Science.gov

Sample records for ag ion implantation

  1. Observations of Ag diffusion in ion implanted SiC

    NASA Astrophysics Data System (ADS)

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Hunter, Jerry L.; Giordani, Andrew J.; Allen, Todd R.

    2015-06-01

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500-1625 °C, were investigated by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.

  2. Observations of Ag diffusion in ion implanted SiC

    SciTech Connect

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Jerry L. Hunter, Jr.; Giordani, Andrew J.; Allen, Todd R.

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.

  3. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    SciTech Connect

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce; Tihminlioglu, Funda; Oks, Efim; Nikolaev, Alexey; Ila, Daryush

    2009-03-10

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.

  4. Observations of Ag diffusion in ion implanted SiC

    DOE PAGES

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; ...

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated,more » including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.« less

  5. Fabrication of composite based on GeSi with Ag nanoparticles using ion implantation

    NASA Astrophysics Data System (ADS)

    Batalov, R. I.; Vorobev, V. V.; Nuzhdin, V. I.; Valeev, V. F.; Bayazitov, R. M.; Lyadov, N. M.; Osin, Yu. N.; Stepanov, A. L.

    2016-12-01

    Comparative analysis of the structural and optical properties of composite layers fabricated with the aid of implantation of single-crystalline silicon ( c-Si) using Ge+ (40 keV/1 × 1017 ions/cm2) and Ag+ (30 keV/1.5 × 1017 ions/cm2) ions and sequential irradiation using Ge+ and Ag+ ions is presented. The implantation of the Ge+ ions leads to the formation of Ge: Si fine-grain amorphous surface layer with a thickness of 60 nm and a grain size of 20-40 nm. The implantation of c-Si using Ag+ ions results in the formation of submicron porous amorphous a-Si structure with a thickness of about 50 nm containing ion-synthesized Ag nanoparticles. The penetration of the Ag+ ions in the Ge: Si layer stimulates the formation of pores with Ag nanoparticles with more uniform size distribution. The reflection spectra of the implanted Ag: Si and Ag: GeSi layers exhibit a sharp decrease in the intensity in the UV (220-420 nm) spectral interval relative to the intensity of c-Si by more than 50% owing to the amorphization and structuring of surface. The formation of Ag nanoparticles in the implanted layers gives rise to a selective band of the plasmon resonance at a wavelength of about 820 nm in the optical spectra. Technological methods for fabrication of a composite based on GeSi with Ag nanoparticles are demonstrated in practice.

  6. Tailoring the structural and optical properties of TiN thin films by Ag ion implantation

    NASA Astrophysics Data System (ADS)

    Popović, M.; Novaković, M.; Rakočević, Z.; Bibić, N.

    2016-12-01

    Titanium nitride (TiN) thin films thickness of ∼260 nm prepared by dc reactive sputtering were irradiated with 200 keV silver (Ag) ions to the fluences ranging from 5 × 1015 ions/cm2 to 20 × 1015 ions/cm2. After implantation TiN layers were annealed 2 h at 700 °C in a vacuum. Ion irradiation-induced microstructural changes were examined by using Rutherford backscattering spectrometry, X-ray diffraction and transmission electron microscopy, while the surface topography was observed using atomic force microscopy. Spectroscopic ellipsometry was employed to get insights on the optical and electronic properties of TiN films with respect to their microstructure. The results showed that the irradiations lead to deformation of the lattice, increasing disorder and formation of new Ag phase. The optical results demonstrate the contribution of surface plasmon resonace (SPR) of Ag particles. SPR position shifted in the range of 354.3-476.9 nm when Ag ion fluence varied from 5 × 1015 ions/cm2 to 20 × 1015 ions/cm2. Shift in peak wavelength shows dependence on Ag particles concentration, suggesting that interaction between Ag particles dominate the surface plasmon resonance effect. Presence of Ag as second metal in the layer leads to overall decrease of optical resistivity of TiN.

  7. Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium.

    PubMed

    Jin, Guodong; Qin, Hui; Cao, Huiliang; Qian, Shi; Zhao, Yaochao; Peng, Xiaochun; Zhang, Xianlong; Liu, Xuanyong; Chu, Paul K

    2014-09-01

    Zinc (Zn) and silver (Ag) are co-implanted into titanium by plasma immersion ion implantation. A Zn containing film with Ag nanoparticles (Ag NPs) possessing a wide size distribution is formed on the surface and the corrosion resistance is improved due to the micro-galvanic couples formed by the implanted Zn and Ag. Not only are the initial adhesion, spreading, proliferation and osteogenic differentiation of rBMSCs observed from the Zn/Ag implanted Ti in vitro, but also bacteria killing is achieved both in vitro and in vivo. Electrochemical polarization and ion release measurements suggest that the excellent osteogenic activity and antibacterial ability of the Zn/Ag co-implanted titanium are related to the synergistic effect resulting from the long-range interactions of the released Zn ions and short-range interactions of the embedded Ag NPs. The Zn/Ag co-implanted titanium offers both excellent osteogenic activity and antibacterial ability and has large potential in orthopedic and dental implants.

  8. Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance.

    PubMed

    Hou, Xinggang; Ma, Huiyan; Liu, Feng; Deng, Jianhua; Ai, Yukai; Zhao, Xinlei; Mao, Dong; Li, Dejun; Liao, Bin

    2015-12-15

    TiO2 thin films were deposited by spin coating method. Silver ions were implanted into the films using a Metal Vapor Vacuum Arc implanter. The antibacterial ability of implanted films was tested using Escherichia coli removal under fluorescent irradiation and in the dark. The concentration of E. coli was evaluated by plating technique. The photocatalytic efficiency of the implanted films was studied by degradation of methyl orange under fluorescent illumination. The surface free energy of the implanted TiO2 films was calculated by contact angle testing. Vitamin C was used as radical scavengers to explore the antibacterial mechanism of the films. The results supported the model that both generation of reactive oxygen species and release of silver ions played critical roles in the toxic effect of implanted films against E. coli. XPS experimental results demonstrated that a portion of the Ag(Ag(3+)) ions were doped into the crystalline lattice of TiO2. As demonstrated by density functional theory calculations, the impurity energy level of subtitutional Ag was responsible for enhanced absorption of visible light. Ag ion-implanted TiO2 films with excellent antibacterial efficiency against bacteria and decomposed ability against organic pollutants could be potent bactericidal surface in moist environment.

  9. RETRACTED: Optical limiting performance of Ag nanoclusters synthesized by ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Y. H.; Wei, L.; Yuan, J.; Wang, R. W.; Lu, J. D.; Ji, L. L.

    2013-01-01

    Metal nanoparticles synthesized by 200 keV Ag ions into silica with dose of 2×1017 ions/cm2 has been studied. Third-order nonlinear optical properties of the nanoparticles were measured at 1064 nm excitations using the Z-scan technique. Results of the investigation of nonlinear refraction by the single beam Z-scan configuration are presented and the mechanisms responsible for the nonlinear response were discussed. Curve fitting analysis, based on MATLAB features for Ag nanoparticle optical limiting experiment, is used. The results show that Ag nanoparticles display a refractive optical limiting effect at 1064 nm.

  10. Nano-Crystal Formation and Growth from High-Fluence Ion Implantation of Au, Ag or Cu in Silica

    NASA Astrophysics Data System (ADS)

    Ila, D.; Baglin, J. E. E.; Zimmerman, R. L.

    The linear and non-linear optical properties of silica may be tailored by the introduction of a random distribution of nanocrystallites of an immiscible metal within a near-surface region. The size, size distribution, and spatial distribution of these crystallites must be controllable in order to optimize the functional properties for device applications. In this paper, we present a novel fabrication technique that offers such control. Energetic metal ions are implanted in silica at room temperature. Subsequent heat treatment leads to diffusion of the implanted atoms, nucleation and growth of metal crystallites, and Ostwald ripening of the resulting clusters. We have observed the kinetics and effective activation energies describing the multiple processes involved, for the cases of Au, Ag or Cu implanted at MeV energies, at various fluences, and then annealed at fixed temperatures in the range 500 °C-1000 °C. Effective activation energies found for nanocrystal nucleation and growth at temperatures below 800 °C (e.g. 64 meV for Ag) are replaced above this temperature range by much higher activation energies (e.g. 400 meV for Ag). We may attribute this to the depletion of un-attached mobile metal atoms (so that ripening of clusters will be limited by energy barriers for escape of such mobile atoms from small crystallites), and/or the annealing of implant-caused stress in the silica structure at high temperatures, that creates new channels for thermal diffusion of metal atoms within the silica host.

  11. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  12. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  13. Preparation of Ag-containing diamond-like carbon films on the interior surface of tubes by a combined method of plasma source ion implantation and DC sputtering

    NASA Astrophysics Data System (ADS)

    Hatada, R.; Flege, S.; Bobrich, A.; Ensinger, W.; Dietz, C.; Baba, K.; Sawase, T.; Watamoto, T.; Matsutani, T.

    2014-08-01

    Adhesive diamond-like carbon (DLC) films can be prepared by plasma source ion implantation (PSII), which is also suitable for the treatment of the inner surface of a tube. Incorporation of a metal into the DLC film provides a possibility to change the characteristics of the DLC film. One source for the metal is DC sputtering. In this study PSII and DC sputtering were combined to prepare DLC films containing low concentrations of Ag on the interior surfaces of stainless steel tubes. A DLC film was deposited using a C2H4 plasma with the help of an auxiliary electrode inside of the tube. This electrode was then used as a target for the DC sputtering. A mixture of the gases Ar and C2H4 was used to sputter the silver. By changing the gas flow ratios and process time, the resulting Ag content of the films could be varied. Sample characterizations were performed by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, atomic force microscopy and Raman spectroscopy. Additionally, a ball-on-disk test was performed to investigate the tribological properties of the films. The antibacterial activity was determined using Staphylococcus aureus bacteria.

  14. Semiconductor Ion Implanters

    NASA Astrophysics Data System (ADS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  15. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  16. Ion implantation technology and ion sources

    NASA Astrophysics Data System (ADS)

    Sugitani, Michiro

    2014-02-01

    Ion implantation (I/I) technology has been developed with a great economic success of industries of VLSI (Very Large-Scale Integrated circuit) devices. Due to its large flexibility and good controllability, the I/I technology has been assuming various challenging requirements of VLSI evolutions, especially in advanced evolutional characteristics of CMOSFET. Here, reviewing the demands of VLSI manufacturing to the I/I technology, required characteristics of ion implanters, and their ion sources are discussed.

  17. Graphene synthesis by ion implantation

    PubMed Central

    Garaj, Slaven; Hubbard, William; Golovchenko, J. A.

    2010-01-01

    We demonstrate an ion implantation method for large-scale synthesis of high quality graphene films with controllable thickness. Thermally annealing polycrystalline nickel substrates that have been ion implanted with carbon atoms results in the surface growth of graphene films whose average thickness is controlled by implantation dose. The graphene film quality, as probed with Raman and electrical measurements, is comparable to previously reported synthesis methods. The implantation synthesis method can be generalized to a variety of metallic substrates and growth temperatures, since it does not require a decomposition of chemical precursors or a solvation of carbon into the substrate. PMID:21124725

  18. Ion sources for ion implantation technology (invited)

    NASA Astrophysics Data System (ADS)

    Sakai, Shigeki; Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-01

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  19. Ion sources for ion implantation technology (invited)

    SciTech Connect

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  20. Mutation breeding by ion implantation

    NASA Astrophysics Data System (ADS)

    Yu, Zengliang; Deng, Jianguo; He, Jianjun; Huo, Yuping; Wu, Yuejin; Wang, Xuedong; Lui, Guifu

    1991-07-01

    Ion implantation as a new mutagenic method has been used in the rice breeding program since 1986, and for mutation breeding of other crops later. It has been shown, in principle and in practice, that this method has many outstanding advantages: lower damage rate; higher mutation rate and wider mutational spectrum. Many new lines of rice with higher yield rate; broader disease resistance; shorter growing period but higher quality have been bred from ion beam induced mutants. Some of these lines have been utilized for the intersubspecies hybridization. Several new lines of cotton, wheat and other crops are now in breeding. Some biophysical effects of ion implantation for crop seeds have been studied.

  1. Ion implanted dielectric elastomer circuits

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  2. High-intensity laser for Ta and Ag implantation into different substrates for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Mackova, A.; Malinsky, P.; Matousek, J.; Torrisi, L.; Ullschmied, J.

    2015-07-01

    High-intensity lasers generating non-equilibrium plasma, can be employed to accelerate ions in the keV-MeV region, useful for many applications. In the present work, we performed study of ion implantation into different substrates by using a high-intensity laser at the PALS laboratory in Prague. Multi-energy ions generated by plasma from Ta and Ag targets were implanted into polyethylene and metallic substrates (Al, Ti) at energies of tens of keV per charge state. The ion emission was monitored online using time-of-flight detectors and electromagnetic deflection systems. Rutherford Backscattering Spectrometry (RBS) was used to characterise the elemental composition in the implanted substrates by ion plasma emission and to provide the implanted ion depth profiling. These last measurements enable offline plasma characterisation and provide information on the useful potentiality of multi-ion species and multi-energy ion implantation into different substrates. XPS analysis gives information on the chemical bonds and their modifications in the first superficial implanted layers. The depth distributions of implanted Ta and Ag ions were compared with the theoretical ones achieved by using the SRIM-2012 simulation code.

  3. Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs.

    PubMed

    Qiao, Shichong; Cao, Huiliang; Zhao, Xu; Lo, Hueiwen; Zhuang, Longfei; Gu, Yingxin; Shi, Junyu; Liu, Xuanyong; Lai, Hongchang

    2015-01-01

    Dental implants with proper antibacterial ability as well as ideal osseointegration are being actively pursued. The antimicrobial ability of titanium implants can be significantly enhanced via modification with silver nanoparticles (Ag NPs). However, the high mobility of Ag NPs results in their potential cytotoxicity. The silver plasma immersion ion-implantation (Ag-PIII) technique may remedy the defect. Accordingly, Ag-PIII technique was employed in this study in an attempt to reduce the mobility of Ag NPs and enhance osseointegration of sandblasted and acid-etched (SLA) dental implants. Briefly, 48 dental implants, divided equally into one control and three test groups (further treated by Ag-PIII technique with three different implantation parameters), were inserted in the mandibles of six Labrador dogs. Scanning electron microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectrometry were used to investigate the surface topography, chemical states, and silver release of SLA- and Ag-PIII-treated titanium dental implants. The implant stability quotient examination, Microcomputed tomography evaluation, histological observations, and histomorphometric analysis were performed to assess the osseointegration effect in vivo. The results demonstrated that normal soft tissue healing around dental implants was observed in all the groups, whereas the implant stability quotient values in Ag-PIII groups were higher than that in the SLA group. In addition, all the Ag-PIII groups, compared to the SLA-group, exhibited enhanced new bone formation, bone mineral density, and trabecular pattern. With regard to osteogenic indicators, the implants treated with Ag-PIII for 30 minutes and 60 minutes, with the diameter of the Ag NPs ranging from 5-25 nm, were better than those treated with Ag-PIII for 90 minutes, with the Ag NPs diameter out of that range. These results suggest that Ag-PIII technique can reduce the mobility of Ag NPs and enhance

  4. Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs

    PubMed Central

    Qiao, Shichong; Cao, Huiliang; Zhao, Xu; Lo, Hueiwen; Zhuang, Longfei; Gu, Yingxin; Shi, Junyu; Liu, Xuanyong; Lai, Hongchang

    2015-01-01

    Dental implants with proper antibacterial ability as well as ideal osseointegration are being actively pursued. The antimicrobial ability of titanium implants can be significantly enhanced via modification with silver nanoparticles (Ag NPs). However, the high mobility of Ag NPs results in their potential cytotoxicity. The silver plasma immersion ion-implantation (Ag-PIII) technique may remedy the defect. Accordingly, Ag-PIII technique was employed in this study in an attempt to reduce the mobility of Ag NPs and enhance osseointegration of sandblasted and acid-etched (SLA) dental implants. Briefly, 48 dental implants, divided equally into one control and three test groups (further treated by Ag-PIII technique with three different implantation parameters), were inserted in the mandibles of six Labrador dogs. Scanning electron microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectrometry were used to investigate the surface topography, chemical states, and silver release of SLA- and Ag-PIII-treated titanium dental implants. The implant stability quotient examination, Microcomputed tomography evaluation, histological observations, and histomorphometric analysis were performed to assess the osseointegration effect in vivo. The results demonstrated that normal soft tissue healing around dental implants was observed in all the groups, whereas the implant stability quotient values in Ag-PIII groups were higher than that in the SLA group. In addition, all the Ag-PIII groups, compared to the SLA-group, exhibited enhanced new bone formation, bone mineral density, and trabecular pattern. With regard to osteogenic indicators, the implants treated with Ag-PIII for 30 minutes and 60 minutes, with the diameter of the Ag NPs ranging from 5–25 nm, were better than those treated with Ag-PIII for 90 minutes, with the Ag NPs diameter out of that range. These results suggest that Ag-PIII technique can reduce the mobility of Ag NPs and

  5. Synergistic Effects of Iodine and Silver Ions Co-Implanted in 6H-SiC

    SciTech Connect

    Kuhudzai, Remeredzai J.; Malherbe, Johan; Hlatshwayo, T. T.; van der Berg, N. G.; Devaraj, Arun; Zhu, Zihua; Nandasiri, Manjula I.

    2015-10-23

    Motivated by the aim of understanding the release of fission products through the SiC coating of fuel kernels in modern high temperature nuclear reactors, a fundamental investigation is conducted to understand the synergistic effects of implanted silver (Ag) and iodine (I) in 6H-SiC. The implantation of the individual species, as well as the co-implantation of 360 keV ions of I and Ag at room temperature in 6H-SiC and their subsequent annealing behavior has been investigated by Secondary Ion Mass Spectrometry (SIMS), Atom Probe Tomography (APT) and X-ray Photoelectron Spectroscopy (XPS). SIMS and APT measurements indicated the presence of Ag in the co-implanted samples after annealing at 1500 ºC for 30 hours in sharp contrast to the samples implanted with Ag only. In samples implanted with Ag only, complete loss of the implanted Ag was observed. However, for I only implanted samples, some iodine was retained. APT of annealed co-implanted 6H-SiC showed clear spatial association of Ag and I clusters in SiC, which can be attributed to the observed I assisted retention of Ag after annealing. Such detailed studies will be necessary to identify the fundamental mechanism of fission products migration through SiC coatings.

  6. Optical properties of multicomponent cadmium-silver nanocluster composites formed in silica by sequential ion implantation

    SciTech Connect

    Zuhr, R.A.; Magruder, R.H. III; Anderson, T.S.

    1996-11-01

    Formation and optical properties of nanometer dimension metal colloid composites formed by sequential implantation of Cd then Ag and by single element implantations of Cd and Ag in silica were characterized by TEM and optical spectroscopy. A nominal dose of 6x10{sup 16} ions/cm{sup 2} as determined by current integration was used for both ion species. Doses used for the sequential implantations were a 1 to 1 ratio of Cd to Ag. Sequential implantations of Cd and Ag led to formation of both multi-component metal nanoclusters and elemental nanoclusters. Electron diffraction indicated that the polycrystalline particles of Ag{sub 5}Cd{sub 8} and elemental Ag were formed. The optical response was consistent with results expected from effective medium theory.

  7. Controlled ion implant damage profile for etching

    DOEpatents

    Arnold, Jr., George W.; Ashby, Carol I. H.; Brannon, Paul J.

    1990-01-01

    A process for etching a material such as LiNbO.sub.3 by implanting ions having a plurality of different kinetic energies in an area to be etched, and then contacting the ion implanted area with an etchant. The various energies of the ions are selected to produce implant damage substantially uniformly throughout the entire depth of the zone to be etched, thus tailoring the vertical profile of the damaged zone.

  8. Optical properties of multicomponent antimony-silver nanoclusters formed in silica by sequential ion implantation

    SciTech Connect

    Zuhr, R.A.; Magruder, R.H. III; Anderson, T.S.

    1995-11-01

    The linear and nonlinear optical properties of nanometer dimension metal colloids embedded in a dielectric depend explicitly on the electronic structure of the metal nanoclusters. The ability to control the electronic structure of the nanoclusters may make it possible to tailor the optical properties for enhanced performance. By sequential implantation of different metal ion species multi-component nanoclusters can be formed with significantly different optical properties than single element metal nanoclusters. The authors report the formation of multi-component Sb/Ag nanoclusters in silica by sequential implantation of Sb and Ag. Samples were implanted with relative ratios of Sb to Ag of 1:1 and 3:1. A second set of samples was made by single element implantations of Ag and Sb at the same energies and doses used to make the sequentially implanted samples. All samples were characterized using RBS and both linear and nonlinear optical measurements. The presence of both ions significantly modifies the optical properties of the composites compared to the single element nanocluster glass composites. In the sequentially implanted samples the optical density is lower, and the strong surface plasmon resonance absorption observed in the Ag implanted samples is not present. At the same time the nonlinear response of the these samples is larger than for the samples implanted with Sb alone, suggesting that the addition of Ag can increase the nonlinear response of the Sb particles formed. The results are consistent with the formation of multi-component Sb/Ag colloids.

  9. Ion Implantation of Zinc Sulphide Thin Films,

    DTIC Science & Technology

    The report considers the use of ion implantation as a means of preparing rare earth doped thin films of zinc sulphide, and presents preliminary results on the luminescence of such films doped with Tb and Er166 ions. (Author)

  10. Silicon on sapphire for ion implantation studies

    NASA Technical Reports Server (NTRS)

    Pisciotta, B. P.

    1974-01-01

    Van der Pauw or bridge samples are ultrasonically cut from silicon on sapphire wafers. Contact pad regions are implanted with moderately heavy dose of ions. Ion of interest is implanted into sample; and, before being annealed in vacuum, sample is sealed with sputtered layer of silicon dioxide. Nickel or aluminum is sputtered onto contact pad areas and is sintered in nitrogen atmosphere.

  11. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, K.N.

    1996-09-24

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted. 16 figs.

  12. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.

  13. Surface modification of sapphire by ion implantation

    SciTech Connect

    McHargue, C.J.

    1998-11-01

    The range of microstructures and properties of sapphire (single crystalline Al{sub 2}O{sub 3}) that are produced by ion implantation are discussed with respect to the implantation parameters of ion species, fluence, irradiation temperature and the orientation of the ion beam relative to crystallographic axes. The microstructure of implanted sapphire may be crystalline with varying concentrations of defects or it may be amorphous perhaps with short-range order. At moderate to high fluences, implanted metallic ions often coalesce into pure metallic colloids and gas ions form bubbles. Many of the implanted microstructural features have been identified from studies using transmission electron microscopy (TEM), optical spectroscopy, Moessbauer spectroscopy, and Rutherford backscattering-channeling. The chemical, mechanical, and physical properties reflect the microstructures.

  14. Single atom devices by ion implantation.

    PubMed

    van Donkelaar, Jessica; Yang, C; Alves, A D C; McCallum, J C; Hougaard, C; Johnson, B C; Hudson, F E; Dzurak, A S; Morello, A; Spemann, D; Jamieson, D N

    2015-04-22

    To expand the capabilities of semiconductor devices for new functions exploiting the quantum states of single donors or other impurity atoms requires a deterministic fabrication method. Ion implantation is a standard tool of the semiconductor industry and we have developed pathways to deterministic ion implantation to address this challenge. Although ion straggling limits the precision with which atoms can be positioned, for single atom devices it is possible to use post-implantation techniques to locate favourably placed atoms in devices for control and readout. However, large-scale devices will require improved precision. We examine here how the method of ion beam induced charge, already demonstrated for the deterministic ion implantation of 14 keV P donor atoms in silicon, can be used to implant a non-Poisson distribution of ions in silicon. Further, we demonstrate the method can be developed to higher precision by the incorporation of new deterministic ion implantation strategies that employ on-chip detectors with internal charge gain. In a silicon device we show a pulse height spectrum for 14 keV P ion impact that shows an internal gain of 3 that has the potential of allowing deterministic implantation of sub-14 keV P ions with reduced straggling.

  15. Improvement of photocatalytic efficiency of rutile titania by silver negative-ion implantation

    NASA Astrophysics Data System (ADS)

    Tsuji, Hiroshi; Sugahara, Hiromitsu; Gotoh, Yasuhito; Ishikawa, Junzo

    2003-05-01

    Optical absorption and photocatalytic properties of metal negative-ion implanted rutile-type titania (TiO 2) were studied to show metal nanoparticle formation in the surface region and improvement of photocatalytic efficiency. Silver negative ions were implanted into titania substrate (rutile crystalline substrate) at 65 keV with a dose of 3 × 10 16-1 × 10 17 ions/cm 2. The Ag-implanted rutile also showed a strong optical absorption near 2.1 eV after annealing above 400 °C, those well agreed with theoretical absorption peaks due to surface plasmon resonance. This means that Ag nanoparticles were formed in the surface layers of the titania. Photocatalytic efficiencies for Ag-implanted titania were evaluated by means of decolorization of methylene blue solution under fluorescent light. Ag-implanted titania (Ag: 65 keV, 5 × 10 16 ions/cm 2, 500 °C annealed) showed the better photocatalytic efficiency higher 2.2 times than that of unimplanted rutile titania. In the evaluation under fluorescent light through UV-cut filter, the Ag-implanted rutile showed 6.7 times better efficiency.

  16. Effect of exposure environment on surface decomposition of SiC-silver ion implantation diffusion couples

    DOE PAGES

    Gerczak, Tyler J.; Zheng, Guiqui; Field, Kevin G.; ...

    2014-10-05

    SiC is a promising material for nuclear applications and is a critical component in the construction of tristructural isotropic (TRISO) fuel. A primary issue with TRISO fuel operation is the observed release of 110m Ag from intact fuel particles. The release of Ag has prompted research efforts to directly measure the transport mechanism of Ag in bulk SiC. Recent research efforts have focused primarily on Ag ion implantation designs. The effect of the thermal exposure system on the ion implantation surface has been investigated. Results indicate the utilization of a mated sample geometry and the establishment of a static thermalmore » exposure environment is critical to maintaining an intact surface for diffusion analysis. In conclusion, the nature of the implantation surface and its potential role in Ag diffusion analysis are discussed.« less

  17. Effect of exposure environment on surface decomposition of SiC-silver ion implantation diffusion couples

    SciTech Connect

    Gerczak, Tyler J.; Zheng, Guiqui; Field, Kevin G.; Allen, Todd R.

    2014-10-05

    SiC is a promising material for nuclear applications and is a critical component in the construction of tristructural isotropic (TRISO) fuel. A primary issue with TRISO fuel operation is the observed release of 110m Ag from intact fuel particles. The release of Ag has prompted research efforts to directly measure the transport mechanism of Ag in bulk SiC. Recent research efforts have focused primarily on Ag ion implantation designs. The effect of the thermal exposure system on the ion implantation surface has been investigated. Results indicate the utilization of a mated sample geometry and the establishment of a static thermal exposure environment is critical to maintaining an intact surface for diffusion analysis. In conclusion, the nature of the implantation surface and its potential role in Ag diffusion analysis are discussed.

  18. Diagnostic characterization of ablation plasma ion implantation

    NASA Astrophysics Data System (ADS)

    Qi, B.; Gilgenbach, R. M.; Jones, M. C.; Johnston, M. D.; Lau, Y. Y.; Wang, L. M.; Lian, J.; Doll, G. L.; Lazarides, A.

    2003-06-01

    Experiments are reported in which two configurations for ablation-plasma-ion-implantation (APII) are characterized by diagnostics and compared. The first configuration oriented the target parallel to the deposition substrate. This orientation yielded ion-beam-assisted deposition of thin films. A delay (>5 μs) between laser and high voltage was necessary for this geometry to avoid arcing between negatively biased substrate and target. The second experimental configuration oriented the target perpendicular to the deposition substrate, reducing arcing, even for zero/negative delay between the laser and the high voltage pulse. This orientation also reduced neutral atom, ballistic deposition on the substrate resulting in a pure ion implantation mode. Ion density measurements were made by resonant laser diagnostics and Langmuir probes, yielding total ion populations in the range of 1014. Implanted ion doses were estimated by electrical diagnostics, and materials analysis, including x-ray energy dispersive spectroscopy and x-ray photoelectron spectroscopy, yielding implanted doses in the range 1012 ions/cm2 per pulse. This yields an APII efficiency of order 10% for implantation of laser ablated ions. Scaling of ion dose with voltage agrees well with a theory assuming the Child-Langmuir law and that the ion current at the sheath edge is due to the uncovering of the ions by the movement of the sheath. Thin film analysis showed excellent adhesion with smoother films for an accelerating voltage of -3.2 kV; higher voltages (-7.7 kV) roughened the film.

  19. Ion-implantation studies on perpendicular media.

    PubMed

    Gaur, Nikita; Maurer, Siegfried L; Nunes, Ronald W; Piramanayagam, S N; Bhatia, C S

    2011-03-01

    Magnetic and structural properties of ion implanted perpendicular recording media have been investigated. Effects of 12C+ ion implantation with the doses of 2 x 10(11), 10(13), 10(14) and 10(16) ions/cm2 in the magnetic recording layer of conventional granular and continuous perpendicular media are reported in this paper. Implantation with the highest fluence of 10(16) ions/cm2 resulted in change of the magnetization reversal mechanism, thereby reducing coercivity. In continuous media the implanted ions cause increase in pinning defects, leading to an increase in coercivity. In contrast, high dose was found to cause similar change in the crystallographic properties of both the granular and continuous media.

  20. Optimization of the ion implantation process

    NASA Astrophysics Data System (ADS)

    Maczka, D.; Latuszynski, A.; Kuduk, R.; Partyka, J.

    This work is devoted to the optimization of the ion implantation process in the implanter Unimas of the Institute of Physics, Maria Curie-Sklodowska University, Lublin. The results obtained during several years of operation allow us to determine the optimal work parameters of the device [1-3].

  1. Infrared reflectance measurement of ion implanted silica

    SciTech Connect

    Magruder, R.H. III; Morgan, S.H.; Weeks, R.A.; Zuhr, R.

    1988-01-01

    Infrared reflectance spectra of silica glass implanted with Ti, Cr, Mn, Fe, and Bi to doses between 0.5 - 6 /times/10/sup 16/ cm/sup /minus/2/ have been measured from 5000 cm/sup /minus/1/ to 400 cm/sup /minus/1/ at room temperature. The ion energy of the implantation was 160 keV and the current was 10..mu..A. Alterations in reflectance of bands at 1125 and 481 cm/sup /minus/1/ in the spectrum of an unimplanted sample of the order of 20% are observed. A band attributed to non-bridging oxygen ions at /approximately/1015 cm/sup /minus/1/ is observed to increase in intensity with increasing dose for all species. The band at 1125 cm/sup /minus/1/ is observed to shift to lower wavenumber with implantation. Bands due to implanted ion-oxygen vibrations were not detected. The magnitudes of the effects on the existing bands were ion specific. This ion specificity is attributed to the differing chemical states of the implanted ions after implantation. 15 refs., 8 figs.

  2. Laser fabrication of Ag-HA nanocomposites on Ti6Al4V implant for enhancing bioactivity and antibacterial capability.

    PubMed

    Liu, Xiangmei; Man, H C

    2017-01-01

    For titanium alloy implants, both surface bioactivity and antibacterial infection are the two critical factors in determining the success of clinical implantation of these metallic implants. In the present work, a novel nanocomposite layer of nano-silver-containing hydroxyapatite (Ag-HA) was prepared on the surface of biomedical Ti6Al4V by laser processing. Analysis using SEM, EDS and XRD shows the formation of an Ag-HA layer of about 200μm fusion bonded to the substrate. Mineralization tests in simulated body fluid (SBF) showed that laser fabricated Ag-HA nanocomposite layer favors the deposition of apatite on the surface of the implants. Antibacterial tests confirmed that all Ag-HA nanocomposite layers can kill bacteria while a higher Ag content would lower the cytocompatibility of these coatings. Cell viability decreases when the Ag content reaches 5% in these coatings, due to the larger amount of Ag leached out, as confirmed by ion release evaluation. Our results reveal that laser fabricated Ag-HA nanocomposite coatings containing 2% Ag show both excellent cytocompatibility and antibacterial capability.

  3. Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2

    SciTech Connect

    Jiang, Weilin; Henager, Charles H.; Varga, Tamas; Jung, Hee Joon; Overman, Nicole R.; Zhang, Chonghong; Gou, Jie

    2015-05-16

    MAX phases (M: early transition metal; A: elements in group 13 or 14; X: C or N), such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been considered as a possible fuel cladding material. This study reports on the diffusivities of fission product surrogates (Ag and Cs) and a noble metal Au (with diffusion behavior similar to Ag) in this ternary compound at elevated temperatures, as well as in dual-phase nanocomposite of Ti3SiC2/3C-SiC and polycrystalline CVD 3C-SiC for behavior comparisons. Samples were implanted with Ag, Au or Cs ions and characterized with various methods, including x-ray diffraction, electron backscatter diffraction, energy dispersive x-ray spectroscopy, Rutherford backscattering spectrometry, helium ion microscopy, and transmission electron microscopy. The results show that in contrast to immobile Ag in 3C-SiC, there is a significant outward diffusion of Ag in Ti3SiC2 within the dual-phase nanocomposite during Ag ion implantation at 873 K. Similar behavior of Au in polycrystalline Ti3SiC2 was also observed. Cs out-diffusion and release from Ti3SiC2 occurred during post-implantation thermal annealing at 973 K. This study suggests caution and further studies in consideration of Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures.

  4. Ion Implant Enabled 2x Lithography

    NASA Astrophysics Data System (ADS)

    Martin, Patrick M.; Godet, Ludovic; Cheung, Andrew; de Cock, Gael; Hatem, Chris

    2011-01-01

    Ion implantation has many applications in microelectronics beyond doping. The broad range of species available combined with the ability to precisely control dose, angle, and energy offers compelling advantages for use in precision material modification. The application to lithography has been reported elsewhere. Integrating ion implantation into the lithography process enables scaling the feature size requirements beyond the 15 nm node with a simplified double patterning sequence. In addition, ion implant may be used to remove line edge roughness, providing tremendous advantages to meet extreme lithography imaging requirements and provide additional device stability. We examine several species (e.g. Si, Ar, etc.) and the effect of energy and impact angle on several commercially available 193 nm immersion photoresists using a Varian VIISta® single wafer high current ion implanter. The treated photoresist will be evaluated for stability in an integrated double patterning application with ion implant used to freeze the primary image. We report on critical dimension impact, pattern integrity, optical property modification, and adhesion. We analyze the impact of line edge roughness improvement beyond the work of C. Struck including the power spectral distribution. TGA and FTIR Spectroscopy results for the implanted photoresist materials will also be included.

  5. Ion implantations of oxide dispersion strengthened steels

    NASA Astrophysics Data System (ADS)

    Sojak, S.; Simeg Veternikova, J.; Slugen, V.; Petriska, M.; Stacho, M.

    2015-12-01

    This paper is focused on a study of radiation damage and thermal stability of high chromium oxide dispersion strengthened steel MA 956 (20% Cr), which belongs to the most perspective structural materials for the newest generation of nuclear reactors - Generation IV. The radiation damage was simulated by the implantation of hydrogen ions up to the depth of about 5 μm, which was performed at a linear accelerator owned by Slovak University of Technology. The ODS steel MA 956 was available for study in as-received state after different thermal treatments as well as in ions implanted state. Energy of the hydrogen ions chosen for the implantation was 800 keV and the implantation fluence of 6.24 × 1017 ions/cm2. The investigated specimens were measured by non-destructive technique Positron Annihilation Lifetime Spectroscopy in order to study the defect behavior after different thermal treatments in the as-received state and after the hydrogen ions implantation. Although, different resistance to defect production was observed in individual specimens of MA 956 during the irradiation, all implanted specimens contain larger defects than the ones in as-received state.

  6. Copper and silver ion implantation of aluminium oxide-blasted titanium surfaces: proliferative response of osteoblasts and antibacterial effects.

    PubMed

    Fiedler, Jörg; Kolitsch, Andreas; Kleffner, Bernhard; Henke, Dietmar; Stenger, Steffen; Brenner, Rolf E

    2011-09-01

    Implant infection still represents a major clinical problem in orthopedic surgery. We therefore tested the in vitro biocompatibility and antibacterial effects of copper (Cu)- and silver (Ag)-ion implantation. Discs of a commonly used titanium alloy (Ti6AlV4) with an aluminium oxide-blasted surface were treated by Cu- or Ag-ion implantation with different dosage regimen (ranging from 1e15-17 ions cm(-2) at energies of 2-20 keV). The samples were seeded with primary human osteoblasts and cell attachment and proliferation was analyzed by an MTT-assay. In comparison to the reference titanium alloy there was no difference in the number of attached viable cells after two days. After seven days the number of viable cells was increased for Cu with 1e17 ions cm(-2) at 2 and 5 keV, and for Ag with 1e16 ions cm(-2) at 5 keV while it was reduced for the highest amount of Ag deposition (1e17 ions cm(-2) at 20 keV). Antibacterial effects on S.aureus and E.coli were marginal for the studied dosages of Cu but clearly present for Ag with 1e16 ions cm(-2) at 2 and 5 keV and 1e17 ions cm(-2) at 20 keV. These results indicate that Ag-ion implantation may be a promising methodological approach for antibacterial functionalization of titanium implants.

  7. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  8. New optical properties of MgO after MeV metal ion implantation

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. L.; Ila, D.; Williams, E. K.; Sarkisov, S. S.; Poker, D. B.; Hensley, D. K.

    1999-06-01

    The implantation of metal ions into single crystals of MgO(100) followed by thermal annealing leads to an increase in absorption of ultra violet and visible light. Metal ions of Au, Sn, Ag, Cu and Ti were implanted at a depth of a few thousand Angstroms followed by thermal annealing. MgO samples implanted with He and Si ions at greater depths were used to study the optical effects and thermal annealing of radiation damage. The influence of bombardment fluence and heat treatment on the size of the metal clusters and on the fraction of atoms in clusters were measured using absorption photospectrometry.

  9. Ion implantation in crystalline and amorphous materials

    NASA Astrophysics Data System (ADS)

    Tasch, Al F.

    1998-05-01

    Ion implantation continues to be the selective doping technique of choice in silicon integrated circuit (IC) manufacturing, and its applications continue to grow in doping, damage gettering, and process simplification. However, in both technology and manufacturing equipment development there is a rapidly increasing need to understand in detail the dependence of implanted impurity profiles and implant-induced damage profiles in silicon on all key implant parameters. These reasons include largely reduced thermal budgets in IC processing, heavy emphasis on control of equipment and process costs, and the need for rigid manufacturing control. Towards this end, accurate, comprehensive, and computationally efficient models for ion implanted profiles (impurity and damage) in silicon are indispensable. These models greatly facilitate more timely technology development and implementation in manufacturing, improved manufacturing process control; and the development of new ion implantation tools can be executed more efficiently. This talk describes ion implant models and simulators developed in the ion implant modeling research/education project at the University of Texas at Austin. Physically based models for ion implantation into single-crystal Si have been developed for the commonly used implant species B, BF(2), As, P, and Si for the most commonly used implant energy ranges. These models have explicit dependence on the major implant parameters (energy, dose, tilt angle and rotation angle). In addition, the models have been extensively verified by the vast amount of experimental data which has been obtained in the experimental part of this project. The models have been extended down to ultra-low implant energies (<2keV) by removing two of the three major limitations of the binary collision approximation (bca) at ultra-low energies and overcoming part of the third limitation. At very high energies where electronic stopping dominates the energy loss, an electronic stopping

  10. Molecular ion sources for low energy semiconductor ion implantation (invited)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  11. Molecular ion sources for low energy semiconductor ion implantation (invited).

    PubMed

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described.

  12. Ion implantation of silicon nitride ball bearings

    SciTech Connect

    Williams, J.M.; Miner, J.R.

    1996-09-01

    Hypothesis for ion implantation effect was that stress concentrations reflected into the bulk due to topography such as polishing imperfections, texture in the race, or transferred material, might be reduced due to surface amorphization. 42 control samples were tested to an intended runout period of 60 h. Six ion implanted balls were tested to an extended period of 150 h. Accelerated testing was done in a V groove so that wear was on two narrow wear tracks. Rutherford backscattering, XRPS, profilometry, optical microscopy, nanoindentation hardness, and white light interferometry were used. The balls were implanted with 150-keV C ions at fluence 1.1x10{sup 17}/cm{sup 2}. The samples had preexisting surface defects (C-cracks), so the failure rate of the control group was unacceptable. None of the ion-implanted samples failed in 150 h of testing. Probability of randomly selecting 6 samples from the control group that would perform this well is about 5%, so there is good probability that ion implantation improved performance. Possible reasons are discussed. Wear tracks, microstructure, and impurity content were studied in possible relation to C-cracks.

  13. Ion implanted Bragg{endash}Fresnel lens

    SciTech Connect

    Souvorov, A.; Snigirev, A.; Snigireva, I.; Aristova, E.

    1996-05-01

    We have investigated the feasibility of widening the bandpath of the Bragg{endash}Fresnel optical element through the use of ion implantation. The focusing properties of Bragg{endash}Fresnel lenses (BFLs) were studied as a function of the implantation dose and energy. An enhancement of the focus intensity of up to 15{percent} was found, which is less than expected. Due to the complicated scattering of the low energy ions inside the micrometer- and submicrometer-sized crystal features that make up the BFL relief, the implantation technology destroys the peripheral zones of the BFL more than it increases the intensity in the focus. Nevertheless we believe that high energy implantation can be successfully used to modify the BFL reflectivity, especially in the case of nearly backscattering reflection. {copyright} {ital 1996 American Institute of Physics.}

  14. More-reliable SOS ion implantations

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1980-01-01

    Conducting layer prevents static charges from accumulating during implantation of silicon-on-sapphire MOS structures. Either thick conducting film or thinner film transparent to ions is deposited prior to implantation, and gaps are etched in regions to be doped. Grounding path eliminates charge flow that damages film or cracks sapphire wafer. Prevention of charge buildup by simultaneously exposing structure to opposite charges requires equipment modifications less practical and more expensive than deposition of conducting layer.

