure-dependent catalytic performance in the reduction of p-nitrophenol to p-aminophenol by sodium borohydride.Au nanostructures attract much attention due to their potential applications in many fields. The controlled synthesis is critical to their properties modulation and applications. AgNO3-assisted synthesis is a widely used method for controllably preparing Au nanostructures in aqueous system. Herein, the effect of AgNO3 on the growth of Au nanostructures in polyol is studied. We observe an unusual effect that AgNO3 can induce the formation of pentatwinned Au nanostructures (nanorods and decahedra) and block the growth of Au nanorods. More interestingly, this blocking effect can be tuned through controlling the amount of AgNO3. A moderate

  12. Feather-like Ag@TiO2 nanostructures as plasmonic antenna to enhance optoelectronic performance.

    PubMed

    Wang, Yang; Zhai, Jin; Song, Yanlin

    2015-02-21

    The feather-like Ag@TiO2 nanostructures including 1-dimensional (1D) Ag nanowires and 2-dimensional (2D) TiO2 possess the features of fast electron transmission by one-dimensional metal nanomaterials, high light harvesting and electron collection by feather-like nanostructures like "plasmonic antenna" at the same time. We introduce them into photoanodes to enhance the conversion efficiency in DSSCs. The best efficiency (η) of the electrode reaches 8.16% compared with that of the pure TiO2 electrode (6.41%). The energy conversion efficiency and photocurrent density of photoanodes with Ag@TiO2 nanostructures are enhanced by about 14.5% and 27.8%, respectively, as compared with those of the pure TiO2 cells. The photoelectric properties of electrodes are investigated by optical and electrochemical measurements. Hence, the improved performances are attributed to the "plasmonic antenna" effect due to Ag@TiO2 anchored in TiO2 films. PMID:25597348

  13. Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials

    SciTech Connect

    Wu, Hsin-jay; Chen, Sinn-wen; Foo, Wei-jian; Jeffrey Snyder, G.

    2012-07-09

    Nanostructured Ag-Pb-Te thermoelectric materials were fabricated by unidirectionally solidifying the ternary Ag-Pb-Te eutectic and near-eutectic alloys using the Bridgeman method. Specially, the Bridgman-grown eutectic alloy exhibited a partially aligned lamellar microstructure, which consisted of Ag{sub 5}Te{sub 3} and Te phases, with additional 200-600 nm size particles of PbTe. The self-assembled interfaces altered the thermal and electronic transport properties in the bulk Ag-Pb-Te eutectic alloy. Presumably due to phonon scattering from the nanoscale microstructure, a low thermal conductivity ({kappa} = 0.3 W/mK) was achieved of the eutectic alloy, leading to a zT peak of 0.41 at 400 K.

  14. One step 'dip' and 'use' Ag nanostructured thin films for ultrahigh sensitive SERS Detection.

    PubMed

    Rajkumar, Kanakaraj; Jayram, Naidu Dhanpal; Mangalaraj, Devanesan; Rajendra Kumar, Ramasamy Thangavelu

    2016-11-01

    A simple one step galvanic displacement method which involves dipping of the silicon substrate in the AgNO3/HF solution and using it for SERS application without any further process is demonstrated. The size and shape of the Ag nanoparticles changes as the deposition time is increased. Initially the shape of the particles was nearly spherical and as it grows, becomes oblong and then coalesce to form a discontinuous film with vertically grown hierarchical Ag nanostructures. The sizes of the deposited particles were in the ranges from 30nm to a discontinuous film. It also demonstrated a highly sensitive chemical detection by surface-enhanced Raman scattering of rhodamine 6G dye, down to 10(-16)M concentration. Prepared samples were able to detect lower concentrations of Melamine. Discontinuous thin films with hierarchical Ag nanostructures were obtained for 5min Ag deposition. The formation of Hot spots between the discontinuous islands and also along the hierarchical structures is responsible for the high SERS enhancement. This simple one step, fast, non-lithographic and cost effective method can be applied for various label free detection of analytes of importance. PMID:27524085

  15. Hybrid Ag@TiO2 core-shell nanostructures with highly enhanced photocatalytic performance.

    PubMed

    Yang, X H; Fu, H T; Wong, K; Jiang, X C; Yu, A B

    2013-10-18

    A new synthetic approach has been developed to prepare silver@titanium dioxide (Ag@TiO2) core-shell nanostructures with controllable size, shape, crystal phase and function at ambient conditions (e.g. in water, ≤100 ° C). This approach shows a few unique features, including short reaction time (a few minutes) for forming core-shell nanostructures, no requirement of high temperature calcinations for generating TiO2 (e.g. at ~100 ° C in our case), tunable TiO2 shell thickness, high yield and good reproducibility. The experimental results show that the Ag@TiO2 core-shell nanostructures exhibit excellent photocatalytic activity compared to the commercial TiO2 (P25) and Ag-doped TiO2 nanocomposite in the degradation of organic dye molecules (e.g. methyl orange) with ultraviolet (UV) irradiation. This could be attributed to the large surface area of TiO2 nanoparticles for maximum harvesting of UV light, mixed anatase and rutile crystalline phases in the TiO2 shell and the effective charge separation between Ag and TiO2 that can reduce the possible recombination of electron-hole (e(-)-h(+)) pairs within TiO2 generated under UV radiation. To further understand the charge separation situation within Ag-TiO2 composites, theoretical simulation (e.g. density functional theory, DFT) was employed in this study. The DFT simulation results indicate that for the Ag@TiO2 core-shell nanostructures, photo-generated electrons transfer readily from the external TiO2 layer to the internal Ag layer with heavy accumulation compared to those doping Ag on TiO2 surfaces, which may reduce the recombination of e(-)-h(+) pairs and thus enhance the photocatalytic efficiency. The findings may open a new strategy to synthesize TiO2-based photocatalysts with highly enhanced efficiency for environmental remediation applications. PMID:24045164

  16. Hybrid Ag@TiO2 core-shell nanostructures with highly enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Yang, X. H.; Fu, H. T.; Wong, K.; Jiang, X. C.; Yu, A. B.

    2013-10-01

    A new synthetic approach has been developed to prepare silver@titanium dioxide (Ag@TiO2) core-shell nanostructures with controllable size, shape, crystal phase and function at ambient conditions (e.g. in water, ≤100 ° C). This approach shows a few unique features, including short reaction time (a few minutes) for forming core-shell nanostructures, no requirement of high temperature calcinations for generating TiO2 (e.g. at ˜100 ° C in our case), tunable TiO2 shell thickness, high yield and good reproducibility. The experimental results show that the Ag@TiO2 core-shell nanostructures exhibit excellent photocatalytic activity compared to the commercial TiO2 (P25) and Ag-doped TiO2 nanocomposite in the degradation of organic dye molecules (e.g. methyl orange) with ultraviolet (UV) irradiation. This could be attributed to the large surface area of TiO2 nanoparticles for maximum harvesting of UV light, mixed anatase and rutile crystalline phases in the TiO2 shell and the effective charge separation between Ag and TiO2 that can reduce the possible recombination of electron-hole (e--h+) pairs within TiO2 generated under UV radiation. To further understand the charge separation situation within Ag-TiO2 composites, theoretical simulation (e.g. density functional theory, DFT) was employed in this study. The DFT simulation results indicate that for the Ag@TiO2 core-shell nanostructures, photo-generated electrons transfer readily from the external TiO2 layer to the internal Ag layer with heavy accumulation compared to those doping Ag on TiO2 surfaces, which may reduce the recombination of e--h+ pairs and thus enhance the photocatalytic efficiency. The findings may open a new strategy to synthesize TiO2-based photocatalysts with highly enhanced efficiency for environmental remediation applications.

  17. Interface stress development in the Cu/Ag nanostructured multilayered film during the tensile deformation

    SciTech Connect

    Su, R.; Nie, Z. H.; Zhang, Q. H.; Li, X. J.; Li, L. E-mail: ydwang@mail.neu.edu.cn; Zhou, X. T.; Wang, Y. D. E-mail: ydwang@mail.neu.edu.cn; Wu, Y. D.; Hui, X. D.; Wang, M. G.

    2014-12-01

    Cu/Ag nanostructured multilayered films (NMFs) with different stacking sequences were investigated by synchrotron X-ray diffraction during the tensile deformations for interface stress study. The lattice strains were carefully traced and the stress partition, which usually occurs in the multiphase bulk metallic materials during plastic deformations, was first quantitatively analyzed in the NMFs here. The interface stress of the Cu/Ag NMFs was carefully analyzed during the tensile deformation and the results revealed that the interface stress was along the loading direction and exhibited three-stage evolution. This tensile interface stress has a detrimental effect on the deformation, leading to the early fracture of the NMFs.

  18. Magnetotransport and coupling in nanostructured Co/Ag thin films

    NASA Astrophysics Data System (ADS)

    Bracho Rodríguez, G. J.; Pereira, L. G.; Miranda, M. G. M.; Antunes, A. B.; Baibich, M. N.

    2000-05-01

    We have studied the electrical resistivity and giant magnetoresistance (GMR) of [Co(15 Å)/Ag(45 Å)] 20/Ag(45 Å) multilayers treated at different annealing temperatures. A simulation based on a formal solution of the Boltzmann equation for the electrical resistivity was performed, and the results compared to the experimental results from 4.2 to 300 K. The simulation shows that both the mean free paths and the transmission coefficients are affected by the breaking of the magnetic layers: at lower annealing temperatures, on account of stress relief and other related processes, the mean free paths increase, but the minority spin mean free path for electrons decreases for anneals above 324°C. A simple parameter to measure the coupling present in spin valve systems is proposed. This shows a decrease of the coupling in the first stages of the anneals, with a sudden increase in coupling upon breaking the magnetic layers.

  19. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering.

    PubMed

    Uhm, Soo-Hyuk; Song, Doo-Hoon; Kwon, Jae-Sung; Lee, Sang-Bae; Han, Jeon-Geon; Kim, Kyoung-Nam

    2014-04-01

    To reduce the incidence of postsurgical bacterial infection that may cause implantation failure at the implant-bone interface, surface treatment of titanium implants with antibiotic materials such as silver (Ag) has been proposed. The purpose of this work was to create TiO2 nanotubes using plasma electrolytic oxidation (PEO), followed by formation of an antibacterial Ag nanostructure coating on the TiO2 nanotube layer using a magnetron sputtering system. PEO was performed on commercially pure Ti sheets. The Ag nanostructure was added onto the resulting TiO2 nanotube using magnetron sputtering at varying deposition rates. Field emission scanning electron microscopy and transmission electron microscopy were used to characterize the surface, and Ag content on the TiO2 nanotube layer was analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. Scanning probe microscopy for surface roughness and contact angle measurement were used to indirectly confirm enhanced TiO2 nanotube hydrophilicity. Antibacterial activity of Ag ions in solution was determined by inductively coupled plasma mass spectrometry and antibacterial testing against Staphylococcus aureus (S. aureus). In vitro, TiO2 nanotubes coated with sputtered Ag resulted in significantly reduced S. aureus. Cell viability assays showed no toxicity for the lowest sputtering time group in the osteoblastic cell line MC3T3-E1. These results suggest that a multinanostructured layer with a biocompatible TiO2 nanotube and antimicrobial Ag coating is a promising biomaterial that can be tailored with magnetron sputtering for optimal performance. PMID:24123999

  20. Oxygen interaction with disordered and nanostructured Ag(001) surfaces

    NASA Astrophysics Data System (ADS)

    Vattuone, L.; Burghaus, U.; Savio, L.; Rocca, M.; Costantini, G.; Buatier de Mongeot, F.; Boragno, C.; Rusponi, S.; Valbusa, U.

    2001-08-01

    We investigated O2 adsorption on Ag(001) in the presence of defects induced by Ne+ sputtering at different crystal temperatures, corresponding to different surface morphologies recently identified by scanning tunneling microscopy. The gas-phase molecules were dosed with a supersonic molecular beam. The total sticking coefficient and the total uptake were measured with the retarded reflector method, while the adsorption products were characterized by high resolution electron energy loss spectroscopy. We find that, for the sputtered surfaces, both sticking probability and total O2 uptake decrease. Molecular adsorption takes place also for heavily damaged surfaces but, contrary to the flat surface case, dissociation occurs already at a crystal temperature, T, of 105 K. The internal vibrational frequency of the O2 admolecules indicates that two out of the three O2- moieties present on the flat Ag(001) surface are destabilized by the presence of defects. The dissociation probability depends on surface morphology and drops for sputtering temperatures larger than 350 K, i.e., when surface mobility prevails healing the defects. The latter, previously identified with kink sites, are saturated at large O2 doses. The vibrational frequency of the oxygen adatoms, produced by low temperature dissociation, indicates the formation of at least two different adatom moieties, which we tentatively assign to oxygen atoms at kinks and vacancies.

  1. Dendritic cell vaccine modified by Ag85A gene enhances anti-tumor immunity against bladder cancer.

    PubMed

    Zhang, Pei; Wang, Jinyan; Wang, Danan; Wang, Huan; Shan, Fengping; Chen, Liudan; Hou, Ying; Wang, Enhua; Lu, Chang-Long

    2012-11-01

    The ability of dendritic cells to provide all the signals required for T-cell activation makes them an ideal cancer vaccine platform. With the use of established DC2.4 cell line, originated from C57BL/6 mice and developed by superinfecting GM-CSF transduced bone marrow cells with myc and raf oncogenes, we investigated whether the DC 2.4 cell line transfected with Ag85A gene could enhance immunity against bladder cancer. Both phenotypic and functional analyses of Ag85A-DCs were done with use of FCM and T cell proliferation test. The cytotoxicity of Ag85A-DCs loaded with tumor cell lysate was verified by LDH. Finally, the production of interferon gamma was assayed by both ELISA and FCM. The immunotherapeutic effect of DC vaccine on murine bladder cancer was assessed pharmacologically and pathologically. Our results showed that Ag85A gene transfected DCs expressed high levels of key surface markers such as CD80, CD86 and MHC-II. The CTL primed with MB49 lysate-pulsed Ag85A-DCs elicits higher activity against MB49 tumor cells and upregulated level of IFN-γ production. Furthermore, the significant inhibitive effect on tumor growth in mice was found in the group of Ag85A-DC vaccine. The infiltration of CD4(+) or CD8(+) T cell within established tumor treated by Ag85A-DC vaccine significantly increased as compared with control groups. It is therefore concluded that DCs engineered by Ag85A gene exerts enhanced anti-tumor immunity against bladder cancer and this study might provide a meaningful mode of action with the use of Ag85A engineered DC vaccination in anti-cancer immunotherapy. PMID:22884511

  2. Resonance properties of Ag-ZnO nanostructures at terahertz frequencies.

    PubMed

    Sanchez, John E; Díaz de León, Ramón; Mendoza-Santoyo, Fernando; González, Gabriel; José-Yacaman, Miguel; Ponce, Arturo; González, Francisco Javier

    2015-09-21

    Nanoantennas have been fabricated by scaling down traditional antenna designs using nanolithographic techniques and testing them at different optical wavelengths, these particular nanoantennas have shown responses in a broad range of frequencies going from visible wavelengths to the range of the terahertz. Some self-assembled nanostructures exist that exhibit similar shapes and properties to those of traditional antenna structures. In this work the emission and absorption properties of self-assembled nanostructures made of zinc oxide nanorods on silver nanowires, which resemble traditional dipole antennas, were measured and simulated in order to test their antenna performance. These structures show resonant properties in the 10-120 THz range, with the main resonance at 60 THz. The radiation pattern of these nanostructures was also obtained by numerical simulations, and it is shown that it can be tailored to increase or decrease its directivity as a function of the location of the energy source of excitation. Experimental measurements were performed by Raman spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR) in order to show existing vibrational frequencies at the resonant frequencies of the nanostructures, measurements were made from ~9 to 103 THz and the results were in agreement with the simulations. These characteristics make these metal-semiconductor Ag/ZnO nanostructures useful as self-assembled nanoantennas in applications such as terahertz spectroscopy and sensing at terahertz frequencies. PMID:26406710

  3. Investigation of Ag-TiO2 nanostructures photocatalytic properties prepared by modified dip coating method

    NASA Astrophysics Data System (ADS)

    AlArfaj, Esam

    2016-05-01

    In this article, titanium dioxide and silver nanostructures were deposited on glass substrates using modified sol-gel methods and dip-coating technique. The films were characterised chemically and physically using different techniques (TLC, UV-Vis and XRD) and tested for environmental applications regarding degradation of aromatic hydrocarbons. The photocatalytic activity of the TiO2 nanostructures is tested with different small concentrations of phenol in water and reaction mechanisms discussed. Considerable enhancement is observed in the photodegradation activity of Ag-modified (3 wt.%) TiO2 compared to unmodified TiO2 nanostructures for phenol concentrations within the pseudo-first-order Langmuir-Hinshelwood (LH) model for reaction kinetics. The pseudo-first-order global degradation rate constant increased from <0.005 min-1 for TiO2 to 0.013 min-1 for 3 mol% Ag-modified TiO2. The enhancement is attributed to the incorporation of Ag which promotes the generation of reactive oxygen species and increases the carrier recombination life-time. In addition, Ag has been observed to extend the absorption to the visible region by its surface plasmon resonances and to suppress the anatase-rutile phase transformation. Moreover, TiO2 grain size prepared was found to be 10 nm which maximises the active surface area. For phenol initial concentrations as low as 0.0002 M, saturation trend in the degradation process occurred at 0.00014 M and the reaction rate can be fitted with half-order LH kinetics.

  4. Ag- and Cu-doped multifunctional bioactive nanostructured TiCaPCON films

    NASA Astrophysics Data System (ADS)

    Shtansky, D. V.; Batenina, I. V.; Kiryukhantsev-Korneev, Ph. V.; Sheveyko, A. N.; Kuptsov, K. A.; Zhitnyak, I. Y.; Anisimova, N. Yu.; Gloushankova, N. A.

    2013-11-01

    A key property of multicomponent bioactive nanostructured Ti(C,N)-based films doped with Ca, P, and O (TiCaPCON) that can be improved further is their antibacterial effect that should be achieved without compromising the implant bioactivity and biocompatibility. The present work is focused on the study of structure, chemical, mechanical, tribological, and biological properties of Ag- and Cu-doped TiCaPCON films. The films with Ag (0.4-4 at.%) and Cu (13 at.%) contents were obtained by simultaneous sputtering of a TiC0.5-Ca3(PO4)2 target and either an Ag or a Cu target. The film structure was studied using X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray spectroscopy, glow discharge optical emission spectroscopy, and Raman-shift and IR spectroscopy. The films were characterized in terms of their hardness, elastic modulus, dynamic impact resistance, friction coefficient and wear rate (both in air and normal saline), surface wettability, electrochemical behavior and Ag or Cu ion release in normal saline. Particular attention was paid to the influence of inorganic bactericides (Ag and Cu ions) on the bactericidal activity against unicellular yeast fungus Saccharomyces cerevisiae and gram-positive bacteria Lactobacillus acidophilus, as well as on the attachment, spreading, actin cytoskeleton organization, focal adhesions, and early stages of osteoblastic cell differentiation. The obtained results show that the Ag-doped films are more suitable for the protection of metallic surfaces against bacterial infection compared with their Cu-doped counterpart. In particular, an excellent combination of mechanical, tribological, and biological properties makes Ag-doped TiCaPCON film with 1.2 at.% of Ag very attractive material for bioengineering and modification of load-bearing metal implant surfaces.

  5. Facet-controlled {100}Rh-Pt and {100}Pt-Pt dendritic nanostructures by transferring the {100} facet nature of the core nanocube to the branch nanocubes

    NASA Astrophysics Data System (ADS)

    Khi, Nguyen Tien; Park, Jongsik; Baik, Hionsuck; Lee, Hyunkyung; Sohn, Jeong-Hun; Lee, Kwangyeol

    2015-02-01

    Facet-controlled dendritic nanostructures are expected to exhibit excellent catalytic properties because both aggregation-free nature and controlled facet-originated activity and selectivity can be accomplished. However, such examples are extremely rare due to the incompatibility of the dendrite formation process with the usage of surface-stabilizing moieties, which are typically used to control facets. Herein, we demonstrate that regiospecific growth on a facet-controlled core nanoparticle can induce the facet-control of the branch nanoparticles. Specifically, facet-controlled dendritic nanostructures of {100}Rh-Pt and {100}Pt-Pt can be conveniently prepared by transferring the crystallographic behaviour of the {100}Pt dendritic core nanocube to the {100}Rh or {100}Pt branch nanocubes.Facet-controlled dendritic nanostructures are expected to exhibit excellent catalytic properties because both aggregation-free nature and controlled facet-originated activity and selectivity can be accomplished. However, such examples are extremely rare due to the incompatibility of the dendrite formation process with the usage of surface-stabilizing moieties, which are typically used to control facets. Herein, we demonstrate that regiospecific growth on a facet-controlled core nanoparticle can induce the facet-control of the branch nanoparticles. Specifically, facet-controlled dendritic nanostructures of {100}Rh-Pt and {100}Pt-Pt can be conveniently prepared by transferring the crystallographic behaviour of the {100}Pt dendritic core nanocube to the {100}Rh or {100}Pt branch nanocubes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07049f

  6. 3D Epitaxy of Graphene nanostructures in the Matrix of Ag, Al and Cu

    NASA Astrophysics Data System (ADS)

    Salamanca-Riba, Lourdes; Isaacs, Romaine; Wuttig, Manfred; Lemieux, Melburne; Hu, Liangbing; Iftekhar, Jaim; Rashkeev, Sergey; Kukla, Maija; Rabin, Oded; Mansour, Azzam

    2015-03-01

    Graphene nanostructures in the form ribbons were embedded in the lattice of metals such as Ag, Cu, and Al in concentrations up to 36.4 at.%, 21.8 at% and 10.5 at.%, respectively. These materials are called covetics. Raman scattering from Ag and Al covetics indicate variations in the intensity of peaks at ~ 1,300 cm-1 and 1,600 cm-1 with position on the sample. These peaks are associated with the D (defects) and G (graphite E2g mode) peaks of graphitic carbon with sp2 bonding and reveal various degrees of imperfections in the graphene layers. First principles calculations of the dynamic matrix of Ag and Al covetics show bonding between C and the metal. EELS mapping of the C-K edge and high resolution lattice images show that the graphene-like regions form ribbons with epitaxial orientation with the metal lattice of Ag and Al. The temperature dependences of the resistivites of Ag and Cu covetics are similar to those of the pure metals with only slight increase in resistivity. Films of Cu covetic deposited by e-beam evaporation and PLD show higher transmittance and resistance to oxidation than pure metal films of the same thickness indicating that copper covetic films can be used for transparent electrodes. Funded by DARPA/ARL Grant No. W911NF-13-1-0058, and ONR Award No N000141410042.

  7. Structural and optical properties of core–shell Ag{sub 2}S/HgS nanostructures

    SciTech Connect

    Basyach, Priyanka; Choudhury, Amarjyoti

    2013-07-15

    Graphical abstract: - Highlights: • Core–shell Ag{sub 2}S/HgS nanostructures are successfully synthesized. • The particle size and the structure were confirmed through TEM images. • The absorbance analysis reveals red shift with increasing shell concentration. • A transition from TYPE 1 to TYPE 2 core–shell nanostructure is observed. - Abstract: Here we report on a two-step synthesis route for fabrication of core–shell Ag{sub 2}S/HgS nanostructures. Nanoscale Ag{sub 2}S semiconductors are prepared by a standard redox reaction using AgNO{sub 3} and CS{sub 2} as the reactants in PVP. HgS layers are developed on Ag{sub 2}S cores through S-S bonding at the interface separating the two systems. The properties of these core–shell nanostructures are studied via various spectroscopic and microscopic tools like UV–Vis absorption spectra, photoluminescence spectra, X-ray diffraction pattern and transmission electron microscopic images. Change in optical properties is observed while varying the shell thickness in the sample. A detailed study on the luminescence properties reveal transition from TYPE 1 to TYPE 2 core–shell nanostructures is observed with increasing shell thickness.

  8. Visible-light photoactive Ag-AgBr/α-Ag3VO4 nanostructures prepared in a water-soluble ionic liquid for degradation of wastewater

    NASA Astrophysics Data System (ADS)

    Padervand, Mohsen

    2016-03-01

    Ag-AgBr/α-Ag3VO4 photocatalysts, prepared by an ionic liquid-assisted precipitation method, were used as an efficient visible light-driven photocatalytic system for removal of wastewater and pathogenic bacteria from the aqueous medium. X-ray diffraction powder, diffuse reflectance spectroscopy, Fourier transform infrared, scanning electron microscopy, and nitrogen adsorption-desorption isotherm (BET) analysis methods were used to characterize the nanostructures. Photodegradation mechanism was investigated and the results showed that the prepared samples were too efficient for the degradation of Acid Blue 92 (AB92) azo dye, and E. coli cells under visible light. The photogenerated electron-hole pairs reacted with the species in the solution and produced super active radicals such as {{O}}{{{H}}^ \\cdot } , {{H}}{{{O}}^ \\cdot }_{{2}} , and {{{O}}^{ \\cdot - }}_{{2}} which are responsible for the degradation of the environmental pollutions. TEM images were used to clarify the antibacterial activity of the products. Finally, as a practical application of the prepared photocatalysts, their ability evaluated for degradation of a real wastewater sample which was provided from the textile industries.

  9. Syntheses and characterization of AgI nano-structures by ultrasonic method: Different morphologies under different conditions.

    PubMed

    Abbasi, Amir Reza; Morsali, Ali

    2010-03-01

    Nano-structures of AgI have been prepared by reaction between AgNO(3) and KI under ultrasound irradiation. Some of parameters such as effect of stirring, temperature, sonicating time in growth and morphology of the nano-structures have been studied. The sizes distributions depend slighter on reaction conditions. But, morphology of nano-structure depends strongly on reaction parameters. With change of solvent concentration and sonicating time, nanoparticles structures changed to nanowires. An increasing of temperature results in an increasing of solubility. As a result, nuclei with small sizes become unstable and dissolve back into the solution. Attendance or non-attendance of stirring is another parameter that effects on morphology of nano-structures. In some conditions, non-attendance of stirring led to nanowires structure and in the other conditions, nanoparticles structures were prepared. The samples were characterized with powder X-ray diffraction (XRD), scanning electron microscopy (SEM). PMID:19959390

  10. Characterization of Ag nanostructures fabricated by laser-induced dewetting of thin films

    NASA Astrophysics Data System (ADS)

    Nikov, Ru. G.; Nedyalkov, N. N.; Atanasov, P. A.; Hirsch, D.; Rauschenbach, B.; Grochowska, K.; Sliwinski, G.

    2016-06-01

    The paper presents results on laser nanostructuring of Ag thin films. The thin films are deposited on glass substrates by pulsed laser deposition technology. The as fabricated films are then annealed by nanosecond laser pulses delivered by Nd:YAG laser system operated at λ = 355 nm. The film modification is studied as a function of the film thickness and the parameters of the laser irradiation as pulse number and laser fluence. In order to estimate the influence of the environment on the characteristics of the fabricated structures the Ag films are annealed in different surrounding media: water, air and vacuum. It is found that at certain conditions the laser treatment may lead to decomposition of the films into a monolayer of nanoparticles with narrow size distribution. The optical properties of the fabricated nanostructures are investigated on the basis of transmission spectra taken by optical spectrometer. In the measured spectra plasmon resonance band is observed as its shape and position vary depending on the processing conditions. The fabricated structures are covered with Rhodamine 6G and tested as active substrates for Surface Enhanced Raman Spectroscopy (SERS).

  11. Coherently Embedded Ag Nanostructures in Si: 3D Imaging and their application to SERS

    PubMed Central

    Juluri, R. R.; Rath, A.; Ghosh, A.; Bhukta, A.; Sathyavathi, R.; Rao, D. Narayana; Müller, Knut; Schowalter, Marco; Frank, Kristian; Grieb, Tim; Krause, Florian; Rosenauer, A.; Satyam, P. V.

    2014-01-01

    Surface enhanced Raman spectroscopy (SERS) has been established as a powerful tool to detect very low-concentration bio-molecules. One of the challenging problems is to have reliable and robust SERS substrate. Here, we report on a simple method to grow coherently embedded (endotaxial) silver nanostructures in silicon substrates, analyze their three-dimensional shape by scanning transmission electron microscopy tomography and demonstrate their use as a highly reproducible and stable substrate for SERS measurements. Bi-layers consisting of Ag and GeOx thin films were grown on native oxide covered silicon substrate using a physical vapor deposition method. Followed by annealing at 800°C under ambient conditions, this resulted in the formation of endotaxial Ag nanostructures of specific shape depending upon the substrate orientation. These structures are utilized for detection of Crystal Violet molecules of 5 × 10−10 M concentrations. These are expected to be one of the highly robust, reusable and novel substrates for single molecule detection. PMID:24717601

  12. A facile approach to prepare silicon-based Pt-Ag tubular dendritic nano-forests (tDNFs) for solar-light-enhanced methanol oxidation reaction.

    PubMed

    Lin, Chun-Ting; Shiao, Ming-Hua; Chang, Mao-Nan; Chu, Nancy; Chen, Yu-Wei; Peng, Yu-Hsuan; Liao, Bo-Huei; Huang, Hung Ji; Hsiao, Chien-Nan; Tseng, Fan-Gang

    2015-01-01

    In this paper, a facile two-step Galvanic replacement reaction (GRR) is proposed to prepare Pt-Ag tubular dendritic nano-forests (tDNFs) in ambient condition for enhancing methanol oxidation reaction (MOR) under solar illumination. In the first GRR, a homogeneous layer of silver dendritic nano-forests (DNFs) with 10 μm in thickness was grown on Si wafer in 5 min in silver nitride (AgNO3) and buffer oxide etchant (BOE) solution. In the second GRR, we utilized chloroplatinic acid (H2PtCl6) as the precursor for platinum (Pt) deposition to further transform the prepared Ag DNFs into Pt-Ag tDNFs. The catalytic performance and solar response of the Pt-Ag tDNFs toward methanol electro-oxidation are also studied by cyclic voltammetry (CV) and chronoamperometry (CA). The methanol oxidation current was boosted by 6.4% under solar illumination on the Pt-Ag tDNFs due to the induced localized surface plasmon resonance (LSPR) on the dendritic structure. Current results provide a cost-effective and facile approach to prepare solar-driven metallic electrodes potentially applicable to photo-electro-chemical fuel cells. PMID:25852370

  13. A facile approach to prepare silicon-based Pt-Ag tubular dendritic nano-forests (tDNFs) for solar-light-enhanced methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Ting; Shiao, Ming-Hua; Chang, Mao-Nan; Chu, Nancy; Chen, Yu-Wei; Peng, Yu-Hsuan; Liao, Bo-Huei; Huang, Hung Ji; Hsiao, Chien-Nan; Tseng, Fan-Gang

    2015-02-01

    In this paper, a facile two-step Galvanic replacement reaction (GRR) is proposed to prepare Pt-Ag tubular dendritic nano-forests (tDNFs) in ambient condition for enhancing methanol oxidation reaction (MOR) under solar illumination. In the first GRR, a homogeneous layer of silver dendritic nano-forests (DNFs) with 10 μm in thickness was grown on Si wafer in 5 min in silver nitride (AgNO3) and buffer oxide etchant (BOE) solution. In the second GRR, we utilized chloroplatinic acid (H2PtCl6) as the precursor for platinum (Pt) deposition to further transform the prepared Ag DNFs into Pt-Ag tDNFs. The catalytic performance and solar response of the Pt-Ag tDNFs toward methanol electro-oxidation are also studied by cyclic voltammetry (CV) and chronoamperometry (CA). The methanol oxidation current was boosted by 6.4% under solar illumination on the Pt-Ag tDNFs due to the induced localized surface plasmon resonance (LSPR) on the dendritic structure. Current results provide a cost-effective and facile approach to prepare solar-driven metallic electrodes potentially applicable to photo-electro-chemical fuel cells.

  14. Magnetic and electronic structure of Mn nanostructures on Ag(111) and Au(111)

    NASA Astrophysics Data System (ADS)

    Cardias, R.; Bezerra-Neto, M. M.; Ribeiro, M. S.; Bergman, A.; Szilva, A.; Eriksson, O.; Klautau, A. B.

    2016-01-01

    We present results of the electronic and magnetic structure of Mn nanowires adsorbed on Ag(111) and Au(111) surfaces. For finite Mn nanowires on Ag(111) and Au(111) surfaces, our ab initio results show that the large difference between the spin-orbit splitting of these two surfaces leads to completely different magnetic configurations. The magnetic ordering for Mn nanowires adsorbed on Ag(111) is governed by the strong exchange interaction between Mn adatoms. For Mn nano-chains on Au(111), the competition between Heisenberg and Dzyaloshinskii-Moriya interactions leads to a complex magnetic structure of the clusters considered here. Among the more conspicuous results we note a spin-spiral helical type for the nanowire with seven atoms, and a complex magnetic configuration incommensurate with the substrate lattice for a double-sized Mn wire. The effect of the structural relaxation is also investigated, showing sensitivity of the exchange interactions to the bond distance to the substrate. We also demonstrate that small changes in the band filling of these Mn chains results in drastically different changes of the interatomic exchange. Finally, we show that dispersion of the electronic energy spectrum is possible even in nanostructures with bounded spatial extension.

  15. Primary Effusion Lymphoma Cell Death Induced by Bortezomib and AG 490 Activates Dendritic Cells through CD91

    PubMed Central

    Cirone, Mara; Di Renzo, Livia; Lotti, Lavinia Vittoria; Conte, Valeria; Trivedi, Pankaj; Santarelli, Roberta; Gonnella, Roberta; Frati, Luigi; Faggioni, Alberto

    2012-01-01

    To understand how cytotoxic agent-induced cancer cell death affects the immune system is of fundamental importance to stimulate immune response to counteract the high mortality due to cancer. Here we compared the immunogenicity of Primary Effusion Lymphoma (PEL) cell death induced by anticancer drug Bortezomib (Velcade) and Tyrphostin AG 490, a Janus Activated Kinase 2/signal trasducer and activator of transcription-3 (JAK2/STAT3) inhibitor. We show that both treatments were able to induce PEL apoptosis with similar kinetics and promote dendritic cells (DC) maturation. The surface expression of molecules involved in immune activation, namely calreticulin (CRT), heat shock proteins (HSP) 90 and 70 increased in dying cells. This was correlated with DC activation. We found that PEL cell death induced by Bortezomib was more effective in inducing uptake by DC compared to AG 490 or combination of both drugs. However the DC activation induced by all treatments was completely inhibited when these cells were pretreated with a neutralizing antiboby directed against the HSP90/70 and CRT common receptor, CD91. The activation of DC by Bortezomib and AG 490 treated PEL cells, as seen in the present study, might have important implications for a combined chemo and immunotherapy in such patients. PMID:22412839

  16. Au-Ag@Au Hollow Nanostructure with Enhanced Chemical Stability and Improved Photothermal Transduction Efficiency for Cancer Treatment.

    PubMed

    Jiang, Tongtong; Song, Jiangluqi; Zhang, Wenting; Wang, Hao; Li, Xiaodong; Xia, Ruixiang; Zhu, Lixin; Xu, Xiaoliang

    2015-10-01

    Despite the fact that Au-Ag hollow nanoparticles (HNPs) have gained much attention as ablation agents for photothermal therapy, the instability of the Ag element limits their applications. Herein, excess Au atoms were deposited on the surface of a Au-Ag HNP by improving the reduction power of l-ascorbic acid (AA) and thereby preventing the reaction between HAuCl4 and the Ag element in the Au-Ag alloy nanostructure. Significantly, the obtained Au-Ag@Au HNPs show excellent chemical stability in an oxidative environment, together with remarkable increase in extinction peak intensity and obvious narrowing in peak width. Moreover, finite-difference time-domain (FDTD) was used to simulate the optical properties and electric field distribution of HNPs. The calculated results show that the proportion of absorption cross section in total extinction cross section increases with the improvement of Au content in HNP. As predicted by the theoretical calculation results, Au-Ag@Au nanocages (NCs) exhibit a photothermal transduction efficiency (η) as high as 36.5% at 808 nm, which is higher than that of Au-Ag NCs (31.2%). Irradiated by 808 nm laser at power densities of 1 W/cm(2), MCF-7 breast cancer cells incubated with PEGylated Au-Ag@Au NCs were seriously destroyed. Combined together, Au-Ag@Au HNPs with enhanced chemical stability and improved photothermal transduction efficiency show superior competitiveness as photothermal agents. PMID:26371629

  17. Nanostructured AgBr loaded TiO2: An efficient sunlight active photocatalyst for degradation of Reactive Red 120.

    PubMed

    Velmurugan, Rengasamy; Sreedhar, Bojja; Swaminathan, Meenakshisundaram

    2011-01-01

    The AgBr loaded TiO2 catalyst was prepared by a feasible approach with AgBr and tetraisopropyl orthotitanate and characterized by BET surface area measurement, diffuse reflectance spectra (DRS), scanning electron microscope (SEM), energy dispersive spectra (EDS), X-ray diffraction (XRD), transmission electron microscope (TEM) and atomic force microscope (AFM) analysis. The results of characterization reveal that AgBr loaded TiO2 has a nanostructure. Formation of the nanostructure in AgBr loaded TiO2 results in substantial shifting of the absorption edge of TiO2 to red and enhancement of visible light absorption. Electrochemical impedance spectroscopy measurements reveal that AgBr loaded TiO2 has a higher photoconductivity than prepared TiO2 due to higher separation efficiency of electron-hole pairs. Cyclic voltammetric studies reveal enhanced conductivity in AgBr loaded TiO2, which causes an increase in its photocatalytic activity. AgBr loaded TiO2 exhibited a higher photocatalytic activity than TiO2-P25 and prepared TiO2 in the photodegradation of Reactive Red 120 (RR 120). PMID:21801445

  18. Nanostructured AgBr loaded TiO2: An efficient sunlight active photocatalyst for degradation of Reactive Red 120

    PubMed Central

    2011-01-01

    The AgBr loaded TiO2 catalyst was prepared by a feasible approach with AgBr and tetraisopropyl orthotitanate and characterized by BET surface area measurement, diffuse reflectance spectra (DRS), scanning electron microscope (SEM), energy dispersive spectra (EDS), X-ray diffraction (XRD), transmission electron microscope (TEM) and atomic force microscope (AFM) analysis. The results of characterization reveal that AgBr loaded TiO2 has a nanostructure. Formation of the nanostructure in AgBr loaded TiO2 results in substantial shifting of the absorption edge of TiO2 to red and enhancement of visible light absorption. Electrochemical impedance spectroscopy measurements reveal that AgBr loaded TiO2 has a higher photoconductivity than prepared TiO2 due to higher separation efficiency of electron-hole pairs. Cyclic voltammetric studies reveal enhanced conductivity in AgBr loaded TiO2, which causes an increase in its photocatalytic activity. AgBr loaded TiO2 exhibited a higher photocatalytic activity than TiO2-P25 and prepared TiO2 in the photodegradation of Reactive Red 120 (RR 120). PMID:21801445

  19. Ion-modulated nonlinear electronic transport in carbon nanotube bundle/RbAg4I5 thin film composite nanostructures

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Lin; Zhang, Wei; Wei, Jinquan; Gu, Bingfu

    2014-01-01

    We have explored the ion-modulated electronic transport properties of mixed ionic-electronic conductor (MIEC) composite nanostructures made of superionic conductor RbAg4I5 films and carbon nanotube (CNT) bundle spiderwebs. Our experimental and theoretical studies indicate that the formation of ion-electron bound states (IEBSs) leads to strong ion-electron interference effect and interesting electronic transport of CNT, such as nonlinear current-voltage (I-V) characteristics and novel temperature dependence of the current. With increasing temperature, the hybrid nanostructures show rich phases with different dependence of current on temperature, which is related to the structural phase transition of RbAg4I5 and the transition of dissociation of IEBSs. The ion-modulation of the electric conductivity in such MIEC composite nanostructures with great tunability has been used to design new ionic-electronic composite nano-devices with function like field effect transistor.

  20. AgNO3-Dependent Morphological Change of Si Nanostructures Prepared by Single-Step Metal Assisted Etching Method

    NASA Astrophysics Data System (ADS)

    Shimizu, Tomohiro; Yamaguchi, Takuya; Inoue, Fumihiro; Inada, Mitsuru; Shingubara, Shoso

    2012-11-01

    The morphological changes of a nanostructured Si surface prepared by metal assisted etching were investigated. We used a mixture of silver nitrate (AgNO3) and hydrofluoric acid (HF) as an electroless plating bath of Ag, as well as an etching solution of Si. With a change in silver ion concentration in the etching solution, three types of etched Si nanostructures were observed: “nanowire”, “porous wall”, and “polished”. We developed a phase diagram of the morphology of the etched Si surface. With increasing concentration of AgNO3 in the etching solution, the surface morphology of etched Si changes from nanowire to porous wall, and finally, polished for regardless of Si resistivity.

  1. Photonic crystals with SiO2-Ag ``post-cap'' nanostructure coatings for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Seok-min; Zhang, Wei; Cunningham, Brian T.

    2008-10-01

    We demonstrate that the resonant near fields of a large-area replica molded photonic crystal (PC) slab can efficiently couple light from a laser to SiO2-Ag "post-cap" nanostructures deposited on the PC surface by a glancing angle evaporation technique for achieving high surface enhanced Raman spectroscopy (SERS) enhancement factor. To examine the feasibility of the PC-SERS substrate, the simulated electric field around individual Ag particles and the measured Raman spectrum of trans-1,2-bis(4pyridyl)ethane on the PC-SERS substrate were compared with those from an ordinary glass substrate coated with the same SiO2-Ag nanostructures.

  2. Post-Synthetic Decoupling of On-Surface-Synthesized Covalent Nanostructures from Ag(111).

    PubMed

    Rastgoo-Lahrood, Atena; Björk, Jonas; Lischka, Matthias; Eichhorn, Johanna; Kloft, Stephan; Fritton, Massimo; Strunskus, Thomas; Samanta, Debabrata; Schmittel, Michael; Heckl, Wolfgang M; Lackinger, Markus

    2016-06-27

    The on-surface synthesis of covalent organic nanosheets driven by reactive metal surfaces leads to strongly adsorbed organic nanostructures, which conceals their intrinsic properties. Hence, reducing the electronic coupling between the organic networks and commonly used metal surfaces is an important step towards characterization of the true material. We demonstrate that post-synthetic exposure to iodine vapor leads to the intercalation of an iodine monolayer between covalent polyphenylene networks and Ag(111) surfaces. The experimentally observed changes from surface-bound to detached nanosheets are reproduced by DFT simulations. These findings suggest that the intercalation of iodine provides a material that shows geometric and electronic properties substantially closer to those of the freestanding network. PMID:27125328

  3. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  4. BiPO4 photocatalyst employing synergistic action of Ag/Ag3PO4 nanostructure and graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Mohaghegh, N.; Rahimi, E.

    2016-06-01

    Graphene-supported BiPO4/Ag/Ag3PO4 photocatalyst has been fabricated by simple hydrothermal and impregnation reaction. In BiPO4/Ag/Ag3PO4 based on Reduced Graphene Oxide (RGO), this network renders numerous pathways for rapid mass transport, strong adsorption and multireflection of incident light; meanwhile, the interface between BiPO4/Ag/Ag3PO4 and RGO increases the active sites and electron transfer rate. BiPO4/Ag/Ag3PO4 based on RGO noticeably exhibited high photocatalytic activity than that of BiPO4/Ag/Ag3PO4 and P25 under visible light irradiation for cationic dye (Rhodamine B), anionic dye (methyl orange) and 4-chlorophenol (4-CP) as a neutral pollutant, which are usually difficult to be degraded over the other catalysts. This enhanced photocatalytic activity of Graphene-supported BiPO4/Ag/Ag3PO4 for all pollutants could be mainly ascribed to the reinforced charge transfer from BiPO4/Ag/Ag3PO4 to RGO, which suppresses the recombination of electron/hole pairs. Besides that, this photocatalyst can be used repetitively with a high photocatalytic activity and no apparent loss of activity occurs. The results reveal that the RGO nanosheets work as a photocatalyst promoter during the photocatalytic reaction, leading to an improved photocatalytic activity.

  5. Electrically conductive nanostructured silver doped zinc oxide (Ag:ZnO) prepared by solution-immersion technique

    NASA Astrophysics Data System (ADS)

    Afaah, A. N.; Asib, N. A. M.; Aadila, A.; Mohamed, R.; Rusop, M.; Khusaimi, Z.

    2016-07-01

    p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO3 as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films were characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.

  6. Ag nanoparticle-ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach

    NASA Astrophysics Data System (ADS)

    Li, Zhou; Tang, Haoying; Yuan, Weiwei; Song, Wei; Niu, Yongshan; Yan, Ling; Yu, Min; Dai, Ming; Feng, Siyu; Wang, Menghang; Liu, Tengjiao; Jiang, Peng; Fan, Yubo; Wang, Zhong Lin

    2014-04-01

    A new approach for fabrication of a long-term and recoverable antimicrobial nanostructure/textile hybrid without increasing the antimicrobial resistance is demonstrated. Using in situ synthesized Ag nanoparticles (NPs) anchored on ZnO nanowires (NWs) grown on textiles by a ‘dip-in and light-irradiation’ green chemical method, we obtained ZnONW@AgNP nanocomposites with small-size and uniform Ag NPs, which have shown superior performance for antibacterial applications. These new Ag/ZnO/textile antimicrobial composites can be used for wound dressings and medical textiles for topical and prophylactic antibacterial treatments, point-of-use water treatment to improve the cleanliness of water and antimicrobial air filters to prevent bioaerosols accumulating in ventilation, heating, and air-conditioning systems.

  7. Ag nanoparticle-ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach.

    PubMed

    Li, Zhou; Tang, Haoying; Yuan, Weiwei; Song, Wei; Niu, Yongshan; Yan, Ling; Yu, Min; Dai, Ming; Feng, Siyu; Wang, Menghang; Liu, Tengjiao; Jiang, Peng; Fan, Yubo; Wang, Zhong Lin

    2014-04-11

    A new approach for fabrication of a long-term and recoverable antimicrobial nanostructure/textile hybrid without increasing the antimicrobial resistance is demonstrated. Using in situ synthesized Ag nanoparticles (NPs) anchored on ZnO nanowires (NWs) grown on textiles by a 'dip-in and light-irradiation' green chemical method, we obtained ZnONW@AgNP nanocomposites with small-size and uniform Ag NPs, which have shown superior performance for antibacterial applications. These new Ag/ZnO/textile antimicrobial composites can be used for wound dressings and medical textiles for topical and prophylactic antibacterial treatments, point-of-use water treatment to improve the cleanliness of water and antimicrobial air filters to prevent bioaerosols accumulating in ventilation, heating, and air-conditioning systems. PMID:24622377

  8. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  9. One step electrodeposition of dendritic gold nanostructures on β-lactoglobulin-functionalized reduced graphene oxide for glucose sensing.

    PubMed

    Du, Xin; Zhang, Zhenguo; Miao, Zhiying; Ma, Min; Zhang, Yanyan; Zhang, Cong; Wang, Weizhen; Han, Bingkai; Chen, Qiang

    2015-11-01

    Dendritic gold nanostructures (AuNDs) were successfully synthesized by one step electrodeposition on reduced graphene oxide (rGO) functionalized by a globular protein, β-lactoglobulin (BLG), for the first time. Owing to its sulfhydryl groups, water-soluble BLG-rGO provided a superb platform for the growth of AuNDs. Scanning electron microscopy, Raman spectroscopy and X-ray spectroscopy analysis were used to investigate the as prepared BLG-rGO-AuNDs nanocomposite. Electrocatalytic ability of the nanocomposite was evaluated by cyclic voltammetry and chronoamperometric method. In order to prove the superiority of BLG-rGO-AuNDs, we developed a novel glucose biosensor on the nanocomposite modified glassy carbon electrode (GCE) through a cross-linking method. The biosensor exhibited a remarkable sensitivity of 46.2 μA mM(-1) cm(-2), a wide linear range of 0.05-6 mM glucose, a low detection limit of 22.9 µM (S/N=3), and a rapid response time (within 6 s). The prepared biosensor also used to detect glucose in human serum and statistical analysis in the respect of reproducibility was done. PMID:26452896

  10. Label-free and sensitive aptasensor based on dendritic gold nanostructures on functionalized SBA-15 for determination of chloramphenicol.

    PubMed

    Bagheri Hashkavayi, Ayemeh; Raoof, Jahan Bakhsh; Azimi, Razieh; Ojani, Reza

    2016-04-01

    A highly sensitive and low-cost electrochemical aptasensor was developed for the determination of chloramphenicol (CAP). The system was based on a CAP-binding aptamer, a molecular recognition element, and 1,4-diazabicyclo[2.2.2]octane (DABCO)-supported mesoporous silica SBA-15 on the surface of a screen-printed graphite electrode for formation of dendritic gold nanostructures and improving the performance and conductivity of the biosensor. Hemin has been applied as an electrochemical indicator which interacted with the guanine bases of the aptamer. In the absence of CAP, hemin binds to the aptamer and produces a weak differential pulse voltammetric (DPV) signal. The presence of CAP led to stabilization of the folded aptamer, which generated an amplified DPV signal. The peak current of hemin increased linearly with the concentration of CAP. Under optimal conditions, two linear ranges were obtained from 0.03 to 0.15 μM and 0.15 to 7.0 μM, respectively, and the detection limit was 4.0 nM. The prepared biosensor has good selectivity against other non-target drugs. Thus, the sensor could provide a promising platform for the fabrication of aptasensors. The feasibility of using this aptasensor was demonstrated by determination of CAP in a human blood serum sample. PMID:26879648

  11. Induced growth of dendrite gold nanostructure by controlling self-assembly aggregation dynamics.

    PubMed

    Abdellatif, M H; Abdelrasoul, G N; Scarpellini, A; Marras, S; Diaspro, A

    2015-11-15

    Self-assembly of gold nanoparticles (AuNPs) is an important growth mode for fabricating functional materials. In this work we report a dendrite structure formed by slowing down the aggregation dynamics of AuNPs self-assembly. The obtained results show that the aggregation dynamics is dominated by the Reaction Limited Aggregation Model (RLA) more than the Diffusion Limited Aggregation Model (DLA). In which the repulsion due to electrostatic forces is dominant by the Van Der Walls attraction forces, and low sticking probability of nanoparticles. The aggregation dynamics of AuNPs can be slowed down if the water evaporation of the drop casted colloidal AuNPs on a quartz substrate is slowed. Slowing down the evaporation allows electrostatic repulsion forces to decrease gradually. At certain point, the attraction forces become higher than the electrostatic repulsion and hence cluster aggregation take place slowly. The slow aggregation dynamics allows the nanoparticles to sample all possible orientation in the sticking site, searching for the lowest energy configuration. The size distribution of the nanoparticles in liquid is confirmed using dynamic light scattering based on Stokes-Einstein equation for diffusion coefficient in water. X-ray and photoluminescence (PL) spectra of the sample after aggregation showed a shift which is related to the aggregation compared with non-aggregated colloidal nanoparticles in the solution. The study shows that dendrite self similar structure can be formed by slowing down the aggregation dynamics of nanoparticles as a result of minimizing the Helmholtz free surface energy of the system. PMID:26233557

  12. In Situ Fabrication of 3D Ag@ZnO Nanostructures for Microfluidic Surface-Enhanced Raman Scattering Systems

    PubMed Central

    2015-01-01

    In this work, we develop an in situ method to grow highly controllable, sensitive, three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrates via an optothermal effect within microfluidic devices. Implementing this approach, we fabricate SERS substrates composed of Ag@ZnO structures at prescribed locations inside microfluidic channels, sites within which current fabrication of SERS structures has been arduous. Conveniently, properties of the 3D Ag@ZnO nanostructures such as length, packing density, and coverage can also be adjusted by tuning laser irradiation parameters. After exploring the fabrication of the 3D nanostructures, we demonstrate a SERS enhancement factor of up to ∼2 × 106 and investigate the optical properties of the 3D Ag@ZnO structures through finite-difference time-domain simulations. To illustrate the potential value of our technique, low concentrations of biomolecules in the liquid state are detected. Moreover, an integrated cell-trapping function of the 3D Ag@ZnO structures records the surface chemical fingerprint of a living cell. Overall, our optothermal-effect-based fabrication technique offers an effective combination of microfluidics with SERS, resolving problems associated with the fabrication of SERS substrates in microfluidic channels. With its advantages in functionality, simplicity, and sensitivity, the microfluidic-SERS platform presented should be valuable in many biological, biochemical, and biomedical applications. PMID:25402207

  13. Effect of hyperthermic CO2-treated dendritic cell-derived exosomes on the human gastric cancer AGS cell line

    PubMed Central

    WANG, JINLIN; WANG, ZHIYONG; MO, YANXIA; ZENG, ZHAOHUI; WEI, PEI; LI, TAO

    2015-01-01

    The aim of the present study was to determine the antitumor effects of hyperthermic CO2 (HT-CO2)-treated dendritic cell (DC)-derived exosomes (Dex) on human gastric cancer AGS cells. Mouse-derived DCs were incubated in HT-CO2 at 43°C for 4 h. The exosomes in the cell culture supernatant were then isolated. Cell proliferation was analyzed using the cell counting kit-8 (CCK-8) assay. Cell apoptosis was observed using flow cytometry, Hoechst 33258 staining and the analysis of caspase-3 activity. In addition, the proliferation of tumor cells was evaluated in xenotransplant nude mice. HT-CO2 markedly inhibited cell proliferation, as assessed by the CCK-8 assay, and also induced apoptosis in a time-dependent manner, as demonstrated by Annexin V/propidium iodide flow cytometry, caspase-3 activity and morphological analysis using Hoechst fluorescent dye. It was also revealed that HT-CO2-treated Dex decreased the expression of heat shock protein 70 and inhibited tumor growth in nude mice. In conclusion, HT-CO2 exerted an efficacious immune-enhancing effect on DCs. These findings may provide a novel strategy for the elimination of free cancer cells during laparoscopic resection. However, the potential cellular mechanisms underlying this process require further investigation. PMID:26170979

  14. Sensitive Glycoprotein Sandwich Assays by the Synergistic Effect of In Situ Generation of Raman Probes and Plasmonic Coupling of Ag Core-Au Satellite Nanostructures.

    PubMed

    Bi, Xiaoshuang; Li, Xueyuan; Chen, Dong; Du, Xuezhong

    2016-05-01

    Sensitive surface-enhanced Raman scattering (SERS) assays of glycoproteins have been proposed using p-aminothiophenol (PATP)-embedded Ag core-Au satellite nanostructures modified with p-mercaptophenylboronic acid (PMBA) and the self-assembled monolayer of PMBA on a smooth gold-coated wafer. The apparent Raman probe PATP on the surfaces of the Ag cores underwent a photodimerization to generate 4,4'-dimercaptoazobenzene (DMAB) in situ upon excitation of laser, and the in situ generated DMAB acted as the actual Raman probe with considerably strong SERS signals, which was further enhanced by the plasmonic coupling of the Ag core-Au satellite nanostructures due to the synergistic effect. The sandwich assays of glycoproteins showed high sensitivity and excellent selectivity against nonglycoproteins. The Ag core-Au satellite SERS nanostructures can be used for highly sensitive SERS assays of other analytes. PMID:27064515

  15. Dendritic cells pulsed with Hsp70 and HBxAg induce specific antitumor immune responses in hepatitis B virus-associated hepatocellular carcinoma

    PubMed Central

    WANG, HUI; FENG, FANG; WANG, XIAO-PING; WANG, ROU-SHU; WU, YING; ZHU, MIN-GAO; ZHANG, HONG; ZHUANG, ZHI-XIANG

    2016-01-01

    Previous studies have drawn attention to dendritic cell (DC) vaccines; particularly the application of the tumor-associated antigen-targeted DC vaccine. The present study analyzed DCs derived from a normal individual and pulsed the cells with heat shock protein 70 peptide (Hsp70) and/or hepatitis B virus x antigen (HBxAg), a hepatocellular carcinoma (HCC)-associated antigen. It was then investigated whether this method of vaccination induced strong therapeutic antitumor immunity. The results revealed that the Hsp70/HBxAg complex-activated phenotype improves the functional maturation of DCs compared with using Hsp70 or HBxAg alone. Compared with either Hsp70 or HBxAg alone, matured DCs pulsed with the Hsp70/HBxAg complex stimulated a high level of autologous T-cell proliferation and induced HCC-specific cytotoxic T lymphocytes, which specifically killed HCC cells through a major histocompatibility complex class I mechanism. These results indicated that a vaccination therapy using DCs co-pulsed with the Hsp70/HBxAg complex is an effective strategy for immunotherapy and may offer a useful approach to protect against HCC. PMID:26647961

  16. Synthesis of rattle-type Ag@Al2O3 nanostructure by laser-induced heating of Ag and Al nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Rina; Soni, R. K.

    2015-10-01

    A simple and flexible method has been presented for the fabrication of rattle-type Ag@Al2O3 nanostructures in water and polyvinyl pyrrolidone polymer solution based on laser-induced heating of mixture of silver (Ag) and aluminium (Al) nanoparticles by 532-nm laser. Silver and aluminium nanoparticles were prepared by pulsed laser ablation in liquid using same laser wavelength. The transmission electron micrographs revealed morphological changes from sintered-/intermediate-type structure in water medium and jointed structure (heterostructures) in polymer solution to rattle-type structure with changing irradiation time. At longer irradiation time, the Kirkendall effect becomes dominant due to diffusion rate mismatch between the two metals at the interface and facilitates the formation of porous alumina shell over silver core. The morphology and chemical composition of the nanostructures were characterized by transmission electron micrograph, high-resolution transmission electron micrograph and energy-dispersive X-ray analysis. The melting response of alumina (Al2O3), aluminium and silver nanoparticles with 532-nm laser wavelength provides novel pathway for rattle-type formation.

  17. One-pot facile synthesis of branched Ag-ZnO heterojunction nanostructure as highly efficient photocatalytic catalyst

    NASA Astrophysics Data System (ADS)

    Huang, Qingli; Zhang, Qitao; Yuan, Saisai; Zhang, Yongcai; Zhang, Ming

    2015-10-01

    In this paper, the branched Ag-ZnO heterojunction nanostructure and the branched ZnO were synthesized successfully by a facile, green and one-pot hydrothermal method. Such branched heterojunction and the comparing branched pure ZnO were characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL) and UV-vis diffuse reflectance spectra (DRS). The photocatalytic degradation of RhB aqueous solution and acetaldehyde (CH3CHO) gas results both showed that the branched Ag-ZnO heterojunction possessed the enhanced photocatalytic properties in comparison to the branched ZnO and Ag-ZnO counterparts due to its special interface structures and fast separation of its photogenerated charge carriers. This method is simple, feasible and can provide an important clue for synthesis and application of other branched metal/semiconductor heterojunction nanostructures.

  18. Surface Plasmons and Optical Properties of TiO2/X(X = Au and Ag) Nanostructure Thin Films

    NASA Astrophysics Data System (ADS)

    Zolanvari, A.; Sadeghi, H.; Norouzi, R.; Ranjgar, A.

    2013-09-01

    TiO2/X(X = Au and Ag) nanolayers are fabricated by depositing TiO2 films using rf magnetron sputtering on thin quartz substrates embedded with Au and Ag nanoparticles. Enhancement of light absorption of the nanostructural layers is observed. These plasmonic and non-plasmonic materials are ordered in geometric arrangements with dimensions that are fractions of the wavelength of light. The light absorption enhancement of synthesized structure in comparison to TiO2 is originated from near-field enhancement caused by the plasmonic effect of metallic nanoparticles, which can be demonstrated by the optical absorption spectra. We show that plasmon modes can exist for the infrared region of the optical spectrum. Also, we analyze the optical properties of the metal-insulator films, in order to clarify the role of metal inclusions in the TiO2 dielectric matrix. Optical band gaps of the nanolayer films are calculated by using Tauc's relation, and the n values of optical band gaps with the variation composition are found from 1.80 to 3.69 eV. Band gap narrowing and absorption in the visible spectral region induced by the incorporation of TiO2/X(X=Au and Ag) nanolayers enable the design of nanostructured thin films to be achieved for photocatalysts and solar energy converters.

  19. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell.

    PubMed

    Kumar, P Naresh; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-04-21

    A novel photoanode architecture with plasmonic silver (Ag) nanostructures embedded in titania (TiO2), which served as the wide band gap semiconducting support and CdS quantum dots (QDs), as light absorbers, is presented. Ag nanostructures were prepared by a polyol method and are comprised of clumps of nanorods, 15-35 nm wide, interspersed with globular nanoparticles and they were characterized by a face centered cubic lattice. Optimization of Ag nanostructures was achieved on the basis of a superior power conversion efficiency (PCE) obtained for the cell with a Ag/TiO2/CdS electrode encompassing a mixed morphology of Ag nano-rods and particles, relative to analogous cells with either Ag nanoparticles or Ag nanorods. Interfacial charge transfer kinetics was unraveled by fluorescence quenching and lifetime studies. Ag nanostructures improve the light harvesting ability of the TiO2/CdS photoanode via (a) plasmonic and scattering effects, which induce both near- and far-field enhancements which translate to higher photocurrent densities and (b) charging effects, whereby, photoexcited electron transfer from TiO2 to Ag is facilitated by Fermi level equilibration. Owing to the spectacular ability of Ag nanostructures to increase light absorption, a greatly increased PCE of 4.27% and a maximum external quantum efficiency of 55% (at 440 nm) was achieved for the cell based on Ag/TiO2/CdS, greater by 42 and 66%, respectively, compared to the TiO2/CdS based cell. In addition, the liquid S(2-) electrolyte was replaced by a S(2-) gel containing fumed silica, and the redox potential, conductivity and p-type conduction of the two were deduced to be comparable. Although the gel based cells showed diminished solar cell performances compared to their liquid counterparts, nonetheless, the Ag/TiO2/CdS electrode continued to outperform the TiO2/CdS electrode. Our studies demonstrate that Ag nanostructures effectively capture a significant chunk of the electromagnetic spectrum and aid QD

  20. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-03-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area.

  1. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure.

    PubMed

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-01-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area. PMID:26965713

  2. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure

    PubMed Central

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-01-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area. PMID:26965713

  3. Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes

    SciTech Connect

    Hu Yingying; Huang Xintang; Wang Kai; Liu Jinping; Jiang Jian; Ding Ruimin; Ji Xiaoxu; Li Xin

    2010-03-15

    Three-dimensional (3D) dendrite-shaped CuO hollow micro/nanostructures have been prepared via a Kirkendall-effect-based approach for the first time and have been demonstrated as a high-performance anode material for lithium-ion batteries. The as-prepared hollow structures were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and electrochemical properties. A CuO hollow structure composed of nanocubes outside and a dense film inside was selected as a typical example of the optimized design; it exhibited significantly improved cyclability at a current rate of 0.5 C, with the average Coulombic efficiency of {approx}97.0% and 57.9% retention of the discharge capacity of the second cycle after 50 cycles. The correlation between the structure features of the hollow CuO and their electrochemical behavior was discussed in detail. Smaller size of primary structure and larger internal space of electrode materials are crucial to better electrochemical performance. This work represents that Kirkendall effect is a promising method to fabricate excellent hollow electrode materials for Li-ion batteries. - Graphical abstract: SEM images of 3D dendrite-shaped CuO hollow micro/nanostructures prepared via a Kirkendall-effect-based approach have been shown. The as-prepared CuO electrode exhibited significantly improved cyclability for Li-ion batteries.

  4. Drop shaped zinc oxide quantum dots and their self-assembly into dendritic nanostructures: Liquid assisted pulsed laser ablation and characterizations

    NASA Astrophysics Data System (ADS)

    Singh, Subhash C.; Gopal, Ram

    2012-01-01

    Complex nanostructures and nano-assemblies have exhibited their potential application in the fabrication of future molecular machines and molecular devices. Liquid phase pulsed laser ablation is an easy, versatile, environmental friendly and rapidly growing method for the synthesis of nanostructured materials. Nanosecond pulsed laser ablation of zinc rod placed on the bottom of glass vessel containing methanol is used to produce colloidal solution of drop shaped zinc oxide quantum dots and their self-assembly into various dendritic nanostructures. UV-vis absorption, diffuse reflectance, transmission electron microscopy, and photoluminescence spectroscopy techniques are used for the optical, microscopic, structural and defect diagnosis of obtained colloidal quantum dots and their nano-assemblies. The average length, width and aspect ratio of drop shaped zinc oxide quantum dots are 6 ± 2.4 nm, 3.5 ± 1.4 nm and 1.69 ± 0.4 nm, respectively. Careful investigation of assemblies shows that most of them have linear growth, i.e. growth in longitudinal direction is higher as compared to the transverse direction with three types of classifications as (i) linear axis symmetrical branching, (ii) linear axis asymmetrical branching and (iii) curvilinear axis asymmetrical branching. Photoluminescence spectrum has emission peaks in UV, violet, blue and green spectral region corresponding to the excitonic and various defect related emissions.

  5. Surface plasmon resonance in nanostructured Ag incorporated ZnS films

    SciTech Connect

    Chalana, S. R.; Mahadevan Pillai, V. P.; Ganesan, V.

    2015-10-15

    Silver incorporated zinc sulfide thin films are prepared by RF magnetron sputtering technique and the influence of silver incorporation on the structural, optical and luminescence properties is analyzed using techniques like grazing incidence X-Ray diffraction (GIXRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), micro-Raman spectroscopy, UV-Vis spectroscopy and laser photoluminescence spectroscopy. XRD analysis presents hexagonal wurtzite structure for the films. A reduction of crystallinity of the films is observed due to Ag incorporation. The Raman spectral analysis confirms the reduction of crystallinity and increase of strain due to the Ag incorporation. AFM analysis reveals a rough surface morphology for the undoped film and Ag incorporation makes the films uniform, dense and smooth. A blue shift of band gap energy with increase in Ag incorporation is observed due to quantum confinement effect. An absorption band (450-650 nm region) due to surface plasmon resonance of the Ag clusters present in the ZnS matrix is observed for the samples with higher Ag incorporation. The complex dielectric constant, loss factor and distribution of volume and surface energy loss of the ZnS thin films are calculated. Laser photoluminescence measurements gives an intense bluish green emission from the ZnS films and a quenching of the PL emission is observed which can be due to the metal plasmonic absorption and non-radiative energy transfer due to Ag incorporation.

  6. Ion-modulated nonlinear electronic transport in carbon nanotube bundle/RbAg{sub 4}I{sub 5} thin film composite nanostructures

    SciTech Connect

    Sun, Jia-Lin; Zhang, Wei; Wei, Jinquan; Gu, Bingfu

    2014-01-28

    We have explored the ion-modulated electronic transport properties of mixed ionic-electronic conductor (MIEC) composite nanostructures made of superionic conductor RbAg{sub 4}I{sub 5} films and carbon nanotube (CNT) bundle spiderwebs. Our experimental and theoretical studies indicate that the formation of ion-electron bound states (IEBSs) leads to strong ion-electron interference effect and interesting electronic transport of CNT, such as nonlinear current-voltage (I–V) characteristics and novel temperature dependence of the current. With increasing temperature, the hybrid nanostructures show rich phases with different dependence of current on temperature, which is related to the structural phase transition of RbAg{sub 4}I{sub 5} and the transition of dissociation of IEBSs. The ion-modulation of the electric conductivity in such MIEC composite nanostructures with great tunability has been used to design new ionic-electronic composite nano-devices with function like field effect transistor.

  7. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures.

    PubMed

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-03-01

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements. PMID:24457831

  8. Investigation of surface-plasmon coupled red light emitting InGaN/GaN multi-quantum well with Ag nanostructures coated on GaN surface

    SciTech Connect

    Li, Yi; Liu, Bin E-mail: rzhang@nju.edu.cn; Zhang, Rong E-mail: rzhang@nju.edu.cn; Xie, Zili; Zhuang, Zhe; Dai, JiangPing; Tao, Tao; Zhi, Ting; Zhang, Guogang; Chen, Peng; Ren, Fangfang; Zhao, Hong; Zheng, Youdou

    2015-04-21

    Surface-plasmon (SP) coupled red light emitting InGaN/GaN multiple quantum well (MQW) structure is fabricated and investigated. The centre wavelength of 5-period InGaN/GaN MQW structure is about 620 nm. The intensity of photoluminescence (PL) for InGaN QW with naked Ag nano-structures (NS) is only slightly increased due to the oxidation of Ag NS as compared to that for the InGaN QW. However, InGaN QW with Ag NS/SiO{sub 2} structure can evidently enhance the emission efficiency due to the elimination of surface oxide layer of Ag NS. With increasing the laser excitation power, the PL intensity is enhanced by 25%–53% as compared to that for the SiO{sub 2} coating InGaN QW. The steady-state electric field distribution obtained by the three-dimensional finite-difference time-domain method is different for both structures. The proportion of the field distributed in the Ag NS for the GaN/Ag NS/SiO{sub 2} structure is smaller as compared to that for the GaN/naked Ag NS structure. As a result, the energy loss of localized SP modes for the GaN/naked Ag NS structure will be larger due to the absorption of Ag layer.

  9. Modulation of localized surface plasmon resonance for an array of Ag nanostructures layered with nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shang, Zhenzhen; Huang, Haishen; Wan, Yuan; Deng, Luogen

    2016-08-01

    Sensitivity of the localized surface plasmon resonance (LSPR) for an array of Ag (silver) nanostructures layered with nematic liquid crystals (NLC) is investigated. Calculations are made by using finite-difference time-domain (FDTD) method under different geometrical and environmental parameters. Results show that the LSPR wavelength in this array can be controlled and tuned to infrared wavelength range by the rotation of the NLC optical-axis. The rotation of the array and the modifications to height of the NLC layer, the size and periods of the array can affect the sensitivity of the LSPR. The sensitivity is higher when the optical-axis is in xoz plane, than that for the optical-axis in xoy plane. An improved sensitivity has been obtained in the simulation.

  10. Plasmonic enhanced optical characteristics of Ag nanostructured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sarkar, Arijit; Gogurla, Narendar; Shivakiran Bhaktha, B. N.; Ray, Samit K.

    2016-04-01

    We have demonstrated the enhanced photoluminescence and photoconducting characteristics of plasmonic Ag–ZnO films due to the light scattering effect from Ag nanoislands. Ag nanoislands have been prepared on ITO-coated glass substrates by thermal evaporation followed by annealing. Plasmonic Ag–ZnO films have been fabricated by depositing ZnO over Ag nanoislands by sol–gel process. The band-edge emission of ZnO is enhanced for 170 nm sized Ag nanoislands in ZnO as compared to pure ZnO. The defect emission is also found to be quenched simultaneously for plasmonic Ag–ZnO films. The enhancement and quenching of photoluminescence at different wavelengths for Ag–ZnO films can be well understood from the localized surface plasmon resonance of Ag nanoislands. The Ag–ZnO M–S–M photoconductor device showed a tenfold increment in photocurrent and faster photoresponse as compared to the control ZnO device. The enhancement in photoresponse of the device is due to the increased photon absorption in ZnO films via scattering of the incident illumination.

  11. Understanding nanostructures in thermoelectric materials: an electron microscopy study of AgPb{sub 18}SbSe{sub 20} crystals.

    SciTech Connect

    Lioutas, C. B.; Frangis, N.; Todorov, I.; Chung, D. Y.; Kanatzidis, M. G.; Materials Science Division; Aristotle Univ. Thessaloniki; Northwestern Univ.

    2010-01-01

    The characterization and understanding of the presence of nanostructuring in bulk thermoelectric materials requires real space atomic level information. We report electron diffraction and high-resolution transmission electron microscopy studies of crystals of the system AgPb{sub 18}SbSe{sub 20} (=18PbSe + AgSbSe{sub 2}) which reveal that this system is nanostructured rather than a solid solution. Nanocrystals of varying sizes are found, endotaxially grown in the matrix of PbSe (phase A), and consist of two phases, a cubic one (phase B) and a tetragonal one (phase C). Well-defined coherent interfaces between the phases in the same nanocrystals are observed. On the basis of the results of combined electron crystallography techniques, we propose reasonable structural models for the phases B and C. There are significant differences in the nanostructuring chemistry between AgPb{sub 18}SbSe{sub 20} and the telluride analog AgPb{sub 18}SbTe{sub 20} (LAST-18).

  12. Trimetallic nanostructures: the case of AgPd/Pt multiply twinned nanoparticles

    PubMed Central

    Khanal, Subarna; Bhattarai, Nabraj; Velázquez-Salazar, J. Jesús; Bahena, Daniel; Soldano, German; Ponce, Arturo; Mariscal, Marcelo M.; Mejía-Rosales, Sergio; José-Yacamán, Miguel

    2013-01-01

    We report the synthesis, structural characterization, and atomistic simulations of AgPd/Pt trimetallic (TM) nanoparticles. Two types of structure were synthesized using a relatively facile chemical method: multiply twinned core-shell, and hollow particles. The nanoparticles were small in size, with an average diameter of 11 nm and a narrow distribution, and their characterization by aberration corrected scanning transmission electron microscopy allowed us to probe the structure of the particles at atomistic level. In some nanoparticles, the formation of a hollow structure was also observed, that facilitates the alloying of Ag and Pt in the shell region and the segregation of Ag atoms in the surface, affecting the catalytic activity and stability. We also investigated the growth mechanism of the nanoparticles using grand canonical Monte Carlo simulations, and we have found that Pt regions grow at overpotentials on the AgPd nanoalloys, forming 3D islands at the early stages of the deposition process. We found very good agreement between the simulated structures and those observed experimentally. PMID:24165796

  13. Silicon nanostructures-induced photoelectrochemical solar water splitting for energy applications

    NASA Astrophysics Data System (ADS)

    Dadwal, U.; Ranjan, Neha; Singh, R.

    2016-05-01

    We study the photoelectrochemical (PEC) solar water splitting assisted with synthesized nanostructures. Si nanowires decorated with silver dendrite nanostructures have been synthesized using metal assisted wet chemical etching of (100) Si wafer. Etching has been carried out in an aqueous solution consisting of 5M HF and 0.02M AgNO3. Investigations showed that such type of semiconductor nanostructures act as efficient working electrodes for the splitting of normal water in PEC method. An enhancement in the photon-to-current conversion efficiency and solar-to-hydrogen evolution was observed for obtaining a practical source of clean and renewable fuel.

  14. Synthesis and characterization of TiO2 and Ag/TiO2 nanostructure

    NASA Astrophysics Data System (ADS)

    Gahlot, Swati; Thakur, Amit Kumar; Kulshrestha, Vaibhav; Shahi, V. K.

    2013-02-01

    Single phase anatase TiO2 nanoparticles were prepared using Titanium tertachloride (TiCl4) as precursor through an inexpensive method. Well dispersed nanocomposites of silver at TiO2 were synthesized successfully by photochemical route. Both TiO2 and Ag/TiO2 were characterized using X-Ray Diffraction (XRD) and transmission electron microscopy (TEM). The particle size of TiO2 is found to be ˜ 11 nm and ˜ 22 nm for Ag/TiO2, by XRD and confirmed by TEM. TEM micrographs also show the single phase crystal of TiO2 and confirm the deposition of silver among TiO2.

  15. Synthesis of dendritic silver nanostructures supported by graphene nanosheets and its application for highly sensitive detection of diazepam.

    PubMed

    Majidi, Mir Reza; Ghaderi, Seyran; Asadpour-Zeynali, Karim; Dastangoo, Hossein

    2015-12-01

    In this paper, preparation, characterization and application of a new sensor for fast and simple determination of trace amount of diazepam were described. This sensor is based on Ag nanodendrimers (AgNDs) supported by graphene nanosheets modified glassy carbon electrode (GNs/GCE). The AgNDs were directly electrodeposited on the surface of electrode via potentiostatic method without using any templates, surfactants, or stabilizers. The structure of the synthesized AgNDs/GNs was characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS) techniques. The nanodendrimers with tree-like and hierarchical structures have a fascinating structure for fabrication of effective electrocatalysts. The experimental results confirmed that AgNDs/GNs/GC electrode has good electrocatalytic activity toward the reduction of diazepam. A low detection limit of 8.56×10(-8)M and a wide linear detection range of 1.0×10(-7) to 1.0×10(-6)M and 1.0×10(-6) to 20×10(-6)M were achieved via differential pulse voltammetry (DPV). The proposed electrode displayed excellent repeatability and long-term stability and it was satisfactorily used for determination of diazepam in real samples (commercially tablet, injection and human blood plasma) with high recovery. PMID:26354262

  16. Photochromic and Field Emission Properties of Ag-TCNQ Micro/Nanostructures

    NASA Astrophysics Data System (ADS)

    Ye, Chunnuan; Cao, Guanying; Zheng, Kaibo; Chen, Guorong

    2011-02-01

    To study the opto/electrical properties of metal organic complex Ag-TCNQ mico/nano structure, they were grown on Si, glass and silver plate substrates by a solution reaction and a vapor-transport reaction, respectively. They were firstly characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. Then Raman observation of single microwire and field emission display of nanowires array were studied experimently.

  17. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures

    NASA Astrophysics Data System (ADS)

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-02-01

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb

  18. Dynamics of electron excitations in densely packed plasmonic Ag/Na3AlF6 nanostructures under pulsed laser action

    NASA Astrophysics Data System (ADS)

    Buganov, O. V.; Zamkovets, A. D.; Ponyavina, A. N.; Tikhomirov, S. A.; Baran, L. V.

    2011-11-01

    Differential transient absorption spectra have been studied for planar densely packed Ag/Na3AlF6 nanostructures under ultrashort laser pulse excitation. The nanostructures were fabricated by sequential thermal evaporation of cryolite (Na3AlF6) and silver in vacuo onto glass and quartz substrates. A nonmonotonic variation in relaxation times of induced changes in a surface plasmon resonance band was observed with an increase in the metal surface density that resulted in nanoparticle size growth and structural modification of the densely packed layer. The tendency of the relaxation times to vary nonmonotonically is explained by both features of intrinsic size effects and electron-tunneling processes in plasmonic densely packed nanostructures of various topologies.

  19. Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy

    PubMed Central

    Wang, Fei; Liu, Pei; Sun, Lin; Li, Cuncheng; Petrenko, Valery A.; Liu, Aihua

    2014-01-01

    Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G, and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm2. The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor. PMID:25348392

  20. Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Pei; Sun, Lin; Li, Cuncheng; Petrenko, Valery A.; Liu, Aihua

    2014-10-01

    Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G, and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm2. The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor.

  1. Synthesis of dendritic silver nanostructures supported by graphene nanosheets and its application for highly sensitive detection of diazepam

    PubMed Central

    Majidi, Mir Reza; Ghaderi, Seyran; Asadpour-Zeynali, Karim; Dastangoo, Hossein

    2015-01-01

    In this paper, preparation, characterization and application of a new sensor for fast and simple determination of trace amount of diazepam were described. This sensor is based on Ag nanodendrimers (AgNDs) supported by graphene nanosheets modified glassy carbon electrode (GNs/GCE). The AgNDs were directly electrodeposited on the surface of electrode via potentiostatic method without using any templates, surfactants, or stabilizers. The structure of the synthesized AgNDs/GNs was characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS) techniques. The nanodendrimers with tree-like and hierarchical structures have a fascinating structure for fabrication of effective electrocatalysts. The experimental results confirmed that AgNDs/GNs/GC electrode has good electrocatalytic activity toward the reduction of diazepam. A low detection limit of 8.56 × 10− 8 M and a wide linear detection range of 1.0 × 10− 7 to 1.0 × 10− 6 M and 1.0 × 10− 6 to 20 × 10− 6 M were achieved via differential pulse voltammetry (DPV). The proposed electrode displayed excellent repeatability and long-term stability and it was satisfactorily used for determination of diazepam in real samples (commercially tablet, injection and human blood plasma) with high recovery. PMID:26354262

  2. Novel Galvanic Nanostructures of Ag and Pd for Efficient Laser Desorption/Ionization of Low Molecular Weight Compounds

    NASA Astrophysics Data System (ADS)

    Silina, Yuliya E.; Meier, Florian; Nebolsin, Valeriy A.; Koch, Marcus; Volmer, Dietrich A.

    2014-05-01

    A simple approach for synthesis of palladium and silver nanostructures with readily adjustable morphologies was developed using galvanic electrochemical deposition, for application to surface-assisted laser desorption/ionization (SALDI) of small biological molecules. A range of fatty acids, triglycerides, carbohydrates, and antibiotics were investigated to assess the performance of the new materials. Intense analyte cations were generated from the galvanic surfaces upon UV laser irradiation such as potassium adducts for a film thickness <100 nm (originating from impurities of the electrolyte solution) and Pd and Ag cluster ions for films with a thickness >120 nm. Possible laser desorption/ionization mechanisms of these galvanic structures are discussed. The films exhibited self-organizing abilities and adjustable morphologies by changing electrochemical parameters. They did not require any stabilizing agents and were inexpensive and very easy to produce. SALDI analysis showed that the materials were stable under ambient conditions and analytical results with excellent measurement reproducibility and detection sensitivity similar to MALDI were obtained. Finally, we applied the galvanic surfaces to fast screening of natural oils with minimum sample preparation.

  3. Biomimetic Method To Assemble Nanostructured Ag@ZnO on Cotton Fabrics: Application as Self-Cleaning Flexible Materials with Visible-Light Photocatalysis and Antibacterial Activities.

    PubMed

    Manna, Joydeb; Goswami, Srishti; Shilpa, Nagaraju; Sahu, Nivedita; Rana, Rohit K

    2015-04-22

    A bioinspired mineralization route to prepare self-cleaning cotton fabrics by functionalizing their surface with nanostructured Ag@ZnO is demonstrated herein. In a polyamine-mediated mineralization process, while the nucleation, organization and coating of ZnO is done directly from water-soluble zinc salts under mild conditions, the entrapped polyamine in the ZnO matrix acts as reducing agent to generate Ag(0) from Ag(I) at room temperature. The Ag@ZnO coated cotton fabrics are characterized by FESEM, HRTEM, XRD, and UV-vis-DRS to confirm the formation and coating of Ag@ZnO particles on individual threads of the fabric. The presence of Ag nanoparticles not only enables the ZnO-coated fabrics exhibiting improved photocatalytic property but also allows for visible-light-driven activities. Furthermore, it exhibits efficient antimicrobial activity against both Gram-positive and Gram-negative bacteria. Therefore, besides these multifunctional properties, the polyamine-mediated bioinspired approach is expected to pave way for functionalization of flexible substrates under mild conditions as desirable for the development and fabrication of smart, lightweight, and wearable devices for various niche applications. PMID:25823715

  4. Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Hu, Yingying; Huang, Xintang; Wang, Kai; Liu, Jinping; Jiang, Jian; Ding, Ruimin; Ji, Xiaoxu; Li, Xin

    2010-03-01

    Three-dimensional (3D) dendrite-shaped CuO hollow micro/nanostructures have been prepared via a Kirkendall-effect-based approach for the first time and have been demonstrated as a high-performance anode material for lithium-ion batteries. The as-prepared hollow structures were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and electrochemical properties. A CuO hollow structure composed of nanocubes outside and a dense film inside was selected as a typical example of the optimized design; it exhibited significantly improved cyclability at a current rate of 0.5 C, with the average Coulombic efficiency of ˜97.0% and 57.9% retention of the discharge capacity of the second cycle after 50 cycles. The correlation between the structure features of the hollow CuO and their electrochemical behavior was discussed in detail. Smaller size of primary structure and larger internal space of electrode materials are crucial to better electrochemical performance. This work represents that Kirkendall effect is a promising method to fabricate excellent hollow electrode materials for Li-ion batteries.

  5. Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity.

    PubMed

    Chi, Yue; Yuan, Qing; Li, Yanjuan; Zhao, Liang; Li, Nan; Li, Xiaotian; Yan, Wenfu

    2013-11-15

    Major efforts in modern material chemistry are devoted to the design and fabrication of nanostructured systems with tunable physical-chemical properties for advanced catalytic applications. Here, a novel Fe3O4@SiO2@TiO2-Ag nanocomposite has been synthesized and characterized by a series of techniques including SEM, TEM, XRD, XPS as well as magnetization measurement and subsequently tested for the photocatalytic activities. The well-designed nanocomposite exhibits significantly superior activity to that of the commercial Degussa P25 thanks to the suppression of electron-hole pairs from recombination by Ag nanoparticles, and can be easily recycled by applying an external magnetic field while maintaining the catalytic activity without significant decrease even after running 10 times. The unique nanostructure makes Fe3O4@SiO2@TiO2-Ag a highly efficient, recoverable, stable, and cost-effective photocatalytic system offering broad opportunities in the field of catalyst synthesis and application. PMID:24076477

  6. Plasmonic coupling of SiO{sub 2}-Ag 'post-cap' nanostructures and silver film for surface enhanced Raman scattering

    SciTech Connect

    Wu, Hsin-Yu; Cunningham, Brian T.

    2011-04-11

    We demonstrate a surface enhanced Raman scattering (SERS) substrate consisting of SiO{sub 2}-Ag''post-cap'' nanostructures with an underlying silver film fabricated by the glancing angle deposition technique. Electromagnetic simulations predict that SERS enhancement is strongly polarization-dependent, consistent with experimental measurements. Optimized coupling between Ag cap nanoparticles and the underlying silver film can be achieved by controlling the thickness of SiO{sub 2} post sandwiched between them to significantly enhance local electric-field intensity and to increase the density of electromagnetic hot spots. A maximum SERS enhancement factor of 2.38x10{sup 9} within the hot spot region is demonstrated, providing sufficient sensitivity for many important applications.

  7. Fabrication of flower-like silver nanostructure on the Al substrate for surface enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Zheng, Hairong; Yan, Xiaoqing; Sun, Yu; Zhang, Zhenglong

    2012-01-01

    Surface-enhanced fluorescence (SEF) substrates consisting of flower-like nanostructure of electromagnetically coupled silver dendrites on Al surface were manufactured by modified galvanic displacement process between Ag ion and Al at room temperature. Substrate enhancement efficiency, which was evaluated from SEF intensities of the adsorbed Rhodamine 6 G(Rh6G), was found to increase rapidly with reaction time. The observation highlights the importance of strong coupling effects between nanobranches in SEF. The variation of SEF efficiency can be qualitatively explained with local surface plasmon resonance model of coupled silver nanostructures.

  8. High-Performance Fully Nanostructured Photodetector with Single-Crystalline CdS Nanotubes as Active Layer and Very Long Ag Nanowires as Transparent Electrodes.

    PubMed

    An, Qinwei; Meng, Xianquan; Sun, Pan

    2015-10-21

    Long and single-crystalline CdS nanotubes (NTs) have been prepared via a physical evaporation process. A metal-semiconductor-metal full-nanostructured photodetector with CdS NTs as active layer and Ag nanowires (NWs) of low resistivity and high transmissivity as electrodes has been fabricated and characterized. The CdS NTs-based photodetectors exhibit high performance, such as lowest dark currents (0.19 nA) and high photoresponse ratio (Ilight/Idark ≈ 4016) (among CdS nanostructure network photodetectors and NTs netwok photodetectors reported so far) and very low operation voltages (0.5 V). The photoconduction mechanism, including the formation of a Schottky barrier at the interface of Ag NW and CdS NTs and the effect of oxygen adsorption process on the Schottky barrier has also been provided in detail based on the studies of CdS NTs photodetector in air and vacuum. Furthermore, CdS NTs photodetector exhibits an enhanced photosensitivity as compared with CdS NWs photodetector. The enhancement in performance is dependent on the larger surface area of NTs adsorbing more oxygen in air and the microcavity structure of NTs with higher light absorption efficiency and external quantum efficiency. It is believed that CdS NTs can potentially be useful in the designs of 1D CdS-based optoelectronic devices and solar cells. PMID:26457660

  9. Synthesis of Ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4-nitrophenol degradation

    NASA Astrophysics Data System (ADS)

    Divband, B.; Khatamian, M.; Eslamian, G. R. Kazemi; Darbandi, M.

    2013-11-01

    In this paper, Ag/ZnO photocatalysts with different Ag loadings were prepared by photo reduction, chemical reduction and polyacrylamide-gel methods. The Ag/ZnO photocatalysts were characterized by XRD, SEM, TEM, EDS and DRUV-vis methods. The results of the photocatalytic degradation of 4-NP in aqueous suspensions showed that silver ions doping greatly improved the photocatalytic efficiency of ZnO nanocrystallites. The enhancement of photocatalytic activity is due to the fact that the modification of ZnO with an appropriate amount of Ag can increase the separation efficiency of photogenerated electrons and holes in ZnO, and the improvement of photo stability of ZnO is attributed to a considerable decrease of the surface defect sites of ZnO after the Ag loading. The chemisorptions of molecular oxygen and the chemisorption of atomic oxygen on Ag in the Ag/ZnO photocatalysts were observed. It was found that the metallic Ag in the Ag/ZnO photocatalysts does play a new role of O2 chemisorption sites except for electron acceptor, by which chemisorbed molecular oxygen reacts with photogenerated electrons to form active oxygen species, and thus facilitates the trapping of photogenerated electrons and further improves the photocatalytic activity of the Ag/ZnO photocatalysts. Also the method of preparation is regarded as important factors for determining photocatalysis. The best photocatalytic performance was exhibited for Ag/ZnO prepared by polyacrylamide gel method in comparison with chemical reduction and photo reduction method and the optimum Ag content was approximately 0.5%.

  10. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au-Ag-Au nanostructure for lead(II) ion detection

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.; Yaacob, Mohd Hanif; Mahdi, Mohd Adzir; Zan, Mohd Saiful Dzulkefly; Shaari, Sahbudin

    2016-01-01

    We demonstrate the enhancement of surface plasmon resonance (SPR) technique by implementing a multi-metallic layers of Au-Ag-Au nanostructure in the chitosan-graphene oxide (CS-GO) SPR sensor for lead(II) ion detection. The performance of the sensor is analyzed via SPR measurements, from which the sensitivity, signal-to-noise ratio and repeatability are determined. The nanostructure layers are characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We showed that the proposed structure has increased the shift in the SPR angle up to 3.5° within the range of 0.1-1 ppm due to the enhanced evanescent field at the sensing layer-analyte interface. This sensor also exhibits great repeatability which benefits from the stable multi-metallic nanostructure. The SNR value of 0.92 for 5 ppm lead(II) ion solution and reasonable linearity range up to that concentration shows that the tri-metallic CS-GO SPR sensor gives a good response towards the lead(II) ion solution. The CS-GO SPR sensor is also sensitive to at least a 10-5 change in the refractive index. The results prove that our proposed tri-metallic CS-GO SPR sensor demonstrates a strong performance and reliability for lead(II) ion detection in accordance with the standardized lead safety level for wastewater.

  11. Citrate-Induced Nanocubes: A Re-Examination of the Role of Citrate as a Shape-Directing Capping Agent for Ag-Based Nanostructures.

    PubMed

    Hajfathalian, Maryam; Gilroy, Kyle D; Hughes, Robert A; Neretina, Svetlana

    2016-07-01

    Seed-mediated syntheses utilizing facet-selective surface passivation provide the necessary chemical controls to direct noble metal nanostructure formation to a predetermined geometry. The foremost protocol for the synthesis of (111)-faceted Ag octahedra involves the reduction of metal ions onto pre-existing seeds in the presence of citrate and ascorbic acid. It is generally accepted that the capping of (111) facets with citrate dictates the shape while ascorbic acid acts solely as the reducing agent. Herein, a citrate-based synthesis is demonstrated in which the presence or absence of ascorbic acid is the shape-determining factor. Reactions are carried out in which Ag(+) ions are reduced onto substrate-immobilized Ag, Au, Pd, and Pt seeds. Syntheses lacking ascorbic acid, in which citrate acts as both the capping and the reducing agent, result in a robust nanocube growth mode able to withstand wide variations in the concentration of reactants, reaction rates, seed material, seed orientation and faceting, pH, and substrate material. If, however, ascorbic acid is included in these syntheses, then the growth mode reverts to one that advances the octahedral geometry. The implication of these results is that citrate, or one of its oxidation products, selectively caps (100) facets, but where this capability is compromised by ascorbic acid. PMID:27174815

  12. Laser-induced transformation of supramolecular complexes: approach to controlled formation of hybrid multi-yolk-shell Au-Ag@a-C:H nanostructures.

    PubMed

    Manshina, A A; Grachova, E V; Povolotskiy, A V; Povolotckaia, A V; Petrov, Y V; Koshevoy, I O; Makarova, A A; Vyalikh, D V; Tunik, S P

    2015-01-01

    In the present work an efficient approach of the controlled formation of hybrid Au-Ag-C nanostructures based on laser-induced transformation of organometallic supramolecular cluster compound is suggested. Herein the one-step process of the laser-induced synthesis of hybrid multi-yolk-shell Au-Ag@a-C:H nanoparticles which are bimetallic gold-silver subnanoclusters dispersed in nanospheres of amorphous hydrogenated a-C:H carbon is reported in details. It has been demonstrated that variation of the experimental parameters such as type of the organometallic precursor, solvent, deposition geometry and duration of laser irradiation allows directed control of nanoparticles' dimension and morphology. The mechanism of Au-Ag@a-C:H nanoparticles formation is suggested: the photo-excitation of the precursor molecule through metal-to-ligand charge transfer followed by rupture of metallophilic bonds, transformation of the cluster core including red-ox intramolecular reaction and aggregation of heterometallic species that results in the hybrid metal/carbon nanoparticles with multi-yolk-shell architecture formation. It has been found that the nanoparticles obtained can be efficiently used for the Surface-Enhanced Raman Spectroscopy label-free detection of human serum albumin in low concentration solution. PMID:26153347

  13. Electron transport in carbon nanotube/RbAg{sub 4}I{sub 5} film composite nanostructures modulated by optical field

    SciTech Connect

    Zhang, Guowei; Zhu, Jia-Lin; Wei, Jinquan; Zhang, Wei E-mail: jlsun@tsinghua.edu.cn; Sun, Jia-Lin E-mail: jlsun@tsinghua.edu.cn

    2014-06-16

    We explore the transport properties of mixed ionic-electronic conductors made of carbon nanotube/RbAg{sub 4}I{sub 5} film composite nanostructures in the presence of optical fields. The formation of ion-electron bound states (IEBSs) due to Coulomb interactions results in significant conductance decrease. The wavelength-dependent and power-dependent dynamic responses show that the effect of photo-induced dissociation of IEBSs is pronounced in the visible region and negligible in near-infrared region. Our results lead to a deeper understanding of the impact of ion-electron interactions (IEIs) on transport and are expected to open up a way for designing new-type photodetectors based on IEIs.

  14. Silicon dendritic web material

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.

    1982-01-01

    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.

  15. Fabrication of bioactive, antibacterial TiO2 nanotube surfaces, coated with magnetron sputtered Ag nanostructures for dental applications.

    PubMed

    Uhm, Soo-Hyuk; Lee, Sang-Bae; Song, Doo-Hoon; Kwon, Jae-Sung; Han, Jeon-Geon; Kim, Kyoung-Nam

    2014-10-01

    We investigated whether a silver coating on an anodic oxidized titania (TiO2) nanotube surface would be useful for preventing infections in dental implants. We used a magnetron sputtering process to deposit Ag nanoparticles onto a TiO2 surface. We studied different sputtering input power densities and maintained other parameters constant. We used scanning electron microscopy, X-ray diffraction, and contact angle measurements to characterize the coated surfaces. Staphylococcus aureus was used to evaluate antibacterial activity. The X-ray diffraction analysis showed peaks that corresponded to metallic Ag, Ti, O, and biocompatible anatase phase TiO2 on the examined surfaces. The contact angles of the Ag nanoparticle-loaded surfaces were significantly lower at 2.5 W/cm2 input power under pulsed direct current mode compared to commercial, untreated Ti surfaces. In vitro antibacterial analysis indicated that a significantly reduced number of S. aureus were detected on an Ag nanoparticle-loaded TiO2 nanotube surface compared to control untreated surfaces. No cytotoxicity was noted, except in the group treated with 5 W/cm2 input power density, which was the highest input of power density we tested for the magnetron sputtering process. Overall, we concluded that it was feasible to create antibacterial Ag nanoparticle-loaded titanium nanotube surfaces with magnetron sputtering. PMID:25942879

  16. Laser-induced transformation of supramolecular complexes: approach to controlled formation of hybrid multi-yolk-shell Au-Ag@a-C:H nanostructures

    PubMed Central

    Manshina, A. A.; Grachova, E. V.; Povolotskiy, A. V.; Povolotckaia, A. V.; Petrov, Y. V.; Koshevoy, I. O.; Makarova, A. A.; Vyalikh, D. V.; Tunik, S. P.

    2015-01-01

    In the present work an efficient approach of the controlled formation of hybrid Au–Ag–C nanostructures based on laser-induced transformation of organometallic supramolecular cluster compound is suggested. Herein the one-step process of the laser-induced synthesis of hybrid multi-yolk-shell Au-Ag@a-C:H nanoparticles which are bimetallic gold-silver subnanoclusters dispersed in nanospheres of amorphous hydrogenated a-C:H carbon is reported in details. It has been demonstrated that variation of the experimental parameters such as type of the organometallic precursor, solvent, deposition geometry and duration of laser irradiation allows directed control of nanoparticles’ dimension and morphology. The mechanism of Au-Ag@a-C:H nanoparticles formation is suggested: the photo-excitation of the precursor molecule through metal-to-ligand charge transfer followed by rupture of metallophilic bonds, transformation of the cluster core including red-ox intramolecular reaction and aggregation of heterometallic species that results in the hybrid metal/carbon nanoparticles with multi-yolk-shell architecture formation. It has been found that the nanoparticles obtained can be efficiently used for the Surface-Enhanced Raman Spectroscopy label-free detection of human serum albumin in low concentration solution. PMID:26153347

  17. Fast and Selective Preconcentration of Europium from Wastewater and Coal Soil by Graphene Oxide/Silane@Fe3O4 Dendritic Nanostructure.

    PubMed

    Patra, Santanu; Roy, Ekta; Madhuri, Rashmi; Sharma, Prashant K

    2015-05-19

    In this study, nanocomposite of graphene oxide and silane modified magnetic nanoparticles (silane@Fe3O4) were synthesized in a form of dendritic structure. For this, silane@Fe3O4 nanoparticle gets sandwiched between two layers of graphene oxide by chemical synthesis route. The synthesized dendritic structure was used as a monomer for synthesis of europium ion imprinted polymer. The synthesis of imprinted polymer was contemplated onto the surface of the vinyl group modified silica fiber by activated generated free radical atom-transfer radical polymerization, that is, AGET-ATRP technique. The synthesized dendritic monomer was characterized by XRD, FT-IR, VSM, FE-SEM, and TEM analyses. The imprinted polymer modified silica fiber was first validated in the aqueous and blood samples for successful extraction and detection of europium ion with limit of detection = 0.050 pg mL(-1) (signal/noise = 3). The imprinted polymer modified silica fiber was also used for preconcentration and separation of europium metal ion from various soil samples of coal mine areas. However, the same silica fiber was also used for wastewater treatment and shows 100% performance for europium removal. The findings herein suggested that dendritic nanocomposite could be potentially used as a highly effective material for the enrichment and preconcentration of europium or other trivalent lanthanides/actinides in nuclear waste management. PMID:25895010

  18. Amperometric biosensor of SnO2 thin film modified by Pd, In and Ag nanostructure synthesized by CSP method

    NASA Astrophysics Data System (ADS)

    Hassan, Marwa Abdul Muhsien; Hateef, Areej Adnan; Majeed, Aseel Mustafa Abdul; Al-Jabiry, Ali Jasim Mohammed; Jameel, Sabah; Hussian, Haidar Abdul Razaq Abdul

    2013-10-01

    Palladium, Indium and Silver-doped SnO2 thin film was deposited by chemical spray pyrolysis on ITO and porous silicon substrates to be a fast MgSO4·7H2O amperometric biosensor. The prepared SnO2 films were doped by dipping in palladium chloride PdCl2, indium chloride, InCl3 and silver nitrides AgNO3 dissolved in ethanol C2H5OH. The structural and optical properties of the prepared films were studied. The sensitivity behaviors of SnO2, SnO2: Pd, SnO2: In and SnO2: Ag based on the amperometric biosensor to MgSO4·7H2O salts were investigated at room temperature with different doping.

  19. CTAB-Influenced Electrochemical Dissolution of Silver Dendrites.

    PubMed

    O'Regan, Colm; Zhu, Xi; Zhong, Jun; Anand, Utkarsh; Lu, Jingyu; Su, Haibin; Mirsaidov, Utkur

    2016-04-19

    Dendrite formation on the electrodes of a rechargeable battery during the charge-discharge cycle limits its capacity and application due to short-circuits and potential ignition. However, understanding of the underlying dendrite growth and dissolution mechanisms is limited. Here, the electrochemical growth and dissolution of silver dendrites on platinum electrodes immersed in an aqueous silver nitrate (AgNO3) electrolyte solution was investigated using in situ liquid-cell transmission electron microscopy (TEM). The dissolution of Ag dendrites in an AgNO3 solution with added cetyltrimethylammonium bromide (CTAB) surfactant was compared to the dissolution of Ag dendrites in a pure aqueous AgNO3 solution. Significantly, when CTAB was added, dendrite dissolution proceeded in a step-by-step manner, resulting in nanoparticle formation and transient microgrowth stages due to Ostwald ripening. This resulted in complete dissolution of dendrites and "cleaning" of the cell of any silver metal. This is critical for practical battery applications because "dead" lithium is known to cause short circuits and high-discharge rates. In contrast to this, in a pure aqueous AgNO3 solution, without surfactant, dendrites dissolved incompletely back into solution, leaving behind minute traces of disconnected silver particles. Finally, a mechanism for the CTAB-influenced dissolution of silver dendrites was proposed based on electrical field dependent binding energy of CTA(+) to silver. PMID:27017834

  20. Bioinspired multifunctional hetero-hierarchical micro/nanostructure tetragonal array with self-cleaning, anticorrosion, and concentrators for the SERS detection.

    PubMed

    Zhang, Qiao-Xin; Chen, Yu-Xue; Guo, Zheng; Liu, Hong-Lin; Wang, Da-Peng; Huang, Xing-Jiu

    2013-11-13

    Heterohierarchical micro/nanostructure tetragonal array consisted of engineering materials of microprotrusion-like Cu and secondary nanostructured dendrite Ag have been fabricated via a primary cell-induced deposition and a facile galvanic displacement reaction combined with photolithography technique on Cu foil. Confined by the circle microwell tetragonal array of the photoresist template, regular microprotrusion-like Cu with the tunable size of diameter can be easily deposited on the surface of Cu foil. Then, the secondary dendritic Ag nanostructures in situ grow on the surface of microprotrusion via a galvanic displacement reaction, leading to the formation of heterohierarchical micro/nanostructure tetragonal array, which is similar to the surface microstructure of the lotus leaf. Inspired by this novel surface structure of imitating lotus leaf, its wettability has been systematically investigated. The results indicate that the fabricated heterohierarchical micro/nanostructure regular array after the surface fluoration presents a remarkable superhydrophobic performance. Initiated from its superhydrophobicity, an excellent self-cleaning property has also been demonstrated. In addition, the durability of the superhydrophobic surfaces is examined in the wide pH range of corrosive liquids. Notably, the fabricated superhydrophobic surface can be potentially used as concentrators, which presents a great perspective in the field of analysis through employing the SERS detection as an example. PMID:24080041

  1. Investigation of nanostructured Pd-Ag/n-ZnO thin film based Schottky junction for methane sensing

    NASA Astrophysics Data System (ADS)

    Roy, S.; Das, S.; Sarkar, C. K.

    2016-07-01

    Undoped nanocrystalline n-type ZnO thin film was deposited by chemical deposition technique on a thermally oxidized p-Si (~5 Ω cm resistivity and <100> orientation) substrate. Formation of stable zinc oxide thin film was confirmed by two-dimensional X-Ray Diffraction (XRD) and EDX analysis. The average crystallite size of the ZnO sample was evaluated as ~50 nm. The surface was characterized by Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) that confirm the formation of nanocrystalline (grain size ~50 nm) ZnO thin film with surface roughness of ~100 nm. Good conversion of precursor into ZnO thin film in the chemical deposition method was evident by Fourier Transform Infrared Spectroscopy (FTIR). A small peak at 479 cm-1was observed in the FTIR spectrum confirming the formation of quartzite structure of the ZnO. The band gap (~3.44 eV) of the material was calculated from the optical absorption spectroscopy. To prepare Pd-Ag/n-ZnO Schottky junction, Pd-Ag contacts were taken by electron beam evaporation method. I-V characteristics of the junction were studied at different temperatures in inert and reducing ambient (N2 and N2 + CH4) with turn on voltage of around 0.2 V. The parameters like ideality factor ( η), saturation current ( I 0), series resistance ( Rs), and barrier height ( Φ BO) of the junction were calculated in the temperature range 50-200 °C in N2 as well as in 1 % CH4 + N2 ambient. It was observed that the ideality factor decreases in the temperature range 50-200 °C ( η = 12.34 at 50 °C and η = 1.52 at 200 °C) in N2 ambient and η = 1.18 in N2 +CH4 ambient at 200 °C. Schottky Barrier Height ( Φ BO) of the Pd-Ag/n-ZnO junction was found to increase with temperature. A close observation of Pd-Ag/n-ZnO junction in the presence of methane was performed to appreciate its application as methane sensor. The sensing mechanism was illustrated by a simplified energy band diagram.

  2. Investigation of nanostructured Pd-Ag/n-ZnO thin film based Schottky junction for methane sensing

    NASA Astrophysics Data System (ADS)

    Roy, S.; Das, S.; Sarkar, C. K.

    2016-07-01

    Undoped nanocrystalline n-type ZnO thin film was deposited by chemical deposition technique on a thermally oxidized p-Si (~5 Ω cm resistivity and <100> orientation) substrate. Formation of stable zinc oxide thin film was confirmed by two-dimensional X-Ray Diffraction (XRD) and EDX analysis. The average crystallite size of the ZnO sample was evaluated as ~50 nm. The surface was characterized by Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) that confirm the formation of nanocrystalline (grain size ~50 nm) ZnO thin film with surface roughness of ~100 nm. Good conversion of precursor into ZnO thin film in the chemical deposition method was evident by Fourier Transform Infrared Spectroscopy (FTIR). A small peak at 479 cm-1was observed in the FTIR spectrum confirming the formation of quartzite structure of the ZnO. The band gap (~3.44 eV) of the material was calculated from the optical absorption spectroscopy. To prepare Pd-Ag/n-ZnO Schottky junction, Pd-Ag contacts were taken by electron beam evaporation method. I-V characteristics of the junction were studied at different temperatures in inert and reducing ambient (N2 and N2 + CH4) with turn on voltage of around 0.2 V. The parameters like ideality factor (η), saturation current (I 0), series resistance (Rs), and barrier height (Φ BO) of the junction were calculated in the temperature range 50-200 °C in N2 as well as in 1 % CH4 + N2 ambient. It was observed that the ideality factor decreases in the temperature range 50-200 °C (η = 12.34 at 50 °C and η = 1.52 at 200 °C) in N2 ambient and η = 1.18 in N2 +CH4 ambient at 200 °C. Schottky Barrier Height (Φ BO) of the Pd-Ag/n-ZnO junction was found to increase with temperature. A close observation of Pd-Ag/n-ZnO junction in the presence of methane was performed to appreciate its application as methane sensor. The sensing mechanism was illustrated by a simplified energy band diagram.

  3. A novel dendritic cell-targeted lentiviral vector, encoding Ag85A-ESAT6 fusion gene of Mycobacterium tuberculosis, could elicit potent cell-mediated immune responses in mice.

    PubMed

    Shakouri, Mehdi; Moazzeni, Seyed Mohammad; Ghanei, Mostafa; Arashkia, Arash; Etemadzadeh, Mohammad Hossein; Azadmanesh, Kayhan

    2016-07-01

    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), leading to high mortality worldwide. It is well-established that cellular immunity plays a critical role to control Mtb infection. Dendritic Cells (DCs) are potent antigen presenting cells, which play an important role to prime cell-mediated immune responses. In vivo targeting of DCs has been shown to induce both strong cellular immunity and protection against tumor challenges. The aim of the present study was not only to assess the immunizing potential of a novel DC-targeted recombinant lentivirus expressing fusion antigen Ag85A-ESAT6 of Mtb, but also to compare it with a recombinant lentivirus with broad cellular tropism expressing the same antigen in mice. The findings demonstrated that our novel recombinant DC-targeted lentivector was able to successfully transduce and express the fusion antigen Ag85A-E6 in vitro and in vivo. Moreover, a single footpad injection of targeted lentivectors could elicit strong T-helper 1 (Th1) immunity against the above mentioned antigen, as indicated by the specific high-level production of IFN-γ and IL-2 using spleen lymphocytes and lymphoproliferative responses. Despite of these promising results, more attempts are required to elucidate the protective and therapeutic efficacy of this approach in future. PMID:27267270

  4. Effect of preparation procedure and nanostructuring on the thermoelectric properties of the lead telluride-based material system AgPbmBiTe2+m (BLST-m)

    NASA Astrophysics Data System (ADS)

    Falkenbach, Oliver; Schmitz, Andreas; Hartung, David; Dankwort, Torben; Koch, Guenter; Kienle, Lorenz; Klar, Peter J.; Mueller, Eckhard; Schlecht, Sabine

    2016-06-01

    We report on the preparation and thermoelectric properties of the quaternary system AgPbmBiTe2+m (Bismuth-Lead-Silver-Tellurium, BLST-m) that were nanostructured by mechanical alloying. Nanopowders of various compositions were compacted by three different methods: cold pressing/annealing, hot pressing, and short term sintering. The products are compared with respect to microstructure and sample density. The thermoelectric properties were measured: thermal conductivity in the temperature range from 300 K to 800 K and electrical conductivity and Seebeck coefficient between 100 K and 800 K. The compacting method and the composition had a substantial impact on carrier concentration and mobility as well as on the thermoelectric parameters. Room temperature Hall measurements yielded carrier concentrations in the order of 1019 cm-3, slightly increasing with increasing content of the additive silver bismuth telluride to the lead telluride base. ZT values close to the ones of bulk samples were achieved. X-ray diffraction and transmission electron microscopy (TEM) showed macroscopically homogeneous distributions of the constituting elements inside the nanopowders ensembles, indicating a solid solution. However, high resolution transmission electron microscopy (HRTEM) revealed disorder on the nanoscale inside individual nanopowders grains.

  5. Radio frequency sputtered Al:ZnO-Ag transparent conductor: A plasmonic nanostructure with enhanced optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Sytchkova, Anna; Luisa Grilli, Maria; Rinaldi, Antonio; Vedraine, Sylvain; Torchio, Philippe; Piegari, Angela; Flory, François

    2013-09-01

    Optimization of metal-based transparent conductors (MTCs) made of silver and aluminium-doped zinc oxide (AZO) prepared by radio-frequency (r.f.) sputtering has been carried out through tuning of metal film properties. The influence of morphology and related plasmonic features of AZO/Ag/AZO MTCs on their optical and electrical performance is demonstrated and it is shown that the nominal thickness of the silver layer itself is not the most crucial value determining the MTC performance. The MTC performance has been optimized by a search of deposition conditions ensuring fractal-type metal layer formation up to a certain coalescence state that enables full gaining from silver optical properties, including its plasmonic features. For 150 W- and 200 W-deposited silver, MTCs with maximum transmittance as high as 83.6% have been obtained. These coatings have a figure of merit as good as 0.01 Ω-1 and a remarkably wide spectral transparency region: transmittance higher than 70% down to 1200 nm for 200W-samples. Modelling of the MTC coatings is proposed additionally, based on variable angle spectroscopic ellipsometric measurements, which takes into account the variation of the optical properties of silver when deposited in various conditions and embedded in a semiconductor stack.

  6. Special fractal growth of dendrite copper using a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Zheng, Yan; Zhang, Zhejuan; Guo, Pingsheng; He, Pingang; Sun, Zhuo

    2011-08-01

    Special fractal dendrite Cu nanostructures have been synthesized through a simple hydrothermal method, and the effects of the volume ratio between glycerol and water and the concentration of H 3PO 3 on the morphologies of dendrite Cu have been studied in detail. The Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used to characterize these Cu products. The results indicate that rhombic diamond and different morphologies of fractal dendrite were prepared because of the accumulation of Cu nuclei based on the diffusion-limited aggregation (DLA) and the nucleation-limited aggregation (NLA) model. Fortunately, symmetrical leaf-like dendrite Cu nanostructures different from Cu dendrites reported before have been obtained. Additionally, an explanation for the growth of fractal dendrite Cu has been discussed carefully.

  7. Self-assembled synthesis of SEF-active silver dendrites by galvanic displacement on copper substrate

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Zheng, Hairong

    2013-05-01

    In this paper, an effective substrate for surface-enhanced fluorescence, which consists of dendritic silver nanostructure on copper surface, was fabricated by modified galvanic displacement reaction at room temperature. It was found that the fluorescence efficiency of Rh6G probe molecules on the substrate depended on the period of the nanostructure growth. And it increased with the enrichment of fine-branches of the dendritic silver nanostructure. The experimental results indicated that the fine nanostructure with dendritic distribution can produce better fluorescence enhancement with the help of proper control over the reaction condition. It is important for studying the mechanism and the potential applications of enhanced fluorescence effect.

  8. Dendrite inhibitor

    DOEpatents

    Miller, William E.

    1989-01-01

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid.

  9. Dendrite inhibitor

    DOEpatents

    Miller, W.E.

    1988-06-07

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid. 2 figs.

  10. Special fractal growth of dendrite copper using a hydrothermal method

    SciTech Connect

    Zheng Yan; Zhang Zhejuan; Guo Pingsheng; He Pingang; Sun Zhuo

    2011-08-15

    Special fractal dendrite Cu nanostructures have been synthesized through a simple hydrothermal method, and the effects of the volume ratio between glycerol and water and the concentration of H{sub 3}PO{sub 3} on the morphologies of dendrite Cu have been studied in detail. The Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used to characterize these Cu products. The results indicate that rhombic diamond and different morphologies of fractal dendrite were prepared because of the accumulation of Cu nuclei based on the diffusion-limited aggregation (DLA) and the nucleation-limited aggregation (NLA) model. Fortunately, symmetrical leaf-like dendrite Cu nanostructures different from Cu dendrites reported before have been obtained. Additionally, an explanation for the growth of fractal dendrite Cu has been discussed carefully. - Graphical abstract: Uniform dendritic Cu are grown through controlling V{sub glycerol/water} in range of 0.6-1.2 and the concentration of H{sub 3}PO{sub 3} in range of 0.06-0.3 M. The rhombic cluster Cu are obtained by decreasing the amount of glycerol. Highlights: > Volume ratio of glycerol/water and concentration of H{sub 3}PO{sub 3} were varied, respectively. > Morphologies of dendritic Cu have some changes. > Leaf-like and rhombic cluster Cu were obtained. > The concentration changes affect the aggregation of Cu crystallites. > The aggregation and crystallographic orientation cause leaf-like Cu nanostructures.

  11. Dendrite Model

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dr. Donald Gilles, the Discipline Scientist for Materials Science in NASA's Microgravity Materials Science and Applications Department, demonstrates to Carl Dohrman a model of dendrites, the branch-like structures found in many metals and alloys. Dohrman was recently selected by the American Society for Metals International as their 1999 ASM International Foundation National Merit Scholar. The University of Illinois at Urbana-Champaign freshman recently toured NASA's materials science facilities at the Marshall Space Flight Center.

  12. Sintering and ripening resistant noble metal nanostructures

    DOEpatents

    van Swol, Frank B; Song, Yujiang; Shelnutt, John A; Miller, James E; Challa, Sivakumar R

    2013-09-24

    Durable porous metal nanostructures comprising thin metal nanosheets that are metastable under some conditions that commonly produce rapid reduction in surface area due to sintering and/or Ostwald ripening. The invention further comprises the method for making such durable porous metal nanostructures. Durable, high-surface area nanostructures result from the formation of persistent durable holes or pores in metal nanosheets formed from dendritic nanosheets.

  13. Ag-Ag2S Hybrid Nanoprisms: Structural versus Plasmonic Evolution.

    PubMed

    Shahjamali, Mohammad M; Zhou, Yong; Zaraee, Negin; Xue, Can; Wu, Jinsong; Large, Nicolas; McGuirk, C Michael; Boey, Freddy; Dravid, Vinayak; Cui, Zhifeng; Schatz, George C; Mirkin, Chad A

    2016-05-24

    Recently, Ag-Ag2S hybrid nanostructures have attracted a great deal of attention due to their enhanced chemical and thermal stability, in addition to their morphology- and composition-dependent tunable local surface plasmon resonances. Although Ag-Ag2S nanostructures can be synthesized via sulfidation of as-prepared anisotropic Ag nanoparticles, this process is poorly understood, often leading to materials with anomalous compositions, sizes, and shapes and, consequently, optical properties. In this work, we use theory and experiment to investigate the structural and plasmonic evolution of Ag-Ag2S nanoprisms during the sulfidation of Ag precursors. The previously observed red-shifted extinction of the Ag-Ag2S hybrid nanoprism as sulfidation occurs contradicts theoretical predictions, indicating that the reaction does not just occur at the prism tips as previously speculated. Our experiments show that sulfidation can induce either blue or red shifts in the extinction of the dipole plasmon mode, depending on reaction conditions. By elucidating the correlation with the final structure and morphology of the synthesized Ag-Ag2S nanoprisms, we find that, depending on the reaction conditions, sulfidation occurs on the prism tips and/or the (111) surfaces, leading to a core(Ag)-anisotropic shell(Ag2S) prism nanostructure. Additionally, we demonstrate that the direction of the shift in the dipole plasmon is a function of the relative amounts of Ag2S at the prism tips and Ag2S shell thickness around the prism. PMID:27148792

  14. Oxidation of ethyl acetate by a high performance nanostructure (Ni, Mn)-Ag/ZSM-5 bimetallic catalysts and development of an artificial neural networks predictive modeling.

    PubMed

    Jodaei, Azadeh; Salari, Darush; Niaei, Ali; Khatamian, Masumeh; Hosseini, Seyed Ali

    2011-01-01

    The catalytic oxidation of ethyl acetate in low concentration was investigated over mono-metallic Ag/ZSM5 and bimetallic (Ni, Mn)-Ag/ZSM-5 catalysts. Catalytic studies were carried out in a catalytic fixed bed reactor under atmospheric pressure. The sequence of catalytic activity was as follows: Ni-Ag-ZSM-5 > Mn-Ag-ZSM-5 > Ag-ZSM-5 > H-ZSM-5. The catalysts were characterized by ICP-AES, X-ray diffraction (XRD), low temperature nitrogen adsorption, NH(3)-TPD, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and diffuse reflectance UV-vis spectra (UV-vis). An artificial neural networks (ANN) model was developed to predict the performance of catalytic oxidation process over bimetallic Ni-Ag/ZSM-5 catalyst based on experimental data. For this purpose the standard feed forward back propagation algorithm was employed to train the model by using laboratory experimental data. A good agreement was resulted between experimental results and those obtained by ANN. Following order for variables effects on conversion yield of ethyl acetate was predicted by ANN model: reaction temperature (32.99%) > Ag loading (27.38%) > initial ethyl acetate concentration (23.58%) > Ni loading (16.05%). PMID:21104495

  15. Interfacial effect of the nanostructured Ag2S/Co3O4 and its catalytic mechanism for the dye photodegradation under visible light

    NASA Astrophysics Data System (ADS)

    Qiu, X. P.; Yu, J. S.; Xu, H. M.; Chen, W. X.; Hu, W.; Bai, H. Y.; Chen, G. L.

    2016-01-01

    In this study, the synthesis of a highly hybrid, heterogeneously structured nanocomposite catalyst consisting of Ag2S nanoparticles dotted on a Co3O4 microrod array is reported. The average diameter and length of the Co3O4 microrods was optimized to be approximately 300 nm and 20 μm, respectively, and the average size of the Ag2S nanoparticles was approximately 10 nm. When the Ag2S nanoparticles were deposited on the Co3O4 microrods, the characteristic optical band gap energy of Co3O4 decreased from 1.26 eV to 1.23 eV, and the intensity of the absorbance peak at 650 nm increased significantly. The catalytic activity of nanosized Ag2S/Co3O4 for the photodegradation of organic contaminants with potassium hydrogen persulfate (PMS) or ozone (O3) was evaluated using basic green 1 dye (BG1) as a model pollutant. In the presence of the hybrid Ag2S/Co3O4 catalyst developed in this study, the complete photodegradation of the BG1 solution was achieved in 20 min and 6 min when PMS and O3 were used, respectively. In addition, the experimental results suggest that the catalytic photodegradation of BG1 using the Ag2S/Co3O4/PMS and Ag2S/Co3O4/O3 processes was dominated by the rad OH and rad O2- radicals, respectively.

  16. 1.5 V battery driven reduced graphene oxide-silver nanostructure coated carbon foam (rGO-Ag-CF) for the purification of drinking water.

    PubMed

    Kumar, Surender; Ghosh, Somnath; Munichandraiah, N; Vasan, H N

    2013-06-14

    A porous carbon foam (CF) electrode modified with a reduced graphene oxide-Ag (rGO-Ag) nanocomposite has been fabricated to purify water. It can perform as an antibacterial device by killing pathogenic microbes with the aid of a 1.5 V battery, with very little power consumption. The device is recycled ten times with good performance for long term usage. It is shown that the device may be implemented as a fast water purifier to deactivate the pathogens in drinking water. PMID:23670243

  17. Directed spatial organization of zinc oxide nanostructures

    DOEpatents

    Hsu, Julia; Liu, Jun

    2009-02-17

    A method for controllably forming zinc oxide nanostructures on a surface via an organic template, which is formed using a stamp prepared from pre-defined relief structures, inking the stamp with a solution comprising self-assembled monolayer (SAM) molecules, contacting the stamp to the surface, such as Ag sputtered on Si, and immersing the surface with the patterned SAM molecules with a zinc-containing solution with pH control to form zinc oxide nanostructures on the bare Ag surface.

  18. Highly Sensitive Detection of Melamine Using a One-Step Sample Treatment Combined with a Portable Ag Nanostructure Array SERS Sensor.

    PubMed

    Cheng, Jie; Su, Xiao-Ou; Yao, Yue; Han, Caiqin; Wang, Shi; Zhao, Yiping

    2016-01-01

    There is an urgent need for rapid and reliable methods able to detect melamine in animal feed. In this study, a quick, simple, and sensitive method for the determination of melamine content in animal feed was developed using surface-enhanced Raman spectroscopy on fabricated Ag nanorod (AgNR) array substrates with a one-step sample extraction procedure. The AgNR array substrates washed by HNO3 solvent (10-7 M) and methanol and showed the good stability within 6 months. The Raman shift at △ν = 682 cm-1 was used as the characteristic melamine peak in the calculations. Sufficient linearity was obtained in the 2-200 μg·g-1 range (R2 = 0.926). The limits of detection and quantification were 0.9 and 2 μg·g-1, respectively. The recovery rates were 89.7-93.3%, with coefficients of variation below 2.02%. The method showed good accuracy compared with the tradition GC-MS analysis. This new protocol only need 2 min to fininsh the detection which could be developed for rapid onsite screening of melamine contamination in quality control and market surveillance applications. PMID:27120183

  19. Highly Sensitive Detection of Melamine Using a One-Step Sample Treatment Combined with a Portable Ag Nanostructure Array SERS Sensor

    PubMed Central

    Cheng, Jie; Su, Xiao-Ou; Yao, Yue; Han, Caiqin; Wang, Shi; Zhao, Yiping

    2016-01-01

    There is an urgent need for rapid and reliable methods able to detect melamine in animal feed. In this study, a quick, simple, and sensitive method for the determination of melamine content in animal feed was developed using surface-enhanced Raman spectroscopy on fabricated Ag nanorod (AgNR) array substrates with a one-step sample extraction procedure. The AgNR array substrates washed by HNO3 solvent (10−7 M) and methanol and showed the good stability within 6 months. The Raman shift at △ν = 682 cm−1 was used as the characteristic melamine peak in the calculations. Sufficient linearity was obtained in the 2–200 μg·g−1 range (R2 = 0.926). The limits of detection and quantification were 0.9 and 2 μg·g−1, respectively. The recovery rates were 89.7–93.3%, with coefficients of variation below 2.02%. The method showed good accuracy compared with the tradition GC-MS analysis. This new protocol only need 2 min to fininsh the detection which could be developed for rapid onsite screening of melamine contamination in quality control and market surveillance applications. PMID:27120183

  20. Isothermal Dendritic Growth Experiment - PVA Dendrites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  1. Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology.

    PubMed

    Gong, Ji-Lai; Jiang, Jian-Hui; Liang, Yi; Shen, Guo-Li; Yu, Ru-Qin

    2006-06-15

    A novel simplified method for synthesis of surface-enhanced Raman scattering tags has been reported. This synthesis method is based on reverse micelle technique using Igepal CO-520 as a surfactant and the mixed solution of silver nitrate and rhodamine dyes with isothiocyanate group as water pool followed by hydrazine hydrate reduction and TEOS polymerization leading to the formation of silica layer surrounding the silver core. Compared to the method reported in literature, the proposed methodology eliminates the necessity of vitrophilic pretreatment and makes it possible to complete all different processes including the preparation of silver nanoparticles, the conjugation of dye molecules and the formation of silica shell in the microreactor. The nanoparticle-based surface-enhanced Raman tags obtained are composed of silver core conjugated with rhodamine dyes and an encasing silica shell. Both the dyes themselves and the Ag/SiO2 core-shell nanoparticles without the encapsulation of dyes exhibit no Raman signals. However, the Ag/SiO2 core-shell nanoparticles exhibit strong Raman signals when encapsulated with these dyes. This is due to the appearance of fluorescence quenching and surface-enhanced Raman scattering effect resulting from the conjugation of dyes and silver core. The Raman tags were characterized using transmission electron microscopy (TEM), UV-visible absorption spectrometry, and Raman spectrometry. PMID:16457836

  2. Versatile Micropatterning of Plasmonic Nanostructures by Visible Light Induced Electroless Silver Plating on Gold Nanoseeds.

    PubMed

    Yoshikawa, Hiroyuki; Hironou, Asami; Shen, ZhengJun; Tamiya, Eiichi

    2016-09-14

    A versatile fabrication technique for plasmonic silver (Ag) nanostructures that uses visible light exposure for micropatterning and plasmon resonance tuning is presented. The surface of a glass substrate modified with gold (Au) nanoseeds by a thermal dewetting process was used as a Ag plating platform. When a solution containing silver nitrate and sodium citrate was dropped on the Au nanoseeds under visible light exposure, the plasmon-mediated reduction of Ag ions was induced on the Au nanoseeds to form Ag nanostructures. The plasmon resonance spectra of Ag nanostructures were examined by an absorption spectral measurement and a finite-difference time-domain (FDTD) simulation. Some examples of Ag nanostructure patterning were demonstrated by means of light exposure through a photomask, direct writing with a focused laser beam, and the interference between two laser beams. Surface enhanced Raman spectroscopy (SERS) of 4-aminothiophenol (4-ATP) was conducted with fabricated Ag nanostructures. PMID:27564976

  3. Hierarchical Pd-Sn Alloy Nanosheet Dendrites: An Economical and Highly Active Catalyst for Ethanol Electrooxidation

    PubMed Central

    Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren

    2013-01-01

    Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures. PMID:23383368

  4. Free dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dendritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical 'dendrite problem'. Great strides have been taken in recent years in both the theoretical understanding of dendritic growth and its experimental status. The development of this field will be sketched, showing that transport theory and interfacial thermodynamics (capillarity theory) were sufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of 'maximum velocity' was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip. The overall development of cast microstructures, such as equiaxed zone formation, rapidly solidified microstructures, etc., also seems to contain additional non-deterministic features which lie outside the current theories discussed here.

  5. Follicular dendritic cells in health and disease

    PubMed Central

    El Shikh, Mohey Eldin M.; Pitzalis, Costantino

    2012-01-01

    Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses. PMID:23049531

  6. Follicular dendritic cells in health and disease.

    PubMed

    El Shikh, Mohey Eldin M; Pitzalis, Costantino

    2012-01-01

    Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses. PMID:23049531

  7. Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Li, Tao; Chen, Qianqian; Gao, Jiabing; Fan, Bingbing; Li, Jian; Li, Xinjian; Zhang, Rui; Sun, Jing; Gao, Lian

    2012-08-01

    The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in situ. WO3 nanocrystals with various shapes (i.e., nanoplates, nanorods, and nanoparticles) were used as the substrates to synthesize Ag/AgCl@WO3 photocatalysts, and the effects of the WO3 contents and photoreduction times on their visible-light-driven photocatalytic performance were investigated. The techniques of TEM, SEM, XPS, EDS, XRD, N2 adsorption-desorption and UV-vis DR spectra were used to characterize the compositions, phases and microstructures of the samples. The RhB aqueous solutions were used as the model system to estimate the photocatalytic performance of the as-obtained Ag/AgCl@WO3 nanostructures under visible light (λ >= 420 nm) and sunlight. The results indicated that the hierarchical Ag/AgCl@plate-WO3 photocatalyst has a higher photodegradation rate than Ag/AgCl, AgCl, AgCl@WO3 and TiO2 (P25). The contents and morphologies of the WO3 substrates in the Ag/AgCl@plate-WO3 photocatalysts have important effects on their photocatalytic performance. The related mechanisms for the enhancement in visible-light-driven photodegradation of RhB molecules were analyzed.The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in

  8. Visible-light-driven photocatalysts Ag/AgCl dispersed on mesoporous Al2O3 with enhanced photocatalytic performance.

    PubMed

    Feng, Zhouzhou; Yu, Jiajie; Sun, Dongping; Wang, Tianhe

    2016-10-15

    In this paper, Ag/AgCl and Ag/AgCl/Al2O3 photocatalysts were synthesized via a precipitation reaction between NaCl and CH3COOAg or Ag(NH3)2NO3, wherein Ag/AgCl was immobilized into mesoporous Al2O3 medium. The Ag/AgCl-based nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectra, and so on. The photocatalysts displayed excellent photocatalytic activity for the degradations of methyl orange (MO) and methylene blue (MB) pollutants under visible light irradiation. The Ag/AgCl(CH3COOAg)/Al2O3 sample exhibited the best photocatalytic performance, degrading 99% MO after 9min of irradiation, which was 1.1 times, 1.22 times and 1.65 times higher than that of Ag/AgCl(Ag(NH3)2NO3)/Al2O3, Ag/AgCl(CH3COOAg) and Ag/AgCl(Ag(NH3)2NO3) photocatalyst, respectively. Meanwhile, Ag/AgCl(CH3COOAg)/Al2O3 also showed excellent capability of MB degradation. Compared to the data reported for Ag/AgCl/TiO2, the Ag/AgCl/Al2O3 prepared in this work exhibited a good performance for the degradation of methyl orange (MO). The results suggest that the dispersion of Ag/AgCl on mesoporous Al2O3 strongly affected their photocatalytic activities. O2(-), OH radicals and Cl(0) atoms are main active species during photocatalysis. PMID:27442145

  9. Microwave-assisted green synthesis of silver nanostructures.

    PubMed

    Nadagouda, Mallikarjuna N; Speth, Thomas F; Varma, Rajender S

    2011-07-19

    Over the past 25 years, microwave (MW) chemistry has moved from a laboratory curiosity to a well-established synthetic technique used in many academic and industrial laboratories around the world. Although the overwhelming number of MW-assisted applications today are still performed on a laboratory (mL) scale, we expect that this enabling technology may be used on a larger, perhaps even production, scale in conjunction with radio frequency or conventional heating. Microwave chemistry is based on two main principles, the dipolar mechanism and the electrical conductor mechanism. The dipolar mechanism occurs when, under a very high frequency electric field, a polar molecule attempts to follow the field in the same alignment. When this happens, the molecules release enough heat to drive the reaction forward. In the second mechanism, the irradiated sample is an electrical conductor and the charge carriers, ions and electrons, move through the material under the influence of the electric field and lead to polarization within the sample. These induced currents and any electrical resistance will heat the sample. This Account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Researchers have successfully demonstrated the application of this method in the preparation of silver (Ag), gold (Au), platinum (Pt), and gold-palladium (Au-Pd) nanostructures. MW heating conditions allow not only for the preparation of spherical nanoparticles within a few minutes but also for the formation of single crystalline polygonal plates, sheets, rods, wires, tubes, and dendrites. The morphologies and sizes of the nanostructures can be controlled by changing various experimental parameters, such as the concentration of metallic salt precursors, the surfactant polymers, the chain length of the surfactant polymers

  10. Superhydrophilic nanostructure

    DOEpatents

    Mao, Samuel S; Zormpa, Vasileia; Chen, Xiaobo

    2015-05-12

    An embodiment of a superhydrophilic nanostructure includes nanoparticles. The nanoparticles are formed into porous clusters. The porous clusters are formed into aggregate clusters. An embodiment of an article of manufacture includes the superhydrophilic nanostructure on a substrate. An embodiment of a method of fabricating a superhydrophilic nanostructure includes applying a solution that includes nanoparticles to a substrate. The substrate is heated to form aggregate clusters of porous clusters of the nanoparticles.

  11. Dendritic Growth Investigators

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Representatives of NASA materials science experiments supported the NASA exhibit at the Rernselaer Polytechnic Institute's Space Week activities, April 5 through 11, 1999. From left to right are: Angie Jackman, project manager at NASA's Marshall Space Flight Center for dendritic growth experiments; Dr. Martin Glicksman of Rennselaer Polytechnic Instutute, Troy, NY, principal investigator on the Isothermal Dendritic Growth Experiment (IDGE) that flew three times on the Space Shuttle; and Dr. Matthew Koss of College of the Holy Cross in Worcester, MA, a co-investigator on the IDGE and now principal investigator on the Transient Dendritic Solidification Experiment being developed for the International Space Station (ISS). The image at far left is a dendrite grown in Glicksman's IDGE tests aboard the Shuttle. Glicksman is also principal investigator for the Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters.

  12. How a silver dendritic mesocrystal converts to a single crystal

    SciTech Connect

    Fang, J.; Ding, B.; Song, X.; Han, Y.

    2008-05-02

    In this paper, we demonstrate how a silver dendrite transforms from mesocrystal into single crystal and the stability for a dendritic silver mesocrystal within a Sn/AgNO3 galvanic replacement reaction. Our findings provide the direct evidence and visible picture of the transformation from mesocrystal to single crystalline structure and further confirm the particle-mediated crystallization mechanism. At the initial stage of the transformation, there is a crystallographic fusion process, dominated by oriented attachment mechanism. Ostwald ripening also plays an important role in forming smooth surface and regular shape of the final nanocrystal.

  13. On the dendrites and dendritic transitions in undercooled germanium

    SciTech Connect

    Lau, C.F.; Kui, H.W. . Dept. of Physics)

    1993-07-01

    Undercooled molten Ge was allowed to solidify at initial bulk undercoolings, [Delta]T, from 10 to 200C under dehydrated boron oxide flux. It turned out that in addition to the (211) twin dendrite found by Billig and the (100) twin-free dendrite discovered by Devaud and Turnbill, there is a third novel twin dendrite, the (110) twin dendrite. The twin planes in a (110) dendrite always appear in multiple numbers and the orientation is (111). These different kinds of dendrites exist at different initial interfacial undercoolings and the transition temperatures for (110) to (211), (211) to (100) are [Delta]T = 61 and 93C, respectively.

  14. Isothermal Dendritic Growth Experiment - SCN Dendrites

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to the crystals that form inside metal alloys. Comparing Earth-based and space-based dentrite growth velocity, tip size and shape provid a better understanding of the fundamentals of dentritic growth, including gravity's effects. These shadowgraphic images show succinonitrile (SCN) dentrites growing in a melt (liquid). The space-grown crystals also have cleaner, better defined sidebranches. IDGE was developed by Rensselaer Polytechnic Institude (RPI) and NASA/ Glenn Research Center(GRC). Advanced follow-on experiments are being developed for flight on the International Space Station. Photo gredit: NASA/Glenn Research Center

  15. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film.

    PubMed

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-22

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance. PMID:26939539

  16. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film

    NASA Astrophysics Data System (ADS)

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-01

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance.

  17. Kinetically controlled synthesis of large-scale morphology-tailored silver nanostructures at low temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Zhao, Yuda; Lin, Ziyuan; Gu, Fangyuan; Lau, Shu Ping; Li, Li; Chai, Yang

    2015-08-01

    Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology-tailored Ag nanostructures, which is significant to the controllable fabrication of Ag nanostructures and fundamental understanding of the growth kinetics.Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology

  18. Ag on Si(111) from basic science to application

    SciTech Connect

    Belianinov, Aleksey

    2012-01-01

    In our work we revisit Ag and Au adsorbates on Si(111)-7x7, as well as experiment with a ternary system of Pentacene, Ag and Si(111). Of particular interest to us is the Si(111)-(√3x√3)R30°}–Ag (Ag-Si-√3 hereafter). In this thesis I systematically explore effects of Ag deposition on the Ag-Si-√3 at different temperatures, film thicknesses and deposition fluxes. The generated insight of the Ag system on the Si(111) is then applied to generate novel methods of nanostructuring and nanowire growth. I then extend our expertise to the Au system on the Ag-Si(111) to gain insight into Au-Si eutectic silicide formation. Finally we explore behavior and growth modes of an organic molecule on the Ag-Si interface.

  19. Antimicrobial nanostructured starch based films for packaging.

    PubMed

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material. PMID:26050897

  20. Dendritic Polymers for Theranostics

    PubMed Central

    Ma, Yuan; Mou, Quanbing; Wang, Dali; Zhu, Xinyuan; Yan, Deyue

    2016-01-01

    Dendritic polymers are highly branched polymers with controllable structures, which possess a large population of terminal functional groups, low solution or melt viscosity, and good solubility. Their size, degree of branching and functionality can be adjusted and controlled through the synthetic procedures. These tunable structures correspond to application-related properties, such as biodegradability, biocompatibility, stimuli-responsiveness and self-assembly ability, which are the key points for theranostic applications, including chemotherapeutic theranostics, biotherapeutic theranostics, phototherapeutic theranostics, radiotherapeutic theranostics and combined therapeutic theranostics. Up to now, significant progress has been made for the dendritic polymers in solving some of the fundamental and technical questions toward their theranostic applications. In this review, we briefly summarize how to control the structures of dendritic polymers, the theranostics-related properties derived from their structures and their theranostics-related applications. PMID:27217829

  1. Real-Time Imaging of the Formation of Au-Ag Core-Shell Nanoparticles.

    PubMed

    Tan, Shu Fen; Chee, See Wee; Lin, Guanhua; Bosman, Michel; Lin, Ming; Mirsaidov, Utkur; Nijhuis, Christian A

    2016-04-27

    We study the overgrowth process of silver-on-gold nanocubes in dilute, aqueous silver nitrate solution in the presence of a reducing agent, ascorbic acid, using in situ liquid-cell electron microscopy. Au-Ag core-shell nanostructures were formed via two mechanistic pathways: (1) nuclei coalescence, where the Ag nanoparticles absorbed onto the Au nanocubes, and (2) monomer attachment, where the Ag atoms epitaxially deposited onto the Au nanocubes. Both pathways lead to the same Au-Ag core-shell nanostructures. Analysis of the Ag deposition rate reveals the growth modes of this process and shows that this reaction is chemically mediated by the reducing agent. PMID:27043921

  2. Lithium Dendrite Formation

    SciTech Connect

    2015-03-06

    Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety. Video shows annular dark-field scanning transmission electron microscopy imaging (ADF STEM) of lithium dendrite nucleation and growth from a glassy carbon working electrode and within a 1.2M LiPF6 EC:DM battery electrolyte.

  3. Stability of dendritic arrays

    NASA Technical Reports Server (NTRS)

    Warren, James A.; Langer, J. S.

    1990-01-01

    An approximate method for studying steady-state properties and linear stability of the dendritic arrays that are formed in directional solidification of alloys is proposed. This analysis is valid at high growth rates where the primary spacing between dendrites is larger than the velocity-dependent solutal diffusion length. A neutral stability boundary is computed and it is found that, in the situations where the results should be valid, the experimental data of Somboonsuk, et al. (1984) lie in the stable region, well away from the boundary.

  4. Isothermal Dendritic Growth Experiment Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video, captured during the Isothermal Dendritic Growth Experiment (IDGE) flown on STS-87 as a part of the fourth United States Microgravity payload, shows the growth of a dendrite, and the surface solidification that occurred on the front and back windows of the growth chamber. Dendrites are tiny, tree like structures that form as metals solidify.

  5. Transport Processes in Dendritic Crystallization

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dentritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical dendrite problem. The development of theoretical understanding of dendritic growth and its experimental status is sketched showing that transport theory and interfacial thermodynamics (capillarity theory) are insufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of maximum velocity was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to be able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip.

  6. Follicular dendritic cell function and murine AIDS.

    PubMed Central

    Masuda, A; Burton, G F; Fuchs, B A; Bhogal, B S; Rupper, R; Szakal, A K; Tew, J G

    1994-01-01

    Infection of mice with LP-BM5 elicits an immunodeficiency state referred to as murine acquired immune deficiency syndrome (MAIDS). Shortly after infection, retrovirus particles become associated with follicular dendritic cells (FDC) and this study was undertaken to determine whether retroviruses alter FDC functions. The FDC functions examined included the ability to: (1) retain antigen (Ag) trapped prior to infection; (2) trap new Ag after infection; (3) maintain specific IgG responses; and (4) provide co-stimulatory signals to B cells. Mice were infected with LP-BM5 and the ability of their FDC to trap and retain 125I-Ag (HSA) was assessed. Serum anti-HSA levels were monitored and FDC co-stimulatory activity was indicated by increased B-cell proliferation. HSA trapped on FDC prior to infection began to disappear by 3 weeks and was practically gone by 6 weeks. Serum anti-HSA titres were maintained normally for about 3 weeks after infection and then declined precipitously. The ability of FDC to trap new Ag began to disappear around the second and third week of infection and was markedly depressed by the fourth week. However, FDC recovered from infected mice retained their ability to co-stimulate anti-mu- and interleukin-4 (IL-4)-activated B cells throughout a 5-week period. In short, the ability of FDC to trap and retain specific Ag and maintain specific antibody levels was markedly depressed after retrovirus infection. However, FDC from infected mice continued to provide co-stimulatory signals and these signals may contribute to the lymphadenopathy and splenomegaly characteristic of MAIDS. Images Figure 4 PMID:8132218

  7. Modification of dendritic development.

    PubMed

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  8. Platinum dendritic nanoparticles with magnetic behavior

    NASA Astrophysics Data System (ADS)

    Li, Wenxian; Sun, Ziqi; Tian, Dongliang; Nevirkovets, Ivan P.; Dou, Shi-Xue

    2014-07-01

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ˜4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  9. Platinum dendritic nanoparticles with magnetic behavior

    SciTech Connect

    Li, Wenxian; Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue; Tian, Dongliang

    2014-07-21

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  10. Magnetic interactions between metal nanostructures within porous silicon

    PubMed Central

    2014-01-01

    Electrochemically deposited magnetic nanostructures arranged in a three-dimensional system are investigated with respect to their cross-talk between each other. The nanostructures are embedded in porous silicon templates with different morphologies which means pores offering dendritic growth of different strengths. An increase of the uniformity of the pores is concomitant with an increase of the smoothness of the metal deposits which strongly influences the magnetic behavior of the system. Less dendritic structures lead to an increase of the coercivity of the nanocomposite which reveals less cross-talk between the metal deposits due to a modification of the stray fields. The system allows in a cheap and simple way to tune the magnetic interactions of magnetic nanostructures in a three-dimensional arrangement. PACS 81.05.Rm; 81.07.Gf; 75.75.-c PMID:25177223

  11. Synthesis and characterization of ZnO nanostructures on noble-metal coated substrates

    NASA Astrophysics Data System (ADS)

    Dikovska, A. Og.; Atanasova, G. B.; Avdeev, G. V.; Nedyalkov, N. N.

    2016-06-01

    In this work, ZnO nanostructures were fabricated on noble-metal (Au, Ag and Au-Ag alloys) coated silicon substrates by applying pulsed laser deposition. The samples were prepared at a substrate temperature of 550 °C, an oxygen pressure of 5 Pa, and a laser fluence of 2 J cm-2 - process parameters usually used for deposition of smooth and dense thin films. The metal layer's role is substantial for the preparation of nanostructures. Heating of the substrate changed the morphology of the metal layer and, subsequently, nanoparticles were formed. The use of different metal particles resulted in different morphologies and properties of the ZnO nanostructures synthesized. The morphology of the ZnO nanostructures was related to the Au-Ag alloy's content of the catalyst layer. It was found that the morphology of the ZnO nanostructures evolved from nanorods to nanobelts as the ratio of Au/Ag in the alloy catalyst was varied. The use of a small quantity of Ag in the Au-Ag catalyst (Au3Ag) layer resulted predominantly in the deposition of ZnO nanorods. A higher Ag content in the catalyst alloy (AuAg2) layer resulted in the growth of a dense structure of ZnO nanobelts.

  12. Web-dendritic ribbon growth

    NASA Technical Reports Server (NTRS)

    Hilborn, R. B., Jr.; Faust, J. W., Jr.

    1976-01-01

    A web furnace was constructed for pulling dendritic-web samples. The effect of changes in the furnace thermal geometry on the growth of dendritic-web was studied. Several attempts were made to grow primitive dendrites for use as the dendritic seed crystals for web growth and to determine the optimum twin spacing in the dendritic seed crystal for web growth. Mathematical models and computer programs were used to determine the thermal geometries in the susceptor, crucible melt, meniscus, and web. Several geometries were determined for particular furnace geometries and growth conditions. The information obtained was used in conjunction with results from the experimental growth investigations in order to achieve proper conditions for sustained pulling of two dendrite web ribbons. In addition, the facilities for obtaining the following data were constructed: twin spacing, dislocation density, web geometry, resistivity, majority charge carrier type, and minority carrier lifetime.

  13. IDGE: Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) flew on STS-62 to study the microscopic, tree-like structures (dendrites) that form within metals as they solidify from molten materials. The size, shape, and orientation of these dendrites affect the strength and usefulness of metals. Data from this experiment will be used to test and improve the mathematical models that support the industrial production of metals.

  14. Metallurgical characterization of experimental Ag-based soldering alloys

    PubMed Central

    Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros

    2014-01-01

    Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945

  15. Fractal dendrite-based electrically conductive composites for laser-scribed flexible circuits

    PubMed Central

    Yang, Cheng; Cui, Xiaoya; Zhang, Zhexu; Chiang, Sum Wai; Lin, Wei; Duan, Huan; Li, Jia; Kang, Feiyu; Wong, Ching-Ping

    2015-01-01

    Fractal metallic dendrites have been drawing more attentions recently, yet they have rarely been explored in electronic printing or packaging applications because of the great challenges in large-scale synthesis and limited understanding in such applications. Here we demonstrate a controllable synthesis of fractal Ag micro-dendrites at the hundred-gram scale. When used as the fillers for isotropically electrically conductive composites (ECCs), the unique three-dimensional fractal geometrical configuration and low-temperature sintering characteristic render the Ag micro dendrites with an ultra-low electrical percolation threshold of 0.97 vol% (8 wt%). The ultra-low percolation threshold and self-limited fusing ability may address some critical challenges in current interconnect technology for microelectronics. For example, only half of the laser-scribe energy is needed to pattern fine circuit lines printed using the present ECCs, showing great potential for wiring ultrathin circuits for high performance flexible electronics. PMID:26333352

  16. Dendritic Alloy Solidification Experiment (DASE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Karma, A.; Steinbach, I.; deGroh, H. C., III

    2001-01-01

    A space experiment, and supporting ground-based research, is proposed to study the microstructural evolution in free dendritic growth from a supercooled melt of the transparent model alloy succinonitrile-acetone (SCN-ACE). The research is relevant to equiaxed solidification of metal alloy castings. The microgravity experiment will establish a benchmark for testing of equiaxed dendritic growth theories, scaling laws, and models in the presence of purely diffusive, coupled heat and solute transport, without the complicating influences of melt convection. The specific objectives are to: determine the selection of the dendrite tip operating state, i.e. the growth velocity and tip radius, for free dendritic growth of succinonitrile-acetone alloys; determine the growth morphology and sidebranching behavior for freely grown alloy dendrites; determine the effects of the thermal/solutal interactions in the growth of an assemblage of equiaxed alloy crystals; determine the effects of melt convection on the free growth of alloy dendrites; measure the surface tension anisotropy strength of succinon itrile -acetone alloys establish a theoretical and modeling framework for the experiments. Microgravity experiments on equiaxed dendritic growth of alloy dendrites have not been performed in the past. The proposed experiment builds on the Isothermal Dendritic Growth Experiment (IDGE) of Glicksman and coworkers, which focused on the steady growth of a single crystal from pure supercooled melts (succinonitrile and pivalic acid). It also extends the Equiaxed Dendritic Solidification Experiment (EDSE) of the present investigators, which is concerned with the interactions and transients arising in the growth of an assemblage of equiaxed crystals (succinonitrile). However, these experiments with pure substances are not able to address the issues related to coupled heat and solute transport in growth of alloy dendrites.

  17. Morphological evolution of 2D Rh nanoplates to 3D Rh concave nanotents, hierarchically stacked nanoframes, and hierarchical dendrites

    NASA Astrophysics Data System (ADS)

    Lee, Ki Woong; Park, Jongsik; Lee, Hyunkyung; Yoon, Donghwan; Baik, Hionsuck; Haam, Seungjoo; Sohn, Jeong-Hun; Lee, Kwangyeol

    2015-02-01

    Impurity doping has yielded a number of useful optical and catalytic alloy nanoparticles, by providing synthetic routes to unprecedented nanostructures. However, Zn is difficult to use as a dopant in alloy nanoparticles due to the difficulty in reduction, and therefore little has been reported on Zn-doped alloy nanoparticles and their potential applications. Herein we report an unusual role of the dopant Zn as a crystal growth modifying agent to cause the formation of novel concave Rh nanostructures, namely nanotents. We could further prepare unprecedented hierarchically stacked Rh nanoframes and dendritic nanostructures derived from them by understanding the role of various surface-stabilizing moieties. We also report the usage of new Rh nanostructures in selective hydrogenation of phthalimides.Impurity doping has yielded a number of useful optical and catalytic alloy nanoparticles, by providing synthetic routes to unprecedented nanostructures. However, Zn is difficult to use as a dopant in alloy nanoparticles due to the difficulty in reduction, and therefore little has been reported on Zn-doped alloy nanoparticles and their potential applications. Herein we report an unusual role of the dopant Zn as a crystal growth modifying agent to cause the formation of novel concave Rh nanostructures, namely nanotents. We could further prepare unprecedented hierarchically stacked Rh nanoframes and dendritic nanostructures derived from them by understanding the role of various surface-stabilizing moieties. We also report the usage of new Rh nanostructures in selective hydrogenation of phthalimides. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05986g

  18. Effects of Current-injection Firing with Ag Paste in a Boron Emitter.

    PubMed

    Kim, Chanseok; Choi, Jae-Wook; Choi, Sungjin; Kim, Soomin; Park, Hyomin; Song, Hee-eun; Yoon, Sam S; Huh, Joo-Youl; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan

    2016-01-01

    A high contact resistance for screen-printed contacts was observed when a conventional Ag paste was used on a boron emitter. The results of this study suggest that electron injection during firing is one of the processes that contribute to a lower contact resistance. Larger quantities of Ag precipitates formed upon electron injection into the boron emitter, which was confirmed by observing Ag crystallite or dendrite structures on the boron and by measuring the contact resistance between the boron emitter and the Ag bulk. The electron-injected sample had approximately 10000 times lower contact resistance than an untreated sample. The contact resistance of the electron-injected sample was 0.021 mΩ ∙ cm(2) under optimal conditions, which is lower than that of conventional p-type silicon solar cells. Thus, electron injection can effectively lower contact resistance when using Ag paste in n-type silicon solar cells. During the cooling in the firing process, dissolved Ag ions in the glass layer are formed as dendrites or crystallites/particles. The dendrites are formed earlier than others via electrochemical migration under electron injection conditions. Then, crystallites and particles are formed via a silicon etching reaction. Thus, Ag ions that are not formed as dendrites will form as crystallites or particles. PMID:26861828

  19. Effects of Current-injection Firing with Ag Paste in a Boron Emitter

    NASA Astrophysics Data System (ADS)

    Kim, Chanseok; Choi, Jae-Wook; Choi, Sungjin; Kim, Soomin; Park, Hyomin; Song, Hee-Eun; Yoon, Sam S.; Huh, Joo-Youl; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan

    2016-02-01

    A high contact resistance for screen-printed contacts was observed when a conventional Ag paste was used on a boron emitter. The results of this study suggest that electron injection during firing is one of the processes that contribute to a lower contact resistance. Larger quantities of Ag precipitates formed upon electron injection into the boron emitter, which was confirmed by observing Ag crystallite or dendrite structures on the boron and by measuring the contact resistance between the boron emitter and the Ag bulk. The electron-injected sample had approximately 10000 times lower contact resistance than an untreated sample. The contact resistance of the electron-injected sample was 0.021 mΩ•cm2 under optimal conditions, which is lower than that of conventional p-type silicon solar cells. Thus, electron injection can effectively lower contact resistance when using Ag paste in n-type silicon solar cells. During the cooling in the firing process, dissolved Ag ions in the glass layer are formed as dendrites or crystallites/particles. The dendrites are formed earlier than others via electrochemical migration under electron injection conditions. Then, crystallites and particles are formed via a silicon etching reaction. Thus, Ag ions that are not formed as dendrites will form as crystallites or particles.

  20. Effects of Current-injection Firing with Ag Paste in a Boron Emitter

    PubMed Central

    Kim, Chanseok; Choi, Jae-Wook; Choi, Sungjin; Kim, Soomin; Park, Hyomin; Song, Hee-eun; Yoon, Sam S.; Huh, Joo-Youl; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan

    2016-01-01

    A high contact resistance for screen-printed contacts was observed when a conventional Ag paste was used on a boron emitter. The results of this study suggest that electron injection during firing is one of the processes that contribute to a lower contact resistance. Larger quantities of Ag precipitates formed upon electron injection into the boron emitter, which was confirmed by observing Ag crystallite or dendrite structures on the boron and by measuring the contact resistance between the boron emitter and the Ag bulk. The electron-injected sample had approximately 10000 times lower contact resistance than an untreated sample. The contact resistance of the electron-injected sample was 0.021 mΩ∙cm2 under optimal conditions, which is lower than that of conventional p-type silicon solar cells. Thus, electron injection can effectively lower contact resistance when using Ag paste in n-type silicon solar cells. During the cooling in the firing process, dissolved Ag ions in the glass layer are formed as dendrites or crystallites/particles. The dendrites are formed earlier than others via electrochemical migration under electron injection conditions. Then, crystallites and particles are formed via a silicon etching reaction. Thus, Ag ions that are not formed as dendrites will form as crystallites or particles. PMID:26861828

  1. (Plasmonic Metal Core)/(Semiconductor Shell) Nanostructures

    NASA Astrophysics Data System (ADS)

    Fang, Caihong

    Over the past several years, integration of metal nanocrystals that can support localized surface plasmon has been demonstrated as one of the most promising methods to the improvement of the light-harvesting efficiency of semiconductors. Ag and Au nanocrystals have been extensively hybridized with semiconductors by either deposition or anchoring. However, metal nanocrystals tend to aggregate, reshape, detach, or grow into large nanocrystals, leading to a loss of the unique properties seen in the original nanocrystals. Fortunately, core/shell nanostructures, circumventing the aforementioned problems, have been demonstrated to exhibit superior photoactivities. To further improve the light-harvesting applications of (plasmonic metal core)/(semiconductor shell) nanostructures, it is vital to understand the plasmonic and structural evolutions during the preparation processes, design novel hybrid nanostructures, and improve their light-harvesting performances. In this thesis, I therefore studied the plasmonic and structural evolutions during the formation of (Ag core)/(Ag2S shell) nanostructures. Moreover, I also prepared (noble metal core)/(TiO2 shell) nanostructures and investigated their plasmonic properties and photon-harvesting applications. Clear understanding of the sulfidation process can enable fine control of the plasmonic properties as well as the structural composition of Ag/Ag 2S nanomaterials. Therefore, I investigated the plasmonic and structural variations during the sulfidation process of Ag nanocubes both experimentally and numerically. The sulfidation reactions were carried out at both the ensemble and single-particle levels. Electrodynamic simulations were also employed to study the variations of the plasmonic properties and plasmon modes. Both experiment and simulation results revealed that sulfidation initiates at the vertices of Ag nanocubes. Ag nanocubes are then gradually truncated and each nanocube becomes a nanosphere eventually. The cubic

  2. Synthesis and antimicrobial activity of gold/silver-tellurium nanostructures.

    PubMed

    Chang, Hsiang-Yu; Cang, Jinshun; Roy, Prathik; Chang, Huan-Tsung; Huang, Yi-Cheng; Huang, Chih-Ching

    2014-06-11

    Gold-tellurium nanostructures (Au-Te NSs), silver-tellurium nanostructures (Ag-Te NSs), and gold/silver-tellurium nanostructures (Au/Ag-Te NSs) have been prepared through galvanic reactions of tellurium nanotubes (Te NTs) with Au(3+), Ag(+), and both ions, respectively. Unlike the use of less environmentally friendly hydrazine, fructose as a reducing agent has been used to prepare Te NTs from TeO2 powders under alkaline conditions. The Au/Ag-Te NSs have highly catlaytic activity to convert nonfluorescent Amplex Red to form fluorescent product, revealing their great strength of generating reactive oxygen species (ROS). Au/Ag-Te NSs relative to the other two NSs exhibit greater antimicrobial activity toward the growth of E. coli, S. enteritidis, and S. aureus; the minimal inhibitory concentration (MIC) values of Au/Ag-Te NSs were much lower (>10-fold) than that of Ag-Te NSs and Au-Te NSs. The antibacterial activity of Au/Ag-Te NSs is mainly due to the release of Ag(+) ions and Te-related ions and also may be due to the generated ROS which destroys the bacteria membrane. In vitro cytotoxicity and hemolysis analyses have revealed their low toxicity in selected human cell lines and insignificant hemolysis in red blood cells. In addition, inhibition zone measurements using a Au/Ag-Te NSs-loaded konjac jelly film have suggested that it has great potential in practial application such as wound dressing for reducing bacterial wound infection. Having great antibacterial activitiy and excellent biocompatibility, the low-cost Au/Ag-Te NSs hold great potential as effective antimicrobial drugs. PMID:24832728

  3. Triangular Ag-Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction.

    PubMed

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Zhang, Xiao; Tan, Chaoliang; Li, Hai; Zhang, Hua; Xue, Can

    2014-10-21

    We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag(+)/Pd(2+) is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems. PMID:25155648

  4. Nanostructured photovoltaics

    NASA Astrophysics Data System (ADS)

    Fu, Lan; Tan, H. Hoe; Jagadish, Chennupati

    2013-01-01

    Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III-V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the

  5. Mimicking photosynthesis to make functional nanostructures and nanodevices.

    SciTech Connect

    Pereira, Eulalia; Shelnutt, John Allen; Medforth, Craig John; Song, Yujiang; Wang, Zhongchun

    2005-02-01

    Photocatalytic porphyrins are used to reduce metal complexes from aqueous solution and, further, to control the deposition of metals onto porphyrin nanotubes and surfactant assembly templates to produce metal composite nanostructures and nanodevices. For example, surfactant templates lead to spherical platinum dendrites and foam-like nanomaterials composed of dendritic platinum nanosheets. Porphyrin nanotubes are reported for the first time, and photocatalytic porphyrin nanotubes are shown to reduce metal complexes and deposit the metal selectively onto the inner or outer surface of the tubes, leading to nanotube-metal composite structures that are capable of hydrogen evolution and other nanodevices.

  6. Follicular Dendritic Cell Sarcoma

    PubMed Central

    Udayakumar, Achandira M.; Al-Bahri, Maiya; Burney, Ikram A.; Al-Haddabi, Ibrahim

    2015-01-01

    Follicular dendritic cell sarcoma (FDCS) is a rare neoplasm with a non-specific and insidious presentation further complicated by the difficult diagnostic and therapeutic assessment. It has a low to intermediate risk of recurrence and metastasis. Unlike other soft tissue sarcomas or histiocytic and dendritic cell neoplasms, cytogenetic studies are very limited in FDCS cases. Although no specific chromosomal marker has yet been established, complex aberrations and different ploidy types have been documented. We report the case of a 39-year-old woman with FDCS who presented to the Sultan Qaboos University Hospital in Muscat, Oman, in February 2013. Ultrastructural, immunophenotypical and histological findings are reported. In addition, karyotypic findings showed deletions of the chromosomes 1p, 3q, 6q, 7q, 8q and 11q. To the best of the authors’ knowledge, these have not been reported previously in this tumour. Techniques such as spectral karyotyping may help to better characterise chromosomal abnormalities in this type of tumour. PMID:26355964

  7. Silver-assisted chemical etching on silicon with polyvinylpyrrolidone-mediated formation of silver dendrites.

    PubMed

    Chen, Chia-Yun; Hsiao, Po-Hsuan

    2015-02-23

    Metal-assisted chemical etching (MaCE) on silicon (Si)-mediated by polyvinylpyrrolidone (PVP)-is systematically investigated herein. It is found that the morphologies and crystallographic natures of the grown silver (Ag) dendrites can be significantly modulated, with the presence of PVP in the MaCE process leading to the formation of faceted Ag dendrites preferentially along the (111) crystallographic phase, rather than along the (200) phase. Further explorations of the PVP-mediated effect on Si etching are also revealed. In contrast to the aligned Si nanowires formed by MaCE without PVP addition, only distributed nanopores with sizes of 200 to 400 nm appear on the Si surfaces in the presence of PVP. The origin of surface polishing on Si in the PVP-mediated MaCE process can be attributed to the distinct transport pathway of holes supplied by the Ag(+) ions, where the holes are injected directly into the primary Ag seeds, rather than through Ag dendrites, thus leading to the isotropic etching of the Si surface. PMID:25521287

  8. Triangular Ag-Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Zhang, Xiao; Tan, Chaoliang; Li, Hai; Zhang, Hua; Xue, Can

    2014-09-01

    We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag+/Pd2+ is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems.We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag+/Pd2+ is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03600j

  9. AGS II

    SciTech Connect

    Palmer, R.B.

    1984-01-01

    Interest in rare K decays, neutrino oscillations and other fields have generated an increasing demand for running, and improved intensity and duty cycle, at the AGS. Current projects include acceleration of polarized protons and light ions (up to mass 32). Future plans are for a booster to increase intensity and allow heavy ions (up to mass 200), and a stretcher to give 100% duty cycle. A later upgrade could yield an average current of 32 ..mu.. amps. 6 figures, 2 tables.

  10. Synthesis of platinum dendrites and nanowires via directed electrochemical nanowire assembly.

    PubMed

    Kawasaki, Jason K; Arnold, Craig B

    2011-02-01

    Directed electrochemical nanowire assembly is a promising high growth rate technique for synthesizing electrically connected nanowires and dendrites at desired locations. Here we demonstrate the directed growth and morphological control of edge-supported platinum nanostructures by applying an alternating electric field across a chloroplatinic acid solution. The dendrite structure is characterized with respect to the driving frequency, amplitude, offset, and salt concentration and is well-explained by classical models. Control over the tip diameter, side branch spacing, and amplitude is demonstrated, opening the door to novel device architectures for sensing and catalytic applications. PMID:21235218

  11. Bulk nanostructured alloys prepared by flux melting and melt solidification

    SciTech Connect

    Shen, T.D.; Schwarz, R.B.; Zhang, X.

    2005-10-03

    We have prepared bulk nanostructured Ag{sub 60}Cu{sub 40} alloys by a flux-melting and melt-solidification technique. The flux purifies the melts, leading to a large undercooling and nanometer-sized microstructure. The as-prepared alloys are composed of nanolayered Ag and Cu within micrometer-sized grains. The bulk nanostructured alloys have an ultimate tensile strength of approximately 560 MPa, similar yield strength in tension and compression, elongation of 7% in tension, strain hardening exponent of 0.1, and relatively high mechanical and thermal stability up to 400 deg. C.

  12. Facile synthesis and intraparticle self-catalytic oxidation of dextran-coated hollow Au-Ag nanoshell and its application for chemo-thermotherapy.

    PubMed

    Jang, Hongje; Kim, Young-Kwan; Huh, Hyun; Min, Dal-Hee

    2014-01-28

    Galvanic replacement reaction is a useful method to prepare various hollow nanostructures. We developed fast and facile preparation of biocompatible and structurally robust hollow Au-Ag nanostructures by using dextran-coated Ag nanoparticles. Oxidation of the surface dextran alcohols was enabled by catalytic activity of the core Au-Ag nanostructure, introducing carbonyl groups that are useful for further bioconjugation. Subsequent doxorubicin (Dox) conjugation via Schiff base formation was achieved, giving high payload of approximately 35 000 Dox per particle. Near-infrared-mediated photothermal conversion showed high efficacy of the Dox-loaded Au-Ag nanoshell as a combinational chemo-thermotherapy to treat cancer cells. PMID:24383549

  13. Development of dendrite polarity in Drosophila neurons

    PubMed Central

    2012-01-01

    Background Drosophila neurons have dendrites that contain minus-end-out microtubules. This microtubule arrangement is different from that of cultured mammalian neurons, which have mixed polarity microtubules in dendrites. Results To determine whether Drosophila and mammalian dendrites have a common microtubule organization during development, we analyzed microtubule polarity in Drosophila dendritic arborization neuron dendrites at different stages of outgrowth from the cell body in vivo. As dendrites initially extended, they contained mixed polarity microtubules, like mammalian neurons developing in culture. Over a period of several days this mixed microtubule array gradually matured to a minus-end-out array. To determine whether features characteristic of dendrites were localized before uniform polarity was attained, we analyzed dendritic markers as dendrites developed. In all cases the markers took on their characteristic distribution while dendrites had mixed polarity. An axonal marker was also quite well excluded from dendrites throughout development, although this was perhaps more efficient in mature neurons. To confirm that dendrite character could be acquired in Drosophila while microtubules were mixed, we genetically disrupted uniform dendritic microtubule organization. Dendritic markers also localized correctly in this case. Conclusions We conclude that developing Drosophila dendrites initially have mixed microtubule polarity. Over time they mature to uniform microtubule polarity. Dendrite identity is established before the mature microtubule arrangement is attained, during the period of mixed microtubule polarity. PMID:23111238

  14. SERS detection and antibacterial activity from uniform incorporation of Ag nanoparticles with aligned Si nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yun; Hsu, Li-Jen; Hsiao, Po-Hsuan; Yu, Chang-Tze Ricky

    2015-11-01

    We present a facile, reliable and controllable two-steps electroless deposition for uniformly decorating the silver (Ag) nanoparticles (NPs) on the highly aspect ratio of silicon (Si) nanowire arrays. Different from the direct Ag-loading process, which is normally challenged by the non-uniform coating of Ag, the formation of Ag NPs using such innovative electroless process is no longer to be limited at top nanowire surfaces solely; instead, each Ag+/Si interface can initiate the galvanic reduction of Ag+ ions, thus resulting in the uniform formation of Ag NPs on the entire Si nanowire arrays. In addition, systematic explorations of surface-enhanced Raman scattering (SERS) capability as well as antibacterial activity of the Ag/Si-incorporated nanostructures were performed, and the optimized Ag loadings on Si nanowire-based substrates along with the kinetic investigations were further revealed, which may benefit their practical applications in sensing, medical and biological needs.

  15. Enhanced visible light photocatalytic performance of ZnO nanowires integrated with CdS and Ag2S.

    PubMed

    Chen, Chienhua; Li, Zhengcao; Lin, Hehnan; Wang, Guojing; Liao, Jiecui; Li, Mingyang; Lv, Shasha; Li, Wei

    2016-02-18

    A series of ZnO-CdS-Ag2S ternary nanostructures with different amounts of Ag2S were prepared using simple and low-cost successive ionic layer adsorption and reaction (SILAR) and a chemical precipitation method. The ZnO nanowires, with a diameter of ∼100 nm and a length of ∼1 μm, were modified by coating CdS and Ag2S. CdS has a high absorption coefficient and can efficiently match with the energy levels of ZnO, which can enhance the light absorption ability of the nanostructures. In addition, Ag2S with a narrow band gap was used as the main light absorber and played an important role in increasing the light absorption in the visible light region. The photocatalytic activity of the ZnO-CdS-Ag2S ternary nanostructures was investigated using the degradation of methyl orange (MO) in an aqueous solution under visible light. The ZnO-CdS-Ag2S ternary nanostructures were found to be more efficient than ZnO nanowires, ZnO-CdS nanowires, and ZnO-Ag2S nanowires. There is 7.68 times more photocatalytic activity for MO degradation in terms of the rate constant for ZnO-CdS-Ag2S 15-cycle ternary nanostructure compared to the as-grown ZnO. Furthermore, the effect of the amount of Ag2S and CdS on the ZnO surface on the photocatalytic activity was analyzed. The superior photo-absorption properties and photocatalytic performance of the ZnO-CdS-Ag2S ternary nanostructures can be ascribed to the heterostructure, which enhanced the separation of the photo-induced electron-hole pairs. In addition, visible light could be absorbed by ZnO-CdS-Ag2S ternary nanostructures rather than by ZnO. PMID:26815888

  16. Dendritic cells in asthma.

    PubMed

    van Helden, Mary J; Lambrecht, Bart N

    2013-12-01

    The lungs are constantly exposed to antigens, most of which are non-pathogenic and do not require the induction of an immune response. Dendritic cells (DCs) are situated at the basolateral site of the lungs and continuously scan the environment to detect the presence of pathogens and subsequently initiate an immune response. They are a heterogeneous population of antigen-presenting cells that exert specific functions. Compelling evidence is now provided that DCs are both sufficient and necessary to induce allergic responses against several inhaled harmless allergens. How various DC subsets exactly contribute to the induction of allergic asthma is currently a subject of intense investigation. We here review the current progress in this field. PMID:24455765

  17. Fabrication and Characterization of Flexible and Tunable Plasmonic Nanostructures

    PubMed Central

    Kahraman, Mehmet; Daggumati, Pallavi; Kurtulus, Ozge; Seker, Erkin; Wachsmann-Hogiu, Sebastian

    2013-01-01

    We present a novel method to fabricate flexible and tunable plasmonic nanostructures based on combination of soft lithography and nanosphere lithography, and perform a comprehensive structural and optical characterization of these structures. Spherical latex particles are uniformly deposited on glass slides and used as molds for polydimethylsiloxane to obtain nanovoid structures. The diameter and depth of the nanostructures are controlled by the size of the latex particles. These surfaces are coated with a thin Ag layer for fabrication of uniform plasmonic nanostructures. Structural characterization of these surfaces is performed by SEM and AFM. Optical properties of these plasmonic nanostructures are evaluated via UV/Vis absorption spectroscopy, dark field microscopy, and surface–enhanced Raman spectroscopy (SERS). Position of the surface plasmon absorption depends on the diameter and depth of the nanostructures. SERS enhancement factor (measured up to 1.4 × 106) is dependent on the plasmon absorption wavelength and laser wavelength used in these experiments. PMID:24292236

  18. Dendritic nanoconjugates for intracellular delivery of neutral oligonucleotides

    NASA Astrophysics Data System (ADS)

    Ming, Xin; Wu, Lin; Carver, Kyle; Yuan, Ahu; Min, Yuanzeng

    2015-07-01

    Dendrimer-based gene delivery has been constrained by intrinsic toxicity and suboptimal nanostructure. Conjugation of neutral morpholino oligonucleotides (ONs) with PAMAM dendrimers resulted in neutral, uniform, and ultra-small (~10 nm) nanoconjugates. The nanoconjugates dramatically enhanced cellular delivery of the ONs in cancer cells. After release from the dendrimer in the cytosol, the ONs produced potent functional activity without causing significant cytotoxicity. When carrying an apoptosis-promoting ON, the nanoconjugates produced cancer cell killing directly. Thus, the dendritic nanoconjugates may provide an effective tool for delivering ONs to tumors and other diseased tissues.Dendrimer-based gene delivery has been constrained by intrinsic toxicity and suboptimal nanostructure. Conjugation of neutral morpholino oligonucleotides (ONs) with PAMAM dendrimers resulted in neutral, uniform, and ultra-small (~10 nm) nanoconjugates. The nanoconjugates dramatically enhanced cellular delivery of the ONs in cancer cells. After release from the dendrimer in the cytosol, the ONs produced potent functional activity without causing significant cytotoxicity. When carrying an apoptosis-promoting ON, the nanoconjugates produced cancer cell killing directly. Thus, the dendritic nanoconjugates may provide an effective tool for delivering ONs to tumors and other diseased tissues. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01665g

  19. Can dendritic cells see light?

    NASA Astrophysics Data System (ADS)

    Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K.; Hamblin, Michael R.

    2010-02-01

    There are many reports showing that low-level light/laser therapy (LLLT) can enhance wound healing, upregulate cell proliferation and has anti-apoptotic effects by activating intracellular protective genes. In the field of immune response study, it is not known with any certainty whether light/laser is proinflammatory or anti-inflammatory. Increasingly in recent times dendritic cells have been found to play an important role in inflammation and the immunological response. In this study, we try to look at the impact of low level near infrared light (810-nm) on murine bone-marrow derived dendritic cells. Changes in surface markers, including MHC II, CD80 and CD11c and the secretion of interleukins induced by light may provide additional evidence to reveal the mystery of how light affects the maturation of dendritic cells as well how these light-induced mature dendritic cells would affect the activation of adaptive immune response.

  20. Optimal Current Transfer in Dendrites

    PubMed Central

    Bird, Alex D.

    2016-01-01

    Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission. PMID:27145441

  1. Transient Dendritic Solidification Experiment (TDSE)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Transient Dendritic Solidification Expepriment (TDSE) is being developed as a candidate for flight aboard the International Space Station. TDSE will study the growth of dendrites (treelike crystalline structures) in a transparent material (succinonitrile or SCN) that mimics the behavior of widely used iron-based metals. Basic work by three Space Shuttle missions of the Isothermal Dendritic Growth Expepriment (IDGE) is yielding new insights into virtually all industrially relevant metal and alloy forming operations. The TDSE is similar to IDGE, but will maintain a constant temperature while varying pressure on the dendrites. Shown here is an exploded view of major elements of TDSE. A similar view is available with labels. The principal investigator is Matthew Koss of College of the Holy Cross in Worcester, MA. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  2. Transient Dendritic Solidification Experiment (TDSE)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Transient Dendritic Solidification Experiment (TDSE) is being developed as a candidate for flight aboard the International Space Station. TDSE will study the growth of dendrites (treelike crystalline structures) in a transparent material (succinonitrile or SCN) that mimics the behavior or widely used iron-based metals. Basic work by three Space Shuttle missions of the Isothermal Dendritic Growth Experiment (IDGE) is yielding new insights into virtually all industrially relevant metal and alloy forming operations. The TDSE is similar to IDGE, but will maintain a constant temperature while varying pressure on the dendrites. Shown here is an exploded view of major elements of the TDSE. A similar view is availble without labels. The principal investigator is Matthew Koss of College of the Holy Cross in Worcester, MA. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  3. Thermoelectric properties of CuS/Ag2S nanocomposites synthesed by modified polyol method

    NASA Astrophysics Data System (ADS)

    Tarachand, Sharma, Vikash; Ganesan, V.; Okram, Gunadhor S.

    2016-05-01

    This is the report on successful synthesis of Ag doped CuS nanostructures by modified polyol method. The resulting samples were characterized by powder X-ray diffraction (XRD), energy dispersive X-ray (EDX), atomic force microscopy (AFM) and dynamic light scattering (DLS). Particle size of pure CuS nanoparticles (NPs) was 17 nm, 38 nm and 97 nm as determined from Scherrer formula, AFM and DLS, respectively. Introduction of Ag led to formation of CuS/Ag2S composites. A transition at 55 K in thermopower is ascribed to structural transformation from hexagonal to orthorhombic structure. Further, their thermoelectric properties exhibit remarkable change owing to Ag doping in CuS nanostructures. The power factor improves with increasing Ag content. They reveal that CuS/Ag2S nanocomposites are some of the potential candidates for generation of thermoelectricity in future.

  4. Controllable galvanic synthesis of triangular Ag-Pd alloy nanoframes for efficient electrocatalytic methanol oxidation.

    PubMed

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Yu, Sijia; Chen, Junze; Liao, Yusen; Xue, Can

    2015-06-01

    Triangular Ag-Pd alloy nanoframes were successfully synthesized through galvanic replacement by using Ag nanoprisms as sacrificial templates. The ridge thickness of the Ag-Pd alloy nanoframes could be readily tuned by adjusting the amount of the Pd source during the reaction. These obtained triangular Ag-Pd alloy nanoframes exhibit superior electrocatalytic activity for the methanol oxidation reaction as compared with the commercial Pd/C catalyst due to the alloyed Ag-Pd composition as well as the hollow-framed structures. This work would be highly impactful in the rational design of future bimetallic alloy nanostructures with high catalytic activity for fuel cell systems. PMID:25925988

  5. Modulation of dendritic cell maturation and function by B lymphocytes.

    PubMed

    Bayry, Jagadeesh; Lacroix-Desmazes, Sébastien; Kazatchkine, Michel D; Hermine, Olivier; Tough, David F; Kaveri, Srini V

    2005-07-01

    Investigating the signals that regulate the function of dendritic cells (DC), the sentinels of the immune system, is critical to understanding the role of DC in the regulation of immune responses. Accumulating lines of evidence indicate that in addition to innate stimuli and T cell-derived signals, B lymphocytes exert a profound regulatory effect in vitro and in vivo on the Ag-presenting function of DC. The identification of B cells as a cellular source of cytokines, chemokines, and autoantibodies that are critically involved in the process of maturation, migration, and function of DC provides a rationale for immunotherapeutic intervention of autoimmune and inflammatory conditions by targeting B cells. Conversely, efficient cross-presentation of Ags by DC pulsed with immune complexes provides an alternative approach in the immunotherapy of cancer and infectious diseases. PMID:15972625

  6. Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites

    SciTech Connect

    Zheng Chan; Du Yuhong; Feng Miao; Zhan Hongbing

    2008-10-06

    Nanostructured Ag in shapes of nanoplate, nanowire, and nanoparticle, as well as their silica gel glass composites have been prepared and characterized. Nonlinear optical (NLO) properties were measured at 532 and 1064 nm using open aperture z-scan technique and studied from the view of shape effect. NLO behaviors of the nanostructured Ag are found to be shape dependent in suspensions at both the investigated wavelengths, although they originate differently. Comparing to the mother suspensions, the Ag/silica gel glass nanocomposites present rather dissimilar NLO behaviors, which is quite interesting for further studies.

  7. Plasmonic nanostructures for bioanalytical applications of SERS

    NASA Astrophysics Data System (ADS)

    Kahraman, Mehmet; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Surface-enhanced Raman scattering (SERS) is a potential analytical technique for the detection and identification of chemicals and biological molecules and structures in the close vicinity of metallic nanostructures. We present a novel method to fabricate tunable plasmonic nanostructures and perform a comprehensive structural and optical characterization of the structures. Spherical latex particles are uniformly deposited on glass slides and used as templates to obtain nanovoid structures on polydimethylsiloxane surfaces. The diameter and depth of the nanovoids are controlled by the size of the latex particles. The nanovoids are coated with a thin Ag layer for fabrication of uniform plasmonic nanostructures. Structural characterization of the surfaces is performed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Optical properties of these plasmonic nanostructures are evaluated via UV/Vis spectroscopy, and SERS. The sample preparation step is the key point to obtain strong and reproducible SERS spectra from the biological structures. When the colloidal suspension is used as a SERS substrate for the protein detection, the electrostatic interaction of the proteins with the nanoparticles is described by the nature of their charge status, which influences the aggregation properties such as the size and shape of the aggregates, which is critical for the SERS experiment. However, when the solid SERS substrates are fabricated, SERS signal of the proteins that are background free and independent of the protein charge. Pros and cons of using plasmonic nano colloids and nanostructures as SERS substrate will be discussed for label-free detection of proteins using SERS.

  8. CD103+ dendritic cells suppress Helminth-driven Type 2 immunity through constitutive expression of IL-12

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Batf3-dependent CD103+ and CD8alpha+ dendritic cells (DCs) play a central role in the development of type 1 immune responses. However, their role in type 2 immunity remains unclear. We found that Th2 cell responses were enhanced in Batf3-/- mice responding to helminth parasite antigens (Ag). As a r...

  9. Dextromethorphan inhibits activations and functions in dendritic cells.

    PubMed

    Chen, Der-Yuan; Song, Pei-Shan; Hong, Jau-Shyong; Chu, Ching-Liang; Pan, I-Horng; Chen, Yi-Ming; Lin, Ching-Hsiung; Lin, Sheng-Hao; Lin, Chi-Chen

    2013-01-01

    Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN- γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF- κ B translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases. PMID:23781253

  10. Dextromethorphan Inhibits Activations and Functions in Dendritic Cells

    PubMed Central

    Chen, Der-Yuan; Song, Pei-Shan; Hong, Jau-Shyong; Chu, Ching-Liang; Pan, I-Horng; Chen, Yi-Ming; Lin, Ching-Hsiung; Lin, Sheng-Hao; Lin, Chi-Chen

    2013-01-01

    Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases. PMID:23781253

  11. Hydrothermal preparation of silver telluride nanostructures and photo-catalytic investigation in degradation of toxic dyes

    NASA Astrophysics Data System (ADS)

    Gholamrezaei, Sousan; Salavati-Niasari, Masoud; Ghanbari, Davood; Bagheri, Samira

    2016-01-01

    Different morphologies of Ag2Te nanostructures were synthesized using TeCl4 as a new precursor and hydrazine hydrate as reducing agent by a hydrothermal method. Various parameters that affect on morphology and purity of nanostructures were optimized. According to our experiments the best time and temperature for preparation of this nanostructure are 12 h and 120 °C. The photo-catalytic behaviour of nanostructures in presence of UV- visible light for degradation of methyl orange was investigated. Results show that the presence of UV light is necessary for an efficient degradation of dye in aqueous solution. On the other hand, as observations propose the Ag2Te reveal a strong photoluminescence peak at room temperature that could be attributed to high level transition in the semiconductor. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) techniques and UV-visible scanning spectrometer (UV-Vis).

  12. Hydrothermal preparation of silver telluride nanostructures and photo-catalytic investigation in degradation of toxic dyes

    PubMed Central

    Gholamrezaei, Sousan; Salavati-Niasari, Masoud; Ghanbari, Davood; Bagheri, Samira

    2016-01-01

    Different morphologies of Ag2Te nanostructures were synthesized using TeCl4 as a new precursor and hydrazine hydrate as reducing agent by a hydrothermal method. Various parameters that affect on morphology and purity of nanostructures were optimized. According to our experiments the best time and temperature for preparation of this nanostructure are 12 h and 120 °C. The photo-catalytic behaviour of nanostructures in presence of UV- visible light for degradation of methyl orange was investigated. Results show that the presence of UV light is necessary for an efficient degradation of dye in aqueous solution. On the other hand, as observations propose the Ag2Te reveal a strong photoluminescence peak at room temperature that could be attributed to high level transition in the semiconductor. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) techniques and UV–visible scanning spectrometer (UV-Vis). PMID:26805744

  13. Preparation, characterization, and photocatalytic activity of porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Tian, Baozhu; Zhang, Jinlong; Xiong, Tianqing; Wang, Tingting

    2014-02-01

    Porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts were synthesized by a multistep route, including a dealloying method to prepare porous Ag, a transformation from Ag to AgBr and AgBrI, and a photo-reduction process to form Ag nanoparticles on the surface of AgBr and AgBrI. It was found that the porous structure kept unchanged during Ag was transferred into AgBr, AgBrI, AgBr@Ag, and AgBrI@Ag. Both porous AgBr@Ag and porous AgBrI@Ag showed much higher visible-light photocatalytic activity than cubic AgBr@Ag for the degradation of methyl orange, which is because the interconnected pore channels not only provide more reactive sites but also favor the transportation of photo-generated electrons and holes. For AgBrI@Ag, AgBrI solid solution formed at the interface of AgBr and AgI, and the phase junction can effectively separate the photo-generated electrons and holes, favorable to the improvement of photocatalytic activity. The optimal I content for obtaining the highest activity is ∼10 at.%.

  14. Lysophosphatidic acid induces osteocyte dendrite outgrowth

    SciTech Connect

    Karagiosis, Sue A.; Karin, Norm J.

    2007-05-25

    A method was developed to measure dendrite formation in bone cells. Lysophosphatidic acid (LPA) was found to stimulate dendrite outgrowth. It is postulated that LPA plays a role in regulating the osteocyte network in vivo.

  15. Stability of Ag nanoparticles dispersed in amphiphilic organic matrix

    NASA Astrophysics Data System (ADS)

    Suvorova, Elena I.; Klechkovskaya, Vera V.; Kopeikin, Victor V.; Buffat, Philippe A.

    2005-02-01

    Nano- and thin-film technologies based on novel systems associating metals particles to polymer matrix open a broad range of different applications. Such composites were found to be more efficient and safe, for instance, in biomedical needs. The Ag/poly(N-vinyl-2-pyrrolidone) (Ag/PVP) composite investigated in the present work is a new bactericide mean applied in complicated cases of infected burns and purulent wounds. High-resolution transmission electron microscopy (HRTEM) and X-ray energy-dispersive (EDS) microanalysis were used to bring chemical and structural information in a study of the properties and stability of thin-film nanocomposite whih consisted of Ag nanoparticles dispersed in water-soluble organic matrix poly(N-vinyl-2-pyrrolidone). The nanostructural investigation of Ag/PVP composite by HRTEM and EDS exposed to SO 2 and H 2S from the atmosphere and some traces of S-containing substances explains the limited stability of this system by a structural modification associated with a phase change and formation of Ag 2S and Ag 2SO 3. However, formation of the hardly water-soluble Ag 2S and Ag 2SO 3 salts may play an important role in the suppression of bacterial growth. On the one hand, silver could block S-H groups in vital proteins and conduced to their destruction, in that way revealing the antibacterial power. On the other hand, antiseptic properties of Ag consist in binding the products of the protein decay.

  16. Effect of high magnetic field on a quasi-3D silver dendrite growing system

    NASA Astrophysics Data System (ADS)

    Tang, Fengzhi; Katsuki, Akio; Tanimoto, Yoshifumi

    2006-05-01

    The Ag+/Cu liquid-solid redox reaction was investigated in a vertical and inhomogeneous high magnetic field (up to 15 T). According to a comparison between the morphologies of quasi-3D silver dendrites generated under different magnetic flux densities, the imposition of a high magnetic field strongly affected the aggregation process of the silver dendrites. The present experiment used four kinds of liquid-solid boundaries, which are affected by the reaction direction and solution condition, as bases for the diffusion limited aggregation (DLA)-like dendritic growth of silver deposition. Results are interpreted in terms of convections of the aqueous solution and a tentative quantitative analysis of forces acting on particles arising from the magnetic field. A new force is predicted theoretically and is discussed in detail.

  17. Mechanisms and Function of Dendritic Exocytosis

    PubMed Central

    Kennedy, Matthew J.; Ehlers, Michael D.

    2011-01-01

    Summary Dendritic exocytosis is required for a broad array of neuronal functions including retrograde signaling, neurotransmitter release, synaptic plasticity, and establishment of neuronal morphology. While the details of synaptic vesicle exocytosis from presynaptic terminals have been intensely studied for decades, the mechanisms of dendritic exocytosis are only now emerging. Here we review the molecules and mechanisms of dendritic exocytosis, and discuss how exocytosis from dendrites influences neuronal function and circuit plasticity. PMID:21382547

  18. Mediator and label free estimation of stress biomarker using electrophoretically deposited Ag@AgO-polyaniline hybrid nanocomposite.

    PubMed

    Kaushik, Ajeet; Vasudev, Abhay; Arya, Sunil K; Bhansali, Shekhar

    2013-12-15

    Cortisol, a steroid hormone, is an important biomarker for psychological stress and its detection is gaining prominence for personalized health monitoring. In present work, electrophoretically deposited nanocomposite films of polyaniline (PANI) and core-shell Ag@AgO nanoparticles (NP~5 nm) have been explored as an electro-active nanostructured platform for Anti-cortisol antibody (Anti-Cab) immobilization for electrochemical immunosensing of cortisol. Covalent binding of Anti-Cab onto Ag@AgO-PANI nanocomposite was achieved using EDC/NHS chemistry, which results in the amide bond formation between amino groups of PANI and COOH groups of anti-Cab. Nonspecific binding sites on the immunosensing electrodes were blocked using bovine serum albumin (BSA). The uniform distribution of electro-active and surface charged Ag@AgO NP in PANI matrix results in a nanoporous granular morphology (roughness~10 nm) that provides a functionalized conductive microenvironment for Anti-Cab immobilization. The BSA/Anti-Cab/Ag@AgO-PANI/Au bioelectrodes have been characterized using electrochemical impedance technique (EIS), cyclic voltammetric (CV) technique and atomic force microscopic (AFM) technique, respectively. In CV studies nanocomposite exhibited characteristic response current peak corresponding to AgO NP (0.25 V) with large magnitude of current response and resulted in high electron transport at the electrode-electrolyte interface without a mediator. Electrochemical response studies via CV for the fabricated BSA/Anti-Cab/Ag@AgO-PANI/Au immunosensor as a function of cortisol concentration exhibited a wide linear detection range of 1 pM-1 µM, a detection limit of 0.64 pM mL(-1)(lower than ELISA), and high sensitivity 66 µA M(-1) with a regression coefficient of 0.998. The findings of present work may explore the application of Ag@AgO-PANI hybrid nanocomposite to detect cortisol and other biomarkers for point-of-care application. PMID:23831854

  19. Presence and regulation of the endocannabinoid system in human dendritic cells.

    PubMed

    Matias, Isabel; Pochard, Pierre; Orlando, Pierangelo; Salzet, Michel; Pestel, Joel; Di Marzo, Vincenzo

    2002-08-01

    Cannabinoid receptors and their endogenous ligands, the endocannabinoids, have been detected in several blood immune cells, including monocytes/macrophages, basophils and lymphocytes. However, their presence in dendritic cells, which play a key role in the initiation and development of the immune response, has never been investigated. Here we have analyzed human dendritic cells for the presence of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), the cannabinoid CB1 and CB2 receptors, and one of the enzymes mostly responsible for endocannabinoid hydrolysis, the fatty acid amide hydrolase (FAAH). By using a very sensitive liquid chromatography-atmospheric pressure chemical ionization-mass spectrometric (LC-APCI-MS) method, lipids extracted from immature dendritic cells were shown to contain 2-AG, anandamide and the anti-inflammatory anandamide congener, N-palmitoylethanolamine (PalEtn) (2.1 +/- 1.0, 0.14 +/- 0.02 and 8.2 +/- 3.9 pmol x 10(-7) cells, respectively). The amounts of 2-AG, but not anandamide or PalEtn, were significantly increased following cell maturation induced by bacterial lipopolysaccharide (LPS) or the allergen Der p 1 (2.8- and 1.9-fold, respectively). By using both RT-PCR and Western immunoblotting, dendritic cells were also found to express measurable amounts of CB1 and CB2 receptors and of FAAH. Cell maturation did not consistently modify the expression of these proteins, although in some cell preparations a decrease of the levels of both CB1 and CB2 mRNA transcripts was observed after LPS stimulation. These findings demonstrate for the first time that the endogenous cannabinoid system is present in human dendritic cells and can be regulated by cell activation. PMID:12153574

  20. An Inverse Approach for Elucidating Dendritic Function

    PubMed Central

    Torben-Nielsen, Benjamin; Stiefel, Klaus M.

    2010-01-01

    We outline an inverse approach for investigating dendritic function–structure relationships by optimizing dendritic trees for a priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a “hypothesis generator” in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is subsequently compared to real neurons. This comparison potentially allows us to propose hypotheses about the function of real neurons. In this way, we investigated dendrites that optimally perform input-order detection. Second, we can use it as a “function confirmation” by optimizing dendrites for functions hypothesized to be performed by classes of neurons. If the optimized, artificial, dendrites resemble the dendrites of real neurons the artificial dendrites corroborate the hypothesized function of the real neuron. Moreover, properties of the artificial dendrites can lead to predictions about yet unmeasured properties. In this way, we investigated wide-field motion integration performed by the VS cells of the fly visual system. In outlining the inverse approach and two applications, we also elaborate on the nature of dendritic function. We furthermore discuss the role of optimality in assigning functions to dendrites and point out interesting future directions. PMID:21258425

  1. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles.

    PubMed

    San-Miguel, Miguel A; da Silva, Edison Z; Zannetti, Sonia M; Cilense, Mario; Fabbro, Maria T; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-06-01

    Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements. PMID:27114472

  2. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles

    NASA Astrophysics Data System (ADS)

    San-Miguel, Miguel A.; da Silva, Edison Z.; Zannetti, Sonia M.; Cilense, Mario; Fabbro, Maria T.; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-06-01

    Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements.

  3. Mechanical Properties and Electrochemical Corrosion Behavior of Al/Sn-9Zn- xAg/Cu Joints

    NASA Astrophysics Data System (ADS)

    Huang, M. L.; Huang, Y. Z.; Ma, H. T.; Zhao, J.

    2011-03-01

    The effect of Ag content on the wetting behavior of Sn-9Zn- xAg on aluminum and copper substrates during soldering, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn- xAg/Cu solder joints, were investigated in the present work. Tiny Zn and coarsened dendritic AgZn3 regions were distributed in the Sn matrix in the bulk Sn-9Zn- xAg solders, and the amount of Zn decreased while that of AgZn3 increased with increasing Ag content. The wettability of Sn-9Zn-1.5Ag solder on Cu substrate was better than those of the other Sn-9Zn- xAg solders but worse than that of Sn-9Zn solder. The wettability of Sn-9Zn-1.5Ag on the Al substrate was also better than those of the other Sn-9Zn- xAg solders, and even better than that of Sn-9Zn solder. The Al/Sn-9Zn/Cu joint had the highest shear strength, and the shear strength of the Al/Sn-9Zn- xAg/Cu ( x = 0 wt.% to 3 wt.%) joints gradually decreased with increasing Ag content. The corrosion resistance of the Sn-9Zn- xAg solders in Al/Sn-9Zn- xAg/Cu joints in 5% NaCl solution was improved compared with that of Sn-9Zn. The corrosion potential of Sn-9Zn- xAg solders continuously increased with increasing Ag content from 0 wt.% to 2 wt.% but then decreased for Sn-9Zn-3Ag. The addition of Ag resulted in the formation of the AgZn3 phase and in a reduction of the amount of the eutectic Zn phase in the solder matrix; therefore, the corrosion resistance of the Al/Sn-9Zn- xAg/Cu joints was improved.

  4. Radiation damage in nanostructured metallic films

    NASA Astrophysics Data System (ADS)

    Yu, Kaiyuan

    High energy neutron and charged particle radiation cause microstructural and mechanical degradation in structural metals and alloys, such as phase segregation, void swelling, embrittlement and creep. Radiation induced damages typically limit nuclear materials to a lifetime of about 40 years. Next generation nuclear reactors require materials that can sustain over 60 - 80 years. Therefore it is of great significance to explore new materials with better radiation resistance, to design metals with favorable microstructures and to investigate their response to radiation. The goals of this thesis are to study the radiation responses of several nanostructured metallic thin film systems, including Ag/Ni multilayers, nanotwinned Ag and nanocrystalline Fe. Such systems obtain high volume fraction of boundaries, which are considered sinks to radiation induced defects. From the viewpoint of nanomechanics, it is of interest to investigate the plastic deformation mechanisms of nanostructured films, which typically show strong size dependence. By controlling the feature size (layer thickness, twin spacing and grain size), it is applicable to picture a deformation mechanism map which also provides prerequisite information for subsequent radiation hardening study. And from the viewpoint of radiation effects, it is of interest to explore the fundamentals of radiation response, to examine the microstructural and mechanical variations of irradiated nanometals and to enrich the design database. More importantly, with the assistance of in situ techniques, it is appealing to examine the defect generation, evolution, annihilation, absorption and interaction with internal interfaces (layer interfaces, twin boundaries and grain boundaries). Moreover, well-designed nanostructures can also verify the speculation that radiation induced defect density and hardening show clear size dependence. The focus of this thesis lies in the radiation response of Ag/Ni multilayers and nanotwinned Ag

  5. The enhanced SERS effect of Ag/ZnO nanoparticles through surface hydrophobic modification

    NASA Astrophysics Data System (ADS)

    Li, Zhenjiang; Zhu, Kaixing; Zhao, Qian; Meng, Alan

    2016-07-01

    Ag/ZnO nanocomposites modified by a mixture of stearic acid (SA) and polyvinylpyrrolidone (PVP) were obtained using a heating reflux method. Fourier transform infrared spectroscopy (FT-IR) suggests that organic SA/PVP was bonded onto the surface of Ag/ZnO nanocrystals, converting the wettability property of the nanostructures from hydrophilic to hydrophobic. The modified Ag/ZnO nanostructures were confirmed as effective Raman substrates, with a 3-fold signal enhancement compared to the ordinary hydrophilic Ag/ZnO substrate for detecting Rh B molecules due to the hydrophobic condensation effect. It is expected that the modified Ag/ZnO nanoparticles have potential for SERS-based rapid detection of molecules.

  6. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth.

    PubMed

    McShane, Colleen M; Choi, Kyoung-Shin

    2009-02-25

    Cu(2)O electrodes composed of dendritic crystals were produced electrochemically using a slightly acidic medium (pH 4.9) containing acetate buffer. The buffer played a key role for stabilizing dendritic branching growth as a pH drop during the synthesis prevents formation of morphologically unstable branches and promotes faceted growth. Dendritic branching growth enabled facile coverage of the substrate with Cu(2)O while avoiding growth of a thicker Cu(2)O layer and increasing surface areas. The resulting electrodes showed n-type behavior by generating anodic photocurrent without applying an external bias (zero-bias photocurrent under short-circuit condition) in an Ar-purged 0.02 M K(2)SO(4) solution. The zero-bias photocurrent of crystalline dendritic electrodes was significantly higher than that of the electrodes containing micrometer-size faceted crystals deposited without buffer. In order to enhance photocurrent further a strategy of improving charge-transport properties by increasing dendritic crystal domain size was investigated. Systematic changes in nucleation density and size of the dendritic Cu(2)O crystals were achieved by altering the deposition potential, Cu(2+) concentration, and acetate concentration. Increasing dendritic crystal size consistently resulted in the improvement of photocurrent regardless of the method used to regulate crystal size. The electrode composed of dendritic crystals with the lateral dimension of ca. 12000 microm(2) showed more than 20 times higher zero-bias photocurrent than that composed of dendritic crystals with the lateral dimension of ca. 100 microm(2). The n-type nature of the Cu(2)O electrodes prepared by this study were confirmed by linear sweep voltammetry with chopped light and capacitance measurements (i.e., Mott-Schottky plots). The flatband potential in a 0.2 M K(2)SO(4) solution (pH 6) was estimated to be -0.78 vs Ag/AgCl reference electrode. The IPCE measured without applying an external bias was approximately 1

  7. Silver chromate and silver dichromate nanostructures: Sonochemical synthesis, characterization, and photocatalytic properties

    SciTech Connect

    Soofivand, Faezeh; Mohandes, Fatemeh; Salavati-Niasari, Masoud

    2013-06-01

    Graphical abstract: In this work, Ag{sub 2}CrO{sub 4} and Ag{sub 2}Cr{sub 2}O{sub 7} nanostructures have been sonochemically prepared using silver salicylate. The effect of preparation parameters on the morphology of the products was investigated by SEM images. Highlights: ► Herein, Ag{sub 2}CrO{sub 4} and Ag{sub 2}Cr{sub 2}O{sub 7} nanostructures have been sonochemically prepared. ► The effect of preparation parameters on the morphology of the products was investigated. ► The photocatalytic activity of the as-prepared Ag{sub 2}CrO{sub 4} nanoparticles was tested. ► XPS spectra indicated the high purity of Ag{sub 2}Cr{sub 2}O{sub 7} nanostructures obtained. - Abstract: In this work, Ag{sub 2}CrO{sub 4} and Ag{sub 2}Cr{sub 2}O{sub 7} nanostructures have been produced via a sonochemical method using silver salicylate as precursor. Besides silver salicylate, Na{sub 2}CrO{sub 4} and (NH{sub 4}){sub 2}Cr{sub 2}O{sub 7} as starting reagents were applied. To investigate the effect of preparation parameters on the morphology and particle size of Ag{sub 2}CrO{sub 4} and Ag{sub 2}Cr{sub 2}O{sub 7}, sonication time, type of surfactant and its concentration were changed. The as-produced nanostructures were characterized by techniques like powder X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The scanning electron micrographs showed that particle-like and rod-like nanostructures of Ag{sub 2}CrO{sub 4} and Ag{sub 2}Cr{sub 2}O{sub 7} were produced using different surfactants. To investigate the catalytic properties of Ag{sub 2}CrO{sub 4} nanoparticles, photooxidation of methyl orange (MO) was performed. According to the obtained results, it was found that the methyl orange degradation was about 87.3% after 280 min irradiation of visible light.

  8. Application of a new coordination compound for the preparation of AgI nanoparticles

    SciTech Connect

    Mohandes, Fatemeh; Salavati-Niasari, Masoud

    2013-10-15

    Graphical abstract: Silver iodide nanoparticles have been sonochemically synthesized by using silver salicylate complex, [Ag(HSal)], as silver precursor. A series of control experiments were carried out to investigate the effects of solvent, surfactant concentration, sonication time and temperature on the morphology of AgI nanostructures. - Highlights: • Silver salicylate as a new precursor was applied to fabricate γ-AgI nanoparticles. • To further decrease the particle size of AgI, SDS was used as surfactant. • The effect of preparation parameters on the particle size of AgI was investigated. - Abstract: AgI nanoparticles have been sonochemically synthesized by using silver salicylate, [Ag(HSal)], as silver precursor. To investigate the effects of solvent, surfactant concentration, sonication time and temperature on the morphology of AgI nanostructures, several experiments were carried out. The products were characterized by SEM, TEM, XRD, TGA/DTA, UV–vis, and FT-IR. Based on the experimental findings in this research, it was found that the size of AgI nanoparticles was dramatically dependent on the silver precursor, sonochemical irradiation, and surfactant concentration. Sodium dodecyl sulfate (SDS) was applied as surfactant. When the concentration of SDS was 0.055 mM, very uniform sphere-like AgI nanoparticles with grain size of about 25–30 nm were obtained. These results indicated that the high concentration of SDS could prevent the aggregation between colloidal nanoparticles due to its steric hindrance effect.

  9. Vicinal surfaces for functional nanostructures.

    PubMed

    Tegenkamp, Christoph

    2009-01-01

    Vicinal surfaces are currently the focus of research. The regular arrangements of atomic steps on a mesoscopic scale reveal the possibility to functionalize these surfaces for technical applications, e.g. nanowires, catalysts, etc. The steps of the vicinal surface are well-defined defect structures of atomic size for nucleation of low-dimensional nanostructures. The concentration and therefore the coupling between the nanostructures can be tuned over a wide range by simply changing the inclination angle of the substrate. However, the coupling of these nano-objects to the substrate is just as important in controlling their electronic or chemical properties and making a functionality useable. On the basis of stepped insulating films, these aspects are fulfilled and will be considered in the first part of this review. Recent results for the epitaxial growth of wide bandgap insulating films (CaF(2), MgO, NaCl, BaSrO) on metallic and semiconducting vicinal substrates (Si(100), Ge(100), Ag(100)) will be presented. The change of the electronic structure, the adsorption behavior as well as the kinetics and energetics of color centers in the presence of steps is discussed. The successful bridging of the gap between the atomic and mesoscopic world, i.e. the functionalization of vicinal surfaces by nanostructures, is demonstrated in the second part by metal adsorption on semiconducting surfaces. For (sub)monolayer coverage these systems have in common that the surface states do not hybridize with the support, i.e. the semiconducting surfaces are insulating. Here I will focus on the latest results of macroscopic transport measurements on Pb quantum wires grown on vicinal Si(111) showing indeed a one-dimensional transport behavior. PMID:21817211

  10. Intrinsic and extrinsic mechanisms of dendritic morphogenesis.

    PubMed

    Dong, Xintong; Shen, Kang; Bülow, Hannes E

    2015-01-01

    The complex, branched morphology of dendrites is a cardinal feature of neurons and has been used as a criterion for cell type identification since the beginning of neurobiology. Regulated dendritic outgrowth and branching during development form the basis of receptive fields for neurons and are essential for the wiring of the nervous system. The cellular and molecular mechanisms of dendritic morphogenesis have been an intensely studied area. In this review, we summarize the major experimental systems that have contributed to our understandings of dendritic development as well as the intrinsic and extrinsic mechanisms that instruct the neurons to form cell type-specific dendritic arbors. PMID:25386991

  11. Wiring dendrites in layers and columns.

    PubMed

    Luo, Jiangnan; McQueen, Philip G; Shi, Bo; Lee, Chi-Hon; Ting, Chun-Yuan

    2016-06-01

    The most striking structure in the nervous system is the complex yet stereotyped morphology of the neuronal dendritic tree. Dendritic morphologies and the connections they make govern information flow and integration in the brain. The fundamental mechanisms that regulate dendritic outgrowth and branching are subjects of extensive study. In this review, we summarize recent advances in the molecular and cellular mechanisms for routing dendrites in layers and columns, prevalent organizational structures in the brain. We highlight how dendritic patterning influences the formation of synaptic circuits. PMID:27315108

  12. Photoemission electron microscopy of localized surface plasmons in silver nanostructures at telecommunication wavelengths

    SciTech Connect

    Mårsell, Erik; Larsen, Esben W.; Arnold, Cord L.; Xu, Hongxing; Mauritsson, Johan; Mikkelsen, Anders

    2015-02-28

    We image the field enhancement at Ag nanostructures using femtosecond laser pulses with a center wavelength of 1.55 μm. Imaging is based on non-linear photoemission observed in a photoemission electron microscope (PEEM). The images are directly compared to ultra violet PEEM and scanning electron microscopy (SEM) imaging of the same structures. Further, we have carried out atomic scale scanning tunneling microscopy on the same type of Ag nanostructures and on the Au substrate. Measuring the photoelectron spectrum from individual Ag particles shows a larger contribution from higher order photoemission processes above the work function threshold than would be predicted by a fully perturbative model, consistent with recent results using shorter wavelengths. Investigating a wide selection of both Ag nanoparticles and nanowires, field enhancement is observed from 30% of the Ag nanoparticles and from none of the nanowires. No laser-induced damage is observed of the nanostructures neither during the PEEM experiments nor in subsequent SEM analysis. By direct comparison of SEM and PEEM images of the same nanostructures, we can conclude that the field enhancement is independent of the average nanostructure size and shape. Instead, we propose that the variations in observed field enhancement could originate from the wedge interface between the substrate and particles electrically connected to the substrate.

  13. Advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    A program to develop the technology of the silicon dendritic web ribbon growth process is examined. The effort is being concentrated on the area rate and quality requirements necessary to meet the JPL/DOE goals for terrestrial PV applications. Closed loop web growth system development and stress reduction for high area rate growth is considered.

  14. DENDRITIC POLYMERS AS FIRE SUPPRESSANTS

    EPA Science Inventory

    This report describes an evaluation of the applicability of one of the latest advances in polymer technology (dendritic polymers) to suppressing fires, one of the greatest survivability threats to military personnel and vehicles. Certain types of alkali and transition metal compl...

  15. Whole recombinant Hansenula polymorpha expressing hepatitis B virus surface antigen (yeast-HBsAg) induces potent HBsAg-specific Th1 and Th2 immune responses.

    PubMed

    Bian, Guanglin; Cheng, Yuming; Wang, Zekun; Hu, Yunwen; Zhang, Xiaonan; Wu, Min; Chen, Zhiao; Shi, Bisheng; Sun, Shuhui; Shen, Yan; Chen, Er Jia; Yao, Xin; Wen, Yumei; Yuan, Zhenghong

    2009-12-10

    Recent studies have suggested that yeast cell wall components possess adjuvant activities. In the present study, heat-killed whole recombinant Hansenula polymorpha yeast expressing hepatitis B surface antigen (yeast-HBsAg) was generated, and the immune responses elicited by yeast-HBsAg were investigated in mice. The studies showed that yeast-HBsAg as well as yeast greatly promotes the accumulation of immune cells in mouse spleen and contributes to the maturation of dendritic cells (DCs). Yeast-HBsAg not only induces significantly higher antibody responses (including IgG, IgG1 and IgG2a), but also increases the IgG2a/IgG1 ratio, while alum combined with HBsAg (HBsAg+alum) only enhances antibody responses, but not the IgG2a/IgG1 ratio compared to HBsAg alone. Analysis of HBsAg-specific cytokines revealed that yeast-HBsAg is associated with production of both IFN-gamma and IL-4, but neither IFN-gamma nor IL-4 was detected in the HBsAg+alum-immunized group. Moreover, yeast-HBsAg induces potent HBsAg-specific lymphocyte proliferation and Cytotoxic T lymphocyte (CTL) responses. In conclusion, yeast-HBsAg enhances both HBsAg-specific Th1 and Th2 immune responses, while alum only enhances Th2 immune responses, suggesting that yeast-HBsAg may be an ideal candidate for an effective vaccine for the control of chronic hepatitis B virus (HBV) infection. PMID:19789093

  16. Templated Synthesis of Silver(I) and Copper(II) Nanostructures: Solid State Reactions and Applications

    NASA Astrophysics Data System (ADS)

    Bourret, Gilles R.

    2011-12-01

    This Thesis presents the synthesis of novel 1D, 2D, and 3D Ag(I) and Cu(II) nanostructures and their use as sacrificial templates to make functional nanomaterials. New soft template methods were developed for the synthesis of AgCN and Cu(OH)2 nanostructures. Polymeric organic nanotubes were successfully used to synthesize AgCN nanowires, while the precipitation of Cu(OH)2 nanofibers was templated in water microdroplets. Both methods benefit from the versatility of soft templates and allows for a control of both the size and the morphology of the nanostructures produced. The conversion of these precursors into metallic and semi-conductive nanomaterials was achieved via chemical and electrochemical reduction, and thermolysis. Chemical reduction of the AgCN nanowires leads to the fabrication of conductive arrays on nylon filter substrates, while the thermolysis of the Cu(OH)2 spherical assemblies yields photoresponsive semi-conductive porous CuO spheres. The electrochemical reduction of the native Ag(I) and Cu(II) one-dimensional nanostructures was investigated in aqueous solution at gold/glass/gold junctions. The solid-solid conversion involved in the electrochemical reduction process was studied via cyclic voltammetry, chronoamperometry, and electronic microscopy. The strong influence of the reduction potential on the nanomaterials produced allowed for the fabrication of a range of Ag(0) nanostructures, including nanoparticles, nanoprisms, nanofibers and porous networks. Electrochemical reduction of Au/M2+/Au junctions leads to the formation of an excellent electrical contact between the two gold electrodes. This technique was expanded to include ionically-conductive Ag2S nanowires which form metallic/ionic-conductor heterojunctions. Keywords: nanostructure, nanowire, template, emulsion, electrochemistry, silver, cyanide, copper, oxide, heterojunction, sacrificial template.

  17. Dendrite engineering on xenon crystals.

    PubMed

    Fell, Marco; Bilgram, Jörg

    2007-06-01

    The experimental work presented focuses on transient growth, morphological transitions, and control of xenon dendrites. Dendritic free growth is perturbed by two different mechanisms: Shaking and heating up to the melting temperature. Spontaneous and metastable multitip configurations are stabilized, coarsening is reduced, leading to a denser sidebranch growth, and a periodic tip splitting is found during perturbation by shaking. On the other hand, heating leads to controlled sidebranching and characteristic transitions of the tip shape. A deterministic behavior is found besides the random-noise-driven growth. The existence of a limit cycle is supported by the findings. Together the two perturbation mechanisms allow a "dendrite engineering"--i.e., a reproducible controlling of the crystal shape during its growth. The tip splitting for dendritic free growth is found not to be a splitting of the tip in two; rather, the respective growth velocities of the main tip and the fins change. The latter then surpass the main tip and develop into new tips. The occurrence of three- and four-tip configurations is explained with this mechanism. Finite-element calculations of the heat flow and the convective flow in the growth vessel show that the idea of a single axisymmetric toroidal convection roll across the whole growth vessel has to be dropped. The main effect of convection under Earth's gravity is the compression of the diffusive temperature field around the downward-growing tip. A model to explain the symmetry of dendritic crystals--e.g., snow crystals--is developed, based on the interaction of crystal shape and heat flow in the crystal. PMID:17677269

  18. Direct observation of Ag filament growth and unconventional SET-RESET operation in GeTe amorphous films

    NASA Astrophysics Data System (ADS)

    Imanishi, Yusuke; Kida, Shimon; Nakaoka, Toshihiro

    2016-07-01

    We report on the direct observation of Ag filament growth and a peculiar resistance switching in amorphous GeTe films with a lateral electrode geometry. The Ag filament growth was monitored by in-situ optical microscopy. The resistance switching was studied in three electrode pairs, Ag-Ag, Pt-Ag, and Pt-Ag/Pt (Ag electrode covered with Pt). In all the three electrode pairs, similar dendritic Ag filaments were clearly observed growing along both directions from one electrode to the other, according to the applied bias polarity. However, the SET and RESET processes are quite different. The Ag-Ag pair produces a unipolar clockwise switching. The Pt-Ag pair shows a bipolar counter-clockwise switching, as predicted in the basic electrochemical metallization theory, but the observed switching polarity is exactly opposite to the basic theory prediction. The Pt-Ag/Pt pair produces a unipolar counter-clockwise switching. The peculiar SET/RESET processes are explained on the basis of strong Ag diffusion into GeTe matrix resulting in an asymmetric effective electrode pair. The findings suggest that the SET/RESET processes are controlled by the amount of Ag and the electrode geometry.

  19. Engineering the plasmonic optical properties of cubic silver nanostructures based on Fano resonance

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Wang, Minqiang; Song, Xiaohui; Deng, Jianping; Yao, Xi

    2013-10-01

    The plasmonic optical properties of nanostructures including a dimer, a linear chain, a T-shaped nanostructure, and a 2D array consisting of Ag nanocubes have been investigated using the discrete dipole approximation method. The simulation results indicate that both the interparticle gap and polarization have an important impact on far-field and near-field characteristics. With decreasing interparticle distance for four nanostructures, the plasmon resonance peak is monotonically red-shifted and the electric intensity enhancement factor increases rapidly due to increased interparticle coupling interaction. Moreover, we also find that a T-shaped nanostructure has the largest electric intensity enhancement factor compared with other three nanostructures due to the coupling interaction at the intersection. This coupling is caused by the radiative interference between subradiant and superradiant resulting in Fano resonance. These results show how nanostructure arrangement design, gap adjustment, and polarization control can be used to achieve high field enhancements.

  20. Engineering the plasmonic optical properties of cubic silver nanostructures based on Fano resonance.

    PubMed

    Yang, Zhi; Wang, Minqiang; Song, Xiaohui; Deng, Jianping; Yao, Xi

    2013-10-28

    The plasmonic optical properties of nanostructures including a dimer, a linear chain, a T-shaped nanostructure, and a 2D array consisting of Ag nanocubes have been investigated using the discrete dipole approximation method. The simulation results indicate that both the interparticle gap and polarization have an important impact on far-field and near-field characteristics. With decreasing interparticle distance for four nanostructures, the plasmon resonance peak is monotonically red-shifted and the electric intensity enhancement factor increases rapidly due to increased interparticle coupling interaction. Moreover, we also find that a T-shaped nanostructure has the largest electric intensity enhancement factor compared with other three nanostructures due to the coupling interaction at the intersection. This coupling is caused by the radiative interference between subradiant and superradiant resulting in Fano resonance. These results show how nanostructure arrangement design, gap adjustment, and polarization control can be used to achieve high field enhancements. PMID:24182070

  1. Significant metal enhanced fluorescence of Ag2S quantum dots in the second near-infrared window

    NASA Astrophysics Data System (ADS)

    Theodorou, I. G.; Jawad, Z. A. R.; Qin, H.; Aboagye, E. O.; Porter, A. E.; Ryan, M. P.; Xie, F.

    2016-06-01

    The amplification of light in NIR-II from Ag2S QDs via metal enhanced fluorescence (MEF) is reported for the first time. Significant fluorescence enhancement of over 100 times for Ag2S QDs deposited on Au-nanostructured arrays, paves the way for novel sensing and imaging applications based on Ag2S QDs, with improved detection sensitivity and contrast enhancement.The amplification of light in NIR-II from Ag2S QDs via metal enhanced fluorescence (MEF) is reported for the first time. Significant fluorescence enhancement of over 100 times for Ag2S QDs deposited on Au-nanostructured arrays, paves the way for novel sensing and imaging applications based on Ag2S QDs, with improved detection sensitivity and contrast enhancement. Electronic supplementary information (ESI) available: Detailed description of experimental methods. See DOI: 10.1039/c6nr03220f

  2. Quantum Electronic Transport of Topological Surface States in β-Ag2Se Nanowire.

    PubMed

    Kim, Jihwan; Hwang, Ahreum; Lee, Sang-Hoon; Jhi, Seung-Hoon; Lee, Sunghun; Park, Yun Chang; Kim, Si-In; Kim, Hong-Seok; Doh, Yong-Joo; Kim, Jinhee; Kim, Bongsoo

    2016-04-26

    Single-crystalline β-Ag2Se nanostructures, a new class of 3D topological insulators (TIs), were synthesized using the chemical vapor transport method. The topological surface states were verified by measuring electronic transport properties including the weak antilocalization effect, Aharonov-Bohm oscillations, and Shubnikov-de Haas oscillations. First-principles band calculations revealed that the band inversion in β-Ag2Se is caused by strong spin-orbit coupling and Ag-Se bonding hybridization. These investigations provide evidence of nontrivial surface state about β-Ag2Se TIs that have anisotropic Dirac cones. PMID:27018892

  3. Supramolecular PEGylated Dendritic Systems as pH/Redox Dual-Responsive Theranostic Nanoplatforms for Platinum Drug Delivery and NIR Imaging

    PubMed Central

    Li, Yunkun; Li, Yachao; Zhang, Xiao; Xu, Xianghui; Zhang, Zhijun; Hu, Cheng; He, Yiyan; Gu, Zhongwei

    2016-01-01

    Recently, self-assembling small dendrimers into supramolecular dendritic systems offers an alternative strategy to develop multifunctional nanoplatforms for biomedical applications. We herein report a dual-responsive supramolecular PEGylated dendritic system for efficient platinum-based drug delivery and near-infrared (NIR) tracking. With a refined molecular/supramolecular engineering, supramolecular dendritic systems were stabilized by bioreducible disulfide bonds and endowed with NIR fluorescence probes, and PEGylated platinum derivatives coordinated onto the abundant peripheral groups of supramolecular dendritic templates to generate pH/redox dual-responsive theranostic supramolecular PEGylated dendritic systems (TSPDSs). TSPDSs markedly improved the pharmacokinetics and biodistribution of platinum-based drugs, owing to their stable nanostructures and PEGylated shells during the blood circulation. Tumor intracellular environment (low pH value and high glutathione concentration) could trigger the rapid disintegration of TSPDSs due to acid-labile coordination bonds and redox-cleavable disulfide linkages, and then platinum-based drugs were delivered into the nuclei to exert antitumor activity. In vivo antitumor treatments indicated TSPDSs not only provided high antitumor efficiency which was comparable to clinical cisplatin, but also reduced renal toxicity of platinum-based drugs. Moreover, NIR fluorescence of TSPDSs successfully visualized in vitro and in vivo fate of nanoplatforms and disclosed the intracellular platinum delivery and pharmacokinetics. These results confirm tailor-made supramolecular dendritic system with sophisticated nanostructure and excellent performance is a promising candidate as smart theranostic nanoplatforms. PMID:27375780

  4. Recycled diesel carbon nanoparticles for nanostructured battery anodes

    NASA Astrophysics Data System (ADS)

    Chen, Yuming; Liu, Chang; Sun, Xiaoxuan; Ye, Han; Cheung, Chunshun; Zhou, Limin

    2015-02-01

    Considerable attention has been devoted to using rational nanostructure design to address critical carbonaceous anode material issues for next-generation lithium-ion batteries (LIBs). However, the fabrication of nanostructured carbonaceous anode materials often involves complex processes and expensive starting materials. Diesel engine is an important source of nanostructured carbon particles with diameters ranging 20 nm-60 nm suspended in air, resulting in a serious scourge of global climate and a series of diseases such as lung cancer, asthma, and cardiovascular disease. Here, we show that diesel carbon nanoparticles collected from diesel engines can be chemically activated to create a porous structure. The resulting nanostructured carbon electrodes have a high specific capacity of 936 mAh g-1 after 40 cycles at 0.05 A/g, and excellent cycle stability while retaining a capacity of ∼210 mAh g-1 after 1200 cycles at 5 A/g. As recycled diesel carbon nanoparticles are readily available due to the several billion tons of diesel fuel consumed every year by diesel engines, their use represents an exciting source for nanostructured carbonaceous anode materials for high-performance LIBs and improves our environment and health.

  5. Enhanced Near-Infrared Fluorescence from Dye-Doped Core-Shell Ag/SiO2 Nanowires

    NASA Astrophysics Data System (ADS)

    Li, Min; Zhou, Zhang-Kai; Zhai, Yue-Ying; Song, Hao; Zhang, Zong-Suo; Li, Xing; Yu, Xue-Feng

    We have studied the increase of the radiative decay rate of heptamethine cyanine NIR laser dye within core-shell Ag/SiO2 nanowires. The photoluminescence intensity and lifetime of the heptamethine cyanine dye are affected by the Ag nanowires. Both the photoluminescence intensity and the decay rate of the heptamethine cyanine dye are greatly enhanced by the Ag nanostructures and are caused by the interactions between the excited-state fluorophore and the local electric field near the metal particles.

  6. Significant metal enhanced fluorescence of Ag2S quantum dots in the second near-infrared window.

    PubMed

    Theodorou, I G; Jawad, Z A R; Qin, H; Aboagye, E O; Porter, A E; Ryan, M P; Xie, F

    2016-07-14

    The amplification of light in NIR-II from Ag2S QDs via metal enhanced fluorescence (MEF) is reported for the first time. Significant fluorescence enhancement of over 100 times for Ag2S QDs deposited on Au-nanostructured arrays, paves the way for novel sensing and imaging applications based on Ag2S QDs, with improved detection sensitivity and contrast enhancement. PMID:27314986

  7. Properties of silver nanostructure-coated PTFE and its biocompatibility

    NASA Astrophysics Data System (ADS)

    Siegel, Jakub; Polívková, Markéta; Kasálková, Nikola Slepičková; Kolská, Zdeňka; Švorčík, Václav

    2013-09-01

    Silver nanolayers were sputtered on polytetrafluoroethylene (PTFE) and subsequently transformed into discrete nanoislands by thermal annealing. The Ag/PTFE composites prepared under different conditions were characterized by several complementary methods (goniometry, UV-visible spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy), and new data on the mechanism of Ag layer growth and Ag atom clustering under annealing were obtained. Biocompatibility of selected Ag/PTFE composites was studied in vitro using vascular smooth muscle cell (VSMC) cultures. Despite of the well-known inhibitory properties of silver nanostructures towards broad spectrum of bacterial strains and cells, it was found that very thin silver coating stimulates both adhesion and proliferation of VSMCs.

  8. Properties of silver nanostructure-coated PTFE and its biocompatibility

    PubMed Central

    2013-01-01

    Silver nanolayers were sputtered on polytetrafluoroethylene (PTFE) and subsequently transformed into discrete nanoislands by thermal annealing. The Ag/PTFE composites prepared under different conditions were characterized by several complementary methods (goniometry, UV-visible spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy), and new data on the mechanism of Ag layer growth and Ag atom clustering under annealing were obtained. Biocompatibility of selected Ag/PTFE composites was studied in vitro using vascular smooth muscle cell (VSMC) cultures. Despite of the well-known inhibitory properties of silver nanostructures towards broad spectrum of bacterial strains and cells, it was found that very thin silver coating stimulates both adhesion and proliferation of VSMCs. PMID:24044426

  9. Microtubule nucleation and organization in dendrites.

    PubMed

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W

    2016-07-01

    Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  10. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  11. Controlled synthesis of silver nanostructures stabilized by fluorescent polyarylene ether nitrile

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Shou, Hongguo; Wang, Pan; Zhou, Xuefei; Liu, Xiaobo

    2016-07-01

    In this work, the intrinsically fluorescent polyarylene ether nitrile (PEN) was explored to realize the controlled synthesis of fluorescent silver nanostructures with different morphology for the first time. Specifically, it was found that silver nitrate (AgNO3) can be effectively reduced to silver nanoparticles using PEN as both reducing and surface capping agents in N, N-dimethylformamide (DMF). More interestingly, the morphology of obtained fluorescent silver nanostructures can be tuned from nanospheres to nanorods by simple variation of reaction time at 130 °C using a relative PEN:AgNO3 molar concentration ratio of 1:8. Meanwhile, the obtained Ag nanostructures exhibited both localized surface plasmon resonance (LSPR) band and fluorescent emission around 420 nm, which would find potential applications in biochemical sensing and optical devices fields.

  12. Method of inhibiting dislocation generation in silicon dendritic webs

    DOEpatents

    Spitznagel, John A.; Seidensticker, Raymond G.; McHugh, James P.

    1990-11-20

    A method of tailoring the heat balance of the outer edge of the dendrites adjacent the meniscus to produce thinner, smoother dendrites, which have substantially less dislocation sources contiguous with the dendrites, by changing the view factor to reduce radiation cooling or by irradiating the dendrites with light from a quartz lamp or a laser to raise the temperature of the dendrites.

  13. Bimetallic core/shell nanoparticle-decorated 3D urchin-like hierarchical TiO2 nanostructures with magneto-responsive and decolorization characteristics

    NASA Astrophysics Data System (ADS)

    Xiang, Liqin; Liu, Shuo; Yin, Jianbo; Zhao, Xiaopeng

    2015-02-01

    The semiconductors decorated with noble metals or magnetic metals have attracted increasing attention due to multifunctional properties. In this article, we prepare novel bimetallic core/shell nanoparticle (Co@Au and Co@Ag)-decorated 3D urchin-like hierarchical TiO2 nanostructures through combining electroless plating and in situ replacement processes. The morphology and structure are characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, and a surface area analyzer. It demonstrates that Co@Au and Co@Ag nanoparticles are uniformly decorated on urchin-like TiO2 nanostructures. The composite nanostructures show not only surface plasmon absorption band from Au or Ag but also a magneto-responsive characteristic from Co. This allows composite nanostructures to exhibit advantages including enhanced decolorization efficiency compared to pure TiO2 nanostructures and facile separation from a solution by magnetic field.

  14. “Re-growth Etching” to Large-sized Porous Gold Nanostructures

    PubMed Central

    Li, Wenzheng; Kuai, Long; Chen, Lu; Geng, Baoyou

    2013-01-01

    A new method, named “re-growth etching”, which introduces a unique etchant “AuI”, has been developed to fabricate large-sized porous gold nanostructures. The size of nanostructures and the number of pores can be regulated by the molar ratio of Ag and Au in the precursor. We have evaluated their performance by a model reaction of the reduction of 4-nitrophenol. The catalytic property of porous Au from Ag67.6Au32.4 (Sample 3) is higher than those of other obtained products, which are mainly attributed to its hollows-interior, porous-exterior, and the large amount of Au. The method for the large-sized porous metal nanostructures has been established for the first time and shows the potential of this route to expand the scope of fabricating porous metal nanostructures. PMID:23921558

  15. Thermosolutal convection during dendritic solidification

    NASA Technical Reports Server (NTRS)

    Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.

    1989-01-01

    This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.

  16. AGS experiments - 1994, 1995, 1996

    SciTech Connect

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here.

  17. Annealing kinetics of electrodeposited lithium dendrites.

    PubMed

    Aryanfar, Asghar; Cheng, Tao; Colussi, Agustin J; Merinov, Boris V; Goddard, William A; Hoffmann, Michael R

    2015-10-01

    The densifying kinetics of lithium dendrites is characterized with effective activation energy of Ea ≈ 6 - 7 kcal mol(-1) in our experiments and molecular dynamics computations. We show that heating lithium dendrites for 55 °C reduces the representative dendrites length λ¯(T,t) up to 36%. NVT reactive force field simulations on three-dimensional glass phase dendrites produced by our coarse grained Monte Carlo method reveal that for any given initial dendrite morphology, there is a unique stable atomic arrangement for a certain range of temperature, combined with rapid morphological transition (∼10 ps) within quasi-stable states involving concurrent bulk and surface diffusions. Our results are useful for predicting the inherent structural characteristics of lithium dendrites such as dominant coordination number. PMID:26450322

  18. Dendritic Ion Channel Trafficking and Plasticity

    PubMed Central

    Shah, Mala M.; Hammond, Rebecca S.; Hoffman, Dax

    2010-01-01

    Dendrites, the elaborate processes emerging from neuronal cell bodies, receive most excitatory synaptic inputs. Voltage- and calcium-gated ion channels are abundant in dendrites and modify the shape, propagation and integration of synaptic signals. These ion channels also determine intrinsic dendritic excitability and are therfore important for the induction and manifestation of Hebbian and non-Hebbian plasticity. Revealingly, dendritic channels have distinct expression patterns and biophysical properties from those present in other neuronal compartments. Recent evidence suggests that dendritic ion channels are locally regulated, perhaps contributing to different forms of plasticity. In this review, we will discuss the implications of regulating dendritic ion channel function and trafficking in the context of plasticity and information processing. PMID:20363038

  19. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites.

    PubMed

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-01-01

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively. PMID:26988796

  20. Ion channels modulating mouse dendritic cell functions.

    PubMed

    Matzner, Nicole; Zemtsova, Irina M; Nguyen, Thi Xuan; Duszenko, Michael; Shumilina, Ekaterina; Lang, Florian

    2008-11-15

    Ca(2+)-mediated signal transduction pathways play a central regulatory role in dendritic cell (DC) responses to diverse Ags. However, the mechanisms leading to increased [Ca(2+)](i) upon DC activation remained ill-defined. In the present study, LPS treatment (100 ng/ml) of mouse DCs resulted in a rapid increase in [Ca(2+)](i), which was due to Ca(2+) release from intracellular stores and influx of extracellular Ca(2+) across the cell membrane. In whole-cell voltage-clamp experiments, LPS-induced currents exhibited properties similar to the currents through the Ca(2+) release-activated Ca(2+) channels (CRAC). These currents were highly selective for Ca(2+), exhibited a prominent inward rectification of the current-voltage relationship, and showed an anomalous mole fraction and a fast Ca(2+)-dependent inactivation. In addition, the LPS-induced increase of [Ca(2+)](i) was sensitive to margatoxin and ICAGEN-4, both inhibitors of voltage-gated K(+) (Kv) channels Kv1.3 and Kv1.5, respectively. MHC class II expression, CCL21-dependent migration, and TNF-alpha and IL-6 production decreased, whereas phagocytic capacity increased in LPS-stimulated DCs in the presence of both Kv channel inhibitors as well as the I(CRAC) inhibitor SKF-96365. Taken together, our results demonstrate that Ca(2+) influx in LPS-stimulated DCs occurs via Ca(2+) release-activated Ca(2+) channels, is sensitive to Kv channel activity, and is in turn critically important for DC maturation and functions. PMID:18981098

  1. Isothermal dendritic growth - A low gravity experiment

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Winsa, E.

    1987-01-01

    The Isothermal Dendritic Growth Experiment has been designed to test dendritic growth theory at low undercoolings, under microgravity conditions in the Space Shuttle Cargo Bay-borne Material Science Laboratory. The experiment will be essentially autonomous, although limited in-flight interaction through a computer interface is planned. A crystal growth chamber able to yield oriented single-crystal dendritic growth will be incorporated; 'seeding' the chamber with a crystal of the requisite orientation will not in itself meet this requirement.

  2. Precipitation dendrites in turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Angheluta, Luiza; Hawkins, Christopher; Hammer, Øyvind; Jamtveit, Bjørn

    2013-04-01

    Surface precipitation in pipelines, as well as freezing in water pipes is of great concern in many industrial applications where scaling phenomena becomes a control problem of pipe-clogging or an efficiency reduction in transport. Flow blockage often occurs even when only a small fraction is deposited non-uniformly on the walls in the form of dendrites. Dendritic patterns are commonly encountered in surface precipitation from supersaturated solutions, e.g. calcite dendrites, as well as in solidification from undercooled liquids, e.g. freezing of water into ice dendrites. We explore the mathematical similarities between precipitation and freezing processes and, in particular, investigate the effect of fluid flow on the precipitation dendrites on pipe walls. We use a phase field approach to model surface growth coupled with a lattice Boltzmann method that simulates a channel flow at varying Reynolds number. The dendrites orientation and shape depend non-trivially on the ratio between advection and diffusion, i.e. the Peclet number, as well as the Reynolds number. Roughness induced vortices near growing dendrites at high flow rates further affect the branch splitting of dendrites. We show how the transport rate in a pipeline may depend on the different dendritic morphologies, and provide estimates for the flow conditions that correspond to most efficient transport regimes.

  3. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1993-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator, such as porous polypropylene, adjacent to the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator, such as polytetrafluoroethylene, that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  4. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator such as porous polypropylene adjacent the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator such as polytetrafluoroethylene that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  5. Hierarchical assembly of diphenylalanine into dendritic nanoarchitectures.

    PubMed

    Han, Tae Hee; Oh, Jun Kyun; Lee, Gyoung-Ja; Pyun, Su-Il; Kim, Sang Ouk

    2010-09-01

    Highly ordered, multi-dimensional dendritic nanoarchitectures were created via self-assembly of diphenylalanine from an acidic buffer solution. The self-similarity of dendritic structures was characterized by examining their fractal dimensions with the box-counting method. The fractal dimension was determined to be 1.7, which demonstrates the fractal dimension of structures generated by diffusion limited aggregation on a two-dimensional substrate surface. By confining the dendritic assembly of diphenylalanine within PDMS microchannels, the self-similar dendritic growth could be hierarchically directed to create linearly assembled nanoarchitectures. Our approach offers a novel pathway for creating and directing hierarchical nanoarchitecture from biomolecular assembly. PMID:20605423

  6. Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt-Cu nanocrystals catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Xia; Zhou, Hui-Jing; Sun, Ping-Chuan; Chen, Tie-Hong

    2014-01-01

    PtCux (x = 1, 2 and 3) bimetallic nanocrystals with concave surface and dendritic morphology were prepared and used as electrocatalysts in methanol oxidation reaction (MOR) for polymer electrolyte membrane fuel cells. The bimetallic nanocrystals were synthesized via one-pot co-reduction of H2PtCl6 and Cu(acac)2 by oleylamine and polyvinyl pyrrolidone (PVP) in an autoclave at 180 °C. The concave dendritic bimetallic nanostructure consisted of a core rich in Cu and nanodendrites rich in Pt, which was formed via galvanic replacement of Cu by Pt. It was found that PVP played an important role in initiating, facilitating, and directing the replacement reaction. The electrochemical properties of the PtCux were characterized by cyclic voltammetry (CV) and chronoamperometry (CA). The concave dendritic PtCu2/C nanocrystals exhibited exceptionally high activity and strong poisoning resistance in MOR. At 0.75 V (vs. reversible hydrogen electrode, RHE) the mass activity and specific activity of PtCu2/C were 3.3 and 4.1 times higher than those of the commercial Pt/C catalysts, respectively. The enhanced catalytic activity could be attributed to the unique concave dendritic morphology of the bimetallic nanocrystals.

  7. Photostability of gold nanoparticles with different shapes: the role of Ag clusters.

    PubMed

    Attia, Yasser A; Buceta, David; Requejo, Félix G; Giovanetti, Lisandro J; López-Quintela, M Arturo

    2015-07-14

    Anisotropic gold nanostructures prepared by the seed method in the presence of Ag ions have been used to study their photostability to low-power UV irradiation (254 nm) at room temperature. It has been observed that, whereas spheres are very stable to photoirradiation, rods and prisms suffer from photocorrosion and finally dissolve completely with the production of Au(III) ions. Interpretation of these differences is based on the presence of semiconductor-like Ag clusters, adsorbed onto rods and prisms, able to photocorrode the Au nanoparticles, which are absent in the case of Au spheres. We further show direct evidence of the presence of Ag clusters in Au nanorods by XANES. These results confirm a previous hypothesis (J. Am. Chem. Soc., 2014, 136, 1182-1185) about the major influence of very stable small Ag clusters, not only on the anisotropic formation of nanostructures but also on their photostability. PMID:26068070

  8. Reproducible and recyclable SERS substrates: Flower-like Ag structures with concave surfaces formed by electrodeposition

    NASA Astrophysics Data System (ADS)

    Bian, Juncao; Shu, Shiwei; Li, Jianfu; Huang, Chao; Li, Yang Yang; Zhang, Rui-Qin

    2015-04-01

    Direct synthesis of three-dimensional Ag structures on solid substrates for the purposes of producing reproducible and recyclable surface-enhanced Raman scattering (SERS) applications remains challenging. In this work, flower-like Ag structures with concave surfaces (FACS) were successfully electrodeposited onto ITO glass using the double-potentiostatic method. The FACS, with an enhancement factor of the order of 108, exhibited a SERS signal intensity 3.3 times stronger than that measured from Ag nanostructures without concave surfaces. A cleaning procedure involving lengthy immersion of the sample in ethanol and KNO3 was proposed to recycle the substrate and confirmed by using rhodamine 6G, adenine, and 4-aminothiophenol as target molecules. The findings can help to advance the practical applications of Ag nanostructure-based SERS substrates.

  9. Fabrication of shape controlled Fe{sub 3}O{sub 4} nanostructure

    SciTech Connect

    Zheng, Y.Y.; Wang, X.B.; Shang, L.; Li, C.R.; Cui, C.; Dong, W.J.; Tang, W.H.; Chen, B.Y.

    2010-04-15

    Shape-controlled Fe{sub 3}O{sub 4} nanostructure has been successfully prepared using polyethylene glycol as template in a water system at room temperature. Different morphologies of Fe{sub 3}O{sub 4} nanostructures, including spherical, cubic, rod-like, and dendritic nanostructure, were obtained by carefully controlling the concentration of the Fe{sup 3+}, Fe{sup 2+}, and the molecular weight of the polyethylene glycol. Transmission Electron Microscope images, X-ray powder diffraction patterns and magnetic properties were used to characterize the final product. This easy procedure for Fe{sub 3}O{sub 4} nanostructure fabrication offers the possibility of a generalized approach to the production of single and complex nanocrystalline oxide with tunable morphology.

  10. ZnO nanostructures growth with silver catalyst—Effect of annealing

    NASA Astrophysics Data System (ADS)

    Panda, S. K.; Jacob, C.

    2009-03-01

    Zinc oxide (ZnO) nanostructures have been grown on both the as-deposited silver thin-film templates over silicon substrates and annealed silver thin-film templates on silicon substrates. ZnO was grown by evaporation of metallic zinc over the silver templates followed by thermal annealing in air. Sword-like ZnO nanostructures grew densely throughout the surface of the annealed silver template sample. A small number of ZnO swords embedded in a porous surface were found for the as-deposited silver template sample. It is observed that the annealing treatment of the Ag thin-film is the key factor in controlling the formation of ZnO nanostructures. XRD study shows that the nanostructures have very good crystallinity and have the hexagonal wurtzite ZnO structure. The room-temperature photoluminescence spectrum indicates that the nanostructures grown on annealed Ag template are less defective and have high optical quality. On the other hand, a very weak UV emission peak and the blue emission doublet band reveal that the ZnO sample grown on the as-deposited silver template are highly defective. The micro-Raman spectra of the ZnO nanostructures grown on both types of Ag templates show enhanced Raman scattering which is related to surface enhanced Raman scattering (SERS).

  11. Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Duchamp, Martial; Gonzalez, Edgar; Bastus, Neus G.; Houben, Lothar; Dunin-Borkowski, Rafal; Puntes, Victor F.; Arbiol, Jordi

    2016-03-01

    Complex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.

  12. Nucleation engineered growth/formation of core-shell and hollow metal nanostructures

    NASA Astrophysics Data System (ADS)

    Nehra, Kamalesh; Verma, Manoj; Kumar, P. Senthil

    2016-05-01

    Herein, we present a simple yet versatile single step aqueous synthesis procedure for precisely controlling the formation of hollow as well as core-shell metal nanostructures. Modern refined Turkevich protocol has been effectively utilized so as to mechanistically understand the step-by-step autocatalytic process in the monodisperse synthesis of such exotic shaped metal nanostructures. Au core with Ag shell nanoparticles were optimized by the careful addition of Ag+ ions to the pristine gold nanoparticles, the negative charge on which efficiently attracts the Ag+-cations towards their surface and simultaneously reducing them, thereby consolidating the thin shell formation with ease. The shell thickness could as well be tuned by either changing the metal seed or cation concentration. Hollow Au nanostructures were obtained by the inverse addition of Au3+-anions to the as-prepared Ag nanoparticles, thus initiating the galvanic replacement process, wherein the concurrent oxidation of Ag0 and reduction of Au3+ takes place in a cohesive manner, resulting in the final etched nanoring / porous like morphology. The structure-property functional relationship of these artificial metal nanostructures were systematically studied utilizing optical absorption and microscopy techniques.

  13. Lattice-Directed Formation of Covalent and Organometallic Molecular Wires by Terminal Alkynes on Ag Surfaces.

    PubMed

    Liu, Jing; Chen, Qiwei; Xiao, Lianghong; Shang, Jian; Zhou, Xiong; Zhang, Yajie; Wang, Yongfeng; Shao, Xiang; Li, Jianlong; Chen, Wei; Xu, Guo Qin; Tang, Hao; Zhao, Dahui; Wu, Kai

    2015-06-23

    Surface reactions of 2,5-diethynyl-1,4-bis(phenylethynyl)benzene on Ag(111), Ag(110), and Ag(100) were systematically explored and scrutinized by scanning tunneling microscopy, molecular mechanics simulations, and density functional theory calculations. On Ag(111), Glaser coupling reaction became dominant, yielding one-dimensional molecular wires formed by covalent bonds. On Ag(110) and Ag(100), however, the terminal alkynes reacted with surface metal atoms, leading to one-dimensional organometallic nanostructures. Detailed experimental and theoretical analyses revealed that such a lattice dependence of the terminal alkyne reaction at surfaces originated from the matching degree between the periodicities of the produced molecular wires and the substrate lattice structures. PMID:25990647

  14. Structural, thermal and magnetic investigations on immiscible Ag-Co nanocrystalline alloy with addition of Mn

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Chabri, S.; Sardar, G.; Nath, D. N.; Chattopadhyay, P. P.

    2016-08-01

    50Ag-50Co (at%) and 40Ag-40Co-20Mn (at%) alloys prepared by ball milling up to 50 h and subsequent isothermal annealing at the temperature range of 350-650 °C for 1 h has been investigated systematically. Mn promotes early formation of the nanostructures and solid solutions of the alloys by ball milling. In contrast, annealing at 350 °C of Ag-Co alloy resulted the dissolution of hcp Co. Annealing above 350 °C decomposes the metastable Ag-Co alloy into the polycrystalline and segregated Ag and fcc Co. Enthalpy of mixing of both the alloy has increased with increase in milling time. Both the nanocrystalline alloys prepared by ball milling and annealing have been revealed the ferromagnetic behavior. The most significant improvement of magnetic properties is yielded in as-milled Ag-Co-Mn alloy obtained after annealing at 550 °C for 1 h.

  15. Surfactant free most probable TiO2 nanostructures via hydrothermal and its dye sensitized solar cell properties

    PubMed Central

    Mali, Sawanta S.; Kim, Hyungjin; Shim, Chang Su; Patil, Pramod S.; Kim, Jin Hyeok; Hong, Chang Kook

    2013-01-01

    Tailoring the nano-morphology and nano-architecture of titanium dioxide (TiO2) is the most important task in the third generation solar cells (Dye sensitized solar cells/Quantum dot sensitized solar cells) (DSSCs/QDSSCs). In this article we present complete study of surfactant free synthesis of TiO2 nanostructures by a simple and promising hydrothermal route. The plethora of nanostructures like nanoparticles clusters, 1D tetragonal nanorods, 3D dendrites containing nanorods having <30 nm diameter and 3D hollow urchin like have been synthesized. These nanostructures possess effective large surface area and thus useful in DSSCs. In the present work, 7.16% power conversion efficiency has been demonstrated for 3D dendritic hollow urchin like morphology. Our synthetic strategy provides an effective solution for surfactant free synthesis of efficient TiO2 nanoarchitectures. PMID:24141599

  16. Mode of dendrite growth in undercooled alloy melts

    SciTech Connect

    Li, J.; Yang, G.; Zhou, Y.

    1998-01-01

    The mode of dendrite growth in the undercooled Ni-50 at% Cu alloy was investigated. At lower undercoolings, the dendrite growth is mainly controlled by solute diffusion, and the formed dendritic morphologies are similar to those of the conventional as-cast equiaxed crystals, except that here the branches are much denser. At higher undercoolings, however, the severe solutal trapping that results from high dendrite growth velocity weakens the effect of solute diffusion on the dendrite growth. In this case, the dendrites branch in the bunching form. The dendrite spacings were measured, and the results were interpreted with the current dendrite growth theories.

  17. Site-Selective Trimetallic Heterogeneous Nanostructures for Enhanced Electrocatalytic Performance.

    PubMed

    Xie, Xiaobin; Gao, Guanhui; Kang, Shendong; Shibayama, Tamaki; Lei, Yanhua; Gao, Duyang; Cai, Lintao

    2015-10-01

    Trimetallic Au/Ag/Pt hetero-nanostructures (AAPHNs) with distinctive, designed morphology are synthesized by galvanic replacement reaction and a site-selective strategy. The three metals present on the surface are shown to act synergistically to enhance the electro-catalytic performance and durability for methanol oxidation. The described structural modification of the nanocomposites increases the range of potential applications to include both the oxygen reduction reaction in fuel cells and photocatalysis of the hydrogen evolution reaction. PMID:26305161

  18. Nanoengineering a library of metallic nanostructures using a single microfluidic reactor.

    PubMed

    Sebastián, Víctor; Jensen, Klavs F

    2016-08-18

    Microfluidic synthesis in a microfabricated reactor enables fast and facile synthesis of a wide library of metallic nanostructures: monometallic, bimetallic, anisotropic growth and heterostructures. Specific nanostructures are realized by selection of flow pattern and synthesis parameters. The technique is shown to have advantages over conventional batch technologies. Not only does it allow faster scalable synthesis, but also realization of nanostructures hitherto not reported such as Pt-Ru, Pt-Ni and Pt-Co nanodendrites, Pt-Pd heterostructures, Ag-Pd core-shell NPs, Au-Pd nanodumbbells and Au-Pd nanosheets. PMID:27500728

  19. A detailed approach to study the antibacterial mechanisms of nanostructure

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Fang, Xuan; Li, Jinhua; Wei, Zhipeng; Wang, Xin; Wang, Xiaohua

    2012-03-01

    To overcome the limitations of the conventional inhibition method for mechanism study, here we developed a combined CLSM technique as an alternative approach to evaluate and explain the antibacterial process of nanostructure at single cell level. Three different nanostructures (dumbbell-shaped ZnO, rod-shaped ZnO and ZnO/Ag composites) were examined here as a model system. Their antibacterial processes against Escherichia coli (E. coli) were quantitatively studied in detail. According to the obtained time-dependent mean fluorescence intensity (MFI) decay dynamics, an interesting two-step cellular disruption process was observed and discussed for the first time. The combined CLSM technique described here is superior to standard growth method for they can provide a more detailed and reliable description of cell-nanostructure interactions.

  20. Organic phase synthesis of noble metal-zinc chalcogenide core-shell nanostructures.

    PubMed

    Kumar, Prashant; Diab, Mahmud; Flomin, Kobi; Rukenstein, Pazit; Mokari, Taleb

    2016-10-15

    Multi-component nanostructures have been attracting tremendous attention due to their ability to form novel materials with unique chemical, optical and physical properties. Development of hybrid nanostructures that are composed of metal-semiconductor components using a simple approach is of interest. Herein, we report a robust and general organic phase synthesis of metal (Au or Ag)-Zinc chalcogenide (ZnS or ZnSe) core-shell nanostructures. This synthetic protocol also enabled the growth of more compositionally complex nanostructures of Au-ZnSxSe1-x alloys and Au-ZnS-ZnSe core-shell-shell. The optical and structural properties of these hybrid nanostructures are also presented. PMID:27428852

  1. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.

    PubMed

    Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen

    2015-08-12

    Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples. PMID:26186260

  2. Early events in axon/dendrite polarization.

    PubMed

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure. PMID:22715881

  3. Vertical solidification of dendritic binary alloys

    NASA Technical Reports Server (NTRS)

    Heinrich, J. C.; Felicelli, S.; Poirier, D. R.

    1991-01-01

    Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.

  4. Targeting Dendritic Cell Function during Systemic Autoimmunity to Restore Tolerance

    PubMed Central

    Mackern-Oberti, Juan P.; Vega, Fabián; Llanos, Carolina; Bueno, Susan M.; Kalergis, Alexis M.

    2014-01-01

    Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs) play a major role in promoting immune tolerance against self-antigens (self-Ags), current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs) during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders. PMID:25229821

  5. Targeting dendritic cell function during systemic autoimmunity to restore tolerance.

    PubMed

    Mackern-Oberti, Juan P; Vega, Fabián; Llanos, Carolina; Bueno, Susan M; Kalergis, Alexis M

    2014-01-01

    Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs) play a major role in promoting immune tolerance against self-antigens (self-Ags), current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs) during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders. PMID:25229821

  6. Fascin1 promotes cell migration of mature dendritic cells.

    PubMed

    Yamakita, Yoshihiko; Matsumura, Fumio; Lipscomb, Michael W; Chou, Po-chien; Werlen, Guy; Burkhardt, Janis K; Yamashiro, Shigeko

    2011-03-01

    Dendritic cells (DCs) play central roles in innate and adaptive immunity. Upon maturation, DCs assemble numerous veil-like membrane protrusions, disassemble podosomes, and travel from the peripheral tissues to lymph nodes to present Ags to T cells. These alterations in morphology and motility are closely linked to the primary function of DCs, Ag presentation. However, it is unclear how and what cytoskeletal proteins control maturation-associated alterations, in particular, the change in cell migration. Fascin1, an actin-bundling protein, is specifically and greatly induced upon maturation, suggesting a unique role for fascin1 in mature DCs. To determine the physiological roles of fascin1, we characterized bone marrow-derived, mature DCs from fascin1 knockout mice. We found that fascin1 is critical for cell migration: fascin1-null DCs exhibit severely decreased membrane protrusive activity. Importantly, fascin1-null DCs have lower chemotactic activity toward CCL19 (a chemokine for mature DCs) in vitro, and in vivo, Langerhans cells show reduced emigration into draining lymph nodes. Morphologically, fascin1-null mature DCs are flatter and fail to disassemble podosomes, a specialized structure for cell-matrix adhesion. Expression of exogenous fascin1 in fascin1-null DCs rescues the defects in membrane protrusive activity, as well as in podosome disassembly. These results indicate that fascin1 positively regulates migration of mature DCs into lymph nodes, most likely by increasing dynamics of membrane protrusions, as well as by disassembling podosomes. PMID:21263068

  7. Engineering crystals of dendritic molecules.

    PubMed

    Lukin, Oleg; Schubert, Dirk; Müller, Claudia M; Schweizer, W Bernd; Gramlich, Volker; Schneider, Julian; Dolgonos, Grygoriy; Shivanyuk, Alexander

    2009-07-01

    A detailed single-crystal X-ray study of conformationally flexible sulfonimide-based dendritic molecules with systematically varied molecular architectures was undertaken. Thirteen crystal structures reported in this work include 9 structures of the second-generation dendritic sulfonimides decorated with different aryl groups, 2 compounds bearing branches of both second and first generation, and 2 representatives of the first generation. Analysis of the packing patterns of 9 compounds bearing second-generation branches shows that despite their lack of strong directive functional groups there is a repeatedly reproduced intermolecular interaction mode consisting in an anchor-type packing of complementary second-generation branches of neighbouring molecules. The observed interaction tolerates a wide range of substituents in meta- and para-positions of the peripheral arylsulfonyl rings. Quantum chemical calculations of the molecule-molecule interaction energies agree at the qualitative level with the packing preferences found in the crystalline state. The calculations can therefore be used as a tool to rationalize and predict molecular structures with commensurate and non-commensurate branches for programming of different packing modes in crystal. PMID:19549870

  8. Engineering crystals of dendritic molecules

    PubMed Central

    Lukin, Oleg; Schubert, Dirk; Müller, Claudia M.; Schweizer, W. Bernd; Gramlich, Volker; Schneider, Julian; Dolgonos, Grygoriy; Shivanyuk, Alexander

    2009-01-01

    A detailed single-crystal X-ray study of conformationally flexible sulfonimide-based dendritic molecules with systematically varied molecular architectures was undertaken. Thirteen crystal structures reported in this work include 9 structures of the second-generation dendritic sulfonimides decorated with different aryl groups, 2 compounds bearing branches of both second and first generation, and 2 representatives of the first generation. Analysis of the packing patterns of 9 compounds bearing second-generation branches shows that despite their lack of strong directive functional groups there is a repeatedly reproduced intermolecular interaction mode consisting in an anchor-type packing of complementary second-generation branches of neighbouring molecules. The observed interaction tolerates a wide range of substituents in meta- and para-positions of the peripheral arylsulfonyl rings. Quantum chemical calculations of the molecule-molecule interaction energies agree at the qualitative level with the packing preferences found in the crystalline state. The calculations can therefore be used as a tool to rationalize and predict molecular structures with commensurate and non-commensurate branches for programming of different packing modes in crystal. PMID:19549870

  9. Azobenzene-aminoglycoside: Self-assembled smart amphiphilic nanostructures for drug delivery.

    PubMed

    Deka, Smriti Rekha; Yadav, Santosh; Mahato, Manohar; Sharma, Ashwani Kumar

    2015-11-01

    Here, we have designed and synthesized a novel cationic amphiphilic stimuli-responsive azobenzene-aminoglycoside (a small molecule) conjugate, Azo-AG 5, and characterized it by UV and FTIR. Light responsive nature of Azo-AG 5 was assessed under UV-vis light. Self- assembly of Azo-AG 5 in aqueous solutions into nanostructures and their ability to act as drug carrier were also investigated. The nanostructures of Azo-AG 5 showed average hydrodynamic diameter of ∼ 255 nm with aminoglycoside moiety (neomycin) and 4-dimethylaminoazobenzene forming hydrophilic shell and hydrophobic core, respectively. In the hydrophobic core, eosin and aspirin were successfully encapsulated. Dynamic light scattering (DLS) measurements demonstrated that the nanoassemblies showed expansion and contraction on successive UV and visible light irradiations exhibiting reversible on-off switch for controlling the drug release behavior. Similar behavior was observed when these nanostructures were subjected to pH-change. In vitro drug release studies showed a difference in UV and visible light-mediated release pattern. It was observed that the release rate under UV irradiation was comparatively higher than that observed under visible light. Further, azoreductase-mediated cleavage of the azo moiety in Azo-AG 5 nanoassemblies resulted in the dismantling of the structures into aggregated microstructures. Azo-AG 5 nanostructures having positive surface charge (+9.74 mV) successfully interacted with pDNA and retarded its mobility on agarose gel. Stimuli responsiveness of nanostructures and their on-off switch like behavior ensure the great potential as controlled drug delivery systems and in other biomedical applications such as colon-specific delivery and gene delivery. PMID:26255160

  10. Enhanced photoresponse of conformal TiO{sub 2}/Ag nanorod array-based Schottky photodiodes fabricated via successive glancing angle and atomic layer deposition

    SciTech Connect

    Haider, Ali; Biyikli, Necmi; Cansizoglu, Hilal; Cansizoglu, Mehmet Fatih; Karabacak, Tansel; Okyay, Ali Kemal

    2015-01-01

    In this study, the authors demonstrate a proof of concept nanostructured photodiode fabrication method via successive glancing angle deposition (GLAD) and atomic layer deposition (ALD). The fabricated metal-semiconductor nanorod (NR) arrays offer enhanced photoresponse compared to conventional planar thin-film counterparts. Silver (Ag) metallic NR arrays were deposited on Ag-film/Si templates by utilizing GLAD. Subsequently, titanium dioxide (TiO{sub 2}) was deposited conformally on Ag NRs via ALD. Scanning electron microscopy studies confirmed the successful formation of vertically aligned Ag NRs deposited via GLAD and conformal deposition of TiO{sub 2} on Ag NRs via ALD. Following the growth of TiO{sub 2} on Ag NRs, aluminum metallic top contacts were formed to complete the fabrication of NR-based Schottky photodiodes. Nanostructured devices exhibited a photo response enhancement factor of 1.49 × 10{sup 2} under a reverse bias of 3 V.

  11. Ag nanocluster functionalized glasses for efficient photonic conversion in light sources, solar cells and flexible screen monitors.

    PubMed

    Kuznetsov, A S; Tikhomirov, V K; Shestakov, M V; Moshchalkov, V V

    2013-11-01

    An ever growing demand for efficient energy conversion, for instance in luminescent lamps, flexible screens and solar cells, results in the current significant growth of research on functionalized nanomaterials for these applications. This paper reviews recent developments of a new class of optically active nanostructured materials based on glasses doped with luminescent Ag nanoclusters consisting of only a few Ag atoms, suitable for mercury-free white light generation and solar down-shifting. This new approach, based solely on Ag nanocluster doped glasses, is compared to other alternatives in the field of Ag and rare-earth ion co-doped materials. PMID:23948871

  12. Ag nanocluster functionalized glasses for efficient photonic conversion in light sources, solar cells and flexible screen monitors

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. S.; Tikhomirov, V. K.; Shestakov, M. V.; Moshchalkov, V. V.

    2013-10-01

    An ever growing demand for efficient energy conversion, for instance in luminescent lamps, flexible screens and solar cells, results in the current significant growth of research on functionalized nanomaterials for these applications. This paper reviews recent developments of a new class of optically active nanostructured materials based on glasses doped with luminescent Ag nanoclusters consisting of only a few Ag atoms, suitable for mercury-free white light generation and solar down-shifting. This new approach, based solely on Ag nanocluster doped glasses, is compared to other alternatives in the field of Ag and rare-earth ion co-doped materials.

  13. The AgNORs.

    PubMed

    Derenzini, M

    2000-04-01

    The structure and the function of interphase AgNORs and the importance of the "AgNOR" parameter in tumor pathology have been reviewed. Interphase AgNORs are structural-functional units of the nucleolus in which all the components necessary for ribosomal RNA synthesis are located. Two argyrophilic proteins involved in rRNA transcription and processing, nucleolin and nucleophosmin, are associated with interphase AgNORs and are responsible for their stainability with silver methods, thus allowing interphase AgNORs to be visulaized at light microscopic level, also in routine cyto-histopathological preparations. The number of interphase AgNORs is strictly related to rRNA transcriptional activity and, in continuously proliferating cells, to the rapidity of cell proliferation. Evaluation of the quantitative distribution of interphase AgNORs has been applied in tumor pathology both for diagnostic and prognostic purposes. The "AgNOR" parameter has been proved to represent a reliable tool for defining the clinical outcome of cancer disease, being an independent prognostic factor in many types of tumors. PMID:10588056

  14. AgRISTARS

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An introduction to the overall AgRISTARS program, a general statement on progress, and separate summaries of the activities of each project, with emphasis on the technical highlights are presented. Organizational and management information on AgRISTARS is included in the appendices, as is a complete bibliography of publication and reports.

  15. Effects of heat shock protein gp96 on human dendritic cell maturation and CTL expansion.

    PubMed

    Zhang, Yuxia; Zan, Yanlu; Shan, Ming; Liu, Changmei; Shi, Ming; Li, Wei; Zhang, Zhixin; Liu, Na; Wang, Fusheng; Zhong, Weidong; Liao, Fulian; Gao, George F; Tien, Po

    2006-06-01

    We reported previously that heat shock protein gp96 and its N-terminal fragment were able to stimulate CTL expansion specific for a HBV peptide (SYVNTNMGL) in BALB/c mice. Here we characterized the adjuvant effects of gp96 on human HLA-A2 restricted T cells. Full-length gp96 isolated from healthy human liver and recombinant fragments both from prokaryotic cells and eukaryotic cells were analyzed for their ability to stimulate maturation of human dendritic cells. It was found that in vitro these proteins were capable of maturating human monocyte-derived dendritic cells (MDDC) isolated from healthy donors as well as from HBV-positive, hepatocellular carcinoma (HCC) patients. In HLA-A2.1/Kb transgenic mice, gp96 and the recombinant fragments were found to augment CTL response specific for the HBcAg(18-27) FLPSDFFPSV peptide of hepatitis B virus. PMID:16630554

  16. Plasmon Mapping in Au@Ag Nanocube Assemblies

    PubMed Central

    2014-01-01

    Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag core–shell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles. PMID:25067991

  17. AGS experiments: 1993 - 1994 - 1995

    SciTech Connect

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition.

  18. Bioinspired chemistry: Rewiring nanostructures

    NASA Astrophysics Data System (ADS)

    Ulijn, Rein V.; Caponi, Pier-Francesco

    2010-07-01

    The cell's dynamic skeleton, a tightly regulated network of protein fibres, continues to provide inspiration for the design of synthetic nanostructures. Genetic engineering has now been used to encode non-biological functionality within these structures.

  19. Measuring Strong Nanostructures

    ScienceCinema

    Andy Minor

    2010-01-08

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  20. Measuring Strong Nanostructures

    SciTech Connect

    Andy Minor

    2008-10-16

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  1. Chemical patterning of Ag(111): Spatially confined oxide formation induced by electron beam irradiation

    SciTech Connect

    Guenther, S.; Reichelt, R.; Wintterlin, J.; Barinov, A.; Mentes, T. O.; Nino, M. A.; Locatelli, A.

    2008-12-08

    Low energy electron irradiation of a Ag(111) surface during NO{sub 2} adsorption at 300 K induces formation of Ag oxide. Using a spatially confined electron beam, small Ag{sub 2}O spots could be grown with a sharp, {approx}100 nm wide, boundary to the nonirradiated metallic surface. Since the structure size will mainly depend on the sharpness of the irradiating electron beam, this process has the potential of a single step nanostructuring process. Temperature treatment offers an easy way to manipulate the boundary between oxide and metallic silver by steering a chemical front.

  2. Fabrication of capillary-force-induced DNA-templated Ag wires assisted by enzymatic etching

    NASA Astrophysics Data System (ADS)

    Periasamy, Vengadesh; Ciniciato, Gustavo P. M. K.; Yunus, Kamran; Fisher, Adrian C.

    2015-02-01

    We report a novel scribing or “writing” method for fabricating micro- to nanoscale silver (Ag) wires on a silicon (Si) wafer using natural capillary force. The coffee-ring drying effect fueled by the capillary force allows the diffusion of Ag-loaded DNA molecules towards the edge of the scribing region, resulting in deposition along the scribed patterns. This is followed by the removal of DNA scaffolding by enzyme-assisted etching, leaving behind the Ag wire on the wafer. This technique is expected to improve the current DNA-assisted formation of metallic nanopatterns and nanostructures towards potential applications in nanoelectronics.

  3. Ag/ZnO heterostructures and their photocatalytic activity under visible light: effect of reducing medium.

    PubMed

    Liu, Yangsi; Wei, Shanghai; Gao, Wei

    2015-04-28

    Decoration of ZnO by Ag is a promising method to improve its photocatalytic activity and extend the photoreactivity to the visible light. In this paper, Ag/ZnO heterostructures have been synthesised by photoreduction in various reducing mediums. When the Ag/ZnO nanocomposite arrays were obtained in the air, only a small amount of Ag was reduced. Ag nanosheets and nanoparticles were formed in the water and attached on the top and side surfaces of ZnO nanorods, forming Ag/ZnO heterostructures with a nano(sheet-rod-particle) multi-level structure. In the mixture of water and ethanol, a large amount of Ag nanoclusters was produced and embedded in the ZnO nanorod arrays. The influence of reducing mediums on the microstructure, morphology, quantity and dispersion of Ag nanostructures was investigated; and the effect of Ag component on the optical properties and visible light driven photocatalytic behaviour of the Ag/ZnO heterostructures was discussed. PMID:25621832

  4. Architectures for Nanostructured Batteries

    NASA Astrophysics Data System (ADS)

    Rubloff, Gary

    2013-03-01

    Heterogeneous nanostructures offer profound opportunities for advancement in electrochemical energy storage, particularly with regard to power. However, their design and integration must balance ion transport, electron transport, and stability under charge/discharge cycling, involving fundamental physical, chemical and electrochemical mechanisms at nano length scales and across disparate time scales. In our group and in our DOE Energy Frontier Research Center (www.efrc.umd.edu) we have investigated single nanostructures and regular nanostructure arrays as batteries, electrochemical capacitors, and electrostatic capacitors to understand limiting mechanisms, using a variety of synthesis and characterization strategies. Primary lithiation pathways in heterogeneous nanostructures have been observed to include surface, interface, and both isotropic and anisotropic diffusion, depending on materials. Integrating current collection layers at the nano scale with active ion storage layers enhances power and can improve stability during cycling. For densely packed nanostructures as required for storage applications, we investigate both ``regular'' and ``random'' architectures consistent with transport requirements for spatial connectivity. Such configurations raise further important questions at the meso scale, such as dynamic ion and electron transport in narrow and tortuous channels, and the role of defect structures and their evolution during charge cycling. Supported as part of the Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160

  5. Cytokines Regulate Proteolysis in Major Histocompatibility Complex Class II–Dependent Antigen Presentation by Dendritic Cells

    PubMed Central

    Fiebiger, Edda; Meraner, Paul; Weber, Ekkehard; Fang, I-Fei; Stingl, Georg; Ploegh, Hidde; Maurer, Dieter

    2001-01-01

    Endo/lysosomal proteases control two key events in antigen (Ag) presentation: the degradation of protein Ag and the generation of peptide-receptive major histocompatibility complex (MHC) class II molecules. Here we show that the proinflammatory cytokines tumor necrosis factor α and interleukin (IL)-1β rapidly increase the activity of cathepsin (cat) S and catB in human dendritic cells (DCs). As a consequence, a wave of MHC class II sodium dodecyl sulfate stable dimer formation ensues in a catS-dependent fashion. In contrast, the antiinflammatory cytokine IL-10 renders DCs incapable of upregulating catS and catB activity and in fact, attenuates the level of both enzymes. Suppressed catS and catB activity delays MHC class II sodium dodecyl sulfate stable dimer formation and impairs Ag degradation. In DCs exposed to tetanus toxoid, IL-10 accordingly reduces the number of MHC class II–peptide complexes accessible to tetanus toxoid–specific T cell receptors, as analyzed by measuring T cell receptor downregulation in Ag-specific T cell clones. Thus, the control of protease activity by pro- and antiinflammatory cytokines is an essential feature of the Ag presentation properties of DCs. PMID:11304549

  6. Antigen availability determines CD8+ T cell-dendritic cell interaction kinetics and memory fate decisions

    PubMed Central

    Henrickson, Sarah E.; Stutte, Susanne; Quigley, Michael; Alexe, Gabriela; Iannacone, Matteo; Flynn, Michael P.; Omid, Shaida; Jesneck, Jonathan L.; Imam, Sabrina; Mempel, Thorsten R.; Mazo, Irina B.; Haining, William N.; von Andrian, Ulrich H.

    2014-01-01

    Summary T cells are activated by antigen (Ag) bearing dendritic cells (DCs) in lymph nodes in 3 phases. The duration of the initial phase of transient, serial DC-T cell interactions is inversely correlated with Ag dose. The second phase, characterized by stable DC-T cell contacts, is believed to be necessary for full-fledged T cell activation. Here we have shown that this is not the case. CD8+ T cells interacting with DCs presenting low-dose, short-lived Ag did not transition to phase 2, while higher Ag dose yielded phase 2 transition. Both antigenic constellations promoted T cell proliferation and effector differentiation, but yielded different transcriptome signatures at 12h and 24h. T cells that experienced phase 2 developed long-lived memory, whereas conditions without stable contacts yielded immunological amnesia. Thus, T cells make fate decisions within hours after Ag exposure resulting in long-term memory or abortive effector responses, correlating with T cell-DCs interaction kinetics. PMID:24054328

  7. In vitro enhancement of dendritic cell-mediated anti-glioma immune response by graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Zhongjun; Duan, Jinhong; Wang, Chen; Fang, Ying; Yang, Xian-Da

    2014-06-01

    Malignant glioma has extremely poor prognosis despite combination treatments with surgery, radiation, and chemotherapy. Dendritic cell (DC)-based immunotherapy may potentially serve as an adjuvant treatment of glioma, but its efficacy generally needs further improvement. Here we explored whether graphene oxide (GO) nanosheets could modulate the DC-mediated anti-glioma immune response in vitro, using the T98G human glioma cell line as the study model. Pulsing DCs with a glioma peptide antigen (Ag) generated a limited anti-glioma response compared to un-pulsed DCs. Pulsing DCs with GO alone failed to produce obvious immune modulation effects. However, stimulating DCs with a mixture of GO and Ag (GO-Ag) significantly enhanced the anti-glioma immune reaction ( p < 0.05). The secretion of interferon gamma (IFN-γ) by the lymphocytes was also markedly boosted by GO-Ag. Additionally, the anti-glioma immune response induced by GO-Ag appeared to be target-specific. Furthermore, at the concentration used in this study, GO exhibited a negligible effect on the viability of the DCs. These results suggested that GO might have potential utility for boosting a DC-mediated anti-glioma immune response.

  8. Controlling light with resonant plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    de Waele, R.

    2009-06-01

    Plasmons are collective oscillations of free electrons in a metal. At optical frequencies plasmons enable nanoscale confinement of light in metal nanostructures. This ability has given rise to many applications in e.g. photothermal cancer treatment, light trapping in photovoltaic cells, and sensing. Metal nanostructures also allow for manipulation of optical energy, providing such functionalities as guiding or redirecting light at the nanoscale. This thesis focuses on nanoscale control of light using three types of metal nanostructures: 1) arrays of coupled metal nanoparticles, 2) metal nanowires, and 3) (coupled) coaxial waveguides. Chapter 3 describes the optical behavior of a metal nanoparticle array illuminated sideways along the array axis. Confocal microscopy shows that field concentrates on just a few particles at the front or back side of the particle chain. By changing the illumination wavelength we can control which side of the chain becomes excited. In chapter 4 we discuss angle resolved transmission measurements to determine the dispersion relation of plasmon modes in Au and Ag particle arrays. Our results confirm that far-field dynamic interactions between particles are important, even for structures five times smaller than the wavelength. Taking into account dynamic interactions we calculate that the propagation length in plasmon particle arrays can be as much as 10 μm, which is an order of magnitude higher than previously estimated using quasi-electrostatic theory. In chapter 5 we show that metal nanowires behave as plasmon resonators. We use cathodoluminescence imaging spectroscopy to determine the eigenmodes in 500-1200-nm-long Au nanowires at a resolution less than 10 nm. By combining spectral and spatial information we determine the dispersion relation for plasmons confined within the metal nanowires. Chapter 6 focuses on coaxial plasmon waveguides. Optical transmission measurements on coaxial apertures in a Ag film point out that the plasmon

  9. Growth of metal and semiconductor nanostructures using localized photocatalysts

    SciTech Connect

    Shelnutt, John A; Wang, Zhongchun; Medforth, Craig J

    2006-03-08

    Our overall goal has been to understand and develop a light-driven approach to the controlled growth of novel metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures when exposed to visible light, providing metal nucleation and growth centers. The photocatalyst molecules are pre-positioned at the nanoscale to control the location of the deposition of metal and therefore the morphology of the nanostructures that are grown. Self-assembly, chemical confinement, and molecular templating are some of the methods we are using for nanoscale positioning of the photocatalyst molecules. When exposed to light, each photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition near the photocatalyst and ultimately the synthesis of new metallic nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies at Sandia National Laboratories and the University of Georgia. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled nanosynthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. Our specific goals for the past three years have been to understand the role of photocatalysis in the synthesis of dendritic metal (Pt, Pd, Au) nanostructures grown from aqueous surfactant solutions under ambient conditions and the synthesis of photocatalytic porphyrin nanostructures (e.g., nanotubes) as templates for fabrication of photo-active metal

  10. Solidification under microgravity conditions - Dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Winsa, E.

    1987-01-01

    The experimental approach and apparatus of a zero-gravity active crystal growth experiment to test dendritic growth theory at low supercoolings are discussed. The experiment consists of 20 experimental cycles. Estimates have been made as to how low gravitational accelerations would have to be reduced to observe convection-free dendritic growth at supercoolings from 0.01-1.0 K. The experiment requires temperature control of + or - 2 mK and photographic resolution of a few microns with a depth of field of + or - 6 mm. The thermostatic bath and temperature control system, photographic system, growth chamber, and dendrite detection system are described in detail.

  11. Some aspects of the electroanatomy of dendrites.

    PubMed

    Lux, H D; Schubert, P

    1975-01-01

    An understanding of the neuronal function requires the knowledge of the electroanatomy of dendrites, which comprise the major area and receive the main input in most neurons. Some simplifying assumptions are necessary to describe the electrical characteristics of the dendritic tree. The applicability of the simplified model of a combined equivalent dendritic cylinder proposed by Rall, was tested and verified by a combined analysis of anatomic and electrical data from the same spinal motoneurons. Assuming a uniform somadendritic membrane, estimates of the specific membrane resistance (RM: 2,700 +/- 920 omegacm2) were made by relating the neuronal input resistance with the combined dendritic trunk parameter (sigmaD3/2: 320 +/- 150-10(-6) CM3/2). From these combined anatomic and electrical data the dendritic electrotonic lengths (Lgeom: 1.5 +/- 0.3 times the length constant) were derived. Comparable L values (Ltrans: 1.5 +/- 0.3) resulted independently from analysis of membrane voltage transients during current steps. The linear dendritic cable model has proved its applicability for the analysis of small voltage deflections during current step applications at the soma as well as for the analysis of the majority of minimal postsynaptic potentials (PSP's). During the transmission along the dendritic cable the PSP undergoes changes in shape. These changes often permit a determination of the distance of the dendritic input from the soma. Unfortunately, the attenuation of the dendritic signal cannot be directly assessed. Dendritic synaptic transmission can be observed in isolation in chromatolytic motoneurons because the somal synapses are peeled off from the soma by proliferating glial cells in the course of retrograde reaction. These observations support the prediction that the PSP's with relatively short rise-times and duration originate from synapses near the soma. It may be questioned as to whether the linear dendritic cable approximation also applies to the larger

  12. Evidence for Eigenfrequencies in Dendritic Growth Dynamics

    NASA Astrophysics Data System (ADS)

    Lacombe, Jeffrey C.; Koss, Matthew B.; Giummarra, Cindie; Frei, Julie E.; Lupulescu, Afina O.; Glicksman, Martin E.

    Microgravity dendritic growth experiments, conducted aboard the space shuttle Columbia, are described. In-situ video images reveal that pivalic acid dendrites growing in the diffusion-controlled environment of low-earth orbit exhibit a range of transient or non-steady-state behaviors. The observed transient features of the growth process are being studied with the objective of understanding the mechanisms responsible for these behaviors. Included in these observations is possible evidence for characteristic frequencies or limit cycles in the growth behavior near the tip of the dendrites. These data, and their interpretations, will be discussed.

  13. Dendritic cells in lung immunopathology.

    PubMed

    Cook, Peter C; MacDonald, Andrew S

    2016-07-01

    Dendritic cells (DCs) lie at the heart of the innate immune system, specialised at recognising danger signals in many forms including foreign material, infection or tissue damage and initiating powerful adaptive immune and inflammatory responses. In barrier sites such as the lung, the instrumental role that DCs play at the interface between the environment and the host places them in a pivotal position in determining the severity of inflammatory disease. The past few years has seen a significant increase in our fundamental understanding of the subsets of DCs involved in pulmonary immunity, as well as the mechanisms by which they are activated and which they may use to coordinate downstream inflammation and pathology. In this review, we will summarise current understanding of the multi-faceted role that DCs play in the induction, maintenance and regulation of lung immunopathology, with an emphasis on allergic pulmonary disease. PMID:27256370

  14. Tumor Targeting, Trifunctional Dendritic Wedge

    PubMed Central

    2015-01-01

    We report in vitro and in vivo evaluation of a newly designed trifunctional theranostic agent for targeting solid tumors. This agent combines a dendritic wedge with high boron content for boron neutron capture therapy or boron MRI, a monomethine cyanine dye for visible-light fluorescent imaging, and an integrin ligand for efficient tumor targeting. We report photophysical properties of the new agent, its cellular uptake and in vitro targeting properties. Using live animal imaging and intravital microscopy (IVM) techniques, we observed a rapid accumulation of the agent and its retention for a prolonged period of time (up to 7 days) in fully established animal models of human melanoma and murine mammary adenocarcinoma. This macromolecular theranostic agent can be used for targeted delivery of high boron load into solid tumors for future applications in boron neutron capture therapy. PMID:25350602

  15. Dendritic Cell-Targeted Vaccines

    PubMed Central

    Cohn, Lillian; Delamarre, Lélia

    2014-01-01

    Despite significant effort, the development of effective vaccines inducing strong and durable T-cell responses against intracellular pathogens and cancer cells has remained a challenge. The initiation of effector CD8+ T-cell responses requires the presentation of peptides derived from internalized antigen on class I major histocompatibility complex molecules by dendritic cells (DCs) in a process called cross-presentation. A current strategy to enhance the effectiveness of vaccination is to deliver antigens directly to DCs. This is done via selective targeting of antigen using monoclonal antibodies directed against endocytic receptors on the surface of the DCs. In this review, we will discuss considerations relevant to the design of such vaccines: the existence of DC subsets with specialized functions, the impact of the antigen intracellular trafficking on cross-presentation, and the influence of maturation signals received by DCs on the outcome of the immune response. PMID:24910635

  16. Fate Mapping of Dendritic Cells

    PubMed Central

    Poltorak, Mateusz Pawel; Schraml, Barbara Ursula

    2015-01-01

    Dendritic cells (DCs) are a heterogeneous group of mononuclear phagocytes with versatile roles in immunity. They are classified predominantly based on phenotypic and functional properties, namely their stellate morphology, expression of the integrin CD11c, and major histocompatibility class II molecules, as well as their superior capacity to migrate to secondary lymphoid organs and stimulate naïve T cells. However, these attributes are not exclusive to DCs and often change within inflammatory or infectious environments. This led to debates over cell identification and questioned even the mere existence of DCs as distinct leukocyte lineage. Here, we review experimental approaches taken to fate map DCs and discuss how these have shaped our understanding of DC ontogeny and lineage affiliation. Considering the ontogenetic properties of DCs will help to overcome the inherent shortcomings of purely phenotypic- and function-based approaches to cell definition and will yield a more robust way of DC classification. PMID:25999945

  17. Calculating average surface enhancement factors of randomly nanostructured electrodes by a combination of SERS and impedance spectroscopy.

    PubMed

    Kozuch, J; Petrusch, N; Gkogkou, D; Gernert, U; Weidinger, I M

    2015-09-01

    Polyhedron Ag nanostructures were created on top of a polished Au electrode via step-wise electrodeposition and tested as substrates for SERS spectroscopy. Average Raman enhancement factors were derived by combining SERS measurements with electrochemical impedance spectroscopy (EIS), which is able to determine the electroactive surface area of a randomly nanostructured surface. Depending on the deposition step an alternating increase and decrease of surface area was observed while the SERS intensity showed a clear maximum for the first deposition cycle. SEM pictures reveal the formation of Ag polyhedrons that are randomly dispersed on the Au surface. Furthermore the presence of a sub nanostructure on top of the polyhedron after the first deposition cycle is observed which becomes smoother after subsequent deposition cycles. Correlating the SEM pictures with SERS and EIS measurements it is concluded that the coral-like sub nanostructure is dominating the enhancement factor while the polyhedron structure itself only plays a minor role for electromagnetic field enhancement. PMID:25599525

  18. LDRD final report on synthesis of shape-and size-controlled platinum and platinum alloy nanostructures on carbon with improved durability.

    SciTech Connect

    Shelnutt, John Allen; Garcia, Robert M.; Song, Yujiang; Moreno, Andres M.; Stanis, Ronald J.

    2008-10-01

    This project is aimed to gain added durability by supporting ripening-resistant dendritic platinum and/or platinum-based alloy nanostructures on carbon. We have developed a new synthetic approach suitable for directly supporting dendritic nanostructures on VXC-72 carbon black (CB), single-walled carbon nanotubes (SWCNTs), and multi-walled carbon nanotubes (MWCNTs). The key of the synthesis is to creating a unique supporting/confining reaction environment by incorporating carbon within lipid bilayer relying on a hydrophobic-hydrophobic interaction. In order to realize size uniformity control over the supported dendritic nanostructures, a fast photocatalytic seeding method based on tin(IV) porphyrins (SnP) developed at Sandia was applied to the synthesis by using SnP-containing liposomes under tungsten light irradiation. For concept approval, one created dendritic platinum nanostructure supported on CB was fabricated into membrane electrode assemblies (MEAs) for durability examination via potential cycling. It appears that carbon supporting is essentially beneficial to an enhanced durability according to our preliminary results.

  19. Nanostructures having high performance thermoelectric properties

    DOEpatents

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz

    2015-12-22

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  20. Nanostructures having high performance thermoelectric properties

    DOEpatents

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  1. Core-satellite ZnS-Ag nanoassemblies: Synthesis, structure, and optical properties.

    PubMed

    Rohani, Parham; Sharma, Munish K; Swihart, Mark T

    2016-02-01

    We synthesized hollow core-satellite nanoassemblies comprised of hollow zinc sulfide (ZnS) shells decorated with silver nanoparticles (Ag NPs). This was achieved by solution-phase attachment of Ag NPs to hollow ZnS nanospheres (NSs) prepared by spray pyrolysis. This produces an aqueous dispersion of ZnS-Ag hybrid structures, 50-500nm in overall diameter. We characterized the nanostructures by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX) to elucidate the ZnS (core)-Ag (satellite) morphology and optimize conditions for producing such structures. Optical spectroscopy showed that photoluminescence of ZnS was quenched by Ag while absorbance was enhanced. This work provides a simple and general means of producing hollow core-satellite structures that could be of broad applicability. PMID:26524256

  2. Ag-silica composite nanotube with controlled wall structures for biomedical applications.

    PubMed

    He, Haiyan; Wang, Juan; Gao, Qian; Chang, Mingwei; Ren, Zhaohui; Zhang, Xiwen; Li, Xiang; Weng, Wenjian; Han, Gaorong

    2013-11-01

    A range of Ag-silica composite nanotubes with tailored wall structures were successfully synthesized in situ by single-nozzle electrospinning. By increasing AgNO3 concentration, the wall structure of Ag-silica tubes changes from dense to porous, and eventually turns into a 'lace-like' structure. This is attributed to Ag ions doping into the SiOSi network of precursors, as illustrated in FTIR study. More importantly, Ag-silica composite nanotubes show robust antibacterial activity against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli microorganisms. Therefore, it is a breakthrough of the nanostructure biomaterial research for future medical applications that require strong antibacterial properties. PMID:23907057

  3. Synthesis and characterization of Ni/Ag nanocomposite for surface enhanced Raman scattering measurement

    NASA Astrophysics Data System (ADS)

    Manoj, K.; Gayathri, S.; Jayabal, P.; Ramakrishnan, V.

    2015-06-01

    Ni nanoflowers were successfully synthesized by wet chemical method using hydrazine hydrate as reducing agent. Ni/Ag nanocomposite was prepared by simple redox-transmetalation reaction by using the synthesized Ni nanoflowers and silver nitrate as precursors. The x-ray diffraction pattern revealed the formation of face centered cubic crystal structured Ni nanostructure and Ni/Ag nanocomposite. Scanning electron micrograph was used to study the surface morphology of Ni nanoflowers and Ni/Ag nanocomposite. The energy dispersive x-ray spectrometry analysis showed the purity of the prepared samples. The synthesized Ni/Ag nanocomposite was made into film and used as surface enhanced Raman scattering (SERS) substrate for probing the SERS signal of methylene blue molecule. The Ni/Ag nanocomposite showed significantly stronger Raman signal than the bare glass substrate.

  4. IgE-mediated enhancement of CD4+ T cell responses requires antigen presentation by CD8α− conventional dendritic cells

    PubMed Central

    Ding, Zhoujie; Dahlin, Joakim S.; Xu, Hui; Heyman, Birgitta

    2016-01-01

    IgE, forming an immune complex with small proteins, can enhance the specific antibody and CD4+ T cell responses in vivo. The effects require the presence of CD23 (Fcε-receptor II)+ B cells, which capture IgE-complexed antigens (Ag) in the circulation and transport them to splenic B cell follicles. In addition, also CD11c+ cells, which do not express CD23, are required for IgE-mediated enhancement of T cell responses. This suggests that some type of dendritic cell obtains IgE-Ag complexes from B cells and presents antigenic peptides to T cells. To elucidate the nature of this dendritic cell, mice were immunized with ovalbumin (OVA)-specific IgE and OVA, and different populations of CD11c+ cells, obtained from the spleens four hours after immunization, were tested for their ability to present OVA. CD8α− conventional dendritic cells (cDCs) were much more efficient in inducing specific CD4+ T cell proliferation ex vivo than were CD8α+ cDCs or plasmacytoid dendritic cells. Thus, IgE-Ag complexes administered intravenously are rapidly transported to the spleen by recirculating B cells where they are delivered to CD8α− cDCs which induce proliferation of CD4+ T cells. PMID:27306570

  5. IgE-mediated enhancement of CD4(+) T cell responses requires antigen presentation by CD8α(-) conventional dendritic cells.

    PubMed

    Ding, Zhoujie; Dahlin, Joakim S; Xu, Hui; Heyman, Birgitta

    2016-01-01

    IgE, forming an immune complex with small proteins, can enhance the specific antibody and CD4(+) T cell responses in vivo. The effects require the presence of CD23 (Fcε-receptor II)(+) B cells, which capture IgE-complexed antigens (Ag) in the circulation and transport them to splenic B cell follicles. In addition, also CD11c(+) cells, which do not express CD23, are required for IgE-mediated enhancement of T cell responses. This suggests that some type of dendritic cell obtains IgE-Ag complexes from B cells and presents antigenic peptides to T cells. To elucidate the nature of this dendritic cell, mice were immunized with ovalbumin (OVA)-specific IgE and OVA, and different populations of CD11c(+) cells, obtained from the spleens four hours after immunization, were tested for their ability to present OVA. CD8α(-) conventional dendritic cells (cDCs) were much more efficient in inducing specific CD4(+) T cell proliferation ex vivo than were CD8α(+) cDCs or plasmacytoid dendritic cells. Thus, IgE-Ag complexes administered intravenously are rapidly transported to the spleen by recirculating B cells where they are delivered to CD8α(-) cDCs which induce proliferation of CD4(+) T cells. PMID:27306570

  6. Dendritic cells and B cells: unexpected partners in Th2 development.

    PubMed

    León, Beatriz; Ballesteros-Tato, André; Lund, Frances E

    2014-08-15

    Although we have known for decades that B cells contribute to immune responses by secreting Ab, it is now clear that they are more than simply factories for Ig production, and they also play key roles as modulators of T cell-dependent immunity. Indeed, the evidence showing that Ag-presenting and cytokine-producing B cells can alter the magnitude and quality of CD4 T cell responses continues to grow. In this article, we review the data showing that B cells, working in partnership with dendritic cells, regulate the development of Th2 cells and the subsequent allergic response. PMID:25086176

  7. The use of a directional solidification technique to investigate the interrelationship of thermal parameters, microstructure and microhardness of Bi–Ag solder alloys

    SciTech Connect

    Spinelli, José Eduardo; Silva, Bismarck Luiz; Cheung, Noé; Garcia, Amauri

    2014-10-15

    Bi–Ag alloys have been stressed as possible alternatives to replace Pb-based solder alloys. Although acceptable melting temperatures and suitable mechanical properties may characterize such alloys, as referenced in literature, there is a lack of comprehension regarding their microstructures (morphologies and sizes of the phases) considering a composition range from 1.5 to 4.0 wt.%Ag. In order to better comprehend such aspects and their correlations with solidification thermal parameters (growth rate, v and cooling rate, T-dot), directional solidification experiments were carried out under transient heat flow conditions. The effects of Ag content on both cooling rate and growth rate during solidification are examined. Microstructure parameters such as eutectic/dendritic spacing, interphase spacing and diameter of the Ag-rich phase were determined by optical microscopy and scanning electron microscopy. The competition between eutectic cells and dendrites in the range from 1.5 to 4.0 wt.%Ag is explained by the coupled zone concept. Microhardness was determined for different microstructures and alloy Ag contents with a view to permitting correlations with microstructure parameters to be established. Hardness is shown to be directly affected by both solute macrosegregation and morphologies of the phases forming the Bi–Ag alloys, with higher hardness being associated with the cellular morphology of the Bi-2.5 and 4.0 wt.%Ag alloys. - Highlights: • Asymmetric zone of coupled growth for Bi–Ag is demonstrated. • Faceted Bi-rich dendrites have been characterized for Bi–1.5 wt.%Ag alloy. • Eutectic cells were shown for the Bi-2.5 and 4.0 wt.%Ag solder alloys. • Interphase spacing relations with G × v are able to represent the experimental scatters. • Hall-Petch type equations are proposed relating microstructural spacings to hardness.

  8. The Protein Dendrite Arborization and Synapse Maturation 1 (Dasm-1) Is Dispensable for Dendrite Arborization▿ †

    PubMed Central

    Mishra, Archana; Knerr, Boris; Paixão, Sónia; Kramer, Edgar R.; Klein, Rüdiger

    2008-01-01

    The development of a highly branched dendritic tree is essential for the establishment of functional neuronal connections. The evolutionarily conserved immunoglobulin superfamily member, the protein dendrite arborization and synapse maturation 1 (Dasm-1) is thought to play a critical role in dendrite formation of dissociated hippocampal neurons. RNA interference-mediated Dasm-1 knockdown was previously shown to impair dendrite, but not axonal, outgrowth and branching (S. H. Shi, D. N. Cox, D. Wang, L. Y. Jan, and Y. N. Jan, Proc. Natl. Acad. Sci. USA 101:13341-13345, 2004). Here, we report the generation and analysis of Dasm-1 null mice. We find that genetic ablation of Dasm-1 does not interfere with hippocampal dendrite growth and branching in vitro and in vivo. Moreover, the absence of Dasm-1 does not affect the modulation of dendritic outgrowth induced by brain-derived neurotrophic factor. Importantly, the previously observed impairment in dendrite growth after Dasm-1 knockdown is also observed when the Dasm-1 knockdown is performed in cultured hippocampal neurons from Dasm-1 null mice. These findings indicate that the dendrite arborization phenotype was caused by off-target effects and that Dasm-1 is dispensable for hippocampal dendrite arborization. PMID:18268009

  9. Monolithically integrated micro- and nanostructured glass surface with antiglare, antireflection, and superhydrophobic properties.

    PubMed

    Tulli, Domenico; Hart, Shandon D; Mazumder, Prantik; Carrilero, Albert; Tian, Lili; Koch, Karl W; Yongsunthon, Ruchirej; Piech, Garrett A; Pruneri, Valerio

    2014-07-23

    Hierarchical micro- and nanostructured surfaces have previously been made using a variety of materials and methods, including particle deposition, polymer molding, and the like. These surfaces have attracted a wide variety of interest for applications including reduced specular reflection and superhydrophobic surfaces. To the best of our knowledge, this paper reports the first monolithic, hierarchically structured glass surface that combines micro- and nanoscale surface features to simultaneously generate antiglare (AG), antireflection (AR), and superhydrophobic properties. The AG microstructure mechanically protects the AR nanostructure during wiping and smudging, while the uniform composition of the substrate and the micro- and nanostructured surface enables ion exchange through the surface, so that both the substrate and structured surface can be simultaneously chemically strengthened. PMID:24960031

  10. Facile synthesis of pompon-like ZnO-Ag nanocomposites and their enhanced photocatalytic performance

    SciTech Connect

    Cheng, Yang; An, Liang; Lan, Jing; Gao, Fang; Tan, Ruiqin; Li, Xiao-min; Wang, Guang-hui

    2013-10-15

    Graphical abstract: - Highlights: • Pompon-like ZnO-Ag was prepared via heterothermal and photodeposition method. • Pompon-like ZnO-Ag is a excellent photocatalyst for degradation of azo dyes. • The photocatalytic and wetting properties were studied upon UV irradiation. • The discoloring efficiency of ZnO-Ag heterostructure toward to azo dyes is 99.1%. - Abstract: A series of pompon-like ZnO-Ag nanocomposites were prepared by hydrothermal method and photochemical deposition technique. Several characterizations indicated the successful deposition of Ag nanoparticles on ZnO. As a whole, the as-prepared composites present pompon-like nanostructures with a diameter of ∼10 μm. In detail, the nanostructural, chemical and optical properties were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectroscopy (IR), ultra-visible spectra (UV). The photocatalytic degradation experiments under UV irradiation using Methyl Orange (MO) as a model dye were executed here. The relative results demonstrated that the pompon-like ZnO-Ag nanocomposite with a suitable content of Ag nanoparticles (about 4.82 wt%) has the highest photochemical activity, and the removal ratio of MO was 99.1% after 0.5 h adsorption and subsequent 2 h photodegradation processes. The excellent photocatalytic performance was attributed to the high surface areas of ZnO nanostructure and effectively separation of photo-generated charge on flower-like ZnO by employing Ag nanoparticles as a conductor.

  11. Enzymatic plasmonic engineering of Ag/Au bimetallic nanoshells and their use for sensitive optical glucose sensing.

    PubMed

    He, Haili; Xu, Xiaolong; Wu, Haoxi; Jin, Yongdong

    2012-04-01

    Enzyme works for plasmonic nanostructure: an interesting enzyme-responsive hybrid Ag/Au-GOx bimetallic nanoshell (NS) system is reported, in which control over the enzyme reaction of glucose oxidase (GOx) can automatically fine-tune the morphology (from complete NS to porous NS) and optical properties of the hybrid nanostructure. The phenomenon is further exploited as a new platform for sensitive optical glucose sensing. PMID:22388952

  12. Allergy-Protective Arabinogalactan Modulates Human Dendritic Cells via C-Type Lectins and Inhibition of NF-κB.

    PubMed

    Peters, Marcus; Guidato, Patrick M; Peters, Karin; Megger, Dominik A; Sitek, Barbara; Classen, Birgit; Heise, Esther M; Bufe, Albrecht

    2016-02-15

    Arabinogalactan (AG) isolated from dust of a traditional farm prevents disease in murine models of allergy. However, it is unclear whether this polysaccharide has immune regulatory properties in humans. The aim of this study was to test the influence of AG on the immune-stimulating properties of human dendritic cells (DCs). Moreover, we sought to identify the receptor to which AG binds. AG was produced from plant callus tissue under sterile conditions to avoid the influence of pathogen-associated molecular patterns in subsequent experiments. The influence of AG on the human immune system was investigated by analyzing its impact on monocyte-derived DCs. To analyze whether the T cell stimulatory capacity of AG-stimulated DCs is altered, an MLR with naive Th cells was performed. We revealed that AG reduced T cell proliferation in a human MLR. In the search for a molecular mechanism, we found that AG binds to the immune modulatory receptors DC-specific ICAM-3 -: grabbing non integrin (DC-SIGN) and macrophage mannose receptor 1 (MMR-1). Stimulation of these receptors with AG simultaneously with TLR4 stimulation with LPS increased the expression of the E3 ubiquitin-protein ligase tripartite motif -: containing protein 21 and decreased the phosphorylation of NF-κB p65 in DCs. This led to a reduced activation profile with reduced costimulatory molecules and proinflammatory cytokine production. Blocking of MMR-1 or DC-SIGN with neutralizing Abs partially inhibits this effect. We conclude that AG dampens the activation of human DCs by LPS via binding to DC-SIGN and MMR-1, leading to attenuated TLR signaling. This results in a reduced T cell activation capacity of DCs. PMID:26746190

  13. Integration of Light Trapping Silver Nanostructures in Hydrogenated Microcrystalline Silicon Solar Cells by Transfer Printing.

    PubMed

    Mizuno, Hidenori; Sai, Hitoshi; Matsubara, Koji; Takato, Hidetaka; Kondo, Michio

    2015-01-01

    One of the potential applications of metal nanostructures is light trapping in solar cells, where unique optical properties of nanosized metals, commonly known as plasmonic effects, play an important role. Research in this field has, however, been impeded owing to the difficulty of fabricating devices containing the desired functional metal nanostructures. In order to provide a viable strategy to this issue, we herein show a transfer printing-based approach that allows the quick and low-cost integration of designed metal nanostructures with a variety of device architectures, including solar cells. Nanopillar poly(dimethylsiloxane) (PDMS) stamps were fabricated from a commercially available nanohole plastic film as a master mold. On this nanopatterned PDMS stamps, Ag films were deposited, which were then transfer-printed onto block copolymer (binding layer)-coated hydrogenated microcrystalline Si (µc-Si:H) surface to afford ordered Ag nanodisk structures. It was confirmed that the resulting Ag nanodisk-incorporated µc-Si:H solar cells show higher performances compared to a cell without the transfer-printed Ag nanodisks, thanks to plasmonic light trapping effect derived from the Ag nanodisks. Because of the simplicity and versatility, further device application would also be feasible thorough this approach. PMID:26575244

  14. Podosomes of dendritic cells facilitate antigen sampling

    PubMed Central

    Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G.; van den Bogaart, Geert

    2014-01-01

    Summary Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for podosomes of dendritic cells. PMID:24424029

  15. Fluctuation effects on dendritic growth morphology

    NASA Astrophysics Data System (ADS)

    Brener, E.; Ihle, T.; Müller-Krumbhaar, H.; Saito, Y.; Shiraishi, K.

    1994-03-01

    Dendrites are the typical patterns for many anisotropic growth processes. A detailed understanding of their dynamics appears to be crucial for a proper classification of various growth morphologies. In particular the morphology transitions occurring for varying anisotropy were predicted to depend upon fluctuations. In the present investigation we compare analytical and numerical results on the stability of dendrites under influence of external fluctuations. In particular we confirm the previous ideas that the dendrites are linearly stable under influence of noise even in the limit of extremely small but nonzero anisotropy. This supports the concept of a smooth change-over from compact to fractal dendrites and finally to fractal seaweed whose internal length scale was predicted to depend on noise.

  16. Dendritic spine dysgenesis in Rett syndrome

    PubMed Central

    Xu, Xin; Miller, Eric C.; Pozzo-Miller, Lucas

    2014-01-01

    Spines are small cytoplasmic extensions of dendrites that form the postsynaptic compartment of the majority of excitatory synapses in the mammalian brain. Alterations in the numerical density, size, and shape of dendritic spines have been correlated with neuronal dysfunction in several neurological and neurodevelopmental disorders associated with intellectual disability, including Rett syndrome (RTT). RTT is a progressive neurodevelopmental disorder associated with intellectual disability that is caused by loss of function mutations in the transcriptional regulator methyl CpG-binding protein 2 (MECP2). Here, we review the evidence demonstrating that principal neurons in RTT individuals and Mecp2-based experimental models exhibit alterations in the number and morphology of dendritic spines. We also discuss the exciting possibility that signaling pathways downstream of brain-derived neurotrophic factor (BDNF), which is transcriptionally regulated by MeCP2, offer promising therapeutic options for modulating dendritic spine development and plasticity in RTT and other MECP2-associated neurodevelopmental disorders. PMID:25309341

  17. Dendritic polymers: Universal glue for cells

    NASA Astrophysics Data System (ADS)

    Frey, Holger

    2012-05-01

    A dendritic polymer consisting of inversely oriented lipid head groups on a polyvalent polyglycerol scaffold makes an effective reversible biomembrane adhesive that may find use as a tissue sealant and a drug-delivery vehicle.

  18. Dendritic Spine Pathology in Neurodegenerative Diseases.

    PubMed

    Herms, Jochen; Dorostkar, Mario M

    2016-05-23

    Substantial progress has been made toward understanding the neuropathology, genetic origins, and epidemiology of neurodegenerative diseases, including Alzheimer's disease; tauopathies, such as frontotemporal dementia; α-synucleinopathies, such as Parkinson's disease or dementia with Lewy bodies; Huntington's disease; and amyotrophic lateral sclerosis with dementia, as well as prion diseases. Recent evidence has implicated dendritic spine dysfunction as an important substrate of the pathogenesis of dementia in these disorders. Dendritic spines are specialized structures, extending from the neuronal processes, on which excitatory synaptic contacts are formed, and the loss of dendritic spines correlates with the loss of synaptic function. We review the literature that has implicated direct or indirect structural alterations at dendritic spines in the pathogenesis of major neurodegenerative diseases, focusing on those that lead to dementias such as Alzheimer's, Parkinson's, and Huntington's diseases, as well as frontotemporal dementia and prion diseases. We stress the importance of in vivo studies in animal models. PMID:26907528

  19. Dendritic Growth in Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Martin, Joshua; Garg, Shila

    2000-03-01

    The experimental study of the onset of electrohydrodynamic convection (EHC) through a dendritic growth is reported. If a magnetic Freedericksz-distorted liquid crystal of negative dielectric anisotropy is subjected to an electric field parallel to the magnetic field, EHC sets in through the nucleation of dendrites [1,2]. Measurements of tip speeds of the dendrites as a function of applied voltage at a fixed magnetic field are made. The goal is to explore the effect of the magnetic and electric fields on the dendritic growth. In addition, pattern dynamics is monitored once the final state of spatio-temporal chaos is reached by the system. [1] J. T. Gleeson, Nature 385, 511 (1997). [2] J. T. Gleeson, Physica A 239, 211 (1997). This research was supported by NSF grants DMR 9704579 and DMR 9619406.

  20. Lateral quantization of two-dimensional electron states by embedded Ag nanocrystals

    NASA Astrophysics Data System (ADS)

    Van Haesendonck, Chris; Schouteden, Koen

    2013-03-01

    We show that quantization of image-potential state (IS)electrons above the surface of nanostructures can be experimentally achieved by Ag nanocrystals that appear as stacking fault tetrahedrons (SFTs) at Ag(111) surfaces. By means of cryogenic scanning tunneling spectroscopy the n = 1 IS of the Ag(111) surface is revealed to split up in discrete energy levels, which is accompanied by the formation of pronounced standing wave patterns that directly reflect the eigenstates of the SFT surface. The IS confinement behavior is compared to that of the surface state electrons in the SFT surface and can be directly linked to the particle-in-a-box model. ISs provide a novel playground for investigating quantum size effects and defect induced scattering above nanostructured surfaces. This work has been supported by the Research Foundation - Flanders (FWO, Belgium). K.S. is a postdoctoral researcher of the FWO.

  1. Lateral Quantization of Two-Dimensional Electron States by Embedded Ag Nanocrystals

    NASA Astrophysics Data System (ADS)

    Schouteden, K.; Van Haesendonck, C.

    2012-02-01

    We show that quantization of image-potential state (IS) electrons above the surface of nanostructures can be experimentally achieved by Ag nanocrystals that appear as stacking-fault tetrahedrons (SFTs) at Ag(111) surfaces. By means of cryogenic scanning tunneling spectroscopy, the n=1 IS of the Ag(111) surface is revealed to split up in discrete energy levels, which is accompanied by the formation of pronounced standing wave patterns that directly reflect the eigenstates of the SFT surface. The IS confinement behavior is compared to that of the surface state electrons in the SFT surface and can be directly linked to the particle-in-a-box model. ISs provide a novel playground for investigating quantum size effects and defect-induced scattering above nanostructured surfaces.

  2. Self-assembly of subwavelength nanostructures with symmetry breaking in solution

    NASA Astrophysics Data System (ADS)

    Tian, Xiang-Dong; Chen, Shu; Zhang, Yue-Jiao; Dong, Jin-Chao; Panneerselvam, Rajapandiyan; Zhang, Yun; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2016-01-01

    Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm for Au nanospheres; 100-160 nm for Ag nanocubes) and meanwhile control the nanogaps through ultrathin silica shells of 1-5 nm thickness. The Raman tag of 4-mercaptobenzoic acid (MBA) assists the self-assembly process and endows the subwavelength asymmetric nanostructures with surface-enhanced Raman scattering (SERS) activity. Moreover, thick silica shells (above 50 nm thickness) can be coated on the self-assembled nanostructures in situ to stabilize the whole nanostructures, paving the way toward bioapplications. Single particle scattering spectroscopy with a 360° polarization resolution is performed on individual Ag nanocube and Au nanosphere dimers, correlated with high-resolution TEM characterization. The asymmetric dimers exhibit strong configuration and polarization dependence Fano resonance properties. Overall, the solution-based self-assembly method reported here is opening up new opportunities to prepare diverse multicomponent nanomaterials with optimal performance.Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm

  3. Dendritic cells in autoimmune thyroid disease.

    PubMed

    Kabel, P J; Voorbij, H A; van der Gaag, R D; Wiersinga, W M; de Haan, M; Drexhage, H A

    1987-01-01

    Dendritic cells form a morphologically distinct class of cells characterized by shape, reniform nucleus, absent to weak acid-phosphatase activity and strong Class II MHC determinant positivity. Functionally they are the most efficient cells in antigen presentation to T-lymphocytes which indicates their role in the initiation of an immune response. Using immunehistochemical techniques we studied the presence of dendritic cells in normal Wistar rat and human thyroids, in thyroids of BBW rats developing thyroid autoimmunity and in Graves' goitres. Dendritic cells could be identified in all thyroids studied and were positioned underneath the thyrocytes in between the follicles. Skin dendritic cells travel via lymphatics to draining lymph nodes, thus forming an antigen presenting cell system. It is likely that a similar cell system exists on the level of the thyroid for dendritic cells have also been detected in thyroid draining lymph nodes. In normal thyroid tissue of both human and rat dendritic cells were relatively scarce. During the initial phases of the thyroid autoimmune response in the BBW rat (before the appearance of Tg-antibodies in the circulation) numbers of thyroid dendritic cells increased. Intrathyroidal T-helper cells, B-cells or plasma cells could not be found. The thyroid draining lymph node contained large numbers of plasma cells. During the later stages of the thyroid autoimmune response in the BB/W rat (after the appearance of Tg-antibodies in the circulation) and in Graves' goitres dendritic cells were not only present in high number, but 20-30% were seen in contact with now-present intrathyroidal T-helper lymphocytes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3475920

  4. Development of CdS Nanostructures by Thermal Decomposition of Aminocaproic Acid-Mixed Cd-Thiourea Complex Precursor: Structural, Optical and Photocatalytic Characterization.

    PubMed

    Patel, Jayesh D; Mighri, Frej; Ajji, Abdellah; Chaudhuri, Tapas K

    2015-04-01

    The present work deals with two different CdS nanostructures produced via hydrothermal and solvothermal decompositions of aminocaproic acid (ACA)-mixed Cd-thiourea complex precursor at 175 °C. Both nanostructures were extensively characterized for their structural, morphological and optical properties. The powder X-ray diffraction characterization showed that the two CdS nanostructures present a wurtzite morphology. Scanning electron microscopy and energy-dispersive X-ray characterizations revealed that the hydrothermal decomposition produced well-shaped CdS flowers composed of six dendritic petals, and the solvothermal decomposition produced CdS microspheres with close stoichiometric chemical composition. The UV-vis absorption and photoluminescence spectra of CdS dendritic flowers and microsphere nanostructures showed that both nanostructures present a broad absorption between 200 and 700 nm and exhibit strong green emissions at 576 and 520 nm upon excitations at 290 nm and 260 nm, respectively. The transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) characterizations confirmed that CdS microspheres were mesoporous and were composed of small nanocrystals. A possible growth mechanism in the formation of the CdS nanostructures was proposed based on morphology evolution as a function of the reaction time. Furthermore, the as-synthesized CdS nanostructures were found to exhibit highly efficient photocatalytic activities for the degradation of methyl orange (MeO) and rhodamine B (RhB) dyes. PMID:26353487

  5. Design of nanostructured materials from block copolymer self-assembly

    NASA Astrophysics Data System (ADS)

    Leolukman, Melvina

    We present two classes of nanostructured materials by combining the self assembly of block copolymer (BCP) with suitable small molecule chemistry, which are applicable to organic electro-optics (EO) and as etch-resistant masks for nanofabrication. The underlying principles of designing the specific interactions between BCP host and guest molecules, driving the self-assembly in bulk and thin film, and dictating domain orientation are concepts common to both of these areas. Nanostructured EO materials were created by selectively encapsulating EO chromophores by hydrogen-bonding to the pyridine groups of a linear-diblock copolymer (linear-diBCP) namely polystyrene-block-poly(4-vinyl pyridine) [PS-b-P4VP], or a linear-dendritic-BCP. With the linear-diBCP host, we discovered that poled order in confined domains depends on domain shape, chromophore concentration within the domain, and thermal history. The linear-dendritic-BCP is an excellent host as it efficiently disperses the chromophores into small domains (5-10nm), and keeps the chromophores apart within the domains due to the dendritic architecture. These morphological effects translated into excellent film processability, increased chromophore loading, and two-fold enhancements in the EO coefficient (r 33) when compared to a corresponding homopolymer system. A new class of organic-inorganic nanostructured materials based on polyhedral oligomeric silsesquioxane (POSS) was synthesized as a passive template for pattern transfer. We developed a living anionic polymerization route for methacrylate-functionalized POSS and synthesized two kinds of BCPs, namely PS-b-PMAPOSS and PMMA-b-PMAPOSS. The anionic route allows high degree of polymerization, narrow polydispersity, and tunable POSS block length. These lead to well defined spherical, cylindrical, and lamellar morphologies, as well as formation of hierarchical structures upon thermal annealing. Both POSS-containing BCPs were assembled in thin film and converted to hard

  6. Nanostructures for enzyme stabilization

    SciTech Connect

    Kim, Jungbae; Grate, Jay W.; Wang, Ping

    2006-02-02

    The last decade has witnessed notable breakthroughs in nanotechnology with development of various nanostructured materials such as mesoporous materials and nanoparticles. These nanostructures have been used as a host for enzyme immobilization via various approaches, such as enzyme adsorption, covalent attachment, enzyme encapsulation, and sophisticated combinations of methods. This review discusses the stabilization mechanisms behind these diverse approaches; such as confinement, pore size and volume, charge interaction, hydrophobic interaction, and multipoint attachment. In addition, we will introduce recent rigorous approaches to improve the enzyme stability in these nanostructures or develop new nanostructures for the enzyme stabilization. Especially, we will introduce our recent invention of a nanostructure, called single enzyme nanoparticles (SENs). In the form of SENs, each enzyme molecule is surrounded with a nanometer scale network, resulting in stabilization of enzyme activity without any serious limitation for the substrate transfer from solution to the active site. SENs can be further immobilized into mesoporous silica with a large surface area, providing a hierarchical approach for stable, immobilized enzyme systems for various applications, such as bioconversion, bioremediation, and biosensors.

  7. Free Energy and Dendritic Self-Organization

    PubMed Central

    Kiebel, Stefan J.; Friston, Karl J.

    2011-01-01

    In this paper, we pursue recent observations that, through selective dendritic filtering, single neurons respond to specific sequences of presynaptic inputs. We try to provide a principled and mechanistic account of this selectivity by applying a recent free-energy principle to a dendrite that is immersed in its neuropil or environment. We assume that neurons self-organize to minimize a variational free-energy bound on the self-information or surprise of presynaptic inputs that are sampled. We model this as a selective pruning of dendritic spines that are expressed on a dendritic branch. This pruning occurs when postsynaptic gain falls below a threshold. Crucially, postsynaptic gain is itself optimized with respect to free energy. Pruning suppresses free energy as the dendrite selects presynaptic signals that conform to its expectations, specified by a generative model implicit in its intracellular kinetics. Not only does this provide a principled account of how neurons organize and selectively sample the myriad of potential presynaptic inputs they are exposed to, but it also connects the optimization of elemental neuronal (dendritic) processing to generic (surprise or evidence-based) schemes in statistics and machine learning, such as Bayesian model selection and automatic relevance determination. PMID:22013413

  8. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites

    PubMed Central

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-01-01

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca2+ activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca2+ activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively. DOI: http://dx.doi.org/10.7554/eLife.13598.001 PMID:26988796

  9. Synthesis and the enhanced visible-light-driven photocatalytic activity of BiVO4 nanocrystals coupled with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, W. Z.; Meng, Shan; Tan, Miao; Jia, L. J.; Zhou, Y. X.; Wu, Shuang; Huang, X. W.; Liang, Y. J.; Shi, H. L.

    2015-03-01

    BiVO4 nanocrystals coupled with Ag nanoparticles (Ag-BiVO4 heterogeneous nanostructures) have been prepared by a new strategy via combining a hydrothermal route with a polyol process, in which BiVO4 nanocrystals were first synthesized by a hydrothermal route, and then, Ag nanoparticles were grown on the surfaces of the presynthesized BiVO4 nanocrystals through a polyol process. The photocatalytic evaluations demonstrate that BiVO4 nanocrystals coupled with Ag nanoparticles exhibit the enhanced visible-light-driven photocatalytic activity for the degradation of methylene blue (MB) and rhodamine B (RhB). The energy alignment and diffuse reflectance property of Ag-BiVO4 heterogeneous nanostructures demonstrate that Ag nanoparticles attached on the surfaces of BiVO4 nanocrystals play double roles for the enhanced visible-light-driven photocatalytic activity. First, the Ag nanoparticles grown on the surfaces of BiVO4 nanocrystals may act as electron sinks to retard the recombination of the photogenerated electrons and holes in BiVO4 so as to improve the charge separation on its surfaces. Second, the Ag nanoparticles increase the visible light absorption of the Ag-BiVO4 photocatalyst due to surface plasmon resonance (SPR) of Ag nanoparticles. These double roles of Ag nanoparticles make Ag-BiVO4 heterogeneous nanostructures to exhibit the enhanced photocatalytic activity to decompose MB and RhB under visible light irradiation, compared to the pure BiVO4 nanocrystals. The enhanced photocatalytic activity is attributed to the charge transfer from BiVO4 to the attached Ag nanoparticles as well as SPR absorption of Ag nanoparticles. The present work not only provides an efficient route to enhance visible-light-driven photocatalytic activity of BiVO4, but also offers a new strategy for fabricating metal-semiconductor heterogeneous nanostructure photocatalysts, which are expected to show considerable potential applications in solar-driven wastewater treatment and water

  10. Spatial and temporal variation of surface-enhanced Raman scattering at Ag nanowires in aqueous solution

    SciTech Connect

    Clayton, Daniel A.; McPherson, Tyler; Pan, Shanlin; Chen, Mingyang; Dixon, David A.; Hu, Dehong

    2012-12-13

    We present surface enhanced Raman spectroscopy (SERS) and Raman imaging of small organic molecules at well-defined nanostructures formed by single silver nanowires (NWs). We show that SERS can be obtained at single, crossed, and bundled Ag NWs for mercaptopyridine, adenine, cytosine, guanine, and thymine. Crossed wires and parallel Ag NWs have SERS enhancement factors much higher than single Ag NWs. New additional junctions formed by a silver nanoparticle and a single Ag NW, and bundled NWs provide SERS intensity higher than a single Ag NW. The SERS signal of single Ag NWs can be further enhanced by decorating the Ag NW surface with gold nanoparticles using electroless deposition. Single Ag NW Raman imaging with a 10 ms time resolution when compared with photoluminescence (PL) imaging results reveal a different dynamic response of SERS and PL under steady state laser excitation. Dynamic photoluminescence blinking activities are suppressed in the presence of the surface coating of Raman active molecules (e.g., mercaptopyridine) and the SERS signal is quite stable in a wide field excitation configuration. The Discrete Dipole Approximation (DDA) method was used to calculate the local field intensity that can be applied to help understand the enhanced PL and SERS at the junction of Ag NWs

  11. Nanostructured materials for hydrogen storage

    DOEpatents

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  12. Photoinduced Ag deposition on periodically poled lithium niobate: Wavelength and polarization screening dependence

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Nemanich, Robert J.

    2011-05-01

    This research addresses the wavelength dependence of the fabrication of Ag nanostructures through photoinduced deposition using single crystal ferroelectric lithium niobate as a template. The photoinduced deposition involves ultraviolent light illumination of polarity patterned lithium niobate while immersed in a AgNO3 solution. The results focus on the differences of the Ag nanostructure formation process on the positive and negative domains and domain boundaries. The results indicate that for below-band-gap excitation, a very low density of nanostructures is observed. However, for all above-gap-excitation wavelengths, deposition occurs on both polarity surfaces and at the domain boundaries. The density is greatest at the domain boundaries and reduced densities of smaller nanostructures are observed to form on both the positive and negative domains. The deposition on the domain surfaces is greatest for the shortest wavelengths, whereas the domain selectivity is increased for wavelengths just above the band gap. The external screening and weak band bending of single crystal lithium niobate introduces an enhanced electric field at the domain boundary. The enhanced electric field leads to migration of electrons to the domain boundary and consequently enhanced formation of Ag nanoparticles along the boundary. The variation in the reduction rate versus illumination wavelength is attributed to the light absorption depth and the competition between the photochemical and photoelectric deposition processes. To explore the transition from surface to bulk screening of the polarization charge, oxygen implanted PPLN surfaces were prepared and used for the Ag photoinduced deposition. Consistent with the transition to internal (bulk) screening, the Ag nanoparticle formation on the oxygen implanted PPLN surfaces showed suppressed boundary nanowire formation.

  13. Mixed-solvothermal synthesis of CdS micro/nanostructures and their optical properties

    NASA Astrophysics Data System (ADS)

    Zhong, Shengliang; Zhang, Linfei; Huang, Zhenzhong; Wang, Shangping

    2011-01-01

    Several novel cadmium sulfide (CdS) micro/nanostructures, including cauliflower-like microspheres, football-like microspheres, tower-like microrods, and dendrites were controllably prepared via an oxalic acid-assisted solvothermal route using ethylene glycol (EG) and H2O as pure and mixed solvents with different S sources. The as-prepared products were characterized by X-ray powder diffraction (XRD), scanning electronic microscope (SEM) and UV-vis spectrophotometer (UV). It was found that CdS micro/nanostructures can be selectively obtained by varying the composition of solvent, concentration of oxalic acid, and sulfur sources. UV-vis absorption spectra reveal that their absorption properties are shape-dependent. The possible formation process of the CdS micro/nanostructures was briefly discussed. This route provides a facile way to tune the morphologies of CdS over a wide range.

  14. In Situ Single-Nanoparticle Spectroscopy Study of Bimetallic Nanostructure Formation.

    PubMed

    Smith, Jeremy G; Chakraborty, Indranath; Jain, Prashant K

    2016-08-16

    Bimetallic nanostructures (NSs), with utility in catalysis, are typically prepared using galvanic exchange (GE), but the final catalyst morphology is dictated by the dynamics of the process. In situ single nanoparticle (NP) optical scattering spectroscopy, coupled with ex situ electron microscopy, is used to capture the dynamic structural evolution of a bimetallic NS formed in a GE reaction between Ag and [PtCl6 ](2-) . We identify an early stage involving anisotropic oxidation of Ag to AgCl concomitant with reductive deposition of small Pt clusters on the NS surface. At later stages of GE, unreacted Ag inclusions phase segregate from the overcoated AgCl as a result of lattice strain between Ag and AgCl. The nature of the structural evolution elucidates why multi-domain Ag/AgCl/Pt NSs result from the GE process. The complex structural dynamics, determined from single-NP trajectories, would be masked in ensemble studies due to heterogeneity in the response of different NPs. PMID:27381891

  15. Synthesis of porphyrin nanostructures

    DOEpatents

    Fan, Hongyou; Bai, Feng

    2014-10-28

    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  16. Nanostructured Biomaterials for Regeneration**

    PubMed Central

    Wei, Guobao; Ma, Peter X.

    2009-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/dysfunctional tissues or organs. Biomaterials (scaffolds) serve as temporary 3D substrates to guide neo tissue formation and organization. It is often beneficial for a scaffolding material to mimic the characteristics of extracellular matrix (ECM) at the nanometer scale and to induce certain natural developmental or/and wound healing processes for tissue regeneration applications. This article reviews the fabrication and modification technologies for nanofibrous, nanocomposite, and nanostructured drug-delivering scaffolds. ECM-mimicking nanostructured biomaterials have been shown to actively regulate cellular responses including attachment, proliferation, differentiation and matrix deposition. Nano-scaled drug delivery systems can be successfully incorporated into a porous 3D scaffold to enhance the tissue regeneration capacity. In conclusion, nano-structured biomateials are a very exciting and rapidly expanding research area, and are providing new enabling technologies for regenerative medicine. PMID:19946357

  17. Arc Discharge Synthesis and Photoluminescence of 3D Feather-like AlN Nanostructures

    NASA Astrophysics Data System (ADS)

    Yang, Sl; Gao, Rs; Niu, Pl; Zou, Zy; Yu, Rh

    2011-12-01

    A complex three-dimensional (3D) feather-like AlN nanostructure was synthesized by a direct reaction of high-purity Al granules with nitrogen using an arc discharge method. By adjusting the discharge time, a coral-like nanostructure, which evolved from the feather-like nanostructure, has also been observed. The novel 3D feather-like AlN nanostructure has a hierarchical dendritic structure, which means that the angle between the trunk stem and its branch is always about 30° in any part of the structure. The fine branches on the surface of the feather-like nanostructure have shown a uniform fish scale shape, which are about 100 nm long, 10 nm thick and several tens of nanometers in width. An alternate growth model has been proposed to explain the novel nanostructure. The spectrum of the feather-like products shows a strong blue emission band centered at 438 nm (2.84 eV), which indicates their potential application as blue light-emitting diodes.

  18. Growth of hybrid carbon nanostructures on iron-decorated ZnO nanorods.

    PubMed

    Mbuyisa, Puleng N; Rigoni, Federica; Sangaletti, Luigi; Ponzoni, Stefano; Pagliara, Stefania; Goldoni, Andrea; Ndwandwe, Muzi; Cepek, Cinzia

    2016-04-01

    A novel carbon-based nanostructured material, which includes carbon nanotubes (CNTs), porous carbon, nanostructured ZnO and Fe nanoparticles, has been synthetized using catalytic chemical vapour deposition (CVD) of acetylene on vertically aligned ZnO nanorods (NRs). The deposition of Fe before the CVD process induces the presence of dense CNTs in addition to the variety of nanostructures already observed on the process done on the bare NRs, which range from amorphous graphitic carbon up to nanostructured dendritic carbon films, where the NRs are partially or completely etched. The combination of scanning electron microscopy and in situ photoemission spectroscopy indicate that Fe enhances the ZnO etching, and that the CNT synthesis is favoured by the reduced Fe mobility due to the strong interaction between Fe and the NRs, and to the presence of many defects, formed during the CVD process. Our results demonstrate that the resulting new hybrid shows a higher sensitivity to ammonia gas at ambient conditions (∼60 ppb) than the carbon nanostructures obtained without the aid of Fe, the bare ZnO NRs, or other one-dimensional carbon nanostructures, making this system of potential interest for environmental ammonia monitoring. Finally, in view of the possible application in nanoscale optoelectronics, the photoexcited carrier behaviour in these hybrid systems has been characterized by time-resolved reflectivity measurements. PMID:26916977

  19. Trace detection of herbicides by SERS technique, using SERS-active substrates fabricated from different silver nanostructures deposited on silicon

    NASA Astrophysics Data System (ADS)

    Cao Dao, Tran; Quynh Ngan Luong, Truc; Cao, Tuan Anh; Hai Nguyen, Ngoc; Kieu, Ngoc Minh; Thuy Luong, Thi; Le, Van Vu

    2015-09-01

    In this report we present the initial results of the use of different silver nanostructures deposited on silicon for trace detection of paraquat (a commonly used herbicide) using the surface-enhanced Raman scattering (SERS) effect. More specifically, the SERS-active substrates were fabricated from silver nanoparticles (AgNPs) deposited onto the flat surface of a silicon wafer (AgNPs@Si substrate), as well as on the surface of an obliquely aligned silicon nanowire (SiNW) array (AgNPs@SiNWs substrate), and from silver nanodendrites (AgNDs) deposited onto the flat surface of a silicon wafer (AgNDs@Si substrate). Results showed that with the change of the structure of the SERS-active substrate, higher levels of SERS enhancement have been achieved. Specifically, with the fabricated AgNDs@Si substrate, paraquat concentration as low as 1 ppm can be detected.

  20. Simulation of Semiconductor Nanostructures

    SciTech Connect

    Williamson, A J; Grossman, J C; Puzder, A; Benedict, L X; Galli, G

    2001-07-19

    The field of research into the optical properties of silicon nanostructures has seen enormous growth over the last decade. The discovery that silicon nanoparticles exhibit visible photoluminescence (PL) has led to new insights into the mechanisms responsible for such phenomena. The importance of understanding and controlling the PL properties of any silicon based material is of paramount interest to the optoelectronics industry where silicon nanoclusters could be embedded into existing silicon based circuitry. In this talk, we present a combination of quantum Monte Carlo and density functional approaches to the calculation of the electronic, structural, and optical properties of silicon nanostructures.

  1. Plasmonic nanostructures: artificial molecules.

    PubMed

    Wang, Hui; Brandl, Daniel W; Nordlander, Peter; Halas, Naomi J

    2007-01-01

    This Account describes a new paradigm for the relationship between the geometry of metallic nanostructures and their optical properties. While the interaction of light with metallic nanoparticles is determined by their collective electronic or plasmon response, a compelling analogy exists between plasmon resonances of metallic nanoparticles and wave functions of simple atoms and molecules. Based on this insight, an entire family of plasmonic nanostructures, artificial molecules, has been developed whose optical properties can be understood within this picture: nanoparticles (nanoshells, nanoeggs, nanomatryushkas, nanorice), multi-nanoparticle assemblies (dimers, trimers, quadrumers), and a nanoparticle-over-metallic film, an electromagnetic analog of the spinless Anderson model. PMID:17226945

  2. Growth of single crystalline dendritic Li{sub 2}SiO{sub 3} arrays from LiNO{sub 3} and mesoporous SiO{sub 2}

    SciTech Connect

    Cordoba, Jose M.; Ballem, Mohamed A.; Johansson, Emma M.; Oden, Magnus

    2011-07-15

    A solution based wet chemistry approach has been developed for synthesizing Li{sub 2}SiO{sub 3} using LiNO{sub 3} and mesoporous silica as starting materials at 550 deg. C. A reaction path where NO and O{sub 2} are formed as side-products is proposed. The crystals synthesized exhibit dendritic growth where the as-prepared nanodendrite is a typical 1-fold nanodendrite composed of one several microns long and some tenth of nanometers wide trunk with small branches, which are several hundreds of nanometers long and up to 70 nm in diameter. The effect of the structure of the mesoporous silica for the final morphology is discussed. - Graphical abstract: TG/DSC and gas analysis (inset) curves of the synthesis reaction measured in air and SEM micrograph of the Li{sub 2}SiO{sub 3} dendrite obtained. Highlights: > We present a simple template-based method for preparing unusual 2-D lithium metasilicate (Li{sub 2}SiO{sub 3}) dendritic nanostructures. > The high purity of the final Li{sub 2}SiO{sub 3} is explained by the reaction mechanism proposed. > This templated synthesis method provides a new route for direct growth of dendritic nanostructures.

  3. Plasmacytoid Dendritic Cells in Atherosclerosis

    PubMed Central

    Döring, Yvonne; Zernecke, Alma

    2012-01-01

    Atherosclerosis, a chronic inflammatory disease of the vessel wall and the underlying cause of cardiovascular disease, is initiated and maintained by innate and adaptive immunity. Accumulating evidence suggests an important contribution of autoimmune responses to this disease. Plasmacytoid dendritic cells (pDCs), a specialized cell type known to produce large amounts of type I interferons (IFNs) in response to bacterial and viral infections, have recently been revealed to play important roles in atherosclerosis. For example, the development of autoimmune complexes consisting of self-DNA and antimicrobial peptides, which trigger chronic type I IFN production by pDCs, promote early atherosclerotic lesion formation. pDCs and pDC-derived type I IFNs can also induce the maturation of conventional DCs and macrophages, and the development of autoreactive B cells and antibody production. These mechanisms, known to play a role in the pathogenesis of other autoimmune diseases such as systemic lupus erythematosus and psoriasis, may also affect the development and progression of atherosclerotic lesion formation. This review discusses emerging evidence showing a contribution of pDCs in the onset and progression of atherosclerosis. PMID:22754539

  4. Dendritic polymer-based nanodevices for targeted drug delivery applications

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Kolhe, Parag; Gurdag, Sezen; Khandare, Jayant; Lieh-Lai, Mary

    2004-03-01

    Dendrimers and hyperbranched polymers are unimolecular micellar nanostructures, characterized by globular shape ( ˜ 20 nm) and large density of functional groups at periphery. The tailorable end groups make them ideal for conjugation with drugs, ligands, and imagining agents, making them an attractive molecular nanodevices for drug delivery. Compared to linear polymers and nanoparticles, these nanodevices enter cells rapidly, carrying drugs and delivering them inside cells. Performance of nanodevices prepared for asthma and cancer drug delivery will be discussed. Our conjugation procedure produced very high drug payloads. Dendritic polymer-drug conjugates were very effective in transporting methotrexate (a chemotherapy drug) into both sensitive (CCRF-CEM cell line) and resistant cell line (CEM-MTX). The conjugate nanodevice was 3 times more effective than free drug in the sensitive line, and 9 times more effective in the resistant cell line (based on IC50). The physics of cell entry and drug release from these nanodevices are being investigated. The conjugates appear to enter cells through endocytosis, with the rate of entry dependent on end-group, molecular weight, the pH of the medium, and the cancerous nature of the cells.

  5. Photocatalytic degradation of acid blue 74 in water using Ag-Ag2O-Zno nanostuctures anchored on graphene oxide

    NASA Astrophysics Data System (ADS)

    Umukoro, Eseoghene H.; Peleyeju, Moses G.; Ngila, Jane C.; Arotiba, Omotayo A.

    2016-01-01

    Water pollution due to industrial effluents from industries which utilize dyes in the manufacturing of their products has serious implications on aquatic lives and the general environment. Thus, there is need for the removal of dyes from wastewater before being discharged into the environment. In this study, a nanocomposite consisting of silver, silver oxide (Ag2O), zinc oxide (ZnO) and graphene oxide (GO) was synthesized, characterized and photocatalytically applied in the degradation (and possibly mineralization) of organic pollutants in water treatment process. The Ag-Ag2O-ZnO nanostructure was synthesized by a co-precipitation method and calcined at 400 °C. It was functionalized using 3-aminopropyl triethoxysilane and further anchored on carboxylated graphene oxide via the formation of an amide bond to give the Ag-Ag2O-ZnO/GO nanocomposite. The prepared nanocomposite was characterized by UV-Vis diffuse reflectance spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), energy dispersive X-ray spectrometry (EDX), Fourier transformed infrared spectroscopy (FTIR), and Raman spectroscopy. The applicability of Ag-Ag2O-ZnO/GO nanocomposite as a photocatalyst was investigated in the photocatalytic degradation of acid blue 74 dye under visible light irradiation in synthetic wastewater containing the dye. The results indicated that Ag-Ag2O-ZnO/GO nanocomposite has a higher photocatalytic activity (90% removal) compared to Ag-Ag2O-ZnO (85% removal) and ZnO (75% removal) respectively and thus lends itself to application in water treatment, where the removal of organics is very important.

  6. Perinatal opiate treatment delays growth of cortical dendrites.

    PubMed

    Ricalde, A A; Hammer, R P

    1990-07-31

    Basilar dendritic arborizations of layer II-III pyramidal neurons in primary somatosensory cortex of 5-day-old male rats were reconstructed following perinatal morphine, morphine/naltrexone, or saline vehicle administration. Morphine treatment was observed to reduce total dendritic length. This effect was limited to higher order dendritic branches, with terminal dendrites manifesting the greatest reduction of length. The action of morphine was presumably mediated by opiate receptors, since concurrent naltrexone administration completely reversed morphine effects on dendritic length and branching. These results suggest that opiates act during late ontogenesis to affect dendritic growth in cerebral cortex. PMID:2172870

  7. Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in Drosophila sensory neurons

    PubMed Central

    Kim, Michelle E.; Shrestha, Brikha R.; Blazeski, Richard; Mason, Carol A.; Grueber, Wesley B.

    2012-01-01

    Summary Dendrites achieve characteristic spacing patterns during development to ensure appropriate coverage of territories. Mechanisms of dendrite positioning via repulsive dendrite-dendrite interactions are beginning to be elucidated, but the control, and importance, of dendrite positioning relative to their substrate is poorly understood. We found that dendritic branches of Drosophila dendritic arborization sensory neurons can be positioned either at the basal surface of epidermal cells, or enclosed within epidermal invaginations. We show that integrins control dendrite positioning on or within the epidermis in a cell autonomous manner by promoting dendritic retention on the basal surface. Loss of integrin function in neurons resulted in excessive self-crossing and dendrite maintenance defects, the former indicating a novel role for substrate interactions in self-avoidance. In contrast to a contact-mediated mechanism, we find that integrins prevent crossings that are non-contacting between dendrites in different three-dimensional positions, revealing a requirement for combined dendrite-dendrite and dendrite-substrate interactions in self-avoidance. PMID:22243748

  8. Easy deposition of Ag onto polystyrene beads for developing surface-enhanced-Raman-scattering-based molecular sensors.

    PubMed

    Kim, Kwan; Lee, Hyang Bong; Park, Hyoung Kun; Shin, Kuan Soo

    2008-02-15

    We describe a very simple electroless plating method that can be used to prepare Ag-coated polystyrene beads. Robust Ag nanostructures are reproducibly fabricated by soaking polystyrene beads in ethanolic solutions of AgNO(3) and butylamine. When the molar ratio of butylamine to AgNO(3) is far below 1.0, distinct nanosized Ag particles are formed on the polystyrene beads, but by increasing the amount of butylamine, network-like Ag nanostructures are formed that possess very broad UV/vis absorption characteristics extending from the near-UV to near-infrared regions. In conformity with the UV/vis absorption characteristics, the Ag-deposited polystyrene beads were highly efficient surface-enhanced Raman scattering (SERS) substrates, with an enhancement factor estimated using 4-aminobenzenethiol (4-ABT) as a model adsorbate to be larger than 1.1x10(6). On the basis of the nature of the SERS peaks of 4-ABT, those Ag-deposited polystyrene beads were confirmed, after attaching biotin groups over 4-ABT, to selectively recognize streptavidin molecules down to concentrations of 10(-11) g mL(-1) (i.e., approximately 0.2 pM). Since a number of different molecules can be used as SERS-marker molecules (such as 4-ABT), multiple bioassays are readily accomplished via SERS after attaching appropriate host or guest molecules onto them. PMID:18001760

  9. Hydroquinone-assisted synthesis of branched au-ag nanoparticles with polydopamine coating as highly efficient photothermal agents.

    PubMed

    Li, Jing; Wang, Wenjing; Zhao, Liang; Rong, Li; Lan, Shijie; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2015-06-01

    Despite the success of galvanic replacement in preparing hollow nanostructures with diversified morphologies via the replacement reaction between sacrificial metal nanoparticles (NPs) seeds and less active metal ions, limited advances are made for producing branched alloy nanostructures. In this paper, we report an extended galvanic replacement for preparing branched Au-Ag NPs with Au-rich core and Ag branches using hydroquinone (HQ) as the reductant. In the presence of HQ, the preformed Ag seeds are replaceable by Au and, in turn, supply the growth of Ag branches. By altering the feed ratio of Ag seeds, HAuCl4, and HQ, the size and morphology of the NPs are tunable. Accordingly, the surface plasmon resonance absorption is tuned to near-infrared (NIR) region, making the branched NPs as potential materials in photothermal therapy. The branched NPs are further coated with polydopamine (PDA) shell via dopamine polymerization at room temperature. In comparison with bare NPs, PDA-coated branched Au-Ag (Au-Ag@PDA) NPs exhibit improved stability, biocompatibility, and photothermal performance. In vitro experiments indicate that the branched Au-Ag@PDA NPs are competitive agents for photothermal ablation of cancer cells. PMID:25969998

  10. Dendritic spine dysgenesis in neuropathic pain.

    PubMed

    Tan, Andrew M; Waxman, Stephen G

    2015-08-01

    Neuropathic pain is a significant unmet medical need in patients with variety of injury or disease insults to the nervous system. Neuropathic pain often presents as a painful sensation described as electrical, burning, or tingling. Currently available treatments have limited effectiveness and narrow therapeutic windows for safety. More powerful analgesics, e.g., opioids, carry a high risk for chemical dependence. Thus, a major challenge for pain research is the elucidation of the mechanisms that underlie neuropathic pain and developing targeted strategies to alleviate pathological pain. The mechanistic link between dendritic spine structure and circuit function could explain why neuropathic pain is difficult to treat, since nociceptive processing pathways are adversely "hard-wired" through the reorganization of dendritic spines. Several studies in animal models of neuropathic pain have begun to reveal the functional contribution of dendritic spine dysgenesis in neuropathic pain. Previous reports have demonstrated three primary changes in dendritic spine structure on nociceptive dorsal horn neurons following injury or disease, which accompany chronic intractable pain: (I) increased density of dendritic spines, particularly mature mushroom-spine spines, (II) redistribution of spines toward dendritic branch locations close to the cell body, and (III) enlargement of the spine head diameter, which generally presents as a mushroom-shaped spine. Given the important functional implications of spine distribution, density, and shape for synaptic and neuronal function, the study of dendritic spine abnormality may provide a new perspective for investigating pain, and the identification of specific molecular players that regulate spine morphology may guide the development of more effective and long-lasting therapies. PMID:25445354

  11. Nanostructured titanium-silver coatings with good antibacterial activity and cytocompatibility fabricated by one-step magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Bai, Long; Hang, Ruiqiang; Gao, Ang; Zhang, Xiangyu; Huang, Xiaobo; Wang, Yueyue; Tang, Bin; Zhao, Lingzhou; Chu, Paul K.

    2015-11-01

    Bacterial infection and loosing are serious complications for biomedical implants in the orthopedic, dental, and other biomedical fields and the ideal implants should combine good antibacterial ability and bioactivity. In this study, nanostructured titanium-silver (Ti-Ag) coatings with different Ag contents (1.2 to 21.6 at%) are prepared on Ti substrates by magnetron sputtering. As the Ag concentration is increased, the coatings change from having dense columnar crystals to sparse ones and eventually no columnar structure. The Ti-Ag coatings can effectively kill Staphylococcus aureus during the first few days and remain moderately antibacterial after immersion for 75 days. Compared to pure Ti, the Ti-Ag coatings show good cytocompatibility as indicated by good osteoblast adhesion, proliferation, intracellular total protein synthesis, and alkaline phosphatase (ALP) activity. In addition, cell spreading, collagen secretion, and extracellular matrix mineralization are promoted on the coatings with the proper Ag contents due to the nanostructured morphological features. Our results indicate that favorable antibacterial activity and osseointegration ability can be simultaneously achieved by regulating the Ag contents in Ti-Ag coatings.

  12. Ultraflexible nanostructures and implications for future nanorobots

    NASA Astrophysics Data System (ADS)

    Cohn, Robert W.; Panchapakesan, Balaji

    2016-05-01

    Several high aspect ratio nanostructures have been made by capillary force directed self-assembly including polymeric nanofiber air-bridges, trampoline-like membranes, microsphere-beaded nanofibers, and intermetallic nanoneedles. Arrays of polymer air-bridges form in seconds by simply hand brushing a bead of polymeric liquid over an array of micropillars. The domination of capillary force that is thinning unstable capillary bridges leads to uniform arrays of nanofiber air-bridges. Similarly, arrays of vertically oriented Ag2Ga nanoneedles have been formed by dipping silvercoated arrays of pyramidal silicon into melted gallium. Force-displacement measurements of these structures are presented. These nanostructures, especially when compressively or torsionally buckled, have extremely low stiffnesses, motion due to thermal fluctuations that is relatively easily detected, and the ability to move great distances for very small changes in applied force. Nanofibers with bead-on-a-string structure, where the beads are micron diameter and loaded with magnetic iron oxide (maghemite), are shown to be simply viewable under optical microscopes, have micronewton/ m stiffness, and have ultralow torsional stiffnesses enabling the bead to be rotated numerous revolutions without breaking. Combination of these high aspect ratio structures with stretched elastomers offer interesting possibilities for robotic actuation and locomotion. Polydimethylsiloxane loaded with nanomaterials, e.g. nanotubes, graphene or MoS2, can be efficiently heated with directed light. Heating produces considerable force through the thermoelastic effect, and this force can be used for continuous translation or to trigger reversible elastic buckling of the nanostructures. The remote stimulation of motion with light provides a possible mechanism for producing cooperative behavior between swarms of semiautonomous nanorobots.

  13. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  14. Atomically Traceable Nanostructure Fabrication.

    PubMed

    Ballard, Josh B; Dick, Don D; McDonnell, Stephen J; Bischof, Maia; Fu, Joseph; Owen, James H G; Owen, William R; Alexander, Justin D; Jaeger, David L; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J; Wallace, Robert M; Reidy, Richard; Silver, Richard M; Randall, John N; Von Ehr, James

    2015-01-01

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure. PMID:26274555

  15. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  16. Emerging double helical nanostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Wei, Fei

    2014-07-01

    As one of the most important and land-mark structures found in nature, a double helix consists of two congruent single helices with the same axis or a translation along the axis. This double helical structure renders the deoxyribonucleic acid (DNA) the crucial biomolecule in evolution and metabolism. DNA-like double helical nanostructures are probably the most fantastic yet ubiquitous geometry at the nanoscale level, which are expected to exhibit exceptional and even rather different properties due to the unique organization of the two single helices and their synergistic effect. The organization of nanomaterials into double helical structures is an emerging hot topic for nanomaterials science due to their promising exceptional unique properties and applications. This review focuses on the state-of-the-art research progress for the fabrication of double-helical nanostructures based on `bottom-up' and `top-down' strategies. The relevant nanoscale, mesoscale, and macroscopic scale fabrication methods, as well as the properties of the double helical nanostructures are included. Critical perspectives are devoted to the synthesis principles and potential applications in this emerging research area. A multidisciplinary approach from the scope of nanoscience, physics, chemistry, materials, engineering, and other application areas is still required to the well-controlled and large-scale synthesis, mechanism, property, and application exploration of double helical nanostructures.

  17. Virus-like nanostructures for tuning immune response

    NASA Astrophysics Data System (ADS)

    Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.

    2015-11-01

    Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system.

  18. Virus-like nanostructures for tuning immune response

    PubMed Central

    Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.

    2015-01-01

    Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system. PMID:26577983

  19. Impaired dendritic cell function in a spontaneous autoimmune polyneuropathy.

    PubMed

    Quan, Songhua; Kim, Hye-Jung; Dukala, Danuta; Sheng, Jian Rong; Soliven, Betty

    2015-05-01

    Spontaneous autoimmune polyneuropathy (SAP) in B7-2 knockout NOD mice mimics the progressive form of chronic inflammatory demyelinating polyradiculoneuropathy, and is mediated by myelin protein zero (P0)-reactive Th1 cells. In this study, we focused on the effect of B7-2 deletion on the function of dendritic cells (DCs) within the context of SAP. We found that development of SAP was associated with a preponderance or increase of CD11b(+) DCs in peripheral lymph nodes and sciatic nerves. B7-2 deletion led to altered immunophenotypic properties that differ between CD11b(+) DCs and CD8α(+) DCs. Both DC subsets from B7-2 knockout NOD mice exhibited impaired capacity to capture fluorophore-labeled myelin P0, but diminished Ag-presenting function was observed only in CD11b(+) DCs. Clinical assessment, electrophysiologic studies, and splenocyte proliferation studies revealed that absence of B7-2 on DCs was sufficient to cause impaired ability to induce tolerance to P0, which could be overcome by preconditioning with IL-10. Tolerance induction by Ag-pulsed wild-type NOD DCs was dependent on IL-10 and was associated with increased CD4(+) regulatory T cells, whereas tolerance induction by IL-10-conditioned B7-2-deficient DCs was associated with increased percentages of both regulatory T cells and B10 cells in the spleen. We conclude that B7-2 deletion has an impact on the distribution of DC subsets in lymphoid organs and alters the expression of costimulatory molecules, but functional consequences are not uniform across DC subsets. Defective tolerance induction in the absence of B7-2 can be restored by preconditioning of DCs with IL-10. PMID:25825437

  20. The Complete Reconfiguration of Dendritic Gold

    NASA Astrophysics Data System (ADS)

    Paneru, Govind; Flanders, Bret

    2014-03-01

    Reconfigurability-by-design is an important strategy in modern materials science, as materials with this capability could potentially be used to confer hydrophobic, lipophobic, or anti-corrosive character to substrates in a regenerative manner. The present work extends the directed electrochemical nanowire assembly (DENA) methodology, which is a technique that employs alternating voltages to grow single crystalline metallic nanowires and nano-dendrites from simple salt solutions, to enable the complete dissolution of macroscopic arrays of metallic dendrites following their growth. Our main finding is that structural reconfiguration of dendritic gold is induced by changes in the MHz-level frequencies of voltages that are applied to the dendrites. Cyclic voltammetry and micro-Raman spectroscopy have been used to show that dendritic gold grows and dissolves by the same chemical mechanisms as bulk gold. Hence, the redox chemistry that occurs at the crystal-solution interface is no different than the established electrochemistry of gold. What differs in this process and allows for reconfiguration to occur is the diffusive behavior of the gold chloride molecules in the solution adjacent to the interface. We will present a simple model that captures the physics of this behavior.

  1. Dendrites Inhibition in Rechargeable Lithium Metal Batteries

    NASA Astrophysics Data System (ADS)

    Aryanfar, Asghar

    The specific high energy and power capacities of rechargeable lithium metal (Li0) batteries are ideally suited to portable devices and are valuable as storage units for intermittent renewable energy sources. Lithium, the lightest and most electropositive metal, would be the optimal anode material for rechargeable batteries if it were not for the fact that such devices fail unexpectedly by short-circuiting via the dendrites that grow across electrodes upon recharging. This phenomenon poses a major safety issue because it triggers a series of adverse events that start with overheating, potentially followed by the thermal decomposition and ultimately the ignition of the organic solvents used in such devices. In this thesis, we developed experimental platform for monitoring and quantifying the dendrite populations grown in a Li battery prototype upon charging under various conditions. We explored the effects of pulse charging in the kHz range and temperature on dendrite growth, and also on loss capacity into detached "dead" lithium particles. Simultaneously, we developed a computational framework for understanding the dynamics of dendrite propagation. The coarse-grained Monte Carlo model assisted us in the interpretation of pulsing experiments, whereas MD calculations provided insights into the mechanism of dendrites thermal relaxation. We also developed a computational framework for measuring the dead lithium crystals from the experimental images.

  2. Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules.

    PubMed

    Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio

    2016-04-01

    Galvanic growth of Ag nano/micro-structures on Cu micro-grid was systematically studied for surface-enhanced Raman scattering (SERS) applications. Detailed characterizations via FE-SEM and HR-TEM showed that processing parameters, (reaction time, Ag(+) concentration, and PVP addition) all substantially affect thermodynamics/kinetics of the replacement reaction to yield substrates of significantly different microstructures/homogeneities and thus varied SERS performances (sensitivity, enhancement factor, and reproducibility) of the Ag substrates in the detection of R6G analyte. PVP as an additive was shown to notably alter nucleation/growth behaviors of the Ag crystals and promote the deposition of dense and uniform Ag films of nearly monodisperse polyhedrons/nanoplates through suppressing dendrites crystallization. Under optimized synthesis (50mM of Ag(+), 30s of reaction, and 700 wt.% of PVP), Ag substrates exhibiting a high Raman signal enhancement factor of ~1.1 × 10(6) and a low relative standard deviation of ~0.13 in the repeated detection of 10 μM R6G were obtained. The facile deposition and excellent performance reported in this work may allow the Ag microstructures to find wider SERS applications. Moreover, growth mechanisms of the different Ag nano/micro-structures were discussed based on extensive FE-SEM and HR-TEM analysis. PMID:26838829

  3. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  4. Reduced Purkinje cell dendritic arborization and loss of dendritic spines in essential tremor.

    PubMed

    Louis, Elan D; Lee, Michelle; Babij, Rachel; Ma, Karen; Cortés, Etty; Vonsattel, Jean-Paul G; Faust, Phyllis L

    2014-12-01

    Based on accumulating post-mortem evidence of abnormalities in Purkinje cell biology in essential tremor, we hypothesized that regressive changes in dendritic morphology would be apparent in the Purkinje cell population in essential tremor cases versus age-matched controls. Cerebellar cortical tissue from 27 cases with essential tremor and 27 age-matched control subjects was processed by the Golgi-Kopsch method. Purkinje cell dendritic anatomy was quantified using a Neurolucida microscopic system interfaced with a motorized stage. In all measures, essential tremor cases demonstrated significant reductions in dendritic complexity compared with controls. Median values in essential tremor cases versus controls were: 5712.1 versus 10 403.2 µm (total dendrite length, P=0.01), 465.9 versus 592.5 µm (branch length, P=0.01), 22.5 versus 29.0 (maximum branch order, P=0.001), and 165.3 versus 311.7 (number of terminations, P=0.008). Furthermore, the dendritic spine density was reduced in essential tremor cases (medians=0.82 versus 1.02 µm(-1), P=0.03). Our demonstration of regressive changes in Purkinje cell dendritic architecture and spines in essential tremor relative to control brains provides additional evidence of a pervasive abnormality of Purkinje cell biology in this disease, which affects multiple neuronal cellular compartments including their axon, cell body, dendrites and spines. PMID:25367027

  5. Successful Isothermal Dendritic Growth Experiment (IDGE) Proves Current Theories of Dendritic Solidification are Flawed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The scientific objective of the Isothermal Dendritic Growth Experiment (IDGE) is to test fundamental assumptions about dendritic solidification of molten materials. "Dendrites"-- from the ancient Greek word for tree--are tiny branching structures that form inside molten metal alloys when they solidify during manufacturing. The size, shape, and orientation of the dendrites have a major effect on the strength, ductility (ability to be molded or shaped), and usefulness of an alloy. Nearly all of the cast metal alloys used in everyday products (such as automobiles and airplanes) are composed of thousands to millions of tiny dendrites. Gravity, present on Earth, causes convection currents in molten alloys that disturb dendritic solidification and make its precise study impossible. In space, gravity is negated by the orbiting of the space shuttle. Consequently, IDGE (which was conducted on the space shuttle) gathered the first precise data regarding undisturbed dendritic solidification. IDGE is a microgravity materials science experiment that uses an apparatus which was designed, built, tested, and operated by people from the NASA Lewis Research Center. This experiment was conceived by the principal investigator, Professor Martin E. Glicksman, from Rensselaer Polytechnic Institute in Troy, New York. The experiment was a team effort of Lewis civil servants, contractors from Aerospace Design & Fabrication Inc. (ADF), and personnel at Rensselaer.

  6. TOPICAL REVIEW: Fabrication and characterization of nanostructures on insulator substrates by electron-beam-induced deposition

    NASA Astrophysics Data System (ADS)

    Song, Minghui; Furuya, Kazuo

    2008-04-01

    The fabrication, characterization, and decoration with metallic nanoparticles of nanostructures such as nanowhiskers, nanodendrites, and fractal-like nanotrees on insulator substrates by electron-beam-induced deposition (EBID) are reviewed. Nanostructures with different morphologies of whiskers, dendrites, or trees are fabricated on insulator (Al2O3 or SiO2) substrates by EBID in transmission electron microscopes by controlling the irradiation conditions such as the electron beam intensity. The growth of the nanostructure is related to the accumulation of charges on the surface of a substrate during electron-beam irradiation. A high concentration of the target metallic element and nanocrystal grains of the element are contained in the fabricated nanostructures. The process of growth of the nanostructures is explained qualitatively on the basis of mechanisms in which the formation of the nanostructures is considered to be related to the nanoscaled unevenness of the charge distribution on the surface of the substrate, the movement of the charges to the convex surface of the substrate, and the accumulation of charges at the tip of the grown nanostructure. Novel composite structures of Pt nanoparticle/tungsten (W) nanodendrite or Au nanoparticle/W nanodendrite are fabricated by the decoration of W nanodendrites with metallic elements. Because they have superior features, such as a large specific surface area, a freestanding structure on substrates, a typical size of several nanometers of the tip or the branch, and high purity, the nanostructures may have applications in technologies such as catalysts, sensors, and electron emitters. However, there are still some subjects that should be further studied before their application.

  7. Ternary oxide nanostructures and methods of making same

    DOEpatents

    Wong, Stanislaus S.; Park, Tae-Jin

    2009-09-08

    A single crystalline ternary nanostructure having the formula A.sub.xB.sub.yO.sub.z, wherein x ranges from 0.25 to 24, and y ranges from 1.5 to 40, and wherein A and B are independently selected from the group consisting of Ag, Al, As, Au, B, Ba, Br, Ca, Cd, Ce, Cl, Cm, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Ho, I, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Ti, Tl, Tm, U, V, W, Y, Yb, and Zn, wherein the nanostructure is at least 95% free of defects and/or dislocations.

  8. Tellurium nano-structure based NO gas sensor.

    PubMed

    Kumar, Vivek; Sen, Shashwati; Sharma, M; Muthe, K P; Jagannath; Gaur, N K; Gupta, S K

    2009-09-01

    Tellurium nanotubes were grown on bare and silver/gold nanoparticle (nucleation centers) deposited silicon substrates by vacuum deposition technique at a substrate temperature of 100 degrees C under high vacuum conditions. Silver and gold nanoparticles prepared on (111) oriented silicon substrates were found to act as nucleation centers for growth of Tellurium nanostructures. Density of nanotubes was found to increase while their diameter reduced when grown using metallic nanoparticle template. These Te nanostructures were investigated for their gas sensitivity. Tellurium nanotubes on Ag templates showed better response to NO in comparison to H2S and NH3 gases. Selectivity in response to NO was improved in comparison to Te thin film sensors reported earlier. The gas sensing mechanism was investigated using Raman and X-ray photoelectron spectroscopy techniques. The interaction of NO is seen to yield increased adsorption of oxygen that in turn increases hole density and conductivity in the material. PMID:19928213

  9. Isothermal dendritic growth: A low gravity experiment

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Selleck, M. E.; Winsa, E.

    1988-01-01

    The Isothermal Dendritic Growth Experiment is an active crystal growth experiment designed to test dendritic growth theory at low undercoolings where convection prohibits such studies at 1 g. The experiment will be essentially autonomous, though limited in-flight interaction through a computer interface is planned. One of the key components of the apparatus will be a crystal growth chamber capable of achieving oriented single crystal dendritic growth. Recent work indicates that seeding the chamber with a crystal of the proper orientation will not, in and of itself, be sufficient to meet this requirement. Additional flight hardware and software required for the STS flight experiment are currently being developed at NASA Lewis Research Center and at Rensselaer Polytechnic Institute.

  10. Forward- and backpropagation in a silicon dendrite.

    PubMed

    Rasche, C; Douglas, R J

    2001-01-01

    We have developed an analog very-large-scale integrated (aVLSI) electronic circuit that emulates a compartmental model of a neuronal dendrite. The horizontal conductances of the compartmental model are implemented as a switched capacitor network. The transmembrane conductances are implemented as transconductance amplifiers. The electrotonic properties of our silicon cable are qualitatively similar to those of the ideal passive cable that is commonly used to model mathematically the electrotonic behavior of neurons. In particular the propagation of excitatory postsynaptic potentials is realistic, and we are easily able to emulate such classical synaptic integration models as direction selectivity. We are also able to emulate the backpropagation into the dendrite of single somatic spikes and bursts of spikes. Thus, this silicon dendrite is suitable for incorporation in detailed silicon neurons operating in real-time; in particular for the emulation of forward- and backpropagating electrical activities found in real neurons. PMID:18244392

  11. Dendritic inhomogeneity of stainless maraging steels

    SciTech Connect

    Krasnikova, S.I.; Drobot, A.V.; Shmelev, A.Y.; Vukelich, S.B.

    1986-03-01

    The authors investigated dendritic inhomogeneity in industrial ingots 630 mm (steel I) in diameter and 500 mm (steel II) in diameter. The variation in the degree of dendritic inhomogeneity was investigated over the height of the ingots and across the sections on an MS-46 microprobe. It was established that the elements can be placed in the following order in accordance with the degree of reduction in the liquation factor: titanium, molybdenum, nickel, chromium, and cobalt. Titanium and molybdenum exhibit forward liquation in both steels, and chromium in steel II. The distribution of nickel and chromium in the steel I ingots and cobalt in the steel II ingots is unconventional. Dendritic inhomogeneity, which must be considered in assigning the heat treatment for finished articles, develops during the crystallization of stainless maraging steels.

  12. Convection Effects in Three-dimensional Dendritic Growth

    NASA Technical Reports Server (NTRS)

    Lu, Yili; Beckermann, C.; Karma, A.

    2003-01-01

    A phase-field model is developed to simulate free dendritic growth coupled with fluid flow for a pure material in three dimensions. The preliminary results presented here illustrate the strong influence of convection on the three-dimensional (3D) dendrite growth morphology. The detailed knowledge of the flow and temperature fields in the melt around the dendrite from the simulations allows for a detailed understanding of the convection effects on dendritic growth.

  13. Morphological evolution, growth mechanism, and magneto-transport properties of silver telluride one-dimensional nanostructures

    PubMed Central

    2013-01-01

    Single crystalline one-dimensional (1D) nanostructures of silver telluride (Ag2Te) with well-controlled shapes and sizes were synthesized via the hydrothermal reduction of sodium tellurite (Na2TeO3) in a mixed solution. The morphological evolution of various 1D nanostructures was mainly determined by properly controlling the nucleation and growth process of Ag2Te in different reaction times. Based on the transmission electron microscopy and scanning electron microscopy studies, the formation mechanism for these 1D nanostructures was rationally interpreted. In addition, the current–voltage (I-V) characteristics as a function of magnetic field of the highly single crystal Ag2Te nanowires were systematically measured. From the investigation of I-V characteristics, we have observed a rapid change of the current in low magnetic field, which can be used as the magnetic field sensor. The magneto-resistance behavior of the Ag2Te nanowires with monoclinic structure was also investigated. Comparing to the bulk and thin film materials, we found that there is generally a larger change in R (T) as the sample size is reduced, which indicates that the size of the sample has a certain impact on magneto-transport properties. Simultaneously, some possible reasons resulting in the observed large positive magneto-resistance behavior are discussed. PMID:23958372

  14. Suppressing light reflection from polycrystalline silicon thin films through surface texturing and silver nanostructures

    SciTech Connect

    Akhter, Perveen; Huang, Mengbing Kadakia, Nirag; Spratt, William; Malladi, Girish; Bakhru, Hassarum

    2014-09-21

    This work demonstrates a novel method combining ion implantation and silver nanostructures for suppressing light reflection from polycrystalline silicon thin films. Samples were implanted with 20-keV hydrogen ions to a dose of 10¹⁷/cm², and some of them received an additional argon ion implant to a dose of 5×10¹⁵ /cm² at an energy between 30 and 300 keV. Compared to the case with a single H implant, the processing involved both H and Ar implants and post-implantation annealing has created a much higher degree of surface texturing, leading to a more dramatic reduction of light reflection from polycrystalline Si films over a broadband range between 300 and 1200 nm, e.g., optical reflection from the air/Si interface in the AM1.5 sunlight condition decreasing from ~30% with an untextured surface to below 5% for a highly textured surface after post-implantation annealing at 1000°C. Formation of Ag nanostructures on these ion beam processed surfaces further reduces light reflection, and surface texturing is expected to have the benefit of diminishing light absorption losses within large-size (>100 nm) Ag nanoparticles, yielding an increased light trapping efficiency within Si as opposed to the case with Ag nanostructures on a smooth surface. A discussion of the effects of surface textures and Ag nanoparticles on light trapping within Si thin films is also presented with the aid of computer simulations.

  15. Dendritic Cells Stimulated by Cationic Liposomes.

    PubMed

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola

    2016-01-01

    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy. PMID:27398454

  16. Hydrothermal preparation of silver telluride nanostructures and photo-catalytic investigation in degradation of toxic dyes.

    PubMed

    Gholamrezaei, Sousan; Salavati-Niasari, Masoud; Ghanbari, Davood; Bagheri, Samira

    2016-01-01

    Different morphologies of Ag2Te nanostructures were synthesized using TeCl4 as a new precursor and hydrazine hydrate as reducing agent by a hydrothermal method. Various parameters that affect on morphology and purity of nanostructures were optimized. According to our experiments the best time and temperature for preparation of this nanostructure are 12 h and 120 °C. The photo-catalytic behaviour of nanostructures in presence of UV-visible light for degradation of methyl orange was investigated. Results show that the presence of UV light is necessary for an efficient degradation of dye in aqueous solution. On the other hand, as observations propose the Ag2Te reveal a strong photoluminescence peak at room temperature that could be attributed to high level transition in the semiconductor. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) techniques and UV-visible scanning spectrometer (UV-Vis). PMID:26805744

  17. Room-Temperature Chemical Welding and Sintering of Metallic Nanostructures by Capillary Condensation.

    PubMed

    Yoon, Sung-Soo; Khang, Dahl-Young

    2016-06-01

    Room-temperature welding and sintering of metal nanostructures, nanoparticles and nanowires, by capillary condensation of chemical vapors have successfully been demonstrated. Nanoscale gaps or capillaries that are abundant in layers of metal nanostructures have been found to be the preferred sites for the condensation of chemically oxidizing vapor, H2O2 in this work. The partial dissolution and resolidification at such nanogaps completes the welding/sintering of metal nanostructures within ∼10 min at room-temperature, while other parts of nanostructures remain almost intact due to negligible amount of condensation on there. The welded networks of Ag nanowires have shown much improved performances, such as high electrical conductivity, mechanical flexibility, optical transparency, and chemical stability. Chemically sintered layers of metal nanoparticles, such as Ag, Cu, Fe, Ni, and Co, have also shown orders of magnitude increase in electrical conductivity and improved environmental stability, compared to nontreated ones. Pertinent mechanisms involved in the chemical welding/sintering process have been discussed. Room-temperature welding and sintering of metal nanostructures demonstrated here may find widespread application in diverse fields, such as displays, deformable electronics, wearable heaters, and so forth. PMID:27159354

  18. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  19. Manganese Nanostructures and Magnetism

    NASA Astrophysics Data System (ADS)

    Simov, Kirie Rangelov

    The primary goal of this study is to incorporate adatoms with large magnetic moment, such as Mn, into two technologically significant group IV semiconductor (SC) matrices, e.g. Si and Ge. For the first time in the world, we experimentally demonstrate Mn doping by embedding nanostructured thin layers, i.e. delta-doping. The growth is observed by in-situ scanning tunneling microscopy (STM), which combines topographic and electronic information in a single image. We investigate the initial stages of Mn monolayer growth on a Si(100)(2x1) surface reconstruction, develop methods for classification of nanostructure types for a range of surface defect concentrations (1.0 to 18.2%), and subsequently encapsulate the thin Mn layer in a SC matrix. These experiments are instrumental in generating a surface processing diagram for self-assembly of monoatomic Mn-wires. The role of surface vacancies has also been studied by kinetic Monte Carlo modeling and the experimental observations are compared with the simulation results, leading to the conclusion that Si(100)(2x1) vacancies serve as nucleation centers in the Mn-Si system. Oxide formation, which happens readily in air, is detrimental to ferromagnetism and lessens the magnetic properties of the nanostructures. Therefore, the protective SC cap, composed of either Si or Ge, serves a dual purpose: it is both the embedding matrix for the Mn nanostructured thin film and a protective agent for oxidation. STM observations of partially deposited caps ensure that the nanostructures remain intact during growth. Lastly, the relationship between magnetism and nanostructure types is established by an in-depth study using x-ray magnetic circular dichroism (XMCD). This sensitive method detects signals even at coverages less than one atomic layer of Mn. XMCD is capable of discerning which chemical compounds contribute to the magnetic moment of the system, and provides a ratio between the orbital and spin contributions. Depending on the amount

  20. Silicon dendritic web growth thermal analysis task

    NASA Technical Reports Server (NTRS)

    Richter, R.; Bhandari, P.

    1985-01-01

    A thermal analysis model is presented which describes the dendritic ribbon process. The model uses a melt-dendrite interface which projects out of the bulk melt as the basic interpretation of the ribbon production process. This is a marked departure from the interpretations of the interface phenomena which were used previously. The model was extensively illustrated with diagrams and pictures of ribbon samples. This model should have great impact on the analyses of experimental data as well as on future design modifications of ribbon-pulling equipment.

  1. The Isothermal Dendritic Growth Experiment (IDGE)

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin E.; Koss, M. B.; Lupulescu, A. O.; LaCombe, J. C.; Frei, J. E.; Malarik, D. C.

    1999-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) constituted a series of three NASA-supported microgravity experiments, all of which flew aboard the space shuttle, Columbia. This experimental space flight series was designed and operated to grow and record dendrite solidification in the absence of gravity-induced convective heat transfer, and thereby produce a wealth of benchmark-quality data for testing solidification scaling laws. The data and analysis performed on the dendritic growth speed and tip size in Succinontrie (SCN) demonstrates that although the theory yields predictions that are reasonably in agreement with experiment, there are significant discrepancies. However, some of these discrepancies can be explained by accurately describing the diffusion of heat. The key finding involves recognition that the actual three-dimensional shape of dendrites includes time-dependent side-branching and a tip region that is not a paraboloid of revolution. Thus, the role of heat transfer in dendritic growth is validated, with the caveat that a more realistic model of the dendrite then a paraboloid is needed to account for heat flow in an experimentally observed dendrite. We are currently conducting additional analysis to further confirm and demonstrate these conclusions. The data and analyses for the growth selection physics remain much less definitive. From the first flight, the data indicated that the selection parameter, sigma*, is not exactly a constant, but exhibits a slight dependence on the supercooling. Additional data from the second flight are being examined to investigate the selection of a unique dendrite speed, tip size and shape. The IDGE flight series is now complete. We are currently completing analyses and moving towards final data archiving. It is gratifying to see that the IDGE published results and archived data sets are being used actively by other scientists and engineers. In addition, we are also pleased to report that the techniques and IDGE

  2. The multifaceted biology of plasmacytoid dendritic cells

    PubMed Central

    Swiecki, Melissa; Colonna, Marco

    2015-01-01

    Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. Here, we review recent progress from the field of pDC biology, focusing on: the molecular mechanisms that regulate pDC development and functions; the pathways involved in their sensing of pathogens and endogenous nucleic acids; the function of pDCs at mucosal sites; and their roles in infections, autoimmunity and cancer. PMID:26160613

  3. Apparatus for growing a dendritic web

    DOEpatents

    Duncan, Charles S.; Piotrowski, Paul A.; Skutch, Maria E.; McHugh, James P.

    1983-06-21

    A melt system including a susceptor-crucible assembly having improved gradient control when melt replenishment is used during dendritic web growth. The improvement lies in the formation of a thermal barrier in the base of the receptor which is in the form of a vertical slot in the region of the susceptor underlying the crucible at the location of a compartmental separator dividing the crucible into a growth compartment and a melt replenishment compartment. The result achieved is a step change in temperature gradient in the melt thereby providing a more uniform temperature in the growth compartment from which the dendritic web is drawn.

  4. Dendritic microstructure in argon atomized superalloy powders

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Kumar, Mahundra

    1986-01-01

    The dendritic microstructure of atomized nickel base superalloy powders (Ni-20 pct Cr, NIMONIC-80A, ASTROALOY, and ZHS6-K) was studied. Prealloyed vacuum induction melted ingots were argon-atomized, the powders were cooled to room temperature, and various powder-size fractions were examined by optical metallography. Linear correlations were obtained for the powder size dependence of the secondary dendrite arm spacing, following the expected d-alpha (R) to the m power dependence on the particle size for all four superalloy compositions. However, the Ni-20 pct Cr alloy, which had much coarser arm spacing as compared to the other three alloys, had a much larger value of m.

  5. [Application of dendritic cells in clinical tumor therapy].

    PubMed

    Li, Yan; Xian, Li-jian

    2002-04-01

    The active immunotherapy of dendritic cells is hot in tumor therapy research area. This article is a review of the source of dendritic cells, loading antigen, immunotherapy pathway, clinical application, choice of patients, and so on. It makes preparation for further research of dendritic cells. PMID:12452029

  6. Microstructure and microhardness of nanostructured Al-4.6Cu-Mn alloy ribbons

    NASA Astrophysics Data System (ADS)

    Chen, Zhong-wei; Fan, Qin-ying; Zhao, Kai

    2015-08-01

    The microstructural characteristics and microhardness of nanostructured Al-4.6Cu-Mn ribbons produced by melt spinning were investigated using field-emission gun scanning electron microscopy, transmission electron microscopy, and hardness testing, and the results were compared to those of similar ribbons manufactured by direct-chill casting. It is shown that the nanostructure of the as-melt-spun ribbons consists of α-Al dendrites with a secondary dendrite arm spacing of approximately 0.55-0.80 μm and ultrafine eutectic crystals of a nanosized scale of approximately 100-200 nm on dendritic boundaries. The solidification time and cooling rate of 46-μm-thick ribbons were estimated to be 1.3 × 10-6 s and 4.04 × 106 K·s-1, respectively. At an aging temperature of 190°C, the coherent θ″ phase in aged ribbons gradually transforms into nanoscale θ'-phase platelets as the aging time is extended from 2 to 8 h; the rod-like morphology of the T (Al20Cu2Mn3) dispersoid with 120-160-nm diameter also forms, which results in peak aging hardness. The precipitation behaviors of aged ribbons cannot be changed at the high cooling rates of as-cast ribbons. However, a finer and more uniformly distributed microstructure and a supersaturated solid solution at a high cooling rate can shorten the time required to obtain a certain aging hardness before peak hardness.

  7. ZnO/Ag composite nanorod arrays for surface-plasmon-enhanced emission study

    SciTech Connect

    Pal, Anil Kumar E-mail: d.bharathimohan@gmail.com; Mohan, D. Bharathi E-mail: d.bharathimohan@gmail.com

    2014-04-24

    The surface plasmon resonance enhanced emission through coupling of surface plasmons and exciton band energies is studied in hybrid ZnO/Ag nanostructure. The catalytic growth of ZnO nanorods is controlled in seed mediated growth by altering size distribution of Ag nanoislands. X-ray diffraction shows a predominant (002) crystal plane confirming the preferential growth of ZnO nanorods on as-deposited Ag. Increase of surface roughness in Ag film by post deposition annealing process enhances the light emission due to momentum matching between surface plasmons and excitons as well as a red shift of 32 meV occurs due to multi phonon and phonon-exciton interaction.

  8. Synthesis of triangular Au core-Ag shell nanoparticles

    SciTech Connect

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali . E-mail: msastry@tatachemicals.com

    2007-07-03

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

  9. Selected synthesis of carbon nanostructures directed by silver nanocrystals

    NASA Astrophysics Data System (ADS)

    Kang, Zhenhui; Wang, Enbo; Lian, Suoyuan; Gao, Lei; Jiang, Min; Hu, Changwen; Xu, Lin

    2004-05-01

    By directly reducing C2Cl4 with Na, both multi-wall carbon nanotubes and graphite nanosheets were acquired at 140 °C in the presence of silver nanocrystals. Based on weak interaction between the p orbital of Cl in C2Cl4 and the empty d orbital of Ag, C2Cl4 can in some cases be located on the surface of silver nanocrystals. The carbon nanostructures can be directed by the morphology of silver nanocrystals. The crooked sites of silver nanocrystals lead to the formation of multi-wall carbon nanotubes while the planar sites result in the yield of graphite sheets.

  10. Understanding Structure and Bonding of Multilayered Metal-Organic Nanostructures.

    PubMed

    Egger, David A; Ruiz, Victor G; Saidi, Wissam A; Bučko, Tomáš; Tkatchenko, Alexandre; Zojer, Egbert

    2013-02-14

    For organic and hybrid electronic devices, the physicochemical properties of the contained interfaces play a dominant role. To disentangle the various interactions occurring at such heterointerfaces, we here model a complex, yet prototypical, three-component system consisting of a Cu-phthalocyanine (CuPc) film on a 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) monolayer adsorbed on Ag(111). The two encountered interfaces are similar, as in both cases there would be no bonding without van der Waals interactions. Still, they are also distinctly different, as only at the Ag(111)-PTCDA interface do massive charge-rearrangements occur. Using recently developed theoretical tools, we show that it has become possible to provide atomistic insight into the physical and chemical processes in this comparatively complex nanostructure distinguishing between interactions involving local rearrangements of the charge density and long-range van der Waals attraction. PMID:23447750

  11. Understanding Structure and Bonding of Multilayered Metal–Organic Nanostructures

    PubMed Central

    2013-01-01

    For organic and hybrid electronic devices, the physicochemical properties of the contained interfaces play a dominant role. To disentangle the various interactions occurring at such heterointerfaces, we here model a complex, yet prototypical, three-component system consisting of a Cu–phthalocyanine (CuPc) film on a 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) monolayer adsorbed on Ag(111). The two encountered interfaces are similar, as in both cases there would be no bonding without van der Waals interactions. Still, they are also distinctly different, as only at the Ag(111)–PTCDA interface do massive charge-rearrangements occur. Using recently developed theoretical tools, we show that it has become possible to provide atomistic insight into the physical and chemical processes in this comparatively complex nanostructure distinguishing between interactions involving local rearrangements of the charge density and long-range van der Waals attraction. PMID:23447750

  12. Uninterrupted galvanic reaction for scalable and rapid synthesis of metallic and bimetallic sponges/dendrites as efficient catalysts for 4-nitrophenol reduction.

    PubMed

    Barman, Barun Kumar; Nanda, Karuna Kar

    2015-03-01

    Here, we demonstrate an uninterrupted galvanic replacement reaction (GRR) for the synthesis of metallic (Ag, Cu and Sn) and bimetallic (Cu-M, M=Ag, Au, Pt and Pd) sponges/dendrites by sacrificing the low reduction potential metals (Mg in our case) in acidic medium. The acidic medium prevents the oxide formation on Mg surface and facilitates the uninterrupted reaction. The morphology of dendritic/spongy structures is controlled by the volume of acid used for this reaction. The growth mechanism of the spongy/dendritic microstructures is explained by diffusion-limited aggregate model (DLA), which is also largely affected by the volume of acid. The significance of this method is that the yield can be easily predicted, which is a major challenge for the commercialization of the products. Furthermore, the synthesis is complete in 1-2 minutes at room temperature. We show that the sponges/dendrites efficiently act as catalysts to reduce 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using NaBH4-a widely studied conversion process. PMID:25628256

  13. Hepatitis B virus-like particles access major histocompatibility class I and II antigen presentation pathways in primary dendritic cells.

    PubMed

    Moffat, Jessica M; Cheong, Wan-Shoo; Villadangos, José A; Mintern, Justine D; Netter, Hans J

    2013-04-26

    Virus-like particles (VLPs) represent high density displays of viral proteins that efficiently trigger immunity. VLPs composed of the small hepatitis B virus envelope protein (HBsAgS) are useful vaccine platforms that induce humoral and cellular immune responses. Notably, however, some studies suggest HBsAgS VLPs impair dendritic cell (DC) function. Here we investigated HBsAgS VLP interaction with DC subsets and antigen access to major histocompatibility complex (MHC) class I and II antigen presentation pathways in primary DCs. HBsAgS VLPs impaired plasmacytoid DC (pDC) interferon alpha (IFNα) production in response to CpG in vitro, but did not alter conventional DC (cDC) or pDC phenotype when administered in vivo. To assess cellular immune responses, HBsAgS VLPs were generated containing the ovalbumin (OVA) model epitopes OVA(257-264) and OVA(323-339) to access MHCI and MHCII antigen presentation pathways, respectively; both in vitro and following immunisation in vivo. HBsAgS VLP-OVA(257-264) elicited CTL responses in vivo that were not enhanced by inclusion of an additional MHCII helper epitope. HBsAgS VLP-OVA(257-264) administered in vivo was cross-presented by CD8(+) DCs, but not CD8(-) DCs. Therefore, HBsAgS VLPs can deliver antigen to both MHCI and MHCII antigen presentation pathways in primary DCs and promote cytotoxic and helper T cell priming despite their suppressive effect on pDCs. PMID:23473776

  14. Planar plasmonic chiral nanostructures.

    PubMed

    Zu, Shuai; Bao, Yanjun; Fang, Zheyu

    2016-02-21

    A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response. PMID:26818746

  15. Nanostructured sulfur cathodes.

    PubMed

    Yang, Yuan; Zheng, Guangyuan; Cui, Yi

    2013-04-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. PMID:23325336

  16. Nanostructured Superhydrophobic Coatings

    SciTech Connect

    2009-03-01

    This factsheet describes a research project that deals with the nanostructured superhydrophobic (SH) powders developed at ORNL. This project seeks to (1) improve powder quality; (2) identify binders for plastics, fiberglass, metal (steel being the first priority), wood, and other products such as rubber and shingles; (3) test the coated product for coating quality and durability under operating conditions; and (4) application testing and production of powders in quantity.

  17. Pickled luminescent silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Boukherroub, R.; Morin, S.; Wayner, D. D. M.; Lockwood, D. J.

    2001-05-01

    In freshly prepared porous Si, the newly exposed silicon-nanostructure surface is protected with a monolayer of hydrogen, which is very reactive and oxidizes in air leading to a loss of luminescence intensity and a degradation of the electronic properties. We report a surface passivation approach based on organic modification that stabilizes the luminescence. This novel 'pickling' process not only augments the desired optoelectronic properties, but also is adaptable to further chemical modification for integration into chemical and biophysical sensors.

  18. Exploring the benefits of electron tomography to characterize the precise morphology of core-shell Au@Ag nanoparticles and its implications on their plasmonic properties.

    PubMed

    Hernández-Garrido, J C; Moreno, M S; Ducati, C; Pérez, L A; Midgley, P A; Coronado, E A

    2014-11-01

    In the design and engineering of functional core-shell nanostructures, material characterization at small length scales remains one of the major challenges. Here we show how electron tomography in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) mode can be applied successfully to perform nano-metrological characterization of Au@Ag core-shell nanostructures. This work stresses the benefits of HAADF-STEM tomography and its use as a novel and rigorous tool for understanding the physical-chemical properties of complex 3D core-shell nanostructures. The reconstructed Au@Ag core-shell architecture was used as an input for discrete dipole approximation (DDA)-based electrodynamics simulations of the optical properties of the nanostructures. The implications of localized surface plasmon spectroscopy as well as Raman-enhanced spectroscopy are analysed. PMID:25215960

  19. Antibacterial Au nanostructured surfaces.

    PubMed

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-02-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies. PMID:26648134

  20. Coherent control near metallic nanostructures

    SciTech Connect

    Efimov, Ilya; Efimov, Anatoly

    2008-01-01

    We study coherent control in the vicinity of metallic nanostructures. Unlike in the case of control in gas or liquid phase, the collective response of electrons in a metallic nanostructure can significantly enhance different frequency components of the control field. This enhancement strongly depends on the geometry of the nanostructure and can substantially modify the temporal profile of the local control field. The changes in the amplitude and phase of the control field near the nanostructure are studied using linear response theory. The inverse problem of finding the external electromagnetic field to generate the desired local control field is considered and solved.

  1. High-speed photocathodes fabricated from metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Nolle, Eduard L.; Khavin, Yuri B.; Schelev, Mikhail Y.

    2005-03-01

    Spectral dependences of photoemission (PE), absorption and reflection from Ag and Au granular films are studied experimentally together with their structure and physical properties using Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPES). It is found that a new intensive PE band in the visible spectral range (l = 500 - 600 nm) appears when such films are activated with Cs and O and this PE band coincides with the absorption and reflection bands. Theoretical calculations of PE spectra based on absorption spectrum of metallic oblate spheroidal nanoparticles are also carried out. Such calculations indicate that the appearance of this PE band can be explained by excitation of the surface plasmons in spheroidal nanoparticles with the major axes approximately equal to 50 nm and minor axes approximately equal to 5 nm. Similar calculations carried out for an S-1 photocathode indicate that the shape and the position of the measured long wavelength PE band with the peak maximum at λ ~ 800 nm can also be explained by excitation of the surface plasmons in Ag spheroidal nanoparticles with the axes equal to 25 and 0.9 nm correspondingly. Degradation with time of PE from Ag and Au granular films is also studied and it is shown that while Ag nanoparticles degrade due to desorption of Cs, Au nanoparticles degrade due to its adsorption. Photoelectron emission in the studied metallic nanostructures can be explained by the surface photoeffect caused by excitation of the surface plasmons in nanoparticles. Therefore, photocathodes with subfemtosecond-range temporal resolution and quantum yield equal to several percent in the visible wavelength range can be fabricated from such nanostructures.

  2. Freeze-dried PVP-Ag+ precursors to novel AgBr/AgCl-Ag hybrid nanocrystals for visible-light-driven photodegradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Chen, Qianqian; Zhang, Wenjie; Ge, Lianfang; Shao, Gang; Fan, Bingbing; Lu, Hongxia; Zhang, Rui; Yang, Daoyuan; Shao, Guosheng

    2015-04-01

    AgBr/AgCl-Ag nanocrystals with various molar Br-to-Ag ratios (RBr/Ag = 0, 1/3, 1/2, 2/3, 1) and different photoreduction times (0-20 min) were synthesized via stepwise liquid-solid reactions using the freeze-dried PVP-Ag+ hybrid as the Ag source, followed by a photoreduction reaction. The AgBr/AgCl-Ag7.5(1:2) nanocrystals obtained take on a spherical morphology with a particle-size range of 58 ± 15 nm. The photocatalytic performance of AgBr/AgCl-Ag nanocrystals was evaluated by photodegrading organic dyes, 4-chlorophenol and isopropanol under artificial visible light (λ ⩾ 420 nm, 100 mW cm-2). For the decomposition of rhodamine B, the AgBr/AgCl-Ag7.5(1:2) nanocrystals has a photodegradation rate of ∼0.87 min-1, ∼159 times higher than that (∼0.0054 min-1) of TiO2 (P25), whereas the AgCl-Ag and AgBr-Ag nanocrystals have photodegradation rates of 0.35 min-1 and 0.45 min-1, respectively. The efficient separation of photogenerated electron-hole pairs in the ternary system consisting of AgBr, AgCl and Ag species plays a key role in the enhancement of photocatalytic performance.

  3. Growth and characterization of ZnO multipods on functional surfaces with different sizes and shapes of Ag particles

    NASA Astrophysics Data System (ADS)

    A, Kamalianfar; S, A. Halim; Mahmoud Godarz, Naseri; M, Navasery; Fasih, Ud Din; J, A. M. Zahedi; Kasra, Behzad; K, P. Lim; A Lavari, Monghadam; S, K. Chen

    2013-08-01

    Three-dimensional ZnO multipods are successfully synthesized on functional substrates using the vapor transport method in a quartz tube. The functional surfaces, which include two different distributions of Ag nanoparticles and a layer of commercial Ag nanowires, are coated onto silicon substrates before the growth of ZnO nanostructures. The structures and morphologies of the ZnO/Ag heterostructures are investigated using X-ray diffraction and field emission scanning electron microscopy. The sizes and shapes of the Ag particles affect the growth rates and initial nucleations of the ZnO structures, resulting in different numbers and shapes of multipods. They also influence the orientation and growth quality of the rods. The optical properties are studied by photoluminescence, UV-vis, and Raman spectroscopy. The results indicate that the surface plasmon resonance strongly depends on the sizes and shapes of the Ag particles.

  4. Hyper-dendritic nanoporous zinc foam anodes

    DOE PAGESBeta

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  5. Hyper-dendritic nanoporous zinc foam anodes

    SciTech Connect

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrast to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.

  6. Detecting Danger: The Dendritic Cell Algorithm

    NASA Astrophysics Data System (ADS)

    Greensmith, Julie; Aickelin, Uwe; Cayzer, Steve

    The "Dendritic Cell Algorithm" (DCA) is inspired by the function of the dendritic cells of the human immune system. In nature, dendritic cells are the intrusion detection agents of the human body, policing the tissue and organs for potential invaders in the form of pathogens. In this research, an abstract model of dendritic cell (DC) behavior is developed and subsequently used to form an algorithm—the DCA. The abstraction process was facilitated through close collaboration with laboratory-based immunologists, who performed bespoke experiments, the results of which are used as an integral part of this algorithm. The DCA is a population-based algorithm, with each agent in the system represented as an "artificial DC". Each DC has the ability to combine multiple data streams and can add context to data suspected as anomalous. In this chapter, the abstraction process and details of the resultant algorithm are given. The algorithm is applied to numerous intrusion detection problems in computer security including the detection of port scans and botnets, where it has produced impressive results with relatively low rates of false positives.

  7. Thermosolutal convection and macrosegregation in dendritic alloys

    NASA Technical Reports Server (NTRS)

    Poirier, David R.; Heinrich, J. C.

    1993-01-01

    A mathematical model of solidification, that simulates the formation of channel segregates or freckles, is presented. The model simulates the entire solidification process, starting with the initial melt to the solidified cast, and the resulting segregation is predicted. Emphasis is given to the initial transient, when the dendritic zone begins to develop and the conditions for the possible nucleation of channels are established. The mechanisms that lead to the creation and eventual growth or termination of channels are explained in detail and illustrated by several numerical examples. A finite element model is used for the simulations. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. The major task was to develop the solidification model. In addition, other tasks that were performed in conjunction with the modeling of dendritic solidification are briefly described.

  8. Characterization of chicken dendritic cell markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal and Natural Resources Institute, ARS-USDA, Beltsville, MD, USA. New mouse monoclonal antibodies which detect CD80 and CD83 were developed to characterize chicken dendritic cells (DCs). The characteristics of these molecules have been studied in human, swine, ovine, feline, and canine but not ...

  9. ISOLATION OF CHICKEN FOLLICULAR DENDRITIC CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the present study was to isolate chicken follicular dendritic cells (FDC). A combination of methods involving panning, iodixanol density gradient centrifugation, and magnetic cell separation technology made it possible to obtain functional FDC from the cecal tonsils from chickens, which h...

  10. Formation of gold and silver nanostructures within polyvinylpyrollidone (PVP) gel

    SciTech Connect

    Kan Caixia; Wang Changshun; Zhu Jiejun; Li Hongchen

    2010-04-15

    Study on reduction of Au(III) and Ag(I) and the formation of Au and Ag nanostructures was performed on the gels of metal precursor and PVP polymer mixture. Some comparing samples were prepared for better understanding the role of reactants on the reduction of metal ions and further growth of nanocrystals. The results suggest that, in addition to its function of generating stable colloids, PVP not only has a reducing effect on metal ions, but also acts as a crystal growth modifier. At low temperatures, the reducing effect of PVP is strong on Ag(I) ions in AgNO{sub 3}, while the reduction of complex Au(III) ions in HAuCl{sub 4} is slow, involving two steps of Au(III)->Au(I)->Au. In the study of temperature disturbance on crystal growth, Au nanoplates of new and well-defined star shape were observed. The differences in the size and shape of nanoparticles are discussed from the colloid chemistry. - Graphical abstract: If a temperature difference was introduced to the gel of Au{sup 3+}(H{sub 2}O)-PVP, large sized Au nanoplates with new and well-defined star shape were observed.

  11. Ag K- and L3-edge XAFS study on Ag species in Ag/Ga2O3 photocatalysts

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Yoshida, T.; Yamamoto, N.; Nomoto, T.; Yamamoto, A.; Yoshida, H.; Yagi, S.

    2016-05-01

    Ag loaded Ga2O3 (Ag/Ga2O3) shows photocatalytic activity for reduction of CO2 with water. Ag L3-edge XANES and K-edge EXAFS spectra were measured for various Ag/Ga2O3 samples, which suggested that structural and chemical states of Ag species varied with the loading amount of Ag and the preparation method. The Ag species were metallic Ag particles with an AgGaO2-like interface structure in the sample with high loading amount of Ag while predominantly Ag metal clusters in the sample with low loading amount of Ag. The XANES feature just above the edge represented the interaction between the Ag species and the Ga2O3 surface, showing that the Ag metal clusters had more electrons in the d-orbitals by interacting with the Ga2O3 surface, which would contribute the high photocatalytic activity.

  12. Pinhole Effect on the Melting Behavior of Ag@Al2O3 SERS Substrates.

    PubMed

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Li, Jianghao; Zhang, Zhengjun

    2016-12-01

    High-temperature surface-enhanced Raman scattering (SERS) sensing is significant for practical detections, and pinhole-containing (PC) metal@oxide structures possessing both enhanced thermal stability and superior SERS sensitivity are served as promising SERS sensors at extreme sensing conditions. Through tuning the Al2O3 precursors' exposure time during atomic layer deposition (ALD), Al2O3 shells with different amount of pinholes were covered over Ag nanorods (Ag NRs). By virtue of these unique PC Ag@Al2O3 nanostructures, herein we provide an excellent platform to investigate the relationship between the pinhole rate of Al2O3 shells and the melting behavior, high-temperature SERS performances of these core-shell nanostructures. Pinhole effect on the melting procedures of PC Ag@Al2O3 substrates was characterized in situ via their reflectivity variations during heating, and the specific melting point was quantitatively estimated. It is found that the melting point of PC Ag@Al2O3 raised along with the decrement of pinhole rate, and substrates with less pinholes exhibited better thermal stability but sacrificed SERS efficiency. This work achieved highly reliable and precise control of the pinholes over Al2O3 shells, offering sensitive SERS substrates with intensified thermal stability and superior SERS performances at extreme sensing conditions. PMID:27033846

  13. Novel fabrication of Ag thin film on glass for efficient surface-enhanced Raman scattering.

    PubMed

    Park, Hyoung Kun; Yoon, Jae Keun; Kim, Kwan

    2006-02-14

    This paper describes a very simple electroless-plating method used to prepare optically tunable nanostructured Ag films. Very stable Ag films can be reproducibly fabricated simply by soaking glass substrates in ethanolic solutions of AgNO3 and butylamine. The grain size of silver can be readily controlled to range from 20 to 150 nm, and these nanostructural features correlated well with their UV/vis absorption characteristics, as well as with their surface-enhanced Raman scattering (SERS) activities. It is also very advantageous that the Ag films prepared exhibit very even SERS activity over an area up to hundreds thousand square-micrometers, and the enhancement factor estimated using benzenethiol as a prototype adsorbate reaches approximately 2 x 10(5). Since the proposed method is cost-effective and is suitable for the mass production of diverse Ag films irrespective of the shapes of the underlying substrates, it is expected to play a significant role in the development of surface plasmon-based analytical devices. PMID:16460083

  14. Pinhole Effect on the Melting Behavior of Ag@Al2O3 SERS Substrates

    NASA Astrophysics Data System (ADS)

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Li, Jianghao; Zhang, Zhengjun

    2016-03-01

    High-temperature surface-enhanced Raman scattering (SERS) sensing is significant for practical detections, and pinhole-containing (PC) metal@oxide structures possessing both enhanced thermal stability and superior SERS sensitivity are served as promising SERS sensors at extreme sensing conditions. Through tuning the Al2O3 precursors' exposure time during atomic layer deposition (ALD), Al2O3 shells with different amount of pinholes were covered over Ag nanorods (Ag NRs). By virtue of these unique PC Ag@Al2O3 nanostructures, herein we provide an excellent platform to investigate the relationship between the pinhole rate of Al2O3 shells and the melting behavior, high-temperature SERS performances of these core-shell nanostructures. Pinhole effect on the melting procedures of PC Ag@Al2O3 substrates was characterized in situ via their reflectivity variations during heating, and the specific melting point was quantitatively estimated. It is found that the melting point of PC Ag@Al2O3 raised along with the decrement of pinhole rate, and substrates with less pinholes exhibited better thermal stability but sacrificed SERS efficiency. This work achieved highly reliable and precise control of the pinholes over Al2O3 shells, offering sensitive SERS substrates with intensified thermal stability and superior SERS performances at extreme sensing conditions.

  15. DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration.

    PubMed

    Heiman, Maxwell G; Shaham, Shai

    2009-04-17

    Cells are devices whose structures delimit function. For example, in the nervous system, neuronal and glial shapes dictate paths of information flow. To understand how cells acquire their shapes, we examined the formation of a sense organ in C. elegans. Using time-lapse imaging, we found that sensory dendrites form by stationary anchoring of dendritic tips during cell-body migration. A genetic screen identified DEX-1 and DYF-7, extracellular proteins required for dendritic tip anchoring, which act cooperatively at the time and place of anchoring. DEX-1 and DYF-7 contain, respectively, zonadhesin and zona pellucida domains, and DYF-7 self-associates into multimers important for anchoring. Thus, unlike other dendrites, amphid dendritic tips are positioned by DEX-1 and DYF-7 without the need for long-range guidance cues. In sequence and function, DEX-1 and DYF-7 resemble tectorins, which anchor stereocilia in the inner ear, suggesting that a sensory dendrite anchor may have evolved into part of a mechanosensor. PMID:19344940

  16. AGS experiments -- 1995, 1996 and 1997

    SciTech Connect

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  17. AGS experiments -- 1991, 1992, 1993. Tenth edition

    SciTech Connect

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

  18. Exploring the benefits of electron tomography to characterize the precise morphology of core-shell Au@Ag nanoparticles and its implications on their plasmonic properties

    NASA Astrophysics Data System (ADS)

    Hernández-Garrido, J. C.; Moreno, M. S.; Ducati, C.; Pérez, L. A.; Midgley, P. A.; Coronado, E. A.

    2014-10-01

    In the design and engineering of functional core-shell nanostructures, material characterization at small length scales remains one of the major challenges. Here we show how electron tomography in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) mode can be applied successfully to perform nano-metrological characterization of Au@Ag core-shell nanostructures. This work stresses the benefits of HAADF-STEM tomography and its use as a novel and rigorous tool for understanding the physical-chemical properties of complex 3D core-shell nanostructures. The reconstructed Au@Ag core-shell architecture was used as an input for discrete dipole approximation (DDA)-based electrodynamics simulations of the optical properties of the nanostructures. The implications of localized surface plasmon spectroscopy as well as Raman-enhanced spectroscopy are analysed.In the design and engineering of functional core-shell nanostructures, material characterization at small length scales remains one of the major challenges. Here we show how electron tomography in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) mode can be applied successfully to perform nano-metrological characterization of Au@Ag core-shell nanostructures. This work stresses the benefits of HAADF-STEM tomography and its use as a novel and rigorous tool for understanding the physical-chemical properties of complex 3D core-shell nanostructures. The reconstructed Au@Ag core-shell architecture was used as an input for discrete dipole approximation (DDA)-based electrodynamics simulations of the optical properties of the nanostructures. The implications of localized surface plasmon spectroscopy as well as Raman-enhanced spectroscopy are analysed. Electronic supplementary information (ESI) available: 3D reconstruction movie and supplementary figures. See DOI: 10.1039/c4nr03017f

  19. Destabilization of Ag nanoislands on Ag(100) by adsorbed sulfur

    SciTech Connect

    Shen, Mingmin; Russell, Selena M.; Liu, Da-Jiang; Thiel, Patricia A.

    2011-10-17

    Sulfur accelerates coarsening of Ag nanoislands on Ag(100) at 300 K, and this effect is enhanced with increasing sulfur coverage over a range spanning a few hundredths of a monolayer, to nearly 0.25 monolayers. We propose that acceleration of coarsening in this system is tied to the formation of AgS{sub 2} clusters primarily at step edges. These clusters can transport Ag more efficiently than can Ag adatoms (due to a lower diffusion barrier and comparable formation energy). The mobility of isolated sulfur on Ag(100) is very low so that formation of the complex is kinetically limited at low sulfur coverages, and thus enhancement is minimal. However, higher sulfur coverages force the population of sites adjacent to step edges, so that formation of the cluster is no longer limited by diffusion of sulfur across terraces. Sulfur exerts a much weaker effect on the rate of coarsening on Ag(100) than it does on Ag(111). This is consistent with theory, which shows that the difference between the total energy barrier for coarsening with and without sulfur is also much smaller on Ag(100) than on Ag(111).

  20. Site-controlled Ag nanocrystals grown by molecular beam epitaxy-Towards plasmonic integration technology

    SciTech Connect

    Urbanczyk, Adam; Noetzel, Richard

    2012-12-15

    We demonstrate site-controlled growth of epitaxial Ag nanocrystals on patterned GaAs substrates by molecular beam epitaxy with high degree of long-range uniformity. The alignment is based on lithographically defined holes in which position controlled InAs quantum dots are grown. The Ag nanocrystals self-align preferentially on top of the InAs quantum dots. No such ordering is observed in the absence of InAs quantum dots, proving that the ordering is strain-driven. The presented technique facilitates the placement of active plasmonic nanostructures at arbitrarily defined positions enabling their integration into complex devices and plasmonic circuits.

  1. Antigen availability determines CD8⁺ T cell-dendritic cell interaction kinetics and memory fate decisions.

    PubMed

    Henrickson, Sarah E; Perro, Mario; Loughhead, Scott M; Senman, Balimkiz; Stutte, Susanne; Quigley, Michael; Alexe, Gabriela; Iannacone, Matteo; Flynn, Michael P; Omid, Shaida; Jesneck, Jonathan L; Imam, Sabrina; Mempel, Thorsten R; Mazo, Irina B; Haining, W Nicholas; von Andrian, Ulrich H

    2013-09-19

    T cells are activated by antigen (Ag)-bearing dendritic cells (DCs) in lymph nodes in three phases. The duration of the initial phase of transient, serial DC-T cell interactions is inversely correlated with Ag dose. The second phase, characterized by stable DC-T cell contacts, is believed to be necessary for full-fledged T cell activation. Here we have shown that this is not the case. CD8⁺ T cells interacting with DCs presenting low-dose, short-lived Ag did not transition to phase 2, whereas higher Ag dose yielded phase 2 transition. Both antigenic constellations promoted T cell proliferation and effector differentiation but yielded different transcriptome signatures at 12 hr and 24 hr. T cells that experienced phase 2 developed long-lived memory, whereas conditions without stable contacts yielded immunological amnesia. Thus, T cells make fate decisions within hours after Ag exposure, resulting in long-term memory or abortive effector responses, correlating with T cell-DCs interaction kinetics. PMID:24054328

  2. Self-aligned epitaxial metal-semiconductor hybrid nanostructures for plasmonics

    SciTech Connect

    Urbanczyk, Adam; Otten, Frank W. M. van; Noetzel, Richard

    2011-06-13

    We demonstrate self-alignment of epitaxial Ag nanocrystals on top of low-density near-surface InAs quantum dots (QDs) grown by molecular beam epitaxy. The Ag nanocrystals support a surface plasmon resonance that can be tuned to the emission wavelength of the QDs. Photoluminescence measurements of such hybrid metal-semiconductor nanostructures reveal large enhancement of the emission intensity. Our concept of epitaxial self-alignment enables the integration of plasmonic functionality with electronic and photonic semiconductor devices operating down to the single QD level.

  3. Silver Nanostructures Applicable As Core Materials Of SERS-Based Molecular Sensors And Barcodes

    NASA Astrophysics Data System (ADS)

    Kim, Kwan; Lee, Hyang Bong; Choi, Jeong-Yong; Shin, Kuan Soo

    2010-12-01

    We have developed a simple electroless plating method used to prepare silver-deposited silica or magnetic beads and also succeeded in coating them further with silica layers, without affecting the surface-enhanced Raman scattering (SERS) spectral features of marker molecules assembled on the silver nanostructures. The Ag-deposited dye-embedded silica beads can then be used as a dual-tag sensor, operating via both fluorescence and SERS, for immunoassays and the Ag-deposited Fe3O4-embedded silica beads can be used as Raman barcode materials, possessing also strong enough magnetic moments.

  4. AGS preinjector improvement

    SciTech Connect

    Alessi, J.G.; Brennan, J.M.; Brown, H.N.; Brodowski, J.; Gough, R.; Kponou, A.; Prelec, K.; Staples, J.; Tanabe, J.; Witkover, R.

    1987-01-01

    In 1984, a polarized H/sup -/ source was installed to permit the acceleration of polarized protons in the AGS, using a low current, 750 keV RFQ Linear Accelerator as the preinjector. This RFQ was designed by LANL and has proved to be quite satisfactory and reliable. In order to improve the reliability and simplify maintenance of the overall AGS operations, it has been decided to replace one of the two 750 keV Cockcroft-Waltons (C-W) with an RFQ. The design of a new high current RFQ has been carried out by LBL and is also being constructed there. This paper describes the preinjector improvement project, centered around that RFQ, which is underway at BNL.

  5. In situ Transmission Electron Microscopy observation of Ag nanocrystal evolution by surfactant free electron-driven synthesis

    PubMed Central

    Longo, Elson; Avansi, Waldir; Bettini, Jefferson; Andrés, Juan; Gracia, Lourdes

    2016-01-01

    The study of the interaction of electron irradiation with matter and the response of the material to the passage of electrons is a very challenging problem. However, the growth mechanism observed during nanostructural evolution appears to be a broad and promising scientific field in nanotechnology. We report the in situ TEM study of nanostructural evolution of electron-driven silver (Ag) nanocrystals through an additive-free synthetic procedure. Observations revealed the direct effect of the electron beam on the morphological evolution of Ag nanocrystals through different mechanisms, such as mass transport, site-selective coalescence, and an appropriate structural configuration after coalescence leading to a more stable configuration. A fundamental understanding of the growth and formation mechanisms of Ag nanocrystals, which interact with the electron beam, is essential to improve the nanocrystal shape-control mechanisms as well as the future design and study of nanomaterials. PMID:26979671

  6. In situ Transmission Electron Microscopy observation of Ag nanocrystal evolution by surfactant free electron-driven synthesis

    NASA Astrophysics Data System (ADS)

    Longo, Elson; Avansi, Waldir; Bettini, Jefferson; Andrés, Juan; Gracia, Lourdes

    2016-03-01

    The study of the interaction of electron irradiation with matter and the response of the material to the passage of electrons is a very challenging problem. However, the growth mechanism observed during nanostructural evolution appears to be a broad and promising scientific field in nanotechnology. We report the in situ TEM study of nanostructural evolution of electron-driven silver (Ag) nanocrystals through an additive-free synthetic procedure. Observations revealed the direct effect of the electron beam on the morphological evolution of Ag nanocrystals through different mechanisms, such as mass transport, site-selective coalescence, and an appropriate structural configuration after coalescence leading to a more stable configuration. A fundamental understanding of the growth and formation mechanisms of Ag nanocrystals, which interact with the electron beam, is essential to improve the nanocrystal shape-control mechanisms as well as the future design and study of nanomaterials.

  7. Porous Dendritic Platinum Nanotubes with Extremely High Activity and Stability for Oxygen Reduction Reaction

    PubMed Central

    Zhang, Gaixia; Sun, Shuhui; Cai, Mei; Zhang, Yong; Li, Ruying; Sun, Xueliang

    2013-01-01

    Controlling the morphology of Pt nanostructures can provide opportunities to greatly increase their activity and stability. Porous dendritic Pt nanotubes were successfully synthesized by a facile, cost-effective aqueous solution method at room temperature in large scale. These unique structures are porous, hollow, hierarchical, and single crystalline, which not only gives them a large surface area with high catalyst utilization, but also improves mass transport and gas diffusion. These novel Pt structures exhibited significantly improved catalytic activity (4.4 fold) for oxygen reduction reaction (ORR) and greatly enhanced durability (6.1 fold) over that of the state-of-the-art commercial Pt/C catalyst. This work provides a promising approach to the design of highly efficient next-generation electrocatalysts. PMID:23524665

  8. Ag-catalyzed InAs nanowires grown on transferable graphite flakes

    NASA Astrophysics Data System (ADS)

    Meyer-Holdt, Jakob; Kanne, Thomas; Sestoft, Joachim E.; Gejl, Aske; Zeng, Lunjie; Johnson, Erik; Olsson, Eva; Nygård, Jesper; Krogstrup, Peter

    2016-09-01

    Semiconducting nanowires grown by quasi-van-der-Waals epitaxy on graphite flakes are a new class of hybrid materials that hold promise for scalable nanostructured devices within opto-electronics. Here we report on high aspect ratio and stacking fault free Ag-seeded InAs nanowires grown on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro-needle manipulator. Besides the possibilities for fabricating novel nanostructure device designs, we show how this method is used to study the parasitic growth and bicrystal match between the graphite flake and the nanowires by transmission electron microscopy.

  9. Ag-catalyzed InAs nanowires grown on transferable graphite flakes.

    PubMed

    Meyer-Holdt, Jakob; Kanne, Thomas; Sestoft, Joachim E; Gejl, Aske; Zeng, Lunjie; Johnson, Erik; Olsson, Eva; Nygård, Jesper; Krogstrup, Peter

    2016-09-01

    Semiconducting nanowires grown by quasi-van-der-Waals epitaxy on graphite flakes are a new class of hybrid materials that hold promise for scalable nanostructured devices within opto-electronics. Here we report on high aspect ratio and stacking fault free Ag-seeded InAs nanowires grown on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro-needle manipulator. Besides the possibilities for fabricating novel nanostructure device designs, we show how this method is used to study the parasitic growth and bicrystal match between the graphite flake and the nanowires by transmission electron microscopy. PMID:27479073

  10. Correlation between microstructure and hardness of a Bi-1.5wt%Ag lead-free solder alloy

    NASA Astrophysics Data System (ADS)

    Spinelli, J. E.; Macedo, R. A.; Silva, B. L.; Garcia, A.

    2016-03-01

    In the present study a hypoeutectic Bi-1.5wt%Ag alloy was directionally solidified under transient heat flow conditions and the microstructure was analysed. Bi-Ag alloys are considered as potential alternatives to replace Pb-based alloys as solder materials for metallic connections under high temperatures. However, a lack of understanding regarding the effects of solidification thermal parameters (growth rate - VL, the cooling rate - Ṫ) on microstructural aspects is reported in literature. Another challenge is to improve properties and reliability. The results of the present study include the determination of the tip growth rate and the cooling rate by cooling curves recorded by thermocouples positioned along the casting length, metallography, X-ray fluorescence (XRF) and Vickers hardness. The entire directionally solidified Bi-1.5Ag microstructure was arranged by faceted Bi-rich dendrites surrounded by a eutectic mixture (Bi+Ag). The primary and secondary dendrite arm spacing (λ1 and λ2), the interphase spacing (λ) and the diameter of Ag-rich particles were also measured along the casting length; and experimental growth laws. Relating these microstructural features to the experimental thermal parameters are proposed.

  11. NK cells enhance dendritic cell response against parasite antigens via NKG2D pathway.

    PubMed

    Guan, Hongbing; Moretto, Magali; Bzik, David J; Gigley, Jason; Khan, Imtiaz A

    2007-07-01

    Recent studies have shown that NK-dendritic cell (DC) interaction plays an important role in the induction of immune response against tumors and certain viruses. Although the effect of this interaction is bidirectional, the mechanism or molecules involved in this cross-talk have not been identified. In this study, we report that coculture with NK cells causes several fold increase in IL-12 production by Toxoplasma gondii lysate Ag-pulsed DC. This interaction also leads to stronger priming of Ag-specific CD8+ T cell response by these cells. In vitro blockade of NKG2D, a molecule present on human and murine NK cells, neutralizes the NK cell-induced up-regulation of DC response. Moreover, treatment of infected animals with Ab to NKG2D receptor compromises the development of Ag-specific CD8+ T cell immunity and reduces their ability to clear parasites. These studies emphasize the critical role played by NKG2D in the NK-DC interaction, which apparently is important for the generation of robust CD8+ T cell immunity against intracellular pathogens. To the best of our knowledge, this is the first work that describes in vivo importance of NKG2D during natural infection. PMID:17579080

  12. Multi-therapeutic potential of autoantibodies induced by immune complexes trapped on follicular dendritic cells

    PubMed Central

    El Shikh, Mohey Eldin; Kmieciak, Maciej; Manjili, Masoud H; Szakal, Andras K; Pitzalis, Costantino; Tew, John G

    2013-01-01

    Induction of autoantibodies (autoAbs) targeting disease drivers / mediators is emerging as a potential immunotherapeutic strategy. Auto-immune complex (IC)-retaining follicular dendritic cells (FDCs) critically regulate pathogenic autoAb production in autoreactive germinal centers (GCs); however, their ability to induce potentially therapeutic autoAbs has not been explored. We hypothesized that deliberate display of clinically targeted antigens (Ags) in the form of ICs on FDC membranes induces target-specific autoreactive GCs and autoAbs that may be exploited therapeutically. To test our hypothesis, three therapeutically relevant Ags: TNF-α, HER2/neu and IgE, were investigated. Our results indicated that TNF-α-, HER2/neu- and IgE-specific autoAbs associated with strong GC reactions were induced by TNF-α-, HER2/neu- and IgE-IC retention on FDCs. Moreover, the induced anti-TNF-α autoAbs neutralized mouse and human TNF-α with half maximal Inhibitory Concentration (IC50) of 7.1 and 1.6 nM respectively. In addition, we demonstrated that FDC-induced Ab production could be non-specifically inhibited by the IgG-specific Endo-S that accessed the light zones of GCs and interfered with FDC-IC retention. In conclusion, the ability of FDCs to productively present autoAgs raises the potential for a novel immunotherapeutic platform targeting mediators of autoimmune disorders, allergic diseases, and Ab responsive cancers. PMID:23836278

  13. Silver-mediated base pairings: towards dynamic DNA nanostructures with enhanced chemical and thermal stability

    NASA Astrophysics Data System (ADS)

    Swasey, Steven M.; Gwinn, Elisabeth G.

    2016-04-01

    The thermal and chemical fragility of DNA nanomaterials assembled by Watson–Crick (WC) pairing constrain the settings in which these materials can be used and how they can be functionalized. Here we investigate use of the silver cation, Ag+, as an agent for more robust, metal-mediated self-assembly, focusing on the simplest duplex building blocks that would be required for more elaborate Ag+–DNA nanostructures. Our studies of Ag+-induced assembly of non-complementary DNA oligomers employ strands of 2–24 bases, with varied base compositions, and use electrospray ionization mass spectrometry to determine product compositions. High yields of duplex products containing narrowly distributed numbers of Ag+ can be achieved by optimizing solution conditions. These Ag+-mediated duplexes are stable to at least 60 mM Mg2+, higher than is necessary for WC nanotechnology schemes such as tile assemblies and DNA origami, indicating that sequential stages of Ag+-mediated and WC-mediated assembly may be feasible. Circular dichroism spectroscopy suggests simple helical structures for Ag+-mediated duplexes with lengths to at least 20 base pairs, and further indicates that the structure of cytosine-rich duplexes is preserved at high urea concentrations. We therefore propose an approach towards dynamic DNA nanomaterials with enhanced thermal and chemical stability through designs that combine sturdy silver-mediated ‘frames’ with WC paired ‘pictures’.

  14. Sphere-Like Protein-Glycopolymer Nanostructures Tailored by Polyassociation.

    PubMed

    Ennen, Franka; Fenner, Philipp; Boye, Susanne; Lederer, Albena; Komber, Hartmut; Voit, Brigitte; Appelhans, Dietmar

    2016-01-11

    Key parameters allow a reproducible polyassociation between avidin and biotinylated glycopolymers in order to fabricate defined supramolecular nanostructures for future (bio)medical and biotechnological applications. Thus, the polymerization efficiency of biotinylated glycopolymers in the fabrication of biohybrid structures (BHS) was investigated with regard to the influence of (i) the degree of biotinylation of the dendritic glycoarchitectures, (ii) two biotin linkers, (iii) the dendritic scaffold (perfectly branched vs hyperbranched), and (iv) the ligand-receptor stoichiometry. The adjustment of all these parameters opens the way to fabricate defined sizes of the final biohybrid structures as a multifunctional platform ready for their use in different applications. Various analytical techniques, including purification of BHS, were used to gain fundamental insights into the structural properties of the resulting protein-glycopolymer BHS. Finally, the elucidation of pivotal conformational properties of isolated BHS with defined sizes by asymmetrical flow field flow fractionation study revealed that they mainly possess spherical-/star-like properties. From this study, the fundamental knowledge can be likely transferred to other assemblies formed by molecular recognition processes (e.g., adamantane-β-cyclodextrin). PMID:26623666

  15. Nanoindentation of Carbon Nanostructures.

    PubMed

    Kumar, Dinesh; Singh, Karamjit; Verma, Veena; Bhatti, H S

    2016-06-01

    In the present research paper carbon nanostructures viz. single walled carbon nanotubes, multi-walled carbon nanotubes, single walled carbon nanohorns and graphene nanoplatelets have been synthesized by CVD technique, hydrothermal method, DC arc discharge method in liquid nitrogen and microwave technique respectively. After synthesis 5 mm thick pallets of given nanomaterial are prepared by making a paste in isopropyl alcohol and using polyvinylidene difluoride as a binder and then these pallets were used for nanoindentation measurements. Hardness, reduced modulus, stiffness, contact height and contact area have been measured using nanoindenter. PMID:27427726

  16. Biomimetics of photonic nanostructures

    NASA Astrophysics Data System (ADS)

    Parker, Andrew R.; Townley, Helen E.

    2007-06-01

    Biomimetics is the extraction of good design from nature. One approach to optical biomimetics focuses on the use of conventional engineering methods to make direct analogues of the reflectors and anti-reflectors found in nature. However, recent collaborations between biologists, physicists, engineers, chemists and materials scientists have ventured beyond experiments that merely mimic what happens in nature, leading to a thriving new area of research involving biomimetics through cell culture. In this new approach, the nanoengineering efficiency of living cells is harnessed and natural organisms such as diatoms and viruses are used to make nanostructures that could have commercial applications.

  17. Nanostructures for peroxidases

    PubMed Central

    Carmona-Ribeiro, Ana M.; Prieto, Tatiana; Nantes, Iseli L.

    2015-01-01

    Peroxidases are enzymes catalyzing redox reactions that cleave peroxides. Their active redox centers have heme, cysteine thiols, selenium, manganese, and other chemical moieties. Peroxidases and their mimetic systems have several technological and biomedical applications such as environment protection, energy production, bioremediation, sensors and immunoassays design, and drug delivery devices. The combination of peroxidases or systems with peroxidase-like activity with nanostructures such as nanoparticles, nanotubes, thin films, liposomes, micelles, nanoflowers, nanorods and others is often an efficient strategy to improve catalytic activity, targeting, and reusability. PMID:26389124

  18. Nanostructures for peroxidases.

    PubMed

    Carmona-Ribeiro, Ana M; Prieto, Tatiana; Nantes, Iseli L

    2015-01-01

    Peroxidases are enzymes catalyzing redox reactions that cleave peroxides. Their active redox centers have heme, cysteine thiols, selenium, manganese, and other chemical moieties. Peroxidases and their mimetic systems have several technological and biomedical applications such as environment protection, energy production, bioremediation, sensors and immunoassays design, and drug delivery devices. The combination of peroxidases or systems with peroxidase-like activity with nanostructures such as nanoparticles, nanotubes, thin films, liposomes, micelles, nanoflowers, nanorods and others is often an efficient strategy to improve catalytic activity, targeting, and reusability. PMID:26389124

  19. Preparation and use of photocatalytically active segmented Ag|ZnO and coaxial TiO2-Ag nanowires made by templated electrodeposition.

    PubMed

    Maijenburg, A Wouter; Rodijk, Eddy J B; Maas, Michiel G; Ten Elshof, Johan E

    2014-01-01

    Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution. PMID:24837535

  20. Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition

    PubMed Central

    Maijenburg, A. Wouter; Rodijk, Eddy J.B.; Maas, Michiel G.; ten Elshof, Johan E.

    2014-01-01

    Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution. PMID:24837535

  1. Developmental mechanisms that regulate retinal ganglion cell dendritic morphology

    PubMed Central

    Tian, Ning

    2011-01-01

    One of the fundamental features of retinal ganglion cells (RGCs) is that dendrites of individual RGCs are confined to one or a few narrow strata within the inner plexiform layer (IPL), and each RGC synapses only with a small group of presynaptic bipolar and amacrine cells with axons/dendrites ramified in the same strata to process distinct visual features. The underlying mechanisms which control the development of this laminar-restricted distribution pattern of RGC dendrites have been extensively studied, and it is still an open question whether the dendritic pattern of RGCs is determined by molecular cues or by activity-dependent refinement. Accumulating evidence suggests that both molecular cues and activity-dependent refinement might regulate RGC dendrites in a cell subtype-specific manner. However, identification of morphological subtypes of RGCs before they have achieved their mature dendritic pattern is a major challenge in the study of RGC dendritic development. This problem is now being circumvented through the use of molecular markers in genetically engineered mouse lines to identify RGC subsets early during development. Another unanswered fundamental question in the study of activity-dependent refinement of RGC dendrites is how changes in synaptic activity lead to the changes in dendritic morphology. Recent studies have started to shed light on the molecular basis of activity-dependent dendritic refinement of RGCs by showing that some molecular cascades control the cytoskeleton reorganization of RGCs. PMID:21542137

  2. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization

    PubMed Central

    Zou, Wei; Yadav, Smita; DeVault, Laura; Jan, Yuh Nung; Sherwood, David R.

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth. PMID:26394140

  3. Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Qianwen; Zheng, Xuanli; He, Jialun; Wang, Weiping; Fu, Mingming; Cao, Yiyan; Li, Heng; Wu, Yaping; Chen, Ting; Zhang, Chunmiao; Chen, Xiaohong; Yu, Binbin; Li, Shuping; Kang, Junyong; Wu, Zhiming

    2016-07-01

    Nanostructures decorated with noble metal nanoparticles (NPs) exhibit potential for use in highly sensitive optoelectronic devices through the localized surface plasmon resonance (LSPR) effect. In this study, Faraday rotation was significantly enhanced through the structural optimization of ferromagnetic (FM)/semiconductor composite nanostructures. Experimental and theoretical results revealed that the position of noble metal NPs significantly influenced the coupling of the LSPR-enhanced electromagnetic field with FM materials. Furthermore, nanostructures embedded with noble metals demonstrated an improved capability to efficiently use the electromagnetic field compared to other structures. The Faraday rotation of ZnO/Ag(NPs)/Fe was enhanced 58 fold compared to that of the ZnO(film)/Fe. This work provides a basis for the design of nanoarchitectures for miniaturized high-performance magneto-optical devices.

  4. Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles.

    PubMed

    Liu, Qianwen; Zheng, Xuanli; He, Jialun; Wang, Weiping; Fu, Mingming; Cao, Yiyan; Li, Heng; Wu, Yaping; Chen, Ting; Zhang, Chunmiao; Chen, Xiaohong; Yu, Binbin; Li, Shuping; Kang, Junyong; Wu, Zhiming

    2016-01-01

    Nanostructures decorated with noble metal nanoparticles (NPs) exhibit potential for use in highly sensitive optoelectronic devices through the localized surface plasmon resonance (LSPR) effect. In this study, Faraday rotation was significantly enhanced through the structural optimization of ferromagnetic (FM)/semiconductor composite nanostructures. Experimental and theoretical results revealed that the position of noble metal NPs significantly influenced the coupling of the LSPR-enhanced electromagnetic field with FM materials. Furthermore, nanostructures embedded with noble metals demonstrated an improved capability to efficiently use the electromagnetic field compared to other structures. The Faraday rotation of ZnO/Ag(NPs)/Fe was enhanced 58 fold compared to that of the ZnO(film)/Fe. This work provides a basis for the design of nanoarchitectures for miniaturized high-performance magneto-optical devices. PMID:27403716

  5. Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles

    PubMed Central

    Liu, Qianwen; Zheng, Xuanli; He, Jialun; Wang, Weiping; Fu, Mingming; Cao, Yiyan; Li, Heng; Wu, Yaping; Chen, Ting; Zhang, Chunmiao; Chen, Xiaohong; Yu, Binbin; Li, Shuping; Kang, Junyong; Wu, Zhiming

    2016-01-01

    Nanostructures decorated with noble metal nanoparticles (NPs) exhibit potential for use in highly sensitive optoelectronic devices through the localized surface plasmon resonance (LSPR) effect. In this study, Faraday rotation was significantly enhanced through the structural optimization of ferromagnetic (FM)/semiconductor composite nanostructures. Experimental and theoretical results revealed that the position of noble metal NPs significantly influenced the coupling of the LSPR-enhanced electromagnetic field with FM materials. Furthermore, nanostructures embedded with noble metals demonstrated an improved capability to efficiently use the electromagnetic field compared to other structures. The Faraday rotation of ZnO/Ag(NPs)/Fe was enhanced 58 fold compared to that of the ZnO(film)/Fe. This work provides a basis for the design of nanoarchitectures for miniaturized high-performance magneto-optical devices. PMID:27403716

  6. Nonspecular reflection of light at an inhomogeneous interface between two media and in a nanostructured layer with a quasi-zero refractive index

    SciTech Connect

    Gadomsky, O. N. Gadomskaya, I. V.

    2015-02-15

    We have derived formulas for the amplitudes of light reflection and refraction at an inhomogeneous interface between two media and in a nanostructured layer with a quasi-zero refractive index. These formulas are applied to explain the experimental spectra of nonspecular light reflection using a nanostructured (PMMA + Ag) layer with silver nanoparticles on a silicon surface as an example. We show that a surface wave is formed in the nanostructured layer at various angles of light incidence and the layer with a quasi-zero refractive index is an antireflection coating that provides uniform 5% silicon antireflection in the wavelength range from 450 to 1000 nm.

  7. Green synthesis of AgI-reduced graphene oxide nanocomposites: Toward enhanced visible-light photocatalytic activity for organic dye removal

    NASA Astrophysics Data System (ADS)

    Reddy, D. Amaranatha; Lee, Seunghee; Choi, Jiha; Park, Seonhwa; Ma, Rory; Yang, Haesik; Kim, Tae Kyu

    2015-06-01

    Novel reduced graphene oxide (RGO) enwrapped AgI nanocomposites were successfully fabricated by a facile template-free ultrasound-assisted method at room temperature. The structural, morphological, and optical studies demonstrate that the obtained nanostructures have good crystallinity and that the graphene nanosheets are decorated densely with AgI nanostructures. The photocatalytic activity of the composite was evaluated by the degradation of an organic dye, Rhodamine B (RhB), under visible-light irradiation. The results indicate that AgI with incorporated graphene exhibited much higher photocatalytic activity than the pure AgI due to the improved separation efficiency of the photogenerated carriers and that it prolonged the lifetime of the electron-hole pairs due to the chemical bonding between AgI and graphene. AgI (0.4 mg mL-1 of graphene oxide) nanocomposites displayed the highest photocatalytic degradation efficiency and the corresponding catalytic efficiencies within 70 min were ∼96%. Moreover, with the assistance of H2O2 the photocatalytic ability of the as-obtained AgI-RGO nanocomposites was enhanced. The corresponding catalytic efficiencies within 30 min were ∼96.8% (for 1 mL H2O2) under the same irradiation conditions. The excellent visible-light photocatalytic efficiency and luminescence properties make the AgI-RGO nanocomposites promising candidates for the removal of organic dyes for water purification and enable their application in near-UV white LEDs.

  8. Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites.

    PubMed

    Schiess, Mathieu; Urbanczik, Robert; Senn, Walter

    2016-02-01

    In the last decade dendrites of cortical neurons have been shown to nonlinearly combine synaptic inputs by evoking local dendritic spikes. It has been suggested that these nonlinearities raise the computational power of a single neuron, making it comparable to a 2-layer network of point neurons. But how these nonlinearities can be incorporated into the synaptic plasticity to optimally support learning remains unclear. We present a theoretically derived synaptic plasticity rule for supervised and reinforcement learning that depends on the timing of the presynaptic, the dendritic and the postsynaptic spikes. For supervised learning, the rule can be seen as a biological version of the classical error-backpropagation algorithm applied to the dendritic case. When modulated by a delayed reward signal, the same plasticity is shown to maximize the expected reward in reinforcement learning for various coding scenarios. Our framework makes specific experimental predictions and highlights the unique advantage of active dendrites for implementing powerful synaptic plasticity rules that have access to downstream information via backpropagation of action potentials. PMID:26841235

  9. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    NASA Astrophysics Data System (ADS)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  10. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis

    PubMed Central

    Misra, Mala; Edmund, Hendia; Ennis, Darragh; Schlueter, Marissa A.; Marot, Jessica E.; Tambasco, Janet; Barlow, Ida; Sigurbjornsdottir, Sara; Mathew, Renjith; Vallés, Ana Maria; Wojciech, Waldemar; Roth, Siegfried; Davis, Ilan; Leptin, Maria; Gavis, Elizabeth R.

    2016-01-01

    Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling. PMID:27260999

  11. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis.

    PubMed

    Misra, Mala; Edmund, Hendia; Ennis, Darragh; Schlueter, Marissa A; Marot, Jessica E; Tambasco, Janet; Barlow, Ida; Sigurbjornsdottir, Sara; Mathew, Renjith; Vallés, Ana Maria; Wojciech, Waldemar; Roth, Siegfried; Davis, Ilan; Leptin, Maria; Gavis, Elizabeth R

    2016-01-01

    Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling. PMID:27260999

  12. Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites

    PubMed Central

    Schiess, Mathieu; Urbanczik, Robert; Senn, Walter

    2016-01-01

    In the last decade dendrites of cortical neurons have been shown to nonlinearly combine synaptic inputs by evoking local dendritic spikes. It has been suggested that these nonlinearities raise the computational power of a single neuron, making it comparable to a 2-layer network of point neurons. But how these nonlinearities can be incorporated into the synaptic plasticity to optimally support learning remains unclear. We present a theoretically derived synaptic plasticity rule for supervised and reinforcement learning that depends on the timing of the presynaptic, the dendritic and the postsynaptic spikes. For supervised learning, the rule can be seen as a biological version of the classical error-backpropagation algorithm applied to the dendritic case. When modulated by a delayed reward signal, the same plasticity is shown to maximize the expected reward in reinforcement learning for various coding scenarios. Our framework makes specific experimental predictions and highlights the unique advantage of active dendrites for implementing powerful synaptic plasticity rules that have access to downstream information via backpropagation of action potentials. PMID:26841235

  13. Simulation of dendritic growth reveals necessary and sufficient parameters to describe the shapes of dendritic trees

    NASA Astrophysics Data System (ADS)

    Trottier, Olivier; Ganguly, Sujoy; Bowne-Anderson, Hugo; Liang, Xin; Howard, Jonathon

    For the last 120 years, the development of neuronal shapes has been of great interest to the scientific community. Over the last 30 years, significant work has been done on the molecular processes responsible for dendritic development. In our ongoing research, we use the class IV sensory neurons of the Drosophila melanogaster larva as a model system to understand the growth of dendritic arbors. Our main goal is to elucidate the mechanisms that the neuron uses to determine the shape of its dendritic tree. We have observed the development of the class IV neuron's dendritic tree in the larval stage and have concluded that morphogenesis is defined by 3 distinct processes: 1) branch growth, 2) branching and 3) branch retraction. As the first step towards understanding dendritic growth, we have implemented these three processes in a computational model. Our simulations are able to reproduce the branch length distribution, number of branches and fractal dimension of the class IV neurons for a small range of parameters.

  14. Irradiation-Induced Nanostructures

    SciTech Connect

    Birtcher, R.C.; Ewing, R.C.; Matzke, Hj.; Meldrum, A.; Newcomer, P.P.; Wang, L.M.; Wang, S.X.; Weber, W.J.

    1999-08-09

    This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.

  15. Non-enzymatic glucose biosensor based on hyperbranched pine-like gold nanostructure.

    PubMed

    Heli, H; Amirizadeh, O

    2016-06-01

    Hyperbranched pine-like gold nanostructure was electrodeposited on the polycrystalline gold surface at 0 mV (vs. AgCl) with the assistance of histidine as a soft template. The nanostructure was then applied as a highly sensitive nonenzymatic sensor for glucose. The catalytic activity and sensitivity of the gold nanostructure toward the electrooxidation of glucose was excellent without surface fouling and deterioration effects. The current related to the oxidation of glucose rapidly and linearly depended on its concentration with a sensitivity of 776.8 μA cm(-2)mmol(-1)dm(3), a detection limit of 3.39 μmol dm(-3) with a relative standard deviation of 2.32%. PMID:27040206

  16. Probing electron transport and structural properties of nanostructures on Si with a quadraprobe scanning tunneling microscope

    SciTech Connect

    Kim, Tae Hwan; Wendelken, J F; Li, An-Ping

    2008-01-01

    The electron transport and structural properties of nanostructured materials have been examined with a newly developed low temperature quadraprobe scanning tunneling microscope (STM) system. The quadraprobe STM system, as a "nano" version of a four-probe station provides an integrated research platform with a low temperature four-probe STM, a molecular-beam epitaxy growth chamber, a high resolution scanning electron microscope, and a scanning Auger microscope. The four STM probes can be driven independently with sub-nanometer precision, enabling conventional STM imaging and four-point electrical transport study of surface electronic systems and nanostructured materials at temperatures down to 10 K. Self-assembled nanostructures grown on Si by doping with metal atoms (Au, Gd, Ag) have been fabricated and characterized in situ.

  17. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Lulu; Jiang, Changlong; Zhang, Zhongping

    2013-04-01

    Analytical techniques based on surface-enhanced Raman scattering (SERS) suffer from a lack of reproducibility and reliability, thus hampering their practical applications. Herein, we have developed a SERS-active substrate based on a graphene oxide embedded sandwich nanostructure for ultrasensitive Raman signal readout. By using this novel Au@Ag NPs/GO/Au@Ag NPs sandwich nanostructure as a SERS substrate, the Raman signals of analytes were dramatically enhanced due to having plenty of hot spots on their surfaces and the unique structure of the graphene oxide sheets. These features make the sandwich nanostructured film an ideal SERS substrate to improve the sensitivity, reproducibility and reliability of the Raman readout. The sandwich nanostructure film can be applied to detect rhodamine-6G (R6G) with an enhancement factor (EF) of ~7.0 × 107 and the pesticide thiram in commercial grape juice with a detection limit of as low as 0.1 μM (0.03 ppm), which is much lower than the maximal residue limit (MRL) of 7 ppm in fruit prescribed by the U.S. Environmental Protection Agency (EPA). The GO embedded sandwich nanostructure also has the ability to selectively detect dithiocarbamate compounds over other types of agricultural chemical. Furthermore, spiked tests show that the sandwich nanostructure can be used to monitor thiram in natural lake water and commercial grape juice without further treatment. In addition, the GO enhanced Raman spectroscopic technique offers potential practical applications for the on-site monitoring and assessment of pesticide residues in agricultural products and environments.Analytical techniques based on surface-enhanced Raman scattering (SERS) suffer from a lack of reproducibility and reliability, thus hampering their practical applications. Herein, we have developed a SERS-active substrate based on a graphene oxide embedded sandwich nanostructure for ultrasensitive Raman signal readout. By using this novel Au@Ag NPs/GO/Au@Ag NPs sandwich

  18. Asteroid core crystallization by inward dendritic growth

    NASA Technical Reports Server (NTRS)

    Haack, Henning; Scott, Edward R. D.

    1992-01-01

    The physics of the asteroid core crystallization process in metallic asteroids is investigated, with special attention given to the initial conditions for core crystallization, the manner of crystallization, the mechanisms acting in the stirring of the liquid, and the effects of elements such as sulfur on crystallization of Fe-Ni. On the basis of theoretical considerations and the published data on iron meteorites, it is suggested that the mode of crystallization in asteroid core was different from the apparent outward concentric crystallization of the earth core, in that the crystallization of asteroidal cores commenced at the base of the mantle and proceeded inward. The inward crystallization resulted in complex dendritic growth. These dendrites may have grown to lengths of hundreds of meters or perhaps even as large as the core radius, thereby dividing the core into separate magma chambers.

  19. Sensitivity of Dendritic Cells to Microenvironment Signals

    PubMed Central

    Motta, Juliana Maria; Rumjanek, Vivian Mary

    2016-01-01

    Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies. PMID:27088097

  20. Lid for improved dendritic web growth

    DOEpatents

    Duncan, Charles S.; Kochka, Edgar L.; Piotrowski, Paul A.; Seidensticker, Raymond G.

    1992-03-24

    A lid for a susceptor in which a crystalline material is melted by induction heating to form a pool or melt of molten material from which a dendritic web of essentially a single crystal of the material is pulled through an elongated slot in the lid and the lid has a pair of generally round openings adjacent the ends of the slot and a groove extends between each opening and the end of the slot. The grooves extend from the outboard surface of the lid to adjacent the inboard surface providing a strip contiguous with the inboard surface of the lid to produce generally uniform radiational heat loss across the width of the dendritic web adjacent the inboard surface of the lid to reduce thermal stresses in the web and facilitate the growth of wider webs at a greater withdrawal rate.