Science.gov

Sample records for ag film thickness

  1. Structural, morphological and optical properties of Ag-AgO thin films with the effect of increasing film thickness and annealing temperature

    NASA Astrophysics Data System (ADS)

    Pal, Anil Kumar; Bharathi Mohan, D.

    2015-10-01

    Ag films of thickness ranging from 5 to 60 nm were deposited by thermal evaporation technique followed by air annealing process with temperature varying from 50 to 250 °C. Morphological properties such as particle size, shape, surface roughness and number particles density were studied by atomic force microscope (AFM). The structural transition from quasi-amorphous to nanocrystalline to crystalline upon increasing film thickness and annealing temperature were studied. Ag films with smallest particle size and surface roughness were achieved up to film thickness of 7 nm. The possibility of surface oxidation of Ag on both as deposited and annealed films was studied through Raman mapping by using confocal Raman spectroscopy. Ag film was X-ray amorphous even after annealing process up to the film thickness of 7 nm and above which the crystallinity reached maximum at 250 °C. The surface plasmon resonance (SPR) with a symmetric line shape due to dipole-dipole interactions was found to be very strong for film thickness of 5 nm at 100 °C, attributed to the formation of smaller Ag NPs size of ∼22 nm with least size distribution and higher particles number density of ∼1625 μm-2 in a self-organized fashion. With an increase of film thickness and annealing temperature, an asymmetric broad absorption arose due to increase in damping of collective electron oscillation on bulky NPs. Theoretical absorption spectra were simulated using extended Maxwell garnet method showing a decent agreement with experimental data. The real and imaginary parts of dielectric constants were determined and plotted for different film thicknesses of as deposited Ag films. Even though the film is oxidized at the surface level, it still can be used for plasmonic sensor applications however the film thickness should be approximately 7 nm for the enhanced result.

  2. Thickness Dispersion of Surface Plasmon of Ag Nano-thin Films: Determination by Ellipsometry Iterated with Transmittance Method

    PubMed Central

    Gong, Junbo; Dai, Rucheng; Wang, Zhongping; Zhang, Zengming

    2015-01-01

    Effective optical constants of Ag thin films are precisely determined with effective thickness simultaneously by using an ellipsometry iterated with transmittance method. Unlike the bulk optical constants in Palik's database the effective optical constants of ultrathin Ag films are found to strongly depend on the thickness. According to the optical data two branches of thickness dispersion of surface plasmon energy are derived and agreed with theoretical predication. The thickness dispersion of bulk plasmon is also observed. The influence of substrate on surface plasmon is verified for the first time by using ellipsometry. The thickness dependent effective energy loss function is thus obtained based on this optical method for Ag ultrathin films. This method is also applicable to other ultrathin films and can be used to establish an effective optical database for ultrathin films. PMID:25797217

  3. Effect of Ag film thickness on the crystallization mechanism and photoluminescence properties of ZnO/Ag nanoflower arrays

    NASA Astrophysics Data System (ADS)

    Hu, Zhan-Shuo; Hung, Fei-Yi; Chang, Shoou-Jinn; Huang, Bohr-Ran; Lin, Bo-Cheng; Hsieh, Wei-Kang; Chen, Kuan-Jen

    2012-08-01

    Three dimensional (3D) zinc oxide (ZnO) nanoflowers have been successfully synthesized on oxidized silver clusters using a vapor transportation method on a 50 nm Ag layer. One dimensional (1D) ZnO nanorods can be fabricated on even the thinner Ag layers (2 nm and 10 nm). During the heating process, with a trace amount of oxygen present, the Ag layer (50 nm) melted and agglomerated forming silver oxide until the temperature reached the melting point of the zinc powder. Initially, the oxygen-rich phase ZnO formed and the zinc atoms diffused from the ZnO shell forming pistils and after an increase in time formed the zinc-rich ZnO nanoflowers. The ultraviolet (UV) emission (3.28 eV) from ZnO nanoflowers and nanorods revealed useful properties relating to the recombination of free excitons and the formation of zinc interstitials or zinc antisites as evidenced by the broad visible peak in the 50 nm Ag layer spectra.

  4. Effect of thickness and Ti interlayers on stresses and texture transformations in thin Ag films during thermal cycling

    SciTech Connect

    Baker, Shefford P.; Saha, Krishanu; Shu, Jonathan B.

    2013-11-04

    The driving forces for the (111) to (100) texture transformation often observed during annealing of thin face-centered cubic metal films were investigated. Thin passivated silver films were produced with and without Ti adhesion layers. Stresses were measured in situ during heating to induce the texture transformation, and the texture was characterized using x-ray diffraction. Sufficiently thin films did not transform and sufficiently thick films transformed fully. Intermediate thickness films transformed to an extent dependent on thickness, leading to stable mixed textures. In the prevailing thermodynamic model, texture transformation is attributed to minimization of strain and interface energies. However, calculations using the measured stresses, known elastic constants, and estimated interface energies in this model reveal that the stresses are not sufficient to cause the texture transformation and, furthermore, that variations in interface energy cannot lead to the observed behavior. The results suggest that neither the interface energy nor the stress plays decisive roles in the texture transformation.

  5. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  6. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  7. Thick Film Interference.

    ERIC Educational Resources Information Center

    Trefil, James

    1983-01-01

    Discusses why interference effects cannot be seen with a thick film, starting with a review of the origin of interference patterns in thin films. Considers properties of materials in films, properties of the light source, and the nature of light. (JN)

  8. Thick film ink chemistry

    NASA Astrophysics Data System (ADS)

    Gehman, R. W.

    1982-03-01

    Twenty-six thick film inks from two vendors were proved for hybrid microcircuit production use. A data base of chemical information was established for all the inks to aid in future diagnostic and failure analysis activities. Efforts included both organic chemical analysis of printing vehicles and binders and inorganic chemical analysis of glass frits and electrically active phases. Analytical methods included infrared spectroscopy, mass spectroscopy, gas chromatography, X-ray fluorescence, emission spectroscopy, atomic absorption spectroscopy, and wet chemical techniques.

  9. Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition

    SciTech Connect

    Leng Jian; Yu Zhinong; Xue Wei; Zhang Ting; Jiang Yurong; Zhang Jie; Zhang Dongpu

    2010-10-15

    The structural, optical, and electrical characteristics of zinc sulfide (ZnS)/Ag/ZnS (ZAZ) multilayer films prepared by ion beam assisted deposition on k9 glass have been investigated as a function of Ag layer thickness. The characteristics of ZAZ multilayer are significantly improved up insertion of optimal Ag thickness between ZnS layers. The results show that due to bombardment of Ar ion beam, distinct Ag islands evolve into continuous Ag films at a thin Ag thickness of about 4 nm. The thinner Ag film as a thickness of 2 nm leads to high sheet resistance and low transmittance for the interface scattering induced by the Ag islands or noncontinuous films; and when the Ag thickness is over 4 nm, the ZAZ multilayer exhibits a remarkably reduced sheet resistance between 7-80 {Omega}/sq for the increase in carrier concentration and mobility of Ag layer, and a high transmittance over 90% for the interference phenomena of multilayers and low absorption and surface scattering of Ag layer. The ZAZ multilayer with 14 nm Ag film has a figure of merit up to 6.32x10{sup -2} {Omega}{sup -1}, an average transmittance over 92% and a sheet resistance of 7.1 {Omega}/sq. The results suggest that ZAZ film has better optoelectrical properties than conditional indium tin oxide single layer.

  10. System for measuring film thickness

    DOEpatents

    Batishko, Charles R.; Kirihara, Leslie J.; Peters, Timothy J.; Rasmussen, Donald E.

    1990-01-01

    A system for determining the thicknesses of thin films of materials exhibiting fluorescence in response to exposure to excitation energy from a suitable source of such energy. A section of film is illuminated with a fixed level of excitation energy from a source such as an argon ion laser emitting blue-green light. The amount of fluorescent light produced by the film over a limited area within the section so illuminated is then measured using a detector such as a photomultiplier tube. Since the amount of fluorescent light produced is a function of the thicknesses of thin films, the thickness of a specific film can be determined by comparing the intensity of fluorescent light produced by this film with the intensity of light produced by similar films of known thicknesses in response to the same amount of excitation energy. The preferred embodiment of the invention uses fiber optic probes in measuring the thicknesses of oil films on the operational components of machinery which are ordinarily obscured from view.

  11. Measuring Thicknesses of Wastewater Films

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Davenport, R. J.

    1987-01-01

    Sensor determines when thickness of film of electrically conductive wastewater on rotating evaporator drum exceeds preset value. Sensor simple electrical probe that makes contact with liquid surface. Made of materials resistant to chemicals in liquid. Mounted on shaft in rotating cylinder, liquid-thickness sensor extends toward cylinder wall so tip almost touches. Sensor body accommodates probe measuring temperature of evaporated water in cylinder.

  12. Applications of film thickness equations

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1983-01-01

    A number of applications of elastohydrodynamic film thickness expressions were considered. The motion of a steel ball over steel surfaces presenting varying degrees of conformity was examined. The equation for minimum film thickness in elliptical conjunctions under elastohydrodynamic conditions was applied to roller and ball bearings. An involute gear was also introduced, it was again found that the elliptical conjunction expression yielded a conservative estimate of the minimum film thickness. Continuously variable-speed drives like the Perbury gear, which present truly elliptical elastohydrodynamic conjunctions, are favored increasingly in mobile and static machinery. A representative elastohydrodynamic condition for this class of machinery is considered for power transmission equipment. The possibility of elastohydrodynamic films of water or oil forming between locomotive wheels and rails is examined. The important subject of traction on the railways is attracting considerable attention in various countries at the present time. The final example of a synovial joint introduced the equation developed for isoviscous-elastic regimes of lubrication.

  13. LTCC Thick Film Process Characterization

    DOE PAGESBeta

    Girardi, M. A.; Peterson, K. A.; Vianco, P. T.

    2016-05-01

    Low temperature cofired ceramic (LTCC) technology has proven itself in military/space electronics, wireless communication, microsystems, medical and automotive electronics, and sensors. The use of LTCC for high frequency applications is appealing due to its low losses, design flexibility and packaging and integration capability. Moreover, we summarize the LTCC thick film process including some unconventional process steps such as feature machining in the unfired state and thin film definition of outer layer conductors. The LTCC thick film process was characterized to optimize process yields by focusing on these factors: 1) Print location, 2) Print thickness, 3) Drying of tapes and panels,more » 4) Shrinkage upon firing, and 5) Via topography. Statistical methods were used to analyze critical process and product characteristics in the determination towards that optimization goal.« less

  14. Percolation effect in thick film superconductors

    SciTech Connect

    Sali, R.; Harsanyi, G.

    1994-12-31

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  15. Anomalous photoelectric emission from Ag on zinc-phthalocyanine film

    NASA Astrophysics Data System (ADS)

    Tanaka, Senku; Otani, Tomohiro; Fukuzawa, Ken; Ogawa, Koji; Azuma, Junpei; Yamamoto, Isamu; Takahashi, Kazutoshi; Kamada, Masao; Hiromitsu, Ichiro

    2014-05-01

    Photoelectric emission from organic and metal thin films is generally observed with irradiation of photon energy larger than 4 eV. In this paper, however, we report photoelectric emission from Ag on a zinc-phthalocyanine (ZnPc) layer at a photon energy of 3.4 eV. The threshold energy for this photoelectric emission is much smaller than the work function of Ag estimated by conventional photoelectron spectroscopy. The photoelectric emission by low-energy photons is significant for Ag thicknesses of less than 1 nm. Photoelectron spectroscopy and morphological study of the Ag/ZnPc suggest that the anomalous photoelectric emission from the Ag surface is caused by a vacuum level shift at the Ag/ZnPc interface and by surface plasmons of the Ag nanoparticles.

  16. Anomalous photoelectric emission from Ag on zinc-phthalocyanine film

    SciTech Connect

    Tanaka, Senku; Otani, Tomohiro; Fukuzawa, Ken; Hiromitsu, Ichiro; Ogawa, Koji; Azuma, Junpei; Yamamoto, Isamu; Takahashi, Kazutoshi; Kamada, Masao

    2014-05-12

    Photoelectric emission from organic and metal thin films is generally observed with irradiation of photon energy larger than 4 eV. In this paper, however, we report photoelectric emission from Ag on a zinc-phthalocyanine (ZnPc) layer at a photon energy of 3.4 eV. The threshold energy for this photoelectric emission is much smaller than the work function of Ag estimated by conventional photoelectron spectroscopy. The photoelectric emission by low-energy photons is significant for Ag thicknesses of less than 1 nm. Photoelectron spectroscopy and morphological study of the Ag/ZnPc suggest that the anomalous photoelectric emission from the Ag surface is caused by a vacuum level shift at the Ag/ZnPc interface and by surface plasmons of the Ag nanoparticles.

  17. Annealing effect of ultrathin Ag films on Ni /Pt(111)

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Yo, H. Y.; Chen, Y. J.; Shern, C. S.

    2005-06-01

    The epitaxial growth and alloy formation of Ag-capped layer on Ni /Pt(111) surface were investigated using Auger electron spectroscopy, ultraviolet photoelectron spectroscopy, and low-energy electron diffraction. The growth of Ag on one ML Ni /Pt(111) transforms from layer-by-layer mode into three-dimensional island mode after the growth of one atomic monolayer of Ag. The starting temperature for the alloy formation of Ni-Pt is dependent of the thickness of Ni films. The interface compositions after the high-temperature annealing were studied with the depth-profile analysis of Ar ion sputtering.

  18. Vacuum casting of thick polymeric films

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1979-01-01

    Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.

  19. Herringbone and triangular patterns of dislocations in Ag, Au, and AgAu alloy films on Ru(0001).

    SciTech Connect

    Thayer, Gayle Echo; de la Figuera, Juan; Bartelt, Norman Charles; Carter, C. Barrington; Hwang, R. Q.; Thurmer, Konrad; Ling, W. L.; Hamilton, John C.; McCarty, Kevin F.

    2008-10-01

    We have studied the dislocation structures that occur in films of Ag, Au, and Ag{sub 0.5}Au{sub 0.5} alloy on a Ru(0001) substrate. Monolayer (ML) films form herringbone phases while films two or more layers thick contain triangular patterns of dislocations. We use scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) to determine how the film composition affects the structure and periodicity of these ordered structures. One layer of Ag forms two different herringbone phases depending on the exact Ag coverage and temperature. Low-energy electron microscopy (LEEM) establishes that a reversible, first-order phase transition occurs between these two phases at a certain temperature. We critically compare our 1 ML Ag structures to conflicting results from an X-ray scattering study [H. Zajonz et al., Phys. Rev. B 67 (2003) 155417]. Unlike Ag, the herringbone phases of Au and AgAu alloy are independent of the exact film coverage. For two layer films in all three systems, none of the dislocations in the triangular networks thread into the second film layer. In all three systems, the in-plane atomic spacing of the second film layer is nearly the same as in the bulk. Film composition does, however, affect the details of the two layer structures. Ag and Au films form interconnected networks of dislocations, which we refer to as 'trigons.' In 2 ML AgAu alloy, the dislocations form a different triangular network that shares features of both trigon and moire structures. Yet another well-ordered structure, with square symmetry, forms at the boundaries of translational trigon domains in 2 ML Ag films but not in Au films.

  20. Observation of second spin reorientation transition within ultrathin region in Fe films on Ag(001) surface

    SciTech Connect

    Khim, T.-Y.; Shin, M.; Lee, H. E-mail: jhp@postech.ac.kr; Park, B.-G.; Park, J.-H. E-mail: jhp@postech.ac.kr

    2014-06-21

    We acquired direct measurements for in-plane and perpendicular-to-plane magnetic moments of Fe films using an x-ray magnetic circular dichroism technique with increase of the Fe thickness (up to 40 Å) on the Ag(001) surface. Epitaxial Fe/Ag(001) films were grown in situ with the thickness varying from 2 Å to 40 Å, and the magnetic anisotropy was carefully investigated as a function of the film thickness. We found re-entrance of the in-plane magnetic anisotropy of the Fe film in ultrathin region. The results manifest that the epitaxial Fe/Ag(001) film undergoes two distinct spin reorientation transitions from in-plane to out-of-plane at the film thickness t ≈ 9 Å and back to in-plane at t ≈ 18 Å as t increases.

  1. Effect of geometry on hydrodynamic film thickness

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.

    1978-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.

  2. Study of the oxidation effects on isothermal solidification based high temperature stable Pt/In/Au and Pt/In/Ag thick film interconnections on LTCC substrate

    NASA Astrophysics Data System (ADS)

    Kumar, Duguta Suresh; Suri, Nikhil; Khanna, P. K.; Sharma, R. P.

    2016-03-01

    The objective of the presented paper is to determine the oxidized phase compositions of indium lead-free solders during solidification at 190 ° C under room environment with the help of X-ray diffraction (XRD) and Energy dispersive spectroscopy (EDX). Many lead-free solders alloys available oxidizes and have poor wetting properties. The oxidation of pure indium solder foil, Au, Pt, and Ag alloys were identified and investigated, in the process of isothermal solidification based solder joints construction at room environment and humidity. Both EDX and XRD characterization techniques were performed to trace out the amount of oxide levels and variety of oxide formations at solder interface respectively. The paper also aims to report the isothermal solidification technique to provide interconnections to pads on Low temperature co-fired ceramic (LTCC) substrate. It also elaborates advantages of isothermal solidification over the other methods of interconnection. Scanning electron microscope (SEM) used to identify the oxidized spots on the surface of Pt, Ag substrates and In solder. The identified oxides were reported.

  3. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit

    NASA Astrophysics Data System (ADS)

    Yu, Shihui; Li, Lingxia; Lyu, Xiaosong; Zhang, Weifeng

    2016-02-01

    In order to improve the conductivity of the single-layered nano-thick F doped SnO2 (FTO) thin films, an Ag mid-layer is embedded between the FTO layers. In our work, the effects of mid-layer Ag and top FTO layer on the structural, electrical and optical properties of FTO/Ag/FTO multilayered composite structures deposited on quartz glass substrates by magnetron sputtering at 100 °C have been investigated. As the thickness of Ag mid-layer increases, the resistivity decreases. As the top FTO layer thickness increases, the resistivity increases. The highest value of figure of merit φTC is 7.8 × 10-2 Ω-1 for the FTO (20 nm)/Ag (7 nm)/FTO (30 nm) multilayers, while the average optical transmittance is 95.5% in the visible range of wavelengths and the resistivity is 8.8 × 10-5 Ω·cm. In addition, we also describe the influence of Ag and top FTO layer thickness on structural, electrical and optical properties of the nano-thick FTO (20 nm)/Ag/FTO multilayers and the mechanism of the changes of electrical and optical properties at different Ag and top FTO layer thicknesses.

  4. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit

    PubMed Central

    Yu, Shihui; Li, Lingxia; Lyu, Xiaosong; Zhang, Weifeng

    2016-01-01

    In order to improve the conductivity of the single–layered nano-thick F doped SnO2 (FTO) thin films, an Ag mid–layer is embedded between the FTO layers. In our work, the effects of mid–layer Ag and top FTO layer on the structural, electrical and optical properties of FTO/Ag/FTO multilayered composite structures deposited on quartz glass substrates by magnetron sputtering at 100 °C have been investigated. As the thickness of Ag mid–layer increases, the resistivity decreases. As the top FTO layer thickness increases, the resistivity increases. The highest value of figure of merit φTC is 7.8 × 10−2 Ω−1 for the FTO (20 nm)/Ag (7 nm)/FTO (30 nm) multilayers, while the average optical transmittance is 95.5% in the visible range of wavelengths and the resistivity is 8.8 × 10−5 Ω·cm. In addition, we also describe the influence of Ag and top FTO layer thickness on structural, electrical and optical properties of the nano-thick FTO (20 nm)/Ag/FTO multilayers and the mechanism of the changes of electrical and optical properties at different Ag and top FTO layer thicknesses. PMID:26833398

  5. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit.

    PubMed

    Yu, Shihui; Li, Lingxia; Lyu, Xiaosong; Zhang, Weifeng

    2016-01-01

    In order to improve the conductivity of the single-layered nano-thick F doped SnO2 (FTO) thin films, an Ag mid-layer is embedded between the FTO layers. In our work, the effects of mid-layer Ag and top FTO layer on the structural, electrical and optical properties of FTO/Ag/FTO multilayered composite structures deposited on quartz glass substrates by magnetron sputtering at 100 °C have been investigated. As the thickness of Ag mid-layer increases, the resistivity decreases. As the top FTO layer thickness increases, the resistivity increases. The highest value of figure of merit φTC is 7.8 × 10(-2 ) Ω(-1) for the FTO (20 nm)/Ag (7 nm)/FTO (30 nm) multilayers, while the average optical transmittance is 95.5% in the visible range of wavelengths and the resistivity is 8.8 × 10(-5 ) Ω·cm. In addition, we also describe the influence of Ag and top FTO layer thickness on structural, electrical and optical properties of the nano-thick FTO (20 nm)/Ag/FTO multilayers and the mechanism of the changes of electrical and optical properties at different Ag and top FTO layer thicknesses. PMID:26833398

  6. Iodization of rf sputter induced disordered Ag thin films reveals volume plasmon-exciton 'transition'

    SciTech Connect

    Bharathi Mohan, D.; Sunandana, C. S.

    2006-09-15

    Quasiamorphous Ag films of thicknesses ranging from 5 to 30 nm were prepared using rf magnetron sputtering technique and their controlled iodization was carried out for selected durations in the range of 15 min-60 h at room temperature. As deposited Ag and iodized films were characterized using x-ray diffraction (XRD), atomic force microscope (AFM), and optical absorption techniques. From XRD, {gamma} and {beta}+{gamma} (mixed) phases of AgI nanoparticles have been observed for 5-10 and 20-30 nm thick films, respectively. Lattice parameters (a and c) and average strain ({epsilon}) were calculated versus iodization time for {gamma} and {beta}-AgI nanoparticles. Uniform and nonuniform spherically shaped AgI nanoparticles ({approx}20-130 nm) are realized through AFM for 5-10 and 20-30 nm thick films. Optical absorption shows volume plasmons (classified as PR1) for short duration iodization, which ''decay'' upon further iodization to convert to Z{sub 1,2} and Z{sub 3} excitons at 420 and 330 nm, respectively, in the manner of a metal-semiconductor/dielectric phase transition. Ag 'colloidal' particles (classified as PR2) are formed for 5-10 nm thick films and thereby control the {gamma} phase--a significant and applicable effect attributed to critical film thickness. With increasing thickness, a surface strain field lifting the degeneracy of the valence band results in Z{sub 1,2} and Z{sub 3} exciton formation at room temperature. Blueshift in the exciton absorption with decreasing film thickness implies the progressive quantum confinement due to decrease in the particle size. A thickness induced phase transition from {gamma}-AgI to {beta}-AgI is discussed by means of x-ray diffraction and optical absorption studies.

  7. Thick crystalline films on foreign substrates

    DOEpatents

    Smith, Henry I.; Atwater, Harry A.; Geis, Michael W.

    1986-01-01

    To achieve a uniform texture, large crystalline grains or, in some cases, a single crystalline orientation in a thick (>1 .mu.m) film on a foreign substrate, the film is formed so as to be thin (<1 .mu.m) in a certain section. Zone-melting recrystallization is initiated in the thin section and then extended into the thick section. The method may employ planar constriction patterns of orientation filter patterns.

  8. Thick crystalline films on foreign substrates

    DOEpatents

    Smith, H.I.; Atwater, H.A.; Geis, M.W.

    1986-03-18

    To achieve a uniform texture, large crystalline grains or, in some cases, a single crystalline orientation in a thick (>1 [mu]m) film on a foreign substrate, the film is formed so as to be thin (<1 [mu]m) in a certain section. Zone-melting recrystallization is initiated in the thin section and then extended into the thick section. The method may employ planar constriction patterns of orientation filter patterns. 2 figs.

  9. Thermoelectric Generators from AgBiTe and AgSbTe Thin Films Modified by High-Energy Beam

    NASA Astrophysics Data System (ADS)

    Budak, S.; Guner, S.; Muntele, C.; Ila, D.

    2015-06-01

    The ternary chalcogenides AgBiTe2 and AgSbTe2 belong to the family of semiconductors with disordered NaCl cubic structure in which Ag and Sb occupy metal sublattices. Both compounds are very interesting due to their thermoelectric properties. We have grown single-layer AgBiTe and AgSbTe thin films on silicon (Si) and fused silica (Suprasil) substrates using electron beam deposition. High-energy (MeV) Si-ion bombardment was performed on the thin-film samples at five different fluences between 5 × 1013 ions/cm2 and 7 × 1015 ions/cm2. We have measured the thermoelectric efficiency (figure of merit, ZT) of the fabricated thermoelectric devices by measuring the cross-plane thermal conductivity using the third-harmonic (3 ω) method, the cross-plane Seebeck coefficient, and the in-plane electrical conductivity using the van der Pauw method before and after MeV Si-ion bombardment. Rutherford backscattering spectrometry and the Rutherford Universal Manipulation Program (RUMP) simulation package were used to analyze the elemental composition and thickness of the deposited materials on the substrates. The RUMP simulation gave thicknesses for the AgBiTe and AgSbTe thin films of 270 nm and 188 nm, respectively. The figure of merit for AgBiTe started to decrease from the value of 0.37 for the virgin sample after bombardment. We saw similar decreasing behavior for the AgSbTe thin-film system. The figure of merit for AgSbTe started to decrease from the value of 0.88 for the virgin sample after bombardment. MeV Si-ion bombardment caused changes in the thermoelectric properties of the thin films.

  10. Fractal structure formation from Ag nanoparticle films on insulating substrates.

    PubMed

    Tang, Jing; Li, Zhiyong; Xia, Qiangfei; Williams, R Stanley

    2009-07-01

    Two dimensional (2D) fractal structures were observed to form from fairly uniform Ag island films (equivalent mass thicknesses of 1.5 and 5 nm) on insulating silicon dioxide surfaces (thermally grown silicon oxide on Si or quartz) upon immersion in deionized water. This result is distinctly different from the previously observed three-dimensional (3D) growth of faceted Ag nanocrystals on conductive surfaces (ITO and graphite) as the result of an electrochemical Ostwald ripening process, which also occurs on native oxide covered silicon surfaces as reported here. The fractal structures formed by diffusion-limited aggregation (DLA) of Ag species on the insulating surfaces. We present the experimental observation of this phenomenon and discuss some possible mechanisms for the DLA formation. PMID:19496573

  11. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  12. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus_minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus_minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  13. Explosive crystallization in the course of formation of Se/Ag nanosize film structure

    NASA Astrophysics Data System (ADS)

    Kogai, V. Ya.

    2014-08-01

    Results of an experimental study of explosive crystallization appearing in the process of formation of a Se/Ag nanosize film structure are presented. It is shown that explosive crystallization appears in a wide range of Se film thicknesses (70-280 nm) and occurs during a narrow time interval (2.00-4.52 s). The cooperative effect of the thermal energy of the phase transformation of Ag2Se and the energy of elastic stress in the amorphous Se film leads to development of an explosive crystallization. It was found that, depending on the relative thicknesses of Se and Ag films, orthorhombic Ag2Se with crystal-lattice constants a = 4.333 Å, b = 7.062 Å, and c = 7.764 Å and hexagonal Se ( a = 4.3552 Å and c = 4.9495 Å) are formed in the reaction products upon the explosive crystallization.

  14. Microstructure of Cu-Ag Uniform Nanoparticulate Films on Polyurethane 3D Catheters: Surface Properties.

    PubMed

    Rtimi, Sami; Sanjines, Rosendo; Pulgarin, Cesar; Kiwi, John

    2016-01-13

    The preparation, characterization, and antibacterial testing of Cu-Ag sputtered polyurethane (PU) catheters are addressed in this study. PU catheters with different atomic ratios Cu:Ag have been sputtered and led to different optical properties as followed by diffuse reflectance spectroscopy (DRS) and the surface redox properties were also different for different Cu-Ag ratios as observed by X-ray photoelectron spectroscopy (XPS). The surface atomic percentage concentration of the oxidized/reduced C-species originating from bacterial cultures before and after bacterial inactivation were determined on the Cu-Ag PU catheters. The crystallographic properties were determined by X-ray diffraction (XRD). The XRD-diffractogram showed the presence of Cu2O (111), Cu (200), CuO (020), and Ag (111) indicating that Cu nanoparticles present a more crystalline character compared to Ag nanoparticles. Increasing the percentage of Ag in the Cu-Ag films, bigger Ag-particle agglomerates were detected by scanning transmission electron microscopy (STEM) microanalysis confirming the results obtained by AFM. The bacterial inactivation kinetics of the sputtered Cu-Ag films on PU catheters was investigated in detail. Quasi-instantaneous bacterial inactivation kinetics was induced by the sputtered films on PU catheters after optimization of the Cu-Ag film thickness. PMID:26700113

  15. Ferroelectric domain of epitaxial AgNbO3 thin film

    NASA Astrophysics Data System (ADS)

    Ahn, Yoonho; Seo, Jeongdae; Lee, Kwang Jo; Son, Jong Yeog

    2016-03-01

    We investigated ferroelectric properties of silver niobate (AgNbO3) thin film grown on Nb-doped SrTiO3 substrate by pulsed laser deposition. The AgNbO3 thin film exhibited room temperature ferroelectricity with a large remanent polarization of about 31 μC/cm2 (2Pr~62 μC/cm2) and fast switching behavior within 120 ns. Triangular grains of AgNbO3 thin film were observed by atomic force microscopy (AFM). The piezoelectric force microscopy (PFM) study revealed that the AgNbO3 thin film had mosaic-like ferroelectric domain structure. In comparison with PbTiO3 thin films, domain size of the AgNbO3 thin films was smaller than that of PbTiO3 thin films. Based on Landau, Lifshitz, and Kittel (LLK) scaling law of the domain size versus film thickness curves, it is inferred that AgNbO3 thin films have slightly lower domain wall energy than that of PbTiO3 thin films.

  16. Systematic Evaluation of Jc Decrease in Thick Film Coated Conductors

    SciTech Connect

    Alex Ignatiev; Dr. Amit Goyal

    2006-05-10

    Address both thickness dependence of Jc, in thick film YBCO coated conductors through an application of a suite of new measurement techniques to thick film wire samples produced by commercially viable coated conductor technologies.

  17. A Simple and Facile Iodination Method for Improving Sinterability and Electrical Conductivity of Silver Thick Films

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Gan, Weiping; Li, Yingfen; Luo, Lin; Pan, Qiaoyun; Xiong, Zhijun

    2014-09-01

    Micro-sized silver powders were decorated with nano-scaled Ag/AgI clusters on the surface via a simple reaction with iodine and subsequent exposure to sunshine. Surface morphologies, crystal structures, and thermal properties of the powders were characterized. The powders with different mole ratios of I:Ag (0:100, 2:100, 10:100) were employed in silver pastes to evaluate sinterability and electrical conductivity of thick films. Microstructures and sheet resistance of the films were investigated by scanning electron microscopy and the four-point probe method. The particles coated with and without nano-sized Ag/AgI clusters showed different sintering behaviors. Moreover, clear necks were formed between the Ag particles with the ratio of 2:100 even at 570°C, whereas those untreated remained discrete. However, over-decoration lowered sinterability and electrical conductivity.

  18. Pressureless Bonding Using Sputtered Ag Thin Films

    NASA Astrophysics Data System (ADS)

    Oh, Chulmin; Nagao, Shijo; Suganuma, Katsuaki

    2014-12-01

    To improve the performance and reliability of power electronic devices, particularly those built around next-generation wide-bandgap semiconductors such as SiC and GaN, the bonding method used for packaging must change from soldering to solderless technology. Because traditional solders are problematic in the harsh operating conditions expected for emerging high-temperature power devices, we propose a new bonding method in this paper, namely a pressureless, low-temperature bonding process in air, using abnormal grain growth on sputtered Ag thin films to realize extremely high temperature resistance. To investigate the mechanisms of this bonding process, we characterized the microstructural changes in the Ag films over various bonding temperatures and times. We measured the bonding properties of the specimens by a die-shear strength test, as well as by x-ray diffraction measurements of the residual stress in the Ag films to show how the microstructural developments were essential to the bonding technology. Sound bonds with high die strength can be achieved only with abnormal grain growth at optimum bonding temperature and time. Pressureless bonding allows for production of reliable high-temperature power devices for a wide variety of industrial, energy, and environmental applications.

  19. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    SciTech Connect

    Ding, Guowen Clavero, César; Schweigert, Daniel; Le, Minh

    2015-11-15

    The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  20. Nano-Hydroxyapatite Thick Film Gas Sensors

    NASA Astrophysics Data System (ADS)

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P.

    2011-12-01

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  1. Nano-Hydroxyapatite Thick Film Gas Sensors

    SciTech Connect

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P.

    2011-12-10

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  2. Tape casting and partial melting of Bi-2212 thick films

    NASA Technical Reports Server (NTRS)

    Buhl, D.; Lang, TH.; Heeb, B.; Gauckler, L. J.

    1995-01-01

    To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 microns. The orientation of the (a,b)-plane of the grains was parallel to the substrate with a misalignment of less than 6 deg. At 77 K/0T a critical current density of 15, 000 A/sq cm was reached in films of the dimension 1 cm x 2 cm x 20 microns (1 micron V/cm criterion, resistively measured). At 4 K/0T the highest value was 350,000 A/sq cm (1 nV/cm criterion, magnetically measured).

  3. Tape casting and partial melting of Bi-2212 thick films

    SciTech Connect

    Buhl, D.; Lang, T.; Heeb, B.

    1994-12-31

    To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 {mu}m. The orientation of the (a,b)-plane of the grains were parallel to the substrate with a misalignment of less than 6{degrees}. At 77K/OT a critical current density of 15`000 A/cm{sup 2} was reached in films of the dimension 1cm x 2cm x 20{mu}m (1{mu}V/cm criterion, resistively measured). At 4K/OT the highest value was 350`000 A/cm{sup 2} (1nV/cm criterion, magnetically measured).

  4. Formation of Flexible and Transparent Indium Gallium Zinc Oxide/Ag/Indium Gallium Zinc Oxide Multilayer Film

    NASA Astrophysics Data System (ADS)

    Kim, Jun Ho; Kim, Da-Som; Kim, Sun-Kyung; Yoo, Young-Zo; Lee, Jeong Hwan; Kim, Sang-Woo; Seong, Tae-Yeon

    2016-08-01

    In this study, the electrical, optical, and bending characteristics of amorphous indium gallium zinc oxide (IGZO)/Ag/IGZO (39 nm/19 nm/39 nm) multilayer films deposited on polyethylene terephthalate (PET) substrate at room temperature were investigated and compared with those of Sn-doped indium oxide (ITO) (100 nm thick) films. At 500 nm the ITO film transmitted 91.3% and the IGZO/Ag/IGZO multilayer film transmitted 88.8%. The calculated transmittance spectrum of the multilayer film was similar to the experimental result. The ITO film and IGZO/Ag/IGZO multilayer film, respectively, showed carrier concentrations of 1.79 × 1020 and 7.68 × 1021 cm-3 and mobilities of 27.18 cm2/V s and 18.17 cm2/V s. The ITO film had a sheet resistance of 134.9 Ω/sq and the IGZO/Ag/IGZO multilayer film one of 5.09 Ω/sq. Haacke's figure of merit (FOM) was calculated to be 1.94 × 10-3 for the ITO film and 45.02 × 10-3 Ω-1 for the IGZO/Ag/IGZO multilayer film. The resistance change of 100 nm-thick ITO film was unstable even after five cycles, while that of the IGZO/Ag/IGZO film was constant up to 1000 cycles.

  5. Formation of Flexible and Transparent Indium Gallium Zinc Oxide/Ag/Indium Gallium Zinc Oxide Multilayer Film

    NASA Astrophysics Data System (ADS)

    Kim, Jun Ho; Kim, Da-Som; Kim, Sun-Kyung; Yoo, Young-Zo; Lee, Jeong Hwan; Kim, Sang-Woo; Seong, Tae-Yeon

    2016-05-01

    In this study, the electrical, optical, and bending characteristics of amorphous indium gallium zinc oxide (IGZO)/Ag/IGZO (39 nm/19 nm/39 nm) multilayer films deposited on polyethylene terephthalate (PET) substrate at room temperature were investigated and compared with those of Sn-doped indium oxide (ITO) (100 nm thick) films. At 500 nm the ITO film transmitted 91.3% and the IGZO/Ag/IGZO multilayer film transmitted 88.8%. The calculated transmittance spectrum of the multilayer film was similar to the experimental result. The ITO film and IGZO/Ag/IGZO multilayer film, respectively, showed carrier concentrations of 1.79 × 1020 and 7.68 × 1021 cm-3 and mobilities of 27.18 cm2/V s and 18.17 cm2/V s. The ITO film had a sheet resistance of 134.9 Ω/sq and the IGZO/Ag/IGZO multilayer film one of 5.09 Ω/sq. Haacke's figure of merit (FOM) was calculated to be 1.94 × 10-3 for the ITO film and 45.02 × 10-3 Ω-1 for the IGZO/Ag/IGZO multilayer film. The resistance change of 100 nm-thick ITO film was unstable even after five cycles, while that of the IGZO/Ag/IGZO film was constant up to 1000 cycles.

  6. Epitaxial piezoelectric thick film heterostructures on silicon

    NASA Astrophysics Data System (ADS)

    Kim, Dong Min

    The significantly higher dielectric permittivity, piezoelectric coefficients and electromechanical coupling coefficients of single crystal relaxor ferroelectrics make them very attractive for medical ultrasound transducers and microelectromechanical systems (MEMS) applications. The potential impact of thin-film relaxor ferroelectrics in integrated actuators and sensor on silicon has stimulated research on the growth and characterization of epitaxial piezoelectric thin films. We have fabricated heterostructures by (1) synthesizing optimally-oriented, epitaxial thin films of Pb(Mg1/3Nb2/3)O3-PbTiO 3 (PMN-PT) on miscut (001) Si wafers with epitaxial (001) SrTiO 3 template layers, where the single crystal form is known to have the giant piezoelectric response, and (2) nano-structuring to reduce the constraint imposed by the underlying silicon substrate. Up to now, the longitudinal piezoelectric coefficient (d33) values of PMN and PMN-PT thin films range from 50 to 200 pC/N have been reported, which are far inferior to the properties of bulk single crystals value (d33 ˜ 2000 pC/N). These might be attributed to substrate constraints, pyrochlore phases and other effects. Here, we have realized the giant d33 values by fabricating epitaxial PMN-PT thick films on silicon. When the PMN-PT film was subdivided into ˜1 mum2 capacitors by focused ion beam processing, a 4 mum thick film shows a low-field d33 of 800 pm/V that increases to over 1200 pm/V under bias, which is the highest d33 value ever realized on silicon substrates. These high piezo-reponse PMN-PT epitaxial heterostructures can be used for multilayered MEMS devices which function with low driving voltage, high frequency ultrasound transducer arrays for medical imaging, and capacitors for charge and energy storage. Since these PMN-PT films are epitaxially integrated with the silicon, they can make use of the well-developed fabrication process for patterning and micromachining of this large-area, cost

  7. Thermal durability of AZO/Ag(Al)/AZO transparent conductive films

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yukiko; Igarashi, Kanae; Shirasaki, Shinya; Kikuchi, Akihiko

    2016-04-01

    Effects of Al doping on surface morphology, sheet resistance, optical transmission spectra, and thermal durability of a thin Ag layer and AZO/Ag/AZO dielectric/metal/dielectric (DMD) transparent conductive films (TCFs) were investigated. The 1.7 at. % Al doping suppressed the initial island growth of a thin Ag layer and the plasmon resonant absorption dip in the optical transmission spectra. The threshold thickness of percolation conductivity was reduced from 9-10 (pure Al layer) to 5-6 nm (1.7 at. % Al-doped Ag layer). Al doping in the Ag layer improved the thermal durability of AZO/Ag/AZO-DMD TCFs. The threshold temperature for Ag void formation increased from 400 °C (DMD with pure Ag layer) to 600 °C (DMD with a 10.5 at. % Al-doped Ag layer). The optimum annealing temperature increased from 300 °C (DMD with a pure Ag layer) to 500 °C (DMD with a 10.5 at. % Al-doped Ag layer). Maximum figures of merit (FOM) were 0.5 × 10-2 and 1.1 × 10-2 Ω-1 for the DMD with a pure Ag layer and that with a 10.5 at. % Al-doped Ag layer, respectively.

  8. Properties of conductive thick-film inks

    NASA Technical Reports Server (NTRS)

    Holtze, R. F.

    1972-01-01

    Ten different conductive inks used in the fabrication of thick-film circuits were evaluated for their physical and handling properties. Viscosity, solid contents, and spectrographic analysis of the unfired inks were determined. Inks were screened on ceramic substrates and fired for varying times at specified temperatures. Selected substrates were given additional firings to simulate the heat exposure received if thick-film resistors were to be added to the same substrate. Data are presented covering the (1) printing characteristics, (2) solderability using Sn-63 and also a 4 percent silver solder, (3) leach resistance, (4) solder adhesion, and (5) wire bonding properties. Results obtained using different firing schedules were compared. A comparison was made between the various inks showing general results obtained for each ink. The changes in firing time or the application of a simulated resistor firing had little effect on the properties of most inks.

  9. Metallic oxide switches using thick film technology

    NASA Technical Reports Server (NTRS)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  10. Thick film wireless and powerless strain sensor

    NASA Astrophysics Data System (ADS)

    Jia, Yi; Sun, Ke

    2006-03-01

    The development of an innovative wireless strain sensing technology has a great potential to extend its applications in manufacturing, civil engineering and aerospace industry. This paper presents a novel wireless and powerless strain sensor with a multi-layer thick film structure. The sensor employs a planar inductor (L) and capacitive transducer (C) resonant tank sensing circuit, and a strain sensitive material of a polarized polyvinylidene fluoride (PVDF) piezoelectric thick film to realize the wireless strain sensing by strain to frequency conversion and to receive radio frequency electromagnetic energy for powering the sensor. The prototype sensor was designed and fabricated. The results of calibration on a strain constant cantilever beam show a great linearity and sensitivity about 0.0013 in a strain range of 0-0.018.

  11. Residual Stress Analysis in Thick Uranium Films

    SciTech Connect

    Hodge, A M; Foreman, R J; Gallegos, G F

    2004-12-06

    Residual stress analysis was performed on thick, 1.0 to 25 {micro}m, depleted Uranium (DU) films deposited on an Al substrate by magnetron sputtering. Two distinct characterization techniques were used to measure substrate curvature before and after deposition. Stress evaluation was performed using the Benabdi/Roche equation, which is based on beam theory of a bi-layer material. The residual stress evolution was studied as a function of coating thickness and applied negative bias voltage (0-300V). The stresses developed were always compressive; however, increasing the coating thickness and applying a bias voltage presented a trend towards more tensile stresses and thus an overall reduction of residual stresses.

  12. Laser-nanostructured Ag films as substrates for surface-enhanced Raman spectroscopy

    SciTech Connect

    Henley, S.J.; Carey, J.D.; Silva, S.R.P.

    2006-02-20

    Pulsed-laser (248 nm) irradiation of Ag thin films was employed to produce nanostructured Ag/SiO{sub 2} substrates. By tailoring the laser fluence, it was possible to controllably adjust the mean diameter of the resultant near-spherical Ag droplets. Thin films of tetrahedral amorphous carbon (ta-C) were subsequently deposited onto the nanostructured substrates. Visible Raman measurements were performed on the ta-C films, where it was observed that the intensity of the Raman signal was increased by nearly two orders of magnitude, when compared with ta-C films grown on nonstructured substrates. The use of laser annealing as a method of preparing substrates, at low macroscopic temperatures, for surface-enhanced Raman spectroscopy on subnanometer-thick films is discussed.

  13. Flow fields in soap films: Relating viscosity and film thickness

    NASA Astrophysics Data System (ADS)

    Prasad, V.; Weeks, Eric R.

    2009-08-01

    We follow the diffusive motion of colloidal particles in soap films with varying h/d , where h is the thickness of the film and d is the diameter of the particles. The hydrodynamics of these films are determined by looking at the correlated motion of pairs of particles as a function of separation R . The Trapeznikov approximation [A. A. Trapeznikov, Proceedings of the 2nd International Congress on Surface Activity (Butterworths, London, 1957), p. 242] is used to model soap films as an effective two-dimensional (2D) fluid in contact with bulk air phases. The flow fields determined from correlated particle motions show excellent agreement with what is expected for the theory of 2D fluids for all our films where 0.6≤h/d≤14.3 , with the 2D shear viscosity matching that predicted by Trapeznikov. However, the parameters of these flow fields change markedly for thick films (h/d>7±3) . Our results indicate that three-dimensional effects become important for these thicker films, despite the flow fields still having a 2D character.

  14. Thick Films: Electronic Applications. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, development, fabrication, and evaluation of thick film electronic devices. Thick film solar cells, thick films for radiation conduction, deposition processes, conductive inks are among the topics discussed. Applications in military and civilian avionics are examined.

  15. SPR sensitivity of silver nanorods in CsBr-Ag nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Lovkush; Ravikant, Chhaya; Arun, P.; Kumar, Kuldeep

    2016-07-01

    We have investigated the optical and morphological properties of CsBr-Ag complex thin films deposited by thermal evaporation on glass substrate. By varying the thickness of the film with fixed mass ratio of cesium bromide and silver, we observed a broad absorption peak in the visible region from 350 to 450 nm corresponding to the transverse and longitudinal surface plasmon resonance (SPR) mode. Red shift is observed, with varying film thickness, in SPR peak position corresponding to longitudinal mode with no significant change in transverse mode due to variation in the aspect ratio of the silver nano crystalline grains. Scanning electron microscope and EDX revealed the formation of silver nanorods in film samples. Such, stable and tunable CsBr-Ag films can be used in optical filters.

  16. High-frequency permeability and permittivity of Ni xZn (1-x)Fe 2O 4 thick film

    NASA Astrophysics Data System (ADS)

    Kulkarni, D. C.; Lonkar, U. B.; Puri, Vijaya

    Magnetic materials such as Ni xZn (1-x)Fe 2O 4 have resonant frequency in high frequency; therefore, they are more useful especially in microwaves. The Ni xZn (1-x)Fe 2O 4 was prepared by the chemical coprecipitation method using citrate precursors, and the fritless thick film was screen printed on alumina substrates. The composition-dependent permeability and permittivity in the high frequency 8-12 GHz are investigated. Using the overlay technique on Ag-thick-film patch antenna, the change in reflectance and transmittance has been measured. The Ni xZn (1-x)Fe 2O 4 thick film, when used as overlay on Ag-thick-film patch antenna, changes the resonance characteristics. The changes in resonance frequency, reflectance and transmittance have been used to calculate the permeability and permittivity of the thick film. Zinc-concentration-dependent changes are obtained.

  17. Bactericidal and biocompatible properties of TiN/Ag multilayered films by ion beam assisted deposition.

    PubMed

    Zhao, J; Cai, X M; Tang, H Q; Liu, T; Gu, H Q; Cui, R Z

    2009-12-01

    Nanoscale TiN/Ag multilayered films of thickness 500 nm were synthesized on AISI317 stainless steel by ion beam assisted deposition (IBAD) with the modulation period of 4, 5, 6, 7.5, and 12 nm. The bactericidal and biocompatible properties of TiN/Ag multilayered films were investigated through Gram negative E. coli bacteria and L929 cells (mice fibroblast) as well as human umbilical vein endothelial cells (HUVEC). The results show that the TiN/Ag multilayered films with the modulation period of 7.5 nm possess the strongest bactericidal property. The cytotoxicity grade of TiN/Ag multilayered coating with the modulation periods of 7.5 nm, 12 nm is in 0-1 scope, which indicates this film has no cytotoxicity to L929. HUVEC on TiN/Ag multilayered film grows well and shows good cellularity. Auger electronic spectroscopy reveals the relationship between the structure of TiN/Ag multilayered film and the biomedical properties. PMID:18553178

  18. Large range localized surface plasmon resonance of Ag nanoparticles films dependent of surface morphology

    NASA Astrophysics Data System (ADS)

    Yan, Lijuan; Yan, Yaning; Xu, Leilei; Ma, Rongrong; Jiang, Fengxian; Xu, Xiaohong

    2016-03-01

    Noble metal nanoparticles (NPs) have received enormous attention since it displays uniquely optical and electronic properties. In this work, we study localized surface plasmon resonances (LSPR) at different thicknesses and substrate temperatures of Ag NPs films grown by Laser Molecule Beam Epitaxy (LMBE). The LSPR wavelength can be largely tuned in the visible light range of 470 nm to 770 nm. The surface morphology is characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The average size of Ag NPs increased with the thickness increased which leading to the LSPR band broaden and wavelength red-shift. As the substrate temperature is increased from RT to 200 °C, the Ag NPs size distribution becomes homogeneous and particle shape changes from oblate spheroid to sphere, the LSPR band displays sharp, blue-shift and significantly symmetric. Obviously, the morphology of Ag NPs films is important for tuning absorption position. We obtain the cubic crystal structure of Ag NPs with a (1 1 1) main diffraction peak from the X-ray diffraction (XRD) spectra. The high resolution TEM (HR-TEM) and selected area electron diffraction (SAED) prove that Ag NPs is polycrystal structure. The Ag NPs films with large range absorption in visible light region can composite with semiconductor to apply in various optical or photoelectric devices.

  19. Fiber-optic ammonia sensor using Ag/SnO(2) thin films: optimization of thickness of SnO(2) film using electric field distribution and reaction factor.

    PubMed

    Pathak, Anisha; Mishra, Satyendra K; Gupta, Banshi D

    2015-10-10

    A highly sensitive ammonia gas sensor exploiting the gas sensing characteristics of tin oxide (SnO2) has been reported. The methodology of the sensor is based on the phenomenon of surface plasmon resonance (SPR) with a fiber-optic probe consisting of coatings of silver as a plasmonic material and SnO2 as the sensing layer. The sensing principle relies on the change in refractive index of SnO2 upon its reaction with ammonia gas. The capability of the sensor has been tested for a 10 to 100 ppm concentration range of ammonia gas. To enhance the sensitivity, probes with different thicknesses of SnO2 have been fabricated and characterized for ammonia sensing. It has been found that at a particular thickness the sensitivity is highest. The reason for the highest sensitivity at a particular thickness has been evinced theoretically. The electromagnetic field distribution for the multilayer structure of the probe reveals the enhancement of the evanescent field at the tin oxide-ammonia gas interface, which in turn manifests the highest shift in resonance wavelength at a particular thickness. The selectivity of the probe has been tested for various gases, and it has been found to be most accurate for the sensing of ammonia. A sensor utilizing optical fiber, the SPR technique, and metal oxide as sensing element combines the advantages of a miniaturized probe, online monitoring, and remote sensing on one hand and stability, high sensitivity and selectivity, ruggedness, and low cost on the other. PMID:26479808

  20. Determination of thin film refractive index and thickness by means of film phase thickness

    NASA Astrophysics Data System (ADS)

    Nenkov, Milen R.; Pencheva, Tamara G.

    2008-06-01

    A new approach for determination of refractive index dispersion n( λ) (the real part of the complex refractive index) and thickness d of thin films of negligible absorption and weak dispersion is proposed. The calculation procedure is based on determination of the phase thickness of the film in the spectral region of measured transmittance data. All points of measured spectra are included in the calculations. Barium titanate thin films are investigated in the spectral region 0.38-0.78 μm and their n( λ) and d are calculated. The approach is validated using Swanepoel’s method and it is found to be applicable for relatively thin films when measured transmittance spectra have one minimum and one maximum only.

  1. Determination of thin film refractive index and thickness by means of film phase thickness

    NASA Astrophysics Data System (ADS)

    Nenkov, Milen; Pencheva, Tamara

    2008-06-01

    A new approach for determination of refractive index dispersion n(λ) (the real part of the complex refractive index) and thickness d of thin films of negligible absorption and weak dispersion is proposed. The calculation procedure is based on determination of the phase thickness of the film in the spectral region of measured transmittance data. All points of measured spectra are included in the calculations. Barium titanate thin films are investigated in the spectral region 0.38-0.78 μm and their n(λ) and d are calculated. The approach is validated using Swanepoel's method and it is found to be applicable for relatively thin films when measured transmittance spectra have one minimum and one maximum only.

  2. Method for preparing a thick film conductor

    DOEpatents

    Nagesh, Voddarahalli K.; Fulrath, deceased, Richard M.

    1978-01-01

    A method for preparing a thick film conductor which comprises providing surface active glass particles, mixing the surface active glass particles with a thermally decomposable organometallic compound, for example, a silver resinate, and then decomposing the organometallic compound by heating, thereby chemically depositing metal on the glass particles. The glass particle mixture is applied to a suitable substrate either before or after the organometallic compound is thermally decomposed. The resulting system is then fired in an oxidizing atmosphere, providing a microstructure of glass particles substantially uniformly coated with metal.

  3. The influence of binder film thickness on the mechanical properties of binder films in tension.

    PubMed

    Ononokpono, O E; Spring, M S

    1988-02-01

    The physicomechanical properties of films of different thicknesses, made from methylcellulose and gelatinized maize starch, have been studied in tension. There was a linear relation between film thickness and tensile strength, toughness, elastic resilence and elongation at fracture. Young's modulus increased with decreasing film thickness particularly with films with a thickness of less than 15 micron. PMID:2897444

  4. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film.

    PubMed

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-22

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance. PMID:26939539

  5. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film

    NASA Astrophysics Data System (ADS)

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-01

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance.

  6. Incommensurate growth of Co thin film on close-packed Ag(111) surface

    NASA Astrophysics Data System (ADS)

    Barman, Sukanta; Menon, Krishna Kumar S. R.

    2016-05-01

    Growth of ultrathin Co layers on close-packed Ag(111)were investigated by means of Low Energy Electron Diffraction (LEED), X-ray Photoelectron Spectroscopy (XPS) and Angle-resolved Photoemission Spectroscopy(ARPES) techniques. The close-packed hexagonal face of Co(0001), exhibits a lattice misfit about 13% with Ag(111) surface which manipulates the growth to be incommensurate up to a certain thickness. The strain field causes aperiodic height undulation in the sub-angstrom regime of the film which was confirmed by p(1 × 1) LEED pattern along with a 6-fold moiré reconstruction pattern in the lower film thickness (up to ˜2ML). The evolution of the LEED pattern was studied with increasing film coverage. Lattice strain was measured with respect to the relative positions of these double spots as a functionof film thickness. Almost a constant strain (˜13%) in the full range of film thickness explains the moiré pattern formation in order to stabilize the incommensurate growth. For higher film coverages, an epitaxial well-ordered commensurate growth was observed. Core level and valance band electronic structures of these films were studied by XPS and ARPES techniques.

  7. Sputtered Ag thin films with modified morphologies: Influence on wetting property

    NASA Astrophysics Data System (ADS)

    Dutheil, P.; Thomann, A. L.; Lecas, T.; Brault, P.; Vayer, M.

    2015-08-01

    Silver thin films with thickness ranging from 3 nm to 33 nm were sputter deposited onto silicon wafers and tungsten layers. Those W layers were previously synthesized in the same DC magnetron sputter deposition system with various experimental conditions (argon pressure, target to substrate distance) in order to stabilize different surface morphologies. SEM observations and AFM images showed that the growth mode of Ag films is similar on Si substrates and on the smoothest W layers, whereas it is modified for rough W layers made of sharp grains. The effect of the W layer morphology on Ag film growth was clearly evidenced when the deposition took place at high temperature. It is seen that performing the deposition onto substrates of various morphologies allows tailoring the wetting property of the Ag deposit.

  8. Scalable Thick-Film Magnetics: Nano Structured Scalable Thick-Film Magnetics

    SciTech Connect

    2011-01-01

    ADEPT Project: Magnetic components are typically the largest components in a power converter. To date, however, researchers haven't found an effective way to reduce their size without negatively impacting their performance. And, reducing the size of the converter's other components isn't usually an option because shrinking them can also diminish the effectiveness of the magnetic components. GE is developing smaller magnetic components for power converters that maintain high performance levels. The company is building smaller components with magnetic films. These films are created using the condensation of a vaporized form of the magnetic material. It's a purely physical process that involves no chemical reactions, so the film composition is uniform. This process makes it possible to create a millimeter-thick film deposition over a wide surface area fairly quickly, which would save on manufacturing costs. In fact, GE can produce 1-10 millimeter-thick films in hours. The magnetic components that GE is developing for this project could be used in a variety of applications, including solar inverters, electric vehicles, and lighting.

  9. Multiplexed Holographic Optical Data Storage In Thick Bacteriorhodopsin Films

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Timucin, Dogan A.; Gary, Charles K.; Ozcan, Meric; Smithey, Daniel T.; Crew, Marshall

    1998-01-01

    The optical data storage capacity of photochromic bacteriorhodopsin films is investigated by means of theoretical calculations, numerical simulations, and experimental measurements on sequential recording of angularly multiplexed diffraction gratings inside a thick D85N BR film.

  10. Optical properties of Ag nanoclusters formed by irradiation and annealing of SiO2/SiO2:Ag thin films

    NASA Astrophysics Data System (ADS)

    Güner, S.; Budak, S.; Gibson, B.; Ila, D.

    2014-08-01

    We have deposited five periodic SiO2/SiO2 + Ag multi-nano-layered films on fused silica substrates using physical vapor deposition technique. The co-deposited SiO2:Ag layers were 2.7-5 nm and SiO2 buffer layers were 1-15 nm thick. Total thickness was between 30 and 105 nm. Different concentrations of Ag, ranging from 1.5 to 50 molecular% with respect to SiO2 were deposited to determine relevant rates of nanocluster formation and occurrence of interaction between nanoclusters. Using interferometry as well as in situ thickness monitoring, we measured the thickness of the layers. The concentration of Ag in SiO2 was measured with Rutherford Backscattering Spectrometry (RBS). To nucleate Ag nanoclusters, 5 MeV cross plane Si ion bombardments were performed with fluence varying between 5 × 1014 and 1 × 1016 ions/cm2 values. Optical absorption spectra were recorded in the range of 200-900 nm in order to monitor the Ag nanocluster formation in the thin films. Thermal annealing treatment at different temperatures was applied as second method to form varying size of nanoclusters. The physical properties of formed super lattice were criticized for thermoelectric applications.

  11. In-situ spectro-microscopy on organic films: Mn-Phthalocyanine on Ag(100)

    NASA Astrophysics Data System (ADS)

    Al-Mahboob, Abdullah; Sadowski, Jerzy T.; Vescovo, Elio

    2013-03-01

    Metal phthalocyanines are attracting significant attention, owing to their potential for applications in chemical sensors, solar cells and organic magnets. As the electronic properties of molecular films are determined by their crystallinity and molecular packing, the optimization of film quality is important for improving the performance of organic devices. Here, we present the results of in situ low-energy electron microscopy / photoemission electron microscopy (LEEM/PEEM) studies of incorporation-limited growth of manganese-phthalocyanine (MnPc) on Ag(100) surfaces. MnPc thin films were grown on both, bulk Ag(100) surface and thin Ag(100)/Fe(100) films, where substrate spin-polarized electronic states can be modified through tuning the thickness of the Ag film. We also discuss the electronic structure and magnetic ordering in MnPc thin films, investigated by angle- and spin-resolved photoemission spectroscopy. Research carried out at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, which are supported by the U.S. Dept. of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  12. Surface phonons of NiO(001) ultrathin films grown pseudomorphically on Ag(001)

    NASA Astrophysics Data System (ADS)

    Kostov, K. L.; Polzin, S.; Schumann, F. O.; Widdra, W.

    2016-01-01

    For an ultrathin NiO(001) film of 4 monolayer (ML) thickness grown on Ag(001), the vibrational properties have been determined by high-resolution electron energy loss spectroscopy (HREELS). For the well-ordered pseudomorphically grown film, nine phonon modes have been identified and their dispersions have been revealed along the ΓbarΧbar high-symmetry direction. The comparison with phonon data for a 25 ML thick NiO(001) film shows that the NiO(001) phonon properties are already fully developed at 4 ML. Significant differences are found for the surface-localized phonon S6 which has an increased dispersion for the ultrathin film. The dipole-active Fuchs-Kliewer phonon-polariton exhibits a narrower lineshape than the mode found for a single-crystal surface, which might hint to a reduced antiferromagnetic coupling in the ultrathin film.

  13. Morphology and N₂ Permeance of Sputtered Pd-Ag Ultra-Thin Film Membranes.

    PubMed

    Fernandez, Ekain; Sanchez-Garcia, Jose Angel; Viviente, Jose Luis; van Sint Annaland, Martin; Gallucci, Fausto; Tanaka, David A Pacheco

    2016-01-01

    The influence of the temperature during the growth of Pd-Ag films by PVD magnetron sputtering onto polished silicon wafers was studied in order to avoid the effect of the support roughness on the layer growth. The surfaces of the Pd-Ag membrane films were analyzed by atomic force microscopy (AFM), and the results indicate an increase of the grain size from 120 to 250-270 nm and film surface roughness from 4-5 to 10-12 nm when increasing the temperature from around 360-510 K. After selecting the conditions for obtaining the smallest grain size onto silicon wafer, thin Pd-Ag (0.5-2-µm thick) films were deposited onto different types of porous supports to study the influence of the porous support, layer thickness and target power on the selective layer microstructure and membrane properties. The Pd-Ag layers deposited onto ZrO₂ 3-nm top layer supports (smallest pore size among all tested) present high N₂ permeance in the order of 10(-6) mol·m(-2)·s(-1)·Pa(-1) at room temperature. PMID:26875977

  14. Nano-crystalline Ag-PbTe thermoelectric thin films by a multi-target PLD system

    NASA Astrophysics Data System (ADS)

    Cappelli, E.; Bellucci, A.; Medici, L.; Mezzi, A.; Kaciulis, S.; Fumagalli, F.; Di Fonzo, F.; Trucchi, D. M.

    2015-05-01

    It has been evaluated the ability of ArF pulsed laser ablation to grow nano-crystalline thin films of high temperature PbTe thermoelectric material, and to obtain a uniform and controlled Ag blending, through the entire thickness of the film, using a multi-target system in vacuum. The substrate used was a mirror polished technical alumina slab. The increasing atomic percentage of Ag effect on physical-chemical and electronic properties was evaluated in the range 300-575 K. The stoichiometry and the distribution of the Ag component, over the whole thickness of the samples deposited, have been studied by XPS (X-ray photoelectron spectroscopy) and corresponding depth profiles. The crystallographic structure of the film was analyzed by grazing incidence X-ray diffraction (GI-XRD) system. Scherrer analysis for crystallite size shows the presence of nano-structures, of the order of 30-35 nm. Electrical resistivity of the samples, studied by the four point probe method, as a function of increasing Ag content, shows a typical semi-conductor behavior. From conductivity values, carrier concentration and Seebeck parameter determination, the power factor of deposited films was calculated. Both XPS, Hall mobility and Seebeck analysis seem to indicate a limit value to the Ag solubility of the order of 5%, for thin films of ∼200 nm thickness, deposited at 350 °C. These data resulted to be comparable to theoretical evaluation for thin films but order of magnitude lower than the corresponding bulk materials.

  15. Preparation of Thick Magnet Films by the Aerosol Deposition Method

    NASA Astrophysics Data System (ADS)

    Sugimoto, Satoshi

    The aerosol deposition method (ADM) is effective for the preparation of thick films with high deposition rate. We applied this method to fabricate NiZn ferrite or Sm-Fe-N films, which are used for microwave absorbers or permanent magnets, respectively. In this article, the magnetic properties of Sm-Fe-N thick films fabricated by the ADM are introduced and the possibility of the ADM for the fabrication process with high deposition rate is discussed.

  16. Ag-induced spin-reorientation transition of Co ultrathin films on Pt(111)

    NASA Astrophysics Data System (ADS)

    Chen, F. C.; Wu, Y. E.; Su, C. W.; Shern, C. S.

    2002-11-01

    The surface magneto-optical Kerr effect was used to study the magnetic properties of Co ultrathin films deposited on Pt(111). The easy axis of the magnetization changes from the out-of-plane to the in-plane direction after the coverage of Co is larger than 3.5 ML. The spin can reorient to the normal of the surface when the proper thickness of Ag overlayers is deposited on Co/Pt(111) with the in-plane magnetization. The out-of-plane magnetization and its coercivity as a function of Ag coverage were investigated during the spin-reorientation transition. The easy axis of the magnetization can shift back to the in-plane direction after the Ag overlayers are sputtered out. The chemical compositions of the interfaces were measured by Auger electron spectroscopy. The mechanism of the spin-reorientation transition induced by Ag is discussed.

  17. Alginate-magnesium aluminum silicate composite films: effect of film thickness on physical characteristics and permeability.

    PubMed

    Pongjanyakul, Thaned; Puttipipatkhachorn, Satit

    2008-01-01

    The different film thicknesses of the sodium alginate-magnesium aluminum silicate (SA-MAS) microcomposite films were prepared by varying volumes of the composite dispersion for casting. Effect of film thickness on thermal behavior, solid-state crystallinity, mechanical properties, water uptake and erosion, and water vapor and drug permeability of the microcomposite films were investigated. The film thickness caused a small change in thermal behavior of the films when tested using DSC and TGA. The crystallinity of the thin films seemed to increase when compared with the thick films. The thin films gave higher tensile strength than the thick films, whereas % elongation of the films was on the contrary resulted in the lower Young's modulus of the films when the film thickness was increased. This was due to the weaker of the film bulk, suggesting that the microscopic matrix structure of the thick films was looser than that of the thin films. Consequently, water uptake and erosion, water vapor permeation and drug diffusion coefficient of the thick films were higher than those of the thin films. The different types of drug on permeability of the films also showed that a positive charge and large molecule of drug, propranolol HCl, had higher lag time and lower diffusion coefficient that acetaminophen, a non-electrolyte and small molecule. This was because of a higher affinity of positive charge drug on MAS in the films. The findings suggest that the evaporation rate of solvent in different volumes of the composite dispersion used in the preparation method could affect crystallinity and strength of the film surface and film bulk of the microcomposite films. This led to a change in water vapor and drug permeability of the films. PMID:17611056

  18. Noise properties of Pb/Cd-free thick film resistors

    NASA Astrophysics Data System (ADS)

    Witold Stadler, Adam; Kolek, Andrzej; Zawiślak, Zbigniew; Mleczko, Krzysztof; Jakubowska, Małgorzata; Rafał Kiełbasiński, Konrad; Młożniak, Anna

    2010-07-01

    Low-frequency noise spectroscopy has been used to examine noise properties of Pb/Cd-free RuO2- and CaRuO3-based thick films screen printed on alumina substrates. Experiments were performed in the temperature range 77-300 K and the frequency range 0.5-5000 Hz with multiterminal devices. The measured noise has been recognized as resistance noise that consists of background 1/f noise and components generated by several thermally activated noise sources (TANSs) of different activation energies. The total noise has been composed of the contributions generated in the resistive layer and in the resistive/conductive layers interface. These noise sources are non-uniformly distributed in the resistor volume. Noise intensity of new-resistive layers has been described by the noise parameter Cbulk. Pb/Cd-free layers turned out to be noisier than their Pb-containing counterparts; however, the removal of Pb and Cd from resistive composition is hardly responsible for the increase in the noise. In the case of RuO2 layers noise increases most likely due to larger grain size of RuO2 powder used to prepare resistive pastes. Information on the quality of the resistive-to-conductive layers interface occurred to be stored in the values of noise parameter Cint. Pb/Cd-free RuO2-based resistive pastes form well-behaved interfaces with various Ag-based conductive pastes. In contrast, CaRuO3-based paste forms bad contacts with AgPd terminations because the density of TANSs increases in the interface area.

  19. Magic thickness of Bi films on the Si(111) surfac

    NASA Astrophysics Data System (ADS)

    Saito, Mineo; Takahisa, Ohno; Miyazaki, Tsuyoshi

    2004-03-01

    Stable films having specific layer thickness, which is called magic layer thickness, were reported for some metal films on Si(111). The 2D growth is achieved at this thickness; as a result, very flat films are grown. This behavior observed in low temperatures was attributed to the quantum size effect, which originates from the electron confinement in the film thickness direction. Recently the magic layer thickness was observed even at room temperature for Bi films on Si (111) surface, which raises a question as to what is the origin of this prominent stability. To answer this question, we perform first-principle calculation based on the density functional theory within the generalized gradient approximation. We first study 012 Bi film on Si (111) surface. The calculation on the energy difference between the N and N-1 layers shows that the films with even-number layer heights are stable at room temperature. In even-number layer films, each of two layers are found to be bonded. It is concluded that this pairing structure is the origin of the stability at room temperature. Therefore the magic thickness is not due to the quantum size effect. This research was done in "Frontier Simulation Software for Industrial Science" project supported by IT program of Ministry of Education, Culture, Sports, Science and Technology.

  20. Integrated thick-film nanostructures based on spinel ceramics

    PubMed Central

    2014-01-01

    Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for sensor applications. PMID:24670141

  1. Integrated thick-film nanostructures based on spinel ceramics.

    PubMed

    Klym, Halyna; Hadzaman, Ivan; Shpotyuk, Oleh; Brunner, Michael

    2014-01-01

    Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for sensor applications. PMID:24670141

  2. Liquid film thickness measurement by two-line TDLAS

    SciTech Connect

    Yang, Huinan; Chen, Jun; Cai, Xiaoshu; Greszik, Daniel; Dreier, Thomas; Schulz, Christof

    2014-04-11

    A fiber-based two-line tunable diode-laser absorption sensor with two near-infrared (NIR) distributed-feedback (DFB) diode lasers at ∼1.4 μm was used for non-intrusive time-resolved liquid water film thickness measurement. When probing the liquid film at two different wavelengths with significantly different absorption cross-sections, the additional signal losses due to surface fowling, reflection and beam steering can be eliminated. In this work, the evaporation process of a liquid film on transparent quartz plate was tracked and large fluctuations of film thickness were found at the end of the evaporation.

  3. Liquid film thickness measurement by two-line TDLAS

    NASA Astrophysics Data System (ADS)

    Yang, Huinan; Chen, Jun; Cai, Xiaoshu; Greszik, Daniel; Dreier, Thomas; Schulz, Christof

    2014-04-01

    A fiber-based two-line tunable diode-laser absorption sensor with two near-infrared (NIR) distributed-feedback (DFB) diode lasers at ˜1.4 μm was used for non-intrusive time-resolved liquid water film thickness measurement. When probing the liquid film at two different wavelengths with significantly different absorption cross-sections, the additional signal losses due to surface fowling, reflection and beam steering can be eliminated. In this work, the evaporation process of a liquid film on transparent quartz plate was tracked and large fluctuations of film thickness were found at the end of the evaporation.

  4. Effect of thermal processing on silver thin films of varying thickness deposited on zinc oxide and indium tin oxide

    SciTech Connect

    Sivaramakrishnan, K.; Ngo, A. T.; Alford, T. L.; Iyer, S.

    2009-03-15

    Silver films of varying thicknesses (25, 45, and 60 nm) were deposited on indium tin oxide (ITO) on silicon and zinc oxide (ZnO) on silicon. The films were annealed in vacuum for 1 h at different temperatures (300-650 deg. C). Four-point-probe measurements were used to determine the resistivity of the films. All films showed an abrupt change in resistivity beyond an onset temperature that varied with thickness. Rutherford backscattering spectrometry measurements revealed agglomeration of the Ag films upon annealing as being responsible for the resistivity change. X-ray pole figure analysis determined that the annealed films took on a preferential <111> texturing; however, the degree of texturing was significantly higher in Ag/ZnO/Si than in Ag/ITO/Si samples. This observation was accounted for by interface energy minimization. Atomic force microscopy (AFM) measurements revealed an increasing surface roughness of the annealed films with temperature. The resistivity behavior was explained by the counterbalancing effects of increasing crystallinity and surface roughness. Average surface roughness obtained from the AFM measurements were also used to model the agglomeration of Ag based on Ostwald ripening theory.

  5. Buffer effects of Ag layers on magneto-optical Co/Ge(1 0 0) ultrathin films

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Tsay, J. S.; Yao, Y. D.

    2006-09-01

    Magnetic properties of the Co/Ag/Ge(1 0 0) films grown at room temperature and 200 K were studied by the surface magneto-optical Kerr effect (SMOKE). More than 1.5 monolayer Ag buffer layers not only effectively block the interdiffusion between the capped Co layers and the Ge(1 0 0) substrate but also stabilize the magnetic phase. The temperature and thickness dependence on coercivity measurements show that interactions upon the interfaces are strongly correlated to the microstructures.

  6. Absolute Measurements of Radiation Damage in Nanometer Thick Films

    PubMed Central

    Alizadeh, Elahe; Sanche, Léon

    2013-01-01

    We address the problem of absolute measurements of radiation damage in films of nanometer thicknesses. Thin films of DNA (~ 2–160nm) are deposited onto glass substrates and irradiated with varying doses of 1.5 keV X-rays under dry N2 at atmospheric pressure and room temperature. For each different thickness, the damage is assessed by measuring the loss of the supercoiled configuration as a function of incident photon fluence. From the exposure curves, the G-values are deduced, assuming that X-ray photons interacting with DNA, deposit all of their energy in the film. The results show that the G-value (i.e., damage per unit of deposited energy) increases with film thickness and reaches a plateau at 30±5 nm. This thickness dependence provides a correction factor to estimate the actual G-value for films with thicknesses below 30nm thickness. Thus, the absolute values of damage can be compared with that of films of any thickness under different experimental conditions. PMID:22562941

  7. Modeling parameter extraction for DNQ-novolak thick film resists

    NASA Astrophysics Data System (ADS)

    Henderson, Clifford L.; Scheer, Steven A.; Tsiartas, Pavlos C.; Rathsack, Benjamen M.; Sagan, John P.; Dammel, Ralph R.; Erdmann, Andreas; Willson, C. Grant

    1998-06-01

    Optical lithography with special thick film DNQ-novolac photoresists have been practiced for many years to fabricate microstructures that require feature heights ranging from several to hundreds of microns such as thin film magnetic heads. It is common in these thick film photoresist systems to observe interesting non-uniform profiles with narrow regions near the top surface of the film that transition into broader and more concave shapes near the bottom of the resist profile. A number of explanations have been proposed for these various observations including the formation of `dry skins' at the resist surface and the presence of solvent gradients in the film which serve to modify the local development rate of the photoresist. There have been few detailed experimental studies of the development behavior of thick films resists. This has been due to part to the difficulty in studying these films with conventional dissolution rate monitors (DRMs). In general, this lack of experimental data along with other factors has made simulation and modeling of thick film resist performance difficult. As applications such as thin film head manufacturing drive to smaller features with higher aspect ratios, the need for accurate thick film simulation capability continues to grow. A new multi-wavelength DRM tool has been constructed and used in conjunction with a resist bleaching tool and rigorous parameter extraction techniques to establish exposure and development parameters for two thick film resists, AZTM 4330-RS and AZTM 9200. Simulations based on these parameters show good agreement to resist profiles for these two resists.

  8. Transparent conductive ZnInSnO-Ag-ZnInSnO multilayer films for polymer dispersed liquid-crystal based smart windows

    NASA Astrophysics Data System (ADS)

    Kim, Eun Mi; Choi, In-Seok; Oh, Jeong-Pyo; Kim, Young-Baek; Lee, Jong-Ho; Choi, Yong-Sung; Cho, Jung-Dae; Kim, Yang-Bae; Heo, Gi-Seok

    2014-09-01

    Multilayer transparent films with electrical resistances lower than those in conventionally used transparent conductive electrodes were prepared at room temperature on glass substrates in an RF/DC magnetron sputtering system. The multilayer structure of the films consisted of three layers, ZnInSnO (ZITO)-Ag-ZITO. The optical and electrical properties of the multilayer structures were investigated with respect to the thickness of each ZITO-Ag-ZITO layer. Transparent conductive films with a sheet resistance of 9.4 Ω/square and an average transmittance of 92% at 550 nm were obtained at the following thicknesses of the glass substrate: ZITO (100 nm)-Ag (8 nm)-ZITO (42 nm). The surface roughness (RRMS) of the obtained ZITO-Ag-ZITO multilayer films was below 0.8 nm. Overall, the properties of the ZITO-Ag-ZITO multilayer films were comparable or superior to those of other multilayers such as InSnO (ITO)-Ag-ITO and InZnO (IZO)-Ag-IZO. The deposited ZITO single layer and ZITO-Ag-ZITO multilayer films were used in the fabrication of polymer-dispersed liquid-crystal (PDLC)-based smart windows. The ZITO-Ag-ZITO multilayer-based smart windows exhibited a lower operating voltage (16 V) and a higher cutoff rate of infrared light than ITO or ZITO-based smart windows 20-26 V. However, they showed a lower PDLC-ON transmittance than ITO-based smart windows.

  9. Suitable Thicknesses of Base Metal and Interlayer, and Evolution of Phases for Ag/Sn/Ag Transient liquid-phase Joints Used for Power Die Attachment

    NASA Astrophysics Data System (ADS)

    Li, J. F.; Agyakwa, P. A.; Johnson, C. M.

    2014-04-01

    Real Si insulated gate bipolar transistors with conventional Ni/Ag metallization and dummy Si chips with thickened Ni/Ag metallization have both been bonded, at 250°C for 0 min, 40 min, and 640 min, to Ag foil electroplated with 2.7 µm and 6.8 µm thick Sn as an interlayer. On the basis of characterization of the microstructure of the resulting joints, suitable thicknesses are suggested for the Ag base metal and the Sn interlayer for Ag/Sn/Ag transient liquid-phase (TLP) joints used for power die attachment. The diffusivities of Ag and Sn in the ξAg phase were also obtained. In combination with the kinetic constants of Ag3Sn growth and diffusivities of Ag and Sn in Ag reported in the literature, the diffusivities of Ag and Sn in the ξAg phase were also used to simulate and predict diffusion-controlled growth and evolution of the phases in Ag/Sn/Ag TLP joints during extended bonding and in service.

  10. Critical thickness for the agglomeration of thin metal films

    SciTech Connect

    Boragno, C.; Buatier de Mongeot, F.; Felici, R.; Robinson, I.K.

    2009-09-15

    A thin metal film can exist in a metastable state with respect to breaking into small clusters. In this paper we report on grazing incidence small-angle x-ray scattering studies carried out in situ during the annealing of thin Ni films, between 2 and 10 nm thick, deposited on an amorphous SiO{sub 2} substrate. Our results show the presence of two different regimes which depend on the initial film thickness. For thicknesses less than 5 nm the annealing results in the formation of small, compact clusters on top of a residual Ni wetting layer. For thicknesses greater than 5 nm the film breaks into large, well-separated clusters and the substrate shows an uncovered clean surface.

  11. Improved thick film semiconductor/solar cell contacts

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1979-01-01

    The postulated concept of low-temperature all-metal thick film electrodes is discussed. It is noted that the mechanical and metallurgical properties of the electrodes are excellent, but electrical parameters remain to be optimized.

  12. Microfluidic devices with thick-film electrochemical detection

    DOEpatents

    Wang, Joseph; Tian, Baomin; Sahlin, Eskil

    2005-04-12

    An apparatus for conducting a microfluidic process and analysis, including at least one elongated microfluidic channel, fluidic transport means for transport of fluids through the microfluidic channel, and at least one thick-film electrode in fluidic connection with the outlet end of the microfluidic channel. The present invention includes an integrated on-chip combination reaction, separation and thick-film electrochemical detection microsystem, for use in detection of a wide range of analytes, and methods for the use thereof.

  13. Piston ring oil film thickness-The effect of viscosity

    SciTech Connect

    Moore, S.L.

    1985-01-01

    A Petter AV1 diesel engine has been modified to operate as a crosshead engine with a separate lubricant supply to the piston rings. Measurements of the minimum oil film thickness between the rings and the liner are presented for both mono-grade and multi-grade oils. It is shown that, at top-dead-centre, the film thickness increases as the viscosity is reduced.

  14. Ge wetting layer increases ohmic plasmon losses in Ag film due to segregation.

    PubMed

    Wróbel, Piotr; Stefaniuk, Tomasz; Trzcinski, Marek; Wronkowska, Aleksandra A; Wronkowski, Andrzej; Szoplik, Tomasz

    2015-05-01

    We have investigated the influence of the Ge wetting layer on both ohmic and scattering losses of a surface plasmon-polariton (SPP) wave in Ag film deposited on SiO2 substrate with an e-beam evaporator. Samples were examined by means of atomic force microscopy (AFM), spectroscopic ellipsometry (SE), two-dimensional X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and microscopic four-point probe (M4PP) sheet resistance measurements. Ag films of 100 nm thickness were deposited at 180 and 295 K directly onto the substrates with or without a Ge interlayer. In AFM scans, we confirm the fact that the commonly used Ge adhesion layer smooths the surface of Ag film and therefore reduces scattering losses of the SPP wave on surface roughness. However, our ellipsometric measurements indicate for the first time that segregation of Ge leads to a considerable increase in ohmic losses connected with a boost of the imaginary part of Ag permittivity in the 500-800 nm spectral range. Moreover, the trend develops over time, as confirmed in a series of measurements performed over an interval of three months. XPS analysis confirms the Ge segregation to the Ag free surface and most probably to grain boundaries. M4PP measurements show that the specific resistivity in Ag films evaporated on a Ge interlayer at 295 K is nearly twice as high as in layers deposited directly on a SiO2 substrate. The use of an amorphous Al2O3 overlayer prevents Ge segregation to free surface. PMID:25871505

  15. Thick, low-stress films, and coated substrates formed therefrom

    DOEpatents

    Henager, Jr., Charles H.; Knoll, Robert W.

    1991-01-01

    Stress-induced deformation, and the damage resulting therefrom, increases with film thickness. The overcoming of excessive stress by the use of the film material of the present invention, permits the formation of thick films that are necessary for certain of the above described applications. The most likely use for the subject film materials, other than their specialized views as an optical film, is for microelectronic packaging of components on silicon substrates. In general, the subject Si-Al-O-N films have excellent adherence to the underlying substrate, a high degree of hardness and durability, and are excellent insulators. Prior art elevated temperature deposition processes cannot meet the microelectronic packaging temperature formation constraints. The process of the present invention is conducted under non-elevated temperature conditions, typically 500# C. or less.

  16. Thick-Film Yttrium Iron Garnet Coatings via Aerosol Deposition

    NASA Astrophysics Data System (ADS)

    Johnson, Scooter D.; Glaser, Evan R.; Cheng, Shu-Fan; Eddy, Charles R.; Kub, Fritz; Gorzkowski, Edward P.

    2016-03-01

    Aerosol deposition is a thick-film deposition process that can produce layers up to several hundred micrometers thick with densities greater than 95 pct of the theoretical value. The primary advantage of aerosol deposition is that the deposition takes place entirely at room temperature, thereby enabling film growth in material systems with disparate melting temperatures. We show representative characterization results of yttrium iron garnet thick films deposited onto a <111> gadolinium gallium garnet substrate by aerosol deposition using scanning electron microscopy, X-ray diffraction, profilometry, vibrating sample magnetometry, and ferromagnetic resonance. To further elucidate the effect of density and grain size on the magnetic properties, we perform post-deposition annealing of the films to study the effect on the structural and magnetic properties of the films. Our results indicate that our system can successfully deposit dense, thick yttrium iron garnet films and that with moderate annealing the films can achieve a ferromagnetic resonance linewidth comparable to that reported for polycrystalline films deposited by other higher temperature growth techniques.

  17. Method of measuring the thickness of radioactive thin films

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.; Makinen, M. D.

    1974-01-01

    Thickness monitor consists of proportional X-ray counter coupled to pulse counting system, copper filter over face of counter, rotatable collimator containing radioactive source, and rotatable shutter. Monitor can be used as integral part of neutron generator. It has been used to measure titanium tritide film thicknesses from 0.1 to 30 micrometers.

  18. Growth and characterization of ultrathin epitaxial MnO film on Ag(001)

    NASA Astrophysics Data System (ADS)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-07-01

    We present here a comprehensive growth procedure to obtain a well-ordered MnO(001) ultrathin film on Ag(001) substrate. Depending upon the oxygen partial pressure during the growth, different phases of manganese oxide have been detected by Low Energy Electron Diffraction (LEED) and X-ray Photoelectron Spectroscopic (XPS) studies. A modified growth scheme has been adopted to get well-ordered and stoichiometric MnO(001) ultrathin film. The detailed growth mechanism of epitaxial MnO film on Ag(001) has been studied step by step, using LEED and XPS techniques. Observation of sharp (1 × 1) LEED pattern with a low inelastic background, corresponds to a long-range atomic order with low defect densities indicating the high structural quality of the film. The Mn 2p and Mn 3s core-level spectra confirm the oxidation state as well as the stoichiometry of the grown MnO films. Apart from the growth optimization, the evolution of strain relaxation of the MnO(001) film with film thickness has been explored.

  19. Characterization of Ag nanostructures fabricated by laser-induced dewetting of thin films

    NASA Astrophysics Data System (ADS)

    Nikov, Ru. G.; Nedyalkov, N. N.; Atanasov, P. A.; Hirsch, D.; Rauschenbach, B.; Grochowska, K.; Sliwinski, G.

    2016-06-01

    The paper presents results on laser nanostructuring of Ag thin films. The thin films are deposited on glass substrates by pulsed laser deposition technology. The as fabricated films are then annealed by nanosecond laser pulses delivered by Nd:YAG laser system operated at λ = 355 nm. The film modification is studied as a function of the film thickness and the parameters of the laser irradiation as pulse number and laser fluence. In order to estimate the influence of the environment on the characteristics of the fabricated structures the Ag films are annealed in different surrounding media: water, air and vacuum. It is found that at certain conditions the laser treatment may lead to decomposition of the films into a monolayer of nanoparticles with narrow size distribution. The optical properties of the fabricated nanostructures are investigated on the basis of transmission spectra taken by optical spectrometer. In the measured spectra plasmon resonance band is observed as its shape and position vary depending on the processing conditions. The fabricated structures are covered with Rhodamine 6G and tested as active substrates for Surface Enhanced Raman Spectroscopy (SERS).

  20. X-ray irradiation-induced changes in (PVA-PEG-Ag) polymer nanocomposites films

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Benthami, K.; Abutalib, M. M.

    2016-02-01

    The effects of X-ray irradiation on the structural, thermal and optical properties of polyvinyl alcohol-polyethylene glycol-silver (PVA-PEG-Ag) nanocomposites have been investigated. The samples of nanocomposites were prepared by adding Ag nanoparticles with 5 wt% to the (PVA-PEG) blend. The films of 0.05 mm thickness were prepared by the casting method. These films were irradiated with X-ray doses ranging from 20 to 200 kGy. The resultant effect of X-ray irradiation on the structural properties of PVA-PEG-Ag has been investigated using X-ray diffraction and Fourier transform infrared spectroscopy. Also, thermal property studies were carried out using thermogravimetric analysis. Further, the transmission of the PVA-PEG-Ag samples and any color changes were studied. Fourier transform infrared spectroscopy measurements showed that the crosslinking is the dominant mechanism at the dose range 50-200 kGy. This led to a more compact structure of PVA-PEG-Ag samples, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. Moreover, the color intensity ΔE was greatly increased with an increase in the dose, and was accompanied by a significant increase in the yellow color component.

  1. Glue Film Thickness Measurements by Spectral Reflectance

    SciTech Connect

    B. R. Marshall

    2010-09-20

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 μm, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  2. Effect of Temperature Gradient on Thick Film Selective Emitter Emittance

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Good, Brian S.; Clark, Eric B.; Chen, Zheng

    1997-01-01

    A temperature gradient across a thick (greater than or equal to .1 mm) film selective emitter will produce a significant reduction in the spectral emittance from the no temperature gradient case. Thick film selective emitters of rare earth doped host materials such as yttrium-aluminum-garnet (YAG) are examples where temperature gradient effects are important. In this paper a model is developed for the spectral emittance assuming a linear temperature gradient across the film. Results of the model indicate that temperature gradients will result in reductions the order of 20% or more in the spectral emittance.

  3. Solar Sail Interstellar Travel - 1. Thickness of Solar Sail Films

    NASA Astrophysics Data System (ADS)

    Ya Kezerashvili, R.

    An exploration of the outer solar system using solar sail propulsion with high cruise speed requires an acceleration of the sail craft in the near-Sun space region. When spacecraft approaches the Sun there are at least two important factors that have an effect on the thickness of solar sail film and therefore on the reflection ability of the sail: the temperature dependence of electrical conductivity of sail material and existence of a wide range of solar electromagnetic radiation frequencies. Applying the system of Maxwell's equations for linear conducting media the minimum film thickness that provides the maximum reflectance is found and dependence of this minimum thickness on temperature as well as on electromagnetic spectrum of solar radiation is investigated. It is shown that temperature dependence of the conductivity of the film under a constant temperature coefficient of conductivity requires an increase of the thickness of the solar sail by a factor 2 to 3. Consideration of the temperature coefficient of conductivity dependence on temperature also requires an increase of film thickness by more than 35% at high temperatures. When the frequency dependence of the conductivity is taken into account the minimal thickness of the solar sail film increases significantly (almost by a factor of 4), but at the same time exhibits the negligible dependence on the wavelength. We suggest that these factors should be taken into consideration in the solar sail design.

  4. Systematic Surface Phase Transition of Ag Thin Films by Iodine Functionalization at Room Temperature: Evolution of Optoelectronic and Texture Properties

    PubMed Central

    Bashouti, Muhammad Y.; Talebi, Razieh; Kassar, Thaer; Nahal, Arashmid; Ristein, Jürgen; Unruh, Tobias; Christiansen, Silke H.

    2016-01-01

    We show a simple room temperature surface functionalization approach using iodine vapour to control a surface phase transition from cubic silver (Ag) of thin films into wurtzite silver-iodid (β-AgI) films. A combination of surface characterization techniques (optical, electronical and structural characterization) reveal distinct physical properties of the new surface phase. We discuss the AgI thin film formation dynamics and related transformation of physical properties by determining the work-function, dielectric constant and pyroelectric behavior together with morphological and structural thin film properties such as layer thickness, grain structure and texture formation. Notable results are: (i) a remarkable increase of the work-function (by 0.9 eV) of the Ag thin layer after short a iodine exposure time (≤60 s), with simultaneous increase of the thin film transparency (by two orders of magnitude), (ii) pinning of the Fermi level at the valance band maximum upon iodine functionalization, (iii) 84% of all crystallites grain were aligned as a result of the evolution of an internal electric field. Realizing a nano-scale layer stack composed of a dielectric AgI layer on top of a metallic thin Ag layer with such a simple method has some technological implications e.g. to realize optical elements such as planar optical waveguides. PMID:26899434

  5. Systematic Surface Phase Transition of Ag Thin Films by Iodine Functionalization at Room Temperature: Evolution of Optoelectronic and Texture Properties

    NASA Astrophysics Data System (ADS)

    Bashouti, Muhammad Y.; Talebi, Razieh; Kassar, Thaer; Nahal, Arashmid; Ristein, Jürgen; Unruh, Tobias; Christiansen, Silke H.

    2016-02-01

    We show a simple room temperature surface functionalization approach using iodine vapour to control a surface phase transition from cubic silver (Ag) of thin films into wurtzite silver-iodid (β-AgI) films. A combination of surface characterization techniques (optical, electronical and structural characterization) reveal distinct physical properties of the new surface phase. We discuss the AgI thin film formation dynamics and related transformation of physical properties by determining the work-function, dielectric constant and pyroelectric behavior together with morphological and structural thin film properties such as layer thickness, grain structure and texture formation. Notable results are: (i) a remarkable increase of the work-function (by 0.9 eV) of the Ag thin layer after short a iodine exposure time (≤60 s), with simultaneous increase of the thin film transparency (by two orders of magnitude), (ii) pinning of the Fermi level at the valance band maximum upon iodine functionalization, (iii) 84% of all crystallites grain were aligned as a result of the evolution of an internal electric field. Realizing a nano-scale layer stack composed of a dielectric AgI layer on top of a metallic thin Ag layer with such a simple method has some technological implications e.g. to realize optical elements such as planar optical waveguides.

  6. Systematic Surface Phase Transition of Ag Thin Films by Iodine Functionalization at Room Temperature: Evolution of Optoelectronic and Texture Properties.

    PubMed

    Bashouti, Muhammad Y; Talebi, Razieh; Kassar, Thaer; Nahal, Arashmid; Ristein, Jürgen; Unruh, Tobias; Christiansen, Silke H

    2016-01-01

    We show a simple room temperature surface functionalization approach using iodine vapour to control a surface phase transition from cubic silver (Ag) of thin films into wurtzite silver-iodid (β-AgI) films. A combination of surface characterization techniques (optical, electronical and structural characterization) reveal distinct physical properties of the new surface phase. We discuss the AgI thin film formation dynamics and related transformation of physical properties by determining the work-function, dielectric constant and pyroelectric behavior together with morphological and structural thin film properties such as layer thickness, grain structure and texture formation. Notable results are: (i) a remarkable increase of the work-function (by 0.9 eV) of the Ag thin layer after short a iodine exposure time (≤60 s), with simultaneous increase of the thin film transparency (by two orders of magnitude), (ii) pinning of the Fermi level at the valance band maximum upon iodine functionalization, (iii) 84% of all crystallites grain were aligned as a result of the evolution of an internal electric field. Realizing a nano-scale layer stack composed of a dielectric AgI layer on top of a metallic thin Ag layer with such a simple method has some technological implications e.g. to realize optical elements such as planar optical waveguides. PMID:26899434

  7. Noninvasive thickness measurements of metal films through microwave dielectric resonators

    NASA Astrophysics Data System (ADS)

    Jung, Ho Sang; Lee, Jae Hun; Han, Hyun Kyung; Lee, Sang Young

    2016-05-01

    Thicknesses of Pt films ranging from 60 to 950 nm are measured noninvasively using a TE 011-mode dielectric resonator with the resonant frequency of 8.5 - 9.8 GHz at temperatures of 77 K and 293 K. A cylindrical rutile rod is used as the dielectric, with a high- T C superconductive YBa2Cu3O7- δ film used as the bottom endplate of the resonator for measurements at 77 K. This method is based on two facts: i) Due to the electromagnetic interferences of incoming and reflected waves at the surface of the metal film surface, the effective surface resistance varies with the film thickness, and ii) the intrinsic surface resistance of normal metals is equal to the intrinsic surface reactance in the local limit. The measured thicknesses using the rutile resonator appear to be comparable with those obtained using a profilometer. [Figure not available: see fulltext.

  8. TiInZnO/Ag/TiInZnO multilayer films for transparent conducting electrodes of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Hyeong; Kim, Eun-Mi; Lee, Kyung-Ju; Park, Jae-Young; Lee, Yu-Ri; Shin, Dong-Chan; Hwang, Tae-Jin; Heo, Gi-Seok

    2014-03-01

    Ti-In-Zn-O (TIZO) and TIZO/Ag/TIZO multilayer transparent films were prepared at room temperature on glass substrates using an RF/DC magnetron sputtering system. The optical and electrical properties of the multilayer structures were examined according to the thickness of each TIZO/Ag/TIZO layer. A transparent and conductive film with a sheet resistance of 11.1 Ω/□ and a transmittance of 86.9% at 550 nm (94.2%, normalized to the glass substrate) was obtained at a TIZO/Ag/TIZO thickness of 100/8/42 nm. The TIZO and TIZO/Ag/TIZO multilayer films exhibited higher mechanical resistances against an increasing load of external scratches than the indium tin oxide (ITO) film. Overall, the properties of the TIZO/Ag/TIZO multilayer films were comparable or superior to those of the ITO/Ag/ITO multilayer. The deposited TIZO/Ag/TIZO multilayer films were used in the fabrication of dye-sensitized solar cells (DSSCs) as the transparent electrode. The TIZO/Ag/TIZO multilayer-based DSSCs exhibited a short circuit photocurrent density of 9.4 mA/cm2, a photocurrent of 613 mV, and an overall cell efficiency of 3.1% at a light intensity of one sun.

  9. Characterization of a nanometer-thick sputtered polytetrafluoroethylene film

    NASA Astrophysics Data System (ADS)

    Li, Lei; Jones, Paul M.; Hsia, Yiao-Tee

    2011-02-01

    Fast growth of nanotechnology, e.g. hard disk drive (HDD) and microelectromechanical system/nanoelectromechanical system (MEMS/NEMS), requires nanometer-thick protection films with high thermal stability and low surface energy. In this paper, we report the characterization results of a nanometer-thick sputtered polytetrafluoroethylene (PTFE) film prepared by radio frequency (RF) sputtering. Atomic force microscopy (AFM) and X-ray reflectivity (XRR) results show that the nanometer-thick sputtered PTFE film has good uniformity. Thermally programmed desorption (TPD) results show that the film is thermally stable up to 430 °C. Surface energy measurement via contact angle method shows that the film has low surface energy with the thickness as low as 1.5 nm. X-ray photoelectron spectroscopy (XPS) data suggests that the film has crosslinked molecular structure, which results in amorphous morphology as shown by X-ray diffraction (XRD) data. Nano-indentation testing shows that the sputtered film has higher hardness and modulus than bulk PTFE. The structure-property relationship has been discussed.

  10. Development of the nitride film thickness standard (NFTS)

    NASA Astrophysics Data System (ADS)

    Durga Pal, Prabha

    1998-07-01

    The semiconductor industry has been demanding film thickness reference material for films other than thermally grown silicon dioxide for sometime. To meet this challenge, Nitride Film Thickness Standard (NFTS) has been developed in four nominal thickness values, 20.0 nm, 90.0 nm, 120.0 nm and 200.0 nm. These are silicon nitride (Si3N4) films on silicon crystal substrate. Work is underway to develop a 9.0 nm standard. Thin nitride films are particularly needed for calibration of the thickness of nitride layers in capacitors and isolation masks for LOCOS (local oxidation of silicon). The reference material is certified for derived film thickness. The study consists of measurements made on four different sets of wafers that included patterned and unpatterned wafers. The measurements made on these wafer sets were used for answering issues related to film stability and cleaning. The stability study includes the search for a cleaning process that will restore a prior surface condition. On two sets of wafers two different types of cleaning procedures were used. Results indicate that a sulfuric acidmegasonic clean will etch the nitride film while an isopropyl alcohol clean followed by a deionized water rinse can be used over and over again. The third set of wafers was never cleaned and measurements were made on these over a period of two years. The last set of wafers is patterned. These are cleaned prior to measurement. Results show that LPCVD silicon nitride films are stable and can be used with confidence over a long period of time for calibrating optical metrology instruments.

  11. Thermoelectric Power-Generation Characteristics of PEDOT:PSS Thin-Film Devices with Different Thicknesses on Polyimide Substrates

    NASA Astrophysics Data System (ADS)

    Anno, Hiroaki; Nishinaka, Takahiko; Hokazono, Masahiro; Oshima, Nobuaki; Toshima, Naoki

    2015-06-01

    We fabricated cast films of complexes of poly(3,4-ethylenedioxythiophene) and polystyrene sulfonic acid (PEDOT:PSS) at various thicknesses, t = 3-20 μm, on flexible polyimide substrates, and studied their thermoelectric properties. We also fabricated in-plane film devices consisting of five couples of PEDOT:PSS and Ag electrodes, measuring their output power characteristics as a function of film thickness. The Seebeck coefficient and electrical conductivity of a PEDOT:PSS film with a thickness of ˜20 μm on a polyimide substrate were ˜15 μV/K and 500 S/cm, respectively, near room temperature. As the film thickness decreased from ˜10 μm to 3 μm, the electrical conductivity increased remarkably to 1200 S/cm, while the Seebeck coefficient remained almost constant with film thickness. The maximum electric power for an in-plane PEDOT:PSS film device with a thickness of 10 μm was 1.3 μW at Δ T = 100 K. Its open-circuit voltage was 7.3 mV, and its internal resistance was 11 Ω. The measured power-generation characteristics of the film device agreed with values estimated from the dependence of thermoelectric properties on film thickness for PEDOT:PSS films on polyimide substrates. Assuming single PEDOT:PSS legs, defined as the direction of heat transport, we estimated the expected electrical power density at Δ T = 100 K as ˜650 μW/cm2 for a film thickness t = 10 μm, and 1400 μW/cm2 for t = 3 μm.

  12. Surface-enhanced Raman scattering from Ag nanoparticles formed by visible laser irradiation of thermally annealed AgO{sub x} thin films

    SciTech Connect

    Fujimaki, Makoto; Awazu, Koichi; Tominaga, Junji; Iwanabe, Yasuhiko

    2006-10-01

    Visible laser irradiation of AgO{sub x} thin films forms Ag nanoparticles, which then results in surface-enhanced Raman scattering (SERS). The efficiency of this Ag nanoparticle formation strongly depends on the properties of the AgO{sub x} thin films. Thermal annealing causes changes in physical properties such as deoxidization of the films and aggregation of Ag atoms in the films. In the present research, the effects of the changes induced by thermal annealing on SERS efficiency were examined. It was found that AgO{sub x} thin films annealed at 300 deg. C for 5 min in a N{sub 2} atmosphere were suitable for the formation of Ag nanoparticles effective for SERS, while films that were not annealed were not. From these results, it was deduced that the Ag aggregation resulting from thermal annealing in AgO{sub x} thin films promotes the Ag nanoparticle formation.

  13. Controlled preparation of Ag nanoparticle films by a modified photocatalytic method on TiO2 films with Ag seeds for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Fu, Xin; Pan, Lujun; Li, Shuai; Wang, Qiao; Qin, Jun; Huang, Yingying

    2016-02-01

    Uniform Ag nanoparticle (NP) films were synthesized by a modified photocatalytic method on TiO2 films with Ag seeds for surface-enhanced Raman scattering, which combine the advantages of the spurting method (high nucleation density) and the traditional photocatalytic method (suitable particle size). The Ag seeds were prepared by magnetron sputtering with different time, which would adjust the distribution and transfer of electrons on the surface of TiO2 film in the process of photocatalytic reduction. The distribution and morphology of Ag NP films can be adjusted by the sputtering time and the UV irradiation time. The Raman enhancement of as-prepared Ag NP films was calculated by finite-difference time-domain to validate the experiment data. It is found that the Ag NP films synthesized on TiO2 films with suitable pre-deposited Ag seeds exhibit a much higher Raman enhancement activity than the optimum Ag NP film synthesized directly on the TiO2 film without Ag seeds.

  14. Thickness of residual wetting film in liquid-liquid displacement

    NASA Astrophysics Data System (ADS)

    Beresnev, Igor; Gaul, William; Vigil, R. Dennis

    2011-08-01

    Core-annular flow is common in nature, representing, for example, how streams of oil, surrounded by water, move in petroleum reservoirs. Oil, typically a nonwetting fluid, tends to occupy the middle (core) part of a channel, while water forms a surrounding wall-wetting film. What is the thickness of the wetting film? A classic theory has been in existence for nearly 50 years offering a solution, although in a controversial manner, for moving gas bubbles. On the other hand, an acceptable, experimentally verified theory for a body of one liquid flowing in another has not been available. Here we develop a hydrodynamic, testable theory providing an explicit relationship between the thickness of the wetting film and fluid properties for a blob of one fluid moving in another, with neither phase being gas. In its relationship to the capillary number Ca, the thickness of the film is predicted to be proportional to Ca2 at lower Ca and to level off at a constant value of ˜20% the channel radius at higher Ca. The thickness of the film is deduced to be approximately unaffected by the viscosity ratio of the fluids. We have conducted our own laboratory experiments and compiled experimental data from other studies, all of which are mutually consistent and confirm the salient features of the theory. At the same time, the classic law, originally deduced for films surrounding moving gas bubbles but often believed to hold for liquids as well, fails to explain the observations.

  15. Microstructural and conductivity comparison of Ag films grown on amorphous TiO2 and polycrystalline ZnO

    SciTech Connect

    Dannenberg, Rand; Stach, Eric; Glenn, Darin; Sieck, Peter; Hukari, Kyle

    2001-03-26

    8 nm thick Ag films were sputter deposited onto amorphous TiO{sub 2} underlayers 25 nm thick, and also amorphous TiO{sub 2} (25 nm)/ZnO (5 nm) multiunderlayers. The substrates were back-etched Si with a 50 nm thick LPCVD Si{sub 3}N{sub 4} electron transparent membrane. The ZnO, sputtered onto amorphous TiO{sub 2}, formed a continuous layer with a grain size of 5 nm in diameter, on the order of the film thickness. There are several microstructural differences in the Ag dependent on the underlayers, revealed by TEM. First a strong {l_brace}0001{r_brace} ZnO to {l_brace}111{r_brace} Ag fibre-texture relationship exists. On TiO{sub 2} the Ag microstructure shows many abnormal grains whose average diameter is about 60-80 nm, whereas the films on ZnO show few abnormal grains. The background matrix of normal grains on the TiO{sub 2} is roughly 15 nm, while the normal grain size on the ZnO is about 25 nm. Electron diffraction patterns show that the film on ZnO has a strong {l_brace}111{r_brace} orientation, and dark field images with this diffraction condition have a grain size of about 30 nm. In a region near the center of the TEM grid where there is the greatest local heating during deposition, Ag films grown on amorphous TiO{sub 2} are discontinuous, whereas on ZnO, the film is continuous. When films 8 nm films are grown on solid glass substrates, those with ZnO underlayers have sheet resistances of 5.68 {Omega}/, whereas those on TiO{sub 2} are 7.56 {Omega}/, and when 16 nm thick, the corresponding sheet resistances are 2.7 {Omega}/ and 3.3 {Omega}/. The conductivity difference is very repeatable. The improved conductivity is thought to be a combined effect of reduced grain boundary area per unit volume, the predominance of low grain boundary resistivity Coincidence Site Lattice boundaries from the Ag {l_brace}111{r_brace} orientation, and Ag planarization on ZnO resulting in less groove formation on deposition, concluded from atomic force microscopy.

  16. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films.

    PubMed

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates. PMID:25483981

  17. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films

    NASA Astrophysics Data System (ADS)

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates.

  18. Changes in the temperature-dependent specific volume of supported polystyrene films with film thickness.

    PubMed

    Huang, Xinru; Roth, Connie B

    2016-06-21

    Recent studies have measured or predicted thickness-dependent shifts in density or specific volume of polymer films as a possible means of understanding changes in the glass transition temperature Tg(h) with decreasing film thickness with some experimental works claiming unrealistically large (25%-30%) increases in film density with decreasing thickness. Here we use ellipsometry to measure the temperature-dependent index of refraction of polystyrene (PS) films supported on silicon and investigate the validity of the commonly used Lorentz-Lorenz equation for inferring changes in density or specific volume from very thin films. We find that the density (specific volume) of these supported PS films does not vary by more than ±0.4% of the bulk value for film thicknesses above 30 nm, and that the small variations we do observe are uncorrelated with any free volume explanation for the Tg(h) decrease exhibited by these films. We conclude that the derivation of the Lorentz-Lorenz equation becomes invalid for very thin films as the film thickness approaches ∼20 nm, and that reports of large density changes greater than ±1% of bulk for films thinner than this likely suffer from breakdown in the validity of this equation or in the difficulties associated with accurately measuring the index of refraction of such thin films. For larger film thicknesses, we do observed small variations in the effective specific volume of the films of 0.4 ± 0.2%, outside of our experimental error. These shifts occur simultaneously in both the liquid and glassy regimes uniformly together starting at film thicknesses less than ∼120 nm but appear to be uncorrelated with Tg(h) decreases; possible causes for these variations are discussed. PMID:27334190

  19. Changes in the temperature-dependent specific volume of supported polystyrene films with film thickness

    NASA Astrophysics Data System (ADS)

    Huang, Xinru; Roth, Connie B.

    2016-06-01

    Recent studies have measured or predicted thickness-dependent shifts in density or specific volume of polymer films as a possible means of understanding changes in the glass transition temperature Tg(h) with decreasing film thickness with some experimental works claiming unrealistically large (25%-30%) increases in film density with decreasing thickness. Here we use ellipsometry to measure the temperature-dependent index of refraction of polystyrene (PS) films supported on silicon and investigate the validity of the commonly used Lorentz-Lorenz equation for inferring changes in density or specific volume from very thin films. We find that the density (specific volume) of these supported PS films does not vary by more than ±0.4% of the bulk value for film thicknesses above 30 nm, and that the small variations we do observe are uncorrelated with any free volume explanation for the Tg(h) decrease exhibited by these films. We conclude that the derivation of the Lorentz-Lorenz equation becomes invalid for very thin films as the film thickness approaches ˜20 nm, and that reports of large density changes greater than ±1% of bulk for films thinner than this likely suffer from breakdown in the validity of this equation or in the difficulties associated with accurately measuring the index of refraction of such thin films. For larger film thicknesses, we do observed small variations in the effective specific volume of the films of 0.4 ± 0.2%, outside of our experimental error. These shifts occur simultaneously in both the liquid and glassy regimes uniformly together starting at film thicknesses less than ˜120 nm but appear to be uncorrelated with Tg(h) decreases; possible causes for these variations are discussed.

  20. Optimum Thickness of Sn Film for Whisker Growth

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Yang, Fuqian; Vianco, Paul T.; Zhang, Bei; Li, James C. M.

    2011-10-01

    By depositing different thicknesses of Sn films over a silicon wafer precoated with Cr and Ni adhesion layers and then by bending the tinned wafer using a dead load applied at the center to introduce the same compressive stresses in the Sn films, the growth rate of whiskers appeared to have a maximum for a certain thickness. This is explained by assuming the Sn atoms to flow along the vertical grain boundaries (perpendicular to the interface) into the interface between Sn and Ni and then along the interface to the root of the whisker through some more vertical grain boundaries. The resistance along the vertical grain boundaries appeared to control the rate of whisker growth for thick films.

  1. Thick-film materials for silicon photovoltaic cell manufacture

    NASA Technical Reports Server (NTRS)

    Field, M. B.

    1977-01-01

    Thick film technology is applicable to three areas of silicon solar cell fabrication; metallization, junction formation, and coating for protection of screened ohmic contacts, particularly wrap around contacts, interconnection and environmental protection. Both material and process parameters were investigated. Printed ohmic contacts on n- and p-type silicon are very sensitive to the processing parameters of firing time, temperature, and atmosphere. Wrap around contacts are easily achieved by first printing and firing a dielectric over the edge and subsequently applying a low firing temperature conductor. Interconnection of cells into arrays can be achieved by printing and cofiring thick film metal pastes, soldering, or with heat curing conductive epoxies on low cost substrates. Printed (thick) film vitreous protection coatings do not yet offer sufficient optical uniformity and transparency for use on silicon. A sprayed, heat curable SiO2 based resin shows promise of providing both optical matching and environmental protection.

  2. Optical coherence tomography as film thickness measurement technique

    NASA Astrophysics Data System (ADS)

    Manallah, Aissa; Bouafia, Mohamed; Meguellati, Said

    2015-01-01

    Optical coherence tomography (OCT) is a powerful optical method, noninvasive and noncontact diagnostic method. Although it is usually used for medical examinations, particularly in ocular exploration; it can also be used in optical metrology as measure technique. In this work, we use OCT to measure thicknesses of films. In OCT, depth profiles are constructed by measuring the time delay of back reflected light by interferometry measurements. Frequency in k-space is proportional to optical path difference. Then the reflectivity profile is obtained by a Fourier transformation, and the difference between two successive peaks of the resulting spectrum gives the film thickness. Several films, food-type, of different thicknesses were investigated and the results were very accurate.

  3. Depositing Adherent Ag Films On Ti Films On Alumina

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.

    1995-01-01

    Report discusses cleaning of ceramic (principally, alumina) substrates in preparation for sputter deposition of titanium intermediate films on substrates followed by sputter deposition of outer silver films. Principal intended application, substrates sliding parts in advanced high-temperature heat engines, and outer silver films serve as solid lubricants: lubricating properties described in "Solid Lubricant for Alumina" (LEW-15495).

  4. Influence of film thickness on laser ablation threshold of transparent conducting oxide thin-films

    NASA Astrophysics Data System (ADS)

    Rung, S.; Christiansen, A.; Hellmann, R.

    2014-06-01

    We report on a comprehensive study of the laser ablation threshold of transparent conductive oxide thin films. The ablation threshold is determined for both indium tin oxide and gallium zinc oxide as a function of film thickness and for different laser wavelengths. By using a pulsed diode pumped solid state laser at 1064 nm, 532 nm, 355 nm and 266 nm, respectively, the relationship between optical absorption length and film thickness is studied. We find that the ablation threshold decreases with increasing film thickness in a regime where the absorption length is larger than the film thickness. In turn, the ablation threshold increases in case the absorption length is smaller than the film thickness. In particular, we observe a minimum of the ablation threshold in a region where the film thickness is comparable to the absorption length. To the best of our knowledge, this behaviour previously predicted for thin metal films, has been unreported for all three regimes in case of transparent conductive oxides, yet. For industrial laser scribing processes, these results imply that the efficiency can be optimized by using a laser where the optical absorption length is close to the film thickness.

  5. Growth of ultrathin vanadium oxide films on Ag(100)

    NASA Astrophysics Data System (ADS)

    Nakamura, Takuya; Sugizaki, Yuichi; Ishida, Shuhei; Edamoto, Kazuyuki; Ozawa, Kenichi

    2016-07-01

    Vanadium oxide films were grown on Ag(100) by vanadium deposition in O2 and subsequent annealing at 450 °C. It was found that at least three types of ordered V oxide films, which showed (1 × 1), hexagonal, and (4 × 1) LEED patterns, were formed on Ag(100) depending on the O2 pressure during deposition and conditions during postannealing. The films with the hexagonal and (1 × 1) periodicities were characterized by photoelectron spectroscopy (PES) and near-edge X-ray absorption fine structure (NEXAFS) analysis. The film with the (1 × 1) periodicity was ascribed to a VO(100) film. On the other hand, the film with the hexagonal periodicity was found to be composed of V2O3, and the analysis of the LEED pattern revealed that the lattice parameter of the hexagonal lattice is 0.50 nm, which is very close to that of corundum V2O3(0001) (0.495 nm).

  6. Inhomogeneous Growth of Micrometer Thick Plasma Polymerized Films.

    PubMed

    Akhavan, Behnam; Menges, Bernhard; Förch, Renate

    2016-05-17

    Plasma polymerization is traditionally recognized as a homogeneous film-forming technique. It is nevertheless reasonable to ask whether micrometer thick plasma polymerized structures are really homogeneous across the film thickness. Studying the properties of the interfacial, near-the-substrate (NTS) region in plasma polymer films represents particular experimental challenges due to the inaccessibility of the buried layers. In this investigation, a novel non-destructive approach has been utilized to evaluate the homogeneity of plasma polymerized acrylic acid (PPAc) and 1,7-octadiene (PPOD) films in a single measurement. Studying the variations of refractive index throughout the depth of the films was facilitated by a home-built surface plasmon resonance (SPR)/optical waveguide (OWG) spectroscopy setup. It has been shown that the NTS layer of both PPAc and PPOD films exhibits a significantly lower refractive index than the bulk of the film that is believed to indicate a higher concentration of internal voids. Our results provide new insights into the growth mechanisms of plasma polymer films and challenge the traditional view that considers plasma polymers as homogeneous and continuous structures. PMID:27111265

  7. Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness

    NASA Astrophysics Data System (ADS)

    Park, Bong-Ok; Lokhande, C. D.; Park, Hyung-Sang; Jung, Kwang-Deog; Joo, Oh-Shim

    Thin-film ruthenium oxide electrodes are prepared by cathodic electrodeposition on a titanium substrate. Different deposition periods are used to obtain different film thicknesses. The electrodes are used to form a supercapacitor with a 0.5 M H 2SO 4 electrolyte. The specific capacitance and charge-discharge periods are found to be dependent on the electrode thickness. A maximum specific capacitance of 788 F g -1 is achieved with an electrode thickness of 0.0014 g cm -2. These results are explained by considering the morphological changes that take place with increasing film thickness.

  8. Turbulence in Flowing Soap Films: Velocity, Vorticity, and Thickness Fields

    SciTech Connect

    Rivera, M.; Vorobieff, P.; Ecke, R.E.

    1998-08-01

    We report experimental measurements of the velocity, vorticity, and thickness fields of turbulent flowing soap films using a modified particle-image velocimetry technique. These data yield the turbulent energy and enstrophy of the two-dimensional flows with microscale Reynolds numbers of about 100 and demonstrate the effects of compressibility arising from variations in film thickness. Despite the compressibility of the flow, real-space correlations of velocity, vorticity, and enstrophy flux are consistent with theoretical predictions for two-dimensional turbulence. {copyright} {ital 1998} {ital The American Physical Society }

  9. Process for manufacture of thick film hydrogen sensors

    DOEpatents

    Perdieu, Louisa H.

    2000-09-09

    A thick film process for producing hydrogen sensors capable of sensing down to a one percent concentration of hydrogen in carrier gasses such as argon, nitrogen, and air. The sensor is also suitable to detect hydrogen gas while immersed in transformer oil. The sensor includes a palladium resistance network thick film printed on a substrate, a portion of which network is coated with a protective hydrogen barrier. The process utilizes a sequence of printing of the requisite materials on a non-conductive substrate with firing temperatures at each step which are less than or equal to the temperature at the previous step.

  10. Orientations of Diblock Copolymer Microdomains at Different Film Thicknesses

    NASA Astrophysics Data System (ADS)

    Chaikin, Paul; Park, Miri; Harrison, Christopher; Register, Richard; Adamson, Doug

    1996-03-01

    We prepared films with a range of thicknesses (50-300 nm) of a styrene-butadiene diblock copolymer, synthesized to produce a cylindrical morphology. Solutions of different polymer concentrations in toluene were spun onto carbon-coated glass slides. The films were then placed onto a Transmission Electron Microscope (TEM) grid by water lift-off, annealed, stained with osmium tetraoxide, and examined with a TEM. Over a wide range of film thicknesses, the cylinders lie parallel to the substrate. We present preliminary results that show a cylinder orientation perpendicular to the substrate at a thickness of many microdomain spacings. We speculate that the alignment mechanism is different from that found in a previous study of Kraton D1102(M. A. van Dijk and R. van den Berg, Macromolecules 28), 6773 (1995) which shows a perpendicular orientation with spin-coated films, but for a film thickness between one and two microdomain spacings. This work was supported by the NSF under DMR 9400362.

  11. Formation of surface oxides and Ag2O thin films with atomic oxygen on Ag(111)

    NASA Astrophysics Data System (ADS)

    Derouin, Jonathan; Farber, Rachael G.; Heslop, Stacy L.; Killelea, Daniel R.

    2015-11-01

    The nature of the oxygen species adsorbed to silver surfaces is a key component of the heterogeneously catalyzed epoxidation of ethylene and partial oxidation of methanol over silver catalysts. We report the formation of two different silver-oxygen species depending on the flux and energy of incident gas-phase oxygen atoms on an Ag(111) surface. A combination of surface science techniques was used to characterize the oxidized surfaces. Atomic oxygen was generated with an Ir filament; lower temperatures created surface oxides previously reported. When O was deposited with a higher filament temperature, the surface became highly corrugated, little subsurface oxygen was observed, and thin layers of Ag2O were likely formed. These results show that the energy and flux of oxygen are important parameters in the chemical identity and abundance of oxygen on silver surfaces and suggest that formation of the Ag2O thin film hinders formation of subsurface oxygen.

  12. Film thickness frequency distribution of different vehicles determines sunscreen efficacy

    NASA Astrophysics Data System (ADS)

    Sohn, Myriam; Hêche, Adeline; Herzog, Bernd; Imanidis, Georgios

    2014-11-01

    Sun protection factor (SPF) frequently differs between sunscreens containing the same composition of ultraviolet (UV) filters that primarily define sunscreen efficacy. We tested the hypothesis that the thickness frequency distribution of the sunscreen film is also responsible for and can explain the divergence in the measured SPF. For this, we developed a method to measure film thickness from the difference of topography before and after application of 2 mg/cm2 of sunscreen on pig ear epidermal membrane. The influence of five vehicle formulations and of application pressure and spreading time on mean thickness (S), S to median ratio, and SPF in vitro was investigated. The vehicle had a significant impact, low vehicle viscosity resulting in a smaller S, larger S to median ratio, and lower SPF in vitro than high viscosity; continuous oil phase produced the largest S and SPF values. A long spreading time reduced S and SPF and increased application pressure reduced SPF. There was a positive correlation between S and SPF in vitro, underlining the relevance of film thickness for interpreting UV protection differences of formulations with the same filter composition. This work demonstrated a strong influence of vehicle and application conditions on sunscreen efficacy arising from differences in film thickness distribution.

  13. Thin dielectric film thickness determination by advanced transmission electron microscopy

    SciTech Connect

    Diebold, A.C.; Foran, B.; Kisielowski, C.; Muller, D.; Pennycook, S.; Principe, E.; Stemmer, S.

    2003-09-01

    High Resolution Transmission Electron Microscopy (HR-TEM) has been used as the ultimate method of thickness measurement for thin films. The appearance of phase contrast interference patterns in HR-TEM images has long been confused as the appearance of a crystal lattice by non-specialists. Relatively easy to interpret crystal lattice images are now directly observed with the introduction of annular dark field detectors for scanning TEM (STEM). With the recent development of reliable lattice image processing software that creates crystal structure images from phase contrast data, HR-TEM can also provide crystal lattice images. The resolution of both methods was steadily improved reaching now into the sub Angstrom region. Improvements in electron lens and image analysis software are increasing the spatial resolution of both methods. Optimum resolution for STEM requires that the probe beam be highly localized. In STEM, beam localization is enhanced by selection of the correct aperture. When STEM measurement is done using a highly localized probe beam, HR-TEM and STEM measurement of the thickness of silicon oxynitride films agree within experimental error. In this paper, the optimum conditions for HR-TEM and STEM measurement are discussed along with a method for repeatable film thickness determination. The impact of sample thickness is also discussed. The key result in this paper is the proposal of a reproducible method for film thickness determination.

  14. Effects of particle size distribution in thick film conductors

    NASA Technical Reports Server (NTRS)

    Vest, R. W.

    1983-01-01

    Studies of particle size distribution in thick film conductors are discussed. The distribution of particle sizes does have an effect on fired film density but the effect is not always positive. A proper distribution of sizes is necessary, and while the theoretical models can serve as guides to selecting this proper distribution, improved densities can be achieved by empirical variations from the predictions of the models.

  15. Measuring Thicknesses Of Vacuum-Deposited Organic Thin Films

    NASA Technical Reports Server (NTRS)

    David, Carey E.

    1996-01-01

    Method of measuring thickness of thin organic liquid film deposited in vacuum involves use of quartz-crystal monitor (QCM) calibrated by use of witness plate that has, in turn, calibrated by measurement of absorption of infrared light in deposited material. Present procedure somewhat tedious, but once calibration accomplished, thicknesses of organic liquid deposits monitored in real time and in situ by use of QCM.

  16. Acoustic Techniques for Thin Film Thickness Measurement in Semiconductor Processing

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Sanjay

    In modern semiconductor manufacturing, process monitoring and control are important issues limited at the present time by a lack of sensors and instrumentation capable of measuring process parameters like film thickness. In order to address this problem, two novel systems for thin film thickness measurement in semiconductor processing based upon contacting acoustic techniques have been developed. Both of these systems couple acoustic energy into the wafer via a nondestructive Hertzian contact and achieve high resolution by exciting and receiving ultrasonic signals from a ZnO transducer with microwave frequency electronics. The basic physical mechanism for film thickness determination is to analyze reflected waves due to acoustic impedance mismatches between various material layers on a silicon substrate. The first system requires frontside contacting of a sapphire buffer rod to an opaque film deposited on a silicon wafer and involves the use of broadband, high frequency pulse-echo electronics in the 0.5-5 GHz range. With this system, ex-situ measurements of aluminum and gold thin films on a silicon substrate have been done in the 0.25-2.5 mum. range with 3-6% accuracy as compared to surface profilometer measurements. Possible applications for this system include using it as a post -deposition process monitor, generating film thickness contour maps, or examining multilayer structures. The second system requires backside contacting of a sapphire buffer rod to a silicon wafer, which is in a vacuum station, and involves monitoring the changes in phase of CW 1-2 GHz acoustic waves as a function of frontside film growth. Using this technique, in-situ indium and aluminum film thickness monitoring has been done in both evaporator and sputtering environments with a resolution of 40 A. Temperature experiments in an oven have shown a resolution of 0.05 K for the sapphire buffer rod. Finally, multistep processing has been done and a multilayer film structure has been measured

  17. Photochemistry on ultrathin metal films: strongly enhanced cross sections for NO2 on Ag/Si(100).

    PubMed

    Wesenberg, Claudia; Autzen, Olaf; Hasselbrink, Eckart

    2006-12-14

    The surface photochemistry of NO(2) on ultrathin Ag(111) films (5-60 nm) on Si(100) substrates has been studied. NO(2), forming N(2)O(4) on the surface, dissociates to release NO and NO(2) into the gas phase with translational energies exceeding the equivalent of the sample temperature. An increase of the photodesorption cross section is observed for 266 nm light when the film thickness is decreased below 30 nm despite the fact that the optical absorptivity decreases. For 4.4 nm film thickness this increase is about threefold. The data are consistent with a similar effect for 355 nm light. The reduced film thickness has no significant influence on the average translation energy of the desorbing molecules or the branching into the different channels. The increased photodesorption cross section is interpreted to result from photon absorption in the Si substrate producing electrons with no or little momenta parallel to the surface at energies where this is not allowed in Ag. It is suggested that these electrons penetrate through the Ag film despite the gap in the surface projected band structure. PMID:17176154

  18. Effects of alkali treatments on Ag nanowire transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  19. Effects of Ag addition on FePt L10 ordering transition: A direct observation of ordering transition and Ag segregation in FePtAg alloy films

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Gao, Tenghua; Yu, Youxing

    2015-12-01

    FePt and (FePt)91.2Ag8.8 alloy films were deposited by magnetron sputtering. The average coercivity of (FePt)91.2Ag8.8 films reaches 8.51 × 105 A/m, which is 0.63 × 105 A/m higher than that of the corresponding FePt films. Ag addition effectively promotes the FePt L10 ordering transition at a relatively low annealing temperature of 400 °C. The promotion mechanism was investigated by using in situ high-resolution transmission electron microscopy (HRTEM) and ex situ X-ray absorption fine structure (XAFS). The concurrence of ordering transition and Ag segregation in FePtAg alloy films was first observed by using in situ heating HRTEM. The time-resolved evolution reveals more details on the role of Ag addition in FePt low-temperature ordering. Ex situ XAFS results further confirm that Ag replaces Fe sites in the as-deposited films and segregates from FePt-Ag solid solution phase through annealing at elevated temperatures. The segregation of Ag atoms leaves vacancies in the grain. The vacancy formation is believed to accelerate the diffusion of Fe and Pt atoms, which is critical for the L10 ordering transition.

  20. Effect of wettability on surface morphologies and optical properties of Ag thin films grown on glass and polymer substrates by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Lv, Jing

    2013-05-01

    A series of Ag films with different thicknesses were deposited on BK-7 glass, PET and PC substrates under identical conditions by thermal evaporation. The effect of the wettability on the morphology and optical properties of Ag/glass and Ag/polymer films was studied by atomic force microscopy and spectrophotometry. The experimental results show that the wettability of Ag grains with polymer is stronger than with glass, which results in the aggregation of bigger grains in initial layer. During deposition the interaction of interlayer plays an important role for the formation of the surface morphology. The strong wettability activates the nonlinear optical properties of Ag grains grown on polymer substrates, which result in the strong absorbance in short wavelength. The effect of the bare substrate on the transmittance of Ag films is more obvious than the reflectance. With the increasing of the thickness, the effect of the wettability on the morphology and optical properties of Ag films decline. In this experiment when the thickness is above 50 nm, the effect almost vanished.

  1. Presentation and characterization of novel thick-film PZT microactuators

    NASA Astrophysics Data System (ADS)

    Chalvet, Vincent; Habineza, Didace; Rakotondrabe, Micky; Clévy, Cédric

    2016-04-01

    We propose in this paper the characterization of a new generation of piezoelectric cantilevers called thick-films piezoelectric actuators. Based on the bonding and thinning process of a bulk PZT layer onto a silicon layer, these cantilevers can provide better static and dynamic performances compared to traditional piezocantilevers, additionally to the small dimensions.

  2. In situ fabrication of AgI films on various substrates

    SciTech Connect

    Zheng, Z. Liu, A.R.; Wang, S.M.; Huang, B.J.; Ma, X.M.; Zhao, H.X.; Li, D.P.; Zhang, L.Z.

    2008-08-04

    A facile solution-phase chemical route is developed to directly construct silver iodide (AgI) films/crystals on various substrates including silver foil, silicon wafer and glass, etc. The resulting AgI films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The AgI films with different morphologies can be obtained by controlling the reaction parameters. This method is a simple and fast way for in situ deposition of AgI crystals/films on different substrates. These films may be applied in chemical sensing systems and solid-state batteries as solid electrolytes.

  3. Determination of thin hydrodynamic lubricating film thickness using dichromatic interferometry.

    PubMed

    Guo, L; Wong, P L; Guo, F; Liu, H C

    2014-09-10

    This paper introduces the application of dichromatic interferometry for the study of hydrodynamic lubrication. In conventional methods, two beams with different colors are projected consecutively on a static object. By contrast, the current method deals with hydrodynamic lubricated contacts under running conditions and two lasers with different colors are projected simultaneously to form interference images. Dichromatic interferometry incorporates the advantages of monochromatic and chromatic interferometry, which are widely used in lubrication research. This new approach was evaluated statically and dynamically by measuring the inclination of static wedge films and the thickness of the hydrodynamic lubricating film under running conditions, respectively. Results show that dichromatic interferometry can facilitate real-time determination of lubricating film thickness and is well suited for the study of transient or dynamic lubricating problems. PMID:25321689

  4. Enhanced electrocaloric effect in composition gradient bilayer thick films

    NASA Astrophysics Data System (ADS)

    Hou, Ying; Yang, Lu; Qian, Xiaoshi; Zhang, Tian; Zhang, Q. M.

    2016-03-01

    We report the enhanced electrocaloric (EC) response over a broad temperature range in composition gradient Ba(ZrTi)O3 based bilayer thick films. A large EC temperature change of -4.9 K under an electric field of 10 MV/m around room temperature, large electrocaloric coefficient ΔT/ΔE = 0.49 × 10-6 K m V-1 were observed in the BaZr0.17Ti0.83O3/BaZr0.20Ti0.80O3 bilayer thick films, which are improved compared with BaZr0.20Ti0.80O3 and BaZr0.17Ti0.83O3 homogeneous bilayer films. The result reveals the potential of the composition gradient bilayer structure in improving the electrocaloric effect, which may provide an effective route to achieve large EC temperature change under a low electric field.

  5. Ultimate photovoltage in perovskite oxide heterostructures with critical film thickness

    SciTech Connect

    Wang Cong; Jin Kuijuan; Zhao Ruiqiang; Lu Huibin; Guo Haizhong; Ge Chen; He Meng; Wang Can; Yang Guozhen

    2011-05-02

    One order larger photovoltage is obtained with critical thicknesses of La{sub 0.9}Sr{sub 0.1}MnO{sub 3} films in both kinds of heterostructures of La{sub 0.9}Sr{sub 0.1}MnO{sub 3}/SrTiO{sub 3} (0.8 wt % Nb-doped) and La{sub 0.9}Sr{sub 0.1}MnO{sub 3}/Si fabricated at various oxygen pressures. Our self-consistent calculation reveals that the critical thickness of the La{sub 0.9}Sr{sub 0.1}MnO{sub 3} film with the ultimate value of photovoltage is just the thickness of the depletion layer of La{sub 0.9}Sr{sub 0.1}MnO{sub 3} in both heterojunctions, respectively.

  6. Electrical Conductivity of Thick Films Made from Silver Methylcarbamate Paste

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Jiang, Min; Zeng, Xiaoyan

    2013-10-01

    We have explored the electrical conductivity of thick films made from silver methylcarbamate paste using metallic silver as the electrically conductive phase. The paste was composed of 30 wt.% to 90 wt.% organic vehicle and 10 wt.% to 70 wt.% functional phase precursor (silver methylcarbamate). After the paste was sintered, films with thickness of 4.50 μm to 12.70 μm were obtained, in which the elemental percentage of silver varied from about 5 wt.% to above 99 wt.%. Experiments showed that both the electrical conductivity and the elemental percentage were mainly affected by the initial silver content in the paste and the parameters of the sintering process. For given sintering conditions, higher initial silver content led to higher elemental percentage of silver, improving the electrical conductivity of the thick film. The conditions of the sintering process had a significant influence on the evaporation and decomposition rates of the paste components, the elemental percentage of silver, and the microstructure of the thick film. Higher temperatures, longer times, lower heating rates, and more oxygen-rich sintering atmospheres were found to accelerate the evaporation and decomposition and increase the elemental percentage of silver, both of which served to enhance the electrical conductivity. For initial silver contents less than about 10 wt.%, the lowest electrical resistivity of the thick film only reached the order of 10-4 Ω cm, irrespective of the sintering conditions. For contents between 10 wt.% and 25 wt.%, it was possible to attain lowest resistivity values on the order of 10-5 Ω cm. Above 25 wt.%, the lowest resistivity could reach 10-6 Ω cm, comparable to that of bulk silver.

  7. Enhanced ferroelectric photoelectrochemical properties of polycrystalline BiFeO3 film by decorating with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Zhou, Yang; You, Lu; Wang, Junling; Shen, Mingrong; Fang, Liang

    2016-01-01

    Polycrystalline BiFeO3 (BFO) films are fabricated on Pt/Ti/SiO2/Si(100) substrate as photoelectrode using sol-gel method. The microstructure, optical, and photoelectrochemical (PEC) properties of the films are characterized and optimized by controlling the film thickness. Moreover, the PEC properties of the BFO films are dependent on ferroelectric polarization, which is mainly ascribed to the modulation of band structure at the BFO/electrolyte interface by the polarization. Further enhancement of PEC properties is obtained by decorating the samples with appropriate amounts of Ag nanoparticles, which is attributed to the reduced electron-hole recombination, and localized surface plasmon resonance effect of Ag nanoparticles.

  8. Characteristic difference between ITO/ZrCu and ITO/Ag bi-layer films as transparent electrodes deposited on PET substrate

    NASA Astrophysics Data System (ADS)

    Lee, C. J.; Lin, H. K.; Sun, S. Y.; Huang, J. C.

    2010-10-01

    The metallic-glass film of ZrCu layer deposited by co-sputtering was utilized as the metallic layer in the bi-layer structure transparent conductive electrode of ITO/ZrCu (IZC) deposited on the PET substrate using magnetron sputtering at room temperature. In addition, the pure Ag metal layer was applied in the same structure of transparent conductive film, ITO/Ag, in comparison with the IZC film. The ZrCu layer could form a continuous and smooth film in thickness lower than 6 nm, compared with the island structure of pure Ag layer of the same thickness. The 30 nm ITO/3 nm ZrCu films could show the optical transmittance of 73% at 550 nm wavelength. The 30 nm ITO/12 nm ZrCu films could show the better sheet resistance of 20 Ω/sq, but it was still worse than that of the ITO/Ag films. It was suggested that an alloy system with lower resistivity and negative mixing heat between atoms might be another way to form a continuous layer in thickness lower than 6 nm for metal film.

  9. Visualization of film wavelike characteristics and measurement of film thickness in spray cooling

    NASA Astrophysics Data System (ADS)

    Hou, Yan; Tao, Yujia; Huai, Xiulan

    2013-04-01

    An experimental investigation was performed to study the heat transfer in an eight-nozzle spray cooling system with de-ionized water as the working fluid. Visualization of the liquid-solid contact area and the flow near the heated surface was made using a microscopic lens system in conjunction with an advanced high-speed camera. The film thickness and film wavelike characteristics under liquid volume flow rates ranged from 2.78×10-6 m3/s to 1.39×10-5 m3/s and surface temperatures between 22°C and 78.2°C were examined respectively. The development process of the liquid film on the heated surface was observed. The local mean film thickness, the film wavelike characteristics and the behavior of the bubbles appeared in the liquid film were captured using an image processing technique. It is discovered that there exists a climax of local mean film thickness during the starting process of spray cooling. When the liquid film reaches the dynamic stable state, the dimensionless mean film thickness decreases with the increase of the liquid volume flow rate, and increases with the increase of surface temperature generally. Besides, the volume flow rate has a more significant impact on the wavelength and amplitude of the liquid film compared to the surface temperature.

  10. Desorption of Ag from Grain Boundaries in Ag Film on Br and H-Passivated Si(111) Surfaces

    SciTech Connect

    Roy, Anupam; Batabyal, R.; Mahato, J. C.; Dev, B. N.; Sundaravel, B.

    2011-07-15

    Growth of Ag film on Br- and H-passivated Si(111) surfaces was examined by Rutherford backscattering spectrometry (RBS), scanning electron microscopy (SEM) and photoemission electron microscopy (PEEM) techniques. The phenomenon of thermal grooving was observed after annealing at higher temperatures. Hierarchical desorption of Ag from the grain boundaries produce a fractal structure of Ag-depleted regions. Hierarchical desorption may be used for nanopatterning of the layer.

  11. Film thickness measurements on five fluid formulations by the mercury squeeze film capacitance technique

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Johnson, R. L.; Hyslop, I.; Day, R.

    1976-01-01

    The thinning characteristics of five fluids were studied by measuring film thickness as a function of time. The mercury squeeze film capacitance technique was used. All tests were performed at room temperature. The synthetic hydrocarbon plus a nematic liquid crystal, N-(p-methoxybenzylidene)-p-butylaniline, thinned according to a Newtonian model and retained its bulk viscosity. The synthetic hydrocarbon plus a phosphonate antiwear additive and the synthetic hydrocarbon plus n-hexadecanol produced residual thick films. The synthetic hydrocarbon base fluids and the synthetic hydrocarbon plus a paraffinic resin displayed viscosity increases during thinning, but no residual films were formed.

  12. Effect of film thickness and particle size on cracking stresses in drying latex films.

    PubMed

    Yow, Huai Nyin; Goikoetxea, Monika; Goehring, Lucas; Routh, Alexander F

    2010-12-15

    The stress at which latex films crack during drying was investigated using beam bending. Two systems were investigated: (i) poly(methyl methacrylate/butyl acrylate) particles cast as thin films to examine the effect of film thickness on cracking film stress and (ii) polystyrene particles dried as drops to investigate the effect of particle size. Results indicated an inverse relationship between film thickness and film stress, whilst film stress was shown to be independent of the original particle size. These outcomes were in good agreement with Tirumkudulu and Russel's theoretical analysis [M.S. Tirumkudulu and W.B. Russel, Langmuir 21 (2005) 4938], albeit the measured stress values were almost twice the theoretical estimation. PMID:20851402

  13. Thickness dependence of superconducting properties in magnesium diboride thin films

    NASA Astrophysics Data System (ADS)

    Beringer, Douglas; Clavero, Cesar; Tan, Teng; Xi, Xiaoxing; Lukaszew, Rosa

    2013-03-01

    Thin film MgB2 is a promising material currently researched for improvements in superconducting radio frequency (SRF) technology and applications. At present, bulk niobium SRF accelerating cavities suffer from a fundamental upper limit in maximally sustained accelerating gradients; however, a scheme involving multi-layered superstructures consisting of superconducting-insulating-superconducting (SIS) layers has been proposed to overcome this fundamental material limit of 50 MV/m. The SIS multi-layer paradigm is reliant upon implementing a thin shielding material with a suitably high Hc1 which may prevent early field penetration in a bulk material layer and consequently delay the high field breakdown. It has been predicted that for thin superconducting films -- thickness less than the London penetration depth (~ 140 nm in the case of MgB2) -- the lower critical field Hc1 will be enhanced with decreasing thickness. Thus, MgB2, with a high bulk Hc1 value is a prime candidate for such SIS structures. Here we present our study on the structure, surface morphology and superconducting properties on a series of MgB2 thin films and correlate the effects of film thickness and surface morphology on Hc1. This work was supported in part by the U.S. Department of Energy (DE-SC0004410 and DE-AC05-06OR23177) and Defense Threat Reduction Agency (HDTRA1-10-1-0072).

  14. Effect of film thickness and texture morphology on the physical properties of lead sulfide thin films

    NASA Astrophysics Data System (ADS)

    Azadi Motlagh, Z.; Azim Araghi, M. E.

    2016-02-01

    Lead sulfide (PbS) thin films were prepared onto ultra-clean quartz substrate by the electron beam gun (EBG) evaporation method. The thicknesses of the thin films were 50, 100, 150 and 200 nm. They were annealed at 423 K for 2 h. Field emission scanning electron microscopy (FESEM) images of the thin films showed their texture morphology at the surface of the quartz substrate. X-ray diffraction (XRD) patterns of the thin films showed that they have a cubic phase and rock-salt structure after annealing. The average crystallite size for the thin films was in the range of 32-100 nm. Optical measurements confirmed that crystalline thin films have a direct band gap that increases by decreasing the film thickness. This blue shift of the band gap of thin films compared to the bulk structure can be attributed to the quantum confinement effects in the nanoparticles. A decrease in conductivity by increasing the temperature confirmed the positive temperature coefficient of resistance in the thin films that showed the dominant conduction mechanism is via a band-like transition. The density of localized states at the Fermi level increases by increasing the film thickness. Current-voltage behavior of the thin films showed an increase in both dark current and photocurrent by increasing the crystallite size which is discussed, based on the presence of trap states and barriers in nanostructures.

  15. ZnO/Ag nanowires composite film ultraviolet photoconductive detector

    NASA Astrophysics Data System (ADS)

    Guodong, Yan; Minqiang, Wang; Zhi, Yang

    2015-08-01

    ZnO/Ag nanowires (NWs) film ultraviolet (UV) detector was fabricated by a simple and low-cost solution-processed method. In order to prepare this device, Ag NWs network was first spin-coated on glass substrate as a transparent conducting electrode, then ZnO NWs arrays were grown vertically on the Ag NWs network based on the hydrothermal method. This UV detector exhibited an excellent detection performance with large on/off ratio and short response time. Several process and working parameters were particularly investigated to analyze the relationship between structure and performance, which include growth time of ZnO NWs array, spin speed of Ag NWs network and working temperature. This UV photoconductive detector is based on two kinds of one-dimension nanomaterials, and it was regarded as a compromise between high performance with large area, low voltage and low cost. Project supported by the National Natural Science Foundation of China (Nos. 61176056, 91323303, 91123019), the 111 Program (No. B14040), and the Open Projects from the Institute of Photonics and Photo-Technology, Provincial Key Laboratory of Photoelectronic Technology, Northwest University, China.

  16. Ultrasonic array of thick film transducers for biological tissue characterization.

    PubMed

    Gwirc, Sergio N; Negreira, Carlos A; Marino, Nestor R

    2010-01-01

    The initial motivation for this work was to accomplish an easy way to manufacture different geometries of ultrasonic transducers and arrays using a PZT powder, combined with a standard process to have repetitive series of them. The piezoelectric thick film was obtained using a PZT paste and applying it by screen printing on an alumina substrate. Then, the film was drying and sintered with a temperature-time profile determined by the paste characteristics. Each transducer is composed by three layers, one by PZT and two acting as electrodes. The active element of the paste is a PZT powder which is dispersed in a commercial vehicle to obtain rheological properties suitable for use the screen printing process. The connection between PZT particles is improved by adding a lead borosilicate frit glass that also helps to attach the film to the substrate due to the relatively low temperature of sintered that has been used in this process. The PZT film has low density that is generated by internal porosity, so its acoustic impedance is lower than for a bulk ceramic transducer and so is well adapted to testing human tissues. At the same time the thick film technology is well suited to make medium size transducers and also arrays performed with tiny ultrasonic transducers. PMID:21097177

  17. Theory and practical considerations of multilayer dielectric thin-film stacks in Ag-coated hollow waveguides.

    PubMed

    Bledt, Carlos M; Melzer, Jeffrey E; Harrington, James A

    2014-02-01

    This analysis explores the theory and design of dielectric multilayer reflection-enhancing thin film stacks based on high and low refractive index alternating layers of cadmium sulfide (CdS) and lead sulfide (PbS) on silver (Ag)-coated hollow glass waveguides (HGWs) for low loss transmission at midinfrared wavelengths. The fundamentals for determining propagation losses in such multilayer thin-film-coated Ag hollow waveguides is thoroughly discussed, and forms the basis for further theoretical analysis presented in this study. The effects on propagation loss resulting from several key parameters of these multilayer thin film stacks is further explored in order to bridge the gap between results predicted through calculation under ideal conditions and deviations from such ideal models that often arise in practice. In particular, the effects on loss due to the number of dielectric thin film layers deposited, deviation from ideal individual layer thicknesses, and surface roughness related scattering losses are presented and thoroughly investigated. Through such extensive theoretical analysis the level of understanding of the underlying loss mechanisms of multilayer thin-film Ag-coated HGWs is greatly advanced, considerably increasing the potential practical development of next-generation ultralow-loss mid-IR Ag/multilayer dielectric-coated HGWs. PMID:24514252

  18. Chemical vapor deposition reactor. [providing uniform film thickness

    NASA Technical Reports Server (NTRS)

    Chern, S. S.; Maserjian, J. (Inventor)

    1977-01-01

    An improved chemical vapor deposition reactor is characterized by a vapor deposition chamber configured to substantially eliminate non-uniformities in films deposited on substrates by control of gas flow and removing gas phase reaction materials from the chamber. Uniformity in the thickness of films is produced by having reactive gases injected through multiple jets which are placed at uniformally distributed locations. Gas phase reaction materials are removed through an exhaust chimney which is positioned above the centrally located, heated pad or platform on which substrates are placed. A baffle is situated above the heated platform below the mouth of the chimney to prevent downdraft dispersion and scattering of gas phase reactant materials.

  19. Thickness Dependence Magnetization in Laser Ablated Ni-Cu-Zn Ferrite Nanostructured Thin Films.

    PubMed

    Raghavender, A T; Hong, Nguyen Hoa; Lee, Kyu Joon; Jung, Myung-Hwa

    2016-01-01

    Ni₀.₅Cu₀.₃Zn₀.₂Fe₂O₄ thin films with thickness ranging from 25 nm to 500 nm were grown on Si substrate using pulsed laser deposition technique and their structural and magnetic properties were investigated. From the atomic force microscopy (AFM) analysis, it is observed that the film roughness (Ra) depends strongly on the thickness of the fabricated film. The magnetizations of the thin films were found to decrease when the film thickness increases. The thinner films showed a larger magnetization than the thick films. All the films showed a blocking temperature indicating their superparamagnetic behavior. PMID:27398528

  20. ASM stepper alignment through thick epitaxial silicon films

    NASA Astrophysics Data System (ADS)

    Black, Iain

    1999-04-01

    High voltage bipolar and BiCMOS processes often use thick epitaxially grown layers of silicon. These films 12-24 micrometers thick offer a considerable challenge to the alignment of subsequent process layers due to the 'wash out' and image distortion, caused to any underlying pattern, which render automatic alignment mark recognition difficult it not impossible. Historically using projection aligner technology these immediately post Epi layers have been manually aligned with future automatic alignment target defined at the first opportunity post Epi. This is not possible using ASM steppers, as these depend upon marks etched into the silicon, before first processing, to create marks, to which all subsequent layers are registered. To allow the stepper to run wafers with these Epi films a new approach was required.

  1. Discrete component bonding and thick film materials study

    NASA Technical Reports Server (NTRS)

    Kinser, D. L.

    1975-01-01

    The results are summarized of an investigation of discrete component bonding reliability and a fundamental study of new thick film resistor materials. The component bonding study examined several types of solder bonded components with some processing variable studies to determine their influence upon bonding reliability. The bonding reliability was assessed using the thermal cycle: 15 minutes at room temperature, 15 minutes at +125 C 15 minutes at room temperature, and 15 minutes at -55 C. The thick film resistor materials examined were of the transition metal oxide-phosphate glass family with several elemental metal additions of the same transition metal. These studies were conducted by preparing a paste of the subject composition, printing, drying, and firing using both air and reducing atmospheres. The resulting resistors were examined for adherence, resistance, thermal coefficient of resistance, and voltage coefficient of resistance.

  2. Microstructure and tribological properties of NbN-Ag composite films by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ju, Hongbo; Xu, Junhua

    2015-11-01

    Recently, the chameleon thin films were developed with the purpose of adjusting their chemistry at self-mating interfaces in response to environmental changes at a wide temperature range. However, very few studies have focused on what state the lubricious noble metal exists in the films and the tribological properties at room temperature (RT). Composite NbN-Ag films with various Ag content (Ag/(Nb + Ag)) were deposited using reactive magnetron sputtering to investigate the crystal structure, mechanical and tribological properties. A combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) analyses showed that face-centered cubic (fcc) NbN, hexagonal close-packed (hcp) NbN and fcc silver coexisted in NbN-Ag films. The incorporation of soft Ag into NbN matrix led to the hardness decrease from 29.6 GPa at 0 at.% Ag to 11.3 GPa at 19.9 at.% Ag. Tribological properties of NbN-Ag films performed using dry pin-on-disc wear tests against Al2O3 depended on Ag content to a large extent. The average friction coefficient and wear rate of NbN-Ag films decreased as Ag content increased from 4.0 to 9.2 at.%. With a further increase of Ag content, the average friction coefficient further decreased, while the wear rate increased gradually. The optimal Ag content was found to be 9.2-13.5 at.%, which showed low average friction coefficient values of 0.46-0.40 and wear rate values of 1.1 × 10-8 to 1.7 × 10-8 mm3/(mm N). 3D Profiler and Raman spectroscopy measurements revealed that the lubricant tribo-film AgNbO3 detected on the surface of the wear tracks could lead to the friction coefficient curve stay constant and decrease the average friction coefficients. The decrease of wear rate was mainly attributed to the lubricant tribo-film AgNbO3 as Ag content increased from 4.0 to 9.2 at.%; with a further increase in Ag content, the wear rate increased with increasing Ag content in NbN-Ag films because a

  3. Texture characterization of high T sub c thick films

    SciTech Connect

    Biondo, A.C.; Kallend, J.S.; Poeppel, R.B.; Lanagan, M.T. ); Schofield, T.C. )

    1990-06-01

    The anisotropic properties which exist in all high-{Tc} compounds make it necessary to characterize the preferred orientation (or texture) of crystals which results from various processing methods. Once a suitable preferred orientation is achieved, a significant increase in performance is anticipated. In this study, thick films ({approximately}80 {mu}m) of Bi-Sr-Ca-Cu-O (BSCCO) on silver substrates were characterized by pole figure techniques to obtain an Orientation Distribution Function (ODF). 6 refs., 5 figs.

  4. Development of Thick-Film Thermoelectric Microcoolers Using Electrochemical Deposition

    NASA Technical Reports Server (NTRS)

    Fleurial, J.-P.; Borshchevsky, A.; Ryan, M. A.; Phillips, W. M.; Snyder, J. G.; Caillat, T.; Kolawa, E. A.; Herman, J. A.; Mueller, P.; Nicolet, M.

    2000-01-01

    Advanced thermoelectric microdevices integrated into thermal management packages and low power, electrical source systems are of interest for a variety of space and terrestrial applications. By shrinking the size of the thermoelements, or legs, of these devices, it becomes possible to handle much higher heat fluxes, as well as operate at much lower currents and higher voltages that are more compatible with electronic components. The miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints for both leg dimensions (100-200 gm thick minimum) and the number of legs (100-200 legs maximum). We are investigating the development of novel microdevices combining high thermal conductivity substrate materials such as diamond, thin film metallization and patterning technology, and electrochemical deposition of thick thermoelectric films. It is anticipated that thermoelectric microcoolers with thousands of thermocouples and capable of pumping more than 200 W/sq cm over a 30 to 60 K temperature difference can be fabricated. In this paper, we report on our progress in developing an electrochemical deposition process for obtaining 10-50 microns thick films of Bi2Te3 and its solid solutions. Results presented here indicate that good quality n-type Bi2Te3, n-type Bi2Te(2.95)Se(0.05) and p-type Bi(0.5)Sb(1.5)Te3 thick films can be deposited by this technique. Some details about the fabrication of the miniature thermoelements are also described.

  5. Ice-Accretion Scaling Using Water-Film Thickness Parameters

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Feo, Alejandro

    2003-01-01

    Studies were performed at INTA in Spain to determine water-film thickness on a stagnation-point probe inserted in a simulated cloud. The measurements were correlated with non-dimensional parameters describing the flow and the cloud conditions. Icing scaling tests in the NASA Glenn Icing Research Tunnel were then conducted using the Ruff scaling method with the scale velocity found by matching scale and reference values of either the INTA non-dimensional water-film thickness or a Weber number based on that film thickness. For comparison, tests were also performed using the constant drop-size Weber number and the average-velocity methods. The reference and scale models were both aluminum, 61-cm-span, NACA 0012 airfoil sections at 0 deg. AOA. The reference had a 53-cm-chord and the scale, 27 cm (1/2 size). Both models were mounted vertically in the center of the IRT test section. Tests covered a freezing fraction range of 0.28 to 1.0. Rime ice (n = 1.0) tests showed the consistency of the IRT calibration over a range of velocities. At a freezing fraction of 0.76, there was no significant difference in the scale ice shapes produced by the different methods. For freezing fractions of 0.40, 0.52 and 0.61, somewhat better agreement with the reference horn angles was typically achieved with the average-velocity and constant-film thickness methods than when either of the two Weber numbers was matched to the reference value. At a freezing fraction of 0.28, the four methods were judged equal in providing simulations of the reference shape.

  6. Effect of Board Thickness on Sn-Ag-Cu Joint Interconnect Mechanical Shock Performance

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Xie, Weidong

    2014-12-01

    The mechanical stability of solder joints with Sn-Ag-Cu alloy joints on various board thicknesses was investigated with a high G level shock environment. A test vehicle with three different board thicknesses was used for board drop shock performance tests. These vehicles have three different strain and shock level condition couples per board, and are used to identify the joint stability and failure modes based on the board responses. The results revealed that joint stability is sensitive to board thickness. The board drop shock test showed that the first failure location shifts from the corner location near the standoff to the center with increased board thickness due to the shock wave response. From analysis of the thickness variation and failure cycle number, the strain rate during the pulse strain cycle is the dominant factor, which defines the life cycle number per board thickness, and not the maximum strain value. The failure location shift and the shock performance differentiation are discussed from the perspective of maximum principal strain, cycle frequency and strain rate per cycle.

  7. Elastohydrodynamic film thickness measurements of artificially produced nonsmooth surfaces

    NASA Technical Reports Server (NTRS)

    Cusano, C.; Wedeven, L. D.

    1979-01-01

    Optical interferometry is used to measure the elastohydrodynamic (EHD) film thickness associated with artificially produced nonsmooth surfaces. The nonsmooth surfaces are produced by modifying the surfaces of highly-polished balls with irregularities in the form of multiple grooves and dents. By closely spacing these irregularities it is possible not only to produce depressions on the surface of the balls but also to generate pseudo asperities. The average roughness wavelength of this artificially-produced, nonsmooth, surface approximates the average fundamental roughness wavelength found on surfaces of some mechanical elements operating under concentrated contact. By comparing the measured film thickness profiles to the stylus traces of the irregularities, it was possible to observe the local deformations associated with micro-EHD pressure generation. In both pure rolling and pure sliding conditions the artificially-produced asperities are deformed and complete separation exists between them and the mating surface. Such findings demonstrate the importance of local surface topography and resulting micro-EHD effects on the film thickness between rough surfaces in concentrated contact. Sliding data are presented which demonstrate a severe constriction, caused by the irregularities, at the exit of the Hertzian region.

  8. Surfactant micelles containing solubilized oil decrease foam film thickness stability.

    PubMed

    Lee, Jongju; Nikolov, Alex; Wasan, Darsh

    2014-02-01

    Many practical applications involving three-phase foams (aqueous foams containing oil) commonly employ surfactants at several times their critical micelle concentration (CMC); in these applications, the oil can exist in two forms: (1) oil drops or macroemulsions and (2) oil solubilized within the micelles. We have recently observed that in the case of aqueous foams stabilized with sodium dodecyl sulfate (SDS) and n-dodecane as an oil, the oil drops did not alter the foam stability but the solubilized oil (swollen micelles) greatly influenced the foam's stability. In order to explain the effect of oil solubilized in the surfactant micelles on foam stability, we studied the stability of a single foam film containing swollen micelles of SDS using reflected light microinterferometry. The film thinning occurs in stepwise manner (stratification). In addition, we obtained data for the film-meniscus contact angle versus film thickness (corresponding to the different number of micellar layers) and used it to calculate the film structural energy isotherm. The results of this study showed that the structural energy stabilization barrier decreased in the presence of swollen micelles in the film, thereby decreasing the foam stability. These results provide a better understanding of the role of oil solubilized by the micelles in affecting foam stability. PMID:24267325

  9. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film

    NASA Astrophysics Data System (ADS)

    Wang, Long-De; Zhang, Tong; Zhang, Xiao-Yang; Song, Yuan-Jun; Li, Ruo-Zhou; Zhu, Sheng-Qing

    2014-03-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence.

  10. Electrooxidation of carbon monoxide and methanol on platinum-overlayer-coated gold nanoparticles: effects of film thickness.

    PubMed

    Kumar, Sachin; Zou, Shouzhong

    2007-06-19

    The electrooxidation of carbon monoxide and methanol on Pt-coated Au nanoparticles attached to 3-aminopropyl trimethoxysilane-modified indium tin oxide electrodes was examined as a function of Pt film thickness and Au particle coverage. For the electrodes with medium and high Au particle coverages, the CO stripping peak position shifts to more negative values with increasing Pt film thickness, from ca. 0.8 V (vs Ag/AgCl) at 1 ML to 0.45 V at 10 ML. Accompanying this peak potential shift is the sharpening of the peak width from more than 150 to 65 mV. For the electrode with low Au particle coverage, similar peak width narrowing was also observed, but the peak potential shift is much smaller, from 0.85 V at 1 ML of Pt to 0.65 V at 10 ML. These observations are compared with the CO oxidation on bulk Pt electrodes and on Pt films deposited on bulk Au electrodes. The film-thickness-dependent CO oxidation is explained by d band theory in terms of strain and ligand effects, the particle size effect, and the particle aggregation induced by Pt film growth. Corresponding to the increasing CO oxidation activity, the current density of methanol oxidation grows with the Pt film thickness. The peak potential and current density reach the same values as those obtained on a polycrystalline bulk Pt electrode when more than 4 ML of Pt is deposited on the Au particle electrodes with a particle coverage higher than 0.25. These results suggest that it is feasible to reduce Pt loading in methanol fuel cells by using Pt thin films as the anode catalyst. PMID:17521203

  11. Structural and electronic properties of V2O3 ultrathin film on Ag(001): LEED and photoemission study

    NASA Astrophysics Data System (ADS)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-05-01

    V2O3 ultrathin films were grown on Ag(001) substrate by reactive evaporation of vanadium (V) metal in presence of oxygen and their structural and electronic properties were studied by Low Energy Electron Diffraction (LEED), X-ray Photo Electron Spectroscopy (XPS) and Angle Resolved Photoemission Spectroscopic (ARPES) techniques, respectively. On top of square symmetry substrate Ag(001), hexagonal surface of V2O3 (0001) is stabilized in the form of two domain structure, rotated by 30°(or 90°)to each other, has been observed by LEED. Rather than epitaxial flat monolayer, formation of well-ordered V2O3 (0001) island has been confirmed from the LEED and the Photoemission Spectroscopic (PES) study. Stoichiometry of the grown film was confirmed by the XPS study. Evolution of valance band electronic structure of V2O3 (0001) surface has been studied as a function of film thickness by ARPES.

  12. Synthesis and Characterization of Varying Concentrations of Ag-doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Hachlica, Justin; Wadie-Ibrahim, Patrick; Sahiner, M. Alper

    Silver doped ZnO is a promising compound for photovoltaic solar cell use. Doping this compound with varying amounts of silver will theoretically make this type of thin film more efficient by reducing the overall resistance and increasing the voltage and current output. The extent of this promise is being tested experimentally, by analysis of both the electrical and the surface roughness properties of the cells. Ag-doped Zinc Oxide is deposited by method of Pulsed Laser Deposition (PLD) onto Indium Tin Oxide (ITO) coated Glass. Annealing effects were also observed by varying the temperature at which the annealing occurred after synthesis of the sample. Thickness is confirmed by use of Ellipsometery. X-Ray Diffraction (XRD) measurements confirmed a ZnO crystal structure on the thin films. The active dopant carrier concentrations were determined using a Hall Effect Measuring System. Finally, the photovoltaic properties of the film are recorded by using a Keithley Source Meter. The structural characterization and electrical results of the effect of Ag doping on ZnO will then be discussed.

  13. Effect of N2/Ar on structure and hardness of TaN-Ag thin films deposited by DC cylindrical magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Foadi, Farnaz; Darabi, Elham; Reza Hantehzadeh, Mohammad

    2014-05-01

    TaN-Ag thin films were deposited on a 304 stainless steel substrate by cylindrical DC magnetron sputtering using different ratios of nitrogen to argon gas. The N2 percentages were 1.5%, 3%, 4.5%, 7.5%, 10.5% and 15% by volume. The influence of the N2/Ar ratio on the films morphology, structure and hardness was investigated using Atomic Force Microscopy (AFM), Grazing Incidence X-ray Diffraction (GIXRD), and the nanoindentation method. The amounts of Ta and Ag were determined using Energy Dispersive X-ray Spectroscopy (EDS). The thickness of the deposited films was measured by surface step profilometer. The RMS surface roughness increased for N2 percentages up to 7.5% and then decreased. Grazing results showed different TaN phases and Ag crystalline structures. The hardness of all films was much higher than the hardness of bulk silver or tantalum. The highest hardness value was obtained for 1.5% N2 . The EDS results indicated that the Ag/Ta ratio in the deposited films increases with increasing the N2 amount from 1.5% to 15%. The size of Ag islands on the surface was maximized at 7.5% N2 in the gas mixture. The thicknesses of films were in the range of 400-600 nm.

  14. Co-deposited thin films of YBa 2Cu 3O 7-δ-Ag

    NASA Astrophysics Data System (ADS)

    Moshfegh, A. Z.; Wang, Y. Q.; Sun, Y. Y.; Mesarwi, A.; Hor, P. H.; Ignatiev, A.

    1993-12-01

    The fabrication of high-temperature superconducting YBa 2Cu 3O 7-δ-Ag thin films has been investigated using a high-pressure Ag coevaporation-DC sputtering technique. Various analytical techniques including X-ray diffraction (XRD), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), electron probe microanalysis (EPMA), energy dispersive X-ray analysis (EDX), and Tc measurement have been utilized for characterization of the films. Highly reproducible c-oriented (00 l) films have been prepared in-situ at a relatively low growth temperature (≃670°C) by this technique. The transition temperatures Tc gradually decreased with added Ag from 90 K (0 at.% Ag) to 72 K (22.3 at.% Ag) for the films deposited on MgO (100) substrates. X-ray diffraction indicated that the Ag is in the metallic state as a separate phase with respect to the YBCO and that the c-lattice parameter of the grown films remained unchanged with Ag addition. Surface morphology of the YBCO-Ag films exhibited a particulate-type structure with the grain size increasing as the Ag content increased. The temperature coefficient of the normalized resistance, d R( T)/ R(280 K)/d T, was also noticed to decrease for the Ag- containing samples as compared to Ag-free YBCO films. AES depth profiling identified Ag residing mainly at the YBCO/MgO interface. The effect of Ag addition to the films has been described by a particle growth model.

  15. Effect of Substrates on Film Hardness Measurements of Nanometer Thick Amorphous Carbon Films

    NASA Astrophysics Data System (ADS)

    Akasaka, Hiroki; Ito, Hiroki; Nakano, Masayuki; Ohshio, Shigeo; Saitoh, Hidetoshi

    Amorphous carbon film (a-C:H) applications, such as hard disks, require films with nanometer thicknesses. In an indentation test, the obtained hardness values of these films are affected by substrates. On the indentation tests, we studied the effect of substrate hardness on films less than 200 nm in thickness. a-C:H and Si doped a-C:H (a-C:Si:H) films were deposited by electron cyclotron resonance plasma chemical vapor deposition onto aluminum (Al) and silicon (Si) substrates. The film thicknesses were approximately 140 nm. The hardnesses of the a-C:H film and substrates were obtained using a high-resolution indentation tester (pico-dentor) with a Vickers tip whose depth resolution was 0.04 nm. Maximum indentation loads were varied from 0.01 to 0.5 mN. The Martens hardnesses of films on the Al and Si substrates were 600 and 7000 N/mm2, respectively. On the a-C:Si:H film deposited on the Al substrate, the hardnesses increased from 1600 to 3900 N/mm2 with decreasing indentation load. The hardnesses of the films deposited on the Si substrate decreased from 5300 to 3500 N/mm2 when the maximum indentation loads were reduced. The effect of the substrates increased with the maximum load increasing. From these findings, the actual hardness value was determined to be 3600 N/mm2. These results indicate that the high-resolution indentation test achieved hardness estimations for nanometer-thick films with certain hardnesses.

  16. Parched elasto hydrodynamic lubrication film thickness measurement in an instrument ball bearing

    NASA Technical Reports Server (NTRS)

    Kingsbury, E.; Schritz, B.; Prahl, J.

    1988-01-01

    Parched Elasto Hydrodynamic Lubricant (PEHL) film thickness in a large instrument ball bearing is measured by electrical capacitance across its ball set. Correlation is shown between changes in film thickness and changes in Basic Speed Ratio (BSR) measured at the same time. BSR is confirmed as a sensitive, non-intrusive measure of transients in film thickness in a real bearing.

  17. Synthesis and characterization of Ag/PPy composite films via enhanced redox reaction of metal ions

    NASA Astrophysics Data System (ADS)

    Li, Bing; Xu, Yunlong; Chen, Jun; Chen, Guorong; Zhao, Chongjun; Qian, Xiuzhen; Wang, Meng

    2009-10-01

    A facile approach to the formation of Ag/PPy composite film, through the reaction of Ag + and pyrrole monomer, was developed with the help of synergistic effect of NH 3·H 2O on this reaction. Black or gray Ag/PPy film precipitated on the insert wall of the vessel within 0.5 h with this new method. The Ag/PPy composite film has good conductivity (sheet resistance: 0.28 Ω/square) and superhydrophility (contact angle of water, CAW ˜0°). Mechanism involved in the reaction rate acceleration was briefly discussed.

  18. Magnetic properties of Ag/Co/Pt( 1 1 1 ) ultrathin films

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Chen, F. C.; Wu, Y. E.; Shern, C. S.

    2002-06-01

    The magnetic anisotropy of Ag/Co/Pt(1 1 1) ultrathin films was studied by the surface magneto-optic Kerr effect. Some interesting magnetic properties were observed. The location of Ag atoms on Co sites seems to prevent the spin reversal of Co. The saturated magnetization is not significantly changed after Ag ultrathin films are deposited on the Co/Pt(1 1 1) surfaces. The Curie temperatures increase after the Ag ultrathin film deposition. During thermal annealing, the out-of-plane magnetization in the Ag capped films is enhanced dramatically. The structural changes and the evolution of the chemical composition at the interfaces during the annealing were studied by low-energy electron diffraction and Auger electron spectroscopy, respectively. The giant enhancement of the out-of-plane magnetization is due to the formation of Co-Pt alloy and Ag overlayer improving the interface structure.

  19. Paper-like graphene-Ag composite films with enhanced mechanical and electrical properties.

    PubMed

    Gao, Rungang; Hu, Nantao; Yang, Zhi; Zhu, Qirong; Chai, Jing; Su, Yanjie; Zhang, Liying; Zhang, Yafei

    2013-01-01

    In this paper, we have reported that paper-like graphene-Ag composite films could be prepared by a facile and novel chemical reduction method at a large scale. Using ascorbic acid as a reducing agent, graphene oxide films dipped in Ag+ aqueous solutions can be easily reduced along with the decoration of different sizes of Ag particles distributed uniformly. The results reveal that the obtained films exhibit improved mechanical properties with the enhancement of tensile strength and Young's modulus by as high as 82% and 136%, respectively. The electrical properties of graphene-Ag composite films were studied as well, with the sheet resistance of which reaching lower than approximately 600 Ω/□. The graphene-Ag composite films can be expected to find interesting applications in the area of nanoelectronics, sensors, transparent electrodes, supercapacitors, and nanocomposites. PMID:23324465

  20. Surface modified hydroxyapatite thick films for CO 2 gas sensing application: Effect of swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Mene, Ravindra U.; Mahabole, Megha P.; Khairnar, Rajendra S.

    2011-06-01

    Swift heavy ion irradiation (SHI) is used to modify the structural and gas sensing properties of Hydroxyapatite (HAp) thick films. The HAp thick films, prepared by screen printing technique, are irradiated with a variable fluence (3×10 10 to 3×10 13 ions/cm 2) of Ag 7+ ions of 100 MeV energy. XRD shows gradual change in crystallinity of the matrix with increase in ion fluence. Atomic force microscopy reveals the agglomeration of grains with pronounced cluster type structure at relatively higher ion fluence. For confirmation of efficient gas sensing of pristine and irradiated HAp thick films, repeatability and reproducibility tests are conducted in a carbon dioxide atmosphere. The parameters responsible for device applications such as, gas uptake capacity, response to test gas and recovery time of HAp film sensor are also investigated. SHI modified HAp films show the maximum enhancement in the gas response and also in increased gas uptake capacity for the fluence 3×10 11 ions/cm 2. Moreover, SHI has resulted in modification of gas response and recovery time for CO 2 gas. The remarkable observation is to note that SHI irradiation improves the sensor characteristics of the HAp films without affecting the working temperature (165 °C) of gas sensor.

  1. Auto-calibration of ultrasonic lubricant-film thickness measurements

    NASA Astrophysics Data System (ADS)

    Reddyhoff, T.; Dwyer-Joyce, R. S.; Zhang, J.; Drinkwater, B. W.

    2008-04-01

    The measurement of oil film thickness in a lubricated component is essential information for performance monitoring and design. It is well established that such measurements can be made ultrasonically if the lubricant film is modelled as a collection of small springs. The ultrasonic method requires that component faces are separated and a reference reflection recorded in order to obtain a reflection coefficient value from which film thickness is calculated. The novel and practically useful approach put forward in this paper and validated experimentally allows reflection coefficient measurement without the requirement for a reference. This involves simultaneously measuring the amplitude and phase of an ultrasonic pulse reflected from a layer. Provided that the acoustic properties of the substrate are known, the theoretical relationship between the two can be fitted to the data in order to yield reflection coefficient amplitude and phase for an infinitely thick layer. This is equivalent to measuring a reference signal directly, but importantly does not require the materials to be separated. The further valuable aspect of this approach, which is demonstrated experimentally, is its ability to be used as a self-calibrating routine, inherently compensating for temperature effects. This is due to the relationship between the amplitude and phase being unaffected by changes in temperature which cause unwanted changes to the incident pulse. Finally, error analysis is performed showing how the accuracy of the results can be optimized. A finding of particular significance is the strong dependence of the accuracy of the technique on the amplitude of reflection coefficient input data used. This places some limitations on the applicability of the technique.

  2. Method for making thick and/or thin film

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-11-02

    A method to make thick or thin films a very low cost. The method is generally similar to the conventional tape casting techniques while being more flexible and versatile. The invention involves preparing a slip (solution) of desired material and including solvents such as ethanol and an appropriate dispersant to prevent agglomeration. The slip is then sprayed on a substrate to be coated using an atomizer which spreads the slip in a fine mist. Upon hitting the substrate, the solvent evaporates, leaving a green tape containing the powder and other additives, whereafter the tape may be punctured, cut, and heated for the desired application. The tape thickness can vary from about 1 .mu.m upward.

  3. Residual stress measurement and microstructural characterization of thick beryllium films

    SciTech Connect

    Detor, A; Wang, M; Hodge, A M; Chason, E; Walton, C; Hamza, A V; Xu, H; Nikroo, A

    2008-02-11

    Beryllium films are synthesized by a magnetron sputtering technique incorporating in-situ residual stress measurement. Monitoring the stress evolution in real time provides quantitative through-thickness information on the effects of various processing parameters, including sputtering gas pressure and substrate biasing. Specimens produced over a wide range of stress states are characterized via transmission and scanning electron microscopy, and atomic force microscopy, in order to correlate the stress data with microstructure. A columnar grain structure is observed for all specimens, and surface morphology is found to be strongly dependent on processing conditions. Analytical models of stress generation are reviewed and discussed in terms of the observed microstructure.

  4. Observation of Cavity QED in thick dielectric films

    NASA Astrophysics Data System (ADS)

    Sarabi, Bahman; Ramanayaka, A. N.; Gladchenko, S.; Stoutimore, M. J. A.; Khalil, M. S.; Osborn, K. D.

    2013-03-01

    Cavity QED in amorphous dielectrics is investigated by measuring five linear superconducting resonators with thick dielectric films and capacitor volumes ranging from 80 μm3 to 5000 μm3. In the smallest volume dielectrics we observe additional resonances which may be explained by CQED, despite the dielectric volume which is many orders of magnitude larger than Josephson junction barrier volumes. In addition to the volume dependence of the CQED resonances, we will report on the stability of the resonances in time and the phase noise. This research allows new fundamental studies on TLS phenomena in meso-volume amorphous dielectrics.

  5. Thick film magnetic nanoparticulate composites and method of manufacture thereof

    NASA Technical Reports Server (NTRS)

    Ma, Xinqing (Inventor); Zhang, Yide (Inventor); Ge, Shihui (Inventor); Zhang, Zongtao (Inventor); Yan, Dajing (Inventor); Xiao, Danny T. (Inventor)

    2009-01-01

    Thick film magnetic/insulating nanocomposite materials, with significantly reduced core loss, and their manufacture are described. The insulator coated magnetic nanocomposite comprises one or more magnetic components, and an insulating component. The magnetic component comprises nanometer scale particles (about 1 to about 100 nanometers) coated by a thin-layered insulating phase. While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase provides the desired soft magnetic properties, the insulating material provides high resistivity, which reduces eddy current loss.

  6. Thick film fabrication of aluminum nitride microcircuits. Final report

    SciTech Connect

    Perdieu, L.H.

    1994-03-01

    A new substrate material, aluminum nitride (AlN), and 11 new thick film inks were analyzed to determine their chemical compatibility, their electrical properties, their mechanical properties, and their overall suitability for use in the manufacturing of high-power microcircuits with efficient thermal properties. Because high-power chips emit a great deal of heat in a small surface area, a new substrate material was needed to dissipate that heat faster than the substrate material currently in use. Overall, the new materials were found to be acceptable for accomplishing this purpose.

  7. The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films

    NASA Astrophysics Data System (ADS)

    Politano, Antonio; Chiarello, Gennaro

    2015-05-01

    Plasmons are collective longitudinal modes of charge fluctuation in metal samples excited by an external electric field. Surface plasmons (SPs) are waves that propagate along the surface of a conductor. SPs find applications in magneto-optic data storage, optics, microscopy, and catalysis. The investigation of SPs in silver and gold is relevant as these materials are extensively used in plasmonics. The theoretical approach for calculating plasmon modes in noble metals is complicated by the existence of localized d electrons near the Fermi level. Nevertheless, recent calculations based on linear response theory and time-dependent local density approximation adequately describe the dispersion and damping of SPs in noble metals. Furthermore, in thin films the electronic response is influenced by electron quantum confinement. Confined electrons modify the dynamical screening processes at the film/substrate interface by introducing novel properties with potential applications. The presence of quantum well states in the Ag and Au overlayer affects both the dispersion relation of SP frequency and the damping processes of the SP. Recent calculations indicate the emergence of acoustic surface plasmons (ASP) in Ag thin films exhibiting quantum well states. The slope of the dispersion of ASP decreases with film thickness. High-resolution electron energy loss spectroscopy (HREELS) is the main experimental technique for investigating collective electronic excitations, with adequate resolution in both the energy and momentum domains to investigate surface modes. Herein we review on recent progress of research on collective electronic excitations in Ag and Au films deposited on single-crystal substrates.

  8. Film thickness for different regimes of fluid-film lubrication. [elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1983-01-01

    Mathematical formulas are presented which express the dimensionless minimum film thickness for the four lubrication regimes found in elliptical contacts: isoviscous-rigid regime; piezoviscous-rigid regime; isoviscous-elastic regime; and piezoviscous-elastic regime. The relative importance of pressure on elastic distortion and lubricant viscosity is the factor that distinguishes these regimes for a given conjunction geometry. In addition, these equations were used to develop maps of the lubrication regimes by plotting film thickness contours on a log-log grid of the dimensionless viscosity and elasticity parameters for three values of the ellipticity parameter. These results present a complete theoretical film thickness parameter solution for elliptical constants in the four lubrication regimes. The results are particularly useful in initial investigations of many practical lubrication problems involving elliptical conjunctions.

  9. Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti-Ag and Nb-Ag thin films.

    PubMed

    Wojcieszak, D; Mazur, M; Kaczmarek, D; Mazur, P; Szponar, B; Domaradzki, J; Kepinski, L

    2016-05-01

    In this study the comparative investigations of structural, surface and bactericidal properties of Ti-Ag and Nb-Ag thin films have been carried out. Ti-Ag and Nb-Ag coatings were deposited on silicon and fused silica substrates by magnetron co-sputtering method using innovative multi-target apparatus. The physicochemical properties of prepared thin films were examined with the aid of X-ray diffraction, grazing incidence X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy methods. Moreover, the wettability of the surface was determined. It was found that both, Ti-Ag and Nb-Ag thin films were nanocrystalline. In the case of Ag-Ti film presence of AgTi3 and Ag phases was identified, while in the structure of Nb-Ag only silver occurred in a crystal form. In both cases the average size of crystallites was ca. 11 nm. Moreover, according to scanning electron microscopy and atomic force microscopy investigations the surface of Nb-Ag thin films was covered with Ag-agglomerates, while Ti-Ag surface was smooth and devoid of silver particles. Studies of biological activity of deposited coatings in contact with Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus hirae, Klebisiella pneumoniae, Escherichia coli, Staphylococcus aureus and Candida albicans were performed. It was found that prepared coatings were bactericidal and fungicidal even in a short term-contact, i.e. after 2 h. PMID:26952401

  10. Effects of accumulated film layers on the accuracy of quartz film thickness monitors

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Miller, W. E.

    1978-01-01

    The effect of accumulation layers on the accuracy of quartz thin-film thickness monitors is evaluated. Use of an expanded plane wave ultrasonic propagation theory correctly accounts for observed experimental data. The magnitude of the maximum errors calculated for simply reversing the order of a series of aluminum gold deposits is on the order of 5%. If one totally neglects intervening layers, multiple film propagation and nonlinearity can produce errors greater than 50%.

  11. Mildly reduced graphene oxide-Ag nanoparticle hybrid films for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Li, Xiaocheng; Tay, Beng Kang; Li, Junshuai; Tan, Dunlin; Tan, Chong Wei; Liang, Kun

    2012-04-01

    Large-area mildly reduced graphene oxide (MR-GO) monolayer films were self-assembled on SiO2/Si surfaces via an amidation reaction strategy. With the MR-GO as templates, MR-GO-Ag nanoparticle (MR-GO-Ag NP) hybrid films were synthesized by immersing the MR-GO monolayer into a silver salt solution with sodium citrate as a reducing agent under UV illumination. SEM image indicated that Ag NPs with small interparticle gap are uniformly distributed on the MR-GO monolayer. Raman spectra demonstrated that the MR-GO monolayer beneath the Ag NPs can effectively quench the fluorescence signal emitted from the Ag films and dye molecules under laser excitation, resulting in a chemical enhancement (CM). The Ag NPs with narrow gap provided numerous hot spots, which are closely related with electromagnetic mechanism (EM), and were believed to remarkably enhance the Raman signal of the molecules. Due to the co-contribution of the CM and EM effects as well as the coordination mechanism between the MR-GO and Ag NPs, the MR-GO-Ag NP hybrid films showed more excellent Raman signal enhancement performance than that of either Ag films or MR-GO monolayer alone. This will further enrich the application of surface-enhanced Raman scattering in molecule detection.

  12. Synthesis of nanoscale Fe-Ag alloy within thermally evaporated fatty acid films

    NASA Astrophysics Data System (ADS)

    Damle, Chinmay; Biswas, Kushan; Sastry, Murali

    2002-02-01

    The low-temperature alloying of Fe-Ag nanoparticles entrapped within thermally evaporated fatty acid films by a novel ion exchange technique is described. Nanoparticles of iron and silver were grown in thermally evaporated stearic acid (StA) films by sequential immersion of the film in solutions containing Fe2+ ions and Ag+ ions followed by their in situ reduction at each stage. Entrapment of Fe2+ and Ag+ ions in the StA film occurs by selective electrostatic binding with the carboxylate ions in the fatty acid matrix. Thereafter, the metal ions were reduced in situ to yield nanoparticles of Fe and Ag of ca. 35 nm diameter within the fatty acid matrix. Thermal treatment of the StA-(Fe + Ag) nanocomposite film at 200 °C resulted in the formation of an Fe-Ag alloy. Prolonged heat treatment at 250 °C resulted in the phase separation of the alloy and the re-formation of individual Fe and Ag nanoparticles. The process of Fe2+ and Ag+ ion incorporation in the StA matrix and synthesis of the Fe-Ag alloy were followed by quartz crystal microgravimetry, Fourier transform infrared spectroscopy, transmission electron microscopy and x-ray diffraction measurements.

  13. Nitrogen dioxide sensing properties of sprayed tungsten oxide thin film sensor: Effect of film thickness.

    PubMed

    Ganbavle, V V; Mohite, S V; Agawane, G L; Kim, J H; Rajpure, K Y

    2015-08-01

    We report a study on effect of film thickness on NO2 sensing properties of sprayed WO3 thin films. WO3 thin films varying in thicknesses are deposited onto the glass substrates by simple spray pyrolysis technique by varying the volume of spray solution.Thin film gas sensors are characterized by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and photoluminescence (PL) techniques to study their physical properties. Film having thickness 745nm has shown highest gas response of 97% with 12 and 412s response and recovery times, respectively towards 100ppm NO2 concentration. Gas response of 20% is observed towards 10ppm NO2 at 200°C operating temperature. Sensitivity of the optimal sensor is 0.83%/ppm when operating at 200°C with 10ppm lower detection limit. The response of the sensor is reproducible and WO3 films are highly selective towards NO2 in presence of mist of various interfering gases viz. H2S, NH3, LPG, CO and SO2. PMID:25898119

  14. Low emissivity Ag/Ta/glass multilayer thin films deposited by sputtering

    SciTech Connect

    Park, Sun Ho; Lee, Kee Sun; Sivasankar Reddy, A.

    2011-09-15

    Ta is deposited on a glass substrate as an interlayer for the two-dimensional growth of Ag thin films because Ta has good thermal stability and can induce a negative surface-energy change in Ag/glass. From the transmission electron microscopy results, we concluded that the Ag crystals in the bottom layer (seemingly on Ag/Ta) were flattened; this was rarely observed in the three-dimensional growth mode. Comparing Ag/Ta/glass with Ag/glass, we found that the Ta interlayer was effective in reducing both the resistance and the emissivity, accompanied by the relatively high transmittance in the visible region. In particular, Ag(9 nm)/Ta(1 nm)/glass film showed 0.08 of the emissivity, including {approx}61% of the transmittance in the visible region (wavelength: 550 nm).

  15. Environmentally compatible solder materials for thick film hybrid assemblies

    SciTech Connect

    Hosking, F.M.; Vianco, P.T.; Rejent, J.A.; Hernandez, C.L.

    1997-02-01

    New soldering materials and processes have been developed over the last several years to address a variety of environmental issues. One of the primary efforts by the electronics industry has involved the development of alternative solders to replace the traditional lead-containing alloys. Sandia National Laboratories is developing such alternative solder materials for printed circuit board and hybrid microcircuit (HMC) applications. This paper describes the work associated with low residue, lead-free soldering of thick film HMC`s. The response of the different materials to wetting, aging, and mechanical test conditions was investigated. Hybrid test vehicles were designed and fabricated with a variety of chip capacitors and leadless ceramic chip carriers to conduct thermal, electrical continuity, and mechanical evaluations of prototype joints. Microstructural development along the solder and thick film interface, after isothermal solid state aging over a range of elevated temperatures and times, was quantified using microanalytical techniques. Flux residues on soldered samples were stressed (temperature-humidity aged) to identify potential corrosion problems. Mechanical tests also supported the development of a solder joint lifetime prediction model. Progress of this effort is summarized.

  16. Na+ and Li+ NASICON Superionic Conductors Thick Films

    NASA Astrophysics Data System (ADS)

    Perthuis, H.; Velasco, G.; Colomban, Ph.

    1984-05-01

    For microionic applications, superionic conductors have been elaborated in the form of thick films, using silk-screen printable powders. Na3Zr2Si2PO12, Na3.1Zr1.55Si2.3P0.7O11 and Li0.8Zr1.8Ta0.2(PO4)3 compositions are synthesized by a sol-gel process involving hydrolysis-polycondensation reactions of metal-organic alcoholic solutions. A thermal treatment (600°C-800°C) allows to obtain very fine particles (<1 μm) with the pure NASICON phase. Inks are prepared with these powders, an organic binder, volatile fluidifying agents and mineralizers. The layers, about 50 μm in thickness, are achieved by successive deposits and sinterings (950°C-1050°C) onto alumina substrates. Films conductivity is determined by the complex impedance method. Values measured at 300°C (Na+: σ˜10-2 Ω-1cm-1, EA{=}0.25 eV, Li+: σ˜5 10-4 Ω-1cm-1, EA{=}0.5 eV) reach those obtained with well-densified ceramics. An anisotropic behaviour related to microstructure is pointed out.

  17. Linear magnetoresistance in Ag2+δSe thin films

    NASA Astrophysics Data System (ADS)

    von Kreutzbruck, M.; Lembke, G.; Mogwitz, B.; Korte, C.; Janek, J.

    2009-01-01

    In the nonstoichiometric low-temperature phase of silver selenide a very small silver excess within the semiconducting silver selenide matrix in the order of 0.01% is sufficient to generate a linear magnetoresistance (LMR) of more than 300% at 5 T, which does not saturate at fields up to 60 T. Different theoretical models have been proposed to explain this unusual magnetoresistance (MR) behavior, among them a random resistor network consisting of four-terminal resistor units. According to this model the LMR and the crossover field from linear to quadratic behavior are primarily controlled by both the spatial distribution of the charge-carrier mobility and its average value, being essentially functions of the local and average compositions. Here we report measurements on silver-rich thin AgxSe films with a thickness between 20 nm and 2μm , which show an increasing average mobility in conjunction with an enhanced MR for increasing film thickness. We found a linear scaling between the size of the transverse LMR and the crossover field, as predicted by the theory. For films thinner than about 100 nm the MR with field directed in the sample plane shows a breakdown of the LMR, revealing the physical length scale of the inhomegeneities in thin AgxSe devices.

  18. Conductive and transparent multilayer films for low-temperature TiO2/Ag/SiO2 electrodes by E-beam evaporation with IAD

    PubMed Central

    2014-01-01

    Conductive and transparent multilayer thin films consisting of three alternating layers (TiO2/Ag/SiO2, TAS) have been fabricated for applications as transparent conducting oxides. Metal oxide and metal layers were prepared by electron-beam evaporation with ion-assisted deposition, and the optical and electrical properties of the resulting films as well as their energy bounding characteristics and microstructures were carefully investigated. The optical properties of the obtained TAS material were compared with those of well-known transparent metal oxide glasses such as ZnO/Ag/ZnO, TiO2/Ag/TiO2, ZnO/Cu/ZnO, and ZnO/Al/ZnO. The weathering resistance of the TAS film was improved by using a protective SiO2 film as the uppermost layer. The transmittance spectra and sheet resistance of the material were carefully measured and analyzed as a function of the layer thickness. By properly adjusting the thickness of the metal and dielectric films, a low sheet resistance of 6.5 ohm/sq and a high average transmittance of over 89% in the 400 to 700 nm wavelength regions were achieved. We found that the Ag layer played a significant role in determining the optical and electrical properties of this film. PMID:24433437

  19. Ultrasonic measurement of lubricant film thickness in sliding bearings with thin liners

    NASA Astrophysics Data System (ADS)

    Geng, Tao; Meng, Qingfeng; Zhang, Kai; Yuan, Xiaoyang; Jia, Qian

    2015-02-01

    When conducting ultrasonic measurements of the lubricant film thickness in sliding bearings with thin liners, the ultrasonic pulse reflected from the bearing liner-lubricant film interface will superimpose on the pulse reflected from the bearing substrate-liner interface. The thickness information of the lubricant film is contained in the reflected pulse from the liner-lubricant film interface. In this case, the film thickness could not be obtained directly from the superimposed reflected signals. The thin liner indicates that the thickness of the bearing liner is less than half the ultrasonic pulse width. Based on the spectrum analysis method of superimposed signals, a new method is proposed to measure the lubricant film thickness in sliding bearings with thin liners. The frequency-domain amplitude ratio between the echo component containing thickness information and the steady echo component from the bearing substrate-liner interface is extracted from the superimposed signal. The reflection coefficient of the liner-lubricant film interface is obtained by this amplitude ratio to determine the film thickness. The lubricant films of different thicknesses in a thin-liner thrust pad were measured in a high-precision experimental apparatus. The measurement results were compared with the known film thickness set by the experimental apparatus. In the thinner film region, the measurement results agreed well with the set film thickness. In the thicker film region, the mean values of the multiple measurement results represented the film thickness. The experimental results show that the method can be used to measure the lubricant film thickness in sliding bearings with thin liners.

  20. Surface plasmon resonance in nanostructured Ag incorporated ZnS films

    SciTech Connect

    Chalana, S. R.; Mahadevan Pillai, V. P.; Ganesan, V.

    2015-10-15

    Silver incorporated zinc sulfide thin films are prepared by RF magnetron sputtering technique and the influence of silver incorporation on the structural, optical and luminescence properties is analyzed using techniques like grazing incidence X-Ray diffraction (GIXRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), micro-Raman spectroscopy, UV-Vis spectroscopy and laser photoluminescence spectroscopy. XRD analysis presents hexagonal wurtzite structure for the films. A reduction of crystallinity of the films is observed due to Ag incorporation. The Raman spectral analysis confirms the reduction of crystallinity and increase of strain due to the Ag incorporation. AFM analysis reveals a rough surface morphology for the undoped film and Ag incorporation makes the films uniform, dense and smooth. A blue shift of band gap energy with increase in Ag incorporation is observed due to quantum confinement effect. An absorption band (450-650 nm region) due to surface plasmon resonance of the Ag clusters present in the ZnS matrix is observed for the samples with higher Ag incorporation. The complex dielectric constant, loss factor and distribution of volume and surface energy loss of the ZnS thin films are calculated. Laser photoluminescence measurements gives an intense bluish green emission from the ZnS films and a quenching of the PL emission is observed which can be due to the metal plasmonic absorption and non-radiative energy transfer due to Ag incorporation.

  1. Thickness and temperature dependence of stress relaxation in nanoscale aluminum films

    NASA Astrophysics Data System (ADS)

    Hyun, S.; Brown, W. L.; Vinci, R. P.

    2003-11-01

    We have found that stress relaxation of nanoscale Al thin films is strongly dependent on both film thickness and temperature. Films 33, 107, and 205 nm thick prepared by evaporation onto a silicon nitride membrane substrate were studied using membrane resonance. A single thermal cycle to 300 °C was used to establish a stress, after which the time dependence of the stress was measured for the three film thicknesses at 50, 75, and 100 °C. The relaxation rate is highest for the highest temperature and the thinnest film. A dislocation locking mechanism is suggested as a possible explanation for the observed thickness dependence.

  2. Liquid phase epitaxy of REBCO (RE=Y, Sm) thick films on YBCO thin film deposited on LAO substrate

    NASA Astrophysics Data System (ADS)

    Guo, L. S.; Chen, Y. Y.; Cheng, L.; Li, W.; Xiong, J.; Tao, B. W.; Yao, X.

    2013-03-01

    By employing YBCO/LAO thin films as seeds, we succeeded in growing REBa2Cu3Ox (REBCO, RE=Y, Sm) thick films via the LPE method in air. Remarkably, a completely covered YBCO thick film with the c-axis orientation was achieved. Moreover, SmBCO LPE films were effectively induced by the YBCO/LAO thin films at a processing temperature of 1055 °C, indicating that the YBCO/LAO thin film possesses a superheating property. Compared with the YBCO/MgO thin film, the YBCO/LAO thin film has a potentially higher thermal stability in LPE, due to its better lattice fitness at the film/substrate interface. On the other hand, compared to the thick films induced by NdGaO3 (NGO) substrates, YBCO/LAO thin-film-seeded thick films have the broad average spacing of about 150 μm between adjacent cracks, almost five times wider than the former, which benefits the practical application in electronic devices. In short, the YBCO/LAO thin film becomes a third promising candidate for inducing REBCO LPE thick films, combined with conventionally used YBCO/MgO thin films and single-crystal NGO substrates.

  3. Influence of colorant and film thickness on thermal aging characteristics of oxo-biodegradable plastic bags

    NASA Astrophysics Data System (ADS)

    Leuterio, Giselle Lou D.; Pajarito, Bryan B.; Domingo, Carla Marie C.; Lim, Anna Patricia G.

    2016-05-01

    Functional, lightweight, strong and cheap plastic bags incorporated with pro-oxidants undergo accelerated degradation under exposure to heat and oxygen. This work investigated the effect of colorant and film thickness on thermal aging characteristics of commercial oxo-biodegradable plastic bag films at 70 °C. Degradation is monitored through changes in infrared absorption, weight, and tensile properties of thermally aged films. The presence of carbonyl band in infrared spectrum after 672 h of thermal aging supports the degradation behavior of exposed films. Results show that incorporation of colorant and increasing thickness exhibit low maximum weight uptake. Titanium dioxide as white colorant in films lowers the susceptibility of films to oxygen uptake but enhances physical degradation. Higher amount of pro-oxidant loading also contributes to faster degradation. Opaque films are characterized by low tensile strength and high elastic modulus. Decreasing the thickness contributes to lower tensile strength of films. Thermally aged films with colorant and low thickness promote enhanced degradation.

  4. Characterization of radiative recombination in Ag(In,Ga)Se2 thin films by photoluminescence

    NASA Astrophysics Data System (ADS)

    Zhang, X. F.; Liu, J.; Liu, G. F.

    2016-06-01

    A detailed analysis of the radiative recombination processes in Ag(InGa)Se2 thin films grown by a three-stage method was carried out by photoluminescence. The temperature and excitation dependence of the photoluminescence spectra was used to identify the recombination types and determine the ionization energy of the defects in the films. Significant differences were observed between the spectra of the Ag-rich and Ag-poor samples. The Ag-rich films were dominated by two emission peaks of donor acceptor pairs (DAPs). The DAP at lower energy level is attributed to recombination of donor level 13.8 meV (Agi) with acceptor level 70.3 meV (AgIn), while the one at high energy level is assigned to recombination of donor level 18.5 meV (Agi) with acceptor level 108.9 (AgSe). When Ag/III atomic ratio was near 2.00, a phonon related-structure began to appear, which is attributed to the phonon replica of the high energy level DAP. In the case of Ag-poor AIGS samples, the dominant broad asymmetric peaks of AIGS films with different Ag/III atomic ratios were related to potential fluctuation at low temperature, and the compensation level decreased with increasing Ag/III atomic ratio. The emission line was assigned to recombination of donor level 12.7 meV (Agi) with acceptor level 175 meV ( AgGa 2). When the excitation power and temperature were increased, new free-bound and DAP emission lines began to appear. The free-bound was assigned to the transition from the conduction band to an acceptor level of 80 meV (AgIn). The DAP was assigned to recombination of donor level 20 meV (VSe) with acceptor level 145 meV (AgGa).

  5. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    DOE PAGESBeta

    Paik, Haemin; Choi, Yoon -Young; Hong, Seungbum; No, Kwangsoo

    2015-09-04

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increasemore » of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. The enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles.« less

  6. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    SciTech Connect

    Paik, Haemin; Choi, Yoon -Young; Hong, Seungbum; No, Kwangsoo

    2015-09-04

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increase of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. The enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles.

  7. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    PubMed Central

    Paik, Haemin; Choi, Yoon-Young; Hong, Seungbum; No, Kwangsoo

    2015-01-01

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increase of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. These enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles. PMID:26336795

  8. Microbial biosensor for free fatty acids using an oxygen electrode based on thick film technology.

    PubMed

    Schmidt, A; Standfuss-Gabisch, C; Bilitewski, U

    1996-01-01

    A microbial biosensor based on thick film technology was developed. The microorganisms, Arthrobacter nicotianae, were immobilized in Ca-alginate directly on the electrode surface. For the stability of the calcium alginate gel the addition of 0.5 mM CaCl2 to the assay buffer was necessary. The respiratory activity of the microorganisms was monitored by oxygen consumption at -600 mV vs. Ag/AgCl reference electrode. The sensor was used in a batch system and was applied to the determination of free fatty acids in milk. Short-chain fatty acids (C4:0-C12:0) were the preferential substrates, with butyric acid being the main substrate. Consequently, the concentration of free short-chain fatty acids was represented as the butyric acid equivalent. The sensor showed linearity over the concentration range 9.5-165.5 microM (correlation coefficient, r = 0.99920). The response time of the sensor was approximately 3 min. No additional dialysis membrane was necessary, which led to a high sensitivity of the sensor and fast response times. Recovery rates of 98-113% were found for butyric acid in milk samples using the sensor without any additional membrane and a sample dilution of 200 by the assay. Two widespread disadvantages of microbial sensors, long response times and long times to return to the baseline signal after use, could be overcome. PMID:8828165

  9. Relation between molecule ionization energy, film thickness and morphology of two indandione derivatives thin films

    NASA Astrophysics Data System (ADS)

    Grzibovskis, Raitis; Vembris, Aivars; Pudzs, Kaspars

    2016-08-01

    Nowadays most organic devices consist of thin (below 100 nm) layers. Information about the morphology and energy levels of thin films at such thickness is essential for the high efficiency devices. In this work we have investigated thin films of 2-(4-[N,N-dimethylamino]-benzylidene)-indene-1,3-dione (DMABI) and 2-(4-(bis(2-(trityloxy)ethyl)amino)benzylidene)-2H-indene-1,3-dione (DMABI-6Ph). DMABI-6Ph is the same DMABI molecule with attached bulky groups which assist formation of amorphous films from solutions. Polycrystalline structure was obtained for the DMABI thin films prepared by thermal evaporation in vacuum and amorphous structure for the DMABI-6Ph films prepared by spin-coating method. Images taken by SEM showed separate crystals or islands at the thickness of the samples below 100 nm. The ionization energy of the studied compounds was determined using photoemission yield spectroscopy. A vacuum level shift of 0.40 eV was observed when ITO electrode was covered with the thin film of the organic compound. Despite of the same active part of the investigated molecules the ITO/DMABI interface is blocking electrons while ITO/DMABI-6Ph interface is blocking holes.

  10. Magnetic Probe Construction using Thick-film Technology

    SciTech Connect

    Takahashi, H.; Sakakibara, S.; Kubota, Y.; and Yamada, H.

    2001-02-02

    Thick-film technology has been successfully adapted for the design and fabrication of magnetic probes of a new type suitable for use in the simultaneous ultra-high vacuum and high-temperature environment of a nuclear fusion device. The maximum usable temperature is expected to be around 900 degrees C. This new probe has a specific sensitivity (coupling area per unit volume) an order of magnitude higher than a conventional coil. The new probe in one implementation is capable of simultaneously measuring magnetic field in three orthogonal directions about a single spatial point and in two frequency ranges. Low-frequency coils have a measured coupling area of 296-323 cm squared and a frequency response of about 300 kHz. High-frequency coils have a design coupling area of 12-15 cm squared.

  11. LTCC Phase Shifters Based on Tunable Ferroelectric Composite Thick Films

    NASA Astrophysics Data System (ADS)

    Nikfalazar, M.; Kohler, C.; Heunisch, A.; Wiens, A.; Zheng, Y.; Schulz, B.; Mikolajek, M.; Sohrabi, M.; Rabe, T.; Binder, J. R.; Jakoby, R.

    2015-11-01

    This paper presents, the investigation of tunable components based on LTCC technology, implementing ferroelectric tunable thick-film dielectric. The tunable loaded line phase shifters are fabricated with metal-insulator-metal (MIM) varactors to demonstrate the capabilities of this method for packaging of the tunable components. The MIM varactors consist of one tunable dielectric paste layer that is printed between two silver layers. The tunable ferroelectric paste is optimized for LTCC sintering temperature around 850°C. The phase shifters are fabricated in two different process. They were achieved a figure of merit of 24°/dB (phase shift 192°) at 3 GHz and 18°/dB (phase shift 98°) at 4.4 GHz by using seven unit cells that each unit cell consisting of two MIM varactors.

  12. Development of metal oxide impregnated stilbite thick film ethanol sensor

    NASA Astrophysics Data System (ADS)

    Mahabole, M. P.; Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S.

    2016-05-01

    This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO2 and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.

  13. Electroplating moulds using dry film thick negative photoresist

    NASA Astrophysics Data System (ADS)

    Kukharenka, E.; Farooqui, M. M.; Grigore, L.; Kraft, M.; Hollinshead, N.

    2003-07-01

    This paper reports on progress on the feasibility of fabricating moulds for electroplating using Ordyl P-50100 (negative) acrylate polymer based dry film photoresist, commercially available from Elga Europe (http://www.elgaeurope.it). We used this photoresist as an alternative to SU8 negative epoxy based photoresist, which is very difficult to process and remove after electroplating (Lorenz et al 1998 Microelectron. Eng. 41/42 371-4, Eyre et al 1998 Proc. MEMS'98 (Heidelberg) (Piscataway, NJ: IEEE) pp 218-22). Ordyl P-50100 is easy to work with and can be easily removed after processing. A single layer of Ordyl P-50100 was deposited by lamination up to 20 µm thickness. Thicker layers (200 µm and more) can be achieved with multilayer lamination using a manual laminator. For our applications we found that Ordyl P-50100 dry film photoresist is a very good alternative to SU8 for the realization of 100 µm high moulds. The results presented will open up new possibilities for low-cost LIGA-type processes for MEMS applications.

  14. Potentiometric RuO2-Ta2O5 pH sensors fabricated using thick film and LTCC technologies.

    PubMed

    Manjakkal, Libu; Zaraska, Krzysztof; Cvejin, Katarina; Kulawik, Jan; Szwagierczak, Dorota

    2016-01-15

    The paper reports on the preparation, properties and application of potentiometric pH sensors with thick film RuO2-Ta2O5 sensing electrode and Ag/AgCl/KCl reference electrode screen printed on an alumina substrate. Furthermore, it presents fabrication procedure and characterization of a new miniaturized pH sensor on LTCC (low temperature cofired ceramics) substrate, destined for wireless monitoring. The crystal structure, phase and elemental composition, and microstructure of the films were investigated by X-ray diffractometry, Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy. Potentiometric characterization was performed in a wide pH range of 2-12 for different storage conditions and pH loops. The advantages of the proposed thick film pH sensors are: (a) low cost and easy fabrication, (b) excellent sensitivity close to the Nernstian response (56mV/pH) in the wide pH range, (c) fast response, (d) long lifetime, (e) good reproducibility, (f) low hysteresis and drift effects, and (g) low cross-sensitivity towards Li(+), Na(+) and K(+) as interfering ions. The applicability of the sensors for pH measurement of river, tap and distilled water, and some drinks was also tested. PMID:26592601

  15. Holographic recording properties in thick films of ULSH-500 photopolymer

    NASA Astrophysics Data System (ADS)

    Waldman, David A.; Li, H.-Y. S.; Cetin, Erdem A.

    1998-06-01

    The photopolymer holographic recording materials, ULSH-500, based upon cationic ring-opening polymerization, has been further optimized for recording in an increased film thickness of 200 micrometers . The dynamic range attained, at least M/# equals 16, is substantially greater than previously reported, while concurrently the inherent low transverse shrinkage and high sensitivity characteristics of the material have been retained. Dynamic range or cumulative grating strength, (Sigma) (eta) i0.5, has been determined from co-locationally recorded peristrophic and angle multiplexed plane-wave gratings which exhibit low diffraction efficiencies between about 0.1 and 0.2%. Good Bragg selectivity consistent with the imaged thickness and sinc2 function behavior is observed for the multiplexed holograms, and both the angular response and the diffraction efficiency are stable without the need for post-imaging fixing procedures. Sensitivity is in the range of 1 to 10 cm/mJ, and the refractive index modulation achievable during consumption of the accessible dynamic range is n1 equals 1.3 X 10-2 at the read wavelength of 514.5 nm.

  16. Morphology of Monolayer MgO Films on Ag(100): Switching from Corrugated Islands to Extended Flat Terraces

    NASA Astrophysics Data System (ADS)

    Pal, Jagriti; Smerieri, Marco; Celasco, Edvige; Savio, Letizia; Vattuone, Luca; Rocca, Mario

    2014-03-01

    The ability to engineer nearly perfect ultrathin oxide layers, up to the limit of monolayer thickness, is a key issue for nanotechnological applications. Here we face the difficult and important case of ultrathin MgO films on Ag(100), for which no extended and well-ordered layers could thus far be produced in the monolayer limit. We demonstrate that their final morphology depends not only on the usual growth parameters (crystal temperature, metal flux, and oxygen partial pressure), but also on aftergrowth treatments controlling so far neglected thermodynamics constraints. We thus succeed in tuning the shape of the oxide films from irregular, nanometer-sized, monolayer-thick islands to slightly larger, perfectly squared, bilayer islands, to extended monolayers limited apparently only by substrate steps.

  17. Morphology of monolayer MgO films on Ag(100): switching from corrugated islands to extended flat terraces.

    PubMed

    Pal, Jagriti; Smerieri, Marco; Celasco, Edvige; Savio, Letizia; Vattuone, Luca; Rocca, Mario

    2014-03-28

    The ability to engineer nearly perfect ultrathin oxide layers, up to the limit of monolayer thickness, is a key issue for nanotechnological applications. Here we face the difficult and important case of ultrathin MgO films on Ag(100), for which no extended and well-ordered layers could thus far be produced in the monolayer limit. We demonstrate that their final morphology depends not only on the usual growth parameters (crystal temperature, metal flux, and oxygen partial pressure), but also on aftergrowth treatments controlling so far neglected thermodynamics constraints. We thus succeed in tuning the shape of the oxide films from irregular, nanometer-sized, monolayer-thick islands to slightly larger, perfectly squared, bilayer islands, to extended monolayers limited apparently only by substrate steps. PMID:24724662

  18. Magnetic thin film deposition with pulsed magnetron sputtering: deposition rate and film thickness distribution

    NASA Astrophysics Data System (ADS)

    Ozimek, M.; Wilczyński, W.; Szubzda, B.

    2016-02-01

    The goal of conducted study was an experimental determining the relations between technological parameters of magnetron sputtering process on deposition rate (R) and thickness uniformity of magnetic thin films. Planar Ni79Fei6Mo5 target with a diameter of 100 mm was sputtered in argon (Ar) atmosphere. Deposition rate was measured in a function of gas pressure, target power and target-substrate distance. The highest value of R≈280 nmmin-1. The obtained results in deposition rate of magnetic film were compared to deposition rate of cooper (Cu), aluminum (Al), titanium (Ti) and titanium oxide (TiOx) and the deposition rate of Ni-Fe alloy were higher that Al and Ti. The film thickness distribution was measured for radial distance from the target centre ranging up to 60 mm and target-substrate distance ranging form 70 to 115 mm. Among others it was stated that for the larger value of target-substrate distance the larger uniform of film thickness are obtained.

  19. Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness

    PubMed Central

    2014-01-01

    We report on the out-of-plane thermal conductivities of epitaxial Fe3O4 thin films with thicknesses of 100, 300, and 400 nm, prepared using pulsed laser deposition (PLD) on SiO2/Si substrates. The four-point probe three-omega (3-ω) method was used for thermal conductivity measurements of the Fe3O4 thin films in the temperature range of 20 to 300 K. By measuring the temperature-dependent thermal characteristics of the Fe3O4 thin films, we realized that their thermal conductivities significantly decreased with decreasing grain size and thickness of the films. The out-of-plane thermal conductivities of the Fe3O4 films were found to be in the range of 0.52 to 3.51 W/m · K at 300 K. For 100-nm film, we found that the thermal conductivity was as low as approximately 0.52 W/m · K, which was 1.7 to 11.5 order of magnitude lower than the thermal conductivity of bulk material at 300 K. Furthermore, we calculated the temperature dependence of the thermal conductivity of these Fe3O4 films using a simple theoretical Callaway model for comparison with the experimental data. We found that the Callaway model predictions agree reasonably with the experimental data. We then noticed that the thin film-based oxide materials could be efficient thermoelectric materials to achieve high performance in thermoelectric devices. PMID:24571956

  20. The application of the barrier-type anodic oxidation method to thickness testing of aluminum films.

    PubMed

    Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi

    2014-09-01

    The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision. PMID:25273741

  1. The application of the barrier-type anodic oxidation method to thickness testing of aluminum films

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi

    2014-09-01

    The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision.

  2. Structural and nonlinear optical behavior of Ag-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Tan, Ming-Yue; Yao, Cheng-Bao; Yan, Xiao-Yan; Li, Jin; Qu, Shu-Yang; Hu, Jun-Yan; Sun, Wen-Jun; Li, Qiang-Hua; Yang, Shou-Bin

    2016-01-01

    We present the structural and nonlinear optical behavior of Ag-doped ZnO (AZO) films prepared by magnetron sputtering. The structural of AZO films are systematically investigated by X-ray diffraction (XRD) and scanning electronic microscopy (SEM), respectively. The results show that AZO films can still retain a wurtzite structure, although the c-axis as preferred orientation is decreased by Ag doping. As the amounts of the Ag dopant were increased, the crystallinity as well as the absorptivity and optical band gap were increased. Moreover, the nonlinear optical characterized of the AZO films was studied using Z-scan technique. These samples show self-defocusing nonlinearity and good nonlinear absorption behavior which increases with increasing Ag volume fraction. AZO is a potential nanocomposite material for the development of nonlinear optical devices with a relatively small limiting threshold.

  3. Structural and Critical Behaviors of Ag Rough Films Deposited on Liquid Substrates

    NASA Astrophysics Data System (ADS)

    Ye, Gao-xiang; Feng, Chun-mu; Zhang, Qi-rui; Ge, Hong-liang; Zhang, Xuan-jia

    1996-10-01

    A new Ag rough film system, deposited on silicone oil surfaces by rf-magnetron sputtering method, has been fabricated. The chrysanthemum-like surface morphology at micron length scale is observed. It is proposed that the anomalous critical behavior mainly results from the relative shift between the Ag atom clusters and the substrate. The discussion of the deposition mechanism is also presented.

  4. Nano-Welding of Ag Nanowires Using Rapid Thermal Annealing for Transparent Conductive Films.

    PubMed

    Oh, Jong Sik; Oh, Ji Soo; Shin, Jae Hee; Yeom, Geun Young; Kim, Kyong Nam

    2015-11-01

    Ag nanowire (NW) films obtained by the spraying the Ag NWs on the substrates were nano-welded by rapid thermal annealing (RTA) process and the effect of RTA process on the change of sheet resistance and optical transmittance of the Ag NW films was investigated. The increased number of Ag NW sprays on the substrate decreased the sheet resistance but also decreased the optical transmittance. By the annealing for 60 sec in a nitrogen environment to 225-250 degrees C, the sheet resistance of Ag NW film could be decreased to about 50%, even though it was accompanied by the slight decrease of optical transmittance less than 5%. The decrease of sheet resistance was related to the nano-welding of the Ag NW junctions and the slight decrease of optical transmittance was related local melting of the Ag NWs and spreading on the substrate surface. Through the nano-welding by RTA process, the Ag NW film with the sheet resistance of -20 Ω/sq. and the optical transmittance of 93% could be obtained. PMID:26726568

  5. Nanostructured SnO2 thick films for gas sensor application: analysis of structural and electronic properties

    NASA Astrophysics Data System (ADS)

    Miskovic, Goran; Aleksic, Obrad S.; Nikolic, Maria V.; Nicolics, Johann; Radosavljevic, Goran; Vasiljevic, Zorka Z.; Lukovic, Miloljub D.; Smetana, Walter

    2016-03-01

    This research is focused on structural and electrical characterisation of tin oxide (SnO2) applied as a thick film and investigation of its properties as gas sensitive material. Micron sized SnO2 powder was milled in an agate mill for six hours to fabricate SnO2 nanopowder, which was afterwards sieved by 325 mesh sieve and characterized by XRD and SEM. This powder was used as functional part in the production of thick film tin oxide paste containing a resin vehicle with 4 wt. % nanosize glass frits acting as permanent binder. The glass frits where additionally milled for twelve hours in the agate mills to nanosized powder and sieved by a 325 mesh sieve as well. The achieved thick film paste was screen printed on alumina and fired at 850oC peak temperature for 10 minutes in air. After the sintering process, thick film samples where characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The reflectivity was measured on the same samples by UV-VIS spectrophotometer: the band gap was determined from the slope of reflectance. After that a matrix of different interdigitated electrode structure of PdAg paste was printed and sintered using the mentioned sintering conditions. The tin oxide thick film was printed over the interdigitated electrodes as a top layer and sintered again under the same conditions. The total electrical resistance was measured as a function of the electrode spacing and temperature. A negative temperature coefficient (NTC) was identified and measured in the range from room temperature (27°C) to 180°C in a climate chamber. Finally the samples were placed into a gas reactor with NOx and CO gas and the resistance was measured in the same temperature range (27°C-200°C).

  6. In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography.

    PubMed

    Aranha Dos Santos, Valentin; Schmetterer, Leopold; Gröschl, Martin; Garhofer, Gerhard; Schmidl, Doreen; Kucera, Martin; Unterhuber, Angelika; Hermand, Jean-Pierre; Werkmeister, René M

    2015-08-10

    Dry eye syndrome is a highly prevalent disease of the ocular surface characterized by an instability of the tear film. Traditional methods used for the evaluation of tear film stability are invasive or show limited repeatability. Here we propose a new non-invasive fully automated approach to measure tear film thickness based on spectral domain optical coherence tomography and on an efficient delay estimator. Silicon wafer phantom were used to validate the thickness measurement. The technique was applied in vivo in healthy subjects. Series of tear film thickness maps were generated, allowing for the visualization of tear film dynamics. Our results show that the in vivo central tear film thickness measurements are precise and repeatable with a coefficient of variation of about 0.65% and that repeatable tear film dynamics can be observed. The presented approach could be used in clinical setting to study patients with dry eye disease and monitor their treatments. PMID:26367956

  7. Elastohydrodynamic film thickness formula based on X-ray measurements with a synthetic paraffinic oil

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.; Zaretsky, E. V.

    1973-01-01

    An empirical elastohydrodynamic film thickness formula for heavily loaded contacts based upon X-ray film thickness measurements made with a synthetic paraffinic oil is presented. The deduced relation was found to adequately reflect the high load dependence exhibited by the measured minimum film thickness data at high Hertizian contact stresses, that is, above 1.04 x 10 to the ninth N/sq m (150,000 psi). Comparisons were made with the numerical results from a theoretical isothermal film thickness formula. The effects of changes in contact geometry, material, and lubricant properties on the form of the empirical model are also discussed.

  8. Thickness microscopy based on photothermal radiometry for the measurement of thin films.

    PubMed

    Wang, Liping; Prekel, Helmut; Liu, Hengbiao; Deng, Yanzhuo; Hu, Jiming; Goch, Gert

    2009-03-01

    The photothermal detection technique is an innovative and non-contact method to investigate the properties of films on workpieces. This paper describes a novel experimental set-up for thickness microscopy based on photothermal radiometry. The correlation between the thermal wave signal and the film thickness is deduced and evaluated to determine the film thickness with a lateral resolution of less than 1mm. Results indicate that the thickness microscopy is a useful method to characterize thin films and has the potential to be applied in-process. PMID:19046925

  9. Non-linear dynamics of inlet film thickness during unsteady rolling process

    NASA Astrophysics Data System (ADS)

    Fu, Kuo; Zang, Yong; Gao, Zhiying; Qin, Qin; Wu, Diping

    2016-05-01

    The inlet film thickness directly affects film and stress distribution of rolling interfaces. Unsteady factors, such as unsteady back tension, may disturb the inlet film thickness. However, the current models of unsteady inlet film thickness lack unsteady disturbance factors and do not take surface topography into consideration. In this paper, based on the hydrodynamic analysis of inlet zone an unsteady rolling film model which concerns the direction of surface topography is built up. Considering the small fluctuation of inlet angle, absolute reduction, reduction ratio, inlet strip thickness and roll radius as the input variables and the fluctuation of inlet film thickness as the output variable, the non-linear relationship between the input and output is discussed. The discussion results show that there is 180° phase difference between the inlet film thickness and the input variables, such as the fluctuant absolute reduction, the fluctuant reduction ratio and non-uniform inlet strip thickness, but there is no phase difference between unsteady roll radius and the output. The inlet angle, the steady roll radius and the direction of surface topography have significant influence on the fluctuant amplitude of unsteady inlet film thickness. This study proposes an analysis method for unsteady inlet film thickness which takes surface topography and new disturbance factors into consideration.

  10. Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film

    NASA Astrophysics Data System (ADS)

    Han, Runyuan; Zhang, Xintong; Wang, Lingling; Dai, Rui; Liu, Yichun

    2011-05-01

    The influence of size distribution of Ag nanoparticles (NPs) on photochromic behavior and holographic storage dynamics of Ag/TiO2 films was investigated using a 532 nm laser as excitation source and recording beams, respectively. Experimental results suggest that small Ag NPs are subject to easier photoinduced oxidative dissolution than large Ag NPs under the 532 nm excitation, and contribute to the rapid growth of holographic grating in the initial stage. These observations were discussed in terms of size-dependent silver redox potential influencing both interfacial electron transfer among Ag NPs and TiO2 matrix and subsequent dissolution of Ag NPs, as well as surface plasmon resonance absorption property of Ag NPs also related to their size distribution.

  11. Ag Nanodots Emitters Embedded in a Nanocrystalline Thin Film Deposited on Crystalline Si Solar Cells.

    PubMed

    Park, Seungil; Ryu, Sel Gi; Ji, HyungYong; Kim, Myeong Jun; Peck, Jong Hyeon; Kim, Keunjoo

    2016-06-01

    We fabricated crystalline Si solar cells with the inclusion of various Ag nanodots into the additional emitters of nanocrystallite Si thin films. The fabricated process was carried out on the emitter surface of p-n junction for the textured p-type wafer. The Ag thin films were deposited on emitter surfaces and annealed at various temperatures. The amorphous Si layers were also deposited on the Ag annealed surfaces by hot-wire chemical vapor deposition and then the deposited layers were doped by the second n-type doping process to form an additional emitter. From the characterization, both the Ag nanodots and the deposited amorphous Si thin films strongly reduce photo-reflectances in a spectral region between 200-400 nm. After embedding Ag nanodots in nanocrystallite Si thin films, a conversion efficiency of the sample with added emitter was achieved to 15.1%, which is higher than the 14.1% of the reference sample and the 14.7% of the de-posited sample with a-Si:H thin film after the Ag annealing process. The additional nanocrystallite emitter on crystalline Si with Ag nanodots enhances cell properties. PMID:27427665

  12. Study of Ag transport in Cr2N0.61-7Ag nanocomposite thin film due to thermal exposition

    NASA Astrophysics Data System (ADS)

    Bílek, P.; Jurči, P.; Podgornik, B.; Jenko, D.; Hudáková, M.; Kusý, M.

    2015-12-01

    Cr2N0.61-7Ag nanocomposite coatings were deposited on substrates made of Cr-V ledeburitic tool steel Vanadis 6 using reactive magnetron sputtering at a deposition temperature of 500 °C. Investigations of as-deposited films and annealing experiments in closed-air atmosphere at temperatures of 300, 400 and 500 °C and the durations up to 24 h, followed by quantitative scanning electron microscopy, transmission electron microscopy, Auger electron spectroscopy and X-ray diffraction revealed that the films were composed of Cr2N0.61 matrix and individual silver agglomerates located along columnar crystals of the matrix. The maximal size of Ag-agglomerates was 80 nm. The surface population density of silver agglomerates increased with prolonging the annealing time up to 2 h and then decreased. The increase was more pronounced at lower annealing temperatures. This behaviour was referred to the competition between three phenomena, namely the transport of detached Ag atoms to the free surface, formation of oxide layer on the surface and sublimation of silver from the surface. At lower temperatures and/or shorter annealing times, the Ag-transport to the free surface was determined to be prevalent, thus, an increase in population density of silver agglomerates was determined. On the other hand, for higher temperatures and/or longer annealing times the population density of Ag-agglomerates rather decreased due to retarding effect of thicker oxide layer and sublimation of silver.

  13. Reactive Sputter Deposition of WO3/Ag/WO3 Film for Indium Tin Oxide (ITO)-Free Electrochromic Devices.

    PubMed

    Yin, Yi; Lan, Changyong; Guo, Huayang; Li, Chun

    2016-02-17

    Functioning both as electrochromic (EC) and transparent-conductive (TC) coatings, WO3/Ag/WO3 (WAW) trilayer film shows promising potential application for ITO-free electrochromic devices. Reports on thermal-evaporated WAW films revealed that these bifunctional WAW films have distinct EC characteristics; however, their poor adhesive property leads to rapid degradation of coloring-bleaching cycling. Here, we show that WAW film with improved EC durability can be prepared by reactive sputtering using metal targets. We find that, by introducing an ultrathin tungsten (W) sacrificial layer before the deposition of external WO3, the oxidation of silver, which leads to film insulation and apparent optical haze, can be effectively avoided. We also find that the luminous transmittance and sheet resistance were sensitive to the thicknesses of tungsten and silver layers. The optimized structure for TC coating was obtained to be WO3 (45 nm)/Ag (10 nm)/W (2 nm)/WO3 (45 nm) with a sheet resistance of 16.3 Ω/□ and a luminous transmittance of 73.7%. Such film exhibits compelling EC performance with decent luminous transmittance modulation ΔTlum of 29.5%, fast switching time (6.6 s for coloring and 15.9 s for bleaching time), and long-term cycling stability (2000 cycles) with an applied potential of ±1.2 V. Thicker external WO3 layer (45/10/2/100 nm) leads to larger modulation with maximum ΔTlum of 46.4%, but at the cost of significantly increasing the sheet resistance. The strategy of introducing ultrathin metal sacrificial layer to avoid silver oxidation could be extended to fabricating other oxide-Ag-oxide transparent electrodes via low-cost reactive sputtering. PMID:26726834

  14. Method and system for producing sputtered thin films with sub-angstrom thickness uniformity or custom thickness gradients

    DOEpatents

    Folta, James A.; Montcalm, Claude; Walton, Christopher

    2003-01-01

    A method and system for producing a thin film with highly uniform (or highly accurate custom graded) thickness on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source with controlled (and generally, time-varying) velocity. In preferred embodiments, the method includes the steps of measuring the source flux distribution (using a test piece that is held stationary while exposed to the source), calculating a set of predicted film thickness profiles, each film thickness profile assuming the measured flux distribution and a different one of a set of sweep velocity modulation recipes, and determining from the predicted film thickness profiles a sweep velocity modulation recipe which is adequate to achieve a predetermined thickness profile. Aspects of the invention include a practical method of accurately measuring source flux distribution, and a computer-implemented method employing a graphical user interface to facilitate convenient selection of an optimal or nearly optimal sweep velocity modulation recipe to achieve a desired thickness profile on a substrate. Preferably, the computer implements an algorithm in which many sweep velocity function parameters (for example, the speed at which each substrate spins about its center as it sweeps across the source) can be varied or set to zero.

  15. Aging and annealing effects on properties of Ag-N dual-acceptor doped ZnO thin films

    SciTech Connect

    Swapna, R.; Amiruddin, R.; Santhosh Kumar, M. C.

    2013-02-05

    Ag-N dual acceptor doping into ZnO has been proposed to realize p-ZnO thin film of different concentrations (1, 2 and 4 at.%) by spray pyrolysis at 623 K and then 4 at.% films annealed at 673 K and 723 K for 1 hr. X-ray diffraction studies reveal that all the films are preferentially oriented along (002) plane. Energy dispersive spectroscopy (EDS) confirms the presence of Ag and N in 2 at.% ZnO:(Ag, N) film. Hall measurement shows that 4 at.% ZnO:(Ag, N) film achieved minimum resistivity with high hole concentration. The p-type conductivity of the ZnO:(Ag, N) films is retained even after 180 days. Photoluminescence (PL) spectra of ZnO:(Ag, N) films show low density of native defects.

  16. Effect of Magnetic Film Thickness on the Spatial Resolution of Magnetic Force Microscope Tips

    NASA Astrophysics Data System (ADS)

    Nagano, Katsumasa; Tobari, Kousuke; Ohtake, Mitsuru; Futamoto, Masaaki

    2011-07-01

    Magnetic force microscope (MFM) tips were prepared by coating commercial atomic force microscope (AFM) tips of 5 nm radius with Co and CoCrPt magnetic thin films varying the thickness in a range of 10-80 nm. The structural and the magnetic properties of coated magnetic thin films were investigated by scanning electron microscopy, AFM, X-ray diffraction, and vibrating sample magnetometry. The tip radius and the film surface roughness increase with increasing the film thickness. With increasing the film thickness, the MFM signal sensitivity increases, whereas the resolution decreases due to increase of tip radius. The MFM observation resolutions of 10 nm and 23 nm are obtained with the tips coated with 20-nm-thick Co and 40-nm-thick CoCrPt films, respectively. The MFM resolution is influenced by both the tip radius and the magnetic moment of coated material.

  17. Optical constants for Ge30- x Se70Ag x (0 ≤ x ≤ 30 at%) thin films based only on their reflectance spectra

    NASA Astrophysics Data System (ADS)

    Aly, K. A.; Dahshan, A.; Yahia, I. S.

    2012-03-01

    In this paper, different homogenous compositions of Ge30- x Se70Ag x (0 ≤ x ≤ 30 at%) thin films were prepared by thermal evaporation. Reflection spectra, R(λ), for the films were measured in the wavelength range 400-2500 nm. A straightforward analysis proposed by Minkov [J. Phys. D: Appl. Phys. 22 (1989) p.1157], based on the maxima and minima of the reflection spectra, allows us to derive the real and imaginary parts of the complex index of refraction and the film thickness of the studied films. Increasing Ag content at the expense of Ge atoms is found to affect the refractive index and the extinction coefficient of the films. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. Optical absorption measurements were used to obtain the fundamental absorption edge as a function of composition. With increasing Ag content, the refractive index increases while the optical band gap decreases. The compositional dependence of the optical band gap for the Ge30- x Se70Ag x (0 ≤ x ≤ 30) thin films is discussed in terms of the chemical bond approach.

  18. Preparation of vanadium oxide thin films modified with Ag using a hybrid deposition configuration

    NASA Astrophysics Data System (ADS)

    Gonzalez-Zavala, F.; Escobar-Alarcón, L.; Solís-Casados, D. A.; Rivera-Rodríguez, C.; Basurto, R.; Haro-Poniatowski, E.

    2016-04-01

    The application of a hybrid deposition configuration, formed by the interaction of a laser ablation plasma with a flux of atomic vapor, to deposit vanadium oxide thin films modified with different amounts of silver, is reported. The effect of the amount of Ag incorporated in the films on their structural, morphological, compositional and optical properties was studied. The obtained results reveal that films with variable Ag content from 11.7 to 24.6 at.% were obtained. Depending on the silver content, the samples show very different surface morphologies. Optical characterization indicates the presence of nanostructures of Ag. Thin films containing silver exhibit better photocatalytic performances than unmodified V2O5 films. Raman spectra reveal that as the silver content is increased, the signals associated with V2O5 disappear and new modes attributed mainly to silver vanadates appear suggesting the formation of ternary compounds.

  19. Improved optical and electrical properties of 200 MeV Ag{sup 15+} irradiated 3 wt% 'Li' doped MoO{sub 3} thin film

    SciTech Connect

    Kovendhan, M.; Mohan, R.; Joseph, D. Paul; Manimuthu, P.; Venkateswaran, C.; Sambasivam, S.; Singh, J. P.; Asokan, K.

    2013-02-05

    The lithium (3 wt%) doped MoO{sub 3} thin film was prepared by spray deposition onto ITO substrate at 325 Degree-Sign C. The film of thickness 577 nm was irradiated with 200 MeV Ag{sup 15+} ion beams at a fluence of 5 Multiplication-Sign 10{sup 12} ions/cm{sup 2}. The XRD pattern confirmed that the pristine film is polycrystalline with orthorhombic symmetry. Upon irradiation, the film turned amorphous. The sharp Raman peak in pristine film at 993 cm{sup -1} is due to the terminal oxygen of {alpha}-MoO{sub 3} phase. Optical transparency of the film increased upon irradiation. Large red shift was observed in both direct and indirect band gaps. Electrical transport property study shows that the carrier concentration increased by one order for the irradiated film.

  20. On-Line Measurement of Lubricant Film Thickness Using Ultrasonic Reflection Coefficients

    SciTech Connect

    Drinkwater, B.W.; Dwyer-Joyce, R.S.; Harper, P.

    2004-02-26

    The ultrasonic reflectivity of a lubricant layer between two solid bodies depends on the ultrasonic frequency, the acoustic properties of the liquid and solid, and the layer thickness. In this paper, ultrasonic reflectivity measurements are used as a method for determining the thickness of lubricating films in bearing systems. An ultrasonic transducer is positioned on the outside of a bearing shell such that the wave is focused on the lubricant film layer. For a particular lubricant film the reflected pulse is processed to give a reflection coefficient spectrum. The lubricant film thickness is then obtained from either the layer stiffness or the resonant frequency. The method has been validated using static fluid wedges and the elastohydrodynamic film formed between a ball sliding on a flat. Film thickness values in the range 50-500 nm were recorded which agreed well with theoretical film formation predictions.

  1. Ag- and Cu-doped multifunctional bioactive nanostructured TiCaPCON films

    NASA Astrophysics Data System (ADS)

    Shtansky, D. V.; Batenina, I. V.; Kiryukhantsev-Korneev, Ph. V.; Sheveyko, A. N.; Kuptsov, K. A.; Zhitnyak, I. Y.; Anisimova, N. Yu.; Gloushankova, N. A.

    2013-11-01

    A key property of multicomponent bioactive nanostructured Ti(C,N)-based films doped with Ca, P, and O (TiCaPCON) that can be improved further is their antibacterial effect that should be achieved without compromising the implant bioactivity and biocompatibility. The present work is focused on the study of structure, chemical, mechanical, tribological, and biological properties of Ag- and Cu-doped TiCaPCON films. The films with Ag (0.4-4 at.%) and Cu (13 at.%) contents were obtained by simultaneous sputtering of a TiC0.5-Ca3(PO4)2 target and either an Ag or a Cu target. The film structure was studied using X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray spectroscopy, glow discharge optical emission spectroscopy, and Raman-shift and IR spectroscopy. The films were characterized in terms of their hardness, elastic modulus, dynamic impact resistance, friction coefficient and wear rate (both in air and normal saline), surface wettability, electrochemical behavior and Ag or Cu ion release in normal saline. Particular attention was paid to the influence of inorganic bactericides (Ag and Cu ions) on the bactericidal activity against unicellular yeast fungus Saccharomyces cerevisiae and gram-positive bacteria Lactobacillus acidophilus, as well as on the attachment, spreading, actin cytoskeleton organization, focal adhesions, and early stages of osteoblastic cell differentiation. The obtained results show that the Ag-doped films are more suitable for the protection of metallic surfaces against bacterial infection compared with their Cu-doped counterpart. In particular, an excellent combination of mechanical, tribological, and biological properties makes Ag-doped TiCaPCON film with 1.2 at.% of Ag very attractive material for bioengineering and modification of load-bearing metal implant surfaces.

  2. A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness

    SciTech Connect

    Li, X. D.; Chen, T. P. Liu, P.; Liu, Y.; Liu, Z.; Leong, K. C.

    2014-03-14

    Dielectric function, band gap, and exciton binding energies of ultrathin ZnO films as a function of film thickness have been obtained with spectroscopic ellipsometry. As the film thickness decreases, both real (ε{sub 1}) and imaginary (ε{sub 2}) parts of the dielectric function decrease significantly, and ε{sub 2} shows a blue shift. The film thickness dependence of the dielectric function is shown related to the changes in the interband absorption, discrete-exciton absorption, and continuum-exciton absorption, which can be attributed to the quantum confinement effect on both the band gap and exciton binding energies.

  3. Co-doping effects of Gd and Ag on YBCO films derived by metalorganic deposition

    NASA Astrophysics Data System (ADS)

    Sun, Meijuan; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Lu, Yuming; Fan, Feng; Cai, Chuanbing

    2015-12-01

    Y1-xGdxBa2Cu3O7-δ-Ag (x = 0, 0.25, 0.5, 0.75, 1) thin films were prepared on oxide buffered Hastelloy substrates by low fluorine metalorganic depostion (MOD) process. The effects of co-doping of Ag and Gd on the microstructures and superconducting properties of YBCO thin films are investigated with respect to improvement on texture and superconducting performance in case of optimized doping content. It is found that optimum addition of Ag and Gd may lead to better c-axis orientation, superior surface microstructure and finally give rise to much improvement of superconducting performance.

  4. Influence of Thickness on Ethanol Sensing Characteristics of Doctor-bladed Thick Film from Flame-made ZnO Nanoparticles

    PubMed Central

    Liewhiran, Chaikarn; Phanichphant, Sukon

    2007-01-01

    ZnO nanoparticles were produced by flame spray pyrolysis (FSP) using zinc naphthenate as a precursor dissolved in toluene/acetonitrile (80/20 vol%). The particle properties were analyzed by XRD, BET, and HR-TEM. The sensing films were produced by mixing the particles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder and were fabricated by doctor-blade technique with various thicknesses (5, 10, 15 μm). The morphology of the sensing films was analyzed by SEM and EDS analyses. The gas sensing characteristics to ethanol (25-250 ppm) were evaluated as a function of film thickness at 400°C in dry air. The relationship between thickness and ethanol sensing characteristics of ZnO thick film on Al2O3 substrate interdigitated with Au electrodes were investigated. The effects of film thickness, as well as the cracking phenomenon, though, many cracks were observed for thicker sensing films. Crack widths increased with increasing film thickness. The film thickness, cracking and ethanol concentration have significant effect on the sensing characteristics. The sensing characteristics with various thicknesses were compared, showing the tendency of the sensitivity to ethanol decreased with increasing film thickness and response time. The relationship between gas sensing properties and film thickness was discussed on the basis of diffusively and reactivity of the gases inside the oxide films. The thinnest sensing film (5 μm) showed the highest sensitivity and the fastest response time (within seconds).

  5. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF. PMID:26035249

  6. Layer-by-layer fabrication of AgCl-PANI hybrid nanocomposite films for electronic tongues.

    PubMed

    Manzoli, Alexandra; Shimizu, Flavio M; Mercante, Luiza A; Paris, Elaine C; Oliveira, Osvaldo N; Correa, Daniel S; Mattoso, Luiz H C

    2014-11-28

    The fabrication of nanostructured films with tailored properties is essential for many applications, particularly with materials such as polyaniline (PANI) whose electrical characteristics may be easily tuned. In this study we report the one-step synthesis of AgCl-PANI nanocomposites that could form layer-by-layer (LbL) films with poly(sodium 4-styrenesulfonate) (PSS) and be used for electronic tongues (e-tongues). The first AgCl-PANI layer was adsorbed on a quartz substrate according to a nucleation-and-growth mechanism explained using the Johnson-Mehl-Avrami (JMA) model, revealing a 3D film growth confirmed by atomic force microscopy (AFM) measurements for the AgCl-PANI/PSS LbL films. In contrast to conventional PANI-containing films, the AgCl-PANI/PSS LbL films deposited on interdigitated electrodes exhibited electrical resistance that was practically unaffected by changes in pH from 4 to 9, and therefore these films can be used in e-tongues for both acidic and basic media. With a sensor array made of AgCl-PANI/PSS LbL films with different numbers of bilayers, we demonstrated the suitability of the AgCl-PANI nanocomposite for an e-tongue capable of clearly discriminating the basic tastes from salt, acid and umami solutions. Significantly, the hybrid AgCl-PANI nanocomposite is promising for any application in which PANI de-doping at high pH is to be avoided. PMID:25298297

  7. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film

    PubMed Central

    2014-01-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence. PMID:24685186

  8. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film.

    PubMed

    Wang, Long-De; Zhang, Tong; Zhang, Xiao-Yang; Song, Yuan-Jun; Li, Ruo-Zhou; Zhu, Sheng-Qing

    2014-01-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence. PMID:24685186

  9. Electronic properties and bonding characteristics of AlN:Ag thin film nanocomposites

    SciTech Connect

    Lekka, Ch. E.; Patsalas, P.; Komninou, Ph.; Evangelakis, G. A.

    2011-03-01

    We present theoretical and experimental results on the bonding and structural characteristics of AlN:Ag thin film nanocomposites obtained by means of density functional theory (DFT) computations, high resolution transmission electron microscopy (HRTEM) observations, Auger electron spectroscopy (AES), and x-ray diffraction (XRD) measurements. From the theoretical calculations it was determined that the presence of the Ag substitutional of N or Al atoms affects the electronic density of states (EDOS) of the resulting systems. In particular, occupied energy states are introduced (between others) that lie within the energy gap of the AlN matrix due to Ag-d, Al-p (accompanied with a charge transfer from Al to Ag), Ag-p, and N-p hybridizations, respectively. The effect is predicted to be even more pronounced in the case of Ag nanoparticle inclusions affecting the EDOS of the composite system. These predictions were verified by the HRTEM images that gave unequivocal evidence for the presence and stability of Ag nanoparticles in the AlN matrix. In addition, the AES data suggested a metal-metal (Ag-Al) bonding preference, while the XRD patterns revealed that the atomic Ag dispersions in the AlN thin films results in a small elongation of the Wurtzite lattice, which is in agreement with the DFT predictions. These results may useful in tailoring the electronic response of AlN-based systems and the design of devices for various opto-electronic applications.

  10. Effects of film thickness on scintillation characteristics of columnar CsI:Tl films exposed to high gamma radiation doses

    NASA Astrophysics Data System (ADS)

    Shinde, Seema; Singh, S. G.; Sen, S.; Gadkari, S. C.

    2016-02-01

    Oriented columnar films of Tl doped CsI (CsI:Tl) of varying thicknesses from 50 μm to 1000 μm have been deposited on silica glass substrates by a thermal evaporation technique. The SEM micrographs confirmed the columnar structure of the film while the powder X-ray diffraction pattern recorded for the films revealed a preferred orientation of the grown columns along the <200> direction. Effects of high energy gamma exposure up to 1000 Gy on luminescence properties of the films were investigated. Results of radio-luminescence, photo-luminescence and scintillation studies on the films are compared with those of a CsI:Tl single crystal with similar thickness. A possible correlation between the film thicknesses and radiation damage in films has been observed.

  11. Thickness Measurement, Rate Control And Automation In Thin Film Coating Technology

    NASA Astrophysics Data System (ADS)

    Pulker, H. K.

    1983-11-01

    There are many processes known for fabricating thin films/1, 2.Among them the group of physical vapor deposition processes comprising evaporation, sputtering and ion plating has received special attention.Especially evaporation but also the other PVD techniques are widely used to deposit various single and multilayer coatings for optical and electrical thin film applications/3,4/.A large number of parameters is important in obtaining the required film properties in a reproducible manner when depositing thin films by such processes.Amongst the many are the film thickness, the condensation rate,the substrate temperature,as well as the qualitative and the quantitative composition of the residual gas of primary importance.First of all the film thickness is a dimension which enters in practically all equations used to characterize a thin film. However,when discussing film thickness,definitions are required since there one has to distinguish between various types of thicknesses e.g.geometrical thickness,mass thickness and optical thickness.The geometrical thickness,often also called physical thickness,is defined as the step height between the substrate surface and the film surface.This step height multiplied by the refractive index of the film is termed the optical thickness and is expressed generally in integer multiples of fractional parts of a desired wavelength.The mass thickness finally is defined as the film mass per unit area obtained by weighing.Knowing the density and the optical data of a thin film its mass thickness can be converted into the corresponding geometrical as well as optical thickness.However,with ultrathin films ranging between a few and several atomic or molecular "layers"the concept of a film thickness may become senseless since often no closed film exists of such minor deposits.Although film thickness is a length,the measurement of it can,obviously,not be accomplished with conventional methods for length determinations but requires special

  12. Preparation of sensitive and recyclable porous Ag/TiO2 composite films for SERS detection

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyi; Yu, Jiajie; Yang, Jingying; Lv, Xiang; Wang, Tianhe

    2015-12-01

    Porous Ag/TiO2 composite films were prepared by spin coating of titania on normal glass slides and subsequent photochemical deposition of silver nanoparticles (AgNPs). The films were characterized by XRD and FESEM to reveal micro structural and morphological differences between films obtained under varied conditions. The SERS properties of these films were investigated using aqueous crystal violet (CV) as probe molecules. The results indicate that the content of polyethylene glycol (PEG) and photo-reduction time had significant influences on both the microstructure and SERS performance of Ag/TiO2 films. The highest SERS sensitivity that allowed as low as 10-10 M aqueous CV to be detected, was achieved with the PEG/(C4H9O)4Ti molar ratio being 0.08% and with 30 min of UV irradiation. With this film a linear relationship was established through experiment between SERS intensity and CV concentration from 10-10 to 10-5 M, which could be used as a calibration curve for CV concentration measurement. In addition, the film could be reused as a SERS substrate for up to four times without significantly losing SERS sensitivity if a simple regeneration was followed. It is visualized that the Ag/TiO2 film on glass has potentials for being developed into a practical SERS substrate with high sensitivity and good reusability.

  13. Refractive index gradient measurement across the thickness of a dielectric film by the prism coupling method

    SciTech Connect

    Sokolov, Viktor I; Panchenko, Vladislav Ya; Seminogov, V N

    2012-08-31

    A method is proposed for measuring the refractive index gradient n(z) in nonuniformly thick dielectric films. The method is based on the excitation of waveguide modes in a film using the prism coupling technique and on the calculation of n(z) and film thickness H{sub f} with the help of the angular positions of the TE or TM modes. The method can be used for an arbitrary shape of the index modulation over the film thickness in the limit of a small gradient [{Delta} n(z)/n(z) || 1]. (laser applications and other topics in quantum electronics)

  14. Effect of thickness on electrical properties of SILAR deposited SnS thin films

    NASA Astrophysics Data System (ADS)

    Akaltun, Yunus; Astam, Aykut; Cerhan, Asena; ćayir, Tuba

    2016-03-01

    Tin sulfide (SnS) thin films of different thickness were prepared on glass substrates by successive ionic layer adsorption and reaction (SILAR) method at room temperature using tin (II) chloride and sodium sulfide aqueous solutions. The thicknesses of the films were determined using spectroscopic ellipsometry measurements and found to be 47.2, 65.8, 111.0, and 128.7nm for 20, 25, 30 and 35 deposition cycles respectively. The electrical properties of the films were investigated using d.c. two-point probe method at room temperature and the results showed that the resistivity was found to decrease with increasing film thickness.

  15. Speciation and Lability of Ag-, AgCl- and Ag2S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films

    EPA Science Inventory

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...

  16. Dependence of Thermal Conductivity on Thickness in Single-Walled Carbon Nanotube Films.

    PubMed

    Lee, Kyung-Min; Shrestha, Ramesh; Dangol, Ashesh; Chang, Won Seok; Coker, Zachary; Choi, Tae-Youl

    2016-01-01

    Herein, we report experimentally dependence of thermal conductivity on thickness of single walled carbon nanotubes (SWNTs) thin films; the measurements are based on the micropipette thermal sensor technique. Accurate and well resolved measurements of thermal conductivity made by the micropipette sensor showed a correlated behavior of thickness and thermal conductivity of CNT films that thermal conductivity decreased as thickness increased. The thickness dependence is explained by reduction of mean free path (MFP), which is induced by more intertubular junctions in more dense-packed carbon nanotube (CNT) networks; the thicker SWCNT films were revealed to have higher density. PMID:27398564

  17. Thickness- and temperature-dependent magnetodynamic properties of yttrium iron garnet thin films

    SciTech Connect

    Haidar, M. Ranjbar, M.; Balinsky, M.; Dumas, R. K.; Khartsev, S.; Åkerman, J.

    2015-05-07

    The magnetodynamical properties of nanometer-thick yttrium iron garnet films are studied using ferromagnetic resonance as a function of temperature. The films were grown on gadolinium gallium garnet substrates by pulsed laser deposition. First, we found that the damping coefficient increases as the temperature increases for different film thicknesses. Second, we found two different dependencies of the damping on film thickness: at room temperature, the damping coefficient increases as the film thickness decreases, while at T = 8 K, we find the damping to depend only weakly on the thickness. We attribute this behavior to an enhancement of the relaxation of the magnetization by impurities or defects at the surfaces.

  18. Application of the Ultrasonic Oil Film Thickness Measurement System in Bearing Chambers

    NASA Astrophysics Data System (ADS)

    Zhong, Chong; Hu, Jian-ping; Liu, Zhen-xia; Lu, Ya-guo; Hao, Yu-ya

    2014-06-01

    The oil film thickness in aero-engine bearing chamber influences the heat transfer capacity of the bearing chamber wall, so measuring oil film thickness accuspeedly is essential to the design and thermal analysis of lubricating oil system. In this paper, software and hardware of an ultrasonic measurement system based on pulse echo technique, which measures the oil film thickness in bearing chamber, are established. The hardware system mainly consists of signal acquisition card, probe, delay block and the corresponding cables. Functions as measurement parameter setup, real-time display of measured waveforms, post-processing and so on are included in the measurement software. Finally, the oil film thickness of the wall is measured with the measurement system developed. Signal quality of the dynamic measurement is analyzed. Comparison and analysis of different oil film thickness under different rotation rates are conducted.

  19. Thick-film MEMS thermoelectric sensor fabricated using a thermally assisted lift-off process

    NASA Astrophysics Data System (ADS)

    Jia, Yuan; Cai, Haogang; Lin, Qiao

    2016-04-01

    This paper presents a thick-film microelectromechanical systems thermoelectric sensor fabricated by a low-temperature thermally assisted lift-off process. During the process, thick metal or semiconductor films experience controlled breakup due to thermal reflow of the underlying lithographically defined photoresist patterns, thereby facilitating the sacrificial removal of the photoresist. This enables rapid and reliable patterning of thick films that can otherwise be difficult to achieve by conventional processes. Experimental results with a sensor consisting of a 60-junction thick-film antimony-bismuth thermopile demonstrate an electric conductivity of 5.44×106 S/m and a Seebeck coefficient of 114 μV/K per junction, which are comparable to those obtained from bulk materials. Thus, the thick-film sensor can potentially allow low-noise, high-efficiency thermoelectric measurements.

  20. Alloying of Co ultrathin films on Pt(111) with Ag buffer layers

    NASA Astrophysics Data System (ADS)

    Shern, C. S.; Su, C. W.; Wu, Y. E.; Fu, T. Y.

    2000-07-01

    The structure at the interfaces of Co/Ag/Pt(111) was studied by low-energy electron diffraction, ultraviolet photoelectron spectroscopy, Auger electron spectroscopy, and depth profiling. An atomic exchange occurs between Co and Ag before the formation of a Co-Pt alloy. Ag atoms start moving to the top at 425 K when the coverage of Co is one monolayer. The temperature of the complete exchange between Ag atoms and Co atoms is dependent on the thickness of the Ag buffer layer. The Co-Pt alloy develops after the atomic exchange is complete. The especially small surface free energy of Ag and large strain energy in this system are proposed as the driving force for the exchange.

  1. Structural, magnetic and transport properties of Co2FeAl Heusler films with varying thickness

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotian; Li, Yueqing; Du, Yin; Dai, Xuefang; Liu, Guodong; Liu, Enke; Liu, Zhongyuan; Wang, Wenhong; Wu, Guangheng

    2014-08-01

    We report on a systematic study of the structural, magnetic properties and the anomalous Hall effect, in the Heusler alloy Co2FeAl (CFA) epitaxial films on MgO (001), as a function of film thickness. It was found that the epitaxial CFA films show a highly ordered B2 structure with an in-plane uniaxial magnetic anisotropy. The electrical transport properties reveal that the lattice and magnon scattering contributions to the longitudinal resistivity. Independent on the thickness of films, the anomalous Hall resistivity of CFA films is found to be dominated by skew scattering only. Moreover, the anomalous Hall resistivity shows weakly temperature dependent behavior, and its absolute value increases as the thickness decreases. We attribute this temperature insensitivity in the anomalous Hall resistivity to the weak temperature dependent of tunneling spin-polarization in the CFA films, while the thickness dependence behavior is likely due to the increasing significance of interface or free surface electronic states.

  2. Enhanced piezoelectric performance of composite sol-gel thick films evaluated using piezoresponse force microscopy.

    PubMed

    Liu, Yuanming; Lam, Kwok Ho; Kirk Shung, K; Li, Jiangyu; Zhou, Qifa

    2013-05-14

    Conventional composite sol-gel method has been modified to enhance the piezoelectric performance of ceramic thick films. Lead zirconate titanate (PZT) and lead magnesium niobate-lead titanate (PMN-PT) thick films were fabricated using the modified sol-gel method for ultrasonic transducer applications. In this work, piezoresponse force microscopy was employed to evaluate the piezoelectric characteristics of PZT and PMN-PT composite sol-gel thick films. The images of the piezoelectric response and the strain-electric field hysteresis loop behavior were measured. The effective piezoelectric coefficient (d33,eff) of the films was determined from the measured loop data. It was found that the effective local piezoelectric coefficient of both PZT and PMN-PT composite films is comparable to that of their bulk ceramics. The promising results suggest that the modified composite sol-gel method is a promising way to prepare the high-quality, crack-free ceramic thick films. PMID:23798771

  3. Thickness Dependence of Fluorescence Dynamics in Thin and Ultrathin Polystyrene Films

    NASA Astrophysics Data System (ADS)

    Tateishi, Yohei; Okada, Yohei; Tanaka, Keiji; Nagamura, Toshihiko

    2008-03-01

    Fluorescence dynamics such as lifetime and rotational relaxation time for 6-(N-(7-nitrobenz-2-oxa-1,3- diazol-4-yl)amino) hexanoic acid (NBD) in polystyrene (PS) solid was examined as a function of film thickness, t. Both times decreased with decreasing thickness once the film became thinner than a critical value, to. Interestingly, in the case of ultrathin films, both times were insensitive to the film thickness. In addition, fluorescence intensity per unit thickness also decreased with decreasing thickness at t < to, meaning that the fluorescence quantum yield was dependent on the thickness at t < to. These results could be explained in terms of a simple three-layer model composed of surface, bulk and interfacial layers.

  4. Film Thickness and Flow Properties of Resin-Based Cements at Different Temperatures

    PubMed Central

    Bagheri, R

    2013-01-01

    Statement of Problem: For a luting agent to allow complete seating of prosthetic restorations, it must obtain an appropriate flow rate maintaining a minimum film thickness. The performance of recently introduced luting agents in this regard has not been evaluated. Purpose: To measure and compare the film thickness and flow properties of seven resin-containing luting cements at different temperatures (37°C, 25°C and10°C). Material and Methods: Specimens were prepared from five resin luting cements; seT (SDI), Panavia F (Kuraray), Varioloink II (Ivoclar), Maxcem (Kerr), Nexus2 (Kerr) and two resin-modified glass-ionomer luting cements (RM-GICs); GC Fuji Plus (GC Corporation), and RelyX Luting 2 (3 M/ESPE). The film thickness and flow rate of each cement (n=15) was determined using the test described in ISO at three different temperatures. Results: There was a linear correlation between film thickness and flow rate for most of the materials. Cooling increased fluidity of almost all materials while the effect of temperature on film thickness was material dependent. At 37°C, all products revealed a film thickness of less than 25µm except for GC Fuji Plus. At 25°C, all cements produced a film thickness of less than 27 µm except for seT. At 10°C, apart from seT and Rely X Luting 2, the remaining cements showed a film thickness smaller than 20 µm. Conclusion: Cooling increased fluidity of almost all materials, however. the film thickness did not exceed 35 µm in either condition, in spite of the lowest film thickness being demonstrated at the lowest temperature. PMID:24724120

  5. Tribological properties of Ag/Ti films on Al2O3 ceramic substrates

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1991-01-01

    Ag solid lubricant films, with a thin Ti interlayer for enhanced adhesion, were sputter deposited on Al2O3 substrate disks to reduce friction and wear. The dual Ag/Ti films were tested at room temperature in a pin-on-disk tribometer sliding against bare, uncoated Al2O3 pins under a 4.9 N load at a sliding velocity of 1 m/s. The Ag/Ti films reduced the friction coefficient by 50 percent to about 0.41 compared to unlubricated baseline specimens. Pin wear was reduced by a factor of 140 and disk wear was reduced by a factor of 2.5 compared to the baseline. These films retain their good tribological properties including adhesion after heat treatments at 850 C and thus may be able to lubricate over a wide temperature range. This lubrication technique is applicable to space lubrication, advanced heat engines, and advanced transportation systems.

  6. Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness

    NASA Astrophysics Data System (ADS)

    Danilov, P. A.; Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Nguyen, T. T. H.; Rudenko, A. A.; Saraeva, I. N.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.

    2016-04-01

    Submicron dimensions, nanoscale crystalline structure, and fabrication mechanisms of microcones on silver films of variable (50-380 nm) thickness deposited onto glass substrates by single strongly focused femtosecond laser pulses of different fluences are experimentally studied using scanning electron microscopy. Fabrication mechanisms for nanoholes and microcones are discussed for films of the different thickness, as well as the extraordinary shapes of their constituent nanocrystallites, strongly elongated along the melt flow direction in thin films.

  7. Measuring the Thickness and Elastic Properties of Electroactive Thin-Film Polymers Using Platewave Dispersion Data

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; El-Azab, A.; Mal, Ajit K.

    1996-01-01

    Electroactive thin-film polymers are candidate sensors and actuators materials. They are also finding significant potential in muscle mechanisms and microelectromechanical systems (MEMS). In these applications, polymer thin films of thickness varying between 20 and 300 micrometers are utilized. The authors are currently studying the potential use of platewave dispersion curve measurements as an effective gauging tool for electroactive thin-film polymers.

  8. Thickness Dependence of Properties of ITO Films Deposited on PET Substrates.

    PubMed

    Kim, Seon Tae; Kim, Tae Gyu; Cho, Hyun; Yoon, Su Jong; Kim, Hye Sung; Kim, Jin Kon

    2016-02-01

    Indium tin oxide (ITO) films with various thicknesses from 104 nm to 513 nm were prepared onto polyethylene terephthalate (PET) substrates by using r.f. magnetron sputtering without intentionally heating the substrates. The structural, optical, and electrical properties of ITO films were investigated as a function of film thickness. It was found that the amorphous nature of the ITO film was dominant below the thickness of about 200 nm but the degree of the crystallinity increased with an increasing thickness above the thickness of about 250 nm, resulting in the increase of carrier concentration and therefore reducing the electrical resistivity from 5.1 x 10(-3) to 9.4 x 10(-4) omega x cm. The average transmittance (400-800 nm) of the ITO deposited PET substrates decreased as the film thickness was increasing and was above 80% for the thickness below 315 nm. The results show that the improvement of the film crystallinity with the film thickness contributes to the increase of the carrier concentration and the enhancement of the electrical conductivity. PMID:27433686

  9. Effect of thermal annealing on the phase evolution of silver tungstate in Ag/WO₃ films.

    PubMed

    Bose, R Jolly; Sreedharan, R Sreeja; Krishnan, R Resmi; Reddy, V R; Gupta, Mukul; Ganesan, V; Sudheer, S K; Pillai, V P Mahadevan

    2015-06-15

    Silver/tungsten oxide multi-layer films are deposited over quartz substrates by RF magnetron sputtering technique and the films are annealed at temperatures 200, 400 and 600°C. The effect of thermal annealing on the phase evolution of silver tungstate phase in Ag/WO3 films is studied extensively using techniques like X-ray diffraction, micro-Raman analysis, atomic force microscopy and photoluminescence studies. The XRD pattern of the as-deposited film shows only the peaks of cubic phase of silver. The film annealed at 200°C shows the presence of XRD peaks corresponding to orthorhombic phase of Ag2WO4 and peaks corresponding to cubic phase of silver with reduced intensity. It is found that, as annealing temperature increases, the volume fraction of Ag decreases and that of Ag2WO4 phase increases and becomes highest at a temperature of 400°C. When the temperature increases beyond 400°C, the volume fraction of Ag2WO4 decreases, due to its decomposition into silver and oxygen deficient phase Ag2W4O13. The micro-Raman spectra of the annealed films show the characteristic bands of tungstate phase which is in agreement with XRD analysis. The surface morphology of the films studied by atomic force microscopy reveals that the particle size and r.m.s roughness are highest for the sample annealed at 400°C. In the photoluminescence study, the films with silver tungstate phase show an emission peak in blue region centered around the wavelength 441 nm (excitation wavelength 256 nm). PMID:25791880

  10. Transparent conductive PVP/AgNWs films for flexible organic light emitting diodes by spraying method

    NASA Astrophysics Data System (ADS)

    Hu, Jun-tao; Mei, Wen-juan; Ye, Kang-li; Wei, Qing-qing; Hu, Sheng

    2016-05-01

    In this study, a simple spraying method is used to prepare the transparent conductive films (TCFs) based on Ag nanowires (AgNWs). Polyvinylpyrrolidone (PVP) is introduced to modify the interface of substrate. The transmittance and bending performance are improved by optimizing the number of spraying times and the solution concentration and controlling the annealing time. The spraying times of 20, the concentration of 2 mg/mL and the annealing time of 10 min are chosen to fabricate the PVP/AgNWs films. The transmittance of PVP/AgNWs films is 53.4%—67.9% at 380—780 nm, and the sheet resistance is 30 Ω/□ which is equivalent to that of commercial indium tin oxide (ITO). During cyclic bending tests to 500 cycles with bending radius of 5 mm, the changes of resistivity are negligible. The performance of PVP/AgNW transparent electrodes has little change after being exposed to the normal environment for 1 000 h. The adhesion to polymeric substrate and the ability to endure bending stress in AgNWs network films are both significantly improved by introducing PVP. Spraying method makes AgNWs form a stratified structure on large-area polymer substrates, and the vacuum annealing method is used to weld the AgNWs together at junctions and substrates, which can improve the electrical conductivity. The experimental results indicate that PVP/AgNW transparent electrodes can be used as transparent conductive electrodes in flexible organic light emitting diodes (OLEDs).

  11. Structural comparison of Ag-Ge-S bulk glasses and thin films

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Jain, Mukul; Dunn, Porter; de Leo, Carter; Boolchand, Punit

    2007-03-01

    Ternary glasses of composition (GeS3)1-xAgx (x=0.1 and 0.2) are studied in form of bulk and thin films. Bulk glasses are synthesized and examined in Raman scattering and SEM. Raman scattering results of bulk glasses show that with increasing x, an increasing fraction of the Ag additive enters the base glass as Ag^+ with S^-anions serving to form thiogermanate species with one, two and three non-bridging S^- species. SEM measurements of the bulk glass show the material is intrinsically phase separated. White colored islands are observed distributed in a dark base. The EDS measurements show islands are Ag rich and the base is relatively Ag deficient. The Ag rich islands are expected to be mainly glassy phase Ag2S. Thin films of same compositions are fabricated using thermal evaporation. Films are evaporated following two different procedures to prevent the material from spitting. One method was preheating outgas and the other method was using tungsten mesh wrapped boats. The stoichiometry and molecular structure of films under each procedure are analyzed by Raman scattering and SEM to be compared with bulk glasses.

  12. Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of ultrathin block copolymer films.

    PubMed

    Huang, Changchun; Wen, Gangyao; Li, Jingdan; Wu, Tao; Wang, Lina; Xue, Feifei; Li, Hongfei; Shi, Tongfei

    2016-09-15

    Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films (<20nm thick) were mainly investigated by atomic force microscopy. Surface chemical analysis of the ultrathin films annealed for different times were performed using X-ray photoelectron spectroscopy and contact angle measurement. With the annealing of acetone vapor, dewetting of the films with different thicknesses occur via the spinodal dewetting and the nucleation and growth mechanisms, respectively. The PS-b-PMMA films rupture into droplets which first coalesce into large ones to reduce the surface free energy. Then the large droplets rupture into small ones to increase the contact area between PMMA blocks and acetone molecules resulting from ultimate migration of PMMA blocks to droplet surface, which is a novel dewetting process observed in spin-coated films for the first time. PMID:27309943

  13. Plasmonic enhanced optical characteristics of Ag nanostructured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sarkar, Arijit; Gogurla, Narendar; Shivakiran Bhaktha, B. N.; Ray, Samit K.

    2016-04-01

    We have demonstrated the enhanced photoluminescence and photoconducting characteristics of plasmonic Ag–ZnO films due to the light scattering effect from Ag nanoislands. Ag nanoislands have been prepared on ITO-coated glass substrates by thermal evaporation followed by annealing. Plasmonic Ag–ZnO films have been fabricated by depositing ZnO over Ag nanoislands by sol–gel process. The band-edge emission of ZnO is enhanced for 170 nm sized Ag nanoislands in ZnO as compared to pure ZnO. The defect emission is also found to be quenched simultaneously for plasmonic Ag–ZnO films. The enhancement and quenching of photoluminescence at different wavelengths for Ag–ZnO films can be well understood from the localized surface plasmon resonance of Ag nanoislands. The Ag–ZnO M–S–M photoconductor device showed a tenfold increment in photocurrent and faster photoresponse as compared to the control ZnO device. The enhancement in photoresponse of the device is due to the increased photon absorption in ZnO films via scattering of the incident illumination.

  14. A study of Ag/Ag(100) thin film growth with scanning tunneling microscopy

    SciTech Connect

    Wen, J.

    1995-11-01

    Thin films are attracting more and more attention in both the industrial and scientific communities. Many applications of thin films have been developed in industry. By using various growth methods, thin films can be used in optics, microelectronic devices, magnetic recording media, and as protective coatings. In order to improve existing applications and to find new ones, it is essential to understand what makes them so useful in applications and what factors affect their properties. Therefore, an understanding of film growth processes is necessary. Scientifically, many fundamental interactions, such as the interaction between the atoms that comprise the film and substrate, or the interaction between film atoms, are of great interest to surface scientists; studies of these interactions can provide dramatic insights into the nature of thin films and therefore, can further drive technology forward. In every application, the film structures, including morphology and microstructure, and adhesion between film and substrate are critical to the film`s properties and therefore its performance. Studies of the mechanisms that control film morphology, microstructure and adhesion thus are important. Film growth kinetics can provide important information regarding the film structure and adhesion. Film growth is an atomistic process. The chemistry and physics of the system can be better understood if the information provided is at an atomic level.

  15. Characterization of Thin Film Dissolution in Water with in Situ Monitoring of Film Thickness Using Reflectometry.

    PubMed

    Yersak, Alexander S; Lewis, Ryan J; Tran, Jenny; Lee, Yung C

    2016-07-13

    Reflectometry was implemented as an in situ thickness measurement technique for rapid characterization of the dissolution dynamics of thin film protective barriers in elevated water temperatures above 100 °C. Using this technique, multiple types of coatings were simultaneously evaluated in days rather than years. This technique enabled the uninterrupted characterization of dissolution rates for different coating deposition temperatures, postdeposition annealing conditions, and locations on the coating surfaces. Atomic layer deposition (ALD) SiO2 and wet thermally grown SiO2 (wtg-SiO2) thin films were demonstrated to be dissolution-predictable barriers for the protection of metals such as copper. A ∼49% reduction in dissolution rate was achieved for ALD SiO2 films by increasing the deposition temperatures from 150 to 300 °C. ALD SiO2 deposited at 300 °C and followed by annealing in an inert N2 environment at 1065 °C resulted in a further ∼51% reduction in dissolution rate compared with the nonannealed sample. ALD SiO2 dissolution rates were thus lowered to values of wtg-SiO2 in water by the combination of increasing the deposition temperature and postdeposition annealing. Thin metal films, such as copper, without a SiO2 barrier corroded at an expected ∼1-2 nm/day rate when immersed in room temperature water. This measurement technique can be applied to any optically transparent coating. PMID:27308723

  16. Film Thickness Influences on the Thermoelectric Properties of NiCr/NiSi Thin Film Thermocouples

    NASA Astrophysics Data System (ADS)

    Chen, Y. Z.; Jiang, H. C.; Zhang, W. L.; Liu, X. Z.; Jiang, S. W.

    2013-06-01

    NiCr/NiSi thin film thermocouples (TFTCs) with a multi-layer structure were fabricated on Ni-based superalloy substrates (95 mm × 35 mm × 2 mm) by magnetron sputtering and electron beam evaporation. The five-layer structure is composed of NiCrAlY buffer layer (2 μm), thermally grown Al2O3 bond layer (200 nm), Al2O3 insulating layer (10 μm), NiCr/NiSi TFTCs (1 μm), and Al2O3 protective layer (500 nm). Influences of thermocouple layer thickness on thermoelectric properties were investigated. Seebeck coefficient of the samples with the increase in thermocouple layer thickness from 0.5 μm to 1 μm increased from 27.8 μV/°C to 33.8 μV/°C, but exhibited almost no change with further increase in thermocouple layer thickness from 1 μm to 2 μm. Dependence on temperature of the thermal electromotive force of the samples almost followed standard thermocouple characteristic curves when the thickness of the thermocouple layer was 1 μm and 2 μm. Sensitive coefficient K of the samples increased greatly with the increase in thickness of the thermocouple layer from 0.5 μm to 1 μm, but decreased insignificantly with the increase in thermocouple layer thickness from 1 μm to 2 μm, and continuously decreased with the increase in temperature. The sensitive coefficient and the stability of NiCr/NiSi TFTCs were both improved after annealing at 600°C.

  17. Correlation of Gear Surface Fatigue Lives to Lambda Ratio (Specific Film Thickness)

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy Lewis

    2013-01-01

    The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness being the ratio of lubricant film thickness to the composite surface roughness. Three studies done at NASA to investigate gearing pitting life are revisited in this work. All tests were done at a common load. In one study, ground gears were tested using a variety of lubricants that included a range of viscosities, and therefore the gears operated with differing film thicknesses. In a second and third study, the performance of gears with ground teeth and superfinished teeth were assessed. Thicker oil films provided longer lives as did improved surface finish. These datasets were combined into a common dataset using the concept of specific film thickness. This unique dataset of more 258 tests provides gear designers with some qualitative information to make gear design decisions.

  18. Non-contacting Measurement of Oil Film Thickness Between Loaded Metallic Gear Teeth

    NASA Astrophysics Data System (ADS)

    Cox, Daniel B.; Ceccio, Steven L.; Dowling, David R.

    2013-11-01

    The mechanical power transmission efficiency of gears is depends on the lubrication condition between gear teeth. While the lubrication levels can be generally predicted, an effective in-situ non-contacting measurement of oil film thicknesses between loaded metallic gear teeth has proved elusive. This study explores a novel oil film thickness measurement technique based on optical fluence, the light energy transmitted between loaded gear teeth. A gear testing apparatus that allowed independent control of gear rotation rate, load torque, and oil flow was designed and built. Film thickness measurements made with 5-inch-pitch-diameter 60-tooth spur gears ranged from 0.3 to 10.2 mil. These results are compared with film thickness measurements made in an earlier investigation (MacConochie and Cameron, 1960), as well as with predictions from two film thickness models: a simple two-dimensional squeezed oil film and the industry-accepted model as described by the American Gear Manufacturers Association (AGMA 925, 2003). In each case, the measured film thicknesses were larger than the predicted thicknesses, though these discrepancies might be attributed to the specifics the experiments and to challenges associated with calibrating the fluence measurements. [Sponsored by General Electric].

  19. Canted stripe phase evolution due to a spin reorientation transition in Fe films grown on Ag(001) vicinal surface

    NASA Astrophysics Data System (ADS)

    Dąbrowski, M.; Cinal, M.; Przybylski, M.; Chen, G.; N'Diaye, A. T.; Schmid, A. K.; Kirschner, J.

    2016-02-01

    The evolution of the domain structure with the thickness of bcc Fe films deposited on the Ag(116) vicinal surface is studied by spin-polarized low-energy electron microscopy. We show that a spin reorientation transition proceeds via two mechanisms: continuous rotation of magnetization within the vertical plane perpendicular to the steps and discontinuous reorientation of the in-plane component of magnetization, leading to splitting of the domains. In contrast to previously investigated systems with stripe domains, we reveal that in the case of a vicinal ferromagnetic surface, the domain width increases while changing the orientation of the magnetization from a canted out-of-plane state into an in-plane state. A theoretical model developed in this work successfully describes the domain structure behavior observed in our experiments and can be equally applied to other ferromagnetic films grown on vicinal surfaces.

  20. Influence of Ag doping concentration on structural and optical properties of CdS thin film

    SciTech Connect

    Kumar, Pragati; Saxena, Nupur; Gupta, Vinay; Agarwal, Avinash

    2015-05-15

    This work shows the influence of Ag concentration on structural properties of pulsed laser deposited nanocrystalline CdS thin film. X-ray photoelectron spectroscopy (XPS) studies confirm the dopant concentration in CdS films and atomic concentration of elements. XPS studies show that the samples are slightly sulfur deficient. GAXRD scan reveals the structural phase transformation from cubic to hexagonal phase of CdS without appearance of any phase of CdO, Ag{sub 2}O or Ag{sub 2}S suggesting the substitutional doping of Ag ions. Photoluminescence studies illustrate that emission intensity increases with increase in dopant concentration upto 5% and then decreases for higher dopant concentration.

  1. Atomic force microscopy of AgBr crystals and adsorbed gelatin films

    SciTech Connect

    Haugstad, G.; Gladfelter, W.L.; Keyes, M.P.; Weberg, E.B.

    1993-06-01

    Atomic force microscopy of the (111) surface of macroscopic AgBr crystals revealed steps ranging in height from two atomic layers up to 10 nm, lying predominantly along the (110) and (112) families of crystal directions. Rods of elemental Ag, formed via photoreduction, were observed along the (110) family of directions. Images of adsorbed gelatin films revealed circular pores with diameters of order 10-100 nm, extending to the AgBr surface. The length of deposition time, the pH and concentration of the gelatin solution, and the presence of steps on the AgBr surface were observed to affect the size, number, and location of pores in the gelatin films. 12 refs., 7 figs.

  2. Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability

    NASA Astrophysics Data System (ADS)

    Im, Hyeon-Gyun; Jin, Jungho; Ko, Ji-Hoon; Lee, Jaemin; Lee, Jung-Yong; Bae, Byeong-Soo

    2013-12-01

    We report on the performance of an all-in-one flexible hybrid conducting film employing a monolithically embedded AgNW transparent electrode and a high-performance glass-fabric reinforced composite substrate (AgNW-GFRHybrimer film). Specifically, we perform in-depth investigations on the stability of the AgNW-GFRHybrimer film against heat, thermal oxidation, and wet chemicals to demonstrate the potential of the hybrid conducting film as a robust electrode platform for thin-film optoelectronic devices. With the ease of large-area processability, smooth surface topography, and robust performance stability, the AgNW-GFRHybrimer film can be a promising platform for high-performance optoelectronic devices.We report on the performance of an all-in-one flexible hybrid conducting film employing a monolithically embedded AgNW transparent electrode and a high-performance glass-fabric reinforced composite substrate (AgNW-GFRHybrimer film). Specifically, we perform in-depth investigations on the stability of the AgNW-GFRHybrimer film against heat, thermal oxidation, and wet chemicals to demonstrate the potential of the hybrid conducting film as a robust electrode platform for thin-film optoelectronic devices. With the ease of large-area processability, smooth surface topography, and robust performance stability, the AgNW-GFRHybrimer film can be a promising platform for high-performance optoelectronic devices. Electronic supplementary information (ESI) available: Further characteristics of AgNW-GFRHybrimer films and thermal oxidation of AgNW on glass. See DOI: 10.1039/c3nr05348b

  3. Change in Tear Film Lipid Layer Thickness, Corneal Thickness, Volume and Topography after Superficial Cauterization for Conjunctivochalasis

    PubMed Central

    Chan, Tommy C. Y.; Ye, Cong; Ng, Paul KF; Li, Emmy Y. M.; Yuen, Hunter K. L.; Jhanji, Vishal

    2015-01-01

    We evaluated the change in tear film lipid layer thickness, corneal thickness, volume and topography after superficial cauterization of symptomatic conjunctivochalasis. Bilateral superficial conjunctival cauterization was performed in 36 eyes of 18 patients with symptomatic conjunctivochalasis. The mean age of patients (12 males, 6 females) was 68.6 ± 10.9 years (range: 44–83 years). Preoperatively, 28 eyes (77.8%) had grade 1 conjunctivochalasis, and 8 eyes (22.2%) had grade 2 conjunctivochalasis. At 1 month postoperatively, the severity of conjunctivochalasis decreased significantly (p < 0.001) and 29 eyes (80.6%) had grade 0 conjunctivochalasis whereas 7 eyes (19.4%) had grade 1 conjunctivochalasis. The mean Ocular Surface Disease Index score decreased from 31.5 ± 15.2 preoperatively to 21.5 ± 14.2 at the end of 1 month postoperatively (p = 0.001). There was a statistically significant increase in mean tear film lipid layer thickness 1 month after the surgery (49.6 ± 16.1 nm vs 62.6 ± 21.6 nm; p < 0.001). The central corneal thickness, thinnest corneal thickness and corneal volume decreased significantly postoperatively (p < 0.001). Our study showed that superficial conjunctival cauterization is an effective technique for management of conjunctivochalasis in the short term. An increase in tear film lipid layer thickness along with a decrease in corneal thickness and volume were observed after surgical correction of conjunctivochalasis. PMID:26184418

  4. Chemical and phase distributions in a multilayered organic matter-Ag nanoparticle thin film system

    NASA Astrophysics Data System (ADS)

    Michel, F. M.; Levard, C.; Wang, Y.; Choi, Y.; Eng, P.; Brown, G. E.

    2010-12-01

    Rapid development of nanotechnologies raises concern regarding the environmental impact of nanoparticles on ecosystems. Among the types of nanoparticles currently in production, metallic silver is the most widely used in nanotechnology (1). Synthetic Ag nanoparticles (Ag-NPs) are most often used for their antimicrobial and antifungal properties that are, in part, explained by the release of highly toxic Ag+ species (2). While such properties are desirable in certain applied cases, the release of Ag-NPs and soluble Ag+ species to the environment is expected to impact biota as well as soil and water quality (3). With the production of Ag-NPs projected to increase (1), the amount of Ag-NPs that will be released to the environment through waste streams is also likely to increase. As such, a deeper understanding of the fundamental processes associated with Ag-NPs toxicity and reactivity is needed to evaluate their impact on the environment. We have studied the interaction during aging of poly-acrylic acid (PAA) and Ag-NPs with average particle sizes of 20 ±5 nm. The sample studied was composed of thin films of PAA and Ag-NPs deposited on a Si-wafer support. PAA served as a model compound and a simplified surrogate for exopolysaccharide, an organic substance produced through metabolic activity by most microorganisms. We applied a novel combination of long-period x-ray standing wave fluorescence yield (XSW-FY) spectroscopy, grazing-incidence x-ray diffraction (GI-XRD), and XRD-based standing wave profiles (XSW-XRD) to obtain chemical- and phase-specific information on this sample. After 24 hours, we observed the formation of AgCl(s) in the PAA film of the sample, which suggests oxidation and dissolution of a portion of the Ag-NPs during aging, resulting in the release of Ag+. In addition, we see partitioning of Cl and Br, both present initially in the PAA, to the intact Ag-NPs thin film. To our knowledge, this is the first application of this suite of techniques to this

  5. Thickness dependence of the dielectric properties of thermally evaporated Sb2Te3 thin films

    NASA Astrophysics Data System (ADS)

    Ulutas, K.; Deger, D.; Yakut, S.

    2013-03-01

    Sb2Te3 thin films of different thickness (23 - 350 nm) were prepared by thermal evaporation technique. The thickness dependence of the ac conductivity and dielectric properties of the Sb2Te3 films have been investigated in the frequency range 10 Hz- 100 kHz and within the temperature range 293-373K. Both the dielectric constant epsilon1 and dielectric loss factor epsilon2 were found to depend on frequency, temperature and film thickness. The frequency and temperature dependence of ac conductivity (σac(ω)) has also been determined. The ac conductivity of our samples satisfies the well known ac power law; i.e., σac(ω) propto ωs where s<1 and independent of the film thickness. The temperature dependence of ac conductivity and parameter s is reasonably well interpreted by the correlated barrier hopping (CBH) model. The activation energies were evaluated for various thicknesses. The temperature coefficient of the capacitance (TCC) and permitivity (TCP) were determined as a function of the film thickness. The microstructure of the samples were analyzed using X-ray diffraction (XRD). This results are discussed on the base of the differences in their morphologies and thicknesses. The tendency for amorphization of the crystalline phases becomes evident as the film thickness increases.

  6. Electrochromism of DC magnetron-sputtered TiO2: Role of film thickness

    NASA Astrophysics Data System (ADS)

    Sorar, Idris; Pehlivan, Esat; Niklasson, Gunnar A.; Granqvist, Claes G.

    2014-11-01

    Titanium dioxide films were prepared by reactive DC magnetron sputtering and the role of the film thickness d on the electrochromism was analyzed for 100 < d < 400 nm. The best properties were obtained for the thickest films, which yielded a mid-luminous transmittance modulation of 58% and a corresponding coloration efficiency of 26.3 cm2/C. The films were amorphous according to X-ray diffraction measurements and showed traces of adsorbed water as revealed by infrared spectroscopy.

  7. Mechanical properties of Pb-free solder alloys on thick film hybrid microcircuits

    SciTech Connect

    Hernandez, C.L.; Vianco, P.T.; Rejent, J.A.; Hosking, F.M.

    1998-03-10

    The technology drivers of the electronics industry continue to be systems miniaturization and reliability, in addition to addressing a variety of important environmental issues. Although the Sn-Pb eutectic alloy is widely used as a joining material in the electronics industry, it has drawn environmental concern due to its Pb content. The solder acts both as an electrical and mechanical connection within the different packaging levels in an electronic device. New Pb-free solders are being developed at Sandia National Laboratories. The alloys are based on the Sn-Ag alloy, having Bi and Au additions. Prototype hybrid microcircuit (HMC) test vehicles have been assembled to evaluate Pb-free solders for Au-Pt-Pd thick film soldering. The test components consist of a variety of dummy chip capacitors and leadless ceramic chip carriers (LCCC`s). The mechanical properties of the joints were evaluated. The reflow profiles and the solid state intermetallic formation reaction will also be presented. Improved solder joint manufacturability and increased fatigue resistance solder alloys are the goals of these materials.

  8. Realistic reflectance spectrum of thin films covering a transparent optically thick substrate

    SciTech Connect

    Cesaria, M. Caricato, A. P.; Martino, M.

    2014-07-21

    A spectrophotometric strategy is presented and discussed for calculating realistically the reflectance spectrum of an absorbing film deposited over a thick transparent or semi-transparent substrate. The developed route exploits simple mathematics, has wide range of applicability (high-to-weak absorption regions and thick-to-ultrathin films), rules out numerical and curve-fitting procedures as well as model-functions, inherently accounts for the non-measurable contribution of the film-substrate interface as well as substrate backside, and describes the film reflectance spectrum as determined by the experimental situation (deposition approach and parameters). The reliability of the method is tested on films of a well-known material (indium tin oxide) by deliberately changing film thickness and structural quality through doping. Results are found consistent with usual information yielded by reflectance, its inherent relationship with scattering processes and contributions to the measured total reflectance.

  9. Seeded growth of robust SERS-active 2D Au@Ag nanoparticulate films

    SciTech Connect

    Baker, Gary A; Dai, Sheng; Hagaman, Edward {Ed} W; Mahurin, Shannon Mark; Zhu, Haoguo; Bao, Lili

    2008-01-01

    We demonstrate herein a novel and versatile solution-based methodology for fabricating self-organized two-dimensional (2D) Au nanoparticle arrays on glass using in situ nucleation at an aminosilane monolayer followed by seeded, electroless growth; subsequent deposition of Ag produced Au{at}Ag core-shell nanoparticulate films which proved highly promising as surface-enhanced Raman scattering (SERS) platforms.

  10. Magnetic properties and microstructure of FePtB, FePt(B-Ag) granular films

    NASA Astrophysics Data System (ADS)

    Tsai, Jai-Lin; Huang, Jian-Chiang; Tai, Hsueh-Wei; Tsai, Wen-Chieh; Lin, Yi-Cheng

    2013-03-01

    Multilayers [FePt(1 nm)/B(t nm)]10 (t=0.05-0.6) were alternately deposited on a glass substrate and subsequently annealed by the rapid thermal process (RTP) at 800 °C for 3 min. After RTP, FePt and B layers intermix to form the FePtB film with (0 0 1) texture. The ordering degree of FePt was slightly increased with doped B. The (Fe-Pt)100-xBx (x=0, 5, 10) films show perpendicular magnetization and the minor FeB phase was indexed in isotropic (Fe-Pt)100-xBx (x=30, 40, 60) films. By adding Ag into (Fe-Pt)95B5 film, the ordering degree was slightly increased in (Fe-Pt)95(B0.9Ag0.1)5 film. In (Fe-Pt)100-xBx (x=5, 10) and (Fe-Pt)95(B0.9Ag0.1)5 granular films, the intermixed B or Ag atoms were diffused among FePt grain boundaries to isolate and refine FePt grains uniformly with average grain sizes of 20, 15, and 6.7 nm, respectively.

  11. Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS

    PubMed Central

    Liu, Fanxin; Tang, Chaojun; Zhan, Peng; Chen, Zhuo; Ma, Hongtao; Wang, Zhenlin

    2014-01-01

    We have demonstrated the plasmonic characteristics of an ultrathin tetrahedral amorphous carbon (ta-C) film coated with Ag nanoparticles. The simulation result shows that, under resonant and non-resonant excitations, the strongest plasmonic electric field of 1 nm ta-C coated Ag nanoparticle is not trapped within the ta-C layer but is released to its outside surface, while leaving the weaker electric field inside ta-C layer. Moreover, this outside plasmonic field shows higher intensity than that of uncoated Ag nanoparticle, which is closely dependent on the excitation wavelength and size of Ag particles. These observations are supported by the SERS measurements. We expect that the ability for ultrathin ta-C coated Ag nanoparticles as the SERS substrates to detect low concentrations of target biomolecules opens the door to the applications where it can be used as a detection tool for integrated, on-chip devices. PMID:24675437

  12. Surface-segregated Si and Ge ultrathin films formed by Ag-induced layer exchange process

    NASA Astrophysics Data System (ADS)

    Kurosawa, Masashi; Ohta, Akio; Araidai, Masaaki; Zaima, Shigeaki

    2016-08-01

    We have developed a new method of growing Si or Ge ultrathin films on a Ag(111) surface by using a Ag-induced layer exchange (ALEX) process toward the creation of 2D honeycomb sheets of Si and Ge, known as silicene and germanene, respectively. In the present paper, we clarify ALEX features, specifically the surface segregation of Si (or Ge) atoms from the underlying substrate, focusing on the annealing temperature and time. Hard X-ray photoelectron spectroscopy analyses demonstrate that surface-segregated Si (or Ge) exists on the Ag surfaces after the epitaxial growth of the Ag layer on Si(111) [or Ge(111)] substrates; the amount of segregated Si (or Ge) can be controlled by a subsequent annealing. Also, we find that the segregation of an ultrathin Si or Ge layer proceeds at an interface between Ag and the AlO x capping layer.

  13. Structure of ultrathin Ag films on the Al(100) surface

    SciTech Connect

    Choi, D. S.; Kopczyk, M.; Kayani, A.; Smith, R. J.; Bozzolo, Guillermo

    2006-09-15

    The structure for submonolayer amounts of Ag deposited on the Al(100) surface at room temperature has been studied using low-energy electron diffraction (LEED) and low-energy ion-scattering spectroscopy (LEIS/ISS). The Ag coverage was determined using Rutherford backscattering spectroscopy. We conclude that the Ag atoms form two domains of a buckled, quasihexagonal coincident lattice structure on the Al(100) surface, having a repeat distance of 5 Al interatomic spacings in the [110] direction. The LEED pattern shows a double-domain (5x1) structure with additional intensity in those spots corresponding to a (111) close-packed hexagonal layer. The analysis of the ISS results suggests that the heights of the adsorbed Ag atoms above the Al surface are not all the same, leading to the proposed buckling model that is in agreement with recent scanning tunneling microscopy measurements. In addition, some Al atoms move from the substrate up into the Ag adlayer to form a surface alloy. Model calculations using the quantum approximate Bozzolo-Ferrante-Smith (BFS) method indicate that the hexagonal layer is energetically preferred as a result of increased nearest-neighbor coordination within the Ag layer.

  14. Tuning the Stoichiometry of Ag2S Thin Films for Resistive Switching Applications.

    PubMed

    Dias, C; Proenca, M P; Fernandes, L; Tavares, P B; Vilarinho, R; Moreira, J Agostinho; Araújo, J P; Ventura, J

    2016-03-01

    In this work silver-rich and sulfur-rich silver sulfide (Ag2S) thin films were fabricated using a diversified set of experimental methods, namely ion beam deposition and atmosphere- and solution-based sulfurizations. The composition of the Ag2S thin films was studied using X-ray diffraction, Raman spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. We found that it strongly depends on the fabrication conditions, such as sulfurization time and temperature. These conditions, in turn, affect the electrical characteristics of the thin films, namely the resistivity and resistive switching. We were able to control the Ag2S stoichiometry and infer its dependence on the fabrication parameters for all the followed methods. PMID:27455677

  15. Enhanced resistive switching effect in Ag nanoparticle embedded BaTiO{sub 3} thin films

    SciTech Connect

    Au, K.; Wang, Juan; Bao, Z. Y.; Dai, J. Y.; Gao, X. S.; Liu, J. M.

    2013-07-14

    Ag nanoparticle (NP) embedded BaTiO{sub 3} (BTO) thin films on SrRuO{sub 3}-coated SrTiO{sub 3} (STO) substrates are prepared by the integrated nanocluster beam deposition and laser-molecular beam epitaxy. Enhanced resistive switching, up to an ON/OFF ration of 10{sup 4}, has been achieved at low switching voltage (less than 1 V) without a forming voltage. These characteristics make such nanocomposite film very promising for application of low voltage non-volatile random access memory. The enhanced resistive switching effect may be attributed to the charge storage effect of the Ag nanoparticles and easy formation of Ag filament inside the BTO film.

  16. Attempt of Deposition of Ag-Doped Amorphous Carbon Film by Ag-Cathode DC Plasma with CH4 Flow.

    PubMed

    Tsubota, Toshiki; Kuratsu, Kazuhiro; Murakami, Naoya; Ohno, Teruhisa

    2015-06-01

    A simple DC plasma apparatus having large Ag cathode with CH4 flow was used for the attempt to prepare Ag-doped amorphous carbon film. As the gaseous source, CH4 and the additive (N2 or Ar) were used for the plasma process. When N2 was the additive, the substrate surfaces after the plasma process were electrical conductor although high electrical resistance. The growth rate of the deposits decreased with increasing the amount of N2, and the deposits contained nitrogen. Although the small amount of silver was detected by XPS, the peak for Ag may not be in the carbon deposit but be in interlayer formed at Ar etching process. When Ar was the additive, the substrate surfaces after the plasma process were also electrical conductor although high electrical resistance. The growth rate of the deposits was almost independent of the amount of Ar, and the deposits contained no argon. The small XPS peaks for Ag may not be in the carbon deposit but be in interlayer formed at Ar etching process. Both the prepared samples had high antibiotic property. The method of this study could be used for the surface reforming with amorphous carbon coating having electrical conductivity and antibiotic property. PMID:26369089

  17. Effects of Ag addition on FePt L1{sub 0} ordering transition: A direct observation of ordering transition and Ag segregation in FePtAg alloy films

    SciTech Connect

    Wang, Lei; Yu, Youxing; Gao, Tenghua

    2015-12-21

    FePt and (FePt){sub 91.2}Ag{sub 8.8} alloy films were deposited by magnetron sputtering. The average coercivity of (FePt){sub 91.2}Ag{sub 8.8} films reaches 8.51 × 10{sup 5} A/m, which is 0.63 × 10{sup 5} A/m higher than that of the corresponding FePt films. Ag addition effectively promotes the FePt L1{sub 0} ordering transition at a relatively low annealing temperature of 400 °C. The promotion mechanism was investigated by using in situ high-resolution transmission electron microscopy (HRTEM) and ex situ X-ray absorption fine structure (XAFS). The concurrence of ordering transition and Ag segregation in FePtAg alloy films was first observed by using in situ heating HRTEM. The time-resolved evolution reveals more details on the role of Ag addition in FePt low-temperature ordering. Ex situ XAFS results further confirm that Ag replaces Fe sites in the as-deposited films and segregates from FePt-Ag solid solution phase through annealing at elevated temperatures. The segregation of Ag atoms leaves vacancies in the grain. The vacancy formation is believed to accelerate the diffusion of Fe and Pt atoms, which is critical for the L1{sub 0} ordering transition.

  18. Tailoring of Luminous Transmittance upon Switching for Thermochromic VO2 Films by Thickness Control

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Jin, Ping; Tazawa, Masato; Yoshimura, Kazuki

    2004-01-01

    The difference in luminous transmittance (Δ Tlum) upon switching of VO2 films strongly affects its solar controllability when used as a thermochromic window. It was found that Δ Tlum is controllable by film thickness. Optical calculation for a VO2 film on quartz glass revealed that the low-temperature semiconductor phase exhibits lower Tlum than the high-temperature metallic phase for thickness below 50 nm, while the relationship is reversed above 50 nm. The calculation was confirmed by film deposition and measurement. Maximum Δ Tlum is located near 80 nm. An enhanced Δ Tlum contributes largely to solar efficiency.

  19. Ptychographic Imaging of Branched Colloidal Nanocrystals Embedded in Free-Standing Thick Polystyrene Films

    NASA Astrophysics Data System (ADS)

    de Caro, Liberato; Altamura, Davide; Arciniegas, Milena; Siliqi, Dritan; Kim, Mee R.; Sibillano, Teresa; Manna, Liberato; Giannini, Cinzia

    2016-01-01

    Research on composite materials is facing, among others, the challenging task of incorporating nanocrystals, and their superstructures, in polymer matrices. Electron microscopy can typically image nanometre-scale structures embedded in thin polymer films, but not in films that are micron size thick. Here, X-ray Ptychography was used to visualize, with a resolution of a few tens of nanometers, how CdSe/CdS octapod-shaped nanocrystals self-assemble in polystyrene films of 24 ± 4 μm, providing a unique means for non-destructive investigation of nanoparticles distribution and organization in thick polymer films.

  20. Ptychographic Imaging of Branched Colloidal Nanocrystals Embedded in Free-Standing Thick Polystyrene Films

    PubMed Central

    De Caro, Liberato; Altamura, Davide; Arciniegas, Milena; Siliqi, Dritan; Kim, Mee R.; Sibillano, Teresa; Manna, Liberato; Giannini, Cinzia

    2016-01-01

    Research on composite materials is facing, among others, the challenging task of incorporating nanocrystals, and their superstructures, in polymer matrices. Electron microscopy can typically image nanometre-scale structures embedded in thin polymer films, but not in films that are micron size thick. Here, X-ray Ptychography was used to visualize, with a resolution of a few tens of nanometers, how CdSe/CdS octapod-shaped nanocrystals self-assemble in polystyrene films of 24 ± 4 μm, providing a unique means for non-destructive investigation of nanoparticles distribution and organization in thick polymer films. PMID:26775682

  1. Phase thickness approach for determination of thin film refractive index dispersion from transmittance spectra

    NASA Astrophysics Data System (ADS)

    Nenkov, M. R.; Pencheva, T. G.

    2008-06-01

    A novel approach for determination of refractive index dispersion n(λ ) and thickness d of thin films of negligible absorption and weak dispersion is proposed. The calculation procedure is based on determination of the phase thickness of the film in the spectral region of measured transmittance data. All points of measured spectra are included in the calculations. Barium titanate and titanium oxide thin films are investigated and their n(λ ) and d are calculated. The approach is validated using Swanepoel's method and it is found to be applicable for relatively thinner films when measured transmittance spectra have one minimum and one maximum only.

  2. Nanocomposite Ag:TiN thin films for dry biopotential electrodes

    NASA Astrophysics Data System (ADS)

    Pedrosa, P.; Machado, D.; Lopes, C.; Alves, E.; Barradas, N. P.; Martin, N.; Macedo, F.; Fonseca, C.; Vaz, F.

    2013-11-01

    Silver-added titanium nitride (Ag:TiN) thin films were deposited by DC reactive sputtering with Ag contents ranging from 0 to ˜50 at.% on silicon and glass substrates, aiming at studying their potential application as bio-electrodes. The coatings were characterised regarding their composition, morphology and structure, and their influence on the variation of the electrical resistivity and thermal properties. The sputtered films' behaviour was consistently divided into three main zones, defined mainly by the amount of Ag incorporated and the corresponding changes in the structural and morphological features, which affected both the electrical and thermal response of the films. With increasing Ag concentration, the coatings evolve from a nitride/compound-like behaviour to a metallic-like one. Resistivity values suffer a strong decrease due to the increase of compactness of the coatings and the formation of highly conductive Ag phases, counterbalancing the grain size decrease effects promoted by the hindered growth of the crystalline TiN phases. In good agreement with the electrical resistivity evolution, a similar trend was found in the effusivity values, reflecting a significant degradation of the heat conduction mechanisms in the films as the silver content was increased.

  3. Novel fabrication of Ag thin film on glass for efficient surface-enhanced Raman scattering.

    PubMed

    Park, Hyoung Kun; Yoon, Jae Keun; Kim, Kwan

    2006-02-14

    This paper describes a very simple electroless-plating method used to prepare optically tunable nanostructured Ag films. Very stable Ag films can be reproducibly fabricated simply by soaking glass substrates in ethanolic solutions of AgNO3 and butylamine. The grain size of silver can be readily controlled to range from 20 to 150 nm, and these nanostructural features correlated well with their UV/vis absorption characteristics, as well as with their surface-enhanced Raman scattering (SERS) activities. It is also very advantageous that the Ag films prepared exhibit very even SERS activity over an area up to hundreds thousand square-micrometers, and the enhancement factor estimated using benzenethiol as a prototype adsorbate reaches approximately 2 x 10(5). Since the proposed method is cost-effective and is suitable for the mass production of diverse Ag films irrespective of the shapes of the underlying substrates, it is expected to play a significant role in the development of surface plasmon-based analytical devices. PMID:16460083

  4. Impressive electromagnetic shielding effects exhibited by highly ordered, micrometer thick polyaniline films

    NASA Astrophysics Data System (ADS)

    Mohan, Ranjini R.; Varma, Sreekanth J.; Sankaran, Jayalekshmi

    2016-04-01

    The present work highlights the remarkably high shielding effectiveness of about 68 dB, exhibited by highly ordered and doped polyaniline films, in the microwave frequency range 4-12 GHz, obtained by self-stabilized dispersion polymerization as the synthesis route. The observed shielding effectiveness is found to depend quite sensitively on the electrical conducting properties, which are predominantly controlled by the nature and concentration of the dopants. The structural and morphological characterization of the films using XRD and TEM techniques reveals surprisingly high extent of crystallinity, which contributes significantly towards enhancing the electrical conductivity of the films. Most of the available reports on the microwave response of conducting polymer film samples deal with much thicker films, compared to the micrometer thick films of the present studies. The shielding effectiveness of acid doped, micrometer thick polyaniline films reported in the present work far exceeds most of the previously reported values and meets the commercial requirements.

  5. In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain OCT and an efficient delay estimator

    NASA Astrophysics Data System (ADS)

    Aranha dos Santos, Valentin; Schmetterer, Leopold; Gröschl, Martin; Garhofer, Gerhard; Werkmeister, René M.

    2016-03-01

    Dry eye syndrome is a highly prevalent disease of the ocular surface characterized by an instability of the tear film. Traditional methods used for the evaluation of tear film stability are invasive or show limited repeatability. Here we propose a new noninvasive approach to measure tear film thickness using an efficient delay estimator and ultrahigh resolution spectral domain OCT. Silicon wafer phantoms with layers of known thickness and group index were used to validate the estimator-based thickness measurement. A theoretical analysis of the fundamental limit of the precision of the estimator is presented and the analytical expression of the Cramér-Rao lower bound (CRLB), which is the minimum variance that may be achieved by any unbiased estimator, is derived. The performance of the estimator against noise was investigated using simulations. We found that the proposed estimator reaches the CRLB associated with the OCT amplitude signal. The technique was applied in vivo in healthy subjects and dry eye patients. Series of tear film thickness maps were generated, allowing for the visualization of tear film dynamics. Our results show that the central tear film thickness precisely measured in vivo with a coefficient of variation of about 0.65% and that repeatable tear film dynamics can be observed. The presented method has the potential of being an alternative to breakup time measurements (BUT) and could be used in clinical setting to study patients with dry eye disease and monitor their treatments.

  6. Formation of nanodots and enhancement of thermoelectric power induced by ion irradiation in PbTe:Ag composite thin films

    NASA Astrophysics Data System (ADS)

    Bala, Manju; Meena, Ramcharan; Gupta, Srashti; Pannu, Compesh; Tripathi, Tripurari S.; Varma, Shikha; Tripathi, Surya K.; Asokan, K.; Avasthi, Devesh K.

    2016-07-01

    Present study demonstrates an enhancement in thermoelectric power of 10% Ag doped PbTe (PbTe:Ag) thin films when irradiated with 200 keV Ar ion. X-ray diffraction showed an increase in crystallinity for both PbTe and PbTe:10Ag nano-composite films after Ar ion irradiation due to annealing of defects in the grain boundaries. The preferential sputtering of Pb and Te ions in comparison to Ag ions resulted in the formation of nano-dots. This was further confirmed by X-ray photoelectron spectroscopy (XPS). Such an enhancement in thermoelectric power of irradiated PbTe:10Ag films in comparison to pristine PbTe:10Ag film is attributed to the decrease in charge carrier concentration that takes part in the transport process via restricting the tunneling of carriers through the wider potential barrier formed at the interface of nano-dots.

  7. The growth of Ag films on a TiO 2(110)-(1×1) surface

    NASA Astrophysics Data System (ADS)

    Su, C.; Yeh, J.-C.; Lin, J.-L.; Lin, J.-C.

    2001-01-01

    We report here the growth of Ag film and its thermal stability on the TiO 2(1 1 0)-(1×1) surface using combination techniques of low-energy ion scattering (LEIS), X-ray photoelectron spectroscopy (XPS), and low-energy electron diffraction (LEED). At a surface temperature as low as 125 K, a 2D growth of Ag films seems to occur for submonolayer coverages up to ˜0.8 ML. Annealing of low temperature grown Ag films to 500 K for coverage of 1-2.4 ML would result in the formation of metastable Ag layers with rest of Ag forming 3D needle-like islands on top of this Ag film.

  8. Formation and properties of hyaluronan/nano Ag and hyaluronan-lecithin/nano Ag films.

    PubMed

    Khachatryan, Gohar; Khachatryan, Karen; Grzyb, Jacek; Fiedorowicz, Maciej

    2016-10-20

    A facile and environmentally friendly method of the preparation of silver nanoparticles embedded in hyaluronan (Hyal/Ag) and hyaluronan-lecithin (Hyal-L/Ag) matrix was developed. Thin, elastic foils were prepared from gels by an in situ synthesis of Ag in an aqueous solution of sodium hyaluronate (Hyal), using aq. d-(+)-xylose solution as a reducing agent. The gels were applied to a clean, smooth, defatted Teflon surface and left for drying in the air. The dry foils were stored in a closed container. UV-vis spectroscopy, transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectra confirmed formation of about 10nm ball-shaped Ag nanoparticles situated within the polysaccharide template. Thermal properties of the composites were characterized involving differential scanning calorimetry (DSC) and thermogravimetric (TGA) analyses, whereas molecular weights of polysaccharide chains of the matrix were estimated with the size exclusion chromatography coupled with multiangle laser light scattering and refractometric detectors (HPSEC-MALLS-RI). An increase in the molecular weight of the hyaluronate after generation of Ag nanoparticles was observed. The foils showed specific properties. The study confirmed that silver nanoparticles can be successfully prepared with environmentally friendly method, using hyaluronan as a stabilizing template. Hyaluronan and hyaluronan-lecithin matrices provide nanocrystals uniform in size and shape. The composites demonstrated a bacteriostatic activity. PMID:27474588

  9. Surface plasmon resonances of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition at different compositions and temperatures

    SciTech Connect

    Verma, Shweta Rao, B. T.; Detty, A. P.; Kukreja, L. M.; Ganesan, V.; Phase, D. M.; Rai, S. K.; Bose, A.; Joshi, S. C.

    2015-04-07

    We studied localized surface plasmon resonances (LSPR) at different compositions, substrate temperatures, and mass thicknesses of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition. The LSPRs were pronounced at all compositions of the films grown at high substrate temperature of about 300 °C as compared to those grown at room temperature. The alloy formation and composition of the films were determined using X-ray photoelectron and energy dispersive spectroscopy. Films' mass thickness and compositional uniformity along the thickness were determined using X-ray reflectometry and secondary ion mass spectroscopy. Atomic force microscopic analysis revealed the formation of densely packed nanoparticles of increasing size with the number of laser ablation pulses. The LSPR wavelength red shifted with increasing either Au percentage or film mass thickness and corresponding LSPR tuning was obtained in the range of 450 to 690 nm. The alloy dielectric functions obtained from three different models were compared and the optical responses of the nanoparticle films were calculated from modified Yamaguchi effective medium theory. The tuning of LSPR was found to be due to combined effect of change in intrinsic and extrinsic parameters mainly the composition, morphology, particle-particle, and particle-substrate interactions.

  10. Systematic experimental study of pure shear type dielectric elastomer membranes with different electrode and film thicknesses

    NASA Astrophysics Data System (ADS)

    Hodgins, M.; Seelecke, S.

    2016-09-01

    An approach to reduce the voltage required for dielectric elastomer actuators is to reduce film thickness. However, if the electrode thickness is not similarly reduced, the electrode’s mechanical behavior can increasingly and negatively impact the overall actuator behavior. This effect is yet to be studied and quantified for pure shear type specimens; a type recommended in a recent DE standardization journal publication. Therefore, in this work, using pure shear specimens, a comparative study of membrane actuators of different film thickness (20, 50 and 100 μm) is performed. Electrodes of different thicknesses are screen printed and tested in a uniaxial test device. The stiffening effect due to the solid-state electrodes is demonstrated by performing force-elongation tests for specimens with and without electrodes. Additionally the importance of thin electrodes (relative to film thickness) was demonstrated through a number of electromechanical tests. Isotonic tests revealed a lower electro-mechanical sensitivity for the 20 μm film when compared with the 50 and 100 μm films. This was attributed to the relatively thick electrodes. Best actuation results were achieved when the total electrode thickness was at least 15x thinner than the dielectric membrane thickness.

  11. Improvement of Film Thickness Uniformity in TFA-MOD Coated Conductors

    NASA Astrophysics Data System (ADS)

    Katayama, K.; Nakahata, K.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.

    TFA-MOD process is expected to be promising for future applications since it can produce high performance YBCO coated conductors with low cost. The dip-coating is adopted as the coating process because of its simplicity and controllability of the overall film thickness. Dip-coated films have uniform thickness along longitudinal direction, but not necessary in transverse direction. In the case of thicker films, the more cracks form during processing at the thicker region near the edges generate and propagate mainly due to tensile and bending strain. So we have to suppress the thickness distribution in transverse direction for thicker films for high IC values. In this study, we found that the thickness distribution was firstly given by meniscus shape and then the solution flew down till it's dried. The solution in the center region drops more since it is slowly dried compared with the edge region. Then, we developed a drying process, which accelerates the drying by blowing hot gas to prevent the coated solutions from dropping. As a result, the thickness uniformity was improved; the thickness ratio of the thick region (edge) to the flat one (center) was improved from 1.35 to 1.07. Furthermore, we successfully produced ~1.5 μm thick films with high critical current density values (> 2MA/cm2) by the new coating process including the force drying step.

  12. 200 MeV Ag15+ ion beam irradiation effects on spray deposited 5 wt% `Li' doped V2O5 thin film

    NASA Astrophysics Data System (ADS)

    Kovendhan, M.; Joseph, D. Paul; Manimuthu, P.; Sendilkumar, A.; Asokan, K.; Venkateswaran, C.; Mohan, R.

    2016-05-01

    Lithium 5 wt% doped V2O5 thin film was deposited onto ITO substrate by spray pyrolysis technique. The substrate temperature was kept at 450 °C. 200 MeV Ag15+ ion beams at a fluence of 5×1012 ions/cm2 was irradiated on 5 wt% `Li' doped V2O5 film of thickness 1367 nm. The XRD pattern confirms that the pristine film is non stoichiometry with orthorhombic structure and upon irradiation the crystallinity decreased and an obvious textured growth along (020) plane is induced. Raman peak observed at 917 cm-1 is due to oxygen deficiency. Upon irradiation, the optical transparency and band gap of the film decreased. Electrical transport property study shows that the resistivity increased by one order for the irradiated film.

  13. Magnetic properties of ultrathin Co/Ag/Pt(111) films

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Tzeng, C. L.; Ho, H. Y.; Shern, C. S.

    2003-11-01

    The magnetic properties of Co on Pt(111) with 1 ML Ag buffer layer were studied by magneto-optical Kerr effect. The easy axis of the magnetization of Co deposited on 1 ML Ag/Pt(111) switches from the out-of-plane to the in-plane direction when the coverage of Co is larger than 1 ML. The easy axis can transform from the in-plane to the out-of-plane direction after high temperature annealing for 2-7 ML Co/1 ML Ag/Pt(111). The study of Auger electron spectroscopy shows that the spin reorientation transition occurs when 1 ML Ag atoms diffuse to the top layer. The perpendicular magnetic anisotropy is significantly enhanced after further annealing at higher temperatures. The enhancement of the perpendicular magnetic anisotropy is attributed to the formation of Co-Pt alloy after the atomic exchange between Co and Ag. The possible mechanisms for the spin reorientation transition and the enhancement in the perpendicular magnetic anisotropy are discussed.

  14. Thickness dependence of Jc (0) in MgB2 films

    NASA Astrophysics Data System (ADS)

    Chen, Yiling; Yang, Can; Jia, Chunyan; Feng, Qingrong; Gan, Zizhao

    2016-06-01

    MgB2 superconducting films, whose thicknesses range from 10 nm to 8 μm, have been fabricated on SiC substrates by hybrid physical-chemical vapor deposition (HPCVD) method. It is the first time that the Tc and the Jc of MgB2 films are studied on such a large scale. It is found that with the increasing of thickness, Tc elevates first and then keeps roughly stable except for some slight fluctuations, while Jc (5 K, 0 T) experiences a sharp increase followed by a relatively slow fall. The maximum Jc (5 K, 0 T) = 2.3 × 108 A cm-2 is obtained for 100 nm films, which is the experimental evidence for preparing high-quality MgB2 films by HPCVD method. Thus, this work may provide guidance on choosing the suitable thickness for applications. Meanwhile, the films prepared by us cover ultrathin films, thin films and thick films, so the study on them will bring a comprehensive understanding of MgB2 films.

  15. Amorphous Indium Selenide Thin Films Prepared by RF Sputtering: Thickness-Induced Characteristics.

    PubMed

    Han, Myoung Yoo; Park, Yong Seob; Kim, Nam-Hoon

    2016-05-01

    The influence of indium composition, controlled by changing the film thickness, on the optical and electrical properties of amorphous indium selenide thin films was studied for the application of these materials as Cd-free buffer layers in CI(G)S solar cells. Indium selenide thin films were prepared using RF magnetron sputtering method. The indium composition of the amorphous indium selenide thin films was varied from 94.56 to 49.72 at% by increasing the film thickness from 30 to 70 nm. With a decrease in film thickness, the optical transmittance increased from 87.63% to 96.03% and Eg decreased from 3.048 to 2.875 eV. Carrier concentration and resistivity showed excellent values of ≥1015 cm(-3) and ≤ 10(4) Ω x cm, respectively. The conductivity type of the amorphous indium selenide thin films could be controlled by changing the film-thickness-induced amount of In. These results indicate the possibility of tuning the properties of amorphous indium selenide thin films by changing their composition for use as an alternate buffer layer material in CI(G)S solar cells. PMID:27483886

  16. Two-step flash light sintering process for crack-free inkjet-printed Ag films

    NASA Astrophysics Data System (ADS)

    Park, Sung-Hyeon; Jang, Shin; Lee, Dong-Jun; Oh, Jehoon; Kim, Hak-Sung

    2013-01-01

    In this paper, a two-step flash light sintering process for inkjet-printed Ag films is investigated with the aim of improving the quality of sintered Ag films. The flash light sintering process is divided into two steps: a preheating step and a main sintering step. The preheating step is used to remove the organic binder without abrupt vaporization. The main sintering step is used to complete the necking connections among the silver nanoparticles and achieve high electrical conductivity. The process minimizes the damage on the polymer substrate and the interface between the sintered Ag film and polymer substrate. The electrical conductivity is calculated by measuring the resistance and cross-sectional area with an LCR meter and 3D optical profiler, respectively. It is found that the resistivity of the optimal flash light-sintered Ag films (36.32 nΩ m), which is 228.86% of that of bulk silver, is lower than that of thermally sintered ones (40.84 nΩ m). Additionally, the polyimide film used as the substrate is preserved with the inkjet-printed pattern shape during the flash light sintering process without delamination or defects.

  17. Effects of artificially produced defects on film thickness distribution in sliding EHD point contacts

    NASA Technical Reports Server (NTRS)

    Cusano, C.; Wedeven, L. D.

    1981-01-01

    The effects of artificially produced dents and grooves on the elastohydrodynamic (EHD) film thickness profile in a sliding point contact were investigated by means of optical interferometry. The defects, formed on the surface of a highly polished ball, were held stationary at various locations within and in the vicinity of the contact region while the disk was rotating. It is shown that the defects, having a geometry similar to what can be expected in practice, can dramatically change the film thickness which exists when no defects are present in or near the contact. This change in film thickness is mainly a function of the position of the defects in the inlet region, the geometry of the defects, the orientation of the defects in the case of grooves, and the depth of the defect relative to the central film thickness.

  18. Film thickness measurement for spiral groove and Rayleigh step lift pad self-acting face seals

    NASA Technical Reports Server (NTRS)

    Dirusso, E.

    1982-01-01

    One Rayleigh step lift pad and three spiral groove self-acting face seal configurations were tested to measure film thickness and frictional torque as a function of shaft speed. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17,000 rpm. The measured film thickness was compared with theoretical data from mathematical models. The mathematical models overpredicted the measured film thickness at the lower speeds of the test speed range and underpredicted the measured film thickness at the higher speeds of the test speed range.

  19. Determination of the specific alpha activity of thick sources with a large area ZnS(Ag) scintillation detector.

    PubMed

    Djurasević, M; Vukanac, I; Kandić, A; Nadderd, L; Milosević, Z; Radenković, M

    2007-01-01

    A method for determining the specific alpha activity of thick sources using a large area ZnS(Ag) scintillation detector is presented. In this method a quadratic relationship between the detector response and window thickness is assumed. This method provides a quick estimation of alpha activity in the sample, so it is an indicative method. The aim of this experimental work is to approve theoretical assumption and to develop a standard routine method for absolute alpha measurements of thick contaminated environmental sources. For this purpose reference material U(3)O(8) and spiked standards of soil were used. Measurements of contaminated soil samples from south Serbia showed the practical application of this method. PMID:17383779

  20. Mechanism of coercivity enhancement by Ag addition in FePt-C granular films for heat assisted magnetic recording media

    SciTech Connect

    Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K. Wang, J.; Hono, K.; Ina, T.; Nakamura, T.; Ueno, W.; Nitta, K.; Uruga, T.

    2014-06-02

    We investigated the Ag distribution in a FePtAg-C granular film that is under consideration for a heat assisted magnetic recording medium by aberration-corrected scanning transmission electron microscope-energy dispersive X-ray spectroscopy and X-ray absorption fine structure. Ag is rejected from the core of FePt grains during the deposition, forming Ag-enriched shell surrounding L1{sub 0}-ordered FePt grains. Since Ag has no solubility in both Fe and Pt, the rejection of Ag induces atomic diffusions thereby enhancing the kinetics of the L1{sub 0}-order in the FePt grains.

  1. Thickness-dependent metal-insulator transition in epitaxial SrRuO3 ultrathin films

    DOE PAGESBeta

    Shen, Xuan; Qiu, Xiangbiao; Su, Dong; Zhou, Shengqiang; Li, Aidong; Wu, Di

    2015-01-06

    Transport characteristics of ultrathin SrRuO₃ films, deposited epitaxially on TiO₂-terminated SrTiO₃ (001) single-crystal substrates, were studied as a function of film thickness. Evolution from a metallic to an insulating behavior is observed as the film thickness decreases from 20 to 4 unit cells. In films thicker than 4 unit cells, the transport behavior obeys the Drude low temperature conductivity with quantum corrections, which can be attributed to weak localization. Fitting the data with 2-dimensional localization model indicates that electron-phonon collisions are the main inelastic relaxation mechanism. In the film of 4 unit cells in thickness, the transport behavior follows variablemore » range hopping model, indicating a strongly localized state. As a result, magnetoresistance measurements reveal a likely magnetic anisotropy with the magnetic easy axis along the out-of-plane direction.« less

  2. Two-dimensional mapping of falling water film thickness with near-infrared attenuation

    NASA Astrophysics Data System (ADS)

    Dupont, J.; Mignot, G.; Prasser, H.-M.

    2015-05-01

    We have developed an optical technique for the two-dimensional mapping of water film thickness. The technique is based on infrared light absorption. A near-infrared camera is used to capture the radiation returning from a surface illuminated by a halogen lamp. The attenuation of the back-scattered radiation is used as a measure for the thickness of the water film covering the surface. The method was calibrated using well-defined liquid films between a glass plate and the surface. Series of instantaneous, two-dimensional thickness profiles of wavy turbulent free-falling films along a vertical wall were measured at a frame rate of 200 Hz. The evolution of complex flow patterns with three-dimensional instabilities such as long waves and capillary waves was observed under isothermal conditions. For the validation of the method, simultaneous independent measurements were taken together with an electrical high-speed liquid film sensor.

  3. A method for measuring the thickness of transparent oil film on water surface using laser trigonometry

    NASA Astrophysics Data System (ADS)

    Qieni, Lü; Baozhen, Ge; Wenda, Yao; Yimo, Zhang

    2011-01-01

    We present a method for measurement of thickness of transparent oil film on water surface based on laser trigonometry. With an oblique incident mode of single-point laser triangulation ranging system, laser light is incident on the upper and lower surfaces of the oil film being measured and an ellipse light spot is formed on the upper and lower surfaces of the oil film. The two light spots are imaged on an image plane CCD by an imaging lens and the image spot is formed and stored in a computer. The thickness of oil film being measured can be obtained by displacement of the image spot and the configuration parameter of the imaging system. The experiment is conducted using edible peanut oil and diesel oil. The research results show that the method presented in this paper is feasible and applicable to dynamic on-line measurement of oil film thickness of oil spill on sea surface.

  4. Structural, transport and microwave properties of 123/sapphire films: Thickness effect

    NASA Technical Reports Server (NTRS)

    Predtechensky, M. R.; Smal, A. N.; Varlamov, Yu. D.; Vatnik, S. M.; Tukhto, O. M.; Vasileva, I. G.

    1995-01-01

    The effect of thickness and growth conditions on the structure and microwave properties has been investigated for the 123/sapphire films. It has been shown that in the conditions of epitaxial growth the Al atoms do not diffuse from substrate into the film and the films with thickness up to 100 nm exhibit the excellent direct current (DC) properties. The increase of thickness of GdBaCuO films causes the formation of extended line-mesh defects and the increase of the surface resistance (R(sub S)). The low value of surface resistance R(sub S)(75 GHz, 77K) = 20 mOhm has been obtained for the two layer YBaCuO/CdBaCuO/sapphire films.

  5. Structural, transport and microwave properties of 123/sapphire films: Thickness effect

    SciTech Connect

    Predtechensky, MR.; Smal, A.N.; Varlamov, Y.D.

    1994-12-31

    The effect of thickness and growth conditions on the structure and microwave properties has been investigated for the 123/sapphire films. It has been shown that in the conditions of epitaxial growth and Al atoms do not diffuse from substrate into the film and the films with thickness up to 100nm exhibit the excellent DC properties. The increase of thickness of GdBaCuO films causes the formation of extended line-mesh defects and the increase of the surface resistance (R{sub S}). The low value of surface resistance R{sub S}(75GHz,77K)=20 mOhm has been obtained for the two layer YBaCuO/CdBaCuO/sapphire films.

  6. Quantitative study of GaAs nanowires catalyzed by Au film of different thicknesses

    PubMed Central

    2012-01-01

    In this letter, we quantitatively investigated epitaxial GaAs nanowires catalyzed by thin Au films of different thicknesses on GaAs (111)B substrates in a metal-organic chemical vapor deposition reactor. Prior to nanowire growth, the de-wetting of Au thin films to form Au nanoparticles on GaAs (111)B in AsH3 ambient at different temperatures is investigated. It is found that with increasing film thickness, the size of the Au nanoparticles increases while the density of the nanoparticles reduces. Furthermore, higher annealing temperature produces larger Au nanoparticles for a fixed film thickness. As expected, the diameters and densities of the as-grown GaAs nanowires catalyzed by these thin Au films reflect these trends. PMID:23095345

  7. Thickness dependence of the magnetic properties of ripple-patterned Fe/MgO(001) films

    NASA Astrophysics Data System (ADS)

    Büttner, Felix; Zhang, Kun; Seyffarth, Susanne; Liese, Tobias; Krebs, Hans-Ulrich; Vaz, C. A. F.; Hofsäss, Hans

    2011-08-01

    Grazing incidence Xe+ ion sputtering was used to create a nanoscale ripple pattern on a thin Fe film, epitaxially grown on MgO(001). The Fe film has a thickness gradient of 0-20 nm and a ripple height of about 3 nm, giving rise to a transition from a continuous film to separated nanorods with decreasing film thickness. This allowed the investigation of the competition between the uniaxial and biaxial anisotropy of the irradiated sample as a function of thickness. From magneto-optical Kerr effect measurements, we determine accurately the cubic magnetocrystalline anisotropy and the uniaxial anisotropy that originates from the ripple pattern using a coherent rotation model. Our results show that the uniaxial anisotropy strength increases, whereas the contribution of the biaxial crystal anisotropy decreases, when going from the continuous film to the nanorod structures.

  8. Highly Laminated Soft Magnetic Electroplated CoNiFe Thick Films

    SciTech Connect

    Kim, J; Kim, M; Herrault, F; Park, J; Allen, MG

    2013-01-01

    The fabrication and characterization of highly laminated (similar to 40 layers), thick (similar to 40 mu m) films of magnetically soft cobalt-nickel-iron are presented. Thick film fabrication is based on automated sequential electrodeposition of alternating CoNiFe and copper layers, followed by selective copper removal. The film, comprised tens of 1 mu m thick laminations, exhibits saturation flux density of 1.8 T and coercivity of approximately 1.3 Oe. High-frequency film characterization took place in a 36-turn test inductor, which demonstrated constant inductance of 1.6 mu H up to 10 MHz, indicating suppressed eddy-current loss. Quality factor exceeding 40 at 1 MHz, surpassing the performance of similarly fabricated Permalloy (Ni80Fe20) films.

  9. Thickness effect on magnetocrystalline anisotropy of Co/Pd(111) films: A density functional study

    NASA Astrophysics Data System (ADS)

    Jekal, Soyoung; Rhim, S. H.; Kwon, Oryong; Hong, Soon Cheol

    2015-05-01

    In this study, we carried out first-principles calculations on magnetocrystalline anisotropy (MCA) of Co/Pd thin films by adopting two different systems of (i) n-Co/3-Pd and (ii) n-Pd/3-Co. In one system, we vary the thickness of Co layer, fixing the thickness of the Pd layer to 3-monolayers, and in the other system vice versa. MCA is mainly governed by the surface and interface Co atoms, while contributions from other Co atoms are smaller. MCA energy (EMCA) of the Co/Pd thin film shows oscillatory behavior with the thickness of the Co layer, but is insensitive to the thickness of the Pd layer. In particular, the n-Co/3-Pd films of n = 2, 4, and 6 exhibit strong perpendicular MCA of about 1 meV. Our results suggest that controlling the thickness of the Co layer in Co/Pd (111) is crucial in achieving strong perpendicular MCA.

  10. Effects of Ag-induced acceptor defects on the band gap tuning and conductivity of Li:ZnO films

    NASA Astrophysics Data System (ADS)

    Li, Jian-Chang; Cao, Qing; Hou, Xue-Yan

    2013-05-01

    The effects of Ag-induced acceptor defects on the band gap tuning and conductivity of Li:ZnO film grown by the sol-gel method were investigated. The structural analyses indicate that the Ag-Li:ZnO films possess hexagonal structure with the substitutional Ag defect at the Zn site (AgZn) and the interstitial Li defect (Lii). The decreased film transmittance and band gap with Ag-Li codoping is mainly due to the incorporation of foreign impurity levels by the AgZn and Lii defects. The electrical measurements reveal that doping can obviously improve the film conductivity, which could be attributed to the reduction of the grain boundary scattering and the inter-diffusion of the Ag nanoparticles, as well as the decreased ionization energy of the acceptor owing to the AgZn defects. The electronic structures of Ag-Li:ZnO were further studied by the first-principles calculations and the results show that the AgZn defects may lead to p-type conductivity of ZnO.

  11. Preliminary indications of water film distribution and thickness on an airfoil in a water spray

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Weinstein, L. M.

    1984-01-01

    A sensor for measuring water film thickness is evaluated. The test is conducted in a small flow apparatus with a 1 ft chord model wing in a water spray. Photographic and visual observations are made of the upper wing surface and film thickness is measured on the upper and lower wing surfaces. The performance of the sensor appears highly satisfactory, and where valid comparisons can be made, repeatable results are obtained.

  12. Magneto-optical Kerr effect in NiZn ferrite films of variable thickness

    NASA Astrophysics Data System (ADS)

    Calle, C.; Calle, V. H.; Cuéllar, F.; Cortés, A.; Arias, D.; Lopera, W.; Prieto, P.; Guzmán, O.; Mendoza, G. A.

    2006-10-01

    NiZn ferrites films deposited by RF sputtering technique on (1 0 0)-Si substrates have been studied by the magneto-optical Kerr effect. The coercivity behavior as a function of the thickness indicates a spin reversal mainly governed by the single domain regime. The Jiles-Atherton Model was used to fit the experimental hysteresis loop. The k pinning parameter of the model increases by increasing film thicknesses

  13. Effect of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} film thickness on the dielectric properties of Ba{sub 0.1}Sr{sub 0.9}TiO{sub 3} in Ag/Ba{sub 0.1}Sr{sub 0.9}TiO{sub 3}/YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}/LaAlO{sub 3} multilayer structures

    SciTech Connect

    Zhu Xiaohong; Peng Wei; Li Jie; Chen Yingfei; Tian Haiyan; Xu Xiaoping; Zheng Dongning

    2005-01-01

    Ferroelectric and superconductor bilayers of Ba{sub 0.1}Sr{sub 0.9}TiO{sub 3} (BSTO)/YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO), with different YBCO film thicknesses, have been fabricated in situ by pulsed-laser deposition on 1.2 deg. vicinal LaAlO{sub 3} substrates. The dielectric properties of BSTO thin films were measured with a parallel-plate capacitor configuration in the temperature range of 77-300 K. We observed a strong dependence of the dielectric properties of BSTO thin films on the thickness of the YBCO layer. As the YBCO-film thickness increases, the temperature of the dielectric permittivity maximum of BSTO thin films shifts to higher values, and the leakage current and dielectric loss increase drastically, while the dielectric constant and dielectric tunability decrease remarkably. The results are explained in terms of the transformation in the growth mode of the YBCO layer from two-dimensional step flow to three-dimensional island that leads to significant deterioration in the dielectric properties of BSTO thin films. We propose that improved dielectric properties could be obtained by reasonably manipulating the growth mode of the YBCO layer in the multilayer structures.

  14. Thickness Effect on Properties of Sprayed In2S3 Films for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Bouguila, N.; Kraini, M.; Halidou, I.; Lacaze, E.; Bouchriha, H.; Bouzouita, H.

    2016-01-01

    Indium sulfide (In2S3) films have been deposited on soda-lime glass substrates using a spray technique (CSP). Indium chloride and thiourea were used as precursors at a molar ratio of S:In = 2. The substrate temperature was fixed at 340°C. The effect of film thickness on the structural, morphological and optical properties of the as-deposited films has been studied. These films were characterized by x-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical absorption spectroscopy. As-prepared samples were polycrystalline with a cubic structure and (400) as preferential orientation. Their grain size increased from 35 nm to 41 nm with increasing thickness whereas the dislocation density and microstrain of the films decreased with the increase of thickness. Both SEM and AFM images showed that the films were homogenous with an increase of the surface roughness with the increase of thickness. The optical transmittance of the films decreased from 80% to 20% in the visible and infrared regions when the thickness was increased from 0.78 μm to 6.09 μm. The optical band gap E g was found to be in the range of 2.75-2.19 eV and showed a decrease with film thickness. Based on the measured optical constants (n and k), a Wemple-Didomenico model was used to determine the values of single oscillator energy ( E 0), dispersion energy ( E d), optical band gap ( E g) and high frequency dielectric constant ( \\varepsilon_{∞} ). In addition, these films exhibited n-type conductivity and were highly resistive. These results confirm that In2S3 thin films are a promising alternative as a buffer-layer material for CuInGa(S,Se)2-based solar cells.

  15. Optimal Shell Thickness of Metal@Insulator Nanoparticles for Net Enhancement of Photogenerated Polarons in P3HT Films.

    PubMed

    Goh, Wei-Peng; Williams, Evan L; Yang, Ren-Bin; Koh, Wee-Shing; Mhaisalkar, Subodh; Ooi, Zi-En

    2016-02-01

    Embedding metal nanoparticles in the active layer of organic solar cells has been explored as a route for improving charge carrier generation, with localized field enhancement as a proposed mechanism. However, embedded metal nanoparticles can also act as charge recombination sites. To suppress such recombination, the metal nanoparticles are commonly coated with a thin insulating shell. At the same time, this insulating shell limits the extent that the localized enhanced electric field influences charge generation in the organic medium. It is presumed that there is an optimal thickness which maximizes field enhancement effects while suppressing recombination. Atomic Layer Deposition (ALD) was used to deposit Al2O3 layers of different thicknesses onto silver nanoparticles (Ag NPs), in a thin film of P3HT. Photoinduced absorption (PIA) spectroscopy was used to study the dependence of the photogenerated P3HT(+) polaron population on the Al2O3 thickness. The optimal thickness was found to be 3-5 nm. This knowledge can be further applied in the design of metal nanoparticle-enhanced solar cells. PMID:26731049

  16. Temperature- and thickness-dependent elastic moduli of polymer thin films.

    PubMed

    Ao, Zhimin; Li, Sean

    2011-01-01

    The mechanical properties of polymer ultrathin films are usually different from those of their counterparts in bulk. Understanding the effect of thickness on the mechanical properties of these films is crucial for their applications. However, it is a great challenge to measure their elastic modulus experimentally with in situ heating. In this study, a thermodynamic model for temperature- (T) and thickness (h)-dependent elastic moduli of polymer thin films Ef(T,h) is developed with verification by the reported experimental data on polystyrene (PS) thin films. For the PS thin films on a passivated substrate, Ef(T,h) decreases with the decreasing film thickness, when h is less than 60 nm at ambient temperature. However, the onset thickness (h*), at which thickness Ef(T,h) deviates from the bulk value, can be modulated by T. h* becomes larger at higher T because of the depression of the quenching depth, which determines the thickness of the surface layer δ. PMID:21711747

  17. Temperature- and thickness-dependent elastic moduli of polymer thin films

    PubMed Central

    2011-01-01

    The mechanical properties of polymer ultrathin films are usually different from those of their counterparts in bulk. Understanding the effect of thickness on the mechanical properties of these films is crucial for their applications. However, it is a great challenge to measure their elastic modulus experimentally with in situ heating. In this study, a thermodynamic model for temperature- (T) and thickness (h)-dependent elastic moduli of polymer thin films Ef(T,h) is developed with verification by the reported experimental data on polystyrene (PS) thin films. For the PS thin films on a passivated substrate, Ef(T,h) decreases with the decreasing film thickness, when h is less than 60 nm at ambient temperature. However, the onset thickness (h*), at which thickness Ef(T,h) deviates from the bulk value, can be modulated by T. h* becomes larger at higher T because of the depression of the quenching depth, which determines the thickness of the surface layer δ. PMID:21711747

  18. Film thickness measurement techniques applied to micro-scale two-phase flow systems

    SciTech Connect

    Tibirica, Cristiano Bigonha; do Nascimento, Francisco Julio; Ribatski, Gherhardt

    2010-05-15

    Recently semi-empirical models to estimate flow boiling heat transfer coefficient, saturated CHF and pressure drop in micro-scale channels have been proposed. Most of the models were developed based on elongated bubbles and annular flows in the view of the fact that these flow patterns are predominant in smaller channels. In these models, the liquid film thickness plays an important role and such a fact emphasizes that the accurate measurement of the liquid film thickness is a key point to validate them. On the other hand, several techniques have been successfully applied to measure liquid film thicknesses during condensation and evaporation under macro-scale conditions. However, although this subject has been targeted by several leading laboratories around the world, it seems that there is no conclusive result describing a successful technique capable of measuring dynamic liquid film thickness during evaporation inside micro-scale round channels. This work presents a comprehensive literature review of the methods used to measure liquid film thickness in macro- and micro-scale systems. The methods are described and the main difficulties related to their use in micro-scale systems are identified. Based on this discussion, the most promising methods to measure dynamic liquid film thickness in micro-scale channels are identified. (author)

  19. The effect of Argon ion irradiation on the thickness and structure of ultrathin amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Xie, J.; Komvopoulos, K.

    2016-03-01

    Carbon films synthesized by plasma-enhanced chemical vapor deposition (PECVD) and filtered cathodic vacuum arc (FCVA) exhibit a layered structure consisting of a bottom (interface) and a top (surface) layer rich in sp2 atomic carbon bonding and a middle (bulk) layer of much higher sp3 content. Because of significant differences in the composition, structure, and thickness of these layers, decreasing the film thickness may negatively affect its properties. In this study, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) were used to examine the effect of Ar+ ion irradiation on the structure and thickness of ultrathin films of hydrogenated amorphous carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) deposited by PECVD and FCVA, respectively. The TEM and EELS results show that 2-min ion irradiation decreases the film thickness without markedly changing the film structure and composition, whereas 4-min ion irradiation results in significant film thinning and a moderate decrease of the sp3 content of the bulk layer. This study demonstrates that Ar+ ion irradiation is an effective post-deposition process for reducing the thickness and tuning the structure of ultrathin carbon films. This capability has direct implications in the synthesis of ultrathin protective carbon overcoats for extremely high-density magnetic recording applications.

  20. Fabrication and characterization of piezoelectric micromachined ultrasonic transducers with thick composite PZT films.

    PubMed

    Wang, Zhihong; Zhu, Weiguang; Zhu, Hong; Miao, Jianmin; Chao, Chen; Zhao, Changlei; Tan, Ooi Kiang

    2005-12-01

    Ferroelectric microelectromechanical systems (MEMS) has been a growing area of research in past decades, in which ferroelectric films are combined with silicon technology for a variety of applications, such as piezo-electric micromachined ultrasonic transducers (pMUTs), which represent a new approach to ultrasound detection and generation. For ultrasound-radiating applications, thicker PZT films are preferred because generative force and response speed of the diaphragm-type transducers increase with increasing film thickness. However, integration of 4- to 20-microm thick PZT films on silicon wafer, either the deposition or the patterning, is still a bottleneck in the micromachining process. This paper reports on a diaphragm-type pMUT. A composite coating technique based on chemical solution deposition and high-energy ball milled powder has been used to fabricate thick PZT films. Micromachining of the pMUTs using such thick films has been investigated. The fabricated pMUT with crack-free PZT films up to 7-microm thick was evaluated as an ultrasonic transmitter. The generated sound pressure level of up to 120 dB indicates that the fabricated pMUT has very good ultrasound-radiating performance and, therefore, can be used to compose pMUT arrays for generating ultrasound beam with high directivity in numerous applications. The pMUT arrays also have been demonstrated. PMID:16463494

  1. The effect of film thickness on critical properties of YBCO film fabricated by TFA-MOD using 211-process

    NASA Astrophysics Data System (ADS)

    Lim, J. H.; Jang, S. H.; Kim, K. T.; Hwang, S. M.; Joo, J.; Lee, H.-J.; Lee, H.-G.; Hong, G.-W.

    2007-10-01

    YBCO films were fabricated by the TFA-MOD method using the "211-process", and the effects of the film thickness on phase formation, microstructure, texture evolution, and critical properties were evaluated. Various film thicknesses ranging from 0.41 μm to 2.14 μm were obtained by repeating the dip coating and calcining processes one to five times. The critical properties varied significantly with the film thickness. The Ic increased from 35 to 105 A/cm-width with increasing the film thickness from 0.41 μm to 1.17 μm. On the other hand, the corresponding Jc remained almost constant in the range of 0.76-0.90 MA/cm2. With further increases in thickness, these values decreased drastically, which was attributed to the degraded microstructure, i.e., the formation of BaF2 and a-axis grains and degraded texture and surface morphology arising from the insufficient heat treatment time. It is believed that the optimum thickness for improving both the Ic and Jc values is approximately 1.17 μm.

  2. A spectroscopic ellispometric study of the tunability of the optical constants and thickness of GeO{sub x} films with swift heavy ions

    SciTech Connect

    Vijayarangamuthu, K.; Singh, Chaman; Rath, Shyama; Kabiraj, D.

    2011-09-15

    Sub-stoichiometric GeO{sub x} films were fabricated by electron-beam evaporation method. The films were irradiated with 100 MeV Ag{sup 7+} ions at fluences between 1 x 10{sup 12} and 1 x 10{sup 14} ions-cm{sup -2}. Spectroscopic ellipsometric measurements were performed in air at room temperature. The values of the layer thickness and refractive index were extracted from ellipsometry using a multilayer analysis and the Tauc Lorentz model. The refractive index (at 633 nm) of the as-deposited GeO{sub x} film was estimated to be 1.860 and decreased to 1.823 for films irradiated at an ion fluence of 1 x 10{sup 14} ions-cm{sup -2}. The thickness of the films also decreased after irradiation and is due to a sputtering induced by the ion beam. The change in the refractive index with ion fluence is attributed to a stoichiometric change and structural transformation represented by GeO{sub x}{yields} Ge + GeO{sub y} (y > x) occurring due to a thermal spike induced by ion irradiation. Swift heavy ions thus provide a scope for modulating the refractive index of GeO{sub x} films. The thickness and stoichiometric changes are supported by Rutherford backscattering measurements.

  3. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    PubMed Central

    Marr, Isabella; Reiß, Sebastian; Hagen, Gunter; Moos, Ralf

    2011-01-01

    Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers. PMID:22164042

  4. Structural and electronic properties of polar MnO ultrathin film grown on Ag(111)

    NASA Astrophysics Data System (ADS)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-05-01

    Surface electronic structure of ultrathin polar MnO film was studied by Low-energy Electron Diffraction (LEED) and Photoemission Spectroscopic (PES) techniques. Epitaxial monolayer to facet formation with increasing film thickness has been observed by LEED. Our LEED result shows p(2x2) surface reconstruction along with facet formation, stabilize the polar MnO(111) surface. The core levels and the valence band electronic structure of MnO films have been studied as a function of film thickness using X-ray and ultraviolet photoelectron spectroscopy techniques.

  5. Super-resolved thickness maps of thin film phantoms and in vivo visualization of tear film lipid layer using OCT

    PubMed Central

    dos Santos, Valentin Aranha; Schmetterer, Leopold; Triggs, Graham J.; Leitgeb, Rainer A.; Gröschl, Martin; Messner, Alina; Schmidl, Doreen; Garhofer, Gerhard; Aschinger, Gerold; Werkmeister, René M.

    2016-01-01

    In optical coherence tomography (OCT), the axial resolution is directly linked to the coherence length of the employed light source. It is currently unclear if OCT allows measuring thicknesses below its axial resolution value. To investigate spectral-domain OCT imaging in the super-resolution regime, we derived a signal model and compared it with the experiment. Several island thin film samples of known refractive indices and thicknesses in the range 46 – 163 nm were fabricated and imaged. Reference thickness measurements were performed using a commercial atomic force microscope. In vivo measurements of the tear film were performed in 4 healthy subjects. Our results show that quantitative super-resolved thickness measurement can be performed using OCT. In addition, we report repeatable tear film lipid layer visualization. Our results provide a novel interpretation of the OCT axial resolution limit and open a perspective to deeper extraction of the information hidden in the coherence volume. PMID:27446696

  6. Super-resolved thickness maps of thin film phantoms and in vivo visualization of tear film lipid layer using OCT.

    PubMed

    Dos Santos, Valentin Aranha; Schmetterer, Leopold; Triggs, Graham J; Leitgeb, Rainer A; Gröschl, Martin; Messner, Alina; Schmidl, Doreen; Garhofer, Gerhard; Aschinger, Gerold; Werkmeister, René M

    2016-07-01

    In optical coherence tomography (OCT), the axial resolution is directly linked to the coherence length of the employed light source. It is currently unclear if OCT allows measuring thicknesses below its axial resolution value. To investigate spectral-domain OCT imaging in the super-resolution regime, we derived a signal model and compared it with the experiment. Several island thin film samples of known refractive indices and thicknesses in the range 46 - 163 nm were fabricated and imaged. Reference thickness measurements were performed using a commercial atomic force microscope. In vivo measurements of the tear film were performed in 4 healthy subjects. Our results show that quantitative super-resolved thickness measurement can be performed using OCT. In addition, we report repeatable tear film lipid layer visualization. Our results provide a novel interpretation of the OCT axial resolution limit and open a perspective to deeper extraction of the information hidden in the coherence volume. PMID:27446696

  7. One step 'dip' and 'use' Ag nanostructured thin films for ultrahigh sensitive SERS Detection.

    PubMed

    Rajkumar, Kanakaraj; Jayram, Naidu Dhanpal; Mangalaraj, Devanesan; Rajendra Kumar, Ramasamy Thangavelu

    2016-11-01

    A simple one step galvanic displacement method which involves dipping of the silicon substrate in the AgNO3/HF solution and using it for SERS application without any further process is demonstrated. The size and shape of the Ag nanoparticles changes as the deposition time is increased. Initially the shape of the particles was nearly spherical and as it grows, becomes oblong and then coalesce to form a discontinuous film with vertically grown hierarchical Ag nanostructures. The sizes of the deposited particles were in the ranges from 30nm to a discontinuous film. It also demonstrated a highly sensitive chemical detection by surface-enhanced Raman scattering of rhodamine 6G dye, down to 10(-16)M concentration. Prepared samples were able to detect lower concentrations of Melamine. Discontinuous thin films with hierarchical Ag nanostructures were obtained for 5min Ag deposition. The formation of Hot spots between the discontinuous islands and also along the hierarchical structures is responsible for the high SERS enhancement. This simple one step, fast, non-lithographic and cost effective method can be applied for various label free detection of analytes of importance. PMID:27524085

  8. Thick, low-stress films, and coated substrates formed therefrom, and methods for making same

    DOEpatents

    Henager, Jr., Charles H.; Knoll, Robert W.

    1992-01-01

    Stress-induced deformation, and the damage resulting therefrom, increases with film thickness. The overcoming of excessive stress by the use of the Si-Al-N film material of the present invention, permits the formation of thick films that are necessary for certain of the above described applications. The most likely use for the subject film materials, other than their specialized views as an optical film, is for microelectronic packaging of components on silicon substrates. In general, the subject films have excellent adherence to the underlying substrate, a high degree of hardness and durability, and are excellent insulators. Prior art elevated temperature deposition processes cannot meet the microelectronic packaging temperature formation constraints. The process of the present invention is conducted under non-elevated temperature conditions, typically 500.degree. C. or less.

  9. Thickness dependent wetting properties and surface free energy of HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Zenkin, Sergei; Belosludtsev, Alexandr; Kos, Šimon; Čerstvý, Radomír; Haviar, Stanislav; Netrvalová, Marie

    2016-06-01

    We show here that intrinsic hydrophobicity of HfO2 thin films can be easily tuned by the variation of film thickness. We used the reactive high-power impulse magnetron sputtering for preparation of high-quality HfO2 films with smooth topography and well-controlled thickness. Results show a strong dependence of wetting properties on the thickness of the film in the range of 50-250 nm due to the dominance of the electrostatic Lifshitz-van der Waals component of the surface free energy. We have found the water droplet contact angle ranging from ≈120° for the thickness of 50 nm to ≈100° for the thickness of 2300 nm. At the same time the surface free energy grows from ≈25 mJ/m2 for the thickness of 50 nm to ≈33 mJ/m2 for the thickness of 2300 nm. We propose two explanations for the observed thickness dependence of the wetting properties: influence of the non-dominant texture and/or non-monotonic size dependence of the particle surface energy.

  10. Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability.

    PubMed

    Im, Hyeon-Gyun; Jin, Jungho; Ko, Ji-Hoon; Lee, Jaemin; Lee, Jung-Yong; Bae, Byeong-Soo

    2014-01-21

    We report on the performance of an all-in-one flexible hybrid conducting film employing a monolithically embedded AgNW transparent electrode and a high-performance glass-fabric reinforced composite substrate (AgNW-GFRHybrimer film). Specifically, we perform in-depth investigations on the stability of the AgNW-GFRHybrimer film against heat, thermal oxidation, and wet chemicals to demonstrate the potential of the hybrid conducting film as a robust electrode platform for thin-film optoelectronic devices. With the ease of large-area processability, smooth surface topography, and robust performance stability, the AgNW-GFRHybrimer film can be a promising platform for high-performance optoelectronic devices. PMID:24284890

  11. Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island.

    PubMed

    Xu, Jinxia; Xiao, Xiangheng; Ren, Feng; Wu, Wei; Dai, Zhigao; Cai, Guangxu; Zhang, Shaofeng; Zhou, Juan; Mei, Fei; Jiang, Changzhong

    2012-01-01

    In order to overcome the low utilization ratio of solar light and high electron-hole pair recombination rate of TiO2, the triangular Ag nanoparticle island is covered on the surface of the TiO2 thin film. Enhancement of the photocatalytic activity of the Ag/TiO2 nanocomposite system is observed. The increase of electron-hole pair generation is caused by the enhanced near-field amplitudes of localized surface plasmon of the Ag nanoparticles. The efficiently suppressed recombination of electron-hole pair caused by the metal-semiconductor contact can also enhance the photocatalytic activity of the TiO2 film. PMID:22548875

  12. Physicochemical controls on absorbed water film thickness in unsaturated geological media

    SciTech Connect

    Tokunaga, T.

    2011-06-14

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here, the problem of adsorbed water film thickness is examined through combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses, and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable, and showed that pendular rings within drained porous media retain most of the 'residual' water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (< 10 mol m{sup -3}) on surfaces with higher magnitude electrostatic potentials (more negative than - 50 mV). Adsorbed water films are predicted to usually range in thickness from 1 to 20 nm in drained pores and fractures of unsaturated environments.

  13. Composition-Dependent Luminescent Properties of GeO2-Eu2O3-Ag Films

    NASA Astrophysics Data System (ADS)

    Bokshyts, Yu. V.

    2013-05-01

    An effect of Eu3+-precursor on the luminescent properties of GeO2-Eu2O3-Ag films was studied. This effect can be attributed to the different phase compositions of europium compounds after heat treatment and the change of structural parameters of the environment for europium ions.

  14. Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Yao, Tongjie; Wang, Chuanxi; Lin, Quan; Li, Xiao; Chen, Xiaolu; Wu, Jie; Zhang, Junhu; Yu, Kui; Yang, Bai

    2009-02-01

    Superhydrophobic films with excellent flexibility have been fabricated by combining the lift-up soft-lithography technique and chemical reduction of [Ag(NH3)2]+ ions to Ag nanoparticles (NPs) on the surface of silica spheres which are patterned on the polydimethylsiloxane (PDMS) films. Scanning electron microscopy (SEM) images reveal the presence of raspberry-like hierarchical structures on the PDMS films. The influence of the amount of Ag NPs and the size of the silica spheres on the wettability of the soft films is investigated carefully. Because PDMS films are elastomeric materials, our superhydrophobic films offer great flexibility. The resulting films can be easily transferred from one substrate surface to another without destroying their superhydrophobicity. These flexible and superhydrophobic films can be used repeatedly to satisfy a wide range of applications.

  15. Commercialization of a thick-film solar cell

    NASA Astrophysics Data System (ADS)

    McDonald, G. D.

    1980-12-01

    The use of screen printing as a technique for producing large area solar cells was evaluated with emphasis on the preparation and improvement in performance of screen printed CdS cells. Thermal gravimetric analysis of the CdS inks used to print CdS films confirm that all the fugitive binders and flux are removed under firing conditions used to prepare the CdS films. Warpage of the Nesatron glass substrates makes their use questionable. Multiple layers of CdS appear to resolve a pin hole problem previously encountered.

  16. Texture change through film thickness and off-axis accommodation of (0 0 2) planes

    NASA Astrophysics Data System (ADS)

    Shetty, A. R.; Karimi, A.

    2011-12-01

    We present our recent experimental results on the formation of off-axis texture and crystallographic tilting of crystallites that take place in thin film of transition metal nitrides. For this purpose, the microstructural development of TiAlN film was studied, specially the change in texture with film thickness. Fiber texture was measured using θ-2θ and pole figure X-ray diffraction (XRD), while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the microstructure and changes in texture with thickness. The sin2ψ method was applied to determine the stresses on (1 1 1) and (0 0 2) plane. With deposition parameters chosen, the growth texture mechanism is discussed in three different stages of film growth. Surface energy minimization at low thickness leads to the development of (0 0 2) orientation. On the other hand, the competitive growth promotes the growth of (1 1 1) planes parallel to film surface at higher thickness. However, contrary to the prediction of growth models, the (0 0 2) grains are not completely overlapped by (1 1 1) grains at higher thickness. Rather the (0 0 2) grains still constitute the surface, but are tilted away from the substrate normal showing substantial in-plane alignment to allow the (1 1 1) planes remain parallel to film surface. Intrinsic stress along (1 1 1) and (0 0 2) shows a strong dependence with preferred orientation. The stress level in (0 0 2) grains which was compressive at low thickness changes to tensile at higher thickness. This change in the nature of stress allows the (0 0 2) planes to tilt away in order to promote the growth of <1 1 1> parallel to film normal and to minimize the overall energy of system due to high compressive stress stored in the (1 1 1) grains. The change in surface morphology with thickness was observed using SEM. An increase in surface roughness with film thickness was observed which indicates the development of (1 1 1) texture parallel to film surface

  17. Alloy formation of Ni ultrathin films on Pt(1 1 1) with Ag buffer layers

    NASA Astrophysics Data System (ADS)

    Ho, H. Y.; Su, C. W.; Chu, Y. W.; Shern, C. S.

    2004-10-01

    Low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and depth profiling were used to study growth mode and structure in the interfaces of Ni/Ag/Pt(1 1 1). An atomic exchange occurs between Ni and Ag when the annealing temperature is high enough and the starting exchange temperature does not depend on the thickness of Ni. Nevertheless, the complete exchange temperature is higher when the coverage of Ni increases. Experimental evidence shows that the Ni-Pt alloy develops after the atomic exchange between Ag and Ni is complete. The atomic exchange between Ag and Ni, and the formation of Ni-Pt alloy were confirmed by the depth profile. The mechanisms of the atomic exchange are discussed.

  18. Sol-gel-derived thick-film amperometric immunosensors.

    PubMed

    Wang, J; Pamidi, P V; Rogers, K R

    1998-03-15

    Sol-gel processing is used for the first time for the preparation of electrochemical immunosensors. One-step sensor fabrication, based on the coupling of sol-gel and screen-printing technologies, is employed. A low-temperature cured ink is prepared by dispersion of rabbit immunoglobulin G (RIgG), graphite powder, and a binder in the sol-gel solution. The enzyme-labeled antibody can readily diffuse toward the encapsulated antigen, which retains its binding properties, and the association reaction is easily detected at the dispersed graphite surface. Use of anti-RIgG labeled with alkaline phosphatase, naphthyl phosphate as the substrate, and amperometric detection at +400 mV (vs Ag/AgCl) results in a low detection limit of 5 ng/mL (32 pM) for the solution antigen. Tailoring the porosity of the ceramic-carbon matrix can be used for tuning the assay performance. The high sensitivity, low cost, durability, and simplicity of the new single-use immunosensors make them well suited for various on-site applications. PMID:9530007

  19. Deposition of Pd–Ag thin film membranes on ceramic supports for hydrogen purification/separation

    SciTech Connect

    Pereira, A.I.; Pérez, P.; Rodrigues, S.C.; Mendes, A.; Madeira, L.M.

    2015-01-15

    Highlights: • Thin film Pd–Ag membranes have been produced for hydrogen selectivity. • Magnetron sputtering yields Pd–Ag compact films for atomic H diffusion. • The thin film Pd–Ag membranes yielded a selectivity of α (H{sub 2}/N{sub 2}) = 10. - Abstract: Pd–Ag based membranes supported on porous α-Al{sub 2}O{sub 3} (doped with yttria-stabilized zirconia) were studied for hydrogen selective separation. Magnetron sputtering technique was employed for the synthesis of thin film membranes. The hydrogen permeation flux is affected by the membrane columnar structure, which is formed during deposition. From scanning electron microscopy analysis, it was observed that different sputtering deposition pressures lead to distinct columnar structure growth. X-ray diffraction patterns provided evidence of a Pd–Ag solid solution with an average crystallite domain size of 21 nm, whose preferential growth can be altered by the deposition pressure. The gas-permeation results have shown that the Pd–Ag membrane supported on porous α-Al{sub 2}O{sub 3} is selective toward H{sub 2}. For optimized membrane synthesis conditions, the permeance toward N{sub 2} is 0.076 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1} at room temperature, whereas for a pressure difference of 300 kPa the H{sub 2}-flux is of the order of ca. 0.21 mol m{sup −2} s{sup −1}, which corresponds to a permeance of 0.71 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1}, yielding a selectivity of α (H{sub 2}/N{sub 2}) = 10. These findings suggest that the membrane has a reasonable capacity to selectively permeate this gas.

  20. Relationships between processing temperature and microstructure in isothermal melt processed Bi-2212 thick films

    SciTech Connect

    Holesinger, T.G.; Phillips, D.S.; Willis, J.O.; Peterson, D.E.

    1995-05-01

    The microstructure and phase assemblage of isothermal melt processed (IMP) Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) thick films have been evaluated. Results from compositional analysis and phase identification indicate that the characteristics of the partial melt greatly influence the microstructural and chemical development of the thick films. The highest critical current densities were obtained in films processed below 800{degrees}C where the partial melt uniformly coats the substrate without excessive phase segregation.

  1. Resistive switching in a few nanometers thick tantalum oxide film formed by a metal oxidation

    SciTech Connect

    Ohno, Takeo; Samukawa, Seiji

    2015-04-27

    Resistive switching in a Cu/Ta{sub 2}O{sub 5}/Pt structure that consisted of a few nanometer-thick Ta{sub 2}O{sub 5} film was demonstrated. The Ta{sub 2}O{sub 5} film with thicknesses of 2–5 nm was formed with a combination of Ta metal film deposition and neutral oxygen particle irradiation at room temperature. The device exhibited a bipolar resistive switching with a threshold voltage of 0.2 V and multilevel switching operation.

  2. Tuning thermoelectricity in a Bi2Se3 topological insulator via varied film thickness

    NASA Astrophysics Data System (ADS)

    Guo, Minghua; Wang, Zhenyu; Xu, Yong; Huang, Huaqing; Zang, Yunyi; Liu, Chang; Duan, Wenhui; Gan, Zhongxue; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qikun; Wang, Yayu

    2016-01-01

    We report thermoelectric transport studies on Bi2Se3 topological insulator thin films with varied thickness grown by molecular beam epitaxy. We find that the Seebeck coefficient and thermoelectric power factor decrease systematically with the reduction of film thickness. These experimental observations can be explained quantitatively by theoretical calculations based on realistic electronic band structure of the Bi2Se3 thin films. This work illustrates the crucial role played by the topological surface states on the thermoelectric transport of topological insulators, and sheds new light on further improvement of their thermoelectric performance.

  3. Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film

    NASA Astrophysics Data System (ADS)

    Yasui, Takeshi; Yasuda, Takashi; Sawanaka, Ken-Ichi; Araki, Tsutomu

    2005-11-01

    We propose a paintmeter for noncontact and remote monitoring of the thickness and drying progress of a paint film based on the time-of-flight measurement of the echo signal of a terahertz (THz) electromagnetic pulse. The proposed method is effectively applied to two-dimensional mapping of the painting thickness distribution for single-layer and multilayer paint films. Furthermore, adequate parameters for the drying progress are extracted from the THz pulse-echo signal and effectively applied to monitor the wet-to-dry transformation. The THz paintmeter can be a powerful tool for quality control of the paint film on the in-process monitoring of car body painting.

  4. Tuning thermoelectricity in a Bi2Se3 topological insulator via varied film thickness

    DOE PAGESBeta

    Guo, Minghua; Wang, Zhenyu; Xu, Yong; Huang, Huaqing; Zang, Yunyi; Liu, Chang; Duan, Wenhui; Gan, Zhongxue; Zhang, Shou-Cheng; He, Ke; et al

    2016-01-12

    We report thermoelectric transport studies on Bi2Se3 topological insulator thin films with varied thickness grown by molecular beam epitaxy. We find that the Seebeck coefficient and thermoelectric power factor decrease systematically with the reduction of film thickness. These experimental observations can be explained quantitatively by theoretical calculations based on realistic electronic band structure of the Bi2Se3 thin films. Lastly, this work illustrates the crucial role played by the topological surface states on the thermoelectric transport of topological insulators, and sheds new light on further improvement of their thermoelectric performance.

  5. Optimizing diode thickness for thin-film solid state thermal neutron detectors

    SciTech Connect

    Murphy, John W.; Mejia, Israel; Quevedo-Lopez, Manuel A.; Gnade, Bruce; Kunnen, George R.; Allee, David

    2012-10-01

    In this work, we investigate the optimal thickness of a semiconductor diode for thin-film solid state thermal neutron detectors. We evaluate several diode materials, Si, CdTe, GaAs, C (diamond), and ZnO, and two neutron converter materials, {sup 10}B and {sup 6}LiF. Investigating a coplanar diode/converter geometry, we determine the minimum semiconductor thickness needed to achieve maximum neutron detection efficiency. By keeping the semiconductor thickness to a minimum, gamma rejection is kept as high as possible. In this way, we optimize detector performance for different thin-film semiconductor materials.

  6. Optical spectroscopy of sputtered nanometer-thick yttrium iron garnet films

    SciTech Connect

    Jakubisova-Liskova, Eva Visnovsky, Stefan; Chang, Houchen; Wu, Mingzhong

    2015-05-07

    Nanometer (nm)-thick yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films present interest for spintronics. This work employs spectral ellipsometry and magneto-optic Kerr effect (MOKE) spectra to characterize nm-thick YIG films grown on single-crystal Gd{sub 3}Ga{sub 5}O{sub 12} substrates by magnetron sputtering. The thickness (t) of the films ranges between 10 nm and 40 nm. Independent on t, the polar MOKE hysteresis loops saturate in the field of about 1.8 kOe, consistent with the saturation magnetization in bulk YIG (4πM{sub s} ≈ 1.75 kG). The MOKE spectrum measured at photon energies between 1.3 eV and 4.5 eV on the 38-nm-thick film agrees with that measured on single-crystal YIG bulk materials. The MOKE spectrum of the 12-nm-thick film still preserves the structure of the bulk YIG but its amplitude at lower photon energies is modified due to the fact that the radiation penetration depth exceeds 20 nm. The t dependence of the MOKE amplitude is consistent with MOKE calculations. The results indicate that the films are stoichiometric, strain free, without Fe{sup 2+}, and preserve bulk YIG properties down to t ≈ 10 nm.

  7. Thickness and UV irradiation effects on the gas sensing properties of Te thin films

    SciTech Connect

    Manouchehrian, M.; Larijani, M.M.; Elahi, S.M.

    2015-02-15

    Highlights: • Tellurium thin films were prepared by thermal evaporation technique. • Tellurium thin films showed excellent gas-sensing properties to H{sub 2}S at room temperature. • Tellurium showed a remarkably enhanced response to H{sub 2}S gas under UV irradiation. • The reason of the enhanced response by UV irradiation was discussed. - Abstract: In this research, tellurium thin films were investigated for use as hydrogen sulfide gas sensors. To this end, a tellurium thin film has been deposited on Al{sub 2}O{sub 3} substrates by thermal evaporation, and the influence of thickness on the sensitivity of the tellurium thin film for measuring H{sub 2}S gas is studied. XRD patterns indicate that as the thickness increases, the crystallization improves. Observing the images obtained by SEM, it is seen that the grain size increases as the thickness increases. Studying the effect of thickness on H{sub 2}S gas measurement, it became obvious that as the thickness increases, the sensitivity decreases and the response and recovery times increase. To improve the response and recovery times of the tellurium thin film for measuring H{sub 2}S gas, the influence of UV radiation while measuring H{sub 2}S gas was also investigated. The results indicate that the response and recovery times strongly decrease using UV radiation.

  8. Cylinder wakes in quasi-two-dimensional flows with surface friction II: effects of film thickness

    NASA Astrophysics Data System (ADS)

    Li, Jamie H. W.; Shim, Jemin; Fontana, Paul W.

    2013-11-01

    Vortex shedding in a quasi-two-dimensional system with homogeneous drag (Ekman friction) is observed to have different phenomenology than in systems without friction. To understand why, we studied the wakes of circular cylinders in a vertical soap film channel and measured thickness profiles (pachymetry) of the film in the cylinder wake. The kinematic viscosity and drag coefficients in this system both depend on the thickness of the soap film, which varies over the wake. To measure thickness, broad-spectrum light is reflected off the film, and the resulting interference pattern of intensity vs. wave number is measured. The spacing in wave number of the interference minima is proportional to the film thickness, giving high-accuracy thickness measurements with a precision on the order of 0.2%. Pachymetry profiles transverse to the mean flow were measured at five longitudinal positions for various values of Reynolds number and drag parameter. Possible causes for differences in the dynamics from conventional systems could be: ambiguity in the specifications of Reynolds number or non-Newtonian effects arising from viscosity gradients, elastic effects particular to soap films, or surface friction. The pachymetry results favor the latter explanation. Supported by the National Science Foundation under Grant No. CBET-0854509, the M. J. Murdock Charitable Trust, and the Clare Boothe Luce Foundation.

  9. Ceramic thick film humidity sensor based on MgTiO{sub 3} + LiF

    SciTech Connect

    Kassas, Ahmad; Bernard, Jérôme; Lelièvre, Céline; Besq, Anthony; Guhel, Yannick; Houivet, David; Boudart, Bertrand; Lakiss, Hassan; Hamieh, Tayssir

    2013-10-15

    Graphical abstract: - Highlights: • The fabricated sensor based on MgTiO{sub 3} + LiF materials used the spin coating technology. • The response time is 70 s to detect variation between 5 and 95% relative humidity. • The addition of Scleroglucan controls the viscosity and decreases the roughness of thick film surface. • This humidity sensor is a promising, low-cost, high-quality, reliable ceramic films, that is highly sensitive to humidity. - Abstract: The feasibility of humidity sensor, consisting of a thick layer of MgTiO{sub 3}/LiF materials on alumina substrate, was studied. The thermal analysis TGA-DTGA and dilatometric analysis worked out to confirm the sintering temperature. An experimental plan was applied to describe the effects of different parameters in the development of the thick film sensor. Structural and microstructural characterizations of the developed thick film were made. Rheological study with different amounts of a thickener (scleroglucan “sclg”), showing the behavior variation, as a function of sclg weight % was illustrated and rapprochement with the results of thickness variation as a function of angular velocity applied in the spin coater. The electrical and dielectric measurements confirmed the sensitivity of the elaborated thick film against moisture, along with low response time.

  10. Magnetotransport and coupling in nanostructured Co/Ag thin films

    NASA Astrophysics Data System (ADS)

    Bracho Rodríguez, G. J.; Pereira, L. G.; Miranda, M. G. M.; Antunes, A. B.; Baibich, M. N.

    2000-05-01

    We have studied the electrical resistivity and giant magnetoresistance (GMR) of [Co(15 Å)/Ag(45 Å)] 20/Ag(45 Å) multilayers treated at different annealing temperatures. A simulation based on a formal solution of the Boltzmann equation for the electrical resistivity was performed, and the results compared to the experimental results from 4.2 to 300 K. The simulation shows that both the mean free paths and the transmission coefficients are affected by the breaking of the magnetic layers: at lower annealing temperatures, on account of stress relief and other related processes, the mean free paths increase, but the minority spin mean free path for electrons decreases for anneals above 324°C. A simple parameter to measure the coupling present in spin valve systems is proposed. This shows a decrease of the coupling in the first stages of the anneals, with a sudden increase in coupling upon breaking the magnetic layers.

  11. Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates

    NASA Astrophysics Data System (ADS)

    Sun, X. J.; Wang, C. C.; Zhang, J.; Liu, G.; Zhang, G. J.; Ding, X. D.; Zhang, G. P.; Sun, J.

    2008-10-01

    For polymer-supported metal thin films used in flexible electronics, the definition of the fatigue lifetime at microcrack nucleation (FLMN) should be more physically meaningful than all the previous definitions at structural instability. In this paper, the FLMN of Cu films (with thickness from 100 nm to 3.75 µm) as well as Al thin films (from 80 to 800 nm) was experimentally characterized at different strain ranges and different thicknesses by using a simple electrical resistance measurement (ERM). A significant thickness dependence was revealed for the FLMN and a similar Coffin-Manson fatigue relationship observed commonly in bulk materials was found to be still operative in both the films. Microstructural analyses were carried out to verify the feasibility of ERM correspondingly.

  12. Thick Pb(Zr,Ti)O{sub 3} film without substrate

    SciTech Connect

    Lee, Jae-Wung; Park, Chee-Sung; Jo, Ji-Hoon; Kim, Hyoun-Ee

    2007-08-13

    In order to fabricate thick PbZr{sub x}Ti{sub 1-x}O{sub 3} (PZT) films for microelectromechanical system applications, the authors introduce a concept of freestanding film without a substrate. PZT films with a thickness of up to 20 {mu}m were deposited on a very thin Pt layer without a substrate by the rf-magnetron sputtering method using a single oxide target. The Pt layer (thickness <1 {mu}m) was obtained by sputtering the Pt on a Si substrate with a carbon layer between them, and subsequently removing the carbon layer by oxidation in air at 400 deg. C. Piezoelectric properties of the film were comparable to those of bulk PZT as a result of the removal of clamping effect of the substrate.

  13. Thin films' thickness uniformity associated with the method of electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Xia, Zhilin; Xue, Yiyu; Guo, Peitao; Li, Zhangwang

    2009-08-01

    Coating material has been considered as being made up of a lot of small tablets. These tablets have plane surface during the whole film preparation process. Based on the assumption that a column etching pit will form in coating material when electron beam is used for heating, influences of the etching pit's dimension and the internal structure of the vacuum chamber on films thickness uniformity have been investigated. Results reflect that the appearance of etching pit does not always cause negative influence on films thickness uniformity. The negative impact of etching on films thickness uniformity can be reduced by optimizing the internal structure of the vacuum chamber and preparation technical parameters. But, it is difficult to achieve the beneficial action. This investigation is useful to help us understand physical meaning of the emission characteristics of the evaporation particle and design experimental scheme.

  14. Growth of BaTiO3-PVDF composite thick films by using aerosol deposition

    NASA Astrophysics Data System (ADS)

    Cho, Sung Hwan; Yoon, Young Joon

    2016-01-01

    Barium titanate (BaTiO3)-polyvinylidene fluoride (PVDF) composite thick films were grown by using aerosol deposition at room temperature with BaTiO3 and PVDF powders. To produce a uniform composition in ceramic and polymer composite films, which show a substantial difference in specific gravity, we used PVDF-coated BaTiO3 powders as the starting materials. An examination of the microstructure confirmed that the BaTiO3 were well distributed in the PVDF matrix in the form of a 0 - 3 compound. The crystallite size in the BaTiO3-PVDF composite thick films was 5 ˜ 50 times higher than that in pure BaTiO3 thick films. PVDF plays a role in suppressing the fragmentation of BaTiO3 powder during the aerosol deposition process and in controlling the relative permittivity.

  15. Interference method for monitoring the refractive index and the thickness of transparent films during deposition

    NASA Astrophysics Data System (ADS)

    Alius, H.; Schmidt, R.

    1990-04-01

    An interferometric method is described for simultaneous measurement of the refractive index and the thickness of transparent isotropic films during the deposition process. Two laser beams are focused impinging at two different angles onto the film. The intensity of the beams reflected from the growing film shows minima and maxima, which are counted and evaluated to determine the refractive index n and the thickness d of the film in the range of some 100 nm up to several micrometers using 633-nm laser light. n and d can be determined within an accuracy better than 1%, if the thickness is larger than three times the vacuum wavelength of the laser. The measurements are well in accordance with calculations of the intensity modulation. The method can easily be extended to multilayer systems.

  16. Plasmonic coupling of SiO{sub 2}-Ag 'post-cap' nanostructures and silver film for surface enhanced Raman scattering

    SciTech Connect

    Wu, Hsin-Yu; Cunningham, Brian T.

    2011-04-11

    We demonstrate a surface enhanced Raman scattering (SERS) substrate consisting of SiO{sub 2}-Ag''post-cap'' nanostructures with an underlying silver film fabricated by the glancing angle deposition technique. Electromagnetic simulations predict that SERS enhancement is strongly polarization-dependent, consistent with experimental measurements. Optimized coupling between Ag cap nanoparticles and the underlying silver film can be achieved by controlling the thickness of SiO{sub 2} post sandwiched between them to significantly enhance local electric-field intensity and to increase the density of electromagnetic hot spots. A maximum SERS enhancement factor of 2.38x10{sup 9} within the hot spot region is demonstrated, providing sufficient sensitivity for many important applications.

  17. Self-Poling of BiFeO3 Thick Films.

    PubMed

    Khomyakova, Evgeniya; Sadl, Matej; Ursic, Hana; Daniels, John; Malic, Barbara; Bencan, Andreja; Damjanovic, Dragan; Rojac, Tadej

    2016-08-01

    Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macroscopic piezoelectric response. This study presents evidence of a prominent and reproducible self-poling effect in few-tens-of-micrometer-thick BiFeO3 films. Direct and converse piezoelectric measurements confirmed that the as-sintered BiFeO3 thick films yield d33 values of up to ∼20 pC/N. It was observed that a significant self-poling effect only appears in cases when the films are heated and cooled through the ferroelectric-paraelectric phase transition (Curie temperature TC ∼ 820 °C). These self-poled films exhibit a microstructure with randomly oriented columnar grains. The presence of a compressive strain gradient across the film thickness cooled from above the TC was experimentally confirmed and is suggested to be responsible for the self-poling effect. Finally, the macroscopic d33 response of the self-poled BiFeO3 film was characterized as a function of the driving-field frequency and amplitude. PMID:27388568

  18. Thickness-dependent autophobic dewetting of thin polymer films on coated substrates.

    PubMed

    Sun, Yan; Shull, Kenneth R; Walko, Donald A; Wang, Jin

    2011-01-01

    We demonstrate that the wetting behavior of a thin liquid film, poly(4-bromostyrene) (PBrS), on top of a solid substrate may be effectively controlled with the insertion of a secondary liquid film, poly(4-vinyl pyridine) (P4VP), underneath the primary film. This secondary film remains stable under all conditions, and can be viewed as an extension of the substrate itself. On the basis of results from X-ray standing waves generated via total external reflection from an X-ray mirror, time-of-flight secondary ion mass spectroscopy, optical microscopy, and atomic force microscopy, we construct the full Helmholtz free energy versus PBrS thickness curve using existing theories that account for both long- and short-range interactions. The form of the free energy curve, which contains an inflection point and an absolute minimum at a nonzero PBrS thickness, accurately reflects our observation that thick PBrS films undergo autophobic dewetting on top of the stable P4VP, while sufficiently thin PBrS films remain stable. The thickness of the autophobic wetting layer is controlled by the range of the repulsive interaction between the film and the substrate, and is found to be ∼4 nm for the PBrS/P4VP interface. PMID:21117671

  19. Superconducting properties and chemical composition of NbTiN thin films with different thickness

    SciTech Connect

    Zhang, L.; Peng, W.; You, L. X.; Wang, Z.

    2015-09-21

    In this research, we systematically investigated the superconducting properties and chemical composition of NbTiN thin films prepared on single-crystal MgO substrates. The NbTiN thin films with different thicknesses (4–100 nm) were deposited by reactive DC magnetron sputtering at ambient temperature. We measured and analyzed the crystal structure and thickness dependence of the chemical composition using X-ray diffraction and X-ray photoelectron spectroscopy depth profiles. The films exhibited excellent superconducting properties, with a high superconducting critical temperature of 10.1 K, low resistivity (ρ{sub 20} = 93 μΩ cm), and residual resistivity ratio of 1.12 achieved for 4-nm-thick ultrathin NbTiN films prepared at the deposition current of 2.4 A. The stoichiometry and electrical properties of the films varied gradually between the initial and upper layers. A minimum ρ{sub 20} of 78 μΩ cm and a maximum residual resistivity ratio of 1.15 were observed for 12-nm-thick films, which significantly differ from the properties of NbN films with the same NaCl structure.

  20. Core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses: Preparation and their effects on photoluminescence of lanthanide complexes

    SciTech Connect

    Kang, Jie; Li, Yuan; Chen, Yingnan; Wang, Ailing; Yue, Bin; Qu, Yanrong; Zhao, Yongliang; Chu, Haibin

    2015-11-15

    Highlights: • Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses were prepared via the Stöber process. • Sm and Dy complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. • The complex-doped Ag@SiO{sub 2} composites show stronger luminescent intensities than pure complexes. • The luminescent intensities of the composites strongly depend on the SiO{sub 2} shell thickness. - Abstract: Three kinds of almost spherical core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses (10, 25 and 80 nm) were prepared via the Stöber process. The Ag core nanoparticles were prepared by reducing silver nitrate with sodium citrate. The size, morphology and structure of core–shell Ag@SiO{sub 2} nanoparticles were characterized by transmission electron microscopy. Subsequently, eight kinds of lanthanide complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. The composition of the lanthanide complexes was characterized by elemental analysis, IR and UV spectra. Finally, lanthanide complexes were attached to the surface of Ag@SiO{sub 2} nanoparticles to form lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites. The results show that the complex-doped Ag@SiO{sub 2} nanocomposites display much stronger luminescence intensities than the lanthanide complexes. Furthermore, the luminescence intensities of the lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites with SiO{sub 2} shell thickness of 25 nm are stronger than those of the nanocomposites with SiO{sub 2} shell thickness of 10 and 80 nm.

  1. Characterization and mechanical properties investigation of TiN-Ag films onto Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Du, Dongxing; Liu, Daoxin; Zhang, Xiaohua; Tang, Jingang; Xiang, Dinggen

    2016-03-01

    To investigate their effect on fretting fatigue (FF) resistance of a Ti-6Al-4V alloy, hard solid lubricating composite films of TiN with varying silver contents (TiN-Ag) were deposited on a Ti-6Al-4V alloy using ion-assisted magnetron sputtering. The surface morphology and structure were analyzed by atomic force microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. The hardness, bonding strength, and toughness of films were tested using a micro-hardness tester, scratch tester, and a repeated press-press test system that was manufactured in-house, respectively. The FF resistance of TiN-Ag composite films was studied using self-developed devices. The results show that the FF resistance of a titanium alloy can be improved by TiN-Ag composite films, which were fabricated using hard TiN coating doped with soft Ag. The FF life of Ag0.5, Ag2, Ag5, Ag10 and Ag20 composite films is 2.41, 3.18, 3.20, 2.94 and 2.87 times as great as that of the titanium alloy, respectively. This is because the composite films have the better toughness, friction lubrication, and high bonding strength. When the atomic fraction of Ag changes from 2% to 5%, the FF resistance of the composite films shows the best performance. This is attributed to the surface integrity of the composite film is sufficiently fine to prevent the initiation and early propagation of FF cracks.

  2. Phase dependent photocatalytic activity of Ag loaded TiO2 films under sun light

    NASA Astrophysics Data System (ADS)

    Madhavi, V.; Kondaiah, P.; Shaik, Habibuddin; Rao, G. Mohan

    2016-02-01

    Well-crystallized anatase and mixed (anatase-rutile) phase TiO2 thin films were deposited by DC magnetron sputtering technique at various DC powers in the range of 80-140 W. Pure anatase phase was observed in the TiO2 films deposited at low power of 80 W. Films deposited at 120 W were composed of both anatase and rutile phases. At higher power of 140 W, the films are rutile dominated and the rutile percentage increased from 0 to 82% with increase of DC power. The same results of phase change were confirmed by Raman studies. The surface morphology of the TiO2 films showed that the density of the films increased with increase of sputter power. The optical band gap of the films varied from 3.35 to 3.14 eV with increase of DC power. The photocatalytic activity of the TiO2 films increased with increasing DC power up to 120 W and after that it decreases. We found that the TiO2 films deposited at 120 W with 48% of rutile phase, exhibited high photocatalytic activity (43% of degradation) under UV light compared with other TiO2 films. After loading the optimized Ag nanoparticles on the mixed phase TiO2 films, the photocatalytic activity shifted from UV to visible region with enhancement of photocatalytic activity (55% of degradation).

  3. Role of thermal processes in dewetting of epitaxial Ag(111) film on Si(111)

    SciTech Connect

    Sanders, Charlotte E.; Zhang, Chendong D.; Kellogg, Gary L.; Shih, Chih-Kang

    2014-08-01

    Epitaxially grown silver (Ag) film on silicon (Si) is an optimal plasmonic device platform, but its technological utility has been limited by its tendency to dewet rapidly under ambient conditions (standard temperature and pressure). The mechanisms driving this dewetting have not heretofore been determined. In our study, scanning probe microscopy and low-energy electron microscopy are used to compare the morphological evolution of epitaxial Ag(111)/Si(111) under ambient conditions with that of similarly prepared films heated under ultra-high vacuum (UHV) conditions. Furthermore, dewetting is seen to be initiated with the formation of pinholes, which might function to relieve strain in the film. We find that in the UHV environment, dewetting is determined by thermal processes, and while under ambient conditions, thermal processes are not required. Finally, we conclude that dewetting in ambient conditions is triggered by some chemical process, most likely oxidation.

  4. Role of thermal processes in dewetting of epitaxial Ag(111) film on Si(111)

    DOE PAGESBeta

    Sanders, Charlotte E.; Zhang, Chendong D.; Kellogg, Gary L.; Shih, Chih-Kang

    2014-08-01

    Epitaxially grown silver (Ag) film on silicon (Si) is an optimal plasmonic device platform, but its technological utility has been limited by its tendency to dewet rapidly under ambient conditions (standard temperature and pressure). The mechanisms driving this dewetting have not heretofore been determined. In our study, scanning probe microscopy and low-energy electron microscopy are used to compare the morphological evolution of epitaxial Ag(111)/Si(111) under ambient conditions with that of similarly prepared films heated under ultra-high vacuum (UHV) conditions. Furthermore, dewetting is seen to be initiated with the formation of pinholes, which might function to relieve strain in the film.more » We find that in the UHV environment, dewetting is determined by thermal processes, and while under ambient conditions, thermal processes are not required. Finally, we conclude that dewetting in ambient conditions is triggered by some chemical process, most likely oxidation.« less

  5. Role of thermal processes in dewetting of epitaxial Ag(111) film on Si(111)

    NASA Astrophysics Data System (ADS)

    Sanders, Charlotte E.; Zhang, Chendong; Kellogg, Gary L.; Shih, Chih-Kang

    2014-12-01

    Epitaxially grown silver (Ag) film on silicon (Si) is an optimal plasmonic device platform, but its technological utility has been limited by its tendency to dewet rapidly under ambient conditions (standard temperature and pressure). The mechanisms driving this dewetting have not heretofore been determined. In this study, scanning probe microscopy and low-energy electron microscopy are used to compare the morphological evolution of epitaxial Ag(111)/Si(111) under ambient conditions with that of similarly prepared films heated under ultra-high vacuum (UHV) conditions. Dewetting in both cases is seen to be initiated with the formation of pinholes, which might function to relieve strain in the film. We find that in the UHV environment, dewetting is determined by thermal processes, while under ambient conditions, thermal processes are not required. We conclude that dewetting in ambient conditions is triggered by some chemical process, most likely oxidation.

  6. Direct observation of Ag filament growth and unconventional SET-RESET operation in GeTe amorphous films

    NASA Astrophysics Data System (ADS)

    Imanishi, Yusuke; Kida, Shimon; Nakaoka, Toshihiro

    2016-07-01

    We report on the direct observation of Ag filament growth and a peculiar resistance switching in amorphous GeTe films with a lateral electrode geometry. The Ag filament growth was monitored by in-situ optical microscopy. The resistance switching was studied in three electrode pairs, Ag-Ag, Pt-Ag, and Pt-Ag/Pt (Ag electrode covered with Pt). In all the three electrode pairs, similar dendritic Ag filaments were clearly observed growing along both directions from one electrode to the other, according to the applied bias polarity. However, the SET and RESET processes are quite different. The Ag-Ag pair produces a unipolar clockwise switching. The Pt-Ag pair shows a bipolar counter-clockwise switching, as predicted in the basic electrochemical metallization theory, but the observed switching polarity is exactly opposite to the basic theory prediction. The Pt-Ag/Pt pair produces a unipolar counter-clockwise switching. The peculiar SET/RESET processes are explained on the basis of strong Ag diffusion into GeTe matrix resulting in an asymmetric effective electrode pair. The findings suggest that the SET/RESET processes are controlled by the amount of Ag and the electrode geometry.

  7. The ideal split-thickness skin graft donor site dressing: rediscovery of polyurethane film.

    PubMed

    Dornseifer, Ulf; Fichter, Andreas M; Herter, Frank; Sturtz, Gustavo; Ninkovic, Milomir

    2009-08-01

    The almost single disadvantage of polyurethane film dressings, an uncontrolled leakage, is probably as often described as its numerous advantages for split-thickness skin graft donor sites. We solved this problem by perforating the polyurethane film, which permits a controlled leakage into a secondary absorbent dressing. The study included 30 adult patients. Skin graft donor sites at the proximal thigh were dressed with the modified film dressing. Our results indicate that this dressing concept is associated with a reliable, rapid rate of epithelization. Both, controlled leakage and minimal pain caused particular comfort for patients and ward staff. Furthermore, this dressing was also suited for differently shaped and large donor sites. We conclude that the modification results in a more practicable, comfortable, and cost-effective film dressing, which requalifies the polyurethane film as an ideal dressing material for split-thickness skin graft donor sites. PMID:19571740

  8. Effect of different surfactants and thicknesses on electrodeposited films of bismuth telluride and its thermoelectric performance

    NASA Astrophysics Data System (ADS)

    Kulsi, Chiranjit; Mitra, Mousumi; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali; Goswami, Shyamaprosad

    2015-10-01

    Thin films of bismuth telluride using various surfactants such as sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP) have been electrochemically deposited. The influence of different surfactants on crystal orientation and morphology was investigated and correlated with the thermoelectric performance of the electrodeposited films. Since thickness affects the thermoelectric performance compared to the surfactant, thickness- dependent thermoelectric performance has also been investigated. The carrier mobilities of the films obtained are significantly enhanced due to improved surface morphology using different surfactants. Between the two surfactants, films with SDS exhibited the higher value of thermoelectric power, power factor, and figure of merit, which is due to the effect of micelle formation. The XRD pattern of all the films, which are electrodeposited without surfactant or using SDS and PVP, showed preferred crystal orientation along the (018) direction. The roles of organic molecules in the development of nanoparticles with improved thermoelectric properties have been investigated.

  9. Influence of underneath pentacene thickness on performance of p-n heterojunction organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Zhou, Jianlin; Jiang, Yuyu; Wang, Zhen; Hu, Shengdong; Gan, Ping; Shen, Xiaoqing

    2016-02-01

    Organic thin film transistors (OTFTs) with heterojunction semiconducting layers composed of p-type pentacene and n-type fluorinated copper phthalocyanine (F16CuPc) have been fabricated. The influence of pentacene film thickness on performance of transistors is carefully investigated. It has been found that, with the increase of pentacene film thickness, the electron mobility increases at first and then decreases intensely. But the shift of VT is opposite comparing with electron mobility. The performance improvement can be attributed to the increase of free electron carriers by band bending at the pentacene/F16CuPc interface, and better F16CuPc film quality grown upon pentacene. Comparing with island growth-mode, layer-by-layer growth-mode of pentacene facilitates the growth of the upper F16CuPc film.

  10. Improved gas sensing and dielectric properties of Fe doped hydroxyapatite thick films: Effect of molar concentrations

    SciTech Connect

    Mene, Ravindra U.; Mahabole, Megha P.; Mohite, K.C.; Khairnar, Rajendra S.

    2014-02-01

    Highlights: • We report improved gas sensing and dielectric characteristics of Fe ion exchanged HAp films. • Fe doped HAp film shows maximum gas response at relatively lower temperature. • Response and gas uptake capacity of sensors is improved for appropriate amount of Fe ions in HAp matrix. • Fe-HAp films exhibit remarkable improvement in dielectric properties compared to pure HAp. • Fe doped HAp films show significant improvement in gas sensing as well as in dielectric properties. - Abstract: In the present work Fe doped hydroxyapatite (Fe-HAp) thick films has been successfully utilized to improve the gas sensing as well as its dielectric properties. Initially, HAp nano powder is synthesized by chemical precipitation process and later on Fe ions are doped in HAp by ion exchange process. Structural and morphological modifications are observed by means of X-ray diffraction and scanning electron microscopy analysis. The sensing parameters such as operating temperature, response/recovery time and gas uptake capacity are experimentally determined. The Fe-HAp (0.05 M) film shows improved CO and CO{sub 2} gas sensing capacity at lower operating temperature compared to pure HAp. Moreover, variation of dielectric constant and dielectric loss for pure and Fe-HAp thick films are studied as a function of frequency in the range of 10 Hz–1 MHz. The study reveals that Fe doped HAp thick films improve the sensing and dielectric characteristics as compared to pure HAp.

  11. Granular L1{sub 0} FePt-B and FePt-B-Ag (001) thin films for heat assisted magnetic recording

    SciTech Connect

    Granz, Steven D.; Barmak, Katayun; Kryder, Mark H.

    2012-04-01

    A comparison was made of FePt-B and FePt-B-Ag thin films having different volume contents of boron, which were RF sputtered with in-situ heating at 425-575 deg. C onto Si substrates with 20 nm thick (002) MgO. By introducing boron into FePt and varying the sputtering conditions, films with grain sizes ranging from 2.5 to 10 nm were produced. The boron promoted columnar growth, but made ordering more difficult. However, by adding Ag into FePt-B, ordering improved while coercivity increased from 7 to 11 kOe with no significant impact on the microstructure. We obtained films with grain sizes down to 2.5 nm with center-to-center spacing of 3.1 nm. The reduced grain size, columnar microstructure and increase in ordering and coercivity by adding Ag into the FePt-B thin films are favorable for application in heat assisted magnetic recording.

  12. Unusual Contact-Line Dynamics of Thick Films and Drops

    NASA Technical Reports Server (NTRS)

    Veretennikov, Igor; Agarwal, Abhishek; Indeikina, Alexandra; Chang, Hsueh-Chia

    1999-01-01

    We report several novel phenomena In contact-line and fingering dynamics of macroscopic spinning drops and gravity-driven films with dimensions larger than the capillary length. It is shown through experimental and theoretical analysis that such macroscopic films can exhibit various interfacial shapes, including multi valued ones, near the contact line due to a balance between the external body forces with capillarity. This rich variety of front shapes couples with the usual capillary, viscous, and intermolecular forces at the contact line to produce a rich and unexpected spectrum of contact-line dynamics. A single finger develops when part of the front becomes multivalued on a partially wetting macroscopic spinning drop in contrast to a different mechanism for microscopic drops of completely wetting fluids. Contrary to general expectation, we observe that, at high viscosity and low frequencies of rotation, the speed of a glycerine finger increases with increasing viscosity. Completely wetting Dow Corning 200 Fluid spreads faster over a dry inclined plane than a prewetted one. The presence of a thin prewetted film suppresses fingering both for gravity-driven flow and for spin coating. We analyze some of these unique phenomena in detail and offer qualitative physical explanations for the others.

  13. Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits.

    PubMed

    Gudadhe, Janhavi A; Yadav, Alka; Gade, Aniket; Marcato, Priscyla D; Durán, Nelson; Rai, Mahendra

    2014-12-01

    Preparation of protective coating possessing antimicrobial properties is present day need as they increase the shelf life of fruits and vegetables. In the present study, preparation of agar-silver nanoparticle film for increasing the shelf life of fruits is reported. Silver nanoparticles (Ag-NPs) biosynthesised using an extract of Ocimum sanctum leaves, were mixed with agar-agar to prepare an agar-silver nanoparticles (A-AgNp) film. This film was surface-coated over the fruits, Citrus aurantifolium (Thornless lime) and Pyrus malus (Apple), and evaluated for the determination of antimicrobial activity of A-AgNp films using disc diffusion method, weight loss and shelf life of fruits. This study demonstrates that these A-AgNp films possess antimicrobial activity and also increase the shelf life of fruits. PMID:25429496

  14. Low temperature crystalline Ag-Ni alloy formation from silver and nickel nanoparticles entrapped in a fatty acid composite film

    NASA Astrophysics Data System (ADS)

    Kumar, Ashavani; Damle, Chinmay; Sastry, Murali

    2001-11-01

    Nanoparticles of silver and nickel were grown in thermally evaporated fatty acid (stearic acid) films by immersion of the film sequentially in solutions containing Ag+ ions and Ni2+ ions. Attractive electrostatic interaction between the metal cations and the carboxylate ions in the fatty acid film leads to entrapment of the cations in the film. Thereafter, the metal ions were reduced in situ to yield nanoparticles of Ag and Ni of ˜30 nm diameter within the fatty acid matrix. Thermal treatment of the stearic acid-(silver+nickel) nanocomposite films led to the formation of a Ni-Ag alloy at ˜100 °C. Prolonged heat treatment at this temperature resulted in the phase separation of the alloy and the reformation of individual Ag and Ni nanoparticles.

  15. Film Thickness Prediction in an Annular Two-Phase Flow Through Bends

    NASA Astrophysics Data System (ADS)

    Tkaczyk, P. M.; Morvan, H. P.

    2010-09-01

    A finite volume method-based CFD model has been developed in the commercial code Star CD to simulate the annular gas-liquid flow through the 30°, 60° and 90° bends. The liquid film is solved explicitly by means of a modified Volume of Fluid (VOF) method. The droplets are traced using a Lagrangian technique. The film to droplets (entrainment) and droplets to film (stick, bounce, spread and splash) interactions are taken into account using sub-models to complement the VOF model. A good agreement is found between the computed film thickness value and those cited in the literature.

  16. High loading of nanostructured ceramics in polymer composite thick films by aerosol deposition

    PubMed Central

    2012-01-01

    Low temperature fabrication of Al2O3-polyimide composite substrates was carried out by an aerosol deposition process using a mixture of Al2O3 and polyimide starting powders. The microstructures and dielectric properties of the composite thick films in relation to their Al2O3 contents were characterized by X-ray diffraction analysis. As a result, the crystallite size of α-Al2O3 calculated from Scherrer's formula was increased from 26 to 52 nm as the polyimide ratio in the starting powders increased from 4 to 12 vol.% due to the crushing of the Al2O3 powder being reduced by the shock-absorbing effect of the polyimide powder. The Al2O3-polyimide composite thick films showed a high loss tangent with a large frequency dependence when a mixed powder of 12 vol.% polyimide was used due to the nonuniform microstructure with a rough surface. The Al2O3-polyimide composite thick films showed uniform composite structures with a low loss tangent of less than 0.01 at 1 MHz and a high Al2O3 content of more than 75 vol.% when a mixed powder of 8 vol.% polyimide was used. Moreover, the Al2O3-polyimide composite thick films had extremely high Al2O3 contents of 95 vol.% and showed a dense microstructure close to that of the Al2O3 thick films when a mixed powder of 4 vol.% polyimide was used. PMID:22283973

  17. Study of PZT thick-film infrared detectors prepared by MEMS technology

    NASA Astrophysics Data System (ADS)

    Qiang, Xiang-Peng; Chuan, Gui-Wu; Wen, Bo-Luo; Wan, Li-Zhang; Jia, Qiang-Cao

    2011-08-01

    In this paper, a single element integrated infrared detector using screen printed lead zirconate titanate (PZT) thick films on Pt/Ti/Al2O3/SiO2 coated silicon cup has been developed. The thermal insulating micro-bridge of the detector was prepared by Micro-electro-mechanical System (MEMS) technology. To increase the density of PZT ceramic thick films, cool isostatic pressing experiments had been conducted under 300MPa and 30s dwell time. The XRD pattern shows that PZT thick films possess good perovskite structure. The SEM cross section image demonstrate that the PZT film was dense and the thickness is about 25μm. The dielectric constant, loss and pyroelectric coefficient of PZT thick films prepared at optimized conditions is 1100, 1% and 1×10-8C/Kcm 2, respectively. The results indicated that the PZT thermal sensitive layer fabricated by screen printing on the Pt/Ti coated silicon cup with micro-bridge thermal insulation structure, and Al2O3/SiO2 barrier layer show potential application in infrared detectors.

  18. Disappearance of ferroelectric critical thickness in epitaxial ultrathin BaZr O3 films

    NASA Astrophysics Data System (ADS)

    Zhang, Yajun; Li, Gui-Ping; Shimada, Takahiro; Wang, Jie; Kitamura, Takayuki

    2014-11-01

    The intrinsic critical ferroelectric thickness of epitaxial ultrathin capacitors of incipient ferroelectric BaZr O3 (BZO) films with realistic SrRu O3 (SRO) electrodes is investigated by first-principles calculations based on density functional theory. We reveal that polarization can stably exist even in one-unit-cell thick BZO films, i.e., absence of critical thickness, whereas the widely investigated proper ferroelectrics like BaTi O3 and SrTi O3 films have no polarization. The influences of realistic ferroelectric-electrode interface and misfit strain on the ionic and electronic structures of the BZO-SRO thin film system have been examined under the short-circuited boundary condition. It is found that the ionic polarization of conductive SRO electrodes can effectively strengthen the screening of bound charges at the interface, which greatly reduces the depolarization field in the BZO films. Furthermore, the epitaxial misfit strain remarkably enhances the polarization through the enhancement of hybridization of Zr and O electron orbitals, resulting in the disappearance of ferroelectric critical thickness. Our findings are beyond the critical thickness of proper ferroelectrics and are thus promising for future nanometer-scale ferroelectric device such as high-density ferroelectric memory.

  19. Enhanced film thickness for Néel wall in soft magnetic film by introducing strong magnetocrystalline anisotropy.

    PubMed

    Xu, Fei; Wang, Tao; Ma, Tianyong; Wang, Ying; Zhu, Shimeng; Li, Fashen

    2016-01-01

    This study investigated the magnetic domain walls in a single-layer soft magnetic film with strong magnetocrystalline anisotropy energy. The soft magnetic film is composed of a highly c-axis-oriented hcp-Co81Ir19 alloy with strong negative magnetocrystalline anisotropy. The domain structure of the soft Co81Ir19 films with thickness ranging from 50-230 nm in a demagnetization state was observed through magnetic force microscopy and Lorentz transmission electron microscopy. Results reveal that the critical transition thickness at which the domain wall changes from Néel type to Bloch type is about 138 nm, which is much larger than the critical value of traditional Fe- and Co-based soft magnetic films with negligible magnetocrystalline anisotropy. Theoretical calculation was also performed and the calculated result agrees well with experimental data. PMID:26821614

  20. Enhanced film thickness for Néel wall in soft magnetic film by introducing strong magnetocrystalline anisotropy

    PubMed Central

    Xu, Fei; Wang, Tao; Ma, Tianyong; Wang, Ying; Zhu, Shimeng; Li, Fashen

    2016-01-01

    This study investigated the magnetic domain walls in a single-layer soft magnetic film with strong magnetocrystalline anisotropy energy. The soft magnetic film is composed of a highly c-axis-oriented hcp-Co81Ir19 alloy with strong negative magnetocrystalline anisotropy. The domain structure of the soft Co81Ir19 films with thickness ranging from 50–230 nm in a demagnetization state was observed through magnetic force microscopy and Lorentz transmission electron microscopy. Results reveal that the critical transition thickness at which the domain wall changes from Néel type to Bloch type is about 138 nm, which is much larger than the critical value of traditional Fe- and Co-based soft magnetic films with negligible magnetocrystalline anisotropy. Theoretical calculation was also performed and the calculated result agrees well with experimental data. PMID:26821614

  1. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces.

    PubMed

    Zhao, Chao; Li, Lingyan; Wang, Qiuming; Yu, Qiuming; Zheng, Jie

    2011-04-19

    The development of nonfouling biomaterials to prevent nonspecific protein adsorption and cell/bacterial adhesion is critical for many biomedical applications, such as antithrombogenic implants and biosensors. In this work, we polymerize two types of hydroxy-functional methacrylates monomers of 2-hydroxyethyl methacrylate (HEMA) and hydroxypropyl methacrylate (HPMA) into polymer brushes on the gold substrate via surface-initiated atom transfer radical polymerization (SI-ATRP). We systematically examine the effect of the film thickness of polyHEMA and polyHPMA brushes on their antifouling performance in a wide range of biological media including single-protein solution, both diluted and undiluted human blood serum and plasma, and bacteria culture. Surface plasmon resonance (SPR) results show a strong correlation between antifouling property and film thickness. Too thin or too thick polymer brushes lead to large protein adsorption. Surfaces with the appropriate film thickness of ∼25-45 nm for polyHPMA and ∼20-45 nm for polyHEMA can achieve almost zero protein adsorption (<0.3 ng/cm(2)) from single-protein solution and diluted human blood plasma and serum. For undiluted human blood serum and plasma, polyHEMA brushes at a film thickness of ∼20-30 nm adsorb only ∼3.0 and ∼3.5 ng/cm(2) proteins, respectively, while polyHPMA brushes at a film thickness of ∼30 nm adsorb more proteins of ∼13.5 and ∼50.0 ng/cm(2), respectively. Moreover, both polyHEMA and polyHPMA brushes with optimal film thickness exhibit very low bacteria adhesion. The excellent antifouling ability and long-term stability of polyHEMA and polyHPMA brushes make them, especially for polyHEMA, effective and stable antifouling materials for usage in blood-contacting devices. PMID:21405141

  2. Thermal Conductivity Measurement of Xe-Implanted Uranium Dioxide Thick Films using Multilayer Laser Flash Analysis

    SciTech Connect

    Nelson, Andrew T.

    2012-08-30

    The Fuel Cycle Research and Development program's Advanced Fuels campaign is currently pursuing use of ion beam assisted deposition to produce uranium dioxide thick films containing xenon in various morphologies. To date, this technique has provided materials of interest for validation of predictive fuel performance codes and to provide insight into the behavior of xenon and other fission gasses under extreme conditions. In addition to the structural data provided by such thick films, it may be possible to couple these materials with multilayer laser flash analysis in order to measure the impact of xenon on thermal transport in uranium dioxide. A number of substrate materials (single crystal silicon carbide, molybdenum, and quartz) containing uranium dioxide films ranging from one to eight microns in thickness were evaluated using multilayer laser flash analysis in order to provide recommendations on the most promising substrates and geometries for further investigation. In general, the uranium dioxide films grown to date using ion beam assisted deposition were all found too thin for accurate measurement. Of the substrates tested, molybdenum performed the best and looks to be the best candidate for further development. Results obtained within this study suggest that the technique does possess the necessary resolution for measurement of uranium dioxide thick films, provided the films are grown in excess of fifty microns. This requirement is congruent with the material needs when viewed from a fundamental standpoint, as this length scale of material is required to adequately sample grain boundaries and possible second phases present in ceramic nuclear fuel.

  3. Photocathode tunability: The photoemissive properties of ultra-thin multilayered MgO/Ag/MgO films synthesized by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Velazquez, Daniel Gomez

    Much of the early development of photocathode materials was aimed at the growth of photoemissive thin films with low work function, and high quantum efficiency (QE). It has been shown, both theoretically and experimentally, that metal-insulator junctions can lead to the modification of the work function and QE for coverages of a few monolayers of metal oxides on metallic substrates. However, the production of electron beams suitable for new photoinjector technologies often requires low emittance beams from the cathode itself. A theoretical model [Phys. Rev. Lett. 104, 046801 (2010)] based on a multilayered structure of MgO/Ag(001)/MgO with 4 monolayers of Ag(001) flanked by n monolayers (ML) of MgO indicates the possibility to reduce the surface work function and photoelectron beam emittance when the thickness n of the MgO layers is 2 or 3 monolayers. These predictions were tested experimentally. Synthesis of multilayered MgO/Ag/MgO films was performed using a custom-built pulsed laser deposition (PLD) system. In-situ growth monitoring was carried out by Reflection High-Energy Electron Diffraction (RHEED). Ex-situ techniques such as Scanning Tunneling Microscopy (STM), Scanning Electron Microscopy/Energy Dispersive Spectroscopy (EDS) and Photoelectron Spectroscopy (PES) were used to show the formation of the crystalline and chemical structure. A custom-built Kelvin Probe/photocurrent-detector system was used to measure the work function and QE of the samples. Angle Resolved Photoelectron Spectroscopy was used to measure the angular photoelectron yield. Simultaneous reduction of work function and increase of QE was observed for (001) oriented multilayers of various thicknesses with respect to that of a bare Ag/MgO(001) surface. Work function measurements of multilayers of various thicknesses in the (111) orientation also showed a monotonic reduction with respect to that of a bare Ag/Si(111) surface. Angular emission was compared for a MgO/Ag/MgO multilayer

  4. Interface stress development in the Cu/Ag nanostructured multilayered film during the tensile deformation

    SciTech Connect

    Su, R.; Nie, Z. H.; Zhang, Q. H.; Li, X. J.; Li, L. E-mail: ydwang@mail.neu.edu.cn; Zhou, X. T.; Wang, Y. D. E-mail: ydwang@mail.neu.edu.cn; Wu, Y. D.; Hui, X. D.; Wang, M. G.

    2014-12-01

    Cu/Ag nanostructured multilayered films (NMFs) with different stacking sequences were investigated by synchrotron X-ray diffraction during the tensile deformations for interface stress study. The lattice strains were carefully traced and the stress partition, which usually occurs in the multiphase bulk metallic materials during plastic deformations, was first quantitatively analyzed in the NMFs here. The interface stress of the Cu/Ag NMFs was carefully analyzed during the tensile deformation and the results revealed that the interface stress was along the loading direction and exhibited three-stage evolution. This tensile interface stress has a detrimental effect on the deformation, leading to the early fracture of the NMFs.

  5. Photodarkening Effect in a-(GaSe){sub 90}Ag{sub 10} Thin Films

    SciTech Connect

    Gupta, Shikha; Mustafa, F. I.; Saini, G. S. S.; Goyal, Navdeep; Tripathi, S. K.

    2011-12-12

    The present paper reports the laser induced changes on the optical properties of a-(GaSe){sub 90}Ag{sub 10} thin films prepared by thermal evaporation technique. Thin film samples, on glass substrate, were exposed to laser light of wavelength {lambda} = 532 nm for different exposure times, t{sub E}(t{sub E}=0{sub s}, 500 s, 1000 s and 3000 s). Optical parameters like absorption coefficient and optical energy gap of as- deposited thin film and their laser induced changes were studied at three different times of exposure. The value of absorption coefficient of these thin film increases on exposing the film to laser irradiation. The optical absorption edge shift to lower photon energy i.e. the Photodarkening (PD) effect occurs. The results have been explained on the basis of structural changes that are occurring after the laser irradiation.

  6. Conformation-triggered flow instability in monolayer thick polymer films

    NASA Astrophysics Data System (ADS)

    Sheiko, Sergei; Beers, Kathryn; Matyjaszewski, Krzysztof; Rubinstein, Michael; Dobrynin, Andrey

    2005-03-01

    Here we have report on a new type of flow instability triggered by conformational changes of brush-like macromolecules as they spread on a solid substrate. By tracing the movement of individual molecules by atomic force microscopy, we were able to follow the evolution of the instability pattern on the molecular level enabling a microscopic understanding of the underlying physical mechanism. The instability is an analog of the Saffman-Taylor instability in thin films. However, the instability is driven by a variation in flow velocity controlled by molecular conformation instead of a viscosity gradient.

  7. Terahertz ultrathin film thickness sensor below λ/90 based on metamaterial.

    PubMed

    Chen, Meng; Fan, Fei; Shen, Si; Wang, Xianghui; Chang, Shengjiang

    2016-08-10

    The film thickness sensing based on metamaterial is investigated in the terahertz (THz) region. We fabricated the metamaterial sensor, and demonstrated its resonance by using the THz time-domain spectroscopy system. The results show that the resonant dip redshifts as the film thickness increases, which achieves reliable film sensing in the THz band. Its sensitivity is larger than 9.4 GHz/μm with a film thinner than λ/90. Meanwhile, the sensing mechanism is revealed by the simulation of near-field resonance distribution, which shows that the resonant intensity is stronger when the field is closer to the interface between the metamaterial surface and polyvinyl alcohol film. Therefore, the nonlinear type of the sensing sensitivity in our experiment can be well explained, and a higher sensitive sensing can be obtained when the film thickness is smaller. This simple and flexible method can realize the ultrathin film sensing in the THz region, and has application potential in the real-time monitoring of sample quality. PMID:27534497

  8. Yttrium Iron Garnet Thick Films Formed by the Aerosol Deposition Method for Microwave Inductors

    NASA Astrophysics Data System (ADS)

    Johnson, Scooter; Newman, Harvey; Glaser, E. R.; Cheng, Shu-Fan; Tadjer, Marko; Kub, Fritz; Eddy, Charles, Jr.

    2014-03-01

    We have employed the aerosol deposition method (ADM) to direct-write 40 μm-thick polycrystalline films of yttrium iron garnet (YIG, Y3Fe5O12) at room temperature onto patterned gold inductors on sapphire substrates at a deposition rate of 1-3 μm/min as a first step toward integration into microwave magnetic circuits. A challenge to integrating magnetic films into current semiconductor technology is the high-temperature regime (900-1400°C) at which conventional ferrite preparation takes place. The ability of the ADM to form dense, thick films at room temperature makes this a promising approach for integrated magnetics where low-temperature deposition and thick films are required. The ADM YIG film has an rms roughness of 3-4 μm, is comprised of nano-crystalline grains with a density 50% of the theoretical value. XRD patterns of the as-deposited film and starting powder indicate a polycrystalline single-phase film. In-plane VSM and FMR measurements reveal a saturation of 22 emu/g, coercivity of 27 Oe, and linewidth of 360 Oe. Early measurements of air-filled and YIG-filled gold inductors between 0.01-10 GHz indicate an improved inductance of nearly a factor of 2 at low frequency. At higher frequency, resonance effects diminish this improvement. This work is sponsored by the Office of Naval Research under program number N0001413WX20845 (Dr. Daniel Green, Program Manager).

  9. Layer-by-layer Assembly of Thick, Cu2+-Chelating Films

    PubMed Central

    Wijeratne, Salinda; Bruening, Merlin L.; Baker, Gregory L.

    2013-01-01

    Layer-by-layer adsorption of protonated poly(allylamine) (PAH) and deprotonated poly(N,N-dicarboxymethylallyl amine) (PDCMAA) yields thick films with a high density of iminodiacetic acid (IDA) ligands that bind metal ions. When film deposition occurs at pH 3.0, PAH/PDCMAA bilayer thicknesses reach 200 nm, and Cu2+ binding capacities are ~2.5 mmoles per cm3 of film. (PAH/PDCMAA)10 films deposited at pH 3.0 are 4- to 8-fold thicker than films formed at pH 5.0, 7.0, or 9.0, presumably because of the low charge density on PDCMAA chains at pH 3.0. However, with normalization to film thickness, all films bind similar amounts of Cu2+ from pH 4.1 solutions of CuSO4. In μm-thick films, equilibration of binding sites with Cu2+ requires ~4 h due to a low Cu2+ diffusion coefficient (~2.6×10−12 cm2/sec). Sorption isotherms determined at several temperatures show that Cu2+ binding is endothermic with a positive entropy (binding constants increase with increasing temperature), presumably because metal-ion complexation involves displacement of both a proton from IDA and water molecules from Cu2+. (PAH/PDCMAA)10 films retain their binding capacity over 4 absorption/elution cycles and may prove useful in metal-ion scavenging, catalysis, and protein binding. PMID:24044576

  10. Photoluminescence of SrS:Cu,Ag and SrS 1- xSe x:Cu,Ag thin films

    NASA Astrophysics Data System (ADS)

    Poelman, D.; Wauters, D.; Van Meirhaeghe, R. L.; Cardon, F.

    2000-01-01

    The photoluminescence (PL) of SrS:Cu,Ag and SrS 1- xSe x:Cu,Ag thin films has been investigated. The influence of rapid thermal annealing conditions and Cu dopant concentration on the PL intensity has been studied. The PL emission spectrum was measured as a function of both Cu concentration and temperature. An unexpected PL intensity peak was observed around a temperature of 54 K.

  11. Structuring of DLC:Ag nanocomposite thin films employing plasma chemical etching and ion sputtering

    NASA Astrophysics Data System (ADS)

    Tamulevičius, Tomas; Tamulevičienė, Asta; Virganavičius, Dainius; Vasiliauskas, Andrius; Kopustinskas, Vitoldas; Meškinis, Šarūnas; Tamulevičius, Sigitas

    2014-12-01

    We analyze structuring effects of diamond like carbon based silver nanocomposite (DLC:Ag) thin films by CF4/O2 plasma chemical etching and Ar+ sputtering. DLC:Ag films were deposited employing unbalanced reactive magnetron sputtering of silver target with Ar+ in C2H2 gas atmosphere. Films with different silver content (0.6-12.9 at.%) were analyzed. The films (as deposited and exposed to plasma chemical etching) were characterized employing scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDS), optical microscopy, ultraviolet-visible light (UV-VIS) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. After deposition, the films were plasma chemically etched in CF4/O2 mixture plasma for 2-6 min. It is shown that optical properties of thin films and silver nano particle size distribution can be tailored during deposition changing the magnetron current and C2H2/Ar ratio or during following plasma chemical etching. The plasma etching enabled to reveal the silver filler particle size distribution and to control silver content on the surface that was found to be dependent on Ostwald ripening process of silver nano-clusters. Employing contact lithography and 4 μm period mask in photoresist or aluminum the films were patterned employing CF4/O2 mixture plasma chemical etching, direct Ar+ sputtering or combined etching processes. It is shown that different processing recipes result in different final grating structures. Selective carbon etching in CF4/O2 gas mixture with photoresist mask revealed micrometer range lines of silver nanoparticles, while Ar+ sputtering and combined processing employing aluminum mask resulted in nanocomposite material (DLC:Ag) micropatterns.

  12. The effect of film thickness on the optical absorption edge and optical constants of the Cr(III) organic thin films

    NASA Astrophysics Data System (ADS)

    Yakuphanoglu, F.; Sekerci, M.; Balaban, A.

    2005-05-01

    The effect of film thickness on optical properties of the Cr(III) complex having 2-pyridincarbaldehye thiosemicarbazone thin films was investigated. The analyses of the optical absorption data revealed existence of direct and indirect transitions in the optical band gap. The optical constants (refractive index and dielectric constant) of the thin films were determined. The thickness of the films causes important changes in refractive index and real part-imaginary parts of the dielectric constant. The most significant result of the present study is to indicate that thickness of the film can be used to modify in the optical band gaps and optical constant of the thin films.

  13. Comparative study in annealing effects of Ag/Co/Pt(1 1 1) and Co/Ag/Pt(1 1 1) ultrathin films

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Wu, Y. E.; Shern, C. S.

    2001-06-01

    Low-energy electron diffraction (LEED), Auger electron spectroscopy and depth profile were used to study the growth and annealing effects of mirror systems: Ag/Co/Pt(1 1 1) and Co/Ag/Pt(1 1 1). An anomalous behavior of specular beam intensity of LEED versus temperature was found in the annealing process for Ag/Co/Pt(1 1 1). A dramatic increase of the beam intensity occurs after Co-Pt alloy formation is complete. The exchange between Co and Ag atoms of Co/Ag/Pt(1 1 1) occurs when the annealing temperature is high enough. The Co-Pt alloy develops after the atomic exchange is complete. The chemical compositions at the interfaces of these two ultrathin films were investigated. The mechanisms of the different behaviors of the two systems in the annealing processes are discussed.

  14. The Characteristics of an Antibacterial TiAgN Thin Film Coated by Physical Vapor Deposition Technique.

    PubMed

    Kang, Byeong-Mo; Jeong, Woon-Jo; Park, Gye-Choon; Yoon, Dong-Joo; Ahn, Ho-Geun; Lim, Yeong-Seog

    2015-08-01

    In this work, we found the characteristics of an antibacterial TiAgN thin film coated on the pure titanium specimen via the physical vapor deposition process (PVD). TiAgN thin films were coated using TiAg alloy targets by arc ion plating method. Changing the process parameters, the surface analysis of TiAgN thin film was observed by FE-SEM and the force of adhesion was measured with Scratch Tester. The proliferation of human gingival fibroblast (HGF) cells was examined by XTT test assay and the antibacterial properties were investigated by culturing Streptococus Mutans (KCTC 3065) using paper disk techniques. At the result of experiment, cytotoxic effects were not found and the antibacterial effects against Streptococus Mutans were appeared over 5 wt% TiAgN specimens. PMID:26369190

  15. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging

    PubMed Central

    Zhu, Benpeng; Zhang, Zhiqiang; Ma, Teng; Yang, Xiaofei; Li, Yongxiang; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ∼150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at −6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging. PMID:25991874

  16. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Benpeng; Zhang, Zhiqiang; Ma, Teng; Yang, Xiaofei; Li, Yongxiang; Shung, K. Kirk; Zhou, Qifa

    2015-04-01

    Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ˜150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at -6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging.

  17. Translational Diffusion in Supported Rubberly Polymer Films at Different Layer Thicknesses

    NASA Astrophysics Data System (ADS)

    Pak, Hunkyun; Ellingson, Peter Christopher; Yu, Hyuk

    2002-03-01

    Translational diffusion of an organic dye with C18 hydrocarbon tail (4-octadecylamino-NBD) is examined in thin films of poly(isoprene) and poly(dimethylsiloxane) spincast on substrates. Surface functionalized silicon wafers were used as the substrates. Two kinds of surface functionalized wafers, one with predominantly methyl group and the other with primary amine group, were examined with respect to the diffusion as a function of film thickness over a range of 10-2000 nm. The diffusion coefficient was determined by the technique of fluorescence recovery after photobleaching and the film thickness by ellipsometry. The diffusion coefficient is found to reduce substantially from that in bulk polymers, vary by an order of magnitude over the thickness range, and its dependence is analyzed in terms of a simple model that takes into account of polymer interactions with the functionalized surfaces.

  18. Thickness dependent optical and electrical properties of CdSe thin films

    NASA Astrophysics Data System (ADS)

    Purohit, A.; Chander, S.; Nehra, S. P.; Lal, C.; Dhaka, M. S.

    2016-05-01

    The effect of thickness on the optical and electrical properties of CdSe thin films is investigated in this paper. The films of thickness 445 nm, 631 nm and 810 nm were deposited on glass and ITO coated glass substrates using thermal evaporation technique. The deposited thin films were thermally annealed in air atmosphere at temperature 100°C and were subjected to UV-Vis spectrophotometer and source meter for optical and electrical analysis respectively. The absorption coefficient is observed to increase with photon energy and found maximum in higher photon energy region. The extinction coefficient and refractive index are also calculated. The electrical analysis shows that the electrical resistivity is observed to be decreased with thickness.

  19. Development of BZO Doped YGdBCO Thick Films Using TFA-MOD Process

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Nakahata, K.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.; Kimura, K.; Hasegawa, T.; Kato, T.; Hirayama, T.

    TFA-MOD (Metal Organic Deposition using Trifluoro-acetates) process is of considerable practical concern for future applications since it can fabricate high performance coated conductors (CCs) with low cost. In this study, we developed the process for fabricating thick films in BZO nanoparticle doped Y0.77Gd0.23Ba1.5Cu3Oy (YGdBCO) CCs in order to realize high Ic values under magnetic field. The effect of RTR (Reel To Reel)-dip-coating conditions on microstructure, Jc(-B-θ) properties, etc. was investigated in order to fabricate crack-free thick and high performance films. A BZO doped YGdBCO film with uniform 3.0 μm thickness showed the high in-field Ic and Jc values of 55.6 A/cm-w and 0.18 MA/cm2@77.8K, 3T, respectively.

  20. Micro-Machined High-Frequency (80 MHz) PZT Thick Film Linear Arrays

    PubMed Central

    Zhou, Qifa; Wu, Dawei; Liu, Changgeng; Zhu, Benpeng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the development of a micro-machined high-frequency linear array using PZT piezoelectric thick films. The linear array has 32 elements with an element width of 24 μm and an element length of 4 mm. Array elements were fabricated by deep reactive ion etching of PZT thick films, which were prepared from spin-coating of PZT solgel composite. Detailed fabrication processes, especially PZT thick film etching conditions and a novel transferring-and-etching method, are presented and discussed. Array designs were evaluated by simulation. Experimental measurements show that the array had a center frequency of 80 MHz and a fractional bandwidth (−6 dB) of 60%. An insertion loss of −41 dB and adjacent element crosstalk of −21 dB were found at the center frequency. PMID:20889407

  1. Adsorbed films of three-patch colloids: continuous and discontinuous transitions between thick and thin films.

    PubMed

    Dias, C S; Araújo, N A M; Telo da Gama, M M

    2014-09-01

    We investigate numerically the role of spatial arrangement of the patches on the irreversible adsorption of patchy colloids on a substrate. We consider spherical three-patch colloids and study the dependence of the kinetics on the opening angle between patches. We show that growth is suppressed below and above minimum and maximum opening angles, revealing two absorbing phase transitions between thick and thin film regimes. While the transition at the minimum angle is continuous, in the directed percolation class, that at the maximum angle is clearly discontinuous. For intermediate values of the opening angle, a rough colloidal network in the Kardar-Parisi-Zhang universality class grows indefinitely. The nature of the transitions was analyzed in detail by considering bond flexibility, defined as the dispersion of the angle between the bond and the center of the patch. For the range of flexibilities considered we always observe two phase transitions. However, the range of opening angles where growth is sustained increases with flexibility. At a tricritical flexibility, the discontinuous transition becomes continuous. The practical implications of our findings and the relation to other nonequilibrium transitions are discussed. PMID:25314441

  2. Wavy film flows down an inclined plane: Perturbation theory and general evolution equation for the film thickness

    SciTech Connect

    Frenkel, A.L.; Indireshkumar, K.

    1999-10-01

    Wavy film flow of incompressible Newtonian fluid down an inclined plane is considered. The question is posed as to the parametric conditions under which the description of evolution can be approximately reduced for all time to a single evolution equation for the film thickness. An unconventional perturbation approach yields the most general evolution equation and least restrictive conditions on its validity. The advantages of this equation for analytical and numerical studies of three-dimensional waves in inclined films are pointed out. {copyright} {ital 1999} {ital The American Physical Society}

  3. Growth of NaCl on thin epitaxial KCl films on Ag(100) studied by SPA-LEED

    NASA Astrophysics Data System (ADS)

    Marquardt, Christian; Paulheim, Alexander; Sokolowski, Moritz

    2015-11-01

    We investigated the growth of NaCl on thin (100)-oriented films of KCl by spot profile analysis of low energy electron diffraction (SPA-LEED). The underlying question of this investigation was how the system accommodates to the misfit of - 10% between the NaCl and KCl lattices. The KCl films (3 atomic layers thick) were epitaxially grown on a Ag(100) single crystal. We studied the heteroepitaxial growth of NaCl on KCl at 300 K and at 500 K, respectively. At 300 K, the first NaCl monolayer (ML) grows pseudomorphically on the KCl film. From the second layer onward, the NaCl lattice relaxes. The NaCl multilayers roughen, and a small rotational disorder (± 4°) of the NaCl domains is observed. The roughening results from the formation of multilayer islands of limited lateral size due to the misfit to the pseudomorphic first NaCl layer. At a growth temperature of 500 K, no pseudomorphic NaCl layer forms, instead relaxed multilayer island growth of NaCl is observed from the first layer onward. Similarly to the growth at 300 K, we find NaCl multilayer islands of limited lateral size. For both temperatures, we explain this growth behavior by the misfit that makes the adsorption sites at the island edges of the first relaxed NaCl layer less favorable for larger islands, promoting nucleation of multilayer islands.

  4. Thick film oxidation of copper in an electroplated MEMS process

    NASA Astrophysics Data System (ADS)

    Lazarus, N.; Meyer, C. D.; Bedair, S. S.; Song, X.; Boteler, L. M.; Kierzewski, I. M.

    2013-06-01

    Copper forms a porous oxide, allowing the formation of oxide layers up to tens of microns thick to be created at modest processing temperatures. In this work, the controlled oxidation of copper is employed within an all-metal electroplating process to create electrically insulating, structural posts and beams. This capability could eliminate the additional dielectric deposition and patterning steps that are often needed during the construction of sensors, waveguides, and other microfabricated devices. In this paper, copper oxidation rates for thermal and plasma-assisted growth methods are characterized. Time control of the oxide growth enables larger copper structures to remain conductive while smaller copper posts are fully oxidized. The concept is demonstrated using the controlled oxidation of a copper layer between two nickel layers to fabricate nickel inductors having both copper electrical vias and copper oxide support pillars. Nickel was utilized in this demonstration for its resistance against low temperature oxidation and interdiffusion with copper.

  5. Effect of structure on the electrical resistance of thick films based on doped tin dioxide

    SciTech Connect

    Dyshel', D.E.; Rud', B.M.; Smirnov, V.P.; Smolin, M.D.

    1986-03-01

    The authors prepared thick-film elements according to the standard; the films were 30-35 ..mu..m thick. The paste consisted of powders of the solid solution of the system snO/sup 2/-Sb/sub 2/O/sub 5/ and the content of antimony pentoxide was 7 mass %. It was shown that particles of the conducting phase are practically uniformly distributed in the glass matrix. Films obtained at heat-treatment temperatures not lower than 1090 K had the lowest absolute values of the temperature coefficient of the resistance. Increasing the glass content in the mixture and decreasing the specific surface area of the powder of the conducting phase was found to increase the resistivity of the films.

  6. Fabrication and properties of FePt thick films for alternative local field micromagnet

    SciTech Connect

    Jang, Pyungwoo; Lee, Bonghan; Seomoon, Kyu; Rhie, Kungwon; Choi, Sungwon

    2009-04-01

    Growth of FePt films thicker than several tens of a micrometer was attempted on Fe substrates for the use of micromagnets. Several underlayer or intermediate layers were found to be totally ineffective to success. However, 20 {mu}m thick FePt films on the Fe substrates were successfully grown by sputtering after HF surface treatment. (BH){sub max} of the non-annealed film was about 10.7 MG Oe under a maximum applied field of 10 kOe. An excellent adhesion between the Fe substrate and the FePt thick films seems to be due to both improvement of surface cleanliness and roughening which enhanced the chemical and physical bonding strengths.

  7. Critical detonation thickness in vapor-deposited hexanitroazobenzene (HNAB) films with different preparation conditions

    NASA Astrophysics Data System (ADS)

    Tappan, Alexander; Knepper, Robert; Marquez, Michael; Ball, J.; Miller, Jill

    2013-06-01

    At Sandia National Laboratories, we have coined the term ``microenergetics'' to describe sub-millimeter energetic material studies aimed at gaining knowledge of combustion and detonation behavior at the mesoscale. Films of the high explosive hexanitroazobenzene (HNAB) have been deposited through physical vapor deposition. HNAB deposits in an amorphous state that crystallizes over time and modest heating accelerates this crystallization. HNAB films were prepared under different crystallization temperatures, and characterized with surface profilometry and scanning electron microscopy. The critical detonation thickness for HNAB at different crystallization conditions was determined in a configuration where charge width was large compared to film thickness, and thus side losses did not play a role in detonation propagation. The results of these experiments will be discussed in the context of small sample geometry, deposited film morphology, crystal structure, and density.

  8. Thickness effect on structure and properties of ZAO thin films by RF magnetron sputtering at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Zhu, B. L.; Zhu, S. J.; Wang, J.; Wu, J.; Zeng, D. W.; Xie, C. S.

    2011-07-01

    Al-doped ZnO (ZAO) films, having film thickness of about 50-1200 nm, were deposited at substrate temperature of 100-300 °C by radio-frequency magnetron sputtering. Structural, electrical, and optical properties of as-deposited ZAO films have been studied as a function of film thickness and substrate temperature. The investigation of X-ray diffraction indicates that the crystalline quality of the film improves and its stress relaxes with increasing film thickness or substrate temperature, and preferred (0 0 2) orientation is found at substrate temperature above 100 °C. By the observation under scanning electron microscope, columnar structure can be obviously observed from cross-section of the films with increasing film thickness at substrate temperature above 100 °C; the surface morphology can exhibit nanocrystalline, honeycomb, or hillock structure, depending on film thickness and substrate temperature. Hall effect measurements reveal that the decrease of resistivity of the film is generally accompanied by the increase of carrier concentration and mobility with increasing film thickness or substrate temperature. It is speculated that the main scattering mechanism in as-deposited ZAO films is intercrystallite boundary scattering. The transmission spectra measurements of ZAO films indicate that average transmittance between 400 and 800 nm decreases from about 86% to 70% with increase in film thickness. The obtained energy gap ( Eg) of the films at different substrate temperatures is found in order of 200 °C>300 °C>100 °C, which can be attributed to high carrier concentration and compressive stress at 200 °C, but markedly low carrier concentration at 100 °C. With increase in film thickness, the decrease in compressive stress and/or increase in crystallite size result in the decreased or unchanged tendency of Eg of the films although the carrier concentration increases.

  9. Preparation and Properties of Double-Sided AgNWs/PVC/AgNWs Flexible Transparent Conductive Film by Dip-Coating Process.

    PubMed

    Chen, Cui-Yu; Jing, Mao-Xiang; Pi, Zhi-Chao; Zhu, Sheng-Wen; Shen, Xiang-Qian

    2015-12-01

    The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment. The morphological and structural characteristics were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM), the photoelectric properties and mechanical stability were measured by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer, four-point probe technique, 3M sticky tape test, and cyclic bending test. The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds. At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8. The film treated with the 10 MPa pressure shows excellent adhesion and low surface roughness of 17.8 nm and maintains its conductivity with the sheet resistance change of 17 % over 10,000 cyclic bends. PMID:26245859

  10. Preparation and Properties of Double-Sided AgNWs/PVC/AgNWs Flexible Transparent Conductive Film by Dip-Coating Process

    NASA Astrophysics Data System (ADS)

    Chen, Cui-yu; Jing, Mao-xiang; Pi, Zhi-chao; Zhu, Sheng-wen; Shen, Xiang-qian

    2015-08-01

    The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment. The morphological and structural characteristics were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM), the photoelectric properties and mechanical stability were measured by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer, four-point probe technique, 3M sticky tape test, and cyclic bending test. The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds. At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8. The film treated with the 10 MPa pressure shows excellent adhesion and low surface roughness of 17.8 nm and maintains its conductivity with the sheet resistance change of 17 % over 10,000 cyclic bends.

  11. Electroplated Fe-Pt thick films prepared in plating baths with various pH values

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Furutani, K.; Masaki, T.; Ohgai, T.; Nakano, M.; Fukunaga, H.

    2016-05-01

    Fe-Pt thick-films were electroplated on a Ta substrate using a direct current, and the effect of the pH value of the plating bath on the magnetic properties of the films was evaluated. For the films prepared from the baths with the same bath composition, the Fe composition and the thickness increased with increasing the pH value. In order to remove the effect of the change in the film composition on the magnetic properties, we controlled the film composition at approximately Fe50Pt50 or Fe60Pt40 by the change in the amount of the iron sulfate. The remanence of the annealed Fe60Pt40 films did not depend on the pH value clearly, and showed almost constant value of 0.75 T. We obtained the large coercivity of approximately 460 kA/m in the pH value from 4 to 7. Since the Fe52Pt48 film prepared at pH ≈ 4 shows much higher (BH)max value of 70 kJ/m3 than that of 57 kJ/m3 for our previously-reported Fe50Pt50 film (pH ≈ 2), we concluded that slight higher pH value than not-adjusted one (pH ≈ 2) is effective to increase the coercivity.

  12. Some limitations in applying classical EHD film-thickness formulae to a high-speed bearing

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Zaretsky, E. V.

    1980-01-01

    Elastohydrodynamic film thickness was measured for a 20 mm ball bearing using the capacitance technique. The bearing was thrust loaded to 90, 448, and 778 N. The corresponding maximum stresses on the inner race were 1.28, 2.09, and 2.45 GPa. Test speeds ranged from 400 to 14,000 rpm. Film thickness measurements were taken with four different lubricants: (1) synthetic paraffinic; (2) synthetic paraffinic with additives; (3) neopentylpolyol (tetra) ester; and (4) synthetic cycloaliphatic hydrocarbon traction fluid. The test bearing was mist lubricated. Test temperatures were 300, 338, and 393 K. The measured results were compared to theoretical predictions and are presented.

  13. Effects of supply conditions on film thickness in lubricated Hertzian contacts

    NASA Technical Reports Server (NTRS)

    Dalmaz, G.; Godet, M.

    1980-01-01

    A generalization of the hydrodynamic expression for Hertzian contacts is described and various methods for calculating the thickness of the oil film winter steady-state, isothermal conditions are given. This is important for engineering applications such as gears and bearings because these results are closer to real operating conditions. Theories of lubrication are discussed, and the mathematics involved are presented using approximately 30 equations and 13 figures. For lubricated, linear, elliptical or point Hertzian contacts it is demonstrated how to calculate the thickness of the oil film at the center of the contact for steady-state isothermal conditions.

  14. Gauge factor enhancement driven by heterogeneity in thick-film resistors

    SciTech Connect

    Grimaldi, C.; Ryser, P.; Strassler, S.

    2001-07-01

    We present a simple picture of the gauge factor (GF) enhancement in highly heterogeneous materials such as thick-film resistors. We show that when the conducting phase is stiffer than the insulating one, the local strains within the latter are enhanced with respect to the averaged macroscopic strain. Within a simple model of electron tunneling processes, we show that the enhanced local strain leads to values of GF higher than those expected for a homogeneous system. Moreover, we provide formulas relating the enhancement of GF to the elastic and microstructural characteristics of thick-film resistors. {copyright} 2001 American Institute of Physics.

  15. Evaluation of the EHL Film Thickness and Extreme Pressure Additives on Gear Surface Fatigue Life

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Shimski, John

    1994-01-01

    Surface pitting fatigue life tests were conducted with seven lubricants, using AISI 9310 spur gears. The test lubricants can be classified as synthetic polyol-esters with various viscosities and additive packages. The lubricant with a viscosity that provided a specific film thickness greater than one and with an additive package produced gear surface fatigue lives that were 8.6 times that for lubricants with a viscosity that provided specific film thickness less than one. Lubricants with the same viscosity and similar additive packages gave equivalent gear surface fatigue lives.

  16. Real-time holographic gratings modulate with voltage by different thickness film

    NASA Astrophysics Data System (ADS)

    Fontanilla-Urdaneta, Rosangela C.; Olivares-Pérez, Arturo; Fuentes-Tapia, Israel

    2011-04-01

    The holographic gratings on photopolymer films are studied by three different thicknesses for samples A, B, and C. The photopolymer emulsion is prepared with potassium dichromate and nickel (II) chloride hexahydrate in polyvinyl alcohol matrix. The evolution of diffraction efficiency is evaluated during holographic recording with and without voltage as a function of energy exposure by changing the thickness. The curves of diffraction efficiency reach a peak when the films are continuously exposed to energy for a period of time. Sample B obtains the highest diffraction efficiency

  17. Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Pan, R.; Jeffries, J. B.; Dreier, T.; Schulz, C.

    2016-01-01

    A multi-wavelength near-infrared (NIR) diode laser absorption sensor has been developed and demonstrated for real-time monitoring of the thickness, solute concentration, and temperature of thin films of urea-water solutions. The sensor monitors the transmittance of three near-infrared diode lasers through the thin liquid film. Film thickness, urea mass fraction, and liquid temperature were determined from measured transmittance ratios of suitable combinations of lasers. Available laser wavelengths were selected depending on the variation of the NIR absorption spectrum of the solution with temperature and solute concentration. The spectral database was measured by a Fourier transform infrared spectrometer in the range 5500-8000 cm-1 for urea solutions between 5 and 40 wt% and temperatures between 298 and 338 K. A prototype sensor was constructed, and the sensor concept was first validated with measurements using a calibration cell providing liquid layers of variable thickness (200-1500 µm), urea mass fraction (5-40 wt%) and temperature (298-318 K). Temporal variations of film thickness and urea concentration were captured during the constant-temperature evaporation of a liquid film deposited on an optically polished heated quartz flat.

  18. Thick adherent dielectric films on plastic substrates and method for depositing same

    DOEpatents

    Wickboldt, Paul; Ellingboe, Albert R.; Theiss, Steven D.; Smith, Patrick M.

    2002-01-01

    Thick adherent dielectric films deposited on plastic substrates for use as a thermal barrier layer to protect the plastic substrates from high temperatures which, for example, occur during laser annealing of layers subsequently deposited on the dielectric films. It is desirable that the barrier layer has properties including: a thickness of 1 .mu.m or greater, adheres to a plastic substrate, does not lift-off when cycled in temperature, has few or no cracks and does not crack when subjected to bending, resistant to lift-off when submersed in fluids, electrically insulating and preferably transparent. The thick barrier layer may be composed, for example, of a variety of dielectrics and certain metal oxides, and may be deposited on a variety of plastic substrates by various known deposition techniques. The key to the method of forming the thick barrier layer on the plastic substrate is maintaining the substrate cool during deposition of the barrier layer. Cooling of the substrate maybe accomplished by the use of a cooling chuck on which the plastic substrate is positioned, and by directing cooling gas, such as He, Ar and N.sub.2, between the plastic substrate and the cooling chucks. Thick adherent dielectric films up to about 5 .mu.m have been deposited on plastic substrates which include the above-referenced properties, and which enable the plastic substrates to withstand laser processing temperatures applied to materials deposited on the dielectric films.

  19. Particle-Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy.

    PubMed

    Lee, Jiwon; Zhang, Qianpeng; Park, Seungyoung; Choe, Ayoung; Fan, Zhiyong; Ko, Hyunhyub

    2016-01-13

    Plasmonic systems based on particle-film plasmonic couplings have recently attracted great attention because of the significantly enhanced electric field at the particle-film gaps. Here, we introduce a hybrid plasmonic architecture utilizing combined plasmonic effects of particle-film gap plasmons and silver film over nanosphere (AgFON) substrates. When gold nanoparticles (AuNPs) are assembled on AgFON substrates with controllable particle-film gap distances, the AuNP-AgFON system supports multiple plasmonic couplings from interparticle, particle-film, and crevice gaps, resulting in a huge surface-enhanced Raman spectroscopy (SERS) effect. We show that the periodicity of AgFON substrates and the particle-film gaps greatly affects the surface plasmon resonances, and thus, the SERS effects due to the interplay between multiple plasmonic couplings. The optimally designed AuNP-AgFON substrate shows a SERS enhancement of 233 times compared to the bare AgFON substrate. The ultrasensitive SERS sensing capability is also demonstrated by detecting glutathione, a neurochemical molecule that is an important antioxidant, down to the 10 pM level. PMID:26684078

  20. Measurement of thickness of thin water film in two-phase flow by capacitance method

    SciTech Connect

    Sun, R.K.; Kolbe, W.F.; Leskovar, B.; Turko, B.

    1981-09-01

    A technique has been developed for measuring water film thickness in a two-phase annular flow system by the capacitance method. An experimental model of the flow system with two types of electrodes mounted on the inner wall of a cylindrical tube has been constructed and evaluated. The apparatus and its ability to observe fluctuations and wave motions of the water film passing over the electrodes is described in some detail.

  1. Hybridization Schemes for Ag Films on V(1 0 0)

    SciTech Connect

    Kralj,M.

    2005-01-01

    The electronic structure of ultra thin silver films deposited on a V(1 0 0) substrate is investigated by means of angle resolved photoemission spectroscopy. We focus on the details of the electronic structure related to the hybridization between the quantized film states of s-p origin and substrate electronic states. Two distinct regions of the surface Brillouin zone (SBZ) are found to be of particular importance: the SBZ center and the region that is typically more than 0.2 Angstroms {sup -1} outside the zone center. In relation to these SBZ parts two different hybridization schemes are identified and discussed. The first one influences the parabolic curvature of the quantum well state dispersion in the proximity of SBZ center, i.e., the effective mass. The second one relates to prominent changes of the quantum well state dispersion due to the interaction with the particular substrate bulk band and dramatically affects the photoemission intensity.

  2. Hybridization schemes for Ag films on V(1 0 0)

    NASA Astrophysics Data System (ADS)

    Kralj, Marko

    2005-12-01

    The electronic structure of ultra thin silver films deposited on a V(1 0 0) substrate is investigated by means of angle resolved photoemission spectroscopy. We focus on the details of the electronic structure related to the hybridization between the quantized film states of s-p origin and substrate electronic states. Two distinct regions of the surface Brillouin zone (SBZ) are found to be of particular importance: the SBZ center and the region that is typically more than 0.2 Å -1 outside the zone center. In relation to these SBZ parts two different hybridization schemes are identified and discussed. The first one influences the parabolic curvature of the quantum well state dispersion in the proximity of SBZ center, i.e., the effective mass. The second one relates to prominent changes of the quantum well state dispersion due to the interaction with the particular substrate bulk band and dramatically affects the photoemission intensity.

  3. Simple and precise measurement of the complex refractive index and thickness for thin films

    NASA Astrophysics Data System (ADS)

    Peng, Yu; Li, Wei

    2014-07-01

    We demonstrate applications of a novel scheme which is used for measuring refractive index and thickness of thin film by analyzing the relative phase difference and reflected ratio at reflection point of a monolithic folded Fabry-Perot cavity (MFC). The complex refractive index and the thickness are calculated according to the Fresnel formula. Results show that the proposed method has an improvement in accuracy with simple and clear operating process compared with the conventional Ellipsometry.

  4. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    NASA Astrophysics Data System (ADS)

    Lu, Renguo; Zhang, Hedong; Komada, Suguru; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2014-11-01

    For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave-convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant film even showed a larger water contact angle and lower friction and depletion than the full UV-irradiated film. These indicate that UV-patterning of nanometer-thick lubricant films with a minimized linewidth has a better surface functionalization effect than full UV irradiation. Enhancement of the surface functionalization effect may be attributed to a

  5. Design, Development, and Applications of Image Scanning Ellipsometry for the Measurement of Thin Film Thickness Profiles.

    NASA Astrophysics Data System (ADS)

    Liu, An-Hong

    A novel technique, Image Scanning Ellipsometry, to measure the two dimensional thickness profile of a non -uniform, thin film, from several nm up to several mum, in the transient state as well as in the steady state was developed and tested in this thesis. Image Scanning Ellipsometry (ISE) is a full-field imaging technique which can study every point on the surface at the same time with high spatial resolution and thickness sensitivity; i.e., it can measure and map a liquid or solid film thickness profile in two dimensions. The long-term objective of the development of ISE is to determine the stability and heat transfer characteristics of evaporating thin films. The main purpose of this thesis was to develop the basic concept of ISE and demonstrate its use by measuring the thickness profiles of non-uniform solid films in a steady state as well as the profile of draining liquid films of wetting and partially wetting fluids in a transient state. In this thesis, ISE has been proven to be as accurate as a null ellipsometer by measuring a known solid wedge profile of ThF_4 on a Si substrate. In addition, the ability of ISE to measure liquid draining films such as FC-5311, FC-77, and FC-70 in a transient state was demonstrated. Moreover, ISE was also used to measure a partially wetting, draining film of dodecane, and to record the details of film rupture. The approximate solutions of a modeling equation for the thickness profile during draining was compared to the experimental profile. The agreement between theory and experiment is quite good. The theoretical profiles agree with the experimental profiles in both the thicker hydrodynamic region and in the thin film region which is under 100 nm. However, because the current limited magnification of the ISE hinders the exact location of a null point and the allocation of the exact position of the dark fringes is limited by the ability to accurately digitize and analyze the images, discrepancies between the modeling and the

  6. Effect of starvation on film thickness and traction under elastohydrodynamic rolling and sliding conditions

    NASA Technical Reports Server (NTRS)

    Wedeven, L. D.

    1975-01-01

    Traction measurements under starved elastohydrodynamic conditions were obtained for a point-contact geometry. Simultaneous measurements of the film thickness and the location of the inlet lubricant boundary were made. Optical interferometry was used to measure film thickness. The thickness of a starved film for combined rolling and sliding conditions varies with the location of the inlet boundary in the same way as previously found for pure rolling conditions. When the fluid velocity distribution is calculated in the inlet region by a Reynolds lubrication analysis, backflow is seen to occur over a portion of the inlet region. Backflow is essential for the establishment of a flooded condition. The location of certain fluid velocity conditions within the inlet region, as suggested in the literature, does not adequately describe the onset of starvation. For the same slide-roll ratio a starved film was observed to possess greater traction than a flooded film. Traction measurements under starved conditions were also compared with those under flooded conditions for equivalent shear rates in the Hertzian region. When the shear rates within the Hertzian region were low and the film was severely starved, the measured tractions were lower than expected. This may be due to large shear stresses developed by the large pressure gradients that are generated in the inlet region when it is severely starved.

  7. Thickness-Dependent Coherent Phonon Frequency in Ultrathin FeSe/SrTiO₃ Films.

    PubMed

    Yang, Shuolong; Sobota, Jonathan A; Leuenberger, Dominik; Kemper, Alexander F; Lee, James J; Schmitt, Felix T; Li, Wei; Moore, Rob G; Kirchmann, Patrick S; Shen, Zhi-Xun

    2015-06-10

    Ultrathin FeSe films grown on SrTiO3 substrates are a recent milestone in atomic material engineering due to their important role in understanding unconventional superconductivity in Fe-based materials. By using femtosecond time- and angle-resolved photoelectron spectroscopy, we study phonon frequencies in ultrathin FeSe/SrTiO3 films grown by molecular beam epitaxy. After optical excitation, we observe periodic modulations of the photoelectron spectrum as a function of pump-probe delay for 1-unit-cell, 3-unit-cell, and 60-unit-cell thick FeSe films. The frequencies of the coherent intensity oscillations increase from 5.00 ± 0.02 to 5.25 ± 0.02 THz with increasing film thickness. By comparing with previous works, we attribute this mode to the Se A1g phonon. The dominant mechanism for the phonon softening in 1-unit-cell thick FeSe films is a substrate-induced lattice strain. Our results demonstrate an abrupt phonon renormalization due to a lattice mismatch between the ultrathin film and the substrate. PMID:26027951

  8. Influence of Thickness on the Electrical Transport Properties of Exfoliated Bi2Te3 Ultrathin Films.

    PubMed

    Mo, D L; Wang, W B; Cai, Q

    2016-12-01

    In this work, the mechanical exfoliation method has been utilized to fabricate Bi2Te3 ultrathin films. The thickness of the ultrathin films is revealed to be several tens of nanometers. Weak antilocalization effects and Shubnikov de Haas oscillations have been observed in the magneto-transport measurements on individual films with different thickness, and the two-dimensional surface conduction plays a dominant role. The Fermi level is found to be 81 meV above the Dirac point, and the carrier mobility can reach ~6030 cm(2)/(Vs) for the 10-nm film. When the film thickness decreases from 30 to 10 nm, the Fermi level will move 8 meV far from the bulk valence band. The coefficient α in the Hikami-Larkin-Nagaoka equation is shown to be ~0.5, manifesting that only the bottom surface of the Bi2Te3 ultrathin films takes part in transport conductions. These will pave the way for understanding thoroughly the surface transport properties of topological insulators. PMID:27484860

  9. Influence of Thickness on the Electrical Transport Properties of Exfoliated Bi2Te3 Ultrathin Films

    NASA Astrophysics Data System (ADS)

    Mo, D. L.; Wang, W. B.; Cai, Q.

    2016-08-01

    In this work, the mechanical exfoliation method has been utilized to fabricate Bi2Te3 ultrathin films. The thickness of the ultrathin films is revealed to be several tens of nanometers. Weak antilocalization effects and Shubnikov de Haas oscillations have been observed in the magneto-transport measurements on individual films with different thickness, and the two-dimensional surface conduction plays a dominant role. The Fermi level is found to be 81 meV above the Dirac point, and the carrier mobility can reach ~6030 cm2/(Vs) for the 10-nm film. When the film thickness decreases from 30 to 10 nm, the Fermi level will move 8 meV far from the bulk valence band. The coefficient α in the Hikami-Larkin-Nagaoka equation is shown to be ~0.5, manifesting that only the bottom surface of the Bi2Te3 ultrathin films takes part in transport conductions. These will pave the way for understanding thoroughly the surface transport properties of topological insulators.

  10. Thickness effect on the structural and electrical properties of poly-SiGe films

    SciTech Connect

    Asafa, T.B.; Witvrouw, A.; Schneider, D.; Moussa, A.; Tabet, N.; Said, S.A.M.

    2014-01-01

    Graphical abstract: - Highlights: • Stress and Young's modulus of poly-SiGe film are linked to the grain columnar structure. • The above properties remain unchanged for poly-SiGe films thicker than 40 nm. • The point of transition is close to the electron mean free path for SiGe. • Both the resistivity and Hall mobility follow a similar trend. - Abstract: As lateral dimensions of electromechanical devices are scaled down to length scales comparable to electron mean free paths, the influence of thickness effect on their properties becomes sine qua non. This paper presents a detailed study of thickness effect on the Young's modulus, residual stress, resistivity and Hall mobility of ultrathin poly-Si{sub 11}Ge{sub 89} films deposited by low pressure chemical vapour deposition. The Young's moduli for the films thicker than ∼40 nm are close to the bulk value (135 GPa) while those of the thinner films are much lower. The reduction in resistivity and subsequent improved Hall mobility as thickness increases are discussed in light of surface morphology which is evident from atomic microscopy images. The near constant values of Young's modulus, resistivity and Hall mobility for the films thicker than ∼40 nm are attributed to the columnar grain structure as confirmed by the transmission electron microscopy images.

  11. Image processing techniques for measuring non-uniform film thickness profiles

    SciTech Connect

    Nitta, S.V.; Liu, An-Hong; Plawsky, J.L.; Wayner, P.C. Jr.

    1996-12-31

    The long term objective of this research program is to determine the fluid flow and drying characteristics of thin liquid/solid films using image processing techniques such as Image Analyzing Interferometry (IAI) and Image Scanning Ellipsometry (ISE). The primary purpose of this paper is to present experimental data on the effectiveness of IAI and ISE to measure nonuniform film thickness profiles. Steady-state, non-isothermal profiles of evaporating films were measured using IAI. Transient thickness profiles of a draining film were measured using ISE. The two techniques are then compared and contrasted. The ISE can be used to measure transient as well as steady-state profiles of films with thickness ranging from 1 nm to > 20 {mu}m, whereas IAI can be used to directly measure Steady-state and transient profiles of only films thicker than about 100 nm. An evaluation of the reflected intensity can be used to extend the use of the IAI below 100 nm.

  12. Percolation effect in thick film superconductors: Using a Bi(Pb)SrCaCuO based paste to prepare a superconducting planar transformer

    NASA Technical Reports Server (NTRS)

    Sali, Robert; Harsanyi, Gabor

    1995-01-01

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to the T(sub c) and advantageous current density properties the base of the past was chosen to be of Bi(Pb)SrCaCu) system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density -at the boiling temperature of the liquid He- was between 200 - 300 A/sq cm. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency ans the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  13. Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film

    SciTech Connect

    Singh, Vijender; Aghamkar, Praveen

    2014-03-17

    We obtain a large third-order optical nonlinearity (χ{sup (3)} ≈ 10{sup −10}esu) of silver nanoparticles dispersed in polyvinyl alcohol/tetraethyl orthosilicate matrix using single beam z-scan technique at 532 nm by Q-switched Nd:YAG laser. We have shown that mechanisms responsible for third-order optical nonlinearity of Ag nanocomposite film are reverse saturable absorption (RSA) and self-defocusing in the purlieu of surface plasmon resonance (SPR). Optical band-gap and width of SPR band of Ag nanocomposite film decrease with increasing silver concentration, which leads to enhancement of local electric field and hence third-order optical nonlinearity. Optical limiting, due to RSA has also been demonstrated at 532 nm.

  14. Enhanced thermal stability under DC electrical conductivity retention and visible light activity of Ag/TiO₂@polyaniline nanocomposite film.

    PubMed

    Ansari, Mohd Omaish; Khan, Mohammad Mansoob; Ansari, Sajid Ali; Raju, Kati; Lee, Jintae; Cho, Moo Hwan

    2014-06-11

    The development of organic-inorganic photoactive materials has resulted in significant advancements in heterogeneous visible light photocatalysis. This paper reports the synthesis of visible light-active Ag/TiO2@Pani nanocomposite film via a simple biogenic-chemical route. Electrically conducting Ag/TiO2@Pani nanocomposites were prepared by incorporating Ag/TiO2 in N-methyl-2-pyrrolidone solution of polyaniline (Pani), followed by the preparation of Ag/TiO2@Pani nanocomposite film using solution casting technique. The synthesized Ag/TiO2@Pani nanocomposite was confirmed by UV-visible spectroscopy, photoluminescence spectroscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The Ag/TiO2@Pani nanocomposite film showed superior activity towards the photodegradation of methylene blue under visible light compared to Pani film, even after repeated use. Studies on the thermoelectrical behavior by DC electrical conductivity retention under cyclic aging techniques showed that the Ag/TiO2@Pani nanocomposite film possessed a high combination of electrical conductivity and thermal stability. Because of its better thermoelectric performance and photodegradation properties, such materials might be a suitable advancement in the field of smart materials in near future. PMID:24836114

  15. Room temperature synthesis and optical studies on Ag and Au mixed nanocomposite polyvinylpyrrolidone polymer films

    NASA Astrophysics Data System (ADS)

    Udayabhaskar, R.; Mangalaraja, R. V.; Manikandan, D.; Arjunan, V.; Karthikeyan, B.

    2012-12-01

    Optical properties of silver, gold and bimetallic (Au:Ag) nanocomposite polymer films which are prepared by chemical method have been reported. The experimental data was correlated with the theoretical calculations using Mie theory. We adopt small change in the theoretical calculations of bimetallic/mixed particle nanocomposite and the theory agrees well with the experimental data. Polyvinylpyrrolidone (PVP) was used as reducing and capping agent. Fourier transform infrared spectroscopy (FTIR) study reveals the presence of different functional groups, the possible mechanism that leads to the formation of nanoparticles by using PVP alone as reducing agent. Optical absorption spectra of Ag and Au nanocomposite polymers show a surface plasmon resonance (SPR) band around 430 and 532 nm, respectively. Thermal annealing effect on the prepared samples at 60 °C for different time durations result in shift of SPR band maximum and varies the full width at half maximum (FWHM). Absorption spectra of Au:Ag bimetallic films show bands at 412 and 547 nm confirms the presence of Ag and Au nanoparticles in the composite.

  16. 500 V/200 A fault current limiter modules made of large-area MOD-YBa2Cu3O7 thin films with high-resistivity Au-Ag alloy shunt layers

    NASA Astrophysics Data System (ADS)

    Yamasaki, H.; Arai, K.; Kaiho, K.; Nakagawa, Y.; Sohma, M.; Kondo, W.; Yamaguchi, I.; Matsui, H.; Kumagai, T.; Natori, N.; Higuchi, N.

    2009-12-01

    We developed 500 Vrms/ 200 Arms superconducting thin-film fault current limiter (FCL) modules that can withstand high electric fields (E>30 Vrms cm-1) by using large-area YBa2Cu3O7 (YBCO) thin films with high-resistivity Au-Ag alloy shunt layers. Au-Ag alloy films about 60 nm thick were sputter-deposited on YBCO/CeO2/sapphire films (2.7 cm × 20 cm) prepared using a fluorine-free MOD method. Each 20 cm long Au-Ag/YBCO film was then divided into three segments (each ~5.7 cm long) by four Ag electrodes deposited on the Au-Ag layer, resulting in an effective length of 17 cm. The 500 V/200 A FCL modules were then fabricated by first connecting two of the segmented films in parallel using Ag-sheathed Bi-2223 superconducting tapes and then connecting in parallel an external resistor and a capacitor for each segment to protect the Au-Ag/YBCO film from hot spots. Switching tests using a short-circuit generator revealed that all the modules carried a superconducting ac current of >=237 Arms and that modules prepared with YBCO films having a relatively homogeneous critical current Ic distribution successfully withstood >=515 Vrms for five cycles without any damage. These results demonstrate that (a) the FCL modules fabricated here successfully achieved the rated current of 200 Arms and rated voltage of 500 Vrms and (b) total area of the YBCO films on sapphire substrates required for the 500 V/200 A (100 kV A) module was less than one-third that for conventional thin-film FCL modules that use gold shunt layers, leading to the significantly reduced cost of thin-film FCLs. Film damage due to hot spots depended on the difference in Ic between the two parallel-connected films and on the inhomogeneity of the Ic distribution in the film, and is most probably due to nonlinear current flows at the moment of quenching that cause local overheating.

  17. In situ method for real time measurement of dielectric film thickness in plasmas

    SciTech Connect

    Jang, Sung-Ho; Kim, Gun-Ho; Chung, Chin-Wook

    2010-01-15

    An in situ thickness measurement method of dielectric films (dual frequency method) was developed, and the thicknesses were measured in an inductively coupled plasma. This method uses a small ac bias voltage with two frequencies for thickness measurement. The dielectric thickness is obtained from measuring the amplitudes of the two frequency ac currents through a sensor, as well as using an equivalent circuit model describing impedance of the dielectric film and the plasma sheath. In the experiment, the thicknesses of Al{sub 2}O{sub 3} film could be accurately measured in real time. To check the measurement reliability, the dual frequency method was compared with reflection spectrophotometry as a technique for optical thickness diagnostics. It was found that the dual frequency method agrees closely with reflection spectrophotometry at various rf powers and pressures. In addition, this method is very simple and can be installed anywhere in plasma reactors, in contrast with optical methods; therefore, it is expected to be applied to in situ surface diagnostics for various processing plasmas.

  18. BAF(2) POST-DEPOSITION REACTION PROCESS FOR THICK YBCO FILMS.

    SciTech Connect

    SUENAGA,M.; SOLOVYOV,V.F.; WU,L.; WIESMANN,H.J.; ZHU,Y.

    2001-07-12

    The basic processes of the so-called BaF{sub 2} process for the formation of YBa{sub 2}Cu{sub 3}O{sub 7}, YBCO, films as well as its advantages over the in situ formation processes are discussed in the previous chapter. The process and the properties of YBCO films by this process were also nicely described in earlier articles by R. Feenstra, et al. Here, we will discuss two pertinent subjects related to fabrication of technologically viable YBCO conductors using this process. These are (1) the growth of thick (>> 1 {micro}m) c-axis-oriented YBCO films and (2) their growth rates. Before the detail discussions of these subjects are given, we first briefly discuss what geometrical structure a YBCO-coated conductor should be. Then, we will provide examples of simple arguments for how thick the YBCO films and how fast their growth rates need to be. Then, the discussions in the following two sections are devoted to: (1) the present understanding of the nucleation and the growth process for YBCO, and why it is so difficult to grow thick c-axis-oriented films (> 3 {micro}m), and (2) our present understanding of the YBCO growth-limiting mechanism and methods to increase the growth rates. The values of critical-current densities J{sub c} in these films are of primary importance for the applications,. and the above two subjects are intimately related to the control of J{sub c} of the films. In general, the lower the temperatures of the YBCO formation are the higher the values of J{sub c} of the films. Thus, the present discussion is limited to those films which are reacted at {approx}735 C. This is the lowest temperature at which c-axis-oriented YBCO films (1-3 {micro}m thick) are comfortably grown. It is also well known that the non-c-axis oriented YBCO platelets are extremely detrimental to the values of J{sub c} such that their effects on J{sub c} dwarf essentially all of other microstructural effects which control J{sub c}. Hence, the discussion given below is mainly

  19. Phase-field simulations of thickness-dependent domain stability in PbTiO3 thin films

    SciTech Connect

    Sheng, Guang; Hu, Jia-Mian; Zhang, Jinxian; Li, Yulan; Liu, Z. K.; Chen, Long-Qing

    2012-05-06

    Phase-field approach is used to predict the thickness effect on the domain stability in ferroelectric thin films. The strain relaxation mechanism and critical thickness for dislocation formation from both Matthews-Blakeslee (MB) and People-Bean (PB) models are employed. Thickness - strain domain stability diagrams are obtained for PbTiO3 thin films under different strain relaxation models. The relative domain fractions as a function of film thickness are also calculated and compared with experiment measurements in PbTiO3 thin films grown on SrTiO3 and KTaO3 substrates.

  20. Deposition of adherent Ag-Ti duplex films on ceramics in a multiple-cathode sputter deposition system

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.

    1992-01-01

    The adhesion of Ag films deposited on oxide ceramics can be increased by first depositing intermediate films of active metals such as Ti. Such duplex coatings can be fabricated in a widely used three target sputter deposition system. It is shown here that the beneficial effect of the intermediate Ti film can be defeated by commonly used in situ target and substrate sputter cleaning procedures which result in Ag under the Ti. Auger electron spectroscopy and wear testing of the coatings are used to develop a cleaning strategy resulting in an adherent film system.

  1. Comparative study on the thickness-dependent properties of ITO and GZO thin films grown on glass and PET substrates

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Park, J.-K.; Baik, Y. J.; Kim, W. M.; Jeong, J.; Seong, T.-Y.

    2012-11-01

    The thickness-dependent properties of amorphous Sn-doped In2O3 (ITO) and polycrystalline Ga-doped ZnO (GZO) films grown on polyethylene terephthalate (PET) with a polymeric hard coating were compared with those deposited on Corning glass. The film thickness varied from 20 to 1310 nm. The electrical properties of the ITO films on PET were almost similar to those of the ITO films on glass. On the other hand, GZO films showed slightly poorer electrical properties when deposited on PET, but the difference was marginal. The electrical properties of amorphous ITO films were independent of film thickness, but polycrystalline GZO films exhibited monotonicallyimproving behavior with increasing thickness, mainly due to enhanced crystallinity and increased grain size with increasing film thickness. Although the air-referenced transmittance spectra of films on PET were about 2-3% lower than those on glass due to the lower transmittance of PET, the substrate-referenced optical transmittances of films on PET were higher than those on glass, reflecting the somewhat coarse structure of films on PET. Both the ITO and the GZO films on PET with a polymeric hard coating were shown to yield properties comparable to those oof both films on glass.

  2. Development of X-Shape Filtered Arc Deposition Apparatus for Thick ta-C Film Coating

    NASA Astrophysics Data System (ADS)

    Hikokasa, Hiroki; Iwasaki, Yasuhiro; Takikawa, Hirofumi; Sakakibara, Tateki; Hasegawa, Hiroshi; Tsuji, Nobuhiro

    Novel X-shape filtered arc deposition (X-FAD) apparatus is specially designed and newly developed for thick hydrogen-free tetrahedral amorphous-carbon (ta-C) film coating on superhard alloy (or cemented carbide) substrate. The apparatus has a graphite cathode for deposition of hydrogen-free diamond-like carbon (DLC; ta-C and amorphous carbon: a-C) film and a chromium (Cr) cathode for deposition of Cr layer. The filter duct shapes a composed form of a T-shape filter (T-FAD) for DLC film and a crank-shape filter (Crank FAD) for Cr film. Both carbon plasma beam and Cr plasma beam finally pass through a common plasma duct and scanner part, and go forward to the substrate. It is known that the adhesion of ta-C film to the superhard alloy is not good and the employment of binding interlayer between ta-C film and superhard alloy is one of the solutions. In this paper, using X-FAD, thick ta-C film was prepared on the superhard alloy. Principal results were as follows. (1) Crank FAD remarkably worked to prepare droplet-free Cr film. (2) Cr single layer did not work as appropriate biding interlayer between superhard alloy and ta-C. (3) Multi interlayer composed of Cr, a-C, and functionally graded DLC (a-C to ta-C), worked as a good biding interlayer for ta-C film on superhard alloy with thickness of more than 1 μm.

  3. Evolution of pentacene films on Ag(1 1 1): Growth beyond the first monolayer

    NASA Astrophysics Data System (ADS)

    Käfer, Daniel; Witte, Gregor

    2007-07-01

    The formation and structure of pentacene films upon molecular beam deposition at room temperature onto a Ag(1 1 1) surface have been studied by means of SEM, XRD, TDS and NEXAFS. It is shown that multilayer films actually consist of separate crystalline islands revealing a bulk structure reported before by Siegrist et al. [T. Siegrist, C. Kloc, J.H. Schon, B. Batlogg, R.C. Haddon, S. Berg, G.A. Thomas, Angew. Chem. Int. Ed. 40 (2001) 1732]. Distinctly different π ∗-resonances were observed in the C1s NEXAFS spectra of pentacene for the first monolayer and the crystalline films reflecting differences in the electronic coupling and the molecular orientation. Moreover, such characteristic π ∗-signatures were used to monitor in situ the film evolution upon deposition indicating an immediate formation of crystalline islands on top of a chemisorbed wetting layer.

  4. Preparation and ion conductivity of composite films AgI-ZnO

    NASA Astrophysics Data System (ADS)

    Fateev, Sergey S.; Tveryanovich, Yu S.; Tomaev, V. V.; Fokina, Svetlana V.

    2015-05-01

    It has been proven that with laser deposition silver iodide retains its chemical composition and structure. A film has been produced with the help of laser deposition, consisting of finely divided crystals of ZnO and AgI. Its structure has been reviewed using X-Ray phase analysis, and its electric conductivity has been reviewed using impedance measurement. Special attention has been given to the effect of phase interaction on ion transport.

  5. Surface electronic structure of polar NiO thin film grown on Ag(111)

    NASA Astrophysics Data System (ADS)

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-01

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  6. Electrical and photoconductivity studies on AgSbSe2 thin films

    NASA Astrophysics Data System (ADS)

    Namitha Asokan, T.; Urmila, K. S.; Pradeep, B.

    2015-02-01

    Silver antimony selenide thin films have been deposited on ultrasonically cleaned glass substrate at a vacuum of 10-5 torr using reactive evaporation technique. The preparative parameters like substrate temperature and incident fluxes have been properly controlled in order to get highly reproducible compound films. The polycrystalline nature of the sample is confirmed using XRD. The dependence of the electrical conductivity on the temperature has also been studied. The prepared AgSbSe2 samples show p-type conductivity. The samples show a little photoresponse.

  7. Surface electronic structure of polar NiO thin film grown on Ag(111)

    SciTech Connect

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-24

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  8. Growth of ultrathin ZrO2 films on Si (100): Film-thickness-dependent band alignment

    NASA Astrophysics Data System (ADS)

    Sandell, A.; Karlsson, P. G.; Richter, J. H.; Blomquist, J.; Uvdal, P.; Grehk, T. M.

    2006-03-01

    The band alignment of ultrathin ZrO2 films of different thickness formed on Si (100) have been monitored with synchrotron radiation photoelectron spectroscopy and x-ray absorption spectroscopy. The films were deposited sequentially by way of metal-organic chemical-vapor deposition in ultrahigh vacuum. A significant decrease in the conduction band offset is found for increasing film thickness. It is accompanied by a corresponding increase of the valence band offset. The variations originate in the formation of an interfacial layer characterized by a lower degree of Zr-O interaction than in bulk ZrO2 but with no clear evidence for partially occupied Zr4d dangling bonds.

  9. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  10. Third-order optical nonlinearity studies of bilayer Au/Ag metallic films

    NASA Astrophysics Data System (ADS)

    Mezher, M. H.; Chong, W. Y.; Zakaria, R.

    2016-05-01

    This paper presents nonlinear optical studies of bilayer metallic films of gold (Au) and silver (Ag) on glass substrate prepared using electron beam evaporation. The preparation of Au and Ag nanoparticles (NPs) on the substrate involved the use of electron beam deposition, then thermal annealing at 600 °C and 270 °C, respectively, to produce a randomly distributed layer of Au and a layer of Ag NPs. Observation of field-effect scanning electron microscope images indicated the size of the NPs. Details of the optical properties related to peak absorption of surface plasmon resonance of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear absorption and nonlinear refraction of the fabricated NP layers. The third-order nonlinear refractive index coefficients for Au and Ag are (-9.34 and  -1.61)  ×  10-11 cm2 W-1 given lower n 2, in comparison with bilayer (Au and Ag) NPs at  -1.24  ×  10-10 cm2 W-1. The results show bilayer NPs have higher refractive index coefficients thus enhance the nonlinearity effects.

  11. Determining the refractive index and thickness of thin films from prism coupler measurements

    NASA Technical Reports Server (NTRS)

    Kirsch, S. T.

    1981-01-01

    A simple method of determining thin film parameters from mode indices measured using a prism coupler is described. The problem is reduced to doing two least squares straight line fits through measured mode indices vs effective mode number. The slope and y intercept of the line are simply related to the thickness and refractive index of film, respectively. The approach takes into account the correlation between as well as the uncertainty in the individual measurements from all sources of error to give precise error tolerances on the best fit values. Due to the precision of the tolerances, anisotropic films can be identified and characterized.

  12. Structural, electrical and magnetic properties of evaporated permalloy thin films: effect of substrate and thickness

    NASA Astrophysics Data System (ADS)

    Guittoum, A.; Bourzami, A.; Layadi, A.; Schmerber, G.

    2012-05-01

    We have studied the effects of the substrate and the thickness on the structural, electrical and magnetic properties of permalloy thin films Ni81Fe19 (Py). Series of Py thin films were evaporated on four various substrates: glass, kapton, Si(1 0 0) and Si(1 1 1). The thickness ranges from 13 nm to 190 nm. We show that evaporated permalloy on kapton and Si(1 1 1) present a strong ⟨1 1 1⟩ preferred orientation for samples thicker than 85 nm; however, the films grown on glass and Si(1 0 0) present a weak (1 1 1) texture for most of these samples. Generally, the lattice constant for Py/glass, Py/Si(1 0 0) and Py/Si(1 1 1) samples is found to be smaller than the bulk value (abulk), while for the Py/kapton, it is larger than abulk. There is an overall increase of the grain sizes (100 Å-480 Å) with thickness for Py/Si(1 1 1), Py/Si(1 0 0) and Py/glass. For the Py/kapton samples, the grain sizes (about 130 Å) seem to be independent of the thickness. The resistivity, ρ, decreases with increasing thickness for all samples. The highest values of ρ were observed in the Py/kapton thin films, diffusion at the grain boundaries might be in part responsible for these high values. The magnetization easy axis is found to be in the film plane for all samples. For all series, the two thinner films seem to exhibit a perpendicular magnetocrystalline anisotropy. The coercive field, HC//, values range from 1 Oe to 67 Oe. A peak in the HC// vs. t curve is observed for Py/Si while for Py on glass and Py/kapton, HC// seems to be constant. We also observed that for the thicker Py/Si(1 1 1) samples, the coercivity decreases as the grain sizes increase.

  13. Evolution and tailoring of plasmonic properties in Ag:ZrO{sub 2} nanocomposite films by swift heavy ion irradiation

    SciTech Connect

    Kumar, Manish; Kulriya, P. K.; Avasthi, D. K.; Pivin, J. C.

    2011-02-15

    Ag:ZrO{sub 2} nanocomposite films have been synthesized by a sol-gel dip coating process at room temperature, followed by irradiation using swift heavy ions. The effect of electronic energy loss and fluences on the evolution and consequently on the tailoring of plasmonic properties of films has been studied. The optical study exhibits that color of films converts from transparent in pristine form into shiny yellow when films are irradiated by 100 MeV Ag ions at a fluence of 3x10{sup 12} ions/cm{sup 2}. However, irradiation by 120 MeV O ions up to the fluence of 1 x 10{sup 14} ions/cm{sup 2} does not induce any coloration in films. The coloration is attributed to the evolution of plasmonic feature resulting in a surface plasmon resonance (SPR) induced absorption peak in the visible region. Increase in fluence from 3 x 10{sup 12} to 6 x 10{sup 13} ions/cm{sup 2} of 100 MeV Ag ions induces a redshift in SPR induced peak position from 434 to 487 nm. Microstructural studies confirms the conversion of Ag{sub 2}O{sub 3} (in pristine films) into cubic phase of metallic Ag and the increase of average size of particles with the increasing fluence up to 6 x 10{sup 13} ions/cm{sup 2}. Further increase in fluence leads to the dissolution of Ag atoms in the ZrO{sub 2} matrix.

  14. Effect of Ag addition to L1{sub 0} FePt and L1{sub 0} FePd films grown by molecular beam epitaxy

    SciTech Connect

    Tokuoka, Y.; Seto, Y.; Kato, T.; Iwata, S.

    2014-05-07

    L1{sub 0} ordered FePt-Ag (5 nm) and FePd-Ag (5 nm) films were grown on MgO (001) substrate at temperatures of 250–400 °C by using molecular beam epitaxy method, and their crystal and surface structures, perpendicular magnetic anisotropies and Curie temperatures were investigated. In the case of FePt-Ag, Ag addition with the amount of 10–20 at. % was effective to promote L1{sub 0} ordering and granular growth, resulting in the increase of the perpendicular magnetic anisotropy and coercivity of the FePt-Ag films. On the other hand, in the case of FePd-Ag, Ag addition changed the surface morphology from island to continuous film associated with the reductions of its coercivity and perpendicular anisotropy. The variations of lattice constants and Curie temperature with Ag addition were significantly different between FePt-Ag and FePd-Ag. For FePd-Ag, the c and a axes lattice spacings and Curie temperature gradually changed with increasing Ag content, while they unchanged for FePt-Ag. These results suggest the possibility of the formation of FePdAg alloy in FePd-Ag, while Ag segregation in FePt-Ag.

  15. Effect of temperature on the nano/microstructure and mechanical behavior of nanotwinned Ag films

    DOE PAGESBeta

    Zhang, Huan; Geng, Jie; Ott, Ryan T.; Besser, Matthew F.; Kramer, Matthew J.

    2015-06-24

    In situ and ex situ annealed nanotwinned (NT) Ag thin films have been investigated by TEM and tensile testing to reveal the thermal stability of the twin boundaries, grain boundaries, dislocation densities, and their respective influence of the macroscopic yield stress. The NT Ag films synthesized by magnetron sputtering form both coherent (CTB, Σ3{111}) and incoherent (ITB, Σ3{112}) twin boundaries that are thermally stable up to 473 K (200 Celsius), i.e., no obvious changes in grain size, twin spacing, and yield stress. In situ TEM observations show the dislocations become mobile at 453 K (180 Celsius) resulting in dislocation annihilationmore » primarily at twin and grain boundaries. Rotation of grains with low-angle grain boundaries was observed during in situ heating, resulting in the growth of columnar grains above 453 K (180 Celsius). However, no noticeable changes in the spacings of CTBs were observed during the entire in situ and ex situ annealing [up to 873 K (600 Celsius)]. The increase in grain size and concomitant decrease in yield stress following annealing at various temperatures can be described by the Hall-Petch relationship, demonstrating that grain size rather than twin spacing is most sensitive to thermal annealing and plays a dominant role in the deformation of NT Ag films.« less

  16. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    NASA Astrophysics Data System (ADS)

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-07-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.

  17. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    PubMed Central

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-01-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet–visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films. PMID:26156001

  18. Effect of temperature on the nano/microstructure and mechanical behavior of nanotwinned Ag films

    SciTech Connect

    Zhang, Huan; Geng, Jie; Ott, Ryan T.; Besser, Matthew F.; Kramer, Matthew J.

    2015-06-24

    In situ and ex situ annealed nanotwinned (NT) Ag thin films have been investigated by TEM and tensile testing to reveal the thermal stability of the twin boundaries, grain boundaries, dislocation densities, and their respective influence of the macroscopic yield stress. The NT Ag films synthesized by magnetron sputtering form both coherent (CTB, Σ3{111}) and incoherent (ITB, Σ3{112}) twin boundaries that are thermally stable up to 473 K (200 Celsius), i.e., no obvious changes in grain size, twin spacing, and yield stress. In situ TEM observations show the dislocations become mobile at 453 K (180 Celsius) resulting in dislocation annihilation primarily at twin and grain boundaries. Rotation of grains with low-angle grain boundaries was observed during in situ heating, resulting in the growth of columnar grains above 453 K (180 Celsius). However, no noticeable changes in the spacings of CTBs were observed during the entire in situ and ex situ annealing [up to 873 K (600 Celsius)]. The increase in grain size and concomitant decrease in yield stress following annealing at various temperatures can be described by the Hall-Petch relationship, demonstrating that grain size rather than twin spacing is most sensitive to thermal annealing and plays a dominant role in the deformation of NT Ag films.

  19. Thickness dependence of dielectric loss in SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Li, Hong-Cheng; Si, Weidong; West, Alexander D.; Xi, X. X.

    1998-07-01

    We have measured the dielectric loss in SrTiO3 thin films grown on SrRuO3 electrode layers with thickness ranging from 25 nm to 2.5 μm. The loss depends strongly on the thickness but differently above and below T≈80 K: as the thickness increases, the loss decreases at high temperatures but becomes higher at low temperatures. Our result suggests that, in the high temperature regime, the interfacial dead layer effect dominates while, in the low temperature regime, the losses related to the structural phase transition and quantum fluctuations are important.

  20. Thickness-Dependent Structural and Optoelectronic Properties of In2O3 Films Prepared by Spray Pyrolysis Technique

    NASA Astrophysics Data System (ADS)

    Khan, M. A. Majeed; Khan, Wasi

    2016-08-01

    In this work, nanostructured In2O3 thin films with thickness in the range of 40-160 nm were deposited on glass substrates by the chemical spray pyrolysis technique. The microstructural, surface morphology and optical properties were investigated as a function of film thickness through x-ray diffraction, scanning electron microscopy equipped with energy dispersive spectroscopy, atomic force microscopy, Raman spectroscopy, UV-visible spectroscopy and photoluminescence measurements. The x-ray diffraction analysis showed that the deposited films were polycrystalline in nature with a cubic structure having (222) as preferred orientation. The morphological analyses of the samples exhibited uniform and smooth surface of the films with systematical increments in the surface roughness with increasing film thickness. The grain size increased from 9 nm to 13 nm with increasing film thickness. Raman spectroscopy has been employed to study the crystalline quality and the structural disorder of the films. A blue-shift in the energy band gap ( E g) from 3.74 eV to 3.98 eV was observed with the increase of film thickness. Moreover, photoluminescence peaks of the In2O3 films appeared at 443 nm and 527 nm for all films. The thickness had a substantial influence on the microstructural and optical properties as well as on the luminescence intensity of the films. The strategy presented here indicates that the prepared films could be suitable candidates for optoelectronic device applications.

  1. Thickness-Dependent Structural and Optoelectronic Properties of In2O3 Films Prepared by Spray Pyrolysis Technique

    NASA Astrophysics Data System (ADS)

    Khan, M. A. Majeed; Khan, Wasi

    2016-05-01

    In this work, nanostructured In2O3 thin films with thickness in the range of 40-160 nm were deposited on glass substrates by the chemical spray pyrolysis technique. The microstructural, surface morphology and optical properties were investigated as a function of film thickness through x-ray diffraction, scanning electron microscopy equipped with energy dispersive spectroscopy, atomic force microscopy, Raman spectroscopy, UV-visible spectroscopy and photoluminescence measurements. The x-ray diffraction analysis showed that the deposited films were polycrystalline in nature with a cubic structure having (222) as preferred orientation. The morphological analyses of the samples exhibited uniform and smooth surface of the films with systematical increments in the surface roughness with increasing film thickness. The grain size increased from 9 nm to 13 nm with increasing film thickness. Raman spectroscopy has been employed to study the crystalline quality and the structural disorder of the films. A blue-shift in the energy band gap (E g) from 3.74 eV to 3.98 eV was observed with the increase of film thickness. Moreover, photoluminescence peaks of the In2O3 films appeared at 443 nm and 527 nm for all films. The thickness had a substantial influence on the microstructural and optical properties as well as on the luminescence intensity of the films. The strategy presented here indicates that the prepared films could be suitable candidates for optoelectronic device applications.

  2. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method.

    PubMed

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-12-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor-Ag2S (0.9 eV) quantum dots (QDs)-in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields. PMID:26428017

  3. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-10-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor—Ag2S (0.9 eV) quantum dots (QDs)—in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

  4. Raman spectroscopy and microstructure of the pulsed laser-treated silver-anatase thick film

    NASA Astrophysics Data System (ADS)

    Joya, Yasir F.; Joya, K. S.; Bashir, S.; Anwar, A. W.; Rafique, M. S.; Ahmed, Riaz

    2015-09-01

    The present research describes the effect of laser pulses on crystalline titanium dioxide thick film with self-adsorbed silver ions. Anatase film of up to 4 µm thickness was deposited on ITO glass by doctor-blading technique. The film was heated at 450 °C for 60 min and cooled before immersion in silver nitrate aqueous solution. After drying, films were subjected to nanosecond pulses of the excimer laser, and their structural, microstructural and optical properties were investigated. Scanning electron microscopy and EDX analysis revealed the formation of silver nanoparticles (SNPs) dispersed in the anatase matrix. There was no significant change in the anatase structure as revealed by Raman spectroscopy. The intensity of Raman signals from pristine anatase film was increased after the laser treatment of silver ions on the film. This observation is associated with the phenomenon of localized surface plasmon resonance conferred by the crystalline SNPs. The results obtained by the UV-visible spectroscopy also support the role of SNPs to enhance the photoabsorption of the anatase film in the visible region.

  5. Variable Thickness Liquid Crystal Films for High Repetition Rate Laser Applications

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Hanna, Randall; Andereck, C. David; Schumacher, Douglass

    2015-05-01

    The presentation of a clean target or target substrate at high repetition rates is of importance to a number of photoelectron spectroscopy and free electron laser applications, often in high vacuum environments. Additionally, high intensity laser facilities are approaching the 10 Hz shot rate at petawatt powers, but are currently unable to insert targets at these rates. We have developed liquid crystal films to address this need for high rep rate targets while preserving the planar geometry advantageous to many applications. The molecular ordering of liquid crystal is variable with temperature and can be manipulated to form a layered thin film. In this way temperature and volume control can be used to vary film thickness in vacuo and on-demand between 10 nm and over 10 μm. These techniques were previously applied to a single-shot ion acceleration experiment in, where target thickness critically determines the physics of the acceleration. Here we present an automatic film formation device that utilizes a linear sliding rail to form liquid crystal films within the aforementioned range at rates up to 0.1 Hz. The design ensures film formation location within 2 μm RMS, well within the Rayleigh range of even short f-number systems. Details of liquid crystal films and this target formation device will be shown as well as recent experimental data from the Scarlet laser facility at OSU. This work was supported by DARPA through a grant from AMRDEC.

  6. Amorphous/microcrystalline transition of thick silicon film deposited by PECVD

    NASA Astrophysics Data System (ADS)

    Elarbi, N.; Jemaï, R.; Outzourhit, A.; Khirouni, K.

    2016-06-01

    Thick silicon films were deposited by plasma-enhanced chemical vapor deposition at different plasma power densities. Annealing treatment was performed on these deposited films. As-deposited and annealed films were characterized by X-ray diffraction, Raman scattering spectroscopy and reflectance spectroscopy. Before annealing, only the film deposited at the plasma power density of 500 mW/cm2 exhibits a diffraction peak corresponding to the (111) plane orientation. Raman spectrum of this film confirms the presence of crystalline phase. After annealing, a transition from amorphous phase to crystalline one occurs for all samples. This transition is accompanied by an increase of the crystalline fraction volume deduced from Raman spectra analysis and by a reduction of optical gap energy.

  7. Effect of film thickness on the magneto-structural properties of ion beam sputtered transition metal–metalloid FeCoNbB/Si (100) alloy thin films

    NASA Astrophysics Data System (ADS)

    Gupta, Pooja; Tripathi, Yagyanidhi; Kumar, Dileep; Rai, S. K.; Gupta, Mukul; Reddy, V. R.; Svec, Peter

    2016-08-01

    The structure and magnetic properties of ion beam sputtered transition metal–metalloid FeCoNbB/Si(100) alloy thin film have been studied as a function of film thickness using complementary techniques of x-ray reflectivity (XRR), grazing incidence x-ray diffraction, and magneto optical Kerr effect. Thicknesses of the films range from ∼200 to 1500 Å. The coercivity of all the films ranges between 4 and 14 Oe, which suggests soft magnetic nature of FeCoNbB/Si thin films. Films with thickness up to 800 Å are amorphous in nature and are found to possess uniaxial magnetic anisotropy in the film plane, although no magnetic field was applied during deposition. The presence of the two fold symmetry in such amorphous thin films may be attributed to quenched-in stresses developed during deposition. Upon increasing the film thickness to ∼1200 Å and above, the structure of FeCoNbB films transforms from amorphous to partially nanocrystalline structure and has bcc-FeCo nanocrystalline phase dispersed in remaining amorphous matrix. The crystalline volume fraction (cvf) of the films is found to be proportional to the film thickness. Azimuthal angle dependence of remanence confirms the presence of in-plane four-fold anisotropy (FFA) in the crystalline film with cvf ∼75%. Synchrotron x-ray diffraction measurement using area detector suggests random orientation of crystallites and thus clearly establishes that FFA is not related to texture/cubic symmetry in such polycrystalline thin films. As supported by asymmetric Bragg diffraction measurements, the origin of FFA in such partially crystalline thin film is ascribed to the additional compressive stresses developed in the film upon crystallization. Results indicate that promising soft magnetic properties in such films can be optimized by controlling the film thickness. The revelation of controllable and tunable anisotropy suggests that FeCoNbB thin films can have potential application in electromagnetic applications.

  8. Full-field optical thickness profilometry of semitransparent thin films with transmission densitometry

    SciTech Connect

    Johnson, Jay; Harris, Tequila

    2010-05-20

    A novel bidirectional thickness profilometer based on transmission densitometry was designed to measure the localized thickness of semitransparent films on a dynamic manufacturing line. The densitometer model shows that, for materials with extinction coefficients between 0.3 and 2.9 D/mm, 100-500 {mu}m measurements can be recorded with less than {+-}5% error at more than 10,000 locations in real time. As a demonstration application, the thickness profiles of 75 mmx100 mm regions of polymer electrolyte membrane (PEM) were determined by converting the optical density of the sample to thickness with the Beer-Lambert law. The PEM extinction coefficient was determined to be 1.4 D/mm, with an average thickness error of 4.7%.

  9. Retention of Root Canal Posts: Effect of Cement Film Thickness, Luting Cement, and Post Pretreatment.

    PubMed

    Sahafi, A; Benetti, A R; Flury, S; Peutzfeldt, A

    2015-01-01

    The aim of this study was to investigate the effect of the cement film thickness of a zinc phosphate or a resin cement on retention of untreated and pretreated root canal posts. Prefabricated zirconia posts (CosmoPost: 1.4 mm) and two types of luting cements (a zinc phosphate cement [DeTrey Zinc] and a self-etch adhesive resin cement [Panavia F2.0]) were used. After removal of the crowns of 360 extracted premolars, canines, or incisors, the root canals were prepared with a parallel-sided drill system to three different final diameters. Half the posts did not receive any pretreatment. The other half received tribochemical silicate coating according to the manufacturer's instructions. Posts were then luted in the prepared root canals (n=30 per group). Following water storage at 37°C for seven days, retention of the posts was determined by the pull-out method. Irrespective of the luting cement, pretreatment with tribochemical silicate coating significantly increased retention of the posts. Increased cement film thickness resulted in decreased retention of untreated posts and of pretreated posts luted with zinc phosphate cement. Increased cement film thickness had no influence on retention of pretreated posts luted with resin cement. Thus, retention of the posts was influenced by the type of luting cement, by the cement film thickness, and by the post pretreatment. PMID:25764045

  10. Thickness-Gradient Films for High Gauge Factor Stretchable Strain Sensors.

    PubMed

    Liu, Zhiyuan; Qi, Dianpeng; Guo, Peizhi; Liu, Yan; Zhu, Bowen; Yang, Hui; Liu, Yaqing; Li, Bin; Zhang, Chenguang; Yu, Jiancan; Liedberg, Bo; Chen, Xiaodong

    2015-10-28

    High-gauge-factor stretchable strain sensors are developed by utilizing a new strategy of thickness-gradient films with high durability, and high uniaxial/isotropic stretchability based on the self-pinning effect of SWCNTs. The monitoring of detailed damping vibration modes driven by weak sound based on such sensors is demonstrated, making a solid step toward real applications. PMID:26376000

  11. CO responses of sensors based on cerium oxide thick films prepared from clustered spherical nanoparticles.

    PubMed

    Izu, Noriya; Matsubara, Ichiro; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2013-01-01

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nanoparticles have been reported to have a unique structure: The core consists of a cluster of ceria crystallites several nanometers in size. We compared the characteristics of the sensors based on thick films prepared from core-shell nanoparticles with those of sensors based on thick films prepared from conventionally used precipitated nanoparticles. The sensors prepared from the core-shell nanoparticles exhibited a resistance that was ten times greater than that of the sensors prepared from the precipitated nanoparticles. The response values of the gas sensors based on the core-shell nanoparticles also was higher than that of the sensors based on the precipitated nanoparticles. Finally, improvements in sensor response were also noticed after the addition of Au nanoparticles to the thick films used to fabricate the two types of sensors. PMID:23529123

  12. Computerized J-H loop tracer for soft magnetic thick films in the audio frequency range

    NASA Astrophysics Data System (ADS)

    Loizos, G.; Niarchos, D.

    2014-07-01

    A computerized J-H loop tracer for soft magnetic thick films in the audio frequency range is described. It is a system built on a PXI platform combining PXI modules for control signal generation and data acquisition. The physiscal signals are digitized and the respective data strems are processed, presented and recorded in LabVIEW 7.0.

  13. Laser-printed/structured thick-film electrodes for Li-ion microbatteries

    NASA Astrophysics Data System (ADS)

    Kim, Heungsoo; Sutto, Thomas E.; Proell, Johannes; Kohler, Robert; Pfleging, Wilhelm; Piqué, Alberto

    2014-03-01

    Laser induced forward transfer (LIFT) process was used to print thick-film electrodes (LiCoO2 cathode and carbon anode) and solid-state polymer membranes for Li-ion microbatteries. Their electrochemical behaviors were characterized by cyclic voltammograms, capacity measurement and cycling performance. Microbatteries based on these laser-printed thick-film electrodes showed significantly higher discharge capacities than those made by sputter-deposited thin film techniques. This enhanced performance is attributed to the high surface area porous structure of the laser-printed electrodes that allows improved diffusion of the Li-ions across the 100 μm-thick electrodes without a significant internal resistance. In addition, a laser structuring process was used to prepare three-dimensional microstructures on the laserprinted thick-film electrodes to further improve battery performance by increasing the active surface area. These results indicate that the laser processing techniques are a viable approach for developing Li-ion microbatteries in microelectronic devices. This paper will show examples of Li-ion microbatteries fabricated with various polymer separators and structured electrodes using a combination of LIFT and excimer laser structuring processes.

  14. Method and system using power modulation and velocity modulation producing sputtered thin films with sub-angstrom thickness uniformity or custom thickness gradients

    DOEpatents

    Montcalm, Claude; Folta, James Allen; Walton, Christopher Charles

    2003-12-23

    A method and system for determining a source flux modulation recipe for achieving a selected thickness profile of a film to be deposited (e.g., with highly uniform or highly accurate custom graded thickness) over a flat or curved substrate (such as concave or convex optics) by exposing the substrate to a vapor deposition source operated with time-varying flux distribution as a function of time. Preferably, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. Preferably, the method includes the steps of measuring the source flux distribution (using a test piece held stationary while exposed to the source with the source operated at each of a number of different applied power levels), calculating a set of predicted film thickness profiles, each film thickness profile assuming the measured flux distribution and a different one of a set of source flux modulation recipes, and determining from the predicted film thickness profiles a source flux modulation recipe which is adequate to achieve a predetermined thickness profile. Aspects of the invention include a computer-implemented method employing a graphical user interface to facilitate convenient selection of an optimal or nearly optimal source flux modulation recipe to achieve a desired thickness profile on a substrate. The method enables precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  15. Effects of Au source/drain thickness on electrical characteristics of pentacene thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kwon, Jin-Hyuk; Hahn, Joonku; Bae, Jin-Hyuk; Ham, Youngjin; Park, Jaehoon; Baang, Sungkeun

    2015-11-01

    We investigate the electrical characteristics of top-contact pentacene thin-film transistors (TFTs) fabricated with various thicknesses of the Au source and the drain (S/D) electrodes, i.e., 20, 30, 50, 70, and 105 nm. Pentacene TFTs exhibit enhancements in the drain current and the fieldeffect mobility with increasing thickness of Au S/D electrodes up to 50 nm, after which the TFT performance degrades with increasing Au thickness. A transmission line method is used to analyze the contact resistance between the Au electrode and the pentacene layer in the TFTs, and ultraviolet photoemission spectroscopy measurements are performed to determine the work function of the Au films. The lowest contact resistance, 73 kΩ·cm, is obtained for the 50-nm-thick Au case and is ascribed to the high work function (4.67 eV) of the film. Consequently, the effects of the Au S/D thickness on the performance of top-contact pentacene TFTs can be understood through the behavior of the charge injection at the Au electrode/pentacene interface.

  16. Thickness effect on magnetocrystalline anisotropy of Co/Pd(111) films: A density functional study

    SciTech Connect

    Jekal, Soyoung; Rhim, S. H. E-mail: schong@ulsan.ac.kr; Kwon, Oryong; Hong, Soon Cheol E-mail: schong@ulsan.ac.kr

    2015-05-07

    In this study, we carried out first-principles calculations on magnetocrystalline anisotropy (MCA) of Co/Pd thin films by adopting two different systems of (i) n-Co/3-Pd and (ii) n-Pd/3-Co. In one system, we vary the thickness of Co layer, fixing the thickness of the Pd layer to 3-monolayers, and in the other system vice versa. MCA is mainly governed by the surface and interface Co atoms, while contributions from other Co atoms are smaller. MCA energy (E{sub MCA}) of the Co/Pd thin film shows oscillatory behavior with the thickness of the Co layer, but is insensitive to the thickness of the Pd layer. In particular, the n-Co/3-Pd films of n = 2, 4, and 6 exhibit strong perpendicular MCA of about 1 meV. Our results suggest that controlling the thickness of the Co layer in Co/Pd (111) is crucial in achieving strong perpendicular MCA.

  17. Magnetic relaxation due to spin pumping in thick ferromagnetic films in contact with normal metals

    NASA Astrophysics Data System (ADS)

    Rezende, S. M.; Rodríguez-Suárez, R. L.; Azevedo, A.

    2013-07-01

    Spin pumping is the most important magnetic relaxation channel in ultrathin ferromagnetic layers in contact with normal metals (NMs). Recent experiments indicate that in thick films of insulating yttrium iron garnet (YIG) there is a large broadening of the ferromagnetic resonance (FMR) lines with deposition of a thin Pt layer which cannot be explained by the known damping processes. Here we present a detailed study of the magnetic relaxation due to spin pumping in bilayers made of a ferromagnetic material (FM) and a NM. Two alternative approaches are used to calculate the transverse and longitudinal relaxation rates used in the Bloch-Bloembergen formulation of damping. In one we consider that the dynamic exchange coupling at the interface transfers magnetic relaxation from the heavily damped conduction electron spins in the NM layer to the magnetization of the FM layer while the other utilizes spin currents and the concept of the spin-mixing conductance at the interface. While in thin FM films, the relaxation rates vary with the inverse of the FM layer thickness; in thick films, they become independent of the thickness because in the FM/NM structure the FMR excitation has a surface mode character. Regardless of the thickness range the longitudinal relaxation rate is twice the transverse rate resulting in damping of the magnetization with constant amplitude characterizing a Gilbert process. The enhanced spin-pumping damping explains the experimental observations in YIG/Pt bilayers.

  18. Method for rapid, controllable growth and thickness, of epitaxial silicon films

    DOEpatents

    Wang, Qi; Stradins, Paul; Teplin, Charles; Branz, Howard M.

    2009-10-13

    A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.

  19. Measurement of oil film thickness for application to elastomeric Stirling engine rod seals

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.

    1981-01-01

    The rod seal in the Stirling engine has the function of separating high pressure gas from low or ambient pressure oil. An experimental apparatus was designed to measure the oil film thickness distribution for an elastomeric seal in a reciprocating application. Tests were conducted on commercial elastomeric seals having a 76 mm rod and a 3.8 mm axial width. Test conditions included 70 and 90 seal durometers, a sliding velocity of 0.8 m/sec, and a zero pressure gradient across the seal. An acrylic cylinder and a typical synthetic base automotive lubricant were used. The experimental results showed that the effect of seal hardness on the oil film thickness is considerable. A comparison between analytical and experimental oil film profiles for an elastomeric seal during relatively high speed reciprocating motion showed an overall qualitative agreement.

  20. Observation of three crystalline layers in hydrothermally grown BiFeO{sub 3} thick films

    SciTech Connect

    Lee, T. K.; Sung, K. D.; Jung, J. H.; Kim, T. H.; Ko, J.-H.

    2014-11-21

    We report the observation of three different crystalline layers in hydrothermally grown BiFeO{sub 3} (BFO) thick films on SrRuO{sub 3}/SrTiO{sub 3} substrates. High-resolution X-ray diffraction and transmission electron microcopy results suggest that compressively strained, partially relaxed epitaxial layers, and a mixture of polycrystalline and amorphous BFO layers, were successively formed from the bottom to the top of the films. The resistance and capacitance of the mixed layer were significantly lower than those of the epitaxial layers. The atomic concentrations of Bi and Fe in the mixed layer were fluctuating for each point. Based on the observed three crystalline layers, we have discussed the growth mechanism and the leakage current of hydrothermally grown BFO thick films.