  15. Single Ion Implantation and Deterministic Doping

    SciTech Connect

    Schenkel, Thomas

    2010-06-11

    The presence of single atoms, e.g. dopant atoms, in sub-100 nm scale electronic devices can affect the device characteristics, such as the threshold voltage of transistors, or the sub-threshold currents. Fluctuations of the number of dopant atoms thus poses a complication for transistor scaling. In a complementary view, new opportunities emerge when novel functionality can be implemented in devices deterministically doped with single atoms. The grand price of the latter might be a large scale quantum computer, where quantum bits (qubits) are encoded e.g. in the spin states of electrons and nuclei of single dopant atoms in silicon, or in color centers in diamond. Both the possible detrimental effects of dopant fluctuations and single atom device ideas motivate the development of reliable single atom doping techniques which are the subject of this chapter. Single atom doping can be approached with top down and bottom up techniques. Top down refers to the placement of dopant atoms into a more or less structured matrix environment, like a transistor in silicon. Bottom up refers to approaches to introduce single dopant atoms during the growth of the host matrix e.g. by directed self-assembly and scanning probe assisted lithography. Bottom up approaches are discussed in Chapter XYZ. Since the late 1960's, ion implantation has been a widely used technique to introduce dopant atoms into silicon and other materials in order to modify their electronic properties. It works particularly well in silicon since the damage to the crystal lattice that is induced by ion implantation can be repaired by thermal annealing. In addition, the introduced dopant atoms can be incorporated with high efficiency into lattice position in the silicon host crystal which makes them electrically active. This is not the case for e.g. diamond, which makes ion implantation doping to engineer the electrical properties of diamond, especially for n-type doping much harder then for silicon. Ion

  16. Approaches for Controlled Ag(+) Ion Release: Influence of Surface Topography, Roughness, and Bactericide Content.

    PubMed

    Sukhorukova, I V; Sheveyko, A N; Shvindina, N V; Denisenko, E A; Ignatov, S G; Shtansky, D V

    2017-02-01

    Silver is the most famous bactericidal element known from ancient times. Its antibacterial and antifungal effects are typically associated with the Ag ionization and concentration of Ag(+) ions in a bacterial culture. Herein we thoroughly studied the influence of surface topography and roughness on the rate of Ag(+) ion release. We considered two types of biocompatible and bioactive TiCaPCON-Ag films with 1 and 2 at. % of Ag and nine types of Ti surfaces with an average roughness varying in the range from 5.4 × 10(-2) to 12.6 μm and different topographic features obtained through polishing, sandblasting, laser treatment, and pulsed electrospark deposition. It is demonstrated that the Ag(+) ion release rates do not depend on the Ag content in the films as the main parameter, and it is other factors, such as the state of Ag agglomeration, surface topography and roughness, as well as kinetics of surface oxidation, that play a critical role. The obtained results clearly show a synergistic effect of the Ag content in the film and surface topography and roughness on Ag(+) ion release. By changing the surface topographical features at a constant content of bactericidal element, we showed that the Ag(+) ion release can be either accelerated by 2.5 times or almost completely suppressed. Despite low Ag(+) ion concentration in physiological solution (<40 ppb), samples with specially fabricated surface reliefs (flakes or holes) showed a pronounced antibacterial effect already after 3 h of immersion in E. coli bacterial culture. Thus, our results open up new possibilities for the production of cost-effective, scalable, and biologically safe implants with pronounced antibacterial characteristics for future applications in the orthopedic field.

  17. 6Li + ion implantation into polystyrene

    NASA Astrophysics Data System (ADS)

    Soares, M. R. F.; Alegaonkar, P.; Behar, M.; Fink, D.; Müller, M.

    2004-06-01

    100 keV 6Li + ions were implanted into polystyrene at fluences of 1 × 10 13 to 1 × 10 14 cm -2, and their depth distributions were determined by means of the neutron depth profiling technique. In no case the projectile ions are found to come to rest according to their predicted implantation profiles. Instead, they always undergo considerable migration. During the irradiation process this motion is influenced by the radiation damage, and during the subsequent annealing steps one deals with thermal diffusion. The implant redistribution is always found to be governed strongly by the self-created damage, insofar as both electronic and nuclear defects in the polymer act as trapping centers.

  18. Hybrid quantum circuit with implanted erbium ions

    SciTech Connect

    Probst, S.; Rotzinger, H.; Tkalčec, A.; Kukharchyk, N.; Wieck, A. D.; Wünsch, S.; Siegel, M.; Ustinov, A. V.; Bushev, P. A.

    2014-10-20

    We report on hybrid circuit quantum electrodynamics experiments with focused ion beam implanted Er{sup 3+} ions in Y{sub 2}SiO{sub 5} coupled to an array of superconducting lumped element microwave resonators. The Y{sub 2}SiO{sub 5} crystal is divided into several areas with distinct erbium doping concentrations, each coupled to a separate resonator. The coupling strength is varied from 5 MHz to 18.7 MHz, while the linewidth ranges between 50 MHz and 130 MHz. We confirm the paramagnetic properties of the implanted spin ensemble by evaluating the temperature dependence of the coupling. The efficiency of the implantation process is analyzed and the results are compared to a bulk doped Er:Y{sub 2}SiO{sub 5} sample. We demonstrate the integration of these engineered erbium spin ensembles with superconducting circuits.

  19. Implantation of sodium ions into germanium

    SciTech Connect

    Korol', V. M.; Kudriavtsev, Yu.

    2012-02-15

    The donor properties of Na atoms introduced by ion implantation into p-Ge with the resistivity 20-40 {Omega} cm are established for the first time. Na profiles implanted into Ge (the energies 70 and 77 keV and the doses (0.8, 3, 30) Multiplication-Sign 10{sup 14} cm{sup -2}) are studied. The doses and annealing temperatures at which the thermoprobe detects n-type conductivity on the sample surface are established. After implantation, the profiles exhibit an extended tail. The depth of the concentration maximum is in good agreement with the calculated mean projected range of Na ions R{sub p}. Annealing for 30 min at temperatures of 250-700 Degree-Sign C brings about a redistribution of Na atoms with the formation of segregation peaks at a depth, which is dependent on the ion dose, and is accompanied by the diffusion of Na atoms to the surface with subsequent evaporation. After annealing at 700 Degree-Sign C less than 7% of the implanted ions remain in the matrix. The shape of the profile tail portions measured after annealing at temperatures 300-400 Degree-Sign C is indicative of the diffusion of a small fraction of Na atoms into the depth of the sample.

  20. Ion Implanted Gaas Integrated Optics Fabrication Technology

    NASA Astrophysics Data System (ADS)

    Mentzer, M. A.; Hunsperger, R. G.; Bartko, J.; Zavada, J. M.; Jenkinson, H. A.

    1985-01-01

    Ion implantation of semiconductor materials is a fabrication technique that offers a number of distinct advantages for the formation of guided-wave components and microelectronic devices. Implanted damage and dopants produce optical and electronic changes that can be utilized for sensing and signal processing applications. GaAs is a very attractive material for optical fabrication since it is transparent out to the far infrared. It can be used to fabricate optical waveguides, directional couplers, EO modulators, and detectors, as well as other guided wave structures. The presence of free carriers in GaAs lowers the refractive index from that of the pure semiconductor material. This depression of the refractive index is primarily due to the negative contribution of the free carrier plasma to the dielectric constant of the semiconductor. Bombardment of n-type GaAs by protons creates damage sites near the surface of the crystal structure where free carriers are trapped. This "free carrier compensated" region in the GaAs has a higher refractive index than the bulk region. If the compensated region is sufficiently thick and has a refractive index which is sufficiently larger than that of the bulk n-type region, an optical waveguide is formed. In this paper, a description of ion implantation techniques for the fabrication of both planar and channel integrated optical structures in GaAs is presented, and is related to the selection of ion species, implant energy and fluence, and to the physical processes involved. Lithographic technology and masking techniques are discussed for achieving a particular desired implant profile. Finally, the results of a set of ion implantation experiments are presented.

  1. Influence of defects and displacements in sapphire doped with Ag+ ions

    NASA Astrophysics Data System (ADS)

    Chen, Hua-jian; Wang, Yu-hua; Zhang, Xiao-jian; Zheng, Li-rong

    2015-12-01

    The Ag:Al2O3 composites are prepared by Ag+ ions implantation with the acceleration voltage of 35 kV. The formation of silver nanoparticle and the surface plasma resonance (SPR) effect are studied. The appearance of absorption bands demonstrates the formation of silver nanoparticles in Al2O3. Long-time sputtering due to the high fluency removes the surface layer, and the embedded Ag NPs appear on the surface though the majorities are in the deeper area. The fluorescence spectrum of Ag:Al2O3 evaluated by Gaussian fitting consists of three peaks: 365 nm, 403 nm and 471 nm. These bands should be attributed to defects produced by the matrix and embedded Ag+ ions. In addition, a strong peak at 693 nm is supposed to be R line for Al2O3 in the emission spectrum (VUV spectrum). The crystal structure and optical properties of ion implanted sapphire have been changed after ion implantation and it is analyzed by defects and displacements. Eventually, the SRIM program is used to simulate the growth of nanoparticles with four stages.

  2. Ion implantation of solar cell junctions without mass analysis

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D.; Tonn, D. G.

    1981-01-01

    This paper is a summary of an investigation to determine the feasibility of producing solar cells by means of ion implantation without the use of mass analysis. Ion implants were performed using molecular and atomic phosphorus produced by the vaporization of solid red phosphorus and ionized in an electron bombardment source. Solar cell junctions were ion implanted by mass analysis of individual molecular species and by direct unanalyzed implants from the ion source. The implant dose ranged from 10 to the 14th to 10 to the 16th atoms/sq cm and the energy per implanted atom ranged from 5 KeV to 40 KeV in this study.

  3. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    SciTech Connect

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  4. Rhenium ion beam for implantation into semiconductors

    SciTech Connect

    Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.; Kraevsky, S. V.; Yakushin, P. E.; Khoroshilov, V. V.; Gerasimenko, N. N.; Smirnov, D. I.; Fedorov, P. A.; Temirov, A. A.

    2012-02-15

    At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics and nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.

  5. Improved ion implant fluence uniformity in hydrogen enhanced glow discharge plasma immersion ion implantation into silicon

    SciTech Connect

    Luo, J.; Li, L. H. E-mail: paul.chu@cityu.edu.hk; Liu, H. T.; Xu, Y.; Zuo, X. J.; Zhu, P. Z.; Ma, Y. F.; Yu, K. M.; Fu, Ricky K. Y.; Chu, Paul K. E-mail: paul.chu@cityu.edu.hk

    2014-06-15

    Enhanced glow discharge plasma immersion ion implantation does not require an external plasma source but ion focusing affects the lateral ion fluence uniformity, thereby hampering its use in high-fluence hydrogen ion implantation for thin film transfer and fabrication of silicon-on-insulator. Insertion of a metal ring between the sample stage and glass chamber improves the ion uniformity and reduces the ion fluence non-uniformity as the cathode voltage is raised. Two-dimensional multiple-grid particle-in-cell simulation confirms that the variation of electric field inside the chamber leads to mitigation of the ion focusing phenomenon and the results are corroborated experimentally by hydrogen forward scattering.

  6. Method for ion implantation induced embedded particle formation via reduction

    DOEpatents

    Hampikian, Janet M; Hunt, Eden M

    2001-01-01

    A method for ion implantation induced embedded particle formation via reduction with the steps of ion implantation with an ion/element that will chemically reduce the chosen substrate material, implantation of the ion/element to a sufficient concentration and at a sufficient energy for particle formation, and control of the temperature of the substrate during implantation. A preferred embodiment includes the formation of particles which are nano-dimensional (<100 m-n in size). The phase of the particles may be affected by control of the substrate temperature during and/or after the ion implantation process.

  7. Application of ion implantation in tooling industry

    NASA Astrophysics Data System (ADS)

    Straede, Christen A.

    1996-06-01

    In papers published during the last half of the 1980s it is often stated that the application of ion beams to non-semiconductor purposes seems ready for full-scale industrial exploitation. However, progress with respect to commercialisation of ion implantation has been slower than predicted, although the process is quite clearly building up niche markets, especially in the tooling industry. It is the main purpose of this paper to discuss the implementation of the process in the tooling market, and to describe strategies used to ensure its success. The basic idea has been to find niches where ion implantation out-performs other processes both technically and in prices. For instance, it has been clearly realised that one should avoid competing with physical vapour deposition or other coating techniques in market areas where they perform excellently, and instead find niches where the advantages of the ion implantation technique can be fully utilised. The paper will present typical case stories in order to illustrate market niches where the technique has its greatest successes and potential.

  8. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  9. Production of Endohedral Fullerenes by Ion Implantation

    SciTech Connect

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for

  10. Plasma immersion ion implantation for reducing metal ion release

    SciTech Connect

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J.

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  11. Plasma immersion ion implantation for reducing metal ion release

    NASA Astrophysics Data System (ADS)

    Díaz, C.; García, J. A.; Mändl, S.; Pereiro, R.; Fernández, B.; Rodríguez, R. J.

    2012-11-01

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  12. Accelerating degradation rate of pure iron by zinc ion implantation

    PubMed Central

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-01-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  13. Accelerating degradation rate of pure iron by zinc ion implantation.

    PubMed

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-12-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications.

  14. Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg-1Ca alloy treated with MEVVA.

    PubMed

    Liu, Yang; Bian, Dong; Wu, Yuanhao; Li, Nan; Qiu, Kejin; Zheng, Yufeng; Han, Yong

    2015-09-01

    Mg-1Ca samples were implanted with biocompatible alloy ions Ag, Fe and Y respectively with a dose of 2×10(17)ionscm(-2) by metal vapor vacuum arc technique (MEVVA). The surface morphologies and surface chemistry were investigated by SEM, AES and XPS. Surface changes were observed after all three kinds of elemental ion implantation. The results revealed that the modified layer was composed of two sublayers, including an outer oxidized layer with mixture of oxides and an inner implanted layer, after Ag and Fe ion implantation. Y ion implantation induced an Mg/Ca-deficient outer oxidized layer and the distribution of Y along with depth was more homogeneous. Both electrochemical test and immersion test revealed accelerated corrosion rate of Ag-implanted Mg-1Ca and Fe-implanted Mg-1Ca, whereas Y ion implantation showed a short period of protection since enhanced corrosion resistance was obtained by electrochemical test, but accelerated corrosion rate was found by long period immersion test. Indirect cytotoxicity assay indicated good cytocompatibility of Y-implanted Mg-1Ca. Moreover, the corresponding corrosion mechanisms involving implanting ions into magnesium alloys were proposed, which might provide guidance for further application of plasma ion implantation to biodegradable Mg alloys.

  15. Doping of ion implanted polyethylene with metallocarborane

    NASA Astrophysics Data System (ADS)

    Hnatowicz, V.; Vacík, J.; Červená, J.; Švorčík, V.; Rybka, V.; Popok, V.; Fink, D.; Klett, R.

    1995-11-01

    Polyethylene samples implanted with 150 keV F + ions to the doses from 5 × 10 13-1 × 10 15cm -2 were exposed to 0.05 M water solution of metallocarborane [(C 2B 9H 11) 2Co]Cs at temperatures of 24, 50 and 85°C, and the diffusion and incorporation of elements in the sample surface layer were studied using Rutherford back-scattering and neutron depth profiling techniques. The amount of incorporated B and Cs atoms was found to be an increasing function of the temperature for all implanted doses. The indiffusion and incorporation of the [(C 2B 9H 11) 2Co] - anion and the Cs + cation proceed separately and the final {B}/{Cs} ratio is well below metallocarborane stoichiometry in most cases. The total amount of incorporated Cs and B atoms and their depth profiles depend on the implanted dose in very complicated manner. For lower implanted doses anomalous depth profiles of B and Cs, roughly following calculated profiles of electronic energy loss of F + ions are observed.

  16. Molecular ion sources for low energy semiconductor ion implantation (invited)

    SciTech Connect

    Hershcovitch, A.; Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu.; Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Dugin, S.; Alexeyenko, O.

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  17. Antibacterial PVD coatings doped with silver by ion implantation

    NASA Astrophysics Data System (ADS)

    Osés, J.; Palacio, J. F.; Kulkarni, S.; Medrano, A.; García, J. A.; Rodríguez, R.

    2014-08-01

    The antibacterial effect of certain metal ions, like silver, has been exploited since antiquity. Obviously, the ways to employ the biocide activity of this element have evolved throughout time and it is currently used in a wide range of clinical applications. The work presented here reports the results of an investigation focused on combining the protective properties of PVD coatings with the biocide property of silver, applied by ion implantation. For this purpose, chromium nitride layers were doped with silver implanted at two different doses (5 × 1016 and 1 × 1017 ion/cm2) at 100 keV of energy and perpendicular incidence. Full characterization of the coatings was performed to determine its topographical and mechanical properties. The concentration profile of Ag was analyzed by GD-OES. The thickness of the layers, nano-hardness, roughness, wear resistance and coefficient of friction were measured. Finally, the anti-bacterial efficacy of the coatings was determined following the JIS Z-2801:2010 Standard. The results provide clear insights into the efficacy of silver for antibacterial purposes, as well as on its influence in the mechanical and tribological behaviour of the coatings matrix.

  18. Laser annealing of ion implanted silicon

    SciTech Connect

    White, C.W.; Appleton, B.R.; Wilson, S.R.

    1980-01-01

    Pulsed laser annealing of ion implanted silicon leads to the formation of supersaturated alloys by nonequilibrium crystal growth processes at the interface occurring during liquid phase epitaxial regrowth. The interfacial distribution coefficients from the melt (k') and the maximum substitutional solubilities (C/sub s//sup max/) are far greater than equilibrium values. Both K' and C/sub s//sup max/ are functions of growth velocity. Mechanisms limiting substitutional solubilities are discussed. 5 figures, 2 tables.

  19. Integral stress in ion-implanted silicon

    NASA Astrophysics Data System (ADS)

    Tamulevicius, S.; Pozela, I.; Jankauskas, J.

    1998-11-01

    A theoretical model of production and relaxation of stress in ion-implanted silicon is proposed. It is based on the assumptions that the point defects are the source of mechanical stress and that the relaxation of stress is due to the viscous flow of ion-irradiated silicon. The integrated stress acting in a damaged layer has been studied as a function of the 0022-3727/31/21/002/img1-ion current density j = 0.01-0022-3727/31/21/002/img2, ion energy 0022-3727/31/21/002/img3-160 keV, substrate temperature T = 78-500 K and dose in the range up to 0022-3727/31/21/002/img4. It was shown that the maximum integral stress values induced in silicon are of the order of 100 N 0022-3727/31/21/002/img5. The maximum is reached at a dose of about 0022-3727/31/21/002/img6 that corresponds to the silicon-amorphization dose. Stress due to implanted ions is essential for the high-dose region 0022-3727/31/21/002/img7 and it dominates at high temperatures of the substrate.

  20. Development of a microwave ion source for ion implantations

    SciTech Connect

    Takahashi, N. Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T.

    2016-02-15

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P{sup +} beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P{sup +} beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH{sub 3} gas.

  1. Development of a microwave ion source for ion implantations

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T.

    2016-02-01

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P+ beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P+ beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH3 gas.

  2. Antimicrobial and osteogenic properties of silver-ion-implanted stainless steel.

    PubMed

    Qin, Hui; Cao, Huiliang; Zhao, Yaochao; Jin, Guodong; Cheng, Mengqi; Wang, Jiaxin; Jiang, Yao; An, Zhiquan; Zhang, Xianlong; Liu, Xuanyong

    2015-05-27

    Prevention of implant loosening and infection is crucial to orthopedic and dental surgeries. In this work, the surface of stainless steel (SS) was modified by silver-sourced plasma immersion ion implantation (Ag-PIII). Metallic silver nanoparticles with various diameters and distributions were fabricated on the SS surfaces after treatment with Ag-PIII for 0.5 and 1.5 h, respectively. The osteogenic activity and antimicrobial properties of SS before and after Ag-PIII treatment were evaluated using in vitro and in vivo tests. The results demonstrated that Ag-PIII treatment not only promoted the antibacterial activity of SS but also enhanced the osteogenic differentiation of human bone marrow stromal cells.

  3. Synthesis of unattainable ion implantation profiles — 'Pseudo-implantation'

    NASA Astrophysics Data System (ADS)

    Brown, I. G.; Anders, A.; Anders, S.; Castro, R. A.; Dickinson, M. R.; MacGill, R. A.; Wang, Z.

    1995-12-01

    Metal implantation provides a powerful tool for the formation of non-equilibrium alloy layers for a wide variety of basic and applied materials applications, but the technique is fundamentally limited in two important ways: (i) the implanted species concentration is limited by sputtering of the modified layer by the incident ion beam itself, and the sputter-limited retained dose is often disappointingly low; (ii) the thickness of the modified layer is limited by the maximum ion energy available, and for practical reasons (implanter voltage) the layer thickness is often just a few hundred ångströms. We describe here a metal-plasma-immersion-based method for synthesizing non-equilibrium alloy layers of arbitrarily high dopant concentration and of arbitrary thickness. By repetitively pulse biasing the substrate to high negative voltage while it is immersed in the metal plasma from a vacuum arc plasma gun, a layer can be synthesized that is atomically mixed into the substrate with an interface width determined by the early-time bias voltage and with a thickness determined by the overall duration of the process. The species is that of the vacuum arc cathode material, which for this purpose can be a mixture of the substrate metal and the wanted dopant metal. We have used the method to form a high concentration Ta layer on the copper rails of an electromagnetic rail gun, with total surface area treated about 3000 cm 2; the Ta depth profile was flat at about 50 at.% Ta in Cu to a depth of about 1000 Å.

  4. Enhancing antibacterial properties of UHMWPE via ion implantation

    NASA Astrophysics Data System (ADS)

    Nassisi, Vincenzo; Delle Side, Domenico; Velardi, Luciano; Alifano, Pietro; Talà, Adelfia; Maurizio Tredici, Salvatore

    2012-10-01

    In the last decades, the demand for biomaterials of antimicrobial quality sensibly increased. The essential properties of these materials must be the biocompatibility, wettability, durability and their antibacterial characteristics. One of the most important biomaterial for medical applications is the ultra high molecular weight polyethylene (UHMWPE) that it is used to make components of prosthetic knee, hip and shoulder. It is well known that the presence in UHMWPE of Ag atoms increase its antibacterial properties while Cu and its alloys are known as natural antimicrobial materials. In this work it is proposed a dedicated laser ion source (LIS) accelerator to perform ion implantation together with a systematic study of the surface properties of UHMWPE samples treated with different metals in order to modify their antibacterial characteristics. The proposed technique consists in the application of a dose of specific ions inside the first layer of the sample to be treated. This goal can be effectively achieved if the ions are preventively accelerated. This technique seems to be interesting, since it can open the way to an easier realization of antibacterial materials using various metal ions.

  5. Novel method for fabrication of integrated resistors on bilayer Ag/YBa2Cu3O7 films using Ni implantation

    NASA Astrophysics Data System (ADS)

    LaGraff, J. R.; Chan, H.; Murduck, J. M.; Hong, S. H.; Ma, Q. Y.

    1997-10-01

    A novel ion implantation method is described for fabricating low inductance integrated resistors on Ag/YBa2Cu3O7 (YBCO) bilayer thin films. Parallel high and low value resistors were simultaneously formed by patterning bilayer films into 10-μm-wide lines, then masking and implanting with Ni to selectively inhibit superconductivity in YBCO. Low value resistors (<1 Ω/sq) were formed at 77 K as the supercurrent bypassed the Ni-doped nonsuperconducting YBCO and was shunted through the overlying low resistivity Ag metal. High value resistors (20-140 Ω/sq) were formed by removing Ag from above the implanted YBCO forcing the current through the implanted YBCO region. The sheet resistance of both types of resistors was found to increase systematically with increasing Ni implant energy.

  6. Computer automation of high current ion implanters

    NASA Astrophysics Data System (ADS)

    Woodard, Ollie; Lindsey, Paul; Cecil, Joseph; Pipe, Robert

    1985-01-01

    Complete computer automation of a high current ion implanter has been achieved. Special design considerations were necessary for automation including the development of a simplified ion source, a simplified beam transport control function, and a computer aided real-time feedback dosimetry control system. A special, versatile software architecture was also necessary to allow protected operation by unskilled operators, as well as diagnostic and maintenance modes accessible only to qualified personnel. Integral mounting of the DEC LSI-11 computer in the implanter frame provided additional challenges regarding EMI control and the electrical isolation required. The end result is a system in which all pertinent functions of the implanter are computer monitored and controlled continuously, allowing for automatic set-up, operation, on-line fault detection and diagnostics, with recovery software to correct many transient problems as they occur. This paper will discuss both general and specific solutions to the design problems encountered, and will review the system performance from a user point of view.

  7. Computational stochastic model of ions implantation

    SciTech Connect

    Zmievskaya, Galina I. Bondareva, Anna L.; Levchenko, Tatiana V.; Maino, Giuseppe

    2015-03-10

    Implantation flux ions into crystal leads to phase transition /PT/ 1-st kind. Damaging lattice is associated with processes clustering vacancies and gaseous bubbles as well their brownian motion. System of stochastic differential equations /SDEs/ Ito for evolution stochastic dynamical variables corresponds to the superposition Wiener processes. The kinetic equations in partial derivatives /KE/, Kolmogorov-Feller and Einstein-Smolukhovskii, were formulated for nucleation into lattice of weakly soluble gases. According theory, coefficients of stochastic and kinetic equations uniquely related. Radiation stimulated phase transition are characterized by kinetic distribution functions /DFs/ of implanted clusters versus their sizes and depth of gas penetration into lattice. Macroscopic parameters of kinetics such as the porosity and stress calculated in thin layers metal/dielectric due to Xe{sup ++} irradiation are attracted as example. Predictions of porosity, important for validation accumulation stresses in surfaces, can be applied at restoring of objects the cultural heritage.

  8. Biodegradable radioactive implants for glaucoma filtering surgery produced by ion implantation

    NASA Astrophysics Data System (ADS)

    Assmann, W.; Schubert, M.; Held, A.; Pichler, A.; Chill, A.; Kiermaier, S.; Schlösser, K.; Busch, H.; Schenk, K.; Streufert, D.; Lanzl, I.

    2007-04-01

    A biodegradable, β-emitting implant has been developed and successfully tested which prevents fresh intraocular pressure increase after glaucoma filtering surgery. Ion implantation has been used to load the polymeric implants with the β-emitter 32P. The influence of ion implantation and gamma sterilisation on degradation and 32P-fixation behavior has been studied by ion beam and chemical analysis. Irradiation effects due to the applied ion fluence (1015 ions/cm2) and gamma dose (25 kGy) are found to be tolerable.

  9. Production technology for high efficiency ion implanted solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.; Minnucci, J. A.; Greenwald, A. C.; Josephs, R. H.

    1978-01-01

    Ion implantation is being developed for high volume automated production of silicon solar cells. An implanter designed for solar cell processing and able to properly implant up to 300 4-inch wafers per hour is now operational. A machine to implant 180 sq m/hr of solar cell material has been designed. Implanted silicon solar cells with efficiencies exceeding 16% AM1 are now being produced and higher efficiencies are expected. Ion implantation and transient processing by pulsed electron beams are being integrated with electrostatic bonding to accomplish a simple method for large scale, low cost production of high efficiency solar cell arrays.

  10. Carbon, nitrogen, and oxygen ion implantation of stainless steel

    SciTech Connect

    Rej, D.J.; Gavrilov, N.V.; Emlin, D.

    1995-12-31

    Ion implantation experiments of C, N, and O into stainless steel have been performed, with beam-line and plasma source ion implantation methods. Acceleration voltages were varied between 27 and 50 kV, with pulsed ion current densities between 1 and 10 mA/cm{sup 2}. Implanted doses ranged from 0.5 to 3 {times} 10{sup 18}cm{sup -2}, while workpiece temperatures were maintained between 25 and 800 C. Implant concentration profiles, microstructure, and surface mechanical properties of the implanted materials are reported.

  11. Dynamics of Faceted Nanoparticles Formation in a Crystalline Matrix During Ion Implantation Processing.

    PubMed

    Li, Kun-Dar

    2016-02-01

    The faceted nanoparticle synthesized by ion implantation, such as Zn, Cu or Ag nanoparticles, is one of the promising materials for the next generation of optical devices. To understand and better control the manufacturing processes of ion implantation, a theoretical model is applied to investigate the formation and evolution of faceted nanoparticles under various experimental conditions of implantation processing. In this study, the mechanisms of the anisotropic interfacial energy and kinetics with different ion distributions are taken into consideration to demonstrate the role of the crystallographic symmetry, ion energy and temperature on the faceted nanoparticles formation in a crystalline matrix. As presented in the numerical results, the morphological shape of the nanoparticles is mainly affected by the crystallographic symmetry, while the distribution of the precipitates is principally determined by the ion energy. For the condition of high-temperature implantation, a high mobility of ions causes the characteristic length of nanostructures to increase and creates a coarsening morphology of nanoparticles. It is attributed to a longer diffusion distance during the nucleation and growth processes. This model can be widely used for the predictions of the nanostructures formation with various ion implantation processes.

  12. Metal alloy and monoelemental nanoclusters in silica formed by sequential ion implantation and annealing in selected atmosphere

    NASA Astrophysics Data System (ADS)

    Ren, F.; Jiang, C. Z.; Chen, H. B.; Shi, Y.; liu, C.; Wang, J. B.

    2004-11-01

    The preparation of metal alloy and monoelemental nanoclusters in silica by Ag, Cu ion sequential implantation and annealing in selected oxidizing or reducing atmosphere is studied. The formation of metastable Ag-Cu alloy is verified in the as-implanted samples by optical absorption spectra, selected area electron diffraction and energy dispersive spectrometer spectrum. The alloy is discomposed at elevated annealing temperature in both oxidizing and reducing atmospheres. The different effects of annealing behaviors on the Ag-Cu alloy nanoclusters are investigated.

  13. Radiation hardened PMOS process with ion implanted threshold adjust

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.

    1979-01-01

    By including specific process modifications the effect of ion implantation on radiation hardness can be minimized and radiation hard ion implanted MOS circuits can be fabricated. The experimental procedure followed was to examine key processing steps (with respect to radiation hardness) on ion-implanted individual PMOS transistors. The individual transistors were evaluated by continuously monitoring the threshold voltage as the transistors were being irradiated. By comparing runs it was possible to deduce what is considered a radiation hard ion implanted process. Tests with a complex LSI PMOS IC processor chip containing over 2000 transistors and resistors were also conducted

  14. Ion implantation effects in 'cosmic' dust grains

    NASA Technical Reports Server (NTRS)

    Bibring, J. P.; Langevin, Y.; Maurette, M.; Meunier, R.; Jouffrey, B.; Jouret, C.

    1974-01-01

    Cosmic dust grains, whatever their origin may be, have probably suffered a complex sequence of events including exposure to high doses of low-energy nuclear particles and cycles of turbulent motions. High-voltage electron microscope observations of micron-sized grains either naturally exposed to space environmental parameters on the lunar surface or artificially subjected to space simulated conditions strongly suggest that such events could drastically modify the mineralogical composition of the grains and considerably ease their aggregation during collisions at low speeds. Furthermore, combined mass spectrometer and ionic analyzer studies show that small carbon compounds can be both synthesized during the implantation of a mixture of low-energy D, C, N ions in various solids and released in space by ion sputtering.

  15. PLEPS study of ions implanted RAFM steels

    NASA Astrophysics Data System (ADS)

    Sojak, S.; Slugeň, V.; Egger, W.; Ravelli, L.; Petriska, M.; Veterníková, J.; Stacho, M.; Sabelová, V.

    2014-04-01

    Current nuclear power plants (NPP) require radiation, heat and mechanical resistance of their structural materials with the ability to stay operational during NPP planned lifetime. Radiation damage much higher, than in the current NPP, is expected in new generations of nuclear power plants, such as Generation IV and fusion reactors. Investigation of perspective structural materials for new generations of nuclear power plants is among others focused on study of reduced activation ferritic/martensitic (RAFM) steels. These steels have good characteristics as reduced activation, good resistance to volume swelling, good radiation, and heat resistance. Our experiments were focused on the study of microstructural changes of binary Fe-Cr alloys with different chromium content after irradiation, experimentally simulated by ion implantations. Fe-Cr alloys were examined, by Pulsed Low Energy Positron System (PLEPS) at FRM II reactor in Garching (Munich), after helium ion implantations at the dose of 0.1 C/cm2. The investigation was focused on the chromium effect and the radiation defects resistivity. In particular, the vacancy type defects (monovacancies, vacancy clusters) have been studied. Based on our previous results achieved by conventional lifetime technique, the decrease of the defects size with increasing content of chromium is expected also for PLEPS measurements.

  16. All-ion-implantation process for integrated circuits

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1979-01-01

    Simpler than diffusion fabrication, ion bombardment produces complementary-metal-oxide-semiconductor / silicon-on-sapphire (CMOS/SOS) circuits that are one-third faster. Ion implantation simplifies the integrated circuit fabrication procedure and produces circuits with uniform characteristics.

  17. MEVVA ion-implantation of high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Martin, J. W.; Cohen, D. D.; Russell, G. J.; Dytlewski, N.; Evans, P. J.

    1995-12-01

    Metallised vapour vacuum arc (MEVVA) ion-implantation has been used to implant transition metal ions into high quality superconductor materials. Analysis of the samples was by the relatively new technique of heavy ion elastic recoil time-of-flight spectroscopy (ERTOFS), employing a 77 MeV 127I 10+ beam. The HIERTOFS technique is ideally suited to samples of this nature, providing individual depth profiles for each element within the matrix. The results were found to be implant-ion species dependent, with ions such as Ni and Co having differing effects to that of Fe. This paper will report on the use of ERTOFS as a method to obtain individual implant and substrate profiles from the ion-beam modified materials.

  18. Applications of ion implantation for high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Kirkpatrick, A. R.

    1977-01-01

    Ion implantation is utilized for the dopant introduction processes necessary to fabricate a silicon solar cell. Implantation provides a versatile powerful tool for development of high efficiency cells. Advantages and problems of implantation and the present status of developmental use of the technique for solar cells are discussed.

  19. A novel method for effective sodium ion implantation into silicon

    SciTech Connect

    Lu Qiuyuan; Chu, Paul K.

    2012-07-15

    Although sodium ion implantation is useful to the surface modification of biomaterials and nano-electronic materials, it is a challenging to conduct effective sodium implantation by traditional implantation methods due to its high chemical reactivity. In this paper, we present a novel method by coupling a Na dispenser with plasma immersion ion implantation and radio frequency discharge. X-ray photoelectron spectroscopy (XPS) depth profiling reveals that sodium is effectively implanted into a silicon wafer using this apparatus. The Na 1s XPS spectra disclose Na{sub 2}O-SiO{sub 2} bonds and the implantation effects are confirmed by tapping mode atomic force microscopy. Our setup provides a feasible way to conduct sodium ion implantation effectively.

  20. Mechanical stresses and amorphization of ion-implanted diamond

    NASA Astrophysics Data System (ADS)

    Khmelnitsky, R. A.; Dravin, V. A.; Tal, A. A.; Latushko, M. I.; Khomich, A. A.; Khomich, A. V.; Trushin, A. S.; Alekseev, A. A.; Terentiev, S. A.

    2013-06-01

    Scanning white light interferometry and Raman spectroscopy were used to investigate the mechanical stresses and structural changes in ion-implanted natural diamonds with different impurity content. The uniform distribution of radiation defects in implanted area was obtained by the regime of multiple-energy implantation of keV He+ ions. A modification of Bosia's et al. (Nucl. Instrum. Meth. B 268 (2010) 2991) method for determining the internal stresses and the density variation in an ion-implanted diamond layer was proposed that suggests measuring, in addition to the surface swelling of a diamond plate, the radius of curvature of the plate. It is shown that, under multiple-energy implantation of He+, mechanical stresses in the implanted layer may be as high as 12 GPa. It is shown that radiation damage reaches saturation for the implantation fluence characteristic of amorphization of diamond but is appreciably lower than the graphitization threshold.

  1. A novel method for effective sodium ion implantation into silicon.

    PubMed

    Lu, Qiu Yuan; Chu, Paul K

    2012-07-01

    Although sodium ion implantation is useful to the surface modification of biomaterials and nano-electronic materials, it is a challenging to conduct effective sodium implantation by traditional implantation methods due to its high chemical reactivity. In this paper, we present a novel method by coupling a Na dispenser with plasma immersion ion implantation and radio frequency discharge. X-ray photoelectron spectroscopy (XPS) depth profiling reveals that sodium is effectively implanted into a silicon wafer using this apparatus. The Na 1s XPS spectra disclose Na(2)O-SiO(2) bonds and the implantation effects are confirmed by tapping mode atomic force microscopy. Our setup provides a feasible way to conduct sodium ion implantation effectively.

  2. The formation of silver metal nanoparticles by ion implantation in silicate glasses

    NASA Astrophysics Data System (ADS)

    Vytykacova, S.; Svecova, B.; Nekvindova, P.; Spirkova, J.; Mackova, A.; Miksova, R.; Böttger, R.

    2016-03-01

    It has been shown that glasses containing silver metal nanoparticles are promising photonics materials for the fabrication of all-optical components. The resulting optical properties of the nanocomposite glasses depend on the composition and structure of the glass, as well as on the type of metal ion implanted and the experimental procedures involved. The main aim of this article was to study the influence of the conditions of the ion implantation and the composition of the glass on the formation of metal nanoparticles in such glasses. Four various types of silicate glasses were implanted with Ag+ ions with different energy (330 keV, 1.2 MeV and 1.7 MeV), with the fluence being kept constant (1 × 1016 ions cm-2). The as-implanted samples were annealed at 600 °C for 1 h. The samples were characterised in terms of: the nucleation of metal nanoparticles (linear optical absorption), the migration of silver through the glass matrix during the implantation and post-implantation annealing (Rutherford backscattering spectroscopy), and the oxidation state of silver (photoluminescence in the visible region).

  3. Ion beam mixing effects in Ag precipitates embedded in MgO crystals

    NASA Astrophysics Data System (ADS)

    Fuchs, G.; Abouchacra, G.; Treilleux, M.; Thevenard, P.; Serughetti, J.

    1988-05-01

    MgO single crystals have been implanted at room temperature with 8 × 10 16 Ag cm -2 of 180 keV energy. After 973 K thermal annealing, Ag atoms precipitate in the MgO matrix. The MgOAg samples were then irradiated at 77 K with 800 keV xenon up to 1.7 × 10 16 ions cm -2. The modification of the metallic precipitated phase induced by such ionic bombardment, has been characterized by optical absorption spectroscopy (OAS) and transmission electron microscopy (TEM). The evolution of the optical spectra with xenon bombardment has been interpreted in terms of silver precipitate dispersion induced by ion beam mixing effects. The inhibition of atomic diffusion or radiation induced diffusion, due the low sample temperature during irradiation, increases the efficiency of atomic mixing effects. TEM observations confirm this assumption.

  4. Modeling of nanocluster formation by ion beam implantation

    SciTech Connect

    Li, Kun-Dar

    2011-08-15

    A theoretical model was developed to investigate the mechanism of the formation of nanoclusters via ion beam implantation. The evolution of nanoclusters, including the nucleation and growth process known as Ostwald ripening, was rebuilt using numerical simulations. The effects of implantation parameters such as the ion energy, ion fluence, and temperature on the morphology of implanted microstructures were also studied through integration with the Monte Carlo Transport of Ions in Matter code calculation for the distribution profiles of implanted ions. With an appropriate ion fluence, a labyrinth-like nanostructure with broad size distributions of nanoclusters formed along the ion implantation range. In a latter stage, a buried layer of implanted impurity developed. With decreasing ion energy, the model predicted the formation of precipitates on the surface. These simulation results were fully consistent with many experimental observations. With increased temperature, the characteristic length and size of nanostructures would increase due to the high mobility. This theoretical model provides an efficient numerical approach for fully understanding the mechanism of the formation of nanoclusters, allowing for the design of ion beam experiments to form specific nanostructures through ion-implantation technology.

  5. Ion-implanted extrinsic Ge photodetectors with extended cutoff wavelength

    NASA Technical Reports Server (NTRS)

    Wu, I. C.; Beeman, J. W.; Luke, P. N.; Hansen, W. L.; Haller, E. E.

    1991-01-01

    Far-IR Ge detectors fabricated using boron ion implantation are shown to exhibit operating characteristics compatible with requirements for low background applications. Device parameters such as low dark currents, reasonably good sensitivity, and extended wavelength threshold demonstrate that ion-implanted Ge far-IR detectors offer promise for use in astrophysics instrumentation.

  6. Ion implantation of highly corrosive electrolyte battery components

    DOEpatents

    Muller, R.H.; Zhang, S.

    1997-01-14

    A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, and sodium sulfur. 6 figs.

  7. Ion implantation of highly corrosive electrolyte battery components

    DOEpatents

    Muller, Rolf H.; Zhang, Shengtao

    1997-01-01

    A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, end sodium sulfur.

  8. Self-organized surface ripple pattern formation by ion implantation

    NASA Astrophysics Data System (ADS)

    Hofsäss, Hans; Zhang, Kun; Bobes, Omar

    2016-10-01

    Ion induced ripple pattern formation on solid surfaces has been extensively studied in the past and the theories describing curvature dependent ion erosion as well as redistribution of recoil atoms have been very successful in explaining many features of the pattern formation. Since most experimental studies use noble gas ion irradiation, the incorporation of the ions into the films is usually neglected. In this work we show that the incorporation or implantation of non-volatile ions also leads to a curvature dependent term in the equation of motion of a surface height profile. The implantation of ions can be interpreted as a negative sputter yield; and therefore, the effect of ion implantation is opposite to the one of ion erosion. For angles up to about 50°, implantation of ions stabilizes the surface, whereas above 50°, ion implantation contributes to the destabilization of the surface. We present simulations of the curvature coefficients using the crater function formalism and we compare the simulation results to the experimental data on the ion induced pattern formation using non-volatile ions. We present several model cases, where the incorporation of ions is a crucial requirement for the pattern formation.

  9. Human study of ion implantation as a surface treatment for dental implants.

    PubMed

    De Maeztu, M A; Braceras, I; Álava, J I; Recio, C; Piñera, M; Gay-Escoda, C

    2013-07-01

    This clinical study evaluated a new surface treatment of ion implantation with CO ions which has previously been subjected to extensive study in animal models. The aim of this work was to assess its effect in humans. Experimental mini-implants were used; half of their longitudinal surface was machined and the other half was treated with CO ion implantation. The study was conducted in healthy volunteer patients who required prosthetic treatment with dental implants, and in accordance with the corresponding ethics committees. Coinciding with the insertion of commercial implants for oral restoration, one or two mini-implants were placed in the upper maxillary tuberosity or in the retromolar trigone of the mandible. The mini-implants were removed with a trephine jointly with a small volume of surrounding bone after a 3-month period. Two evaluation methods were used and both showed a greater degree of bone integration in the mini-implant section that underwent CO ion implantation treatment in comparison with the non-treated surface: 62.9% vs. 57.9%, and 54.8% vs. 46.2%. In addition, no adverse reactions were observed in the surface treatment with CO ion implantation. These results confirm the positive benefits in humans, based on the findings obtained from previous animal experiments.

  10. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source.

    PubMed

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm(2). The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  11. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm2. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  12. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    SciTech Connect

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Won, Mi-Sook; Lee, Seung Wook

    2016-02-15

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1–10 mm{sup 2}. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  13. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Resta, V.; Quarta, G.; Farella, I.; Maruccio, L.; Cola, A.; Calcagnile, L.

    2014-07-01

    The implantation of 1 MeV metal (63Cu+, 107Ag+, 197Au+) and non-metal (4He+, 12C+) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 1013 ions cm-2, the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated Cdbnd C bonds. For fluences around 1 × 1017 ions cm-2, the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C0x clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C0x cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼107 Ω/sq has been measured for implantation with metals at doses higher than 5 × 1016 ions cm-2, being 1017 Ω/sq the corresponding sheet resistance for pristine PC.

  14. Quantifying the origin of released Ag+ ions from nanosilver.

    PubMed

    Sotiriou, Georgios A; Meyer, Andreas; Knijnenburg, Jesper T N; Panke, Sven; Pratsinis, Sotiris E

    2012-11-13

    Nanosilver is most attractive for its bactericidal properties in modern textiles, food packaging, and biomedical applications. Concerns, however, about released Ag(+) ions during dispersion of nanosilver in liquids have limited its broad use. Here, nanosilver supported on nanostructured silica is made with closely controlled Ag size both by dry (flame aerosol) and by wet chemistry (impregnation) processes without any surface functionalization that could interfere with its ion release. It is characterized by electron microscopy, atomic absorption spectroscopy, and X-ray diffraction, and its Ag(+) ion release in deionized water is monitored electrochemically. The dispersion method of nanosilver in solutions affects its dissolution rate but not the final Ag(+) ion concentration. By systematically comparing nanosilver size distributions to their equilibrium Ag(+) ion concentrations, it is revealed that the latter correspond precisely to dissolution of one to two surface silver oxide monolayers, depending on particle diameter. When, however, the nanosilver is selectively conditioned by either washing or H(2) reduction, the oxide layers are removed, drastically minimizing Ag(+) ion leaching and its antibacterial activity against E. coli . That way the bactericidal activity of nanosilver is confined to contact with its surface rather than to rampant ions. This leads to silver nanoparticles with antibacterial properties that are essential for medical tools and hospital applications.

  15. Implantation of nitrogen, carbon, and phosphorus ions into metals

    SciTech Connect

    Guseva, M.I.; Gordeeva, G.V.

    1987-01-01

    The application of ion implantation for alloying offers a unique opportunity to modify the chemical composition, phase constitution, and microstructure of the surface layers of metals. The authors studied ion implantation of nitrogen and carbon into the surface layers of metallic targets. The phase composition of the implanted layers obtained on the Kh18N10T stainless steel, the refractory molybdenum alloy TsM-6, niobium, and nickel was determined according to the conventional method of recording the x-ray diffraction pattern of the specimens using monochromatic FeK/sub alpha/-radiation on a DRON-2,0 diffractometer. The targets were bombarded at room temperature in an ILU-3 ion accelerator. The implantation of metalloid ions was also conducted with the targets being bombarded with 100-keV phosphorus ions and 40-keV carbon ions.

  16. Formation of optical properties of intermetallic nanoclusters formed by sequential ion implantation

    SciTech Connect

    Zuhr, R.A.; Magruder, R.H. III; Anderson, T.S.

    1997-09-01

    Recent demonstrations that large third order nonlinear responses can be achieved in metal nanocluster glass composites are of significant interest because of their potential for use in all optical switching networks. These composite materials exhibit picosecond switching and relaxation times, thermal and chemical stability, high laser damage thresholds, and low two photon absorption. Ion implantation has been shown to be a useful fabrication method to form these nanoclusters in silica because of its ability to produce thin films in waveguide configurations containing a high volume fraction (> 1%) of metal colloids with well defined vertical and horizontal dimensional control. Using sequential ion implantation of more than one element the authors can modify the composition and microstructure of the composites by forming intermetallic metal colloids. In this work the authors report on the improved optical response of metallic nanocluster composites formed by sequential implantation of Cd and Ag and Sb and Ag. Characterization of the samples by transmission electron microscopy (TEM) reveals that approximately spherical metallic colloids are formed for all implanted species during the implantation process. Selected area diffraction patterns indicate that the colloids formed are intermetallic in composition. Linear optical absorption measurements made at room temperature in air from 900 to 200 nm show significant changes in both the magnitude and wavelength of the surface plasmon resonance. The formation of intermetallic nanoclusters results in changes in both the linear and nonlinear optical properties of the composite material that are not possible with single element colloids alone. The results are explained in terms of effective medium theory.

  17. Dynamic MC simulation of low-energy ion implantation

    NASA Astrophysics Data System (ADS)

    Yamamura, Y.

    1999-06-01

    In order to investigate the ion fluence effect in the depth profiles of the dynamic Monte Carlo code, ACAT-DIFFUSE, is applied to the calculation of depth profiles due to low-energy B ion implantation, where 1 and 5 keV B ions are implanted into an amorphized silicon target. As the ion fluence increases, the dopant B atoms are accumulated in solids and the target must be considered as a two-component material composed of the original target atoms and trapped implanted ions. This results in the radiation-induced-diffusion and the self-sputtering of trapped implanted ions. It is found that the peak locations of the dopant B depth profiles at 1 keV B ion bombardment shifted to the surface due to radiation-induced diffusion as ion increased and we observe the near-the-surface enhancement in the dopant B depth profiles due to 5 keV B ion bombardment. The self-sputtering also becomes important with increasing ion fluence. The retention ratios of the implanted B atoms are about 0.89 and 0.94 for 1 and 5 keV B ions, respectively, at 3.0 × 10 13 B ions/cm 2.

  18. High-dose boron and silver ion implantation into PMMA probed by slow positrons: Effects of carbonization and formation of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Kavetskyy, T.; Iida, K.; Nagashima, Y.; Kuczumow, A.; Šauša, O.; Nuzhdin, V.; Valeev, V.; Stepanov, A. L.

    2017-01-01

    The Doppler broadening slow positron beam spectroscopy (SPBS) data for the previously observed effect of carbonization in high-dose (>1016 ion/cm2) 40 keV boron-ion-implanted polymethylmethacrylate (B:PMMA) and another one obtained for the effect of formation of metal nanoparticles in high-dose 30 keV silver-ion-implanted polymer (Ag:PMMA) are compared. Following to the Doppler broadening SPBS results, a difference in the high-dose ion-irradiation-induced processes in B:PMMA and Ag:PMMA is detected.

  19. Deposition of Mass-Selected Ag7 on Pd(100):. Fragmentation and Implantation

    NASA Astrophysics Data System (ADS)

    Vandoni, G.; Félix, C.; Monot, R.; Buttet, J.; Massobrio, C.; Harbich, W.

    Mass-selected silver-cluster ions ( {{Ag}{7}{ + } } ; ) with an incident energy of 2.86 eV/atom and of 13.6 eV/atom are directed on a well-prepared Pd(100) surface, which is probed with thermal-energy atom (helium) scattering (TEAS), before, during, and after the deposition, yielding information on the collision process. We find that part of the cluster atoms are implanted into the surface layer, the fraction depending on the impact energy. Considerable fragmentation is present at both impact energies. Molecular dynamics calculations based on embedded atom method (EAM) potentials are used to model the collision process. These calculations confirm qualitatively the experimental results.

  20. Effects of Ti charge state, ion size and beam-induced compaction on the formation of Ag metal nanoparticles in fused silica

    NASA Astrophysics Data System (ADS)

    Magruder, R. H.; Meldrum, A.; Haglund, R. F.

    2015-04-01

    Metal nanoparticles formed by ion implantation in fused silica exhibit linear and nonlinear optical properties that can be altered by co-doping the silica substrate with transition-metal ions. For example, implantation of scandium in fused silica creates a directional optical dichroism due to the different spatial distribution of silver nanoparticles subsequently formed by Ag ion implantation. In this paper, we show that implantation of titanium ions alters the short- and intermediate-range order in the silica and thereby alters the diffusion and nucleation processes that lead to formation of silver nanoparticles. In particular, the dichroic response observed for Ag nanoparticles in Sc-implanted silica is, with one exception, in Ti-implanted silica. Compaction of the silica due to the ion implantation process appears to be similar for both Sc and Ti implantations, based on the observed shift of the 1,124 cm-1 transverse-optical phonon mode in the infrared reflectance spectrum. However, differences in chemical reactivity, bond lengths and electronic structure of Sc and Ti produce changes in electronic structure and strain that are sensitively reflected in the reflectance spectra of the Ag nanoparticles. These differences lead to modifications in the size, shape and spatial distributions of the silver nanoparticles and offer a powerful means of controlling their optical properties.

  1. Study of the effects of MeV Ag, Cu, Au, and Sn implantation on the optical properties of LiNbO3

    NASA Technical Reports Server (NTRS)

    Williams, E. K.; Ila, D.; Sarkisov, S.; Curley, M.; Poker, D. B.; Hensley, D. K.; Borel, C.

    1998-01-01

    The authors present the results of characterization of linear absorption and nonlinear refractive index of Au, Ag, Cu and Sn ion implantation into LiNbO3. Ag was implanted at 1.5 MeV to fluences of 2 to 17 x 17(exp 16)/sq cm at room temperature. Au and Cu were implanted to fluences of 5 to 20 x 10(exp 16)/sq cm at an energy of 2.0 MeV. Sn was implanted to a fluence of 1.6 x 10(exp 17)/sq cm at 160 kV. Optical absorption spectrometry indicated an absorption peak for the Au implanted samples after heat treatment at 1,000 C at approx. 620 nm. The Ag implanted samples absorption peaks shifted from approx. 450 nm before heat treatment to 550 nm after 500 C for 1h. Heat treatment at 800 C returned the Ag implanted crystals to a clear state. Cu nanocluster absorption peaks disappears at 500 C. No Sn clusters were observed by optical absorption or XRD. The size of the Ag and Au clusters as a function of heat treatment were determined from the absorption peaks. The Ag clusters did not change appreciably in size with heat treatment. The Au clusters increased from 3 to 9 nm diameter upon heat treatment at 1000 C. TEM analysis performed on a Au implanted crystal indicated the formation of Au nanocrystals with facets normal to the c-axis. Measurements of the nonlinear refractive indices were carried out using the Z-scan method with a tunable dye laser pumped by a frequency doubled mode-locked Nd:YAG laser. The dye laser had a 4.5 ps pulse duration time and 76 MHz pulse repetition rate (575 nm).

  2. Ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1991-01-01

    A Planar-Buried-Heterostructure, Graded-Index, Separate-Confinement-Heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding layer 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an ion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  3. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOEpatents

    Peercy, P.S.; Land, C.E.

    1980-06-13

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Ions that are implanted include H/sup +/, He/sup +/, Ar/sup +/, and a preferred co-implant of Ar/sup +/ and Ne/sup +/. The positive ion implantation advantageously serves to shift the band gap energy threshold of the PLZT material from near-uv light to visible blue light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to these positive ions of sufficient density and with sufficient energy to provide an image. The PLZT material may have a lanthanum content ranging from 5 to 10%; a lead zirconate content ranging from 62 to 70 mole %; and a lead titanate content ranging from 38 to 30%. The region of ion implantation is in a range from 0.1 to 2 microns below the surface of the PLZT plate. Density of ions is in the range from 1 x 10/sup 12/ to 1 x 10/sup 17/ ions/cm/sup 2/ and having an energy in the range from 100 to 500 keV.

  4. Software for goniometer control in the Triple Ion Implantation Facility

    SciTech Connect

    Allen, W.R.

    1994-02-01

    A computer program is described tat controls the goniometer employed in the ion scattering chamber of the Triple Ion Implantation Facility (TIF) in the Metals and Ceramics Division at Oak Ridge National Laboratory. Details of goniometer operation and its incorporation into the ion scattering setup specific to the TIF are also discussed.

  5. Development of vertical compact ion implanter for gemstones applications

    NASA Astrophysics Data System (ADS)

    Intarasiri, S.; Wijaikhum, A.; Bootkul, D.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.; Singkarat, S.

    2014-08-01

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  6. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, Bill R.; Ashley, Paul R.; Buchal, Christopher J.

    1989-01-01

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO.sub.3 crystals are implanted with high concentrations of Ti dopant at ion energies of about 350 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000.degree. C. produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality single crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguides properties.

  7. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

    1987-03-24

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

  8. Improving Sustainability of Ion Implant Modules

    NASA Astrophysics Data System (ADS)

    Mayer, Jim

    2011-01-01

    Semiconductor fabs have long been pressured to manage capital costs, reduce energy consumption and increasingly improve efforts to recycle and recover resources. Ion implant tools have been high-profile offenders on all three fronts. They draw such large volumes of air for heat dissipation and risk reduction that historically, they are the largest consumer of cleanroom air of any process tool—and develop energy usage and resource profiles to match. This paper presents a documented approach to reduce their energy consumption and dramatically downsize on-site facilities support for cleanroom air manufacture and abatement. The combination produces significant capital expenditure savings. The case entails applying SAGS Type 1 (sub-atmospheric gas systems) toxic gas packaging to enable engineering adaptations that deliver the energy savings and cost benefits without any reduction in environmental health and safety. The paper also summarizes benefits as they relate to reducing a fabs carbon emission footprint (and longer range advantages relative to potential cap and trade programs) with existing technology.

  9. Characterization of Ion Implanted and Laser Processed Wear Surfaces.

    DTIC Science & Technology

    1986-04-22

    Cavitation erosion tests were performed on nonimplanted and ion implanted samples of a Co’based hardface alloy (Stoody 3). Erosion of the test samples was...implanted samples of a Co-based hardface alloy (Stoody 3). Erosion of the test samples was found to initiate by debonding at the carbide-matrix interfaces

  10. Industrial applications of ion implantation into metal surfaces

    SciTech Connect

    Williams, J.M.

    1987-07-01

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry.

  11. Studies on Amorphizing Silicon Using Silicon Ion Implantation.

    DTIC Science & Technology

    1985-04-01

    130-200 keV ions with doses of 5 x 1014 to 2 x 1015 2 15 2ions/cm and for 0.5 micron films, 260-300 keV ions at 1-2 x 10 ions/cm . Svensson et al...Vol. 42, pp. 707-709, 1983. 17. B. Svensson , J. Linnros & G. Holmen, "Ion Beam Induced Annealing of Radiation Damage in Silicon on Sapphire," Nucl...Mayer, Lennart Eriksson & John A. Davies, Ion Implantation in Semiconductors, Academic Press, NY, 1970. 21. L. T. Chadderton & F. H. Eisen, editors. Ion

  12. Shallow junction formation by polyatomic cluster ion implantation

    SciTech Connect

    Takeuchi, Daisuke; Shimada, Norihiro; Matsuo, Jiro; Yamada, Isao

    1996-12-31

    Recent integrated circuits require shallow junctions which are less than 0.1 {mu}m depth. This creates a strong demand for low energy ion beam techniques. Equivalent low-energy and high-current ion beams can be realized quite easily with clusters, because the kinetic energy of the cluster is shared between the constituent atoms. Additionally, cluster-ion beams avoid damage due to excessive charge. We have used polyatomic clusters, decaborane (B{sub 10}H{sub 14}), as a kind of B cluster, in order to form a very shallow p{sup +} junction. A B SIMS profile of B{sub 10}H{sub 14} implanted into Si (100) at 20keV was quite similar to that of B implanted at 2keV. These SIMS measurements revealed that the cluster ion beam can realize equivalent low-energy implantation quite easily. The implantation efficiency achieved was about 90%. The damage induced by B{sub 10}H{sub 14} implantation was completely removed by a 600{degrees}C furnace anneal for 30 min, and implanted B atoms were electrically activated. After rapid thermal annealing (RTA) at 900{degrees}C of a sample prepared with a close of 5{times}10{sup 13} ion/cm{sup 2}, the sheet resistance decreased to about 600W/sq. and the activation efficiency was about 50%. These results show that a polyatomic cluster ion beam is useful for shallow junction formation.

  13. Development of vacuum arc ion sources for heavy ion accelerator injectors and ion implantation technology (invited)

    NASA Astrophysics Data System (ADS)

    Oks, Efim M.

    1998-02-01

    The status of experimental research and ongoing development and upgrade of MEVVA-type ion sources over the last two years since the previous ICIS-95 is reviewed. There are two main application fields for this ion source: heavy ion accelerators and material surface implantation technology. For particle accelerator ion injection to accelerators it is important to enhance the fractions of multiply charged ions in the ion beam as well as controlling the charge state distribution, and to improve of beam current stability (i.e., to minimize the beam noise) and pulse-to-pulse reproducibility. For ion implantation application we need to increase both the implantation dose rate and the source lifetime (between required maintenance downtime) as well as making this kind of source more reliable and of yet low cost. Most of experimental results reported on here have been obtained in a collaborative program between research groups LBNL (Berkeley, USA), GSI (Darmstadt, Germany), HCEI (Tomsk, Russia), and other important contributions have been made by the groups at (BNU, Beijing, China), EDU (Izmir, Turkey), and elsewhere.

  14. Physical and Tribological Characteristics of Ion-Implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Heidger, S.; Korenyi-Both, A. L.; Jayne, D. T.; Herrera-Fierro, P.; Shogrin, B.; Wilbur, P. J.; Wu, R. L. C.; Garscadden, A.; Barnes, P. N.

    1994-01-01

    Unidirectional sliding friction experiments were conducted with a natural, polished diamond pin in contact with both as-deposited and carbon-ion-implanted diamond films in ultrahigh vacuum. Diamond films were deposited on silicon, silicon carbide, and silicon nitride by microwave-plasma-assisted chemical vapor deposition. The as-deposited diamond films were impacted with carbon ions at an accelerating energy of 60 keV and a current density of 50 micron A/cm(exp 2) for approximately 6 min, resulting in a dose of 1.2 x 10(exp 17) carbon ions/cm(exp 2). The results indicate that the carbon ion implantation produced a thin surface layer of amorphous, nondiamond carbon. The nondiamond carbon greatly decreased both friction and wear of the diamond films. The coefficients of friction for the carbon-ion-implanted, fine-grain diamond films were less than 0.1, factors of 20 to 30 lower than those for the as-deposited, fine-grain diamond films. The coefficients of friction for the carbon-ion-implanted, coarse-grain diamond films were approximately 0.35, a factor of five lower than those for the as-deposited, coarse-grain diamond films. The wear rates for the carbon-ion-implanted, diamond films were on the order of 10(exp -6) mm(exp 3)/Nm, factors of 30 to 80 lower than that for the as-deposited diamond films, regardless of grain size. The friction of the carbon-ion-implanted diamond films was greatly reduced because the amorphous, nondiamond carbon, which had a low shear strength, was restricted to the surface layers (less than 0.1 micron thick) and because the underlying diamond materials retained their high hardness. In conclusion, the carbon-ion-implanted, fine-grain diamond films can be used effectively as wear resistant, self-lubricating coatings for ceramics, such as silicon nitride and silicon carbide, in ultrahigh vacuum.

  15. Physical and tribological characteristics of ion-implanted diamond films

    SciTech Connect

    Miyoshi, K.; Heidger, S.; Korenyi-both, A.L.; Jayne, D.T.; Herrera-Fierro, P.; Shogrin, B.; Wilbur, P.J.; Wu, R.L.C.; Garscadden, A.; Barnes, P.N.

    1994-11-01

    Unidirectional sliding friction experiments were conducted with a natural, polished diamond pin in contact with both as-deposited and carbon-ion-implanted diamond films in ultrahigh vacuum. Diamond films were deposited on silicon, silicon carbide, and silicon nitride by microwave-plasma-assisted chemical vapor deposition. The as-deposited diamond films were impacted with carbon ions at an accelerating energy of 60 keV and a current density of 50 micron A/cm(exp 2) for approximately 6 min, resulting in a dose of 1.2 x 10(exp 17) carbon ions/cm(exp 2). The results indicate that the carbon ion implantation produced a thin surface layer of amorphous, nondiamond carbon. The nondiamond carbon greatly decreased both friction and wear of the diamond films. The coefficients of friction for the carbon-ion-implanted, fine-grain diamond films were less than 0.1, factors of 20 to 30 lower than those for the as-deposited, fine-grain diamond films. The coefficients of friction for the carbon-ion-implanted, coarse-grain diamond films were approximately 0.35, a factor of five lower than those for the as-deposited, coarse-grain diamond films. The wear rates for the carbon-ion-implanted, diamond films were on the order of 10(exp -6) mm(exp 3)/Nm, factors of 30 to 80 lower than that for the as-deposited diamond films, regardless of grain size. The friction of the carbon-ion-implanted diamond films was greatly reduced because the amorphous, nondiamond carbon, which had a low shear strength, was restricted to the surface layers (less than 0.1 micron thick) and because the underlying diamond materials retained their high hardness. In conclusion, the carbon-ion-implanted, fine-grain diamond films can be used effectively as wear resistant, self-lubricating coatings for ceramics, such as silicon nitride and silicon carbide, in ultrahigh vacuum.

  16. Extension of Plasma Source Ion Implantation to Ion Beam Enhanced Deposition

    DTIC Science & Technology

    1989-10-05

    22, 90 (1989). Nitriding/ Carburizing , Cincinnati, Ohio, Septem- 51. M. A. Lieberman, "Model of Plasma Immersion Ion ber 16-20, 1989. Implantation...TYPE AND OATES COVERED 1990 Final I Feb 89 - 31 Jul 89 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Extension of Plasma Source Ion Implantation to Ion Beam...UL NSN 7540-01.280-5500 Standard Form 298 (Rev 2-89) *’@Krab OV ANSI St 139-IS t9-0 Extension of Plasma Source Ion Implantation to Ion Beam Enhanced

  17. Hydrogenation of zirconium film by implantation of hydrogen ions

    NASA Astrophysics Data System (ADS)

    Yang, LIU; Kaihong, FANG; Huiyi, LV; Jiwei, LIU; Boyu, WANG

    2017-03-01

    In order to understand the drive-in target in a D–D type neutron generator, it is essential to study the mechanism of the interaction between hydrogen ion beams and the hydrogen-absorbing metal film. The present research concerns the nucleation of hydride within zirconium film implanted with hydrogen ions. Doses of 30 keV hydrogen ions ranging from 4.30 × 1017 to 1.43 × 1018 ions cm‑2 were loaded into the zirconium film through the ion beam implantation technique. Features of the surface morphology and transformation of phase structures were investigated with scanning electron microscopy, atomic force microscopy and x-ray diffraction. Confirmation of the formation of δ phase zirconium hydride in the implanted samples was first made by x-ray diffraction, and the different stages in the gradual nucleation and growth of zirconium hydride were then observed by atomic force microscope and scanning electron microscopy.

  18. Charge state defect engineering of silicon during ion implantation

    SciTech Connect

    Brown, R.A.; Ravi, J.; Erokhin, Y.; Rozgonyi, G.A.; White, C.W.

    1997-01-01

    Effects of in situ interventions which alter defect interactions during implantation, and thereby affect the final damage state, have been investigated. Specifically, we examined effects of internal electric fields and charge carrier injection on damage accumulation in Si. First, we implanted H or He ions into diode structures which were either reverse or forward biased during implantation. Second, we implanted B or Si ions into plain Si wafers while illuminating them with UV light. In each case, the overall effect is one of damage reduction. Both the electric field and charge carrier injection effects may be understood as resulting from changes in defect interactions caused in part by changes to the charge state of defects formed during implantation.

  19. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOEpatents

    Land, Cecil E.; Peercy, Paul S.

    1983-01-01

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Implanted ions include H.sup.+, He.sup.+, Ne.sup.+, Ar.sup.+, as well as chemically reactive ions from Fe, Cr, and Al. The positive ion implantation advantageously serves to shift the absorption characteristics of the PLZT material from near-UV light to visible light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to the positive ions at sufficient density, from 1.times.10.sup.12 to 1.times.10.sup.17, and with sufficient energy, from 100 to 500 KeV, to provide photosensitivity enhancement. The PLZT material may have a lanthanum content ranging from 5 to 10%, a lead zirconate content of 62 to 70 mole %, and a lead titanate content of 38 to 30%. The ions are implanted at a depth of 0.1 to 2 microns below the surface of the PLZT plate.

  20. Surface Engineering of Nanostructured Titanium Implants with Bioactive Ions.

    PubMed

    Kim, H-S; Kim, Y-J; Jang, J-H; Park, J-W

    2016-05-01

    Surface nanofeatures and bioactive ion chemical modification are centrally important in current titanium (Ti) oral implants for enhancing osseointegration. However, it is unclear whether the addition of bioactive ions definitively enhances the osteogenic capacity of a nanostructured Ti implant. We systematically investigated the osteogenesis process of human multipotent adipose stem cells triggered by bioactive ions in the nanostructured Ti implant surface. Here, we report that bioactive ion surface modification (calcium [Ca] or strontium [Sr]) and resultant ion release significantly increase osteogenic activity of the nanofeatured Ti surface. We for the first time demonstrate that ion modification actively induces focal adhesion development and expression of critical adhesion–related genes (vinculin, talin, and RHOA) of human multipotent adipose stem cells, resulting in enhanced osteogenic differentiation on the nanofeatured Ti surface. It is also suggested that fibronectin adsorption may have only a weak effect on early cellular events of mesenchymal stem cells (MSCs) at least in the case of the nanostructured Ti implant surface incorporating Sr. Moreover, results indicate that Sr overrides the effect of Ca and other important surface factors (i.e., surface area and wettability) in the osteogenesis function of various MSCs (derived from human adipose, bone marrow, and murine bone marrow). In addition, surface engineering of nanostructured Ti implants using Sr ions is expected to exert additional beneficial effects on implant bone healing through the proper balancing of the allocation of MSCs between adipogenesis and osteogenesis. This work provides insight into the future surface design of Ti dental implants using surface bioactive ion chemistry and nanotopography.

  1. The Behavior of Ion-Implanted Hydrogen in Gallium Nitride

    SciTech Connect

    Myers, S.M.; Headley, T.J.; Hills, C.R.; Han, J.; Petersen, G.A.; Seager, C.H.; Wampler, W.R.

    1999-01-07

    Hydrogen was ion-implanted into wurtzite-phase GaN, and its transport, bound states, and microstructural effects during annealing up to 980 C were investigated by nuclear-reaction profiling, ion-channeling analysis, transmission electron microscopy, and infrared (IR) vibrational spectroscopy. At implanted concentrations 1 at.%, faceted H{sub 2} bubbles formed, enabling identification of energetically preferred surfaces, examination of passivating N-H states on these surfaces, and determination of the diffusivity-solubility product of the H. Additionally, the formation and evolution of point and extended defects arising from implantation and bubble formation were characterized. At implanted H concentrations 0.1 at.%, bubble formation was not observed, and ion-channeling analysis indicated a defect-related H site located within the [0001] channel.

  2. Fe doped Magnetic Nanodiamonds made by Ion Implantation

    NASA Astrophysics Data System (ADS)

    Chen, Chienhsu; Cho, I. C.; Jian, Hui-Shan; Niu, H.

    2017-02-01

    Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing. The results of TEM and Raman examinations indicated the crystal structure of the Fe implanted NDs is recovered completely. The SQUID-VSM measurement shows the Fe-NDs possess room temperature ferromagnetism. That means the Fe atoms are distributed inside the NDs without affecting NDs crystal structure, so the NDs can preserve the original physical and chemical properties of the NDs. In addition, the ion-implantation-introduced magnetic property might make the NDs to become suitable for variety of medical applications.

  3. Optical attenuation in ion-implanted silicon waveguide racetrack resonators.

    PubMed

    Doylend, J K; Jessop, P E; Knights, A P

    2011-08-01

    The optical absorption at wavelengths near 1550 nm has been quantified as a function of annealing temperature in ion-implanted silicon-on-insulator racetrack resonators. The variation of the output characteristics of the bus waveguide versus the concentration of implantation-induced lattice disorder in the ring is used to develop a novel method for the determination of the coupling and round-trip loss of the resonator, independently. This experimental procedure has general applicability for the determination of these parameters. Significant propagation loss is found to persist following annealing at temperatures previously observed to remove the majority of ion implantation damage. It is suggested that these annealing characteristics are a consequence of an ion implantation range which is greater than the silicon waveguide layer thickness.

  4. Fe doped Magnetic Nanodiamonds made by Ion Implantation.

    PubMed

    Chen, ChienHsu; Cho, I C; Jian, Hui-Shan; Niu, H

    2017-02-09

    Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing. The results of TEM and Raman examinations indicated the crystal structure of the Fe implanted NDs is recovered completely. The SQUID-VSM measurement shows the Fe-NDs possess room temperature ferromagnetism. That means the Fe atoms are distributed inside the NDs without affecting NDs crystal structure, so the NDs can preserve the original physical and chemical properties of the NDs. In addition, the ion-implantation-introduced magnetic property might make the NDs to become suitable for variety of medical applications.

  5. Fe doped Magnetic Nanodiamonds made by Ion Implantation

    PubMed Central

    Chen, ChienHsu; Cho, I. C.; Jian, Hui-Shan; Niu, H.

    2017-01-01

    Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing. The results of TEM and Raman examinations indicated the crystal structure of the Fe implanted NDs is recovered completely. The SQUID-VSM measurement shows the Fe-NDs possess room temperature ferromagnetism. That means the Fe atoms are distributed inside the NDs without affecting NDs crystal structure, so the NDs can preserve the original physical and chemical properties of the NDs. In addition, the ion-implantation-introduced magnetic property might make the NDs to become suitable for variety of medical applications. PMID:28181507

  6. A Nanoscale-Localized Ion Damage Josephson Junction Using Focused Ion Beam and Ion Implanter.

    PubMed

    Wu, C H; Ku, W S; Jhan, F J; Chen, J H; Jeng, J T

    2015-05-01

    High-T(c) Josephson junctions were fabricated by nanolithography using focused ion beam (FIB) milling and ion implantation. The junctions were formed in a YBa2Cu3O7-x, thin film in regions defined using a gold-film mask with 50-nm-wide (top) slits, engraved by FIB. The focused ion beam system parameters for dwell time and passes were set to remove gold up to a precise depth. 150 keV oxygen ions were implanted at a nominal dose of up to 5 x 10(13) ions/cm2 into YBa2Cu3O7-x microbridges through the nanoscale slits. The current-voltage curves of the ion implantation junctions exhibit resistive-shunted-junction-like behavior at 77 K. The junction had an approximately linear temperature dependence of critical current. Shapiro steps were observed under microwave irradiation. A 50-nm-wide slit and 0-20-nm-thick buffer layers were chosen in order to make Josephson junctions due to the V-shape of the FIB-milled trench.

  7. Development of industrial ion implantation and ion assisted coating processes: A perspective

    NASA Astrophysics Data System (ADS)

    Legg, Keith O.; Solnick-Legg, Hillary

    1989-04-01

    Ion beam processes have gone through a series of developmental stages, from being the mainstay of the semiconductor industry for production of integrated circuits, to new commercial processes for biomedical, aerospace and other industries. Although research is still continuing on surface modification using ion beam methods, ion implantation and ion assisted coatings for treatment of metals, ceramics, polymers and composites must now be considered viable industrial processes of benefit in a wide variety of applications. However, ion implantation methods face various barriers to acceptability, in terms not only of other surface treatment processes, but for implantation itself. This paper will discuss some of the challenges faced by a small company whose primary business is development and marketing of ion implantation and ion-assisted coating processes.

  8. Less-Costly Ion Implantation of Solar Cells

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.

    1984-01-01

    Experiments point way toward more relaxed controls over ion-implanation dosage and uniformity in solar-cell fabrication. Data indicate cell performance, measured by output current density at fixed voltage, virtually same whether implant is particular ion species or broad-beam mixture of several species.

  9. Retention of ion-implanted-xenon in olivine: Dependence on implantation dose

    NASA Technical Reports Server (NTRS)

    Melcher, C. L.; Tombrello, T. A.; Burnett, D. S.

    1982-01-01

    The diffusion of Xe in olivine, a major mineral in both meteorites and lunar samples, was studied. Xe ions were implanted at 200 keV into single-crystal synthetic-forsterite targets and the depth profiles were measured by alpha particle backscattering before and after annealing for 1 hour at temperatures up to 1500 C. The fraction of implanted Xe retained following annealing was strongly dependent on the implantation dose. Maximum retention of 100% occurred for an implantion dose of 3 x 10 to the 15th power Xe ions/sq cm. Retention was less at lower doses, with (approximately more than or = 50% loss at one hundred trillion Xe ions/sq cm. Taking the diffusion coefficient at this dose as a lower limit, the minimum activation energy necessary for Xe retention in a 10 micrometer layer for ten million years was calculated as a function of metamorphic temperature.

  10. Activation properties of Ag+-ion conduction in bulk amorphous AgI: estimation from extrapolation of the AgI composition dependence in AgI Ag2O P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Hanaya, M.; Hatate, A.; Oguni, M.

    2003-06-01

    AgI-based fast-ion conducting glasses with very high AgI compositions from the (AgI)x(AgPO3)1-x, (AgI)x(Ag2PO3.5)1-x, and (AgI)x(Ag3PO4)1-x systems were prepared successfully by using a rapid-press quenching and a twin-roller quenching method. The ac dielectric measurements showed common relaxation properties of Ag+-ion conduction in the glasses independently of the species of the glass network formers of AgPO3, Ag2PO3.5, and Ag3PO4, and the activation energies, Δɛa, for Ag+-ion conduction were observed to converge upon the same magnitude of ~26 kJ mol-1 at the AgI composition limit of x = 1. This indicates the formation of amorphous AgI regions in the glasses, and the value of Δɛa = 26 +/- 1 kJ mol-1 estimated at x = 1 was concluded to correspond to that for bulk amorphous AgI which has never been obtained experimentally.

  11. Photoreflectance Study of Boron Ion-Implanted (100) Cadmium Telluride

    NASA Technical Reports Server (NTRS)

    Amirtharaj, P. M.; Odell, M. S.; Bowman, R. C., Jr.; Alt, R. L.

    1988-01-01

    Ion implanted (100) cadmium telluride was studied using the contactless technique of photoreflectance. The implantations were performed using 50- to 400-keV boron ions to a maximum dosage of 1.5 x 10(16)/sq cm, and the annealing was accomplished at 500 C under vacuum. The spectral measurements were made at 77 K near the E(0) and E(1) critical points; all the spectra were computer-fitted to Aspnes' theory. The spectral line shapes from the ion damaged, partially recovered and undamaged, or fully recovered regions could be identified, and the respective volume fraction of each phase was estimated.

  12. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, J.R.

    1988-08-16

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner. 7 figs.

  13. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, John R.

    1988-01-01

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner.

  14. Method For Silicon Surface Texturing Using Ion Implantation

    SciTech Connect

    Kadakia, Nirag; Naczas, Sebastian; Bakhru, Hassaram; Huang Mengbing

    2011-06-01

    As the semiconductor industry continues to show more interest in the photovoltaic market, cheaper and readily integrable methods of silicon solar cell production are desired. One of these methods - ion implantation - is well-developed and optimized in all commercial semiconductor fabrication facilities. Here we have developed a silicon surface texturing technique predicated upon the phenomenon of surface blistering of H-implanted silicon, using only ion implantation and thermal annealing. We find that following the H implant with a second, heavier implant markedly enhances the surface blistering, causing large trenches that act as a surface texturing of c-Si. We have found that this method reduces total broadband Si reflectance from 35% to below 5percent;. In addition, we have used Rutherford backscattering/channeling measurements investigate the effect of ion implantation on the crystallinity of the sample. The data suggests that implantation-induced lattice damage is recovered upon annealing, reproducing the original monocrystalline structure in the previously amorphized region, while at the same time retaining the textured surface.

  15. Third Order Optical Nonlinearity of Colloidal Metal Nanoclusters Formed by MeV Ion Implantation

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Williams, E.; Curley, M.; Ila, D.; Venkateswarlu, P.; Poker, D. B.; Hensley, D. K.

    1997-01-01

    We report the results of characterization of nonlinear refractive index of the composite material produced by MeV Ag ion implantation of LiNbO(sub 3) crystal (z-cut). The material after implantation exhibited a linear optical absorption spectrum with the surface plasmon peak near 430 nm attributed to the colloidal silver nanoclusters. Heat treatment of the material at 500 deg C caused a shift of the absorption peak to 550 nm. The nonlinear refractive index of the sample after heat treatment was measured in the region of the absorption peak with the Z-scan technique using a tunable picosecond laser source (4.5 ps pulse width).The experimental data were compared against the reference sample made of MeV Cu implanted silica with the absorption peak in the same region. The nonlinear index of the Ag implanted LiNbO(sub 3) sample produced at five times less fluence is on average two times greater than that of the reference.

  16. Third Order Optical Nonlinearity of Colloidal Metal Nanoclusters Formed by MeV Ion Implantation

    SciTech Connect

    Sarkisov, S. S.; Williams, E.; Curley, M.; Ila, D.; Venkateswarlu, P.; Poker, D. B.; Hensley, D. K.

    1997-10-01

    We report the results of characterization of nonlinear refractive index of the composite material produced by MeV Ag ion implantation of LiNbO{sub 3} crystal (z-cut). The material after implantation exhibited a linear optical absorption spectrum with the surface plasmon peak near 430 nm attributed to the colloidal silver nanoclusters. Heat treatment of the material at 500 deg C caused a shift of the absorption peak to 550 nm. The nonlinear refractive index of the sample after heat treatment was measured in the region of the absorption peak with the Z-scan technique using a tunable picosecond laser source (4.5 ps pulse width).The experimental data were compared against the reference sample made of MeV Cu implanted silica with the absorption peak in the same region. The nonlinear index of the Ag implanted LiNbO{sub 3} sample produced at five times less fluence is on average two times greater than that of the reference.

  17. Ion/water channels for embryo implantation barrier.

    PubMed

    Liu, Xin-Mei; Zhang, Dan; Wang, Ting-Ting; Sheng, Jian-Zhong; Huang, He-Feng

    2014-05-01

    Successful implantation involves three distinct processes, namely the embryo apposition, attachment, and penetration through the luminal epithelium of the endometrium to establish a vascular link to the mother. After penetration, stromal cells underlying the epithelium differentiate and surround the embryo to form the embryo implantation barrier, which blocks the passage of harmful substances to the embryo. Many ion/water channel proteins were found to be involved in the process of embryo implantation. First, ion/water channel proteins play their classical role in establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane. Second, most of ion/water channel proteins are regulated by steroid hormone (estrogen or progesterone), which may have important implications to the embryo implantation. Last but not least, these proteins do not limit themselves as pure channels but also function as an initiator of a series of consequences once activated by their ligand/stimulator. Herein, we discuss these new insights in recent years about the contribution of ion/water channels to the embryo implantation barrier construction during early pregnancy.

  18. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry.

    PubMed

    Park, Jin-Woo; Jang, Je-Hee; Lee, Chong Soo; Hanawa, Takao

    2009-07-01

    This study investigated the surface characteristics and bone response of titanium implants produced by hydrothermal treatment using H(3)PO(4), and compared them with those of implants produced by commercial surface treatment methods - machining, acid etching, grit blasting, grit blasting/acid etching or spark anodization. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, contact angle measurement and stylus profilometry. The osteoconductivity of experimental implants was evaluated by removal torque testing and histomorphometric analysis after 6 weeks of implantation in rabbit tibiae. Hydrothermal treatment with H(3)PO(4) and subsequent heat treatment produced a crystalline phosphate ion-incorporated oxide (titanium oxide phosphate hydrate, Ti(2)O(PO(4))(2)(H(2)O)(2); TiP) surface approximately 5microm in thickness, which had needle-like surface microstructures and superior wettability compared with the control surfaces. Significant increases in removal torque forces and bone-to-implant contact values were observed for TiP implants compared with those of the control implants (p<0.001). After thorough cleaning of the implants removed during the removal torque testing, a considerable quantity of attached bone was observed on the surfaces of the TiP implants.

  19. Ion Implantation Effects on the Metal-Semiconductor Interfaces.

    NASA Astrophysics Data System (ADS)

    Yapsir, Andrie Setiawan

    1988-12-01

    In this thesis, the effects of ion implantation on metal-semiconductor interfaces are studied. Hydrogen ions have been used as the implanted species. The implantation is carried out on Al/n-Si Schottky contacts. Electrical characterizations, deep level transient spectroscopy measurements, and the ^{15}N hydrogen profiling technique have been used to study the effects of ion implantation. It is demonstrated that the defect centers in the depletion region created by hydrogen implantation have more likely negative or possibly neutral signatures, rather than a positive signature as has been previously speculated. These negatively charged centers compensate for the positive donor resulting in a widening of the depletion region and reduction in the capacitance of the metal-semiconductor contacts. The tendency of hydrogen to passivate its own damage which results in the recovery of electronic transport across the metal-semiconductor junction upon low temperature heat treatment is also demonstrated. In connection with the behavior of hydrogen in silicon, in the second part of this thesis, detailed theoretical calculations on the hydrogen passivation of defects in silicon are carried out. A particular type of defect, namely, a substitutional sulfur in silicon, is chosen and is studied using the modified intermediate neglect of differential overlap (MINDO/3) molecular orbital method. It is found that the sulfur center can be passivated using one or two hydrogen atoms. The calculations indicate that the most stable positions of the hydrogen atoms are between the sulfur and its silicon neighbors. The hydrogens bond to the nearest silicon atoms and only weakly interact with the sulfur. Thermochemistry considerations predict that a single hydrogen passivates the sulfur center, provided these centers are in abundance in the silicon. Hydrogen ion implantation has also been carried out on Schottky contacts having a large difference in metal work function, Ti/p-Si and Pt

  20. Surface modification of SKD-61 steel by ion implantation technique

    SciTech Connect

    Wen, F. L.; Lo, Y.-L.; Yu, Y.-C.

    2007-07-15

    The purpose of this study is to investigate how ion implantation affects the surface characteristics and nitrogenizing depth of the thin film by the use of a NEC 9SDH-2 3 MV Pelletron accelerator that implants nitrogen ions into SKD-61 tool steels for surface modification. Nitrogen ions were implanted into the surface layer of materials so that the hardness of modified films could be improved. Also, the nitride film stripping problems of the traditional nitrogenizing treatment could be overcome by a new approach in surface process engineering. As nitrogen ions with high velocity impacted on the surface of the substrate, the ions were absorbed and accumulated on the surface of the substrate. The experiments were performed with two energies (i.e., 1 and 2 MeV) and different doses (i.e., 2.5x10{sup 15}, 7.5x10{sup 15}, and 1.5x10{sup 16} ions/cm{sup 2}). Nitrogen ions were incorporated into the interface and then diffused through the metal to form a nitride layer. Analysis tools included the calculation of stopping and range of ions in matter (SRIM), the detection of a secondary ion mass spectrometry (SIMS), and nanoindentation testing. Through the depth analysis of SIMS, the effects of the ion-implanted SKD-61 steels after heating at 550 deg. C in a vacuum furnace were examined. The nanoindenting results indicate the variation of hardness of SKD-61 steels with the various ion doses. It reaches two to three times the original hardness of SKD-61 steels.

  1. Planar InAs photodiodes fabricated using He ion implantation.

    PubMed

    Sandall, Ian; Tan, Chee Hing; Smith, Andrew; Gwilliam, Russell

    2012-04-09

    We have performed Helium (He) ion implantation on InAs and performed post implant annealing to investigate the effect on the sheet resistance. Using the transmission line model (TLM) we have shown that the sheet resistance of a p⁺ InAs layer, with a nominal doping concentration of 1x10¹⁸ cm⁻³, can increase by over 5 orders of magnitude upon implantation. We achieved a sheet resistance of 1x10⁵ Ω/Square in an 'as-implanted' sample and with subsequent annealing this can be further increased to 1x10⁷ Ω/Square. By also performing implantation on p-i-n structures we have shown that it is possible to produce planar photodiodes with comparable dark currents and quantum efficiencies to chemically etched reference mesa InAs photodiodes.

  2. Ion implanted junctions for silicon space solar cells

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Sanfacon, M. M.; Wolfson, R. G.

    1983-01-01

    This paper reviews the application of ion implantation to emitter and back surface field formation in silicon space solar cells. Experiments based on 2 ohm-cm boron-doped silicon are presented. It is shown that the implantation process is particularly compatible with formation of a high-quality back surface reflector. Large area solar cells with AM0 efficiency greater than 14 percent are reported.

  3. N + surface doping on nanoscale polymer fabrics via ion implantation

    NASA Astrophysics Data System (ADS)

    Ho Wong, Kenneth Kar; Zinke-Allmang, Martin; Wan, Wankei

    2006-08-01

    Non-woven poly(vinyl alcohol) (PVA) fabrics composed of small diameter (∼110 nm) fibers have been spun by an electrospinning technique and then have been modified by ion implantation. 1.7 MeV N+ ion implantation with a dose of 1.2 × 1016 ions/cm2 was applied on the fabrics through a metal foil at room temperature. By using scanning electron microscopy (SEM), no surface morphology degradation has been observed on the fabric after the ion beam treatment. The diameter of the fibers has shrunk by 30% to about 74 nm. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) show that nitrogen surface doping was achieved and the formation of two new functional chemical groups (N-Cdbnd O and C-N) in the PVA is observed.

  4. Ion implantation of graphene-toward IC compatible technologies.

    PubMed

    Bangert, U; Pierce, W; Kepaptsoglou, D M; Ramasse, Q; Zan, R; Gass, M H; Van den Berg, J A; Boothroyd, C B; Amani, J; Hofsäss, H

    2013-10-09

    Doping of graphene via low energy ion implantation could open possibilities for fabrication of nanometer-scale patterned graphene-based devices as well as for graphene functionalization compatible with large-scale integrated semiconductor technology. Using advanced electron microscopy/spectroscopy methods, we show for the first time directly that graphene can be doped with B and N via ion implantation and that the retention is in good agreement with predictions from calculation-based literature values. Atomic resolution high-angle dark field imaging (HAADF) combined with single-atom electron energy loss (EEL) spectroscopy reveals that for sufficiently low implantation energies ions are predominantly substitutionally incorporated into the graphene lattice with a very small fraction residing in defect-related sites.

  5. Chromium plating pollution source reduction by plasma source ion implantation

    SciTech Connect

    Chen, A.; Sridharan, K.; Dodd, R.A.; Conrad, J.R.; Qiu, X.; Hamdi, A.H.; Elmoursi, A.A.; Malaczynski, G.W.; Horne, W.G.

    1995-12-31

    There is growing concern over the environmental toxicity and workers` health issues due to the chemical baths and rinse water used in the hard chromium plating process. In this regard the significant hardening response of chromium to nitrogen ion implantation can be environmentally beneficial from the standpoint of decreasing the thickness and the frequency of application of chromium plating. In this paper the results of a study of nitrogen ion implantation of chrome plated test flats using the non-line-of-sight Plasma Source Ion Implantation (PSII) process, are discussed. Surface characterization was performed using Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), and Electron Spectroscopy for Chemical Analysis (ESCA). The surface properties were evaluated using a microhardness tester, a pin-on-disk wear tester, and a corrosion measurement system. Industrial field testing of nitrogen PSII treated chromium plated parts showed an improvement by a factor of two compared to the unimplanted case.

  6. Ion implantation for manufacturing bent and periodically bent crystals

    SciTech Connect

    Bellucci, Valerio; Camattari, Riccardo; Guidi, Vincenzo Mazzolari, Andrea; Paternò, Gianfranco; Lanzoni, Luca

    2015-08-10

    Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to produce X-ray beams.

  7. Ion Implanted Passivated Contacts for Interdigitated Back Contacted Solar Cells

    SciTech Connect

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; Reedy, Robert; Bateman, Nicholas; Stradins, Pauls

    2015-06-14

    We describe work towards an interdigitated back contacted (IBC) solar cell utilizing ion implanted, passivated contacts. Formation of electron and hole passivated contacts to n-type CZ wafers using tunneling SiO2 and ion implanted amorphous silicon (a-Si) are described. P and B were ion implanted into intrinsic amorphous Si films at several doses and energies. A series of post-implant anneals showed that the passivation quality improved with increasing annealing temperatures up to 900 degrees C. The recombination parameter, Jo, as measured by a Sinton lifetime tester, was Jo ~ 14 fA/cm2 for Si:P, and Jo ~ 56 fA/cm2 for Si:B contacts. The contact resistivity for the passivated contacts, as measured by TLM patterns, was 14 milliohm-cm2 for the n-type contact and 0.6 milliohm-cm2 for the p-type contact. These Jo and pcontact values are encouraging for forming IBC cells using ion implantation to spatially define dopants.

  8. Ion implantation of CdTe single crystals

    NASA Astrophysics Data System (ADS)

    Wiecek, Tomasz; Popovich, Volodymir; Bester, Mariusz; Kuzma, Marian

    2016-12-01

    Ion implantation is a technique which is widely used in industry for unique modification of metal surface for medical applications. In semiconductor silicon technology ion implantation is also widely used for thin layer electronic or optoelectronic devices production. For other semiconductor materials this technique is still at an early stage. In this paper based on literature data we present the main features of the implantation of CdTe single crystals as well as some of the major problems which are likely to occur when dealing with them. The most unexpected feature is the high resistance of these crystals against the amorphization caused by ion implantation even at high doses (1017 1/cm2). The second property is the disposal of defects much deeper in the sample then it follows from the modeling calculations. The outline of principles of the ion implantation is included in the paper. The data based on RBS measurements and modeling results obtained by using SRIM software were taken into account.

  9. The Optical Properties of Ion Implanted Silica

    NASA Technical Reports Server (NTRS)

    Smith, Cydale C.; Ila, D.; Sarkisov, S.; Williams, E. K.; Poker, D. B.; Hensley, D. K.

    1997-01-01

    We will present our investigation on the change in the optical properties of silica, 'suprasil', after keV through MeV implantation of copper, tin, silver and gold and after annealing. Suprasil-1, name brand of silica glass produced by Hereaus Amerisil, which is chemically pure with well known optical properties. Both linear nonlinear optical properties of the implanted silica were investigated before and after thermal annealing. All implants, except for Sn, showed strong optical absorption bands in agreement with Mie's theory. We have also used Z-scan to measure the strength of the third order nonlinear optical properties of the produced thin films, which is composed of the host material and the metallic nanoclusters. For implants with a measurable optical absorption band we used Doyle's theory and the full width half maximum of the absorption band to calculate the predicted size of the formed nanoclusters at various heat treatment temperatures. These results are compared with those obtained from direct observation using transmission electron microscopic techniques.

  10. A micro-structured ion-implanted magnonic crystal

    SciTech Connect

    Obry, Bjoern; Pirro, Philipp; Chumak, Andrii V.; Ciubotaru, Florin; Serga, Alexander A.; Hillebrands, Burkard; Braecher, Thomas; Osten, Julia; Fassbender, Juergen

    2013-05-20

    We investigate spin-wave propagation in a microstructured magnonic-crystal waveguide fabricated by localized ion implantation. The irradiation caused a periodic variation in the saturation magnetization along the waveguide. As a consequence, the spin-wave transmission spectrum exhibits a set of frequency bands, where spin-wave propagation is suppressed. A weak modification of the saturation magnetization by 7% is sufficient to decrease the spin-wave transmission in the band gaps by a factor of 10. These results evidence the applicability of localized ion implantation for the fabrication of efficient micron- and nano-sized magnonic crystals for magnon spintronic applications.

  11. Ion Implanted GaAs I.C. Process Technology

    DTIC Science & Technology

    1981-07-01

    in ion implantation in GaAs, coupled with better control of the substrate material. 1 Once ion implantation became a reliable processing technology it... Processing Technology for Planar GaAs Integrated Circuits," GaAs IC Symposium, Lake Tahoe, CA., Sept. 1979. 20. R.C. Eden, "GaAs Integrated Circuit Device...1980. 25. B.M. Welch, "Advances in GaAs LSI!VLSI Processing Technology ," Sol. St. Tech., Feb. 1980, pp. 95-101. 27. R. Zucca, B.M. Welch, P.M

  12. Highly selective and quantitative colorimetric detection of mercury(II) ions by carrageenan-functionalized Ag/AgCl nanoparticles.

    PubMed

    Narayanan, Kannan Badri; Han, Sung Soo

    2017-03-15

    The natural algal polysaccharide carrageenan was used for the greener synthesis of silver/silver chloride nanoparticles (Carr-Ag/AgCl NPs) without any toxic chemicals. We report the robust, highly selective, and sensitive colorimetric sensing of Hg(2+) ions using Carr-Ag/AgCl NPs without any further surface modification. The dark-brown color of a solution of Carr-Ag/AgCl NPs turned to white in a concentration-dependent manner with the addition of Hg(2+) ions, confirming the interaction of Carr-Ag/AgCl NPs with Hg(2+) ions. The plot of the extinction ratio of absorbance at 350nm to 450nm (A350/A450) for Carr-Ag/AgCl NPs against the concentration of [Hg(2+)] ions was linear, and the calibration curve was A350/A450=1.05254+0.00318×CHg with a lower detection limit of 1μM. This portable and cost-effective method for mercury(II) ion sensing is widely applicable in on-field qualitative and quantitative measurements of [Hg(2+)] ions in environmental or biological samples.

  13. Nonlinear optical waveguides produced by MeV ion implantation in LiNbO 3

    NASA Astrophysics Data System (ADS)

    Sarkisov, S. S.; Curley, M. J.; Williams, E. K.; Ila, D.; Svetchnikov, V. L.; Zandbergen, H. W.; Zykov, G. A.; Banks, C.; Wang, J.-C.; Poker, D. B.; Hensley, D. K.

    2000-05-01

    We analyze microstructure, linear and nonlinear optical properties of planar waveguides produced by implantation of MeV Ag ions into LiNbO3. Linear optical properties are described by the parameters of waveguide propagation modes and optical absorption spectra. Nonlinear properties are described by the nonlinear refractive index. Operation of the implanted crystal as an optical waveguide is due to modification of the linear refractive index of the implanted region. The samples as implanted do not show any light-guiding. The implanted region has amorphous and porous microstructure with the refractive index lower than the substrate. Heat treatment of the implanted samples produces planar light-guiding layer near the implanted surface. High-resolution electron microscopy reveals re-crystallization of the host between the surface and the nuclear stopping region in the form of randomly oriented crystalline grains. They make up a light-guiding layer isolated from the bulk crystal by the nuclear stopping layer with low refractive index. Optical absorption of the sample as implanted has a peak at 430 nm. This peak is due to the surface plasmon resonance in nano-clusters of metallic silver. Heat treatment of the samples shifts the absorption peak to 545 nm. This is more likely due to the increase of the refractive index back to the value for the crystalline LiNbO3. The nonlinear refractive index of the samples at 532 nm (of the order of 10-10 cm2 W-1) was measured with the Z-scan technique using a picosecond laser source. Possible applications of the waveguides include ultra-fast photonic switches and modulators.

  14. Corrosion resistance of titanium ion implanted AZ91 magnesium alloy

    SciTech Connect

    Liu Chenglong; Xin Yunchang; Tian Xiubo; Zhao, J.; Chu, Paul K.

    2007-03-15

    Degradable metal alloys constitute a new class of materials for load-bearing biomedical implants. Owing to their good mechanical properties and biocompatibility, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to improve the corrosion behavior of surgical AZ91 magnesium alloy by titanium ion implantation. The surface characteristics of the ion implanted layer in the magnesium alloys are examined. The authors' results disclose that an intermixed layer is produced and the surface oxidized films are mainly composed of titanium oxide with a lesser amount of magnesium oxide. X-ray photoelectron spectroscopy reveals that the oxide has three layers. The outer layer which is 10 nm thick is mainly composed of MgO and TiO{sub 2} with some Mg(OH){sub 2}. The middle layer that is 50 nm thick comprises predominantly TiO{sub 2} and MgO with minor contributions from MgAl{sub 2}O{sub 4} and TiO. The third layer from the surface is rich in metallic Mg, Ti, Al, and Ti{sub 3}Al. The effects of Ti ion implantation on the corrosion resistance and electrochemical behavior of the magnesium alloys are investigated in simulated body fluids at 37{+-}1 deg. C using electrochemical impedance spectroscopy and open circuit potential techniques. Compared to the unimplanted AZ91 alloy, titanium ion implantation significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP. This phenomenon can be ascribed to the more compact surface oxide film, enhanced reoxidation on the implanted surface, as well as the increased {beta}-Mg{sub 12}Al{sub 17} phase.

  15. Analytical electron microscopy of aluminum ion-implanted with molybdenum

    SciTech Connect

    Stephenson, L.D.; Bentley, J.; Benson, R.B. Jr.; Parrish, P.A.

    1983-01-01

    The microstructures of aluminum ion-implanted with molybdenum and subjected to various heat treatments were investigated for correlation with near-surface properties such as corrosion. Previous work indicated enhanced corrosion resistance, but dealt chiefly with the as-implanted condition and involved little microstructural characterization. In addition, the Al-Mo binary system is of interest because metastable phase formation was considered to be possible and the equilibrium phase diagram is poorly defined. Electropolished coupons 38 x 28 x 0.5 mm of 99.999% Al with approx.0.5 mm grain size were implanted with Mo/sup +/ ions at the Naval Research Laboratory. The dual energy implant schedule of 4.88 x 10/sup 19/ ions/m/sup 2/ at 50 keV plus 6.14 x 10/sup 19/ ions/m/sup 2/ at 110 keV resulted in a peak concentration of 4.4 at. % Mo (measured by ion backscattering) within the projected range of approx.50 nm. Results of the studies are presented.

  16. Fluorescence switch for silver ion detection utilizing dimerization of DNA-Ag nanoclusters.

    PubMed

    Lee, Jihyun; Park, Juhee; Hee Lee, Hong; Park, Hansoo; Kim, Hugh I; Kim, Won Jong

    2015-06-15

    A fluorescence switch that consists of DNA-templated silver nanoclusters (DNA-AgNCs) triggered by silver ion (Ag(+)) is developed to detect Ag(+). The mechanism of the fluorescence switching of DNA-AgNCs is investigated by fluorescence spectroscopy, circular dichroism spectroscopy, DNA hybridization assay and mass spectrometry. Ag(+) induces a dimeric structure of Cyt12-AgNCs by forming a bridge between two Cyt12-AgNCs, where Cyt12 is cytosine 12-mer; this dimer formation causes the fluorescence change of Cyt12-AgNCs from red to green. Using this Ag(+)-triggered fluorescence switch, we successfully detected Ag(+) at concentrations as low as 10nM. Furthermore, we quantitatively detected the Ag(+) in the Silmazin(®), which is dermatological burn ointment having silver sulfadiazine. Ag(+) detection using this fluorescence switch has high selectivity and sensitivity, and short response time, and can be used successfully even in the presence of other metal ions.

  17. Ultrahigh-current-density metal-ion implantation and diamondlike-hydrocarbon films for tribological applications; Final report

    SciTech Connect

    Wilbur, P.J.

    1993-09-01

    The metal-ion-implantation system used to implant metals into substrates are described. The metal vapor required for operation is supplied by drawing sufficient electron current from the plasma discharge to an anode-potential crucible so a solid, pure metal placed in the crucible will be heated to the point of vaporization. The ion-producing, plasma discharge is initiated within a graphite-ion-source body, which operates at high temperature, by using an argon flow that is turned off once the metal vapor is present. Extraction of ion beams several cm in diameter at current densities ranging to several hundred {mu}A/cm{sup 2} on a target 50 cm downstream of the ion source have been demonstrated using Mg, Ag, Cr, Cu, Si, Ti, V, B and Zr. These metals were implanted into over 100 substrates (discs, pins, flats, wires). A model describing thermal stresses induced in materials (e.g. ceramic plates) during high-current-density implantation is presented. Tribological and microstructural characteristics of iron and 304-stainless-steel samples implanted with Ti or B are examined. Diamondlike-hydrocarbon coatings were applied to steel surfaces and found to exhibit good tribological performance.

  18. Formation of titanium silicides by high dose ion implantation

    NASA Astrophysics Data System (ADS)

    Salvi, V. P.; Vidwans, S. V.; Rangwala, A. A.; Arora, B. M.; Kuldeep; Jain, Animesh K.

    1987-09-01

    We have investigated titanium silicide formation using high dose (˜ 2 × 10 21 ions/m 2) ion implantation of 30 keV, 48Ti + ions a room temperature into two different types of Si substrates: (a) n-type <111> single crystals and (b) amorphous Si films (˜ 200 nm thick) vacuum deposited onto a thermally grown SiO 2 layer. XRD and RBS techniques were employed to characterize various silicide phases and their depth distribution in as-implanted as well as in annealed samples. We find that a mixture of TiSi, TiSi 2 and Ti 5Si 4 silicides is formed by high dose implantation. Out of these, TiSi; was found to be the dominant phase. The composition of these silicide layers is practically uniform with depth and remains unaltered on heat treatment up to 750° C. The electrical properties of silicide layers have also been investigated using sheet resistance measurements. The resistivity of as-implanted layers is rather high ( ˜ 10 μΩ m), but drops sharply by nearly a factor of 20 after a post-implantation anneal above 800° C. The resistivity of silicide layers thus obtained compare well with silicides prepared by other techniques.

  19. Er + medium energy ion implantation into lithium niobate

    NASA Astrophysics Data System (ADS)

    Svecova, B.; Nekvindova, P.; Mackova, A.; Oswald, J.; Vacik, J.; Grötzschel, R.; Spirkova, J.

    2009-05-01

    Erbium-doped lithium niobate (Er:LiNbO3) is a prospective photonics component, operating at 1.5 μm, which could find its use chiefly as an optical amplifier or waveguide laser. In this study, we have focused on the properties of the optically active Er:LiNbO3 layers, which are fabricated by medium energy ion implantation under various experimental conditions. Erbium ions were implanted at energies of 330 and 500 keV with fluences of 1.0 × 1015, 2.5 × 1015 and 1.0 × 1016 cm-2 into LiNbO3 single-crystalline cuts of various orientations. The as-implanted samples were annealed in air at 350 °C for 5 h. The depth distribution and diffusion profiles of the implanted Er were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. The projected range RP and projected range straggling ΔRP were calculated employing the SRIM code. The damage distribution and structural changes were described using the RBS/channelling method. Changes of the lithium concentration depth distribution were studied by Neutron Depth Profiling (NDP). The photoluminescence spectra of the samples were measured to determine whether the emission was in the desired region of 1.5 μm. The obtained data made it possible to reveal the relations between the structural changes of erbium-implanted lithium niobate and its luminescence properties important for photonics applications.

  20. Method for fabricating MNOS structures utilizing hydrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Saks, N. S.

    1984-05-01

    An improved method for reducing the density of electronic trapping states and fixed insulator charge in the thin oxide layer of an MNOS structure is discussed. The method includes the steps of implanting hydrogen ions in field region of the oxide layer and annealing the MNOS structure at 400 deg C to cause the ions to diffuse laterally into the gate region of the oxide layer.

  1. The Use of Ion Implantation for Materials Processing.

    DTIC Science & Technology

    1986-03-06

    and prevented the formation of oxide debris normally generated during dry sliding contact [14-16]. In soft ( annealed ) steels it again reduced friction...for ion implantation of steels . Surface composition techniques such as scanning Auger microscopy, energy dispersive X-ray analysis and secondary ion...electron microscopy with energy dispersive x-ray analysis were used to characterize microstructure oxide growth rate and oxide film composition

  2. Vacancy supersaturations produced by high-energy ion implantation

    SciTech Connect

    Venezia, V.C.; Eaglesham, D.J.; Jacobson, D.C.; Gossmann, H.J.; Haynes, T.E.; Agarwal, A. |; Friessnegg, T.; Nielsen, B.

    1998-01-01

    A new technique for detecting the vacancy clusters produced by high-energy ion implantation into silicon is proposed and tested. This technique takes advantage of the fact that metal impurities, such as Au, are gettered near one-half of the projected range ({1/2}R{sub p}) of MeV implants. The vacancy clustered region produced by a 2 MeV Si{sup +} implant into silicon has been labeled with Au diffused in from the front surface. The trapped Au was detected by Rutherford backscattering spectrometry (RBS) to profile the vacancy clusters. Cross section transmission electron microscopy (XTEM) analysis shows that the Au in the region of vacancy clusters is in the form of precipitates. By annealing MeV implanted samples prior to introduction of the Au, changes in the defect concentration within the vacancy clustered region were monitored as a function of annealing conditions.

  3. Ion implantation in ices of interest for planetology

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Fulvio, D.; Garozzo, M.; Gomis, O.; Leto, G.; Palumbo, M. E.; Spinella, F.; Strazzulla, G.

    Frozen sufaces of planetary moons and minor planets in Solar System are continuously irradiated by energetic ions (keV-MeV). These ions deposit their energy into the target via elastic and anelastic collisions which induce a break of molecular bonds. Because of their small penetration depth (0.1 - 2.0 mu m) impinging ions are implanted into the ices at the end of their path. Across the ion's path reconnection of molecular fragments can form new species and if the projectile is a reactive species it can be included into the newly formed molecules. In the Laboratory of Experimental Astrophysics (LASp) of Catania we are investigating the effects of reactive ion implantation in ices of interest for planetology. Results show that some molecules observed on frozen surfaces of minor bodies of the outer Solar System could be formed after implantation of reactive ions. After a short review of relevant experiments performed in our Laboratory we will show results of our latest experiments and their application to the moon of Jupiter Io.

  4. 3D concentration distributions of ion implants in amorphous solids

    NASA Astrophysics Data System (ADS)

    Günzler, R.; Weiser, M.; Kalbitz, S.

    1992-01-01

    Spatial distributions of implanted ions have been derived from depth profiles of implants at varied incidence angle by applying tomographic techniques. To this end we have developed a new version of an algorithm known as simultaneous iterative reconstruction technique (SIRT), which covers the experimental concentration range of about three decades. In addition, the finite depth resolution of the nuclear reaction analysis (NRA) is accounted for in our computer program. In this way, we have reconstructed the three-dimensional implantation distributions of 0.15 MeV 1H, 1.5 and 6 MeV 15N, and 4 MeV 30Si in amorphized Ge layers. The agreement with TRIM calculations is reasonable: 10% ± 0.5% for the first and 10% ± 5% for the second range moments. Consequences of the longitudinal and lateral tailing for ion beam applications to large scale integration problems are discussed.

  5. Above room temperature ferromagnetism in Mn-ion implanted Si

    NASA Astrophysics Data System (ADS)

    Bolduc, M.; Awo-Affouda, C.; Stollenwerk, A.; Huang, M. B.; Ramos, F. G.; Agnello, G.; Labella, V. P.

    2005-01-01

    Above room temperature ferromagnetic behavior is achieved in Si through Mn ion implantation. Three-hundred-keV Mn+ ions were implanted to 0.1% and 0.8% peak atomic concentrations, yielding a saturation magnetization of 0.3emu/g at 300K for the highest concentration as measured using a SQUID magnetometer. The saturation magnetization increased by ˜2× after annealing at 800°C for 5min . The Curie temperature for all samples was found to be greater than 400K . A significant difference in the temperature-dependent remnant magnetization between the implanted p-type and n-type Si is observed, giving strong evidence that a Si-based diluted magnetic semiconductor can be achieved.

  6. Nanocomposite formed by titanium ion implantation into alumina

    SciTech Connect

    Spirin, R. E.; Salvadori, M. C. Teixeira, F. S.; Sgubin, L. G.; Cattani, M.; Brown, I. G.

    2014-11-14

    Composites of titanium nanoparticles in alumina were formed by ion implantation of titanium into alumina, and the surface electrical conductivity measured in situ as the implantation proceeded, thus generating curves of sheet conductivity as a function of dose. The implanted titanium self-conglomerates into nanoparticles, and the spatial dimensions of the buried nanocomposite layer can thus be estimated from the implantation depth profile. Rutherford backscattering spectrometry was performed to measure the implantation depth profile, and was in good agreement with the calculated profile. Transmission electron microscopy of the titanium-implanted alumina was used for direct visualization of the nanoparticles formed. The measured conductivity of the buried layer is explained by percolation theory. We determine that the saturation dose, φ{sub 0}, the maximum implantation dose for which the nanocomposite material still remains a composite, is φ{sub 0} = 2.2 × 10{sup 16 }cm{sup −2}, and the corresponding saturation conductivity is σ{sub 0} = 480 S/m. The percolation dose φ{sub c}, below which the nanocomposite still has basically the conductivity of the alumina matrix, was found to be φ{sub c} = 0.84 × 10{sup 16 }cm{sup −2}. The experimental results are discussed and compared with a percolation theory model.

  7. Silicon solar cells by ion implantation and pulsed energy processing

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.; Minnucci, J. A.; Shaughnessy, T. S.; Greenwald, A. C.

    1976-01-01

    A new method for fabrication of silicon solar cells is being developed around ion implantation in conjunction with pulsed electron beam techniques to replace conventional furnace processing. Solar cells can be fabricated totally in a vacuum environment at room temperature. Cells with 10% AM0 efficiency have been demonstrated. High efficiency cells and effective automated processing capabilities are anticipated.

  8. Making CoSi(2) Layers By Ion Implantation

    NASA Technical Reports Server (NTRS)

    Namavar, Fereydoon

    1994-01-01

    Monolithic photovoltaic batteries containing vertical cells include buried CoSi(2) contact layers. Vertical-junction photovoltaic cells in series fabricated in monolithic structure. N- and p-doped silicon layers deposited epitaxially. The CoSi(2) layers, formed by ion implantation and annealing, serve as thin, low-resistance ohmic contacts between cells.

  9. A New Ion Implant Monitor Electrical Test Structure.

    DTIC Science & Technology

    1986-01-01

    In this paper, a new Ion Implant Monitor test structure and measurement method is reported. A direct measurement of the sheet resistance of the...probe measurements. Voltage measurements are directly converted to sheet resistance , thus measurements may be performed rapidly.

  10. Extreme Precipitation Strengthening in Ion-Implanted Nickel

    SciTech Connect

    Follstaedt, D.M.; Knapp, J.A.; Myers, S.M.; Petersen, G.A.

    1999-05-03

    Precipitation strengthening of nickel was investigated using ion-implantation alloying and nanoindentation testing for particle separations in the nanometer range and volume fractions extending above 10O/O. Ion implantation of either oxygen alone or oxygen plus aluminum at room temperature was shown to produce substantial strengthening in the ion-treated layer, with yield strengths near 5 GPa in both cases. After annealing to 550"C the oxygen-alone layer loses much of the benefit, with its yield strength reduced to 1.2 GP~ but the dual ion-implanted layer retains a substantially enhanced yield strength of over 4 GPa. Examination by transmission electron f microscopy showed very fine dispersions of 1-5 nm diameter NiO and y-A1203 precipitates in the implanted layers before annealing. The heat treatment at 550"C induced ripening of the NiO particles to sizes ranging from 7 to 20 nm, whereas the more stable ~-A1203 precipitates were little changed. The extreme strengthening we observe is in semiquantitative agreement with predictions based on the application of dispersion-hardening theory to these microstructure.

  11. Ion Implantation Studies of Titanium Metal Surfaces.

    DTIC Science & Technology

    1981-01-01

    Lorenzelli and R. Pascard, Compt. Rend. 259, (1964) 2442-2444. 8. Linus Pauling , The Nature of the Chemical Bond, pg. 92 (Cornell Univ. Press, Ithaca...K. Hirvonen. 3. S. Spooner and K. 0. Legg,lon Implantation Metallurgy, 162 (1980); ed. C. M. Preece and J. K. Hirvonen. 4. L. Pauling , The Nature of...R from the Pauling electronegativity scale. According to Pauling (8), the contribu- tion of the bond to the heat of formation is Q - 23 (YEr - Yc) 2

  12. Versatile, high-sensitivity faraday cup array for ion implanters

    DOEpatents

    Musket, Ronald G.; Patterson, Robert G.

    2003-01-01

    An improved Faraday cup array for determining the dose of ions delivered to a substrate during ion implantation and for monitoring the uniformity of the dose delivered to the substrate. The improved Faraday cup array incorporates a variable size ion beam aperture by changing only an insertable plate that defines the aperture without changing the position of the Faraday cups which are positioned for the operation of the largest ion beam aperture. The design enables the dose sensitivity range, typically 10.sup.11 -10.sup.18 ions/cm.sup.2 to be extended to below 10.sup.6 ions/cm.sup.2. The insertable plate/aperture arrangement is structurally simple and enables scaling to aperture areas between <1 cm.sup.2 and >750 cm.sup.2, and enables ultra-high vacuum (UHV) applications by incorporation of UHV-compatible materials.

  13. Ion implantation for corrosion inhibition of aluminum alloys in saline media

    SciTech Connect

    Williams, J.M. ); Gonzales, A. ); Quintana, J. ); Lee, I.-S.; Buchanan, R.A. ); Burns, F.C.; Culbertson, R.J.; Levy, M. . Materials Technology Lab.); Treglio, J.R. (ISM

    1990-01-01

    The effects of ion implantation treatments on corrosion of 2014 and 1100 aluminum in saline media were investigated. Implanted ions were N, Si, Ti and Cr. Techniques included salt spray testing, electrochemical studies, Rutherford backscattering spectrometry, and profilometry. It was concluded that ion implantation of Cr is of potential practical benefit for corrosion inhibition of 2014 Al in salt environments. 4 refs., 5 figs.

  14. Broad-beam, high current, metal ion implantation facility

    SciTech Connect

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs.

  15. Effective implantation of light emitting centers by plasma immersion ion implantation and focused ion beam methods into nanosized diamond

    NASA Astrophysics Data System (ADS)

    Himics, L.; Tóth, S.; Veres, M.; Tóth, A.; Koós, M.

    2015-02-01

    Two different implantation techniques, plasma immersion ion implantation and focused ion beam, were used to introduce nitrogen ions into detonation nanodiamond crystals with the aim to create nitrogen-vacancy related optically active centers of light emission in near UV region. Previously samples were subjected to a defect creation process by helium irradiation in both cases. Heat treatments at different temperatures (750 °C, 450 °C) were applied in order to initiate the formation of nitrogen-vacancy related complex centers and to decrease the sp2 carbon content formed under different treatments. As a result, a relatively narrow and intensive emission band with fine structure at 2.98, 2.83 and 2.71 eV photon energies was observed in the light emission spectrum. It was assigned to the N3 complex defect center. The formation of this defect center can be expected by taking into account the relatively high dose of implanted nitrogen ions and the overlapped depth distribution of vacancies and nitrogen. The calculated depth profiles distribution for both implanted nitrogen and helium by SRIM simulation support this expectation.

  16. Ion-implanted laser annealed silicon solar cells

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.

    1980-01-01

    Development of low cost solar cells fabrication technology is being sponsored by NASA JPL as part of the Low Cost Solar Array Project (LSA). In conformance to Project requirements ion implantation and laser annealing were evaluated as junction formation techniques offering low cost-high throughput potential. Properties of cells fabricated utilizing this technology were analyzed by electrical, transmission electron microscopy, Rutherford backscattering and secondary ion mass spectrometry techniques. Tests indicated the laser annealed substrates to be damage free and electrically active. Similar analysis of ion implanted furnace annealed substrates revealed the presence of residual defects in the form of dislocation lines and loops with substantial impurity redistribution evident for some anneal temperature/time regimes. Fabricated laser annealed cells exhibited improved spectral response and conversion efficiency in comparison to furnace annealed cells. An economic projection for LSA indicates a potential for considerable savings from laser annealing technology.

  17. Dependence of implantation sequence on surface blistering characteristics due to H and He ions co-implanted in silicon

    NASA Astrophysics Data System (ADS)

    Liang, J. H.; Hsieh, H. Y.; Wu, C. W.; Lin, C. M.

    2015-12-01

    This study investigated surface blistering characteristics due to H and He ions co-implanted in silicon at room temperature. The H and He ion energies were 40 and 50 keV, respectively, so that their depth profiles were similar. The total implantation fluence for the H and He ions was 5 × 1016 cm-2 under various fluence fractions in the H ions. The implantation sequences under investigation were He + H and H + He. Dynamic optical microscopy (DOM) was employed in order to dynamically analyze surface blistering characteristics. This study used DOM data to construct so-called time-temperature-transformation (T-T-T) curves to easily predict blistering and crater transformation at specific annealing times and temperatures. The results revealed that the curves of blister initialization, crater initialization, and crater completion in the He + H implant occurred at a lower annealing temperature but with a longer annealing time compared to those in the H + He implant. Furthermore, the threshold annealing temperatures for blister and crater formation in the He + H implant were lower than they were in the H + He implant. The size distributions of the blisters and craters in the He + H implant extended wider than those in the H + He implant. In addition, the He + H implant exhibited larger blisters and craters compared to the ones in the H + He implant. Since the former has a higher percentage of exfoliation area than the latter, it is regarded as the more optimal implantation sequence.

  18. Miniaturized EAPs with compliant electrodes fabricated by ion implantation

    NASA Astrophysics Data System (ADS)

    Shea, H.

    2011-04-01

    Miniaturizing dielectric electroactive polymer (EAP) actuators will lead to highly-integrated mechanical systems on a chip, combining dozens to thousands of actuators and sensors on a few cm2. We present here µm to mm scale electroactive polymer (EAP) devices, batch fabricated on the chip or wafer scale, based on ion-implanted electrodes. Low-energy (2-10 keV) implantation of gold ions into a silicone elastomer leads to compliant stretchable electrodes consisting of a buried 20 nm thick layer of gold nanoparticles in a silicone matrix. These electrodes: 1) conduct at strains up to 175%, 2) are patternable on the µm scale, 3) have stiffness similar to silicone, 4) have good conductivity, and 5) excellent adhesion since implanted in the silicone. The EAP devices consist of 20 to 30 µm thick silicone membranes with µm to mm-scale ion-implanted electrodes on both sides, bonded to a holder. Depending on electrode shape and membrane size, several actuation modes are possible. Characterization of 3mm diameter bi-directional buckling mode actuators, mm-scale tunable lens arrays, 2-axis beam steering mirrors, as well as arrays of 72 cell-size (100x200 µm2) actuators to apply mechanical strain to single cells are reported. Speeds of up to several kHz are observed.

  19. Direct temperature monitoring for semiconductors in plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Tian, Xiubo; Chu, Paul K.

    2000-07-01

    In situ temperature monitoring is extremely important in plasma immersion ion implantation (PIII) of semiconductors. For instance, the silicon wafer must be heated to 600 °C or higher in separation by plasma implantation of oxygen, and in the PIII/ion-cut process, the wafer temperature must remain below 300 °C throughout the experiment. In this article, we present a thermocouple-based direct temperature measurement system for planar samples such as silicon wafers. In order to ensure reliable high-voltage operation and overall electrical isolation, the thermocouple assembly and wires are integrated into the sample chuck and feedthrough. Hydrogen plasma immersion ion implantation is performed in silicon to demonstrate the effectiveness and reliability of the device. Our experimental results indicate that instrumental parameters such as implantation voltage, pulse duration, and pulsing frequency affect the sample temperature to a different extent. The measured temperature rise is higher than that predicted by a theoretical model based on the Child-Langmuir law. The discrepancy is attributed to the finite-sample size and the nonplanar, conformal plasma sheath.

  20. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    SciTech Connect

    Feng, Kai; Wang, Yibo; Li, Zhuguo; Chu, Paul K.

    2015-08-15

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.

  1. Modelling of charging effects in plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    En, William; Cheung, Nathan W.

    1995-03-01

    The charging effects of plasma immersion ion implantation on several device structures is simulated. The simulations use an analytical model which couples the interaction of the plasma and IC devices during plasma implantation. The plasma model is implemented within the circuit simulator SPICE, which allows the model to uses all of the IC device models existing within SPICE. The model of the Fowler-Nordheim tunneling current through thin gate oxides of MOS devices is demonstrated, and shown how it can be used to quantify the damage induced. Charging damage is shown to be strongly affected by the device structure.

  2. The Use of Ion Implantation for Materials Processing.

    DTIC Science & Technology

    1981-06-24

    implantation of an elemental species (such as Pb) which poisons the cathodic reaction has been shown to greatly reduce the corrosion rate of iron . More...such as Pb) which poisons the cathodic reaction has been shown to greatly reduce the corrosion rate of iron . More commonly, corrosion resistance is...rAD-AlO2 15 NAVAL RESEARCH LAB WASHINGTON DC F/6 13/A TE USE OF ION IMPLANTATION FOR MATERIALS PROCESSING.(U) JUN al F A SMIOT UNCLASSIFIED NRL-MR

  3. Multi-Zone Modeling of Ion-Implanted Impurity Redistribution.

    NASA Astrophysics Data System (ADS)

    Araujo, Carlos Alberto Paz De.

    Implanted impurity redistribution has been observed during the annealing step of many ion-implanted materials. Throughout the ion-implantation literature, experimental evidence suggests some position dependence in the redistribution process. Specifically, the tail region of ion-implanted impurity profiles usually exhibit fast diffusion during annealing whereas the near-surface region shows slow diffusion. To date, redistribution models have failed to include this spacial dependence in the diffusion coefficient of ion -implanted impurities. Analytical expressions for the post -annealing profile are usually found from oversimplified redistribution models that employ Fick's second law with a reflecting surface boundary condition and a homogeneous semi-infinite medium. This modeling scheme is not capable to accommodate regions of high or low redistribution because of the restriction of a single diffusion constant. In general the ideal gaussian LSS profile is assumed as the initial condition rendering an analytic solution to the simple diffusion model that is capable of modeling only gaussian broadening. The approach taken in the present work is to model the ion-implanted substrate as a stratified medium with zones where a local diffusion equation is obeyed. An effective diffusion coefficient is defined within each zone with the intent to lump local disturbances such as defects and precipitates. Thus, regions of low or high redistribution are modeled by zones of large or small effective diffusion coefficients. Because it is not always possible to have an analytical expression for the pre-annealing profile the multi-zone modeling scheme developed in this work accepts any type of initial condition. In order to accomplish this level of generality the Crank-Nicolson numerical formula is used to solve the multi-zone equations. Also, the Crout-Doolittle matrix reduction algorithm is utilized to reduce the computation time. The multi-zone modeling scheme is tested for the case

  4. Xenon diffusion following ion implantation into feldspar - Dependence on implantation dose

    NASA Technical Reports Server (NTRS)

    Melcher, C. L.; Burnett, D. S.; Tombrello, T. A.

    1982-01-01

    The diffusion properties of xenon implanted into feldspar, a major mineral in meteorites and lunar samples, are investigated in light of the importance of xenon diffusion in the interpretation of early solar system chronologies and the retention time of solar-wind-implanted Xe. Known doses of Xe ions were implanted at an energy of 200 keV into single-crystal plagioclase targets, and depth profiles were measured by alpha particle backscattering before and after annealing for one hour at 900 or 1000 C. The fraction of Xe retained following annealing is found to be strongly dependent on implantation dose, being greatest at a dose of 3 x 10 to the 15th ions/sq cm and decreasing at higher and lower doses. Xe retention is also observed to be unaffected by two-step anneals, or by implantation with He or Ar. Three models of the dose-dependent diffusion properties are considered, including epitaxial crystal regrowth during annealing controlled by the extent of radiation damage, the creation of trapping sites by radiation damage, and the inhibition of recrystallization by Xe during annealing

  5. Charge neutralization apparatus for ion implantation system

    DOEpatents

    Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.

    1992-01-01

    Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.

  6. Fabrication of poly(vinyl carbazole) waveguides by oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Ghailane, Fatima; Manivannan, Gurusamy; Knystautas, Émile J.; Lessard, Roger A.

    1995-08-01

    Polymer waveguides were fabricated by ion implantation involving poly(vinyl carbazole) films. This material was implanted by oxygen ions (O ++ ) of energies ranging from 50 to 250 keV. The ion doses varied from 1010 to 1015 ions / cm2. The conventional prism-film coupler method was used to determine the waveguiding nature of the implanted and unimplanted films. The increase of the surface refractive index in the implanted layer has been studied by measuring the effective refractive index (neff) for different optical modes. Electron spectroscopy chemical analysis measurements were also performed to assess the effect of ion implantation on the polymer matrix.

  7. Gold ion implantation into alumina using an "inverted ion source" configuration

    NASA Astrophysics Data System (ADS)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Araujo, W. W. R.; Spirin, R. E.; Cattani, M.; Oks, E. M.; Brown, I. G.

    2014-02-01

    We describe an approach to ion implantation in which the plasma and its electronics are held at ground potential and the ion beam is injected into a space held at high negative potential, allowing considerable savings both economically and technologically. We used an "inverted ion implanter" of this kind to carry out implantation of gold into alumina, with Au ion energy 40 keV and dose (3-9) × 1016 cm-2. Resistivity was measured in situ as a function of dose and compared with predictions of a model based on percolation theory, in which electron transport in the composite is explained by conduction through a random resistor network formed by Au nanoparticles. Excellent agreement is found between the experimental results and the theory.

  8. Estimation of Nitrogen Ion Energy in Sterilization Technology by Plasma Based Ion Implantation

    NASA Astrophysics Data System (ADS)

    Kondou, Youhei; Nakashima, Takeru; Tanaka, Takeshi; Takagi, Toshinori; Watanabe, Satoshi; Ohkura, Kensaku; Shibahara, Kentaro; Yokoyama, Shin

    Plasma based ion implantation (PBII) with negative voltage pulses to the test specimen has been applied to the sterilization process as a technique suitable for three-dimensional work pieces. Pulsed high negative voltage (5 μs pulse width, 300 pulses/s, -800 V to -15 kV) was applied to the electrode in this process at a gas pressure of 2.4 Pa of N2. We found that the PBII process, in which N2 gas self-ignitted plasma generated by only pulsed voltages is used, reduces the number of active Bacillus pumilus cell. The number of bacteria survivors was reduced by 10-5 x with 5 min exposure. Since the ion energy is the most important processing parameter, a simple method to estimate the nitrogen ion energy from distribution of nitrogen atoms in Si implanted by PBII was developed. The implanted ion energy is discussed from the SIMS in depth profiles.

  9. Diffusion mechanism and the thermal stability of fluorine ions in GaN after ion implantation

    SciTech Connect

    Wang, M. J.; Yuan, L.; Chen, K. J.; Xu, F. J.; Shen, B.

    2009-04-15

    The diffusion mechanisms of fluorine ions in GaN are investigated by means of time-of-flight secondary ion mass spectrometry. Instead of incorporating fluorine ions close to the sample surface by fluorine plasma treatment, fluorine ion implantation with an energy of 180 keV is utilized to implant fluorine ions deep into the GaN bulk, preventing the surface effects from affecting the data analysis. It is found that the diffusion of fluorine ions in GaN is a dynamic process featuring an initial out-diffusion followed by in- diffusion and the final stabilization. A vacancy-assisted diffusion model is proposed to account for the experimental observations, which is also consistent with results on molecular dynamic simulation. Fluorine ions tend to occupy Ga vacancies induced by ion implantation and diffuse to vacancy rich regions. The number of continuous vacancy chains can be significantly reduced by a dynamic thermal annealing process. As a result, strong local confinement and stabilization of fluorine ions can be obtained in GaN crystal, suggesting excellent thermal stability of fluorine ions for device applications.

  10. Ion-exchange synthesis of Ag/Ag2S/Ag3CuS2 ternary hollow microspheres with efficient visible-light photocatalytic activity.

    PubMed

    Xing, Chaosheng; Zhang, Yuan; Wu, Zhudong; Jiang, Deli; Chen, Min

    2014-02-21

    Ternary Ag/Ag2S/Ag3CuS2 hollow microspheres were synthesized via an in situ ion-exchange method using Cu7S4 hollow submicrospheres as the template. The as-obtained Ag/Ag2S/Ag3CuS2 composite exhibited a well-defined uniform hollow microsphere morphology with an average diameter of about 1.3 μm. The photocatalytic property of the as-prepared Ag/Ag2S/Ag3CuS2 hollow microsphere composite was investigated by the decomposition of methyl orange (MO) under visible light irradiation (λ > 420 nm). It was shown that the photocatalytic activity of the Ag/Ag2S/Ag3CuS2 hollow microsphere was higher than those of Ag/Ag2S, Cu2O, Cu7S4 and P25 for the photodegradation of MO under visible light irradiation. Radical scavenger experiments demonstrated that superoxide radicals and holes were the main reactive species for MO degradation.

  11. Fabrication of Graphene Using Carbon Ion Implantation

    NASA Astrophysics Data System (ADS)

    Colon, Tomeka; Smith, Cydale; Muntele, Claudiu

    2012-02-01

    Graphene is a flat monolayer of carbon atoms tightly packed into a two-dimensional (2D) honeycomb lattice and is a basic building block for graphitic materials of all other dimensionalities. It can be wrapped up into 0D fullerenes, rolled into 1D nanotubes, or stacked into 3D graphite. Graphene's high electrical conductivity and high optical transparency make it a candidate for transparent conducting electrodes, required for such applications as touchscreens, liquid crystal displays, organic photovoltaic cells, and organic light-emitting diodes. In particular, graphene's mechanical strength and flexibility are advantageous compared to indium tin oxide, which is brittle, and graphene films may be deposited from solution over large areas. One method to grow epitaxial graphene is by starting with single crystal silicon carbide (SiC). When SiC is heated under certain conditions, silicon evaporates leaving behind carbon that reorganizes into layers of graphene. Here we report on an alternate method of producing graphene by using low energy carbon implantation in a nickel layer deposited on silicon dioxide mechanical support, followed by heat treatment in a reducing atmosphere to induce carbon migration and self-assembly. We used high resolution RBS and Raman spectroscopy for process and sample characterization. Details will be discussed during the meeting.

  12. Develop techniques for ion implantation of PLZT for adaptive optics

    NASA Astrophysics Data System (ADS)

    Craig, R. A.; Batishko, C. R.; Brimhall, J. L.; Pawlewicz, W. T.; Stahl, K. A.

    1989-11-01

    Battelle Pacific Northwest Laboratory (PNL) conducted research into the preparation and characterization of ion-implanted adaptive optic elements based on lead-lanthanum-zirconate-titanate (PLZT). Over the 4-yr effort beginning FY 1985, the ability to increase the photosensitivity of PLZT and extend it to longer wavelengths was developed. The emphasis during the last two years was to develop a model to provide a basis for choosing implantation species and parameters. Experiments which probe the electronic structure were performed on virgin and implanted PLZT samples. Also performed were experiments designed to connect the developing conceptual model with the experimental results. The emphasis in FY 1988 was to extend the photosensitivity out to diode laser wavelengths. The experiments and modelling effort indicate that manganese will form appropriate intermediate energy states to achieve the longer wavelength photosensitivity. Preliminary experiments were also conducted to deposit thin film PLZT.

  13. Deep Trench Doping by Plasma Immersion Ion Implantation in Silicon

    SciTech Connect

    Nizou, S.; Vervisch, V.; Etienne, H.; Torregrosa, F.; Roux, L.; Ziti, M.; Alquier, D.; Roy, M.

    2006-11-13

    The realization of three dimensional (3D) device structures remains a great challenge in microelectronics. One of the main technological breakthroughs for such devices is the ability to control dopant implantation along silicon trench sidewalls. Plasma Immersion Ion Implantation (PIII) has shown its wide efficiency for specific doping processing in semiconductor applications. In this work, we propose to study the capability of PIII method for large scale silicon trench doping. Ultra deep trenches with high aspect ratio were etched on 6'' N type Si wafers. Wafers were then implanted with a PIII Pulsion system using BF3 gas source at various pressures and energies. The obtained results evidence that PIII can be used and are of grateful help to define optimized processing conditions to uniformly dope silicon trench sidewalls through the wafers.

  14. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions

    PubMed Central

    Hsueh, Yi-Huang; Lin, Kuen-Song; Ke, Wan-Ju; Hsieh, Chien-Te; Chiang, Chao-Lung; Tzou, Dong-Ying; Liu, Shih-Tung

    2015-01-01

    The superior antimicrobial properties of silver nanoparticles (Ag NPs) are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI) staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10–50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation. PMID:26669836

  15. The enhanced anticoagulation for graphene induced by COOH+ ion implantation

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqi; Cao, Ye; Zhao, Mengli; Deng, Jianhua; Li, Xifei; Li, Dejun

    2015-01-01

    Graphene may have attractive properties for some biomedical applications, but its potential adverse biological effects, in particular, possible modulation when it comes in contact with blood, require further investigation. Little is known about the influence of exposure to COOH+-implanted graphene (COOH+/graphene) interacting with red blood cells and platelets. In this paper, COOH+/graphene was prepared by modified Hummers' method and implanted by COOH+ ions. The structure and surface chemical and physical properties of COOH+/graphene were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle measurement. Systematic evaluation of anticoagulation, including in vitro platelet adhesion assays and hemolytic assays, proved that COOH+/graphene has significant anticoagulation. In addition, at the dose of 5 × 1017 ions/cm2, COOH+/graphene responded best on platelet adhesion, aggregation, and platelet activation.

  16. Reactive-element effect studied using ion implantation

    SciTech Connect

    King, W.E.; Grabowski, K.S.

    1988-11-01

    Implantation of reactive elements into metals that form chromia layers upon exposure to high temperature oxidizing environments has a very large effect on the growth rate of the oxide and adhesion of the oxide to the base alloy. We have investigated the effect of Y ion implantation on the high temperature oxidation of Fe-24Cr using Rutherford backscattering spectroscopy, secondary ion mass spectroscopy, and electron microscopy. Analytical tools have been applied to determine the spatial distribution of Y, the microstructure of the oxide, and contribution of oxygen transport to the oxidation process. Results are compared with similar experiments in Fe-Cr alloys with Y additions and with results of cation and anion tracer diffusion experiments. 51 refs., 17 figs., 3 tabs.

  17. Energy loss of ions implanted in MOS dielectric films

    NASA Astrophysics Data System (ADS)

    Shyam, Radhey

    Energy loss measurements of ions in the low kinetic energy regime have been made on as-grown SiO2(170-190nm) targets. Singly charged Na + ions with kinetic energies of 2-5 keV and highly charged ions Ar +Q (Q=4, 8 and 11) with a kinetic energy of 1 keV were used. Excitations produced by the ion energy loss in the oxides were captured by encapsulating the irradiated oxide under a top metallic contact. The resulting Metal-Oxide-Semiconductor (MOS) devices were probed with Capacitance-Voltage (C V) measurements and extracted the flatband voltages from the C-V curves. The C-V results for singly charged ion experiments reveal that the changes in the flatband voltage and slope for implanted devices relative to the pristine devices can be used to delineate effects due to implanted ions only and ion induced damage. The data shows that the flatband voltage shifts and C-V slope changes are energy dependent. The observed changes in flatband voltage which are greater than those predicted by calculations scaled for the ion dose and implantation range (SRIM). These results, however, are consistent with a columnar recombination model, where electron-hole pairs are created due to the energy deposited by the implanted ions within the oxide. The remaining holes left after recombination losses are diffused through the oxide at the room temperature and remain present as trapped charges. Comparison of the data with the total number of the holes generated gives a fractional yield of 0.0124 which is of the same order as prior published high energy irradiation experiments. Additionally, the interface trap density, extracted from high and low frequency C-V measurements is observed to increase by one order of magnitude over our incident beam energy. These results confirm that dose- and kinetic energy -dependent effects can be recorded for singly charged ion irradiation on oxides using this method. Highly charged ion results also confirm that dose as well as and charge-dependent effects can

  18. Europium doping of zincblende GaN by ion implantation

    SciTech Connect

    Lorenz, K.; Franco, N.; Darakchieva, V.; Alves, E.; Roqan, I. S.; O'Donnell, K. P.; Trager-Cowan, C.; Martin, R. W.; As, D. J.; Panfilova, M.

    2009-06-01

    Eu was implanted into high quality cubic (zincblende) GaN (ZB-GaN) layers grown by molecular beam epitaxy. Detailed structural characterization before and after implantation was performed by x-ray diffraction (XRD) and Rutherford backscattering/channeling spectrometry. A low concentration (<10%) of wurtzite phase inclusions was observed by XRD analysis in as-grown samples with their (0001) planes aligned with the (111) planes of the cubic lattice. Implantation of Eu causes an expansion of the lattice parameter in the implanted region similar to that observed for the c-lattice parameter of wurtzite GaN (W-GaN). For ZB-GaN:Eu, a large fraction of Eu ions is found on a high symmetry interstitial site aligned with the <110> direction, while a Ga substitutional site is observed for W-GaN:Eu. The implantation damage in ZB-GaN:Eu could partly be removed by thermal annealing, but an increase in the wurtzite phase fraction was observed at the same time. Cathodoluminescence, photoluminescence (PL), and PL excitation spectroscopy revealed several emission lines which can be attributed to distinct Eu-related optical centers in ZB-GaN and W-GaN inclusions.

  19. The Use of Ion Implantation for Materials Processing.

    DTIC Science & Technology

    1984-08-23

    OXIDATION A. AN ELECTROCHEMICAL STUDY OF AMORPHOUS ION IMPLANTED STAINLESS STEELS .................... ............ .................. 115 C. R. Clayton...nonimplanted steel (P=0.6). Auger spectroscopy and energy- dispersive x-ray analysis were used to analyze the surface composition produced by the two processes...covered oxides present on all sur- In this fluence regime, an unexpectedly large concentration faces were ignored. Surfaces of steel disks represented in

  20. Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.

    DTIC Science & Technology

    1982-07-01

    a pre- liminary study using silicon solar cells. This work was undertaken in cooperation with Dr. J. Eguren of the Instituto De Energia Solar , Madrid...device fabrication has been attempted. To date, resistors, capacitors, diodes, bipolar transistors, MOSFEs, and solar cells have been fabricated with...34 " 48 *Si Solar Cells Ruby PL P+ Ion-Implanted 49 Ruby PL Pulsed Diffused 50 :C

  1. LSI/VLSI Ion Implanted GaAs IC Processing

    DTIC Science & Technology

    1982-02-10

    insulating High Speed Logic Ion Implantation GaAs IC FET Integrated Circuits MESFET 20. ABSTRACT (Coalki. on.. roersie if oookay and IdoeI by WOOe tw**, This...The goal of this program is to realize the full potential of GaAs digital integrated circuits employing depletion mode MESFETs by developing the...Processing. The main objective of this program is to realize the full potential of GaAs digital integrated circuits by expanding and improving

  2. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    NASA Astrophysics Data System (ADS)

    Delle Side, D.; Nassisi, V.; Giuffreda, E.; Velardi, L.; Alifano, P.; Talà, A.; Tredici, S. M.

    2014-07-01

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  3. Distribution of Boron Atoms in Ion Implanted Compound Semiconductors

    DTIC Science & Technology

    1988-11-22

    The nondestructive neutron depth profiling (NDP) technique has been used to measure the boron (10B) distributions in GaAs, CdTe, Hg0.7Cd0.3Te, and Hg0.85Mn0.15Te after multiple energy ion implants. The NDP results are found to be in good agreement with the theoretical ion ranges obtained from Monte Carlo computer simulations. Only minor changes in the boron profiles were seen for the chosen annealing conditions. Keywords

  4. Bubble formation in Zr alloys under heavy ion implantation

    SciTech Connect

    Pagano, L. Jr.; Motta, A.T.; Birtcher, R.C.

    1995-12-01

    Kr ions were used in the HVEM/Tandem facility at ANL to irradiate several Zr alloys, including Zircaloy-2 and -4, at 300-800 C to doses up to 2{times}10{sup 16}ion.cm{sup -2}. Both in-situ irradiation of thin foils as well as irradiation of bulk samples with an ion implanter were used in this study. For the thin foil irradiations, a distribution of small bubbles in the range of 30-100 {angstrom} was found at all temperatures with the exception of the Cr-rich Valloy where 130 {angstrom} bubbles were found. Irradiation of bulk samples at 700-800 C produced large faceted bubbles up to 300 {angstrom} after irradiation to 2{times}10{sup 16}ion.cm{sup -2}. Results are examined in context of existing models for bubble formation and growth in other metals.

  5. Collimator Magnet with Functionally Defined Profile for Ion Implantation

    SciTech Connect

    Nicolaescu, Dan; Gotoh, Yasuhito; Sakai, Shigeki; Ishikawa, Junzo

    2011-01-07

    Advanced implantation systems used for semiconductor processing should have high precision of ion beam collimation (+/-0.1 deg and better) and wide beam aperture (400 mm and more). Typical arrangements of ion implantation systems include beam scanning (BSM) and collimator magnets (CM). Standard collimator magnets have limited precision of beam collimation due to magnetic poles that have piecewise circular profile. This study proposes a novel ''constant sum angle collimator magnet''(CSACM) with non-circular magnetic pole profile. Angles of incidence {alpha}{sub i} and exit {alpha}{sub e} are defined as angles between ion trajectory and local normal to CM input/output magnetic pole edge. Profile of the CSACM is defined as having constant algebraic sum {alpha}{sub i}+{alpha}{sub e} = const for every ion trajectory of the scanned beam, in addition to ''usual'' beam collimation. An iterative procedure allows improve CSACM taking into account magnetic fringe field effects. Simulation results prove that CSACM assures precise beam collimation in two orthogonal planes. Circular approximations for CSACM magnetic poles are proposed. The model may be further developed for global design of the ion beam line (BSM+CM) and for taking into account space-charge effects.

  6. Ion beam system for implanting industrial products of various shapes

    NASA Astrophysics Data System (ADS)

    Denholm, A. S.; Wittkower, A. B.

    1985-01-01

    Implantation of metals and ceramics with ions of nitrogen and other species has improved surface properties such as friction, wear and corrosion in numerous industrial applications. Zymet has built a production machine to take advantage of this process which can implant a 2 × 10 17 ions/cm 2 dose of nitrogen ions into a 20 cm × 20 cm area in about 30 min using a 100 keV beam. Treatment is accomplished by mounting the product on a cooled, tiltable, turntable which rotates continuously, or is indexed in 15° steps to expose different surfaces in fixed position. Product cooling is accomplished by using a chilled eutectic metal to mount and grip the variously shaped objects. A high voltage supply capable of 10 mA at 100 kV is used, and the equipment is microcomputer controlled via serial light links. All important machine parameters are presented in sequenced displays on a CRT. Uniformity of treatment and accumulated dose are monitored by a Faraday cup system which provides the microprocessor with data for display of time to completion on the process screen. For routine implants the operator requires only two buttons; one for chamber vacuum control, and the other for process start and stop.

  7. Electrical properties of oxygen ion-implanted InP

    NASA Astrophysics Data System (ADS)

    He, L.; Anderson, W. A.

    1992-10-01

    The effect of oxygen ion implantation on defect levels and the electrical properties of undoped InP ( n-type) and Sn-doped InP have been investigated as a function of postimplant annealing at temperatures of 300 and 400° C. The surface interruption by ion bombardment was studied by a non-invasive optical technique—photoreflectance (PR) spectroscopy. Current-voltage (I-V) characterization and deep level transient spectros-copy (DLTS) were carried out. The free carrier compensation mechanism was studied from the microstructure behavior of defect levels associated with O+ implantation. Free carriers may be trapped in both residual and ion-bombardment-induced defect sites. Rapid thermal annealing (RTA) performed at different temperatures showed that if residual traps were removed by annealing, the compensation efficiency will be enhanced. Post-implant RTA treatment showed that at the higher temperature (400°C), trapped carriers may be re-excited, resulting in a weakened compensation. Comparing the results of undoped and Sn-doped InP indicated that the carrier compensation effect is substrate doping dependent.

  8. Defect engineering in the MOSLED structure by ion implantation

    NASA Astrophysics Data System (ADS)

    Prucnal, S.; Wójtowicz, A.; Pyszniak, K.; Drozdziel, A.; Zuk, J.; Turek, M.; Rebohle, L.; Skorupa, W.

    2009-05-01

    When amorphous SiO2 films are bombarded with energetic ions, various types of defects are created as a consequence of ion-solid interaction (peroxy radicals POR, oxygen deficient centres (ODC), non-bridging oxygen hole centres (NBOHC), E‧ centres, etc.). The intensity of the electroluminescence (EL) from oxygen deficiency centres at 2.7 eV, non-bridging oxygen hole centres at 1.9 eV and defect centres with emission at 2.07 eV can be easily modified by the ion implantation of the different elements (H, N, O) into the completely processed MOSLED structure. Nitrogen implanted into the SiO2:Gd layer reduces the concentration of the ODC and NBOHC while the doping of the oxygen increases the EL intensity observed from POR defect and NBOHC. Moreover, after oxygen or hydrogen implantation into the SiO2:Ge structure fourfold or fifth fold increase of the germanium related EL intensity was observed.

  9. Mechanical properties of ion-beam-textured surgical implant alloys

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.

    1977-01-01

    An electron-bombardment Hg ion thruster was used as an ion source to texture surfaces of materials used to make orthopedic and/or dental prostheses or implants. The materials textured include 316 stainless steel, titanium-6% aluminum, 4% vanadium, and cobalt-20% chromium, 15% tungsten. To determine the effect of ion texturing on the ultimate strength and yield strength, stainless steel and Co-Cr-W alloy samples were tensile tested to failure. Three types of samples of both materials were tested. One type was ion-textured (the process also heats each sample to 300 C), another type was simply heated to 300 C in an oven, and the third type was untreated. Stress-strain diagrams, 0.2% offset yield strength data, total elongation data, and area reduction data are presented. Fatigue specimens of ion textured and untextured 316 stainless steel and Ti-6% Al-4% V were tested. Included as an ion textured sample is a Ti-6% Al-4% V sample which was ion machined by means of Ni screen mask so as to produce an array of 140 mu m x 140 mu m x 60 mu m deep pits. Scanning electron microscopy was used to characterize the ion textured surfaces.

  10. Production of radioactive Ag ion beams with a chemically selective laser ion source

    NASA Astrophysics Data System (ADS)

    Jading, Y.; Catherall, R.; Jokinen, A.; Jonsson, O. C.; Kugler, E.; Lettry, J.; Ravn, H. L.; Tengblad, O.; Kautzsch, T.; Klöckl, I.; Kratz, K.-L.; Scheerer, F.; Fedoseyev, V. N.; Mishin, V. I.; van Duppen, P.; Wöhr, A.; Walters, W. B.

    1996-04-01

    We have developed a chemically selective laser ion source at the CERN-ISOLDE facility in order to study neutron-rich Ag nuclides. A pulsed laser system with high repetition rate has been used based on high-power copper-vapour pump lasers and dye lasers. With this source significant reductions of the isobaric background has been achieved.

  11. Surface Modification of Orthodontic Bracket Models via Ion Implantation: Effect on Coefficients of Friction

    DTIC Science & Technology

    1989-01-01

    This finding is suggestive of carbon contamination resulting from vacuum carburization which may well have occurred during the other implantations but...Analyzing Column Ion Separating Manei --------- Quadrupole Endstation Ion Extraction/ Preacceleration Plasma N-7 Magnet Filament (Cathode) Ion

  12. Formation of Nanometallic Clusters in Silica by Ion Implantation

    SciTech Connect

    Ila, D., Sarkisov, S., Williams, E.K. , Smith, C.C. , Poker, D.B., Hensley, D.K.

    1997-10-01

    We have changed both linear and nonlinear optical properties of suprasil-1 by implanting 2.0 MeV copper, 350 keV tin, 1.5 MeV silver and 3.0 MeV gold.These changes were induced both by over implantation above the threshold fluence for spontaneous cluster formation and by subsequent thermal annealing,and are due to an increase in resonance optical absorption as well as an enhancement of the nonlinear optical properties. Using optical absorption spectrophotometry and Rutherford Backscattering spectrometry, we have measured the cluster size for each heat treatment temperature. Using Z-scan technique we have determined the third order electric susceptibility for each implanted species to be 1.5 x 10(exp -6) esu for Sn nanoclusters, 2.7 x 10(exp -6) esu for Cu nanoclusters, 5 x 10(exp -7) esu for Ag nanoclusters, to 6.5 x 10(exp-7) esu for Au nanoclusters in suprasil- 1.

  13. FeN foils by nitrogen ion-implantation

    SciTech Connect

    Jiang, Yanfeng; Wang, Jian-Ping; Al Mehedi, Md; Fu, Engang; Wang, Yongqiang

    2014-05-07

    Iron nitride samples in foil shape (free standing, 500 nm in thickness) were prepared by a nitrogen ion-implantation method. To facilitate phase transformation, the samples were bonded on the substrate followed by a post-annealing step. By using two different substrates, single crystal Si and GaAs, structural and magnetic properties of iron nitride foil samples prepared with different nitrogen ion fluences were characterized. α″-Fe{sub 16}N{sub 2} phase in iron nitride foil samples was obtained and confirmed by the proposed approach. A hard magnetic property with coercivity up to 780 Oe was achieved for the FeN foil samples bonded on Si substrate. The feasibility of using nitrogen ion implantation techniques to prepare FeN foil samples up to 500 nm thickness with a stable martensitic phase under high ion fluences has been demonstrated. A possible mechanism was proposed to explain this result. This proposed method could potentially be an alternative route to prepare rare-earth-free FeN bulk magnets by stacking and pressing multiple free-standing thick α″-Fe{sub 16}N{sub 2} foils together.

  14. Ion-Implanted Diamond Films and Their Tribological Properties

    NASA Technical Reports Server (NTRS)

    Wu, Richard L. C.; Miyoshi, Kazuhisa; Korenyi-Both, Andras L.; Garscadden, Alan; Barnes, Paul N.

    1993-01-01

    This paper reports the physical characterization and tribological evaluation of ion-implanted diamond films. Diamond films were produced by microwave plasma, chemical vapor deposition technique. Diamond films with various grain sizes (0.3 and 3 microns) and roughness (9.1 and 92.1 nm r.m.s. respectively) were implanted with C(+) (m/e = 12) at an ion energy of 160 eV and a fluence of 6.72 x 10(exp 17) ions/sq cm. Unidirectional sliding friction experiments were conducted in ultrahigh vacuum (6.6 x 10(exp -7)Pa), dry nitrogen and humid air (40% RH) environments. The effects of C(+) ion bombardment on fine and coarse-grained diamond films are as follows: the surface morphology of the diamond films did not change; the surface roughness increased (16.3 and 135.3 nm r.m.s.); the diamond structures were damaged and formed a thin layer of amorphous non-diamond carbon; the friction coefficients dramatically decreased in the ultrahigh vacuum (0.1 and 0.4); the friction coefficients decreased slightly in the dry nitrogen and humid air environments.

  15. Hydrophilic property by contact angle change of ion implanted polycarbonate.

    PubMed

    Lee, Chan Young; Kil, Jae Keun

    2008-02-01

    In this study, ion implantation was performed onto a polymer, polycarbonate (PC), in order to investigate surface hydrophilic property through contact angle measurement. PC was irradiated with N, Ar, and Xe ions at the irradiation energy of 20-50 keV and the dose range of 5x10(15), 1x10(16), 7x10(16) ions/cm(2). The contact angle of water was estimated by means of the sessile drop method and was reduced with increasing fluence and ion mass but increased with increasing implanted energy. The changes of chemical and structural properties are discussed in view of Furier transform infrared and x-ray photoelectron spectroscopy, which shows increasing C-O bonding and C-C bonding. The surface roughness examined by atomic force microscopy measurement changed smoothly from 3.59 to 2.22 A as the fluence increased. It is concluded that the change in wettability may be caused by surface carbonization and oxidation as well as surface roughness.

  16. Hydrophilic property by contact angle change of ion implanted polycarbonatea)

    NASA Astrophysics Data System (ADS)

    Lee, Chan Young; Kil, Jae Keun

    2008-02-01

    In this study, ion implantation was performed onto a polymer, polycarbonate (PC), in order to investigate surface hydrophilic property through contact angle measurement. PC was irradiated with N, Ar, and Xe ions at the irradiation energy of 20-50keV and the dose range of 5×1015, 1×1016, 7×1016ions/cm2. The contact angle of water was estimated by means of the sessile drop method and was reduced with increasing fluence and ion mass but increased with increasing implanted energy. The changes of chemical and structural properties are discussed in view of Furier transform infrared and x-ray photoelectron spectroscopy, which shows increasing C O bonding and C C bonding. The surface roughness examined by atomic force microscopy measurement changed smoothly from 3.59to2.22Å as the fluence increased. It is concluded that the change in wettability may be caused by surface carbonization and oxidation as well as surface roughness.

  17. Applications of ion implantation to high performance, radiation tolerant silicon solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.; Minnucci, J. A.; Matthei, K. W.

    1979-01-01

    Progress in the development of ion implanted silicon solar cells is reported. Effective back surface preparation by implantation, junction processing to achieve high open circuit voltages in low-resistivity cells, and radiation tolerance cells are among the topics studied.

  18. Evaluation of the ion implantation process for production of solar cells from silicon sheet materials

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.

    1983-01-01

    For the ion implantation tooling was fabricated with which to hold dendritic web samples. This tooling permits the expeditious boron implantation of the back to form the back surface field (BSF). Baseline BSF web cells were fabricated.

  19. Metal ion implantation for large scale surface modification

    SciTech Connect

    Brown, I.G.

    1992-10-01

    Intense energetic beams of metal ions can be produced by using a metal vapor vacuum arc as the plasma discharge from which the ion beam is formed. We have developed a number of ion sources of this kind and have built a metal ion implantation facility which can produce repetitively pulsed ion beams with mean ion energy up to several hundred key, pulsed beam current of more than an ampere, and time averaged current of several tens of milliamperes delivered onto a downstream target. We've also done some preliminary work on scaling up this technology to very large size. For example, a 50-cm diameter (2000 cm[sup 2]) set of beam formation electrodes was used to produce a pulsed titanium beam with ion current over 7 amperes at a mean ion energy of 100 key. Separately, a dc embodiment has been used to produce a dc titanium ion beam with current over 600 mA, power supply limited in this work, and up to 6 amperes of dc plasma ion current was maintained for over an hour. In a related program we've developed a plasma immersion method for applying thin metallic and compound films in which the added species is atomically mixed to the substrate. By adding a gas flow to the process, well-bonded compound films can also be formed; metallic films and multilayers as well as oxides and nitrides with mixed transition zones some hundreds of angstroms thick have been synthesized. Here we outline these parallel metal-plasma-based research programs and describe the hardware that we've developed and some of the surface modification research that we've done with it.

  20. Ion-implanted epitaxially grown ZnSe

    NASA Technical Reports Server (NTRS)

    Chernow, F.

    1975-01-01

    The use of ZnSe to obtain efficient, short wavelength injection luminescence was investigated. It was proposed that shorter wavelength emission and higher efficiency be achieved by employing a p-i-n diode structure rather than the normal p-n diode structure. The intervening i layer minimizes concentration quenching effects and the donor-acceptor pair states leading to long wavelength emission. The surface p layer was formed by ion implantation; implantation of the i layer rather than the n substrate permits higher, uncompensated p-type doping. An ion implanted p-n junction in ZnSe is efficiency-limited by high electron injection terminating in nonradiative recombination at the front surface, and by low hole injection resulting from the inability to obtain high conductivity p-type surface layers. While the injection ratio in p-n junctions was determined by the radio of majority carrier concentrations, the injection ratio in p-i-n structures was determined by the mobility ratios and/or space charge neutrality requirements in the i layer.

  1. Hardening of Metallic Materials Using Plasma Immersion Ion Implantation (PIII)

    NASA Astrophysics Data System (ADS)

    Xu, Yufan; Clark, Mike; Flanagan, Ken; Milhone, Jason; Nonn, Paul; Forest, Cary

    2016-10-01

    A new approach of Plasma Immersion Ion Implantation (PIII) has been developed with the Plasma Couette Experiment Upgrade (PCX-U). The new approach efficiently reduces the duty cycle under the same average power for PIII. The experiment uses a Nitrogen plasma at a relatively high density of 1010 1011 cm-3 with ion temperatures of < 2 eV and electron temperature of 5 10 eV. The pulser for this PIII experiment has a maximum negative bias greater than 20kV, with 60Hz frequency and a 8 μs on-time in one working cycle. The samples (Alloy Steel 9310) are analyzed by a Vicker Hardness Tester to study the hardness and X-ray Photoelectron Spectroscopy (XPS) to study implantation density and depth. Different magnetic fields are also applied on samples to reduce the energy loss and secondary emission. Higher efficiency of implantation is expected from this experiment and the results will be presented. Hilldale Undergraduate/Faculty Research Fellowship of University of Wisconsin-Madison; Professor Cary Forest's Kellett Mid-Career Faculty Award.

  2. Simulation of BF{sub 3} plasma immersion ion implantation into silicon

    SciTech Connect

    Burenkov, A.; Hahn, A.; Spiegel, Y.; Etienne, H.; Torregrosa, Frank

    2012-11-06

    Plasma immersion ion implantation from a BF{sub 3} plasma into crystalline (100) silicon was performed using the PULSION plasma doping tool. Implanted boron profiles were measured with the SIMS method and simulated using models with different levels of sophistication. The physical implantation model is based on an analytical energy distribution for ions from the plasma and uses a Monte-Carlo simulation code. An analytical model of plasma immersion ion implantation that assumes a uniform and isotropic implantation was implemented in a software module called IMP3D. The functionality of this module which was initially envisaged for the three-dimensional simulation of conventional ion implantation was extended to plasma immersion ion implantation and examples of 2D and 3D simulations from this are presented.

  3. Ion implanted integrated Bragg gratings in SOI waveguides

    NASA Astrophysics Data System (ADS)

    Bulk, M. P.; Knights, A. P.; Jessop, P. E.

    2007-06-01

    We report the realization of a Bragg grating optical filter at telecommunication wavelengths in silicon-on-insulator (SOI) through the use of ion implantation induced refractive index modulation. Silicon self-irradiation damage accumulation results in an increase of the refractive index to a saturated value, upon amorphization, of approximately 3.75. This makes it an interesting candidate for passive gratings as the silicon retains a planar surface, making it ideal for further processing. Monte Carlo simulations and coupled mode theory demonstrate the viability of the approach. Planar implanted SOI waveguides showed extinction ratios of -5 dB for TE and -2 dB for TM. An annealing study suggests complete amorphization was not achieved and future results should be improved dramatically.

  4. Surface modification of polymeric materials by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Fu, Ricky K. Y.; Cheung, I. T. L.; Mei, Y. F.; Shek, C. H.; Siu, G. G.; Chu, Paul K.; Yang, W. M.; Leng, Y. X.; Huang, Y. X.; Tian, X. B.; Yang, S. Q.

    2005-08-01

    Polymer surfaces typically have low surface tension and high chemical inertness and so they usually have poor wetting and adhesion properties. The surface properties can be altered by modifying the molecular structure using plasma immersion ion implantation (PIII). In this work, Nylon-6 was treated using oxygen/nitrogen PIII. The observed improvement in the wettability is due to the oxygenated and nitrogen (amine) functional groups created on the polymer surface by the plasma treatment. X-ray photoelectron spectroscopy (XPS) results show that nitrogen and oxygen plasma implantation result in C-C bond breaking to form the imine and amine groups as well as alcohol and/or carbonyl groups on the surface. The water contact angle results reveal that the surface wetting properties depend on the functional groups, which can be adjusted by the ratio of oxygen-nitrogen mixtures.

  5. Stoichiometric disturbances in compound semiconductors due to ion implantation

    NASA Technical Reports Server (NTRS)

    Avila, R. E.; Fung, C. D.

    1986-01-01

    A method is developed to calculate the depth distribution of the local stoichiometric disturbance (SD) resulting from ion implantation in binary-compound substrates. The calculation includes first-order recoils considering projected range straggle of projectiles and recoils and lateral straggle of recoils. The method uses tabulated final-range statistics to infer the projectile range distributions at intermediate energies. This approach greatly simplifies the calculation with little compromise on accuracy as compared to existing procedures. As an illustration, the SD profile is calculated for implantation of boron, silicon, and aluminum in silicon carbide. The results for the latter case suggest that the SD may be responsible for otherwise unexplained distortions in the annealed aluminum profile. A comparison with calculations by other investigators using the Boltzmann transport equation shows good agreement.

  6. Effect of plasma immersion ion implantation in TiNi implants on its interaction with animal subcutaneous tissues

    NASA Astrophysics Data System (ADS)

    Lotkov, Aleksandr I.; Kashin, Oleg A.; Kudryavtseva, Yuliya A.; Shishkova, Darya K.; Krukovskii, Konstantin V.; Kudryashov, Andrey N.

    2016-08-01

    Here we investigated in vivo interaction of Si-modified titanium nickelide (TiNi) samples with adjacent tissues in a rat subcutaneous implant model to assess the impact of the modification on the biocompatibility of the implant. Modification was performed by plasma immersion ion processing, which allows doping of different elements into surface layers of complex-shaped articles. The aim of modification was to reduce the level of toxic Ni ions on the implant surface for increasing biocompatibility. We identified a thin connective tissue capsule, endothelial cells, and capillary-like structures around the Si-modified implants both 30 and 90 days postimplantation. No signs of inflammation were found. In conclusion, modification of TiNi samples with Si ions increases biocompatibility of the implant.

  7. Improved bio-tribology of biomedical alloys by ion implantation techniques

    NASA Astrophysics Data System (ADS)

    Díaz, C.; Lutz, J.; Mändl, S.; García, J. A.; Martínez, R.; Rodríguez, R. J.

    2009-05-01

    Surface modification of biomaterials by conventional ion implantation (II) and plasma immersion ion implantation (PI3) are innovative methods to improve the biocompatibility of these advanced materials. This paper describes the biocompatibility improvements of Ti6Al4V and Co28Cr6Mo implanted with N and O in a conventional implantation and a plasma immersion ion implantation processes. Tribo-corrosion friction and wear tests were performed in a realistic environment - in Hank's solution - to investigate the introduced modifications. The wear performance was only slightly improved due to a thin layer thickness, whereas, in contrast, the corrosion rate was significantly reduced.

  8. Electron spin resonance study of ion-implanted polymers

    NASA Astrophysics Data System (ADS)

    Wasserman, B.; Dresselhaus, M. S.; Braunstein, G.; Wnek, G. E.; Roth, G.

    1985-03-01

    The effect of ion implantation on the polymers PAN (polyacrylonitrile), PPO (poly 2,6-dimethylphenylene oxide) and PPS (p-polyphenylene sulfide) is studied using electron spin resonance. ESR measurements on these polymers were performed as a function of ion species and fluence in the temperature range 10 ion species used for implantation in this study (84Kr,80Br,75As,40Ar and14N). It is therefore concluded that the carrier concentration is related to the structural damage and not to chemical doping effects. From the shape of the ESR line, the ratio of the relaxation times for one-dimensional to three-dimensional spin diffusion is determined to be larger than 1000. The temperature dependence of the unpaired carrier concentration shows a strong deviation from a Curie law behavior, which can be explained by assuming that a defect band is formed with a bandgap due to strong Coulomb interaction between electrons on the defect sites.

  9. High Resolution Rutherford Back Scattering Estimation of the Surface Implanted Nitrogen Ion by Using Plasma-based Ion Implantation

    NASA Astrophysics Data System (ADS)

    Tanaka, Takeshi; Takagi, Toshinori

    Plasma-based ion implantation (PBII) with negative voltage pulses to the test specimen has been applied to the sterilization process as a technique suitable for three-dimensional work pieces. Pulsed high negative voltage (5 μs pulse width, 300 pulses/s, -800 V to -15 kV) was applied to the electrode in this process at a gas pressure of 2.4 Pa of N2. We found that the PBII process, in which (N2 gas self-ignitted plasma generated by only pulsed voltages is used) reduces the numbers of active Bacillus pumilus cell. The number of bacteria survivors was reduced by 10-5 x with 5 min exposure. As the ion energy is one of the important processing parameters on sterilization of the surface, the ion energy is discussed from the high resolution RBS depth profile.

  10. GaAs transistors formed by Be or Mg ion implantation

    NASA Technical Reports Server (NTRS)

    Hunsperger, R. G.; Marsh, O. J.

    1974-01-01

    N-p-n transistor structures have been formed in GaAs by implanting n-type substrates with Be ions to form base regions and then implanting them with 20-keV Si ions to form emitters. P-type layers have been produced in GaAs by implantation of either Mg or Be ions, with substrate at room temperature, followed by annealing at higher temperatures.

  11. The effect of germanium ion implantation dose on the amorphization and recrystallization of polycrystalline silicon films

    NASA Astrophysics Data System (ADS)

    Komem, Y.; Hall, I. W.

    1981-11-01

    Polycrystalline Si films have been amorphized by implantation with 130-keV Ge ions and subsequently recrystallized by conventional heat treatment. It is found that, after amorphization with a low ion dose, recrystallization produces a structure which is morphologically similar to the original film. By contrast, after high Ge dose implantation, recrystallization proceeds dendritically. An initial rationale for this behavior is proposed in terms of the lattice disorder introduced by ion implantation.

  12. Photoluminescence Behaviour of Sm3+ Ions in presence of Ag Nanoparticles in Methanol

    NASA Astrophysics Data System (ADS)

    Dehingia, N.; Gogoi, P.; Boruah, A.; Kakoti, D.; Rajkonwar, N.; Dutta, P.

    2016-10-01

    In the present work, capped Ag NPs prepared by reduction of Ag (NO3)3 by Dimethyl Formamide is doped with Sm3+ in methanol and its photoluminescence behavior is studied. Significant modifications of the Sm3+ ions’ emission as well as quantum yield, were observed with the concentration of Ag NPs. Local field enhancement induced by neutral Ag NPs were found to be responsible for enhancement in efficiency of the Sm3+ ions.

  13. Dislocation-related photoluminescence in silicon implanted with fluorine ions

    NASA Astrophysics Data System (ADS)

    Sobolev, N. A.; Kalyadin, A. E.; Sakharov, V. I.; Serenkov, I. T.; Shek, E. I.; Karabeshkin, K. V.; Karasev, P. A.; Titov, A. I.

    2017-01-01

    The implantation of 85-keV fluorine ions at a dose of 8.3 × 1014 cm-2 into single crystal Si does not lead to formation of an amorphous layer. Subsequent annealing at a temperature of 1100°C in a chlorine-containing atmosphere is accompanied by the appearance of D1 and D2 lines of dislocation-related luminescence. The intensity of both lines decreases as the annealing duration is increased from 0.25 to 3 h. As the measurement temperature is increased from 80 to 200 K, the intensities of these lines decrease and the positions of their peaks shift to longer wavelengths.

  14. Pulsed-electron-beam annealing of ion-implantation damage

    NASA Technical Reports Server (NTRS)

    Greenwald, A. C.; Kirkpatrick, A. R.; Little, R. G.; Minnucci, J. A.

    1979-01-01

    Short-duration high-intensity pulsed electron beams have been used to anneal ion-implantation damage in silicon and to electrically activate the dopant species. Lattice regrowth and dopant activation were determined using He(+)-4 backscattering, SEM, TEM, and device performance characteristics as diagnostic techniques. The annealing mechanism is believed to be liquid-phase epitaxial regrowth initiating from the substrate. The high-temperature transient pulse produced by the electron beam causes the dopant to diffuse rapidly in the region where the liquid state is achieved.

  15. Ion Implantation in III-V Compound Semiconductors

    DTIC Science & Technology

    1984-09-01

    340 keV H + -0 Ga P  O UES-723-292 !:• (H o>ray *P-K X - rayO Ga-K X -ray iii! RBS * ..I -iO.. 0 10I to1. 01 • .0 -. I0 1 LI =i, O I 0 01 0.J 10...Identity by blo ," pume) Ion Implantation, GaAs, Hall effect, electrical resistivity, Rutherford Backscattering (RBS), channeling, Proton induced x -ray...Mebility (jH) upon Aiinealing Temperature (TA) for 1 X 101 /cm• Dose Samples of GaAs:Mg with Three Different Capping Methods 33 p 14 Dependence of Surface

  16. Surface modification of titanium and titanium alloys by ion implantation.

    PubMed

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation.

  17. Size tuning of Ag-decorated TiO₂ nanotube arrays for improved bactericidal capacity of orthopedic implants.

    PubMed

    Esfandiari, N; Simchi, A; Bagheri, R

    2014-08-01

    Surface modification of orthopedic implants using titanium dioxide nanotubes and silver nanoparticles (SNs) is a promising approach to prevent bacteria adhesion, biofilm formation, and implant infection. Herein, we utilized a straightforward and all-solution process to prepare silver-decorated TiO2 nanotube arrays with surface density of 10(3) to 10(4) per µm(2). With controlling the synthesis conditions, hexagonal closed-packed nanotubes with opening diameter of 30-100 nm that are decorated with SNs with varying sizes (12-40 nm) were prepared. Various analytical techniques were utilized to characterize the size, morphology, distribution, valance state, surface roughness, and composition of the prepared antibacterial films. The bactericidal capacity of the films were studied on Escherichia coli (E. coli) by drop-test method and correlated with the size and percentage of Ag as well as the surface density of TiO2 nanotube arrays. Synergetic effect of TiO2 nanotubes and SNs on the antibacterial activity of the composite films is shown. The bactericidal capacity is found to depend on the size characteristics of the Ag-TiO2 coating. The highest antibacterial activity is obtained for TiO2 nanotubes with opening diameter of about 100 nm and SNs with an average size of 20 nm. MTT assay using osteoblast MG63 cells was performed to examine the cell viability. We suggest that release rate of the silver ions is an important factor controlling the antibacterial activity. Additionally, the size dependency of the bactericidal capacity implies that electrical coupling between silver and TiO2 nanotubes and improved hydrophobicity of the coating might influence the bacterial behavior of the hybrid nanostructures.

  18. Ion beam technology applications study. [ion impact, implantation, and surface finishing

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Komatsu, G. K.

    1978-01-01

    Specific perceptions and possible ion beam technology applications were obtained as a result of a literature search and contact interviews with various institutions and individuals which took place over a 5-month period. The use of broad beam electron bombardment ion sources is assessed for materials deposition, removal, and alteration. Special techniques examined include: (1) cleaning, cutting, and texturing for surface treatment; (2) crosslinking of polymers, stress relief in deposited layers, and the creation of defect states in crystalline material by ion impact; and (3) ion implantation during epitaxial growth and the deposition of neutral materials sputtered by the ion beam. The aspects, advantages, and disadvantages of ion beam technology and the competitive role of alternative technologies are discussed.

  19. Productivity Improvement for the SHX--SEN's Single-Wafer High-Current Ion Implanter

    SciTech Connect

    Ninomiya, Shiro; Ochi, Akihiro; Kimura, Yasuhiko; Yumiyama, Toshio; Kudo, Tetsuya; Kurose, Takeshi; Kariya, Hiroyuki; Tsukihara, Mitsukuni; Ishikawa, Koji; Ueno, Kazuyoshi

    2011-01-07

    Equipment productivity is a critical issue for device fabrication. For ion implantation, productivity is determined both by ion current at the wafer and by utilization efficiency of the ion beam. Such improvements not only result in higher fabrication efficiency but also reduce consumption of both electrical power and process gases. For high-current ion implanters, reduction of implant area is a key factor to increase efficiency. SEN has developed the SAVING system (Scanning Area Variation Implantation with Narrower Geometrical pattern) to address this opportunity. In this paper, three variations of the SAVING system are introduced along with discussion of their effects on fab productivity.

  20. Permeability control of GPC drug delivery by ion implantation

    SciTech Connect

    Zimmerman, R.L. |; Ila, D.; Poker, D.B.; Withrow, S.P.

    1997-02-01

    MeV Ion beams are used to tailor the drug delivery rate of materials with dual usage of prosthesis devices and drug encapsulation. Available surface porosity and diffusivity can be controlled by the choice of specie, fluence and energy of the bombarding ions. Together with appropriate drug concentration gradients within the capsule, the capsule can be made to deliver an initial dose rate either higher or lower than the steady state value for a predetermined time. The exceptional biocompatibility as well as porosity of glassy polymeric carbon (GPC) make it the favored material for drug encapsulation. A wide range of available porosity in the bulk material can be produced by heat treatment. We demonstrate that lithium diffusivity near the surface of GPC can be increased by carbon, oxygen or silicon ion bombardment and can be decreased by gold ion bombardment. In addition enhanced absorption of lithium in a layer near the end of the range of the implanted ions has been observed. {copyright} {ital 1997 American Institute of Physics.}

  1. Turning an organic semiconductor into a low-resistance material by ion implantation.

    PubMed

    Fraboni, Beatrice; Scidà, Alessandra; Cosseddu, Piero; Wang, Yongqiang; Nastasi, Michael; Milita, Silvia; Bonfiglio, Annalisa

    2015-12-01

    We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case for Ne implants. Fully operational pentacene thin film transistors have also been implanted and we show how a controlled N ion implantation process can induce stable modifications in the threshold voltage, without affecting the device performance.

  2. Turning an organic semiconductor into a low-resistance material by ion implantation

    PubMed Central

    Fraboni, Beatrice; Scidà, Alessandra; Cosseddu, Piero; Wang, Yongqiang; Nastasi, Michael; Milita, Silvia; Bonfiglio, Annalisa

    2015-01-01

    We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case for Ne implants. Fully operational pentacene thin film transistors have also been implanted and we show how a controlled N ion implantation process can induce stable modifications in the threshold voltage, without affecting the device performance. PMID:27877850

  3. RELATIVISTIC HEAVY ION PHYSICS : RESULTS FROM AGS TO RHIC.

    SciTech Connect

    STEINBERG,P.

    2002-06-20

    High-energy collisions of heavy ions provide a means to study QCD in a regime of high parton density, and may provide insight into its phme structure. Results from the four experiments at RHIC (BRAHMS, PHENIX, PHOBOS and STAR) are presented, and placed in context with the lower energy data from the AGS and SPS accelerators. The focus is on the insights these measurements provide into the time history of the collision process. Taken together, the data point to the creation of a deconfined state of matter that forms quickly, expands rapidly and freezes out suddenly. With the new RHIC data, systematic data now exists for heavy ion collisions as a function of {radical}s over several orders of magnitude and as a function of impact parameter. These data test the interplay between hard and soft processes in a large-volume system where nucleons are struck multiple times. The data is consistent with creating a deconfined state (jet quenching) that forms quickly (saturation models), expands rapidly (radial and elliptic flow) and freezes out suddenly (single freezeout and blast wave fits). There are also intriguing connections with particle production in elementary systems, which point to the role of the energy available for particle production on the features of the final state. Many in this field are optimistic that the careful understanding of this experimental data may lead t o the theoretical breakthroughs that will connect these complex systems to the fundamental lattice predict ions.

  4. Optically active surfaces formed by ion implantation and thermal treatment

    SciTech Connect

    Gea, L.A.; Boatner, L.A.; Evans, H.M.; Zuhr, R.

    1996-08-01

    Embedded VO{sub 2} precipitates have been formed in single-crystal sapphire by the ion co-implantation of vanadium and oxygen and subsequent thermal annealing. The embedded VO{sub 2} particles have been shown to exhibit an optical switching behavior that is comparable to that of continuous thin films. In this work, the mechanisms of formation of these optically active particles are investigated. It is shown that precipitation of the vanadium dioxide phase is favored when the thermal treatment is performed on an ion-damaged but still crystalline (rather than amorphized) Al{sub 2}O{sub 3} substrate. The best optical switching behavior is observed in this case, and this behavior is apparently correlated with a more-favorable dispersion of VO{sub 2} small particles inside the matrix.

  5. Multi-ion and pH sensitivity of AgGeSe ion selective electrodes

    NASA Astrophysics Data System (ADS)

    Conde Garrido, J. M.; Silveyra, J. M.; Ureña, M. A.

    2016-02-01

    Many chalcogenide glasses have been found to combine benefits such as good chemical durability, selectivity, and reproducibility for applications as solid-state sensitive membranes of ion selective electrodes (ISEs). In previous works, we have shown that ISEs with ionic conductive AgGeSe membranes have good sensitivity to Ag+ ions. In the present work, we explore the Agx(Ge0.25Se0.75)100-x, 10≤x≤30 (at%) system as candidate for ISEs applications detecting several other ions (K+, Mg2+, Cr3+, Fe3+, Ni2+, Cd2+, Hg2+, and Pb2+). We evaluated ISEs fabricated with bulk as well as with thin film membranes. We found no dependence of the sensing properties on the Ag content of the ionic conductive membranes. Thin films exhibited the same properties than bulk membranes, indicating that these chalcogenide glasses have great potential for miniaturization. The ISEs showed a high response (Nernstian or super-Nernstian) to the presence of Hg2+, Pb2+, and Fe3+, a low response (sub-Nernstian) to the presence of Cr3+, and a total lack of response to the presence of Cd2+, Ni2+, Mg2+, and K+. We also tested how the pH of the solution affected the response of the ISEs. The potentials of the ISEs were practically constant in neutral or acidic solutions, while decreased drastically in basic solutions when the primary ion was not present. The latter phenomenon was caused by the slow dissolution of the membrane into the solution, meaning that long-term basic environments should be avoided for these ISEs. We concluded that ISEs with ionic conductive AgGeSe membranes are good candidates to integrate multi-electrode systems.

  6. Ion-implanted high microwave power indium phosphide transistors

    NASA Technical Reports Server (NTRS)

    Biedenbender, Michael D.; Kapoor, Vik J.; Messick, Louis J.; Nguyen, Richard

    1989-01-01

    Encapsulated rapid thermal annealing (RTA) has been used in the fabrication of InP power MISFETs with ion-implanted source, drain, and active-channel regions. The MISFETs had a gate length of 1.4 microns. Six to ten gate fingers per device, with individual gate finger widths of 100 or 125 microns, were used to make MISFETs with total gate widths of 0.75, 0.8, or 1 mm. The source and drain contact regions and the channel region of the MISFETs were fabricated using Si implants in InP at energies from 60 to 360 keV with doses of (1-560) x 10 to the 12th/sq cm. The implants were activated using RTA at 700 C for 30 sec in N2 or H2 ambients using an Si3N4 encapsulant. The high-power high-efficiency MISFETs were characterized at 9.7 GHz, and the output microwave power density for the RTA conditions used was as high as 2.4 W/mm. For a 1-W input at 9.7 GHz gains up to 3.7 dB were observed, with an associated power-added efficiency of 29 percent and output power density 70 percent greater than that of GaAs MESFETs.

  7. Ion Implant Technology for Intermediate Band Solar Cells

    NASA Astrophysics Data System (ADS)

    Olea, Javier; Pastor, David; Luque, María Toledano; Mártil, Ignacio; Díaz, Germán González

    This chapter describes the creation of an Intermediate Band (IB) on single crystal silicon substrates by means of high-dose Ti implantation and subsequent Pulsed Laser Melting (PLM). The Ti concentration over the Mott limit is confirmed by Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) measurements and the recovery of the crystallinity after annealing by means of Glancing Incidence X Ray Diffraction (GIXRD) and Transmission Electron Microscopy (TEM). Rutherford Backscattering Spectroscopy (RBS) measurements show that most of the atoms are located interstitially. Analysis of the sheet resistance and mobility measured using the van der Pauw geometry shows a temperature-dependent decoupling between the implanted layer and the substrate. This decoupling and the high laminated conductivity of the implanted layer could not be explained except if we assume that an IB has been formed in the semiconductor. A specific model for the bilayer electrical behaviour has been developed. The fitting of this model and also the simulation of the sheet resistance with the ATLAS code allow to determine that the IB energetic position is located around 0.36-0.38 eV below the conduction band. Carriers at the IB have a density very similar to the Ti concentration and behave as holes with mobilities as low as 0.4 cm2 Vs- 1.

  8. Detection of changes in DNA methylation induced by low-energy ion implantation in Arabidopsis thaliana.

    PubMed

    Yu, Haichan; Zhao, Jin; Xu, Jing; Li, Xiaoqu; Zhang, Fengshou; Wang, Yugang; Carr, Christopher; Zhang, Jun; Zhang, Genfa

    2011-05-01

    This study evaluated changes in DNA methylation in Arabidopsis thaliana plants grown from seeds implanted with low-energy N(+) and Ar(+) ions. Methylation-sensitive amplified polymorphism (MSAP) testing revealed altered DNA methylation patterns after ion implantation at doses of 1 × 10(14) to 1 × 10(16) ions/cm(2). Comparison of the MSAP electrophoretic profiles revealed nine types of polymorphisms in ion-implanted seedlings relative to control seedlings, among which four represented methylation events, three represented demethylation events, and the methylation status of two was uncertain. The diversity of plant DNA methylation was increased by low-energy ion implantation. At the same time, total genomic DNA methylation levels at CCGG sites were unchanged by ion implantation. Moreover, a comparison of polymorphisms seen in N(+) ion-implanted, Ar(+) ion-implanted, and control DNA demonstrated that the species of incident ion influenced the resulting DNA methylation pattern. Sequencing of eight isolated fragments that showed different changing patterns in implanted plants allowed their mapping onto variable regions on one or more of the five Arabidopsis chromosomes; these segments included protein-coding genes, transposon and repeat DNA sequence. A further sodium bisulfite sequencing of three fragments also displayed alterations in methylation among either different types or doses of incident ions. Possible causes for the changes in methylation are discussed.

  9. Nano-structured silicide formation by focused ion beam implantation and integration of silver metallization with thin film silicide layers

    NASA Astrophysics Data System (ADS)

    Mitan, Martin M.

    Nano-structured silicide formation was mediated through ion implantation. Silicide structures with dimensions of 170 nm were produced on (100) silicon substrates by ion implantation of 200 KeV As++ through a thin cobalt film on SiO2/Si structure. A selective reaction barrier at the Si/Co interface comprising of a thin (˜2 nm) oxide (SiO 2) prevents unwanted reactions. Ion-beam mixing was instrumental in the fracturing of the oxide layer, thereby allowing the migration of metal atoms across the SiO2/Co boundary for the silicidation reaction to proceed during subsequent rapid thermal anneal (RTA) treatments. A threshold dose of 3 x 1015 cm-2 was required for process initiation. Four-terminal resistance test structures were formed for electrical measurements. Resistivity values obtained ranged from 12 to 23 muO-cm, improving with increased ion dose. Application of this method can facilitate a wide variety of silicide structures. Part two of this study focused on the reliability study of silver metalization with silicides. Silicide thin films of CoSi2 and NiSi were prepared by solid phase reactions utilizing the bi-layer technique. Silver thin films were then deposited on the silicides to evaluate the thermal stability of the films during vacuum annealing. Rutherford backscattering spectrometry of annealed films revealed Ag film changes to occur at 700°C. No changes in the silicide thin films could be detected. Scanning electron microscopy of annealed films shows grain coarsening of the Ag film with increasing anneal temperature. At 650°C, voids begin to appear in the film. Increasing anneal temperature up to 700°C agglomerates the film. X-ray diffraction glancing angle scans revealed no phase changes in annealed films. The as-deposited case and 700°C both show the same reflection peaks being present. Secondary ion mass spectroscopy depth profiling revealed trace amounts of Ag at the silicide/silicon interface following a heat treatment. This occurrence appears to

  10. Ion radiation albedo effect: influence of surface roughness on ion implantation and sputtering of materials

    NASA Astrophysics Data System (ADS)

    Li, Yonggang; Yang, Yang; Short, Michael P.; Ding, Zejun; Zeng, Zhi; Li, Ju

    2017-01-01

    In fusion devices, ion retention and sputtering of materials are major concerns in the selection of compatible plasma-facing materials (PFMs), especially in the context of their microstructural conditions and surface morphologies. We demonstrate how surface roughness changes ion implantation and sputtering of materials under energetic ion irradiation. Using a new, sophisticated 3D Monte Carlo (MC) code, IM3D, and a random rough surface model, ion implantation and the sputtering yields of tungsten (W) with a surface roughness varying between 0-2 µm have been studied for irradiation by 0.1-1 keV D+, He+ and Ar+ ions. It is found that both ion backscattering and sputtering yields decrease with increasing roughness; this is hereafter called the ion radiation albedo effect. This effect is mainly dominated by the direct, line-of-sight deposition of a fraction of emitted atoms onto neighboring asperities. Backscattering and sputtering increase with more oblique irradiation angles. We propose a simple analytical formula to relate rough-surface and smooth-surface results.

  11. Antibacterial polyetheretherketone implants immobilized with silver ions based on chelate-bonding ability of inositol phosphate: processing, material characterization, cytotoxicity, and antibacterial properties.

    PubMed

    Kakinuma, H; Ishii, K; Ishihama, H; Honda, M; Toyama, Y; Matsumoto, M; Aizawa, M

    2015-01-01

    We developed a novel antibacterial implant by forming a hydroxyapatite (HAp) film on polyetheretherketone (PEEK) substrate, and then immobilizing silver ions (Ag(+) ) on the HAp film based on the chelate-bonding ability of inositol phosphate (IP6). First, the PEEK surface was modified by immersion into concentrated sulfuric acid for 10 min. HAp film was formed on the acid-treated PEEK via the soft-solution process using simulated body fluid (SBF), urea, and urease. After HAp coating, specimens were immersed into IP6 solution, and followed by immersion into silver nitrite solution at concentrations of 0, 0.5, 1, 5 or 10 mM. Ag(+) ions were immobilized on the resulting HAp film due to the chelate-bonding ability of IP6. On cell-culture tests under indirect conditions by Transwell, MC3T3-E1 cells on the specimens derived from the 0.5 and 1 mM Ag(+) solutions showed high relative growth when compared with controls. Furthermore, on evaluation of antibacterial activity in halo test, elution of Ag(+) ions from Ag(+) -immobilized HAp film inhibited bacterial growth. Therefore, the above-mentioned results demonstrated that specimens had both biocompatibility and strong antibacterial activity. The present coating therefore provides bone bonding ability to the implant surface and prevents the formation of biofilms in the early postoperative period.

  12. Ion-implantation and analysis for doped silicon slot waveguides

    NASA Astrophysics Data System (ADS)

    Deam, L.; Stavrias, N.; Lee, K. K.; McCallum, J. C.

    2012-10-01

    We have utilised ion implantation to fabricate silicon nanocrystal sensitised erbium-doped slot waveguide structures in a Si/SiO2/Si layered configuration and photoluminescence (PL) and Rutherford backscattering spectrometry (RBS) to analyse these structures. Slot waveguide structures in which light is confined to a nanometre-scale low-index region between two high-index regions potentially offer significant advantages for realisation of electrically-pumped Si devices with optical gain and possibly quantum optical devices. We are currently investigating an alternative pathway in which high quality thermal oxides are grown on silicon and ion implantation is used to introduce the Er and Si-ncs into the SiO2 layer. This approach provides considerable control over the Er and Si-nc concentrations and depth profiles which is important for exploring the available parameter space and developing optimised structures. RBS is well-suited to compositional analysis of these layered structures. To improve the depth sensitivity we have used a 1 MeV α beam and results indicate that a layered silicon-Er:SiO2/silicon structure has been fabricated as desired. In this paper structural results will be compared to Er photoluminescence profiles for samples processed under a range of conditions.

  13. Sheath overlap during very large scale plasma source ion implantation

    NASA Astrophysics Data System (ADS)

    Cluggish, B. P.; Munson, C. P.

    1998-12-01

    Measurements of plasma source ion implantation have been performed on a large target of complex geometry. The target consists of 1000 aluminum, automotive piston surrogates mounted on four racks; total surface area is over 16 m2. The four racks are positioned parallel to each other, 0.25 m apart, in an 8 m3 vacuum chamber. The racks of pistons are immersed in a capacitive radio frequency plasma, with an argon gas pressure of 20-65 mPa. Langmuir probe measurements indicate that the plasma density profile is highly nonuniform, due to particle losses to the racks of pistons. The plasma ions are implanted into the pistons by pulse biasing the workpiece to negative voltages as low as -18 kV for up to 20 μs. During the voltage pulse, the high-voltage sheaths from adjacent racks of pistons converge towards each other. At plasma densities less than 109 cm-3 the sheaths are observed to overlap. Measurements of the sheath overlap time are compared with standard analytic theory and with simulations run with a two-dimensional particle-in-cell code.

  14. Influence of the chemical nature of implanted ions on the structure of a silicon layer damaged by implantation

    SciTech Connect

    Shcherbachev, K. D. Voronova, M. I.; Bublik, V. T.; Mordkovich, V. N. Pazhin, D. M.; Zinenko, V. I.; Agafonov, Yu. A.

    2013-12-15

    The influence of the implantation of silicon single crystals by fluorine, nitrogen, oxygen, and neon ions on the distribution of strain and the static Debye-Waller factor in the crystal lattice over the implanted-layer depth has been investigated by high-resolution X-ray diffraction. The density depth distribution in the surface layer of native oxide has been measured by X-ray reflectometry. Room-temperature implantation conditions have ensured the equality of the suggested ranges of ions of different masses and the energies transferred by them to the target. It is convincingly shown that the change in the structural parameters of the radiation-damaged silicon layer and the native oxide layer depend on the chemical activity of the implanted ions.

  15. Pore size dependent behavior of hydrated Ag+ ions confined in mesoporous MCM-41 materials under synchrotron X-ray irradiation.

    PubMed

    Ito, Kanae; Yoshida, Koji; Kittaka, Shigeharu; Yamaguchi, Toshio

    2012-01-01

    The behavior of hydrated Ag+ ions in a 1.5 mol dm(-3) AgNO3 aqueous solution confined in mesoporous silica MCM-41 with different pore sizes was characterized by synchrotron X-ray absorption spectroscopy. The hydrated Ag+ ions are stabilized in 4-fold coordination down to 195 K in the pores (21 Å in diameter), whereas in the larger pores (28 Å) the hydrated Ag+ ions are reduced to Ag0 to form nano clusters with the Ag-Ag interactions of 2.80 Å.

  16. Platelet adhesion and plasma protein adsorption control of collagen surfaces by He + ion implantation

    NASA Astrophysics Data System (ADS)

    Kurotobi, K.; Suzuki, Y.; Nakajima, H.; Suzuki, H.; Iwaki, M.

    2003-05-01

    He + ion implanted collagen-coated tubes with a fluence of 1 × 10 14 ions/cm 2 were exhibited antithrombogenicity. To investigate the mechanisms of antithrombogenicity of these samples, plasma protein adsorption assay and platelet adhesion experiments were performed. The adsorption of fibrinogen (Fg) and von Willebrand factor (vWf) was minimum on the He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2. Platelet adhesion (using platelet rich plasma) was inhibited on the He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and was accelerated on the untreated collagen and ion implanted collagen with fluences of 1 × 10 13, 1 × 10 15 and 1 × 10 16 ions/cm 2. Platelet activation with washed platelets was observed on untreated collagen and He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and was inhibited with fluences of 1 × 10 13, 1 × 10 15 and 1 × 10 16 ions/cm 2. Generally, platelets can react with a specific ligand inside the collagen (GFOGER sequence). The results of platelets adhesion experiments using washed platelets indicated that there were no ligands such as GFOGER on the He + ion implanted collagen over a fluence of 1 × 10 13 ions/cm 2. On the 1 × 10 14 ions/cm 2 implanted collagen, no platelet activation was observed due to the influence of plasma proteins. From the above, it is concluded that the decrease of adsorbed Fg and vWf caused the antithrombogenicity of He + ion implanted collagen with a fluence of 1 × 10 14 ions/cm 2 and that plasma protein adsorption took an important role repairing the graft surface.

  17. Integrated mRNA and micro RNA profiling reveals epigenetic mechanism of differential sensitivity of Jurkat T cells to AgNPs and Ag ions.

    PubMed

    Eom, Hyun-Jeong; Chatterjee, Nivedita; Lee, Jeongsoo; Choi, Jinhee

    2014-08-17

    In our previous in vitro study of the toxicity on silver nanoparticles (AgNPs), we observed a dramatically higher sensitivity of Jurkat T cells to AgNPs than to Ag ions, and DNA damage and apoptosis were found to be involved in that toxicity. In this study, to understand underlying mechanism of different sensitivity of Jurket T cells to AgNPs and Ag ions, mRNA microarray and micro RNA microarray were concomitantly conducted on AgNPs and Ag ions exposed Jurkat T cells. Surprisingly only a small number of genes were differentially expressed by exposure to each of the silver (15 altered mRNA by AgNPs exposure, whereas 4 altered mRNA by Ag ions exposure, as determined 1.5-fold change as the cut-off value). miRNA microarray revealed that the expression of 63 miRNAs was altered by AgNPs exposure, whereas that of 32 miRNAs was altered by Ag ions exposure. An integrated analysis of mRNA and miRNA expression revealed that the expression of hsa-miR-219-5p, was negatively correlated with the expression of metallothionein 1F (MT1F) and tribbles homolog 3 (TRIB3), in cells exposed to AgNPs; whereas, the expression of hsa-miR-654-3p was negatively correlated with the expression of mRNA, endonuclease G-like 1 (EDGL1) in cells exposed to Ag ions. Network analysis were further conducted on mRNA-miRNA pairs, which revealed that miR-219-5p-MT1F and -TRIB3 pairs by AgNPs are being involved in various cellular processes, such as, oxidative stress, cell cycle and apoptosis, whereas, miR-654-3p and ENDOGL1 pair by Ag ions generated a much simpler network. The putative target genes of AgNPs-induced miR-504, miR-33 and miR-302 identified by Tarbase 6.0 are also found to be involved in DNA damage and apoptosis. These results collectively suggest that distinct epigenetic regulation may be an underlying mechanism of different sensitivity of Jurkat T cells to AgNPs and Ag ion. Further identification of putative target genes of DE miRNA by AgNPs and Ag ions may provide additional clues for the

  18. Structural Changes in Polymer Films by Fast Ion Implantation

    NASA Astrophysics Data System (ADS)

    Parada, M. A.; Minamisawa, R. A.; Muntele, C.; Muntele, I.; De Almeida, A.; Ila, D.

    2006-11-01

    In applications from food wrapping to solar sails, polymers films can be subjected to intense charged panicle bombardment and implantation. ETFE (ethylenetetrafluoroethylene) with high impact resistance is used for pumps, valves, tie wraps, and electrical components. PFA (tetrafluoroethylene-per-fluoromethoxyethylene) and FEP (tetrafluoroethylene-hexa-fluoropropylene) are sufficiently biocompatible to be used as transcutaneous implants since they resist damage from the ionizing space radiation, they can be used in aerospace engineering applications. PVDC (polyvinyllidene-chloride) is used for food packaging, and combined with others plastics, improves the oxygen barrier responsible for the food preservation. Fluoropolymers are also known for their radiation dosimetry applications, dependent on the type and energy of the radiation, as well as of the beam intensity. In this work ETFE, PFA, FEP and PVDC were irradiated with ions of keV and MeV energies at several fluences and were analyzed through techniques as RGA, OAP, FTIR, ATR and Raman spectrophotometry. CF3 is the main specie emitted from PFA and FEP when irradiated with MeV protons. H and HF are released from ETFE due to the broken C-F and C-H bonds when the polymer is irradiated with keV Nitrogen ions and protons. At high fluence, especially for keV Si and N, damage due to carbonization is observed with the formation of hydroperoxide and polymer dehydroflorination. The main broken bonds in PVDC are C-O and C-Cl, with the release of Cl and the formation of double carbon bonds. The ion fluence that causes damage, which could compromise fluoropolymer film applications, has been determined.

  19. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.

    2014-08-01

    Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  20. A Method of Producing Surface Conduction on Ceramic Accelerator Components Using Metal Ion Implantation

    SciTech Connect

    Liu, F.; Brown, I.; Phillips, H.; Biallas, George; Siggins, Timothy

    1997-05-01

    An important technique used for the suppression of surface flashover on high voltage DC ceramic insulators as well as for RF windows is that of providing some surface conduction to bleed off accumulated surface charge. We have used metal ion implantation to modify the surface of high voltage ceramic vacuum insulators to provide a niform surface resistivity of approximately 5 x 1010 W/square. A vacuum arc ion source based implanter was used to implant Pt at an energy of about 135 keV to doses of up to more than 5 x 1016 ions/cm2 into small ceramic test coupons and also into the inside surface of several ceramic accelerator columns 25 cm I. D. by 28 cm long. Here we describe the experimental set-up used to do the ion implantation and summarize the results of our exploratory work on implantation into test coupons as well as the implantations of the actual ceramic columns.

  1. New computer control system for the high current ion implanter PR-80

    NASA Astrophysics Data System (ADS)

    Sunouchi, T.; Sasaki, M.; Sato, S.; Harada, M.

    1989-02-01

    For a current semiconductor fabrication line, an ion implanter should have the versatility to handle different types of process menus and it should be FA compatible. An optical loopway linked microprocessor control system has been developed for our high current ion implanter. The system is compatible with SECS-II, and its preventive maintenance program is a powerful tool for efficient operation of the implanter.

  2. Improving the corrosion resistance of nitinol by plasma-immersion ion implantation with silicon for biomedical applications

    NASA Astrophysics Data System (ADS)

    Abramova, P. V.; Korshunov, A. V.; Lotkov, A. I.; Kashin, O. A.; Borisov, D. P.

    2015-11-01

    Cyclic voltammetry and potentiostatic polarization have been applied to study electrochemical behavior and to determine corrosion resistance of nitinol, which surface was modified with silicon using plasma-immersion ion implantation, in 0.9 % NaCl solution and in artificial blood plasma. It was found out that continuous, and also homogeneous in composition thin Si-containing layers are resistant to corrosion damage at high positive potentials in artificial physiological solutions due to formation of stable passive films. Breakdown potential Eb of Si-modified NiTi depends on the character of silicon and Ni distribution at the alloy surface, Eb values amounted to 0.9-1.5 V (Ag/AgCl/KCl sat.) for the alloy samples with continuous Si-containing surface layers and with decreased Ni surface concentration.

  3. Fabrication of thin diamond membranes by using hot implantation and ion-cut methods

    NASA Astrophysics Data System (ADS)

    Suk, Jaekwon; Kim, Hyeongkwon; Lim, Weon Cheol; Yune, Jiwon; Moon, Sung; Eliades, John A.; Kim, Joonkon; Lee, Jaeyong; Song, Jonghan

    2017-03-01

    A thin (2 μm) and relatively large area (3 × 3 mm2) diamond membrane was fabricated by cleaving a surface from a single crystal chemical vapor deposition (CVD) diamond wafer (3 × 3 mm2× 300 μm) using a hot implantation and ion-cut method. First, while maintaining the CVD diamond at 400 °C, a damage zone was created at a depth of 2.3 μm underneath the surface by implanting 4 MeV carbon ions into the diamond in order to promote membrane cleavage (hot implantation). According to TEM data, hot implantation reduces the thickness of the implantation damage zone by about a factor of 10 when compared to implanting carbon ions with the CVD diamond at room temperature (RT). In order to recover crystallinity, the implanted sample was then annealed at 850 °C. Next, 380 keV hydrogen ions were implanted into the sample to a depth of 2.3 μm below the surface with the CVD diamond at RT. After annealing at 850 °C, the CVD diamond surface layer was cleaved at the damage-zone due to internal pressure from H2 gas arising from the implanted hydrogen (ion-cut). A thin layer of graphite (˜300 nm) on the cleavage surface, arising from the implanted carbon, was removed by O2 annealing. This technique can potentially be used to produce much larger area membranes of variable thickness.

  4. Thermal Behaviour of W+C Ion Implanted Ultra High Molecular Weight Polyethylene (UHMWPE)

    SciTech Connect

    Urkac, E. Sokullu; Oztarhan, A.; Tihminlioglu, F.; Ila, D.; Chhay, B.; Muntele, C.; Budak, S.; Oks, E.; Nikolaev, A.

    2009-03-10

    The aim of this work was to examine thermal behavior of the surface modified Ultra High Molecular Weight Poly Ethylene (UHMWPE ) in order to understand the effect of ion implantation on the properties of this polymer which is widely used especially for biomedical applications. UHMWPE samples were Tungsten and Carbon (W+C) hybrid ion implanted by using Metal Vapour Vacuum Arc (MEVVA) ion implantation technique with a fluence of 10 17 ions/cm2 and extraction voltage of 30 kV. Untreated and surface-treated samples were investigated by Rutherford Back Scattering (RBS) Analysis, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectrometry, Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). This study has shown that ion implantation represents a powerful tool on modifying thermal properties of UHMWPE surfaces. This combination of properties can make implanted UHMWPE a preferred material for biomedical applications.

  5. Effect of calcium-ion implantation on the corrosion resistance and biocompatibility of titanium.

    PubMed

    Krupa, D; Baszkiewicz, J; Kozubowski, J A; Barcz, A; Sobczak, J W; Bilińiski, A; Lewandowska-Szumieł, M D; Rajchel, B

    2001-08-01

    This work presents data on the structure and corrosion resistance of titanium after calcium-ion implantation with a dose of 10(17) Ca+/cm2. The ion energy was 25 keV. Transmission electron microscopy was used to investigate the microstructure of the implanted layer. The chemical composition of the surface layer was examined by XPS and SIMS. The corrosion resistance was examined by electrochemical methods in a simulated body fluid (SBF) at a temperature of 37 degrees C. Biocompatibility tests in vitro were performed in a culture of human derived bone cells (HDBC) in direct contact with the materials tested. Both, the viability of the cells determined by an XTT assay and activity of the cells evaluated by alkaline phosphatase activity measurements in contact with implanted and non-implanted titanium samples were detected. The morphology of the cells spread on the surface of the materials examined was also observed. The results confirmed the biocompatibility of both calcium-ion-implanted and non-implanted titanium under the conditions of the experiment. As shown by TEM results, the surface layer formed during calcium-ion implantation was amorphous. The results of electrochemical examinations indicate that calcium-ion implantation increases the corrosion resistance, but only under stationary conditions; during anodic polarization the calcium-ion-implanted samples undergo pitting corrosion. The breakdown potential is high (2.7-3 V).

  6. Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite.

    PubMed

    Shanthini, G M; Sakthivel, N; Menon, Ranjini; Nabhiraj, P Y; Gómez-Tejedor, J A; Meseguer-Dueñas, J M; Gómez Ribelles, J L; Krishna, J B M; Kalkura, S Narayana

    2016-11-20

    Novel Cellulose (Cel) reinforced polyvinyl alcohol (PVA)-Silica (Si) composite which has good stability and in vitro degradation was prepared by lyophilization technique and implanted using N(3+) ions of energy 24keV in the fluences of 1×10(15), 5×10(15) and 1×10(16)ions/cm(2). SEM analysis revealed the formation of microstructures, and improved the surface roughness on ion implantation. In addition to these structural changes, the implantation significantly modified the luminescent, thermal and mechanical properties of the samples. The elastic modulus of the implanted samples has increased by about 50 times compared to the pristine which confirms that the stiffness of the sample surface has increased remarkably on ion implantation. The photoluminescence of the native cellulose has improved greatly due to defect site, dangling bonds and hydrogen passivation. Electric conductivity of the ion implanted samples was improved by about 25%. Hence, low energy ion implantation tunes the mechanical property, surface roughness and further induces the formation of nano structures. MG63 cells seeded onto the scaffolds reveals that with the increase in implantation fluence, the cell attachment, viability and proliferation have improved greatly compared to pristine. The enhancement of cell growth of about 59% was observed in the implanted samples compared to pristine. These properties will enable the scaffolds to be ideal for bone tissue engineering and imaging applications.

  7. Optical waveguides in TiO₂ formed by He ion implantation.

    PubMed

    Bi, Zhuan-Fang; Wang, Lei; Liu, Xiu-Hong; Zhang, Shao-Mei; Dong, Ming-Ming; Zhao, Quan-Zhong; Wu, Xiang-Long; Wang, Ke-Ming

    2012-03-12

    We report on the formation and the optical properties of the planar and ridge optical waveguides in rutile TiO₂ crystal by He+ ion implantation combined with micro-fabrication technologies. Planar optical waveguides in TiO₂ are fabricated by high-energy (2.8 MeV) He+-ion implantation with a dose of 3 × 10¹⁶ ions/cm² and triple low energies (450, 500, 550) keV He+-ion implantation with all fluences of 2 × 10¹⁶ ions/cm² at room temperature. The guided modes were measured by a modal 2010 prism coupler at wavelength of 1539 nm. There are damage profiles in ion-implanted waveguides by Rutherford backscattering (RBS)/channeling measurements. The refractive-index profile of the 2.8 MeV He+-implanted waveguide was analyzed based on RCM (Reflected Calculation Method). Also ridge waveguides were fabricated by femtosecond laser ablation on 2.8 MeV ion implanted planar waveguide and Ar ion beam etching on the basis of triple keV ion implanted planar waveguide, separately. The loss of the ridge waveguide was estimated. The measured near-field intensity distributions of the planar and ridge modes are all shown.

  8. Magnetic and structural properties of manganese ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Awo-Affouda, Chaffra A.

    2007-12-01

    This thesis focuses on semiconductor based spin electronics. The integration of ferromagnetic regions into semiconductor "spintronic" devices to produce spin polarized current is a dynamic research area. One avenue is to make conventional semiconductors ferromagnetic by doping with a transition metal impurity such as Mn. For this, we first investigated the magnetic properties of Mn-implanted Si. We were able to measure above room temperature ferromagnetic hysteresis loops. The high Curie temperature obtained (>400 K), indicated that the synthesis of a technologically useful Si-based magnetic semiconductor is possible. We then focused on studying the structure of the implanted samples in order to establish a correlation between the magnetic and structural properties. The structural investigation involved secondary ion mass spectrometry, Rutherford backscattering, and transmission electron microscopy (TEM) as the main characterization techniques. The combination of the structural and magnetic studies allowed us to isolate an "active" region from which the ferromagnetism originates. We then found that the magnetic properties of the samples are strongly dependant on the interaction of the Mn atoms with the residual implant damage. The evolution of the Mn concentration profiles was also found to be closely related to the distribution of the Si lattice defects. We also observed the formation of Mn rich secondary phases at high enough annealing temperatures >800°C. However, we argued that theses crystallites cannot account for all the observed magnetic properties due to the low Curie temperature of these compounds in bulk form. We concluded that achieving a room temperature Si-based DMS has great potential but careful synthesis of this material system is needed to prevent secondary phase formation.

  9. Highly quasi-monodisperse ag nanoparticles on titania nanotubes by impregnative aqueous ion exchange.

    PubMed

    Toledo-Antonio, J A; Cortes-Jácome, M A; Angeles-Chavez, C; López-Salinas, E; Quintana, P

    2009-09-01

    Silver nanoparticles were homogenously dispersed on titania nanotubes (NT), which were prepared by alkali hydrothermal methodology and dried at 373 K. Ag(+) incorporation was done by impregnative ion exchange of aqueous silver nitrate onto NT. First, Ag(+) ions incorporate into the layers of nanotube walls, and then, upon heat treatment under N(2) at 573 and 673 K, they migrate and change into Ag(2)O and Ag(0) nanoparticles, respectively. In both cases, Ag nanoparticles are highly dispersed, decorating the nanotubes in a polka-dot pattern. The Ag particle size distribution is very narrow, being ca. 4 +/- 2 nm without any observable agglomeration. The reduction of Ag(2)O into Ag(0) octahedral nanoparticles occurs spontaneously and topotactically when annealing, without the aid of any reducing agent. The population of Ag(0) nanoparticles can be controlled by adjusting the annealing temperature. An electron charge transfer from NT support to Ag(0) nanoparticles, because of a strong interaction, is responsible for considerable visible light absorption in Ag(0) nanoparticles supported on NT.

  10. Ion implantation of erbium into polycrystalline cadmium telluride

    SciTech Connect

    Ushakov, V. V. Klevkov, Yu. V.; Dravin, V. A.

    2015-05-15

    The specific features of the ion implantation of polycrystalline cadmium telluride with grains 20–1000 μm in dimensions are studied. The choice of erbium is motivated by the possibility of using rare-earth elements as luminescent “probes” in studies of the defect and impurity composition of materials and modification of the composition by various technological treatments. From the microphotoluminescence data, it is found that, with decreasing crystal-grain dimensions, the degree of radiation stability of the material is increased. Microphotoluminescence topography of the samples shows the efficiency of the rare-earth probe in detecting regions with higher impurity and defect concentrations, including regions of intergrain boundaries.

  11. Intravascular brachytherapy with radioactive stents produced by ion implantation

    NASA Astrophysics Data System (ADS)

    Golombeck, M.-A.; Heise, S.; Schloesser, K.; Schuessler, B.; Schweickert, H.

    2003-05-01

    About 1 million patients are treated for stenosis of coronary arteries by percutaneous balloon angioplasty annually worldwide. In many cases a so called stent is inserted into the vessel to keep it mechanically open. Restenosis is observed in about 20-30% of these cases, which can be treated by irradiating the stented vessel segment. In our approach, we utilized the stent itself as radiation source by ion implanting 32P. Investigations of the surface properties were performed with special emphasis on activity retention. Clinical data of about 400 patients showed radioactive stents can suppress instent restenosis, but a so called edge effect appeared, which can be avoided by the new "drug eluting stents".

  12. Effectiveness of ion implantation of iron garnet films

    SciTech Connect

    Tikhonov, A.N.; Fedichkin, G.M.; Yurchenko, S.E.; Suslin, L.A.; Smirnov, I.S.; Shlenov, Yu.V.

    1986-01-01

    The authors seek to determine experimentally what changes of the magnetic bubble properties and of the iron garnet film characteristics resulting from implantation of Ne/sup +/ ions can be used as criteria for assessing the effectiveness of this process in the production of bubble devices. For the experiments, the authors used (YBi)/sub 3/(FeGa)/sub 5/O/sub 12/; (TmBi)/sub 3/(FeGa)/sub 5/O/sub 12/; and (YSmLuCa)/sub 3/(FeGe)/sub 5/O/sub 12/. The orientation of the Gd/sub 3/Ga/sub 5/O/sub 12/ substrate is (111) in all cases. The current density of the H/sup +/ proton beam did not exceed 0.5 micro-A/cm/sup 2/.

  13. An antibacterial coating obtained through implantation of titanium ions

    NASA Astrophysics Data System (ADS)

    Delle Side, D.; Nassisi, V.; Giuffreda, E.; Velardi, L.; Alifano, P.; Talà, A.; Tredici, S. M.

    2014-04-01

    Everyday life is exposed to the risks of contracting severe diseases due to the diffusion of severe pathogens. For this reason, efficient antimicrobial surfaces becomes a need of primary importance. In this work we report the first evidences of a new technique to synthesize an antibacterial coating on Ultra High Molecular Weight Polyethylene (UHMWPE)samples, based on a non-stoichiometric, visible light responsive, titanium oxide. The coating was obtained through laser ablation of a titanium target, then the resulting ions were accelerated and implanted on the samples. The samples where tested against a Staphylococcus aureus strain, in order to assay their antimicrobial efficacy. Results show that this treatment strongly discourages bacterial adhesion to the treated surfaces.

  14. Ion beam sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1976-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.

  15. Ion-beam-sputter modification of the surface morphology of biological implants

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Banks, B. A.

    1977-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion-beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron-bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion-beam-sputtered surfaces.

  16. Analysis of ion-implanted surface and interface structures by computer-simulated backscattering spectra

    NASA Astrophysics Data System (ADS)

    Kido, Y.; Kakeno, M.; Yamada, K.; Kawamoto, J.; Ohsawa, H.

    1985-10-01

    Computer codes for synthesizing random and channeling backscattering spectra have been elaborated to characterize the surface and interface structures formed or modified by ion implantation. Both effects of isotopes and energy fluctuation are taken into account in the spectrum simulation. This backscattering measurement combined with the simulation method is applied to characterization of the N(+)-implanted Al films and to quantitative analysis of chemical reaction and interdiffusion induced by ion-beam mixing. An ion-beam-induced damage profile and its epitaxial recovery of crystallinity are analyzed by the simulation of channeling spectra from ion-implanted Al2O3 substrates.

  17. Study on swift heavy ions induced modifications of Ag-ZnO nanocomposite thin film

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.; Siva Kumar, V. V.

    2017-03-01

    In the present work, swift heavy ion (SHI) irradiation induced modifications in structural and optical properties of Ag-ZnO nanocomposite thin films have been investigated. Ag-ZnO nanocomposite (NCs) thin films were synthesized by RF magnetron sputtering technique and irradiated with 100 MeV Ag7+ ions at three different fluences 3 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. Rutherford Backscattering Spectrometry revealed Ag concentration to be ∼8.0 at.%, and measured thickness of the films was ∼55 nm. Structural properties of pristine and irradiated films have been analyzed by X-ray diffraction analysis and found that variation in crystallite size of the film with ion irradiation. X-ray photoelectron spectroscopy (XPS) indicates the formation of Ag-ZnO nanocomposite thin film with presence of Ag, Zn and O elements. Oxidation state of Ag and Zn also estimated by XPS analysis. Surface plasmon resonance (SPR) of Ag nanoparticle has appeared at ∼475 nm in the pristine thin film, which is blue shifted by ∼30 nm in film irradiated at fluence of 3 × 1012 ions/cm2 and completely disappeared in film irradiated at higher fluences, 1 × 1013 and 3 × 1013 ions/cm2. A marginal change in the optical band gap of Ag-ZnO nanocomposite thin film is also found with increasing ion fluence. Surface morphology of pristine and irradiated films have been studied using Atomic Force Microscopy (AFM). Raman and Photo-luminance (PL) spectra of nanocomposite thin films have been investigated to understand the ion induced modifications such as lattice defects and disordering in the nanocomposite thin film.

  18. A simple ion implanter for material modifications in agriculture and gemmology

    NASA Astrophysics Data System (ADS)

    Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M. W.; Suwankosum, R.; Rattanarin, S.; Yu, L. D.

    2015-12-01

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X-Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  19. Decrease in work function of boron ion-implanted ZnO thin films.

    PubMed

    Heo, Gi-Seok; Hong, Sang-Jin; Park, Jong-Woon; Choi, Bum-Ho; Lee, Jong-Ho; Shin, Dong-Chan

    2007-11-01

    We have fabricated boron ion-implanted ZnO thin films by ion implantation into sputtered ZnO thin films on a glass substrate. An investigation of the effects of ion doses and activation time on the electrical and optical properties of the films has been made. The electrical sheet resistance and resistivity of the implanted films are observed to increase with increasing rapid thermal annealing (RTA) time, while decreasing as the ion dose increases. Without any RTA process, the variation of the carrier density is insensitive to the ion dose. With the RTA process, however, the carrier density of the implanted films increases and approaches that of the un-implanted ZnO film as the ion dose increases. On the other hand, the carrier mobility is shown to decrease with increasing ion doses when no RTA process is applied. With the RTA process, however, there is almost no change in the mobility. We have achieved the optical transmittance as high as 87% within the visible wavelength range up to 800 nm. It is also demonstrated that the work function can be engineered by changing the ion dose during the ion implantation process. We have found that the work function decreases as the ion dose increases.

  20. Study on the growth and the photosynthetic characteristics of low energy C(+) ion implantation on peanut.

    PubMed

    Han, Yuguo; Xu, Lei; Yang, Peiling; Ren, Shumei

    2013-01-01

    Employing the Nonghua 5 peanut as experimental material, the effects of low energy C(+) ion implantation on caulis height, root length, dry weight, photosynthetic characteristics and leaf water use efficiency (WUE) of Peanut Ml Generation were studied. Four fluences were observed in the experiment. The results showed that ion implantation harmed the peanut seeds because caulis height, root length and dry weight all were lower in the treatments than in CK, and the harm was aggravated with the increase of ion fluence. Both Pn and Tr show a saddle-shape curve due to midday depression of photosynthesis. Low fluence of low energy C(+) ion implantation could increase the diurnal average Pn of peanut. The diurnal variation of Tr did not change as significantly as Pn. The light saturation point (LSP) was restrained by the ions. After low energy C(+) ion implantation, WUE was enhanced. When the fluence increased to a certain level, the WUE began to decrease.

  1. Contribution of Eu ions on the precipitation of silver nanoparticles in Ag-Eu co-doped borate glasses

    SciTech Connect

    Jiao, Qing; Qiu, Jianbei; Zhou, Dacheng; Xu, Xuhui

    2014-03-01

    Graphical abstract: - Highlights: • Silver nanoparticles are precipitated from the borate glasses during the melting process without any further heat treatment. • The reduction of Eu{sup 3+} ions to Eu{sup 2+} ions is presented in this material. • The intensity of Ag{sup +} luminescence. • The introduction of Eu ions accelerated the reaction between Eu{sup 2+} ions and silver ions inducing the silver clusters formation. - Abstract: Ag{sup +} doped sodium borate glasses with different Eu ions concentration were prepared by the melt-quenching method. The absorption at about 410 nm which was caused by the surface plasmon resonance (SPR) of Ag nanoparticles (NPs) is promoted with increasing of Eu ions concentration. Meanwhile, the luminescent spectra showed that the emission intensity of Ag{sup +} decreased while that of the Ag aggregates increased simultaneously. The results indicated that the Ag ions intend to form the high-polymeric state such as Ag aggregates and nanoparticles with increasing of europium ions. Owing to the self-reduction of Eu{sup 3+} to Eu{sup 2+} in our glass system, it revealed that Ag{sup +} has been reduced by the neighboring Eu{sup 2+} which leads to the formation of Ag aggregates and the precipitation of Ag NPs in the matrix. In addition, energy transfer (ET) process from Ag{sup +}/Ag aggregates to the Eu{sup 3+} was investigated for the enhancement of Eu{sup 3+} luminescence.

  2. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    NASA Astrophysics Data System (ADS)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-07-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 1017 ions/cm2. The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, CrxCy phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties.

  3. N and Cr ion implantation of natural ruby surfaces and their characterization

    NASA Astrophysics Data System (ADS)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan; Magudapathy, P.; Panigrahi, B. K.; Nayak, B. B.; Mishra, B. K.

    2016-04-01

    Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV-Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 1017 N-ions/cm2 fluence, formation of colour centres (F+, F2, F2+ and F22+) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  4. High Curie temperature drive layer materials for ion-implanted magnetic bubble devices

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Wolfe, R.; Blank, S. L.; Nelson, T. J.

    1984-01-01

    Ion implantation of bubble garnets can lower the Curie temperature by 70 C or more, thus limiting high temperature operation of devices with ion-implanted propagation patterns. Therefore, double-layer materials were made with a conventional 2-micron bubble storage layer capped by an ion-implantable drive layer of high Curie temperature, high magnetostriction material. Contiguous disk test patterns were implanted with varying doses of a typical triple implant. Quality of propagation was judged by quasistatic tests on 8-micron period major and minor loops. Variations of magnetization, uniaxial anisotropy, implant dose, and magnetostriction were investigated to ensure optimum flux matching, good charged wall coupling, and wide operating margins. The most successful drive layer compositions were in the systems (SmDyLuCa)3(FeSi)5O12 and (BiGdTmCa)3(FeSi)5O12 and had Curie temperatures 25-44 C higher than the storage layers.

  5. Ion Profiling of Implanted Dopants in Si (001) with Excess Vacancy Concentration

    SciTech Connect

    Dalponte, M.; Boudinov, H.; Goncharova, L. V.; Feng, T.; Garfunkel, E.; Gustafsson, T.

    2007-09-26

    Medium energy ion scattering (MEIS) was used to study the distribution of ion-implanted As and Sb dopants in Si with excess vacancies and SIMOX substrates as well as the effects of thermal treatments. Extra vacancies in Si were generated by N or O pre-implantation at high temperatures. Under these conditions, effects related to the different chemical nature of the pre-implanted species are expected. The annealing behavior and depth distribution of the Sb atoms differed for O compared to N pre-implanted Si. After long annealing times, the oxygen containing samples (SIMOX and O pre-implanted Si) presented higher substitutionality. The nitrogen pre-implanted Si presented the lowest amount of segregated Sb and a more uniform dopant distribution. For both N and O pre-implanted samples a large dopant loss to the atmosphere during annealing was observed.

  6. Metal plasma immersion ion implantation and deposition (MePIIID) on screw-shaped titanium implant: The effects of ion source, ion dose and acceleration voltage on surface chemistry and morphology.

    PubMed

    Kang, Byung-Soo; Sul, Young-Taeg; Jeong, Yongsoo; Byon, Eungsun; Kim, Jong-Kuk; Cho, Suyeon; Oh, Se-Jung; Albrektsson, Tomas

    2011-07-01

    The present study investigated the effect of metal plasma immersion ion implantation and deposition (MePIIID) process parameters, i.e., plasma sources of magnesium and calcium, ion dose, and acceleration voltage on the surface chemistry and morphology of screw-type titanium implants that have been most widely used for osseointegrated implants. It is found that irrespective of plasma ion source, surface topography and roughness showed no differences at the nanometer level; that atom concentrations increased with ion dose but decreased with acceleration voltage. Data obtained from X-ray photoelectron spectroscopy and auger electron spectroscopy suggested that MePIIID process produces 'intermixed' layer of cathodic arc deposition and plasma immersion ion implantation. The MePIIID process may create desired bioactive surface chemistry of dental and orthopaedic implants by tailoring ion and plasma sources and thus enable investigations of the effect of the surface chemistry on bone response.

  7. Ion-implanted PLZT ceramics: a new high-sensitivity image storage medium

    SciTech Connect

    Peercy, P.S.; Land, C.E.

    1980-01-01

    Results were presented of our studies of photoferroelectric (PFE) image storage in H- and He-ion implanted PLZT (lead lanthanum zirconate titanate) ceramics which demonstrate that the photosensitivity of PLZT can be significantly increased by ion implantation in the ceramic surface to be exposed to image light. More recently, implantations of Ar and Ar + Ne into the PLZT surface have produced much greater photosensitivity enhancement. For example, the photosensitivity after implantation with 1.5 x 10/sup 14/ 350 keV Ar/cm/sup 2/ + 1 x 10/sup 15/ 500 keV Ne/cm/sup 2/ is increased by about four orders of magnitude over that of unimplanted PLZT. Measurements indicate that the photosensitivity enhancement in ion-implanted PLZT is controlled by implantation-produced disorder which results in marked decreases in dielectric constant and dark conductivity and changes in photoconductivity of the implanted layer. The effects of Ar- and Ar + Ne-implantation are presented along with a phenomenological model which describes the enhancement in photosensitivity obtained by ion implantation. This model takes into account both light- and implantation-induced changes in conductivity and gives quantitative agreement with the measured changes in the coercive voltage V/sub c/ as a function of near-uv light intensity for both unimplanted and implanted PLZT. The model, used in conjunction with calculations of the profiles of implantation-produced disorder, has provided the information needed for co-implanting ions of different masses, e.g., Ar and Ne, to improve photosensitivity.

  8. Wear resistance of highly cross-linked and remelted polyethylenes after ion implantation and accelerated ageing.

    PubMed

    Medel, F J; Puértolas, J A

    2008-08-01

    Ion implantation may provide medical polyethylenes with excellent mechanical and tribological properties, helping to lower the risk of long-term osteolysis. Highly crosslinked and remelted polyethylenes, materials currently used as soft components in artificial joints, were implanted with N+ and He+ ions at different ion fluences. The mechanical and tribological properties under distilled water lubrication at body temperature were assessed after ion implantation by means of microhardness and pin-on-disc tests respectively. Thus, the influences of the ionic species and implantation dose on surface hardness, friction coefficient, and wear factor were fully characterized. Furthermore, the tribological behaviour was evaluated after an accelerated ageing protocol (120 degrees C for 36h). Ion implantation increased the surface hardness, as well as friction coefficients, and decreased the wear factors especially at the highest doses. Also, even though all artificially aged materials showed a worse wear behaviour, polyethylenes implanted with either N+ or He+ at the highest doses maintained a relatively good wear factor in comparison with the aged non-implanted material. The origins of these modifications are discussed according to the effects of ion implantation on the microstructure of the polymer.

  9. P-Type Zno:. as Obtained by Ion Implantation of AS+ with Post-Implantation Annealing in Oxygen Radicals

    NASA Astrophysics Data System (ADS)

    Georgobiani, A. N.; Demin, V. I.; Kotlyarevsky, M. B.; Rogozin, I. V.; Marakhovsky, A. V.

    2004-07-01

    Zinc oxide is the promising material for creation of the new generation of detectors for particle physics and radiation dosimetry. It has been shown that ion implantation of arsenic into zinc oxide film (arsenic is an acceptor impurity in ZnO) can result in formation of the p-type conductivity only in case of annealing in the flux of atomic oxygen. The ion implantation and the following annealing had influenced not only electrical properties of ZnO:As+ layers, but also their photoluminescence spectra. The ultraviolet luminescence band with the maximum at 3.33. eV corresponding to the AsO acceptor center had been clearly observed in the spectra of ZnO films implanted by As+ ions. The optimal temperature range of annealing in the atomic oxygen flux, required for obtaining of p-type conductivity in ZnO films, had been determined.

  10. MAGNESIUM PRECIPITATION AND DIFUSSION IN Mg+ ION IMPLANTED SILICON CARBIDE

    SciTech Connect

    Jiang, Weilin; Jung, Hee Joon; Kovarik, Libor; Wang, Zhaoying; Roosendaal, Timothy J.; Zhu, Zihua; Edwards, Danny J.; Hu, Shenyang Y.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2015-03-02

    As a candidate material for fusion reactor applications, silicon carbide (SiC) undergoes transmutation reactions under high-energy neutron irradiation with magnesium as the major metallic transmutant; the others include aluminum, beryllium and phosphorus in addition to helium and hydrogen gaseous species. Calculations by Sawan et al. predict that at a dose of ~100 dpa (displacements per atom), there is ~0.5 at.% Mg generated in SiC. The impact of these transmutants on SiC structural stability is currently unknown. This study uses ion implantation to introduce Mg into SiC. Multiaxial ion-channeling analysis of the as-produced damage state indicates a lower dechanneling yield observed along the <100> axis. The microstructure of the annealed sample was examined using high-resolution scanning transmission electron microscopy. The results show a high concentration of likely non-faulted tetrahedral voids and possible stacking fault tetrahedra near the damage peak. In addition to lattice distortion, dislocations and intrinsic and extrinsic stacking faults are also observed. Magnesium in 3C–SiC prefers to substitute for Si and it forms precipitates of cubic Mg2Si and tetragonal MgC2. The diffusion coefficient of Mg in 3C–SiC single crystal at 1573 K has been determined to be 3.8 ± 0.4E-19 m2/s.

  11. Hydrogen-induced defects in ion-implanted Si

    NASA Astrophysics Data System (ADS)

    Socher, S.; Lavrov, E. V.; Weber, J.

    2012-09-01

    Single crystalline silicon implanted with 28Si ions and subsequently hydrogenated from an rf plasma at 200∘C is studied by Raman and photoluminescence spectroscopy. A broad Raman band at 3830 cm-1 previously assigned to the rovibrational transitions of hydrogen molecules trapped in Si multivacancies [Ishioka , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.60.10852 60, 10852 (1999)] reveals a complex line shape at 60 K. In contrast, our study correlates the Raman band to three different localized traps for hydrogen molecules which are identified from the dependence on the ion dose and annealing behavior. Each of these traps, which is saturated with H2, gives rise to three Raman transitions due to para- and ortho-H2. The H2 signals are shown to correlate with the Si-H vibrational modes at 1888, 1930, and 1964 cm-1. Ortho to para conversion rates of H2 at 77 K and room temperature were found to be 62±15 and 8±2 h, respectively.

  12. Flowing damage in ion-implanted amorphous silicon

    SciTech Connect

    Pothier, Jean-Christophe; Schiettekatte, Francois; Lewis, Laurent J.

    2011-06-15

    Using molecular-dynamics simulations, we have studied the creation and evolution of damage in crystalline and amorphous silicon following the implantation of energetic keV ions. A method is proposed to identify anomalous atoms based on a weighted combination of local, atomic-scale properties, which applies to both Si phases. For crystalline Si, the passage of the ions causes compact amorphous regions to form, while no evidence for melting is observed. The relaxation of the amorphouslike regions proceeds initially by the rapid recrystallization of smaller clusters and isolated atoms, followed by a long period of steplike changes in the number of defects due to spontaneous annealing of damage pockets at the crystalline-amorphous interface. In amorphous Si, the initial stage of damage annealing (which lasts a few picoseconds) resembles closely that observed in crystalline Si; on larger time scales, however, the damage is found to ''percolate,'' or flow, through the system, inducing damage away from the collision cascade, thus causing an overall ''derelaxation'' of the material.

  13. Effect of phosphorous ion implantation on the mechanical properties and bioactivity of hydroxyapatite.

    PubMed

    Kobayashi, Satoshi; Muramatsu, Takehiro; Teranishi, Yoshikazu

    2015-01-01

    Hydroxyapatite (HA) has ability of bone-like apatite formation, which consists with chemical interaction between the surface of HA and ions included in body fluid. Thus, proper surface modification might enhance the function. In the present study, the effect of phosphorous ion implantation on mechanical properties and bioactivity of HA was investigated. In order to clarify the effect of ion implantation dose, ion dose of 1 × 10(12), 1 × 10(13) and 1 × 10(14) ions/cm(2) were selected. Mechanical properties and bioactivity were evaluated in 4-point bending tests and immersion test in simulated body fluid. Bending strength was reduced due to ion implantation. The amount of decreasing strength was similar regardless of ion implantation dose. Bone-like apatite formation was slightly delayed with ion implantation, however, improvement in interfacial strength between bone-like apatite layer and the base HA was indicated. From the results, the possibility of phosphorous ion implantation for enhancement of bioactivity of HA was proved.

  14. Plasma-based ion implantation sterilization technique and ion energy estimation

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Watanabe, S.; Shibahara, K.; Yokoyama, S.; Takagi, T.

    2005-07-01

    Plasma-based ion implantation (PBII) is applied as a sterilization technique for three-dimensional work pieces. In the sterilization process, a pulsed negative high voltage (5 μs pulse width, 300 pulses/s,-800 V to -13 kV) is applied to the electrode (workpiece) under N2 at a gas pressure of 2.4 Pa. The resultant self-ignited plasma is shown to successfully reduce the number of active Bacillus pumilus cells by 105 times after 5 min of processing. The nitrogen ion energy is estimated using a simple method based on secondary ion mass spectroscopy analysis of the vertical distribution of nitrogen in PBII-treated Si.

  15. Swift and heavy ion implanted chalcogenide laser glass waveguides and their different refractive index distributions

    SciTech Connect

    Qiu Feng; Narusawa, Tadashi; Zheng Jie

    2011-02-10

    Planar waveguides have been fabricated in Nd- or Ho-doped gallium lanthanum sulfide laser glasses by 60 MeV Ar or 20 MeV N ion implantation. The refractive index profiles were reconstructed based on the results of prism coupling. The Ar implanted waveguides exhibit an approximate steplike distribution, while the N implanted ones show a ''well + barrier'' type. This difference can be attributed to the much lower dose of Ar ions. After annealing, the N implanted waveguides can support two modes at 1539 nm and have low propagation loss, which makes them candidates for novel waveguide lasers.

  16. The structure of molten AgCl, AgI and their eutectic mixture as studied by molecular dynamics simulations of polarizable ion model potentials.

    PubMed

    Alcaraz, Olga; Bitrián, Vicente; Trullàs, Joaquim

    2011-01-07

    The structure of molten AgCl, AgI, and their eutectic mixture Ag(Cl(0.43)I(0.57)) is studied by means of molecular dynamics simulations of polarizable ion model potentials. The corresponding static coherent structure factors reproduce quite well the available neutron scattering data. The qualitative behavior of the simulated partial structure factors and radial distribution functions for molten AgCl and AgI is that predicted by the reverse Monte Carlo modeling of the experimental data. The AgI results are also in qualitative agreement with those calculated from ab initio molecular dynamics.

  17. Transport of Iodide Ion in Compacted Bentonite Containing Ag{sub 2}O - 12111

    SciTech Connect

    Yim, Sung Paal; Lee, Ji-Hyun; Choi, Heui-Joo; Choi, Jong-Won; Lee, Cheo Kyung

    2012-07-01

    Observations of the transport of iodide through compacted bentonite containing Ag{sub 2}O as additive and that without additive were made. Compacted bentonite samples with densities of 1.41 g/cm{sup 3} and 1.60 g/cm{sup 3} were used in the experiment. The amount of Ag{sub 2}O added to the compacted bentonite was in the range of 0.0064 ∼ 0.0468 wt/wt%. Two diffusion solutions were used: one in which iodide ion was dissolved in demineralized water (pure iodide solution), and one in which iodide ion was dissolved in 0.1 M NaCl solution (0.1 M NaCl-iodide solution). Experimental results confirmed that iodide ion was transported by the diffusion process in the compacted bentonite containing Ag{sub 2}O as well as in the compacted bentonite without Ag{sub 2}O. The time-lag of diffusion of iodide ion in the compacted bentonite containing Ag{sub 2}O is larger than that in the compacted bentonite without Ag{sub 2}O. The increase of the time-lag of diffusion was observed in pure iodide ion solution as well as in 0.1 M NaCl-iodide solution. The apparent diffusion coefficient of iodide ion in the compacted bentonite containing Ag{sub 2}O was smaller than in the compacted bentonite without Ag{sub 2}O. The effective diffusion coefficient decreased as the amount of Ag{sub 2}O in the compacted bentonite increased. (authors)

  18. Interferometric pump-probe characterization of the nonlocal response of optically transparent ion implanted polymers

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Hadjichristov, Georgi B.

    2012-03-01

    Optical interferometric technique is applied to characterize the nonlocal response of optically transparent ion implanted polymers. The thermal nonlinearity of the ion-modified material in the near-surface region is induced by continuous wave (cw) laser irradiation at a relatively low intensity. The interferometry approach is demonstrated for a subsurface layer of a thickness of about 100 nm formed in bulk polymethylmethacrylate (PMMA) by implantation with silicon ions at an energy of 50 keV and fluence in the range 1014-1017 cm-2. The laser-induced thermooptic effect in this layer is finely probed by interferometric imaging. The interference phase distribution in the plane of the ion implanted layer is indicative for the thermal nonlinearity of the near-surface region of ion implanted optically transparent polymeric materials.

  19. Nanomechanical and Corrosion Properties of ZK60 Magnesium Alloy Improved by GD Ion Implantation

    NASA Astrophysics Data System (ADS)

    Tao, Xue Wei; Wang, Zhang Zhong; Zhang, Xiao Bo; Ba, Zhi Xin; Wang, Ya Mei

    2014-09-01

    Gadolinium (Gd) ion implantation with doses from 2.5 × 1016 to 1 × 1017 ions/cm2 into ZK60 magnesium alloy was carried out to improve its surface properties. X-ray photoelectron spectroscopy (XPS), nanoindenter, electrochemical workstation and scanning electron microscope (SEM) were applied to analyze the chemical composition, nanomechanical properties and corrosion characteristics of the implanted layer. The results indicate that Gd ion implantation produces a hybrid-structure protective layer composed of MgO, Gd2O3 and metallic Gd in ZK60 magnesium alloy. The surface hardness and modulus of the Gd implanted magnesium alloy are improved by about 300% and 100%, respectively with the dose of 1 × 1017 ions/cm2, while the slowest corrosion rate of the magnesium alloy in 3.5 wt.% NaCl solution is obtained with the dose of 5 × 1016 ions/cm2.

  20. Work function increase of Al-doped ZnO thin films by B+ ion implantation.

    PubMed

    Hong, Sang-Jin; Heo, Gi-Seok; Park, Jong-Woon; Lee, In-Hwan; Choi, Bum-Ho; Lee, Jong-Ho; Park, Se-Yeon; Shin, Dong-Chan

    2007-11-01

    The work function of an Al-doped ZnO (AZO) thin film can be increased via B+ ion implantation from 3.92 eV up to 4.22 eV. The ion implantation has been carried out with the ion dose of 1 x 10(16) cm(-2) and ion energy of 5 keV. The resistance of the B+ implanted AZO films has been a bit raised, while their transmittance is slightly lowered, compared to those of un-implanted AZO films. These behaviors can be explained by the doping profile and the resultant band diagram. It is concluded that the coupling between the B+ ions and oxygen vacancies would be the main reason for an increase in the work function and a change in the other properties. We also address that the work function is more effectively alterable if the defect density of the top transparent conducting oxide layer can be controlled.

  1. Fabrication and photocatalytic activity of TiO2 derived nanotubes with Ag ions doping.

    PubMed

    Liu, Fang; Lai, Shuting; Huang, Peilin; Liu, Yingju; Xu, Yuehua; Fang, Yueping; Zhou, Wuyi

    2012-11-01

    Ag/TiO2 nanotubes with uniform distribution were successfully prepared by a hydrothermal-dipping method. The synthesized samples were characterized by XRD, TEM and FTIR, respectively. The results exhibited that the morphological structure of the TiO2 nanotubes was improved by the doping of Ag ions. The photocatalytic degradation experiment indicated that the photocatalytic activity of the Ag/TiO2 nanotubes indicated better photocatalytic activity than pure TiO2 nanotubes since silver was able to help the electron-hole separation by attracting photoelectrons. The optimal mol ration of TiO2 and AgNO3 was 25:1.

  2. Synergistic effect of nanotopography and bioactive ions on peri-implant bone response

    PubMed Central

    Su, Yingmin; Komasa, Satoshi; Li, Peiqi; Nishizaki, Mariko; Chen, Luyuan; Terada, Chisato; Yoshimine, Shigeki; Nishizaki, Hiroshi; Okazaki, Joji

    2017-01-01

    Both bioactive ion chemistry and nanoscale surface modifications are beneficial for enhanced osseointegration of endosseous implants. In this study, a facile synthesis approach to the incorporation of bioactive Ca2+ ions into the interlayers of nanoporous structures (Ca-nano) formed on a Ti6Al4V alloy surface was developed by sequential chemical and heat treatments. Samples with a machined surface and an Na+ ion-incorporated nanoporous surface (Na-nano) fabricated by concentrated alkali and heat treatment were used in parallel for comparison. The bone response was investigated by microcomputed tomography assessment, sequential fluorescent labeling analysis, and histological and histomorphometric evaluation after 8 weeks of implantation in rat femurs. No significant differences were found in the nanotopography, surface roughness, or crystalline properties of the Ca-nano and Na-nano surfaces. Bone–implant contact was better in the Ca-nano and Na-nano implants than in the machined implant. The Ca-nano implant was superior to the Na-nano implant in terms of enhancing the volume of new bone formation. The bone formation activity consistently increased for the Ca-nano implant but ceased for the Na-nano implant in the late healing stage. These results suggest that Ca-nano implants have promising potential for application in dentistry and orthopedics. PMID:28184162

  3. Visible and near-infrared planar waveguide structure of polycrystalline zinc sulfide from C ions implantation.

    PubMed

    Liu, Tao; Liu, Peng; Zhang, Lian; Zhou, Yu-Fan; Yu, Xiao-Fei; Zhao, Jin-Hua; Wang, Xue-Lin

    2013-02-25

    We report the fabrication of a planar waveguide in polycrystalline zinc sulfide by 6.0 MeV C ions implantation with a fluence of 5 × 10¹⁴ ion/cm² at room temperature. The near-field light intensity profiles in the visible and near-infrared bands are measured by the end-face coupling method with different laser sources. Investigation of the Raman spectra demonstrates that the microstructure of the polycrystalline zinc sulfide has no significant change after C ion implantation. The absorption spectra show that the implantation processes have no influence on the visible and infrared bands.

  4. Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1977-01-01

    Progress in developing the application of ion implantation techniques to silicon gate CMOS/SOS processing is described. All of the conventional doping techniques such as in situ doping of the epi-film and diffusion by means of doped oxides are replaced by ion implantation. Various devices and process parameters are characterized to generate an optimum process by the use of an existing SOS test array. As a result, excellent circuit performance is achieved. A general description of the all ion implantation process is presented.

  5. Shallow nitrogen ion implantation: Evolution of chemical state and defect structure in titanium

    NASA Astrophysics Data System (ADS)

    Manojkumar, P. A.; Chirayath, V. A.; Balamurugan, A. K.; Krishna, Nanda Gopala; Ilango, S.; Kamruddin, M.; Amarendra, G.; Tyagi, A. K.; Raj, Baldev

    2016-09-01

    Evolution of chemical states and defect structure in titanium during low energy nitrogen ion implantation by Plasma Immersion Ion Implantation (PIII) process is studied. The underlying process of chemical state evolution is investigated using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The implantation induced defect structure evolution as a function of dose is elucidated using variable energy positron annihilation Doppler broadening spectroscopy (PAS) and the results were corroborated with chemical state. Formation of 3 layers of defect state was modeled to fit PAS results.

  6. Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses

    NASA Astrophysics Data System (ADS)

    Pogrebnjak, A. D.; Bratushka, S. N.; Beresnev, V. M.; Levintant-Zayonts, N.

    2013-12-01

    The state of the art in ion implantation of superelastic NiTi shape memory alloys is analyzed. Various technological applications of the shape memory effect are outlined. The principles and techiques of ion implantation are described. Specific features of its application for modification of surface layers in surface engineering are considered. Key properties of shape memory alloys and problems in utilization of ion implantation to improve the surface properties of shape memory alloys, such as corrosion resistance, friction coefficient, wear resistance, etc. are discussed. The bibliography includes 162 references.

  7. Integrated high-voltage modulator for plasma immersion ion implantation with an RF plasma

    NASA Astrophysics Data System (ADS)

    Rogozin, A. I.; Astrelin, V. T.; Richter, E.; Möller, W.

    2003-08-01

    The present investigation focuses on further development of the plasma based high-voltage modulator for plasma immersion ion implantation devices. The modulator produces high-voltage pulses using grid controlled extraction of electrons from the plasma, which is used for the ion implantation. The operation features of the modulator in connection with a radio-frequency plasma are described. The device is applied to nitrogen ion implantations of stainless steel. The results indicate considerable hardness improvement, which confirms the practical utility of the high-voltage modulator.

  8. Optical characteristics of Cu-nanocluster layers assembled by ion implantation

    SciTech Connect

    Haglund, R.F. Jr.; Yang, L. . Dept. of Physics and Astronomy); Magruder, R.H. III; Wittig, J.E. . Dept. of Materials Science and Engineering); Zuhr, R.A. )

    1991-01-01

    We have generated cluster layers in solid insulating substrates by implanting Cu ions into fused silica, creating thin layers ({approximately} 150 nm) of nonoclusters over a diameter of order 2 cm. Transmission electron microscopy shows that the size and size distribution can be controlled by the parameters of the ion implantation. We report measurements of the optical properties and nonlinear index of the refraction on these unusual solid-phase cluster materials as a function of total implanted-ion dose. 7 refs., 8 figs.

  9. Ion Implantation Defects in Silicon and the Performance of Micron and Submicron Devices.

    DTIC Science & Technology

    1983-01-31

    AD-R124 497 ION IMPLANTATION DEFECTS IN SILICON AND THE PERFORMANC / OF MICRON AND SUB..(U) ILLINOIS UNIV AT URBANA COOMRNTED SCIENCE LAB B G...TEST CHART -NATINAC. BURMA OF STANWM-1*3-A ION IMPLANTATION DEFECTS IN SILICON AND THE PERFORMANCE OF MICRON AND SUBMICRON DEVICES FINAL REPORT B. G...NUMUER FINAL £7 /7_ _ _ _ _ _ _ 4. TITLE (an Swe) IL TYPE OF REPORT & PERIOD COVERED ION IMPLANTATION DEFECTS IN SILICON AND THE Final 6/80-1/16/83

  10. Long-range effect of ion implantation of Raex and Hardox steels

    NASA Astrophysics Data System (ADS)

    Budzyński, P.; Kamiński, M.; Droździel, A.; Wiertel, M.

    2016-09-01

    Ion implantation involves introduction of ionized atoms of any element (nitrogen) to metals thanks to the high kinetic energy that they acquired in the electric field. The distribution of nitrogen ions implanted at E = 65 keV energy and D = 1.1017 N+ /cm2 fluence in the steel sample and vacancies produced by them was calculated using the SRIM program. This result was confirmed by RBS measurements. The initial maximum range of the implanted nitrogen ions is ∼⃒0.17 μm. This value is relatively small compared to the influence of nitriding on the thickness surface layer of modified steel piston rings. Measurements of the friction coefficient during the pin-on-disc tribological test were performed under dry friction conditions. The friction coefficient of the implanted sample increased to values characteristic of an unimplanted sample after ca. 1500 measurement cycles. The depth of wear trace is ca. 2.4 μm. This implies that the thickness of the layer modified by the implantation process is ∼⃒2.4 μm and exceeds the initial range of the implanted ions by an order of magnitude. This effect, referred to as a long-range implantation effect, is caused by migration of vacancies and nitrogen atoms into the sample. This phenomenon makes ion implantation a legitimate process of modification of the surface layer in order to enhance the tribological properties of critical components of internal combustion engines such as steel piston rings.

  11. Heavy-ion sources: The Star, or the Cinderella, of the ion-implantation firmament? (invited)

    NASA Astrophysics Data System (ADS)

    Freeman, Harry

    2000-02-01

    The Star, because of the invaluable contribution which the heavy-ion source has already made to the successful development of semiconductor implantation. And the Star, too, because it is evident that the key characteristics of such sources, which are now used on a quite routine industrial basis—their reliability, their ease of operation and, above all, their extraordinary versatility—have still not been fully exploited. This ensures that there is still scope, at least in the short term, for further optimization, which will go some way to meet the increasingly stringent industrial doping requirements. The Cinderella, because of my belief that these heavy-ion sources have now contributed to the successful operation of ion implanters so well, and for so long, that their present level of performance is mistakenly taken for granted. The result has been a paucity of meaningful research and development. Despite this, in this article I aim to show that, like Cinderella, who was so neglected that her true merit was long overlooked, there is the prospect too of achieving the significantly larger improvements in beam quality which the semiconductor industry will eventually be seeking.

  12. Properties of ion implanted Ti-6Al-4V processed using beamline and PSII techniques

    SciTech Connect

    Walter, K.C.; Woodring, J.S.; Nastasi, M.; Munson, C.M.; Williams, J.M.; Poker, D.B.

    1996-12-31

    The surface of Ti-6Al-4V (Ti64) alloy has been modified using beamline implantation of boron. In separate experiments, Ti64 has been implanted with nitrogen using a plasma source ion implantation (PSII) technique utilizing either ammonia (NH{sub 3}), nitrogen (N{sub 2}), or their combinations as the source of nitrogen ions. Beamline experiments have shown the hardness of the N-implanted surface saturates at a dose level of {approximately} 4 {times} 10{sup 17} at/cm{sup 2} at {approximately} 10 GPa. The present work makes comparisons of hardness and tribological tests of (1) B implantation using beamline techniques, and (2) N implanted samples using ammonia and/or nitrogen gas in a PSII process. The results show that PSII using N{sub 2} or NH{sub 3} gives similar hardness as N implantation using a beamline process. The presence of H in the Ti alloy surface does not affect the hardness of the implanted surface. Boron implantation increased the surface hardness by as much as 2.5x at the highest dose level. Wear testing by a pin-on-disk method indicated that nitrogen implantation reduced the wear rate by as much as 120x, and boron implantation reduced the wear rate by 6.5x. Increased wear resistance was accompanied by a decreased coefficient of friction.

  13. The effect of sodium-ion implantation on the properties of titanium.

    PubMed

    Baszkiewicz, J; Krupa, D; Kozubowski, J A; Rajchel, B; Lewandowska-Szumieł, M; Barcz, A; Sobczak, J W; Kosiński, A; Chróścicka, A

    2008-09-01

    This paper deals with the surface modification of titanium by sodium-ion implantation and with the effect of this modification on structure, corrosion resistance, bioactivity and cytocompatibility. The Na ions were implanted with doses of 1 x 10(17) and 4 x 10(17) ions/cm(2) at an energy of 25 keV. The chemical composition of the surface layers formed during the implantation was examined by secondary-ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS), and their microstructure--by transmission electron microscopy (TEM). The corrosion resistance was determined by electrochemical methods in a simulated body fluid (SBF) at a temperature of 37 degrees C, after exposure in SBF for various times. The surfaces of the samples were examined by optical microscopy, by scanning electron microscopy (SEM-EDS), and by atomic force microscopy (AFM). Biocompatibility of the modified surface was evaluated in vitro in a culture of the MG-63 cell line and human osteoblast cells. The TEM results indicate that the surface layers formed during the implantation of Na-ions are amorphous. The results of the electrochemical examinations obtained for the Na-implanted titanium samples indicate that the implantation increases corrosion resistance. Sodium-ion implantation improves bioactivity and does not reduce biocompatibility.

  14. Characterization of high energy ion implantation into Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Carroll, M. P.; Stephenson, K.; Findley, K. O.

    2009-06-01

    Ion implantation is a surface modification process that can improve the wear, fatigue, and corrosion resistance for several metals and alloys. Much of the research to date has focused on ion energies less than 1 MeV. With this in mind, Ti-6Al-4V was implanted with Al 2+, Au 3+, and N + ions at energies of 1.5 and 5 MeV and various doses to determine the effects on strengthening of a high energy beam. A post heat treatment on the specimens implanted with Al 2+ samples was conducted to precipitate Ti xAl type intermetallics near the surface. Novel techniques, such as nanoindentation, are available now to determine structure-mechanical property relationships in near-surface regions of the implanted samples. Thus, nanoindentation was performed on pre-implanted, as-implanted, and post heat treated samples to detect differences in elastic modulus and hardness at the sub-micron scale. In addition, sliding wear tests were performed to qualitatively determine the changes in wear performance. The effect of this processing was significant for samples implanted with Al 2+ ions at 1.5 MeV with a dose higher than 1 × 10 16 ions/cm 2 where precipitation hardening likely occurs and with N + ions.

  15. A study of the factors which control the efficiency of ion-implanted silicon solar cells

    NASA Technical Reports Server (NTRS)

    Douglas, E. C.; Daiello, R. V.

    1980-01-01

    The objective of this work was to determine experimentally the ion-implantation parameters and furnace annealing conditions required to produce high-efficiency solar cells. A comprehensive experimental study was conducted in which the optimum ion-implantation parameters were found by a systematic variation of the implant parameters followed by detailed studies of solar-cell devices. Two furnace heat-treatment techniques were found which effectively anneal the implanted layers and at the same time preserve or improve the diffusion length in the bulk silicon. Detailed characteristics of both the junction and bulk properties of solar cells fabricated over the spectrum of implant parameters are discussed. Optimized implant parameters and annealing conditions were found which allow for the fabrication of 14-15-percent (AM1) efficient solar cells.

  16. Ion-implanted PLZT ceramics - A new high-sensitivity image storage medium

    NASA Astrophysics Data System (ADS)

    Peercy, P. S.; Land, C. E.

    1981-06-01

    Studies of photoferroelectric (PFE) image storage in H, He, and Ar, and more recently, Ar + Ne implanted PLZT reveal that the photosensitivity can be significantly increased by ion implantation into the image storage surface. For example, the photosensitivity after coimplantation of Ar + Ne is increased by about four orders of magnitude over that of unimplanted PLZT. The increase in photosensitivity is controlled by implantation-produced disorder which results in marked decreases in dark conductivity and dielectric constant and changes in the effective photoconductivity of the implanted layer. In this paper the effects of Ar and Ar + Ne implantation are presented along with a phenomenological model which describes the photosensitivity enhancement obtained by ion implantation.

  17. Ion implantation to reduce wear on polyethylene prosthetic devices. Rept. for Aug 89-Jan 91

    SciTech Connect

    Not Available

    1991-05-01

    Researchers studied the use of ion implantation to improve the wear performance of ultra high molecular weight polyethylene (UHMWPE). UHMWPE samples were implanted with high energy ions, tested for wear performance, and compared to unimplanted control samples. Surface friction and hardness measurements, Raman scattering, Rutherford backscattering (RBS), water contact angle, and film transfer tests were performed to characterize the surface property changes of implanted UHMWPE samples. Results indicated a 90% reduction in wear on implanted UHMWPE disks. Implantation increased surface microhardness and surface energy. The Raman spectrum revealed a diamond-like signature, indicting carbon bonds of a different nature than those found in unimplanted polyehtylene. Photographic analysis of pins used in wear testing revealed differences between implanted and unimplanted samples in the polyethylene film transferred in the initial stages of wear from the disk to the pin.

  18. Ion-tuned DNA/Ag fluorescent nanoclusters as versatile logic device.

    PubMed

    Li, Tao; Zhang, Libing; Ai, Jun; Dong, Shaojun; Wang, Erkang

    2011-08-23

    A novel kind of versatile logic device has been constructed utilizing ion-tuned DNA/Ag fluorescent nanoclusters, with K(+) and H(+) as two inputs. A well-chosen hairpin DNA with a poly-C loop serves as the template for synthesizing two species of Ag nanoclusters. Several G-tracts and C-tracts on its two terminals enable the hairpin DNA to convert into the G-quadruplex and/or i-motif structures upon input of K(+) and H(+). Such a structural change remarkably influences the spectral behaviors of Ag nanoclusters. In particular, different species of Ag nanoclusters have distinct fluorescence responses to the input of K(+) and H(+). These unique features of DNA/Ag nanoclusters enable multiple logic operations via multichannel fluorescence output, indicating the versatility as a molecular logic device. By altering the specific sequence of the hairpin DNA, more logic gates can be constructed utilizing Ag nanoclusters.

  19. Simple and biocompatible micropatterning of multiple cell types on a polymer substrate by using ion implantation.

    PubMed

    Hwang, In-Tae; Jung, Chan-Hee; Choi, Jae-Hak; Nho, Young-Chang

    2010-12-07

    A noncytotoxic procedure for the spatial organization of multiple cell types remains as a major challenge in tissue engineering. In this study, a simple and biocompatible micropatterning method of multiple cell types on a polymer surface is developed by using ion implantation. The cell-resistant Pluronic surface can be converted into a cell-adhesive one by ion implantation. In addition, cells show different behaviors on the ion-implanted Pluronic surface. Thus this process enables the micropatterning of two different cell types on a polymer substrate. The micropatterns of the Pluronic were formed on a polystyrene surface. Primary cells adhered to the spaces of the bare polystyrene regions separated by the implanted Pluronic patterns. Secondary cells then adhered onto the implanted Pluronic patterns, resulting in micropatterns of two different cells on the polystyrene surface.

  20. Contiguous metal-mediated base pairs comprising two Ag(I) ions.

    PubMed

    Megger, Dominik A; Guerra, Célia Fonseca; Hoffmann, Jan; Brutschy, Bernhard; Bickelhaupt, F Matthias; Müller, Jens

    2011-05-27

    The incorporation of transition-metal ions into nucleic acids by using metal-mediated base pairs has proved to be a promising strategy for the site-specific functionalization of these biomolecules. We report herein the formation of Ag(+)-mediated Hoogsteen-type base pairs comprising 1,3-dideaza-2'-deoxyadenosine and thymidine. By defunctionalizing the Watson-Crick edge of adenine, the formation of regular base pairs is prohibited. The additional substitution of the N3 nitrogen atom of adenine by a methine moiety increases the basicity of the exocyclic amino group. Hence, 1,3-dideazaadenine and thymine are able to incorporate two Ag(+) ions into their Hoogsteen-type base pair (as compared with one Ag(+) ion in base pairs with 1-deazaadenine and thymine). We show by using a combination of experimental techniques (UV and circular dichroism (CD) spectroscopies, dynamic light scattering, and mass spectrometry) that this type of base pair is compatible with different sequence contexts and can be used contiguously in DNA double helices. The most stable duplexes were observed when using a sequence containing alternating purine and pyrimidine nucleosides. Dispersion-corrected density functional theory calculations have been performed to provide insight into the structure, formation and stabilization of the twofold metalated base pair. They revealed that the metal ions within a base pair are separated by an Ag···Ag distance of about 2.88 Å. The Ag-Ag interaction contributes some 16 kcal mol(-1) to the overall stability of the doubly metal-mediated base pair, with the dominant contribution to the Ag-Ag bonding resulting from a donor-acceptor interaction between silver 4d-type and 4s orbitals. These Hoogsteen-type base pairs enable a higher functionalization of nucleic acids with metal ions than previously reported metal-mediated base pairs, thereby increasing the potential of DNA-based nanotechnology.

  1. In vitro studies on silver implanted pure iron by metal vapor vacuum arc technique.

    PubMed

    Huang, Tao; Cheng, Yan; Zheng, Yufeng

    2016-06-01

    Pure iron has been verified as a promising biodegradable metal for absorbable cardiovascular stent usage. However, the degradation rate of pure iron is too slow. To accelerate the degradation of the surface of pure iron, silver ions were implanted into pure iron by metal vapor vacuum arc (MEVVA) source at an extracted voltage of 40keV. The implanted influence was up to 2×10(17)ions/cm(2). The composition and depth profiles, corrosion behavior and biocompatibility of Ag ion implanted pure iron were investigated. The implantation depths of Ag was around 60nm. The element Ag existed as Ag2O in the outermost layer, then gradually transited to metal atoms in zero valent state with depth increase. The implantation of Ag ions accelerated the corrosion rate of pure iron matrix, and exhibited much more uniform corrosion behavior. For cytotoxicity assessment, the implantation of Ag ions slightly decreased the viability of all kinds of cell lines used in these tests. The hemolysis rate of Ag ion implanted pure iron was lower than 2%, which was acceptable, whereas the platelet adhesion tests indicated the implantation of Ag ions might increase the risk of thrombosis.

  2. Thermal conductivity measurement of the He-ion implanted layer of W using transient thermoreflectance technique

    NASA Astrophysics Data System (ADS)

    Qu, Shilian; Li, Yuanfei; Wang, Zhigang; Jia, Yuzhen; Li, Chun; Xu, Ben; Chen, Wanqi; Bai, Suyuan; Huang, Zhengxing; Tang, Zhenan; Liu, Wei

    2017-02-01

    Transient thermoreflectance method was applied on the thermal conductivity measurement of the surface damaged layer of He-implanted tungsten. Uniform damages tungsten surface layer was produced by multi-energy He-ion implantation with thickness of 450 nm. Result shows that the thermal conductivity is reduced by 90%. This technique was further applied on sample with holes on the surface, which was produced by the He-implanted at 2953 K. The thermal conductivity decreases to 3% from the bulk value.

  3. Doping concentration evaluation using plasma propagation models in plasma immersion ion implantation (PIII) system

    NASA Astrophysics Data System (ADS)

    Gupta, Dushyant; Prasad, B.; George, P. J.

    2004-01-01

    Plasma immersion ion implantation (PIII) is a high dose-rate implantation process technique in the area of semiconductor device fabrication used to fabricate various device structures like shallow junction, silicon on insulators and in the processing of flat panel display materials, trench doping, etc. The basic mechanism of ions source and their acceleration in PIII technique is different from that of the conventional ion-implantation. In this, the target is immersed in a plasma source and the implantation is done by accelerating the ions with a negative pulse bias voltage, applied to the target. The dynamics of ion transport and the implantation is different from line-of-sight implantation. In this paper, the doping of individual ions (Ar, He and N), in a collisionless PIII system is studied analytically when a negative pulse of 10 kV is applied to the target. The net ion doping concentration in one pulse duration has also been computed during the propagation of plasma sheaths.

  4. Operations manual for the plasma source ion implantation economics program

    SciTech Connect

    Bibeault, M.L.; Thayer, G.R.

    1995-10-01

    Plasma Source Ion Implantation (PSII) is a surface modification technique for metal. PSIICOSTMODEL95 is an EXCEL-based program that estimates the cost for implementing a PSII system in a manufacturing setting where the number of parts to be processed is over 5,000 parts per day and the shape of each part does not change from day to day. Overall, the manufacturing process must be very well defined and should not change. This document is a self-contained manual for PSIICOSTMODEL95. It assumes the reader has some general knowledge of the technical requirements for PSII. Configuration of the PSII process versus design is used as the methodology in PSIICOSTMODEL95. The reason behind this is twofold. First, the design process cannot be programmed into a computer when the relationships between design variables are not understood. Second, the configuration methodology reduces the number of assumptions that must be programmed into our software. Misuse of results are less likely to occur if the user has fewer assumptions to understand.

  5. Temperature Activated Diffusion of Radicals through Ion Implanted Polymers.

    PubMed

    Wakelin, Edgar A; Davies, Michael J; Bilek, Marcela M M; McKenzie, David R

    2015-12-02

    Plasma immersion ion implantation (PIII) is a promising technique for immobilizing biomolecules on the surface of polymers. Radicals generated in a subsurface layer by PIII treatment diffuse throughout the substrate, forming covalent bonds to molecules when they reach the surface. Understanding and controlling the diffusion of radicals through this layer will enable efficient optimization of this technique. We develop a model based on site to site diffusion according to Fick's second law with temperature activation according to the Arrhenius relation. Using our model, the Arrhenius exponential prefactor (for barrierless diffusion), D0, and activation energy, EA, for a radical to diffuse from one position to another are found to be 3.11 × 10(-17) m(2) s(-1) and 0.31 eV, respectively. The model fits experimental data with a high degree of accuracy and allows for accurate prediction of radical diffusion to the surface. The model makes useful predictions for the lifetime over which the surface is sufficiently active to covalently immobilize biomolecules and it can be used to determine radical fluence during biomolecule incubation for a range of storage and incubation temperatures so facilitating selection of the most appropriate parameters.

  6. Low-cost ion implantation and annealing technology for solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. H.; Minnucci, J. A.; Greenwald, A. C.

    1980-01-01

    Ion implantation and thermal annealing techniques for processing junctions and back surface layers in solar cells are discussed. Standard 10 keV (31)p(+) junction implants and 25 keV (11)B(+) back surface implants in combination with three-step furnace annealing are used for processing a range of silicon materials and device structures. Cells with efficiencies up to 16.5% AM1 are being produced, and large-area terrestrial cells with implanted junctions and back fields being fabricated in pilot production exhibit average efficiencies in excess of 15% AM1. Thermal annealing methods for removal of the radiation damage caused by implantation should be replaced by transient processing techniques in future production. Design studies have been completed for solar cell processing implanters to support 10 MW/yr and 100 MW/yr production lines, and analyses indicate that implantation costs can be reduced to approximately 1 cent/watt.

  7. Ion implantation reduces radiation sensitivity of metal oxide silicon /MOS/ devices

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Implanting nitrogen ions improves hardening of silicon oxides 30 percent to 60 percent against ionizing radiation effects. Process reduces sensitivity, but retains stability normally shown by interfaces between silicon and thermally grown oxides.

  8. CHARACTERIZATION OF PRECIPITATES IN CUBIC SILICON CARBIDE IMPLANTED WITH 25Mg+ IONS

    SciTech Connect

    Jiang, Weilin; Spurgeon, Steven R.; Liu, Jia; Edwards, Danny J.; Schreiber, Daniel K.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2016-09-26

    The aim of this study is to characterize precipitates in Mg+ ion implanted and high-temperature annealed cubic silicon carbide using scanning transmission electron microscopy, electron energy loss spectroscopy and atom probe tomography.

  9. Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Kim, Janghyuk; Lee, Geonyeop; Kim, Jihyun

    2015-07-01

    We report on the synthesis of wafer-scale (4 in. in diameter) high-quality multi-layer graphene using high-temperature carbon ion implantation on thin Ni films on a substrate of SiO2/Si. Carbon ions were bombarded at 20 keV and a dose of 1 × 1015 cm-2 onto the surface of the Ni/SiO2/Si substrate at a temperature of 500 °C. This was followed by high-temperature activation annealing (600-900 °C) to form a sp2-bonded honeycomb structure. The effects of post-implantation activation annealing conditions were systematically investigated by micro-Raman spectroscopy and transmission electron microscopy. Carbon ion implantation at elevated temperatures allowed a lower activation annealing temperature for fabricating large-area graphene. Our results indicate that carbon-ion implantation provides a facile and direct route for integrating graphene with Si microelectronics.

  10. Effect of ion implantation on the tribology of metal-on-metal hip prostheses.

    PubMed

    Bowsher, John G; Hussain, Azad; Williams, Paul; Nevelos, Jim; Shelton, Julia C

    2004-12-01

    Nitrogen ion implantation (which considerably hardens the surface of the bearing) may represent one possible method of reducing the wear of metal-on-metal (MOM) hip bearings. Currently there are no ion-implanted MOM bearings used clinically. Therefore a physiological hip simulator test was undertaken using standard test conditions, and the results compared to previous studies using the same methods. N2-ion implantation of high carbon cast Co-Cr-Mo-on-Co-Cr-Mo hip prostheses increased wear by 2-fold during the aggressive running-in phase compared to untreated bearing surfaces, plus showing no wear reductions during steady-state conditions. Although 2 specimens were considered in the current study, it would appear that ion implantation has no clinical benefit for MOM.

  11. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    NASA Astrophysics Data System (ADS)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  12. Improved thermostable α-amylase activity of Bacillus amyloliquefaciens by low-energy ion implantation.

    PubMed

    Li, X Y; Zhang, J L; Zhu, S W

    2011-09-23

    Thermostable α-amylase is of great importance in the starch fermentation industry; it is extensively used in the manufacture of beverages, baby foods, medicines, and pharmaceuticals. Bacillus amyloliquefaciens produces thermostable α-amylase; however, production of thermostable α-amylase is limited. Ion-beam implantation is an effective method for mutation breeding in microbes. We conducted ion-beam implantation experiments using two different ions, Ar(+) and N(+), to determine the survival rate of and dose effect on a high α-amylase activity strain of B. amyloliquefaciens that had been isolated from soil samples. N(+) implantation resulted in a higher survival rate than Ar(+) implantation. The optimum implantation dose was 2.08 × 10(15) ions/cm(2). Under this implantation condition, we obtained a thermally and genetically stable mutant α-amylase strain (RL-1) with high enzyme activity for degrading α-amylase. Compared to the parental strain (RL), the RL-1 strain had a 57.1% increase in α-amylase activity. We conclude that ion implantation in B. amyloliquefaciens can produce strains with increased production of thermostable α-amylase.

  13. Annealing effects on the migration of ion-implanted cadmium in glassy carbon

    NASA Astrophysics Data System (ADS)

    Hlatshwayo, T. T.; Sebitla, L. D.; Njoroge, E. G.; Mlambo, M.; Malherbe, J. B.

    2017-03-01

    The migration behaviour of cadmium (Cd) implanted into glassy carbon and the effects of annealing on radiation damage introduced by ion implantation were investigated. The glassy carbon substrates were implanted with Cd at a dose of 2 × 1016 ions/cm2 and energy of 360 keV. The implantation was performed at room temperature (RT), 430 °C and 600 °C. The RT implanted samples were isochronally annealed in vacuum at 350, 500 and 600 °C for 1 h and isothermally annealed at 350 °C up to 4 h. The as-implanted and annealed samples were characterized by Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Raman results revealed that implantation at room temperature amorphized the glassy carbon structure while high temperature implantations resulted in slightly less radiation damage. Isochronal annealing of the RT implanted samples resulted in some recrystallization as a function of increasing temperature. The original glassy carbon structure was not achieved at the highest annealing temperature of 600 °C. Diffusion of Cd in glassy carbon was already taking place during implantation at 430 °C. This diffusion of Cd was accompanied by significant loss from the surface during implantation at 600 °C. Isochronal annealing of the room temperature implanted samples at 350 °C for 1 h caused Cd to diffuse towards the bulk while isothermal annealing at 500 and 600 °C resulted in the migration of implanted Cd toward the surface accompanied by a loss of Cd from the surface. Isothermal annealing at 350 °C for 1 h caused Cd to diffuse towards the bulk while for annealing time >1 h Cd diffused towards the surface. These results were interpreted in terms of trapping and de-trapping of implanted Cd by radiation damage.

  14. Effect of bias voltage on coating homogeneity in plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Slabodchikov, Vladimir A.; Borisov, Dmitry P.; Kuznetsov, Vladimir M.

    2016-11-01

    The paper presents research results demonstrating the influence of bias on the homogeneity of plasma immersion ion implantation. The research results allow the conclusion that plasma immersion ion implantation can be used to advantage for surface modification of medical materials, e.g., nickel-titanium (NiTi) alloys. In particular, doing of NiTi with silicon at pulsed bias provides highly homogeneous surface treatment.

  15. Neutron activation analysis for reference determination of the implantation dose of cobalt ions

    SciTech Connect

    Garten, R.P.H.; Bubert, H.; Palmetshofer, L.

    1992-05-15

    The authors prepared depth profilling reference materials by cobalt ion implantation at an ion energy of 300 keV into n-type silicon. The implanted Co dose was then determined by instrumental neutron activation analysis (INAA) giving an analytical dynamic range of almost 5 decades and uncertainty of 1.5%. This form of analysis allows sources of error (beam spreading, misalignment) to be corrected. 70 refs., 3 tabs.

  16. Enhanced Ag(+) Ion Release from Aqueous Nanosilver Suspensions by Absorption of Ambient CO2.

    PubMed

    Fujiwara, Kakeru; Sotiriou, Georgios A; Pratsinis, Sotiris E

    2015-05-19

    Nanosilver with closely controlled average particle diameter (7-30 nm) immobilized on nanosilica is prepared and characterized by X-ray diffraction, N2 adsorption, and transmission electron microscopy. The presence of Ag2O on the as-prepared nanosilver surface is confirmed by UV-vis spectroscopy and quantified by thermogravimetric analysis and mass spectrometry. The release of Ag(+) ions in deionized water is monitored electrochemically and traced quantitatively to the dissolution of a preexisting Ag2O monolayer on the nanosilver surface. During this dissolution, the pH of the host solution rapidly increases, suppressing dissolution of the remaining metallic Ag. When, however, a nanosilver suspension is exposed to a CO2-containing atmosphere, like ambient air during its storage or usage, then CO2 is absorbed by the host solution decreasing its pH and contributing to metallic Ag dissolution and further leaching of Ag(+) ions. So the release of Ag(+) ions from the above closely sized nanosilver solutions in the absence and presence of CO2 as well as under synthetic air containing 200-1800 ppm of CO2 is investigated along with the solution pH and related to the antibacterial activity of nanosilver.

  17. Ferromagnetic GeMn thin film prepared by ion implantation and ion beam induced epitaxial crystallization annealing

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Niu, H.; Yan, D. C.; Hsieh, H. H.; Lee, C. P.; Chi, C. C.

    2012-06-01

    Ferromagnetic GeMn was prepared by Mn implantation followed by ion beam-induced epitaxial crystallization annealing. The damage caused by Mn implantation was repaired by subsequent helium ion irradiation. Various structural analyses were performed and Mn ions were found to incorporate uniformly into the Ge lattice without the formation of any secondary phases. The remnant magnetic moment exhibited room temperature ferromagnetism. Anomalous Hall effect and field dependent magnetization were measured at the same time at room temperature indicating spin polarized free carrier transport. Additional measurement using x-ray magnetic circular dichroism also revealed that the carriers were spin-polarized.

  18. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants.

    PubMed

    Yu, Yiqiang; Jin, Guodong; Xue, Yang; Wang, Donghui; Liu, Xuanyong; Sun, Jiao

    2017-02-01

    In order to improve the osseointegration and long-term survival of dental implants, it is urgent to develop a multifunctional titanium surface which would simultaneously have osteogeneic, angiogeneic and antibacterial properties. In this study, a potential dental implant material-dual Zn/Mg ion co-implanted titanium (Zn/Mg-PIII) was developed via plasma immersion ion implantation (PIII). The Zn/Mg-PIII surfaces were found to promote initial adhesion and spreading of rat bone marrow mesenchymal stem cells (rBMSCs) via the upregulation of the gene expression of integrin α1 and integrin β1. More importantly, it was revealed that Zn/Mg-PIII could increase Zn(2+) and Mg(2+) concentrations in rBMSCs by promoting the influx of Zn(2+) and Mg(2+) and inhibiting the outflow of Zn(2+), and then could enhance the transcription of Runx2 and the expression of ALP and OCN. Meanwhile, Mg(2+) ions from Zn/Mg-PIII increased Mg(2+) influx by upregulating the expression of MagT1 transporter in human umbilical vein endothelial cells (HUVECs), and then stimulated the transcription of VEGF and KDR via activation of hypoxia inducing factor (HIF)-1α, thus inducing angiogenesis. In addition to this, it was discovered that zinc in Zn/Mg-PIII had certain inhibitory effects on oral anaerobic bacteria (Pg, Fn and Sm). Finally, the Zn/Mg-PIII implants were implanted in rabbit femurs for 4 and 12weeks with Zn-PIII, Mg-PIII and pure titanium as controls. Micro-CT evaluation, sequential fluorescent labeling, histological analysis and push-out test consistently demonstrated that Zn/Mg-PIII implants exhibit superior capacities for enhancing bone formation, angiogenesis and osseointegration, while consequently increasing the bonding strength at bone-implant interfaces. All these results suggest that due to the multiple functions co-produced by zinc and magnesium, rapid osseointegration and sustained biomechanical stability are enhanced by the novel Zn/Mg-PIII implants, which have the potential

  19. Balancing incident heat and ion flow for process optimization in plasma based ion implantation

    NASA Astrophysics Data System (ADS)

    Mändl, S.; Manova, D.; Rauschenbach, B.

    2002-06-01

    Plasma based ion implantation at elevated temperatures is a technology often used to obtain thick surface layers of several µm by thermally activated diffusion, e.g. nitrogen in steel, titanium or aluminium. By lowering the pulse voltage at constant temperature, the current density can be increased at a constant heat flow. However, an upper limit is given by the ratio of the diffusion rate transporting the implanted ions from the surface towards the bulk and the sputter yield. This sputtering of the surface dominates for very high current densities and limits the maximum achievable layer thickness. Different maximum current densities were found for the four investigated systems - nitrogen in different steel grades, aluminium and titanium, as well as oxygen in titanium - reflecting the varying diffusivities. Additional requirements, besides the maximum current density, as a conformal treatment for complex objects containing small holes or trenches, as well as short heating times, can be solved most effectively by pulsed voltages in the range of 2-5 kV and an additional heating of the sample. The problem of a sample cooling time of several hours after the treatment is recognized. A partial solution would be to increase the gas pressure during the cooling phase for a more effective heat dissipation.

  20. Enhancement of ferromagnetism in C ion implanted CeO2 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Chand, F.; Asokan, K.

    2017-03-01

    This investigation reports on room temperature ferromagnetism in pristine and C ion implanted CeO2 thin films deposited on Si (111) substrates by the radio frequency (RF)-sputtering method. X-ray diffraction analysis shows that the face-centered cubic (FCC) structure corresponds to CeO2. The Raman spectra further confirm the formation of phase and also indicate the presence of defects, mainly oxygen vacancies, in these films. The presence of C is evident from Rutherford backscattering studies. Atomic force microscopy images indicate that the surface roughness values of the films reduce after C ion implantation. It is observed that the magnetic properties in CeO2 thin films are enhanced by C ion implantation. The saturation magnetization of the pristine film increases from ∼7 emu cm‑3 to ∼27 emu cm‑3 for a fluence of 6 × 1016 ions cm‑2. It is also observed that the coercivity values change after C ion implantation and reduce for a film with an ion fluence of 6 × 1016 ions cm‑2 compared with other films. Mechanisms such as the F-center exchange (FCE) model are considered when attempting to understand the enhanced ferromagnetism of C ion implanted CeO2 thin films.

  1. Quantum-well intermixing for optoelectronic integration using high energy ion implantation

    NASA Astrophysics Data System (ADS)

    Charbonneau, S.; Poole, P. J.; Piva, P. G.; Aers, G. C.; Koteles, E. S.; Fallahi, M.; He, J.-J.; McCaffrey, J. P.; Buchanan, M.; Dion, M.; Goldberg, R. D.; Mitchell, I. V.

    1995-09-01

    The technique of ion-induced quantum-well (QW) intermixing using broad area, high energy (2-8 MeV As4+) ion implantation has been studied in a graded-index separate confinement heterostructure InGaAs/GaAs QW laser. This approach offers the prospect of a powerful and relatively simple fabrication technique for integrating optoelectronic devices. Parameters controlling the ion-induced QW intermixing, such as ion doses, fluxes, and energies, post-implantation annealing time, and temperature are investigated and optimized using optical characterization techniques such as photoluminescence, photoluminescence excitation, and absorption spectroscopy.

  2. Nonlinear damage effect in graphene synthesis by C-cluster ion implantation

    SciTech Connect

    Zhang Rui; Zhang Zaodi; Wang Zesong; Wang Shixu; Wang Wei; Fu Dejun; Liu Jiarui

    2012-07-02

    We present few-layer graphene synthesis by negative carbon cluster ion implantation with C{sub 1}, C{sub 2}, and C{sub 4} at energies below 20 keV. The small C-clusters were produced by a source of negative ion by cesium sputtering with medium beam current. We show that the nonlinear effect in cluster-induced damage is favorable for graphene precipitation compared with monomer carbon ions. The nonlinear damage effect in cluster ion implantation shows positive impact on disorder reduction, film uniformity, and the surface smoothness in graphene synthesis.

  3. A novel approach to microbial breeding--low-energy ion implantation.

    PubMed

    Gu, Shao-Bin; Li, Shi-Chang; Feng, Hui-Yun; Wu, Ying; Yu, Zeng-Liang

    2008-02-01

    Low-energy ions exist widely in the natural world. People had neglected the interaction between low-energy ions and material; it was even more out of the question to study the relation of low-energy ions and the complicated organism until the biological effects of low-energy ion implantation were discovered in 1989. Nowadays, the value of low-energy ion beam implantation, as a new breeding way, has drawn extensive attention of biologists and breeding experts. In this review, the understanding and utilization of microbial breeding by low-energy ion beam irradiation is summarized, including the characteristics of an ion beam bioengineering facility, present status of the technology of low-energy ions for microbial breeding, and new insights into microbial biotechnology.

  4. Scanning-electron-microscopy observations and mechanical characteristics of ion-beam-sputtered surgical implant alloys

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Meyer, M. L.; Ling, J. S.

    1977-01-01

    An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing.

  5. Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Leng, Jian; Yu, Zhinong; Xue, Wei; Zhang, Ting; Jiang, Yurong; Zhang, Jie; Zhang, Dongpu

    2010-10-01

    The structural, optical, and electrical characteristics of zinc sulfide (ZnS)/Ag/ZnS (ZAZ) multilayer films prepared by ion beam assisted deposition on k9 glass have been investigated as a function of Ag layer thickness. The characteristics of ZAZ multilayer are significantly improved up insertion of optimal Ag thickness between ZnS layers. The results show that due to bombardment of Ar ion beam, distinct Ag islands evolve into continuous Ag films at a thin Ag thickness of about 4 nm. The thinner Ag film as a thickness of 2 nm leads to high sheet resistance and low transmittance for the interface scattering induced by the Ag islands or noncontinuous films; and when the Ag thickness is over 4 nm, the ZAZ multilayer exhibits a remarkably reduced sheet resistance between 7-80 Ω/sq for the increase in carrier concentration and mobility of Ag layer, and a high transmittance over 90% for the interference phenomena of multilayers and low absorption and surface scattering of Ag layer. The ZAZ multilayer with 14 nm Ag film has a figure of merit up to 6.32×10-2 Ω-1, an average transmittance over 92% and a sheet resistance of 7.1 Ω/sq. The results suggest that ZAZ film has better optoelectrical properties than conditional indium tin oxide single layer.

  6. Ag nanoparticles enhanced near-IR emission from Er3+ ions doped glasses

    NASA Astrophysics Data System (ADS)

    Qi, Jiani; Xu, Tiefeng; Wu, Yi; Shen, Xiang; Dai, Shixun; Xu, Yinsheng

    2013-10-01

    Vitreous materials containing rare-earth (RE) ions and metallic nanoparticles (NPs) attract considerable interest because the presence of the NPs may lead to an intensification of luminescence. In this work, the characteristics of 1.54 μm luminescence for the Er3+ ions doped bismuthate glasses containing Ag NPs were studied under 980 nm excitation. The surface plasmon resonance (SPR) band of Ag NPs appears from 500 to 1500 nm. Transmission electron microscopic (TEM) image reveals that the Ag NPs are dispersed homogeneously with the size from 2 to 7 nm. The strength parameters Ωt(t = 2, 4, 6), spontaneous emission probability (A), radiative lifetime (τ) and stimulated emission section (σem) of Er3+ ions were calculated by the Judd-Ofelt theory. When the glass contains 0.2 wt% AgCl, the 1.54 μm fluorescence intensity of Er3+ reaches a maximum value, which is 7.2 times higher than that of glass without Ag NPs. The Ag NPs embedded glasses show significantly fluorescence enhancement of Er3+ ions by local field enhancement from SPR.

  7. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Reichel, Christian; Feldmann, Frank; Müller, Ralph; Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul; Hermle, Martin; Glunz, Stefan W.

    2015-11-01

    Passivated contacts (poly-Si/SiOx/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF2), the ion implantation dose (5 × 1014 cm-2 to 1 × 1016 cm-2), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iVoc) of 725 and 720 mV, respectively. For p-type passivated contacts, BF2 implantations into intrinsic a-Si yield well passivated contacts and allow for iVoc of 690 mV, whereas implanted B gives poor passivation with iVoc of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved Voc of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF2 implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with Voc of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.

  8. Non-mass-analyzed ion implantation from a solid phosphorus source

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Bunker, S. N.

    1982-01-01

    A phosphorus ion beam, extracted from a Freeman ion source charged with elemental phosphorus, has been investigated for use in solar cell fabrication. Mass spectroscopy of the beam indicates the absence of both minority-carrier lifetime degrading impurities and hydrogen. The ion beam, without mass analysis, was used for ion implantation of solar cells, and performance for all cells was found to be equivalent to mass-analyzed controls.

  9. Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol.

    PubMed

    De Matteis, Valeria; Malvindi, Maria Ada; Galeone, Antonio; Brunetti, Virgilio; De Luca, Elisa; Kote, Sachin; Kshirsagar, Prakash; Sabella, Stefania; Bardi, Giuseppe; Pompa, Pier Paolo

    2015-04-01

    Toxicity of silver nanoparticles (AgNPs) is supported by many observations in literature, but no mechanism details have been proved yet. Here we confirm and quantify the toxic potential of fully characterized AgNPs in HeLa and A549 cells. Notably, through a specific fluorescent probe, we demonstrate the intracellular release of Ag(+) ions in living cells after nanoparticle internalization, showing that in-situ particle degradation is promoted by the acidic lysosomal environment. The activation of metallothioneins in response to AgNPs and the possibility to reverse the main toxic pathway by Ag(+) chelating agents demonstrate a cause/effect relationship between ions and cell death. We propose that endocytosed AgNPs are degraded in the lysosomes and the release of Ag(+) ions in the cytosol induces cell damages, while ions released in the cell culture medium play a negligible effect. These findings will be useful to develop safer-by-design nanoparticles and proper regulatory guidelines of AgNPs. From the clinical editor: The authors describe the toxic potential of silver nanoparticles (AgNP) in human cancer cell lines. Cell death following the application of AgNPs is dose-dependent, and it is mostly due to Ag+ ions. Further in vivo studies should be performed to gain a comprehensive picture of AgNP-toxicity in mammals.

  10. A feasibility study of ion implantation techniques for mass spectrometer calibration

    NASA Technical Reports Server (NTRS)

    Koslin, M. E.; Krycuk, G. A.; Schatz, J. G., Jr.; White, F. A.; Wood, G. M.

    1978-01-01

    An experimental study was undertaken to examine the feasibility of using ion-implanted filaments doped with either an alkali metal or noble gas for in situ recalibration of onboard mass spectrometers during extended space missions. Implants of rubidium and krypton in rhenium ribbon filaments were subsequently tested in a bakeable 60 deg sector mass spectrometer operating in the static mode. Surface ionization and electron impact ion sources were both used, each yielding satisfactory results. The metallic implant with subsequent ionization provided a means of mass scale calibration and determination of system operating parameters, whereas the noble gas thermally desorbed into the system was more suited for partial pressure and sensitivity determinations.

  11. Method of making an ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1992-01-01

    Planar-buried-heterostructure, graded-index, separate-confinement-heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding lever 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an iion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  12. Transition metal swift heavy ion implantation on 4H-SiC

    NASA Astrophysics Data System (ADS)

    Ali, A. Ashraf; Kumar, J.; Ramakrishnan, V.; Asokan, K.

    2016-03-01

    This work reports on the realization of Quantum Ring (QR) and Quantum Dot (QD) like structures on 4H-SiC through SHI implantation and on their Raman studies. 4H-SiC is SHI implanted with Transition Metal (TM) Ni ion at different fluences. It is observed that a vibrational mode emerges as the result of Ni ion implantation. The E2 (TO) and the A1 (LO) are suppressed as the fluence increases. In this paper Raman and AFM studies have been performed at room temperature and the queer anomalies are addressed so new devices can be fabricated.

  13. Production yield of rare-earth ions implanted into an optical crystal

    SciTech Connect

    Kornher, Thomas Xia, Kangwei; Kolesov, Roman; Reuter, Rolf; Villa, Bruno; Wrachtrup, Jörg; Kukharchyk, Nadezhda; Wieck, Andreas D.; Siyushev, Petr; Stöhr, Rainer; Schreck, Matthias; Becker, Hans-Werner

    2016-02-01

    Rare-earth (RE) ions doped into desired locations of optical crystals might enable a range of novel integrated photonic devices for quantum applications. With this aim, we have investigated the production yield of cerium and praseodymium by means of ion implantation. As a measure, the collected fluorescence intensity from both implanted samples and single centers was used. With a tailored annealing procedure for cerium, a yield up to 53% was estimated. Praseodymium yield amounts up to 91%. Such high implantation yield indicates a feasibility of creation of nanopatterned rare-earth doping and suggests strong potential of RE species for on-chip photonic devices.

  14. Setting up of a low temperature in-situ ion implantation and channeling facility at Kalpakkam

    SciTech Connect

    Sundaravel, B.; Saravanan, K.; Panigrahi, B. K.; Nair, K. G. M.

    2011-07-15

    A simple low temperature ion implantation and ion channeling facility has been set up. Low temperatures upto 70 K has been obtained on a goniometer sample holder by connecting to a continuous flow Helium cryostat with a copper braid. Charge integration is carried out with a transmission Faraday cup with 10 mm diameter aperture and four Faraday cups for performing ion implantation and an electron suppressed 1.5 mm aperture with a TEM grid of 60% beam transmission for ion beam analysis. Typical low temperature ion implantation and channeling experiments have been carried out. Stabilization at intermediate temperatures by controlling the heater at the sample holder and improvement of the achievable lowest temperature by having liquid nitrogen cooled heat shield are in progress.

  15. Measurement of lattice damage caused by ion-implantation doping of semiconductors.

    NASA Technical Reports Server (NTRS)

    Hunsperger, R. G.; Wolf, E. D.; Shifrin, G. A.; Marsh, O. J.; Jamba, D. M.

    1971-01-01

    Discussion of two new techniques used to measure the lattice damage produced in GaAs by the implantation of 60 keV cadmium ions. In the first method, optical reflection spectra of the ion-implanted samples were measured in the wavelength range from 2000 to 4600 A. The decrease in reflectivity resulting from ion-implantation was used to determine the relative amount of lattice damage as a function of ion dose. The second technique employed the scanning electron microscope. Patterns very similar in appearance to Kikuchi electron diffraction patterns are obtained when the secondary and/or backscattered electron intensity is displayed as a function of the angle of incidence of the electron beam on a single crystal surface. The results of measurements made by both methods are compared with each other and with data obtained by the method of measuring lattice damage by Rutherford scattering of 1 MeV helium ions.

  16. Sources and transport systems for low energy extreme of ion implantation

    SciTech Connect

    Hershcovitch, A.; Batalin, V.A.; Bugaev, A.S.; Gushenets, V.I.; Alexeyenko, O.; Gurkova, E.; Johnson, B.M.; Kolomiets, A.A.; Kropachev, G.N.; Kuibeda, R.P.; Kulevoy, T.V.; Masunov, E.S.; Oks, E.M.; Pershin, V.I.; Polozov, S.M.; Poole, H.J.; Seleznev, D.N.; Storozhenko, P.A.; Vizir, A.; Svarovski, A.Ya.; Yakushin, P.; Yushkov, G.Yu.

    2010-06-06

    For the past seven years a joint research and development effort focusing on the design of steady state, intense ion sources has been in progress with the ultimate goal being to meet the two, energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. However, since the last Fortier is low energy ion implantation, focus of the endeavor has shifted to low energy ion implantation. For boron cluster source development, we started with molecular ions of decaborane (B{sub 10}H{sub 14}), octadecaborane (B{sub 18}H{sub 22}), and presently our focus is on carborane (C{sub 2}B{sub 10}H{sub 12}) ions developing methods for mitigating graphite deposition. Simultaneously, we are developing a pure boron ion source (without a working gas) that can form the basis for a novel, more efficient, plasma immersion source. Our Calutron-Berna ion source was converted into a universal source capable of switching between generating molecular phosphorous P{sub 4}{sup +}, high charge state ions, as well as other types of ions. Additionally, we have developed transport systems capable of transporting a very large variety of ion species, and simulations of a novel gasless/plasmaless ion beam deceleration method were also performed.

  17. An Auger Sputter Profiling Study of Nitrogen and Oxygen Ion Implantations in Two Titanium Alloys

    SciTech Connect

    Barton, B. D., Pope, L. E., Wittberg, T. N.

    1989-07-31

    Samples of two titanium alloys, Ti-6A1-4V and Ti-15V-3Cr-3Sn-3A1, were ion implanted with a combination of nitrogen (N+) and oxygen (O+). For each alloy, implantation parameters were chosen to give implanted nitrogen concentrations of approximately 10 or 50 atomic percent, from a depth of 100 nanometers to a depth of 400 nanometers. In all but one case, dual energy (200 keV and 90 keV) implantations of nitrogen were used to give a relatively uniform nitrogen concentration to a depth of 300 nanometers. In each case, oxygen was implanted at 35 keV, following the nitrogen implantation, to give an oxygen-enriched region near the surface. The implanted samples were then examined by Auger electron spectroscopy (AES) combined with argon ion sputtering. In order to determine the stoichiometry of the nitrogen implanted regions, it was necessary to determine the N (KVV) contribution to the overlapping N (KVV) and Ti (LMM) Auger transitions. It was also necessary to correct for the ion-bombardment-induced compositional changes which have been described in an earlier study of titanium nitride thin films. The corrected AES depth profiles were in good agreement with theoretical predictions.

  18. Surface engineering of a Zr-based bulk metallic glass with low energy Ar- or Ca-ion implantation.

    PubMed

    Huang, Lu; Zhu, Chao; Muntele, Claudiu I; Zhang, Tao; Liaw, Peter K; He, Wei

    2015-02-01

    In the present study, low energy ion implantation was employed to engineer the surface of a Zr-based bulk metallic glass (BMG), aiming at improving the biocompatibility and imparting bioactivity to the surface. Ca- or Ar-ions were implanted at 10 or 50 keV at a fluence of 8 × 10(15)ions/cm(2) to (Zr0.55Al0.10Ni0.05Cu0.30)99Y1 (at.%) BMG. The effects of ion implantation on material properties and subsequent cellular responses were investigated. Both Ar- and Ca-ion implantations were suggested to induce atom displacements on the surfaces according to the Monte-Carlo simulation. The change of atomic environment of Zr in the surface regions as implied by the alteration in X-ray absorption measurements at Zr K-edge. X-ray photoelectron spectroscopy revealed that the ion implantation process has modified the surface chemical compositions and indicated the presence of Ca after Ca-ion implantation. The surface nanohardness has been enhanced by implantation of either ion species, with Ca-ion implantation showing more prominent effect. The BMG surfaces were altered to be more hydrophobic after ion implantation, which can be attributed to the reduced amount of hydroxyl groups on the implanted surfaces. Higher numbers of adherent cells were found on Ar- and Ca-ion implanted samples, while more pronounced cell adhesion was observed on Ca-ion implanted substrates. The low energy ion implantation resulted in concurrent modifications in atomic structure, nanohardness, surface chemistry, hydrophobicity, and cell behavior on the surface of the Zr-based BMG, which were proposed to be mutually correlated with each other.

  19. Corrosion resistance and antithrombogenic behavior of La and Nd ion implanted stainless steels

    SciTech Connect

    Jing, F. J.; Jin, F. Y.; Liu, Y. W.; Wan, G. J.; Liu, X. M.; Zhao, X. B.; Fu, R. K. Y.; Leng, Y. X.; Huang, N.; Chu, Paul K.

    2006-09-15

    Lanthanide ions such as lanthanum (La) and neodymium (Nd) were implanted into 316 stainless steel samples using metal vapor vacuum arc to improve the surface corrosion resistance and antithrombogenic properties. X-ray photoelectron spectroscopy shows that lanthanum and neodymium exist in the +3 oxidation state in the surface layer. The corrosion properties of the implanted and untreated control samples were investigated utilizing electrochemical tests and our results show that La and Nd implantations enhance the surface corrosion resistance. In vitro activated partial thromboplastin time (APTT) tests were used to evaluate the antithrombogenic properties. The APTT time of the implanted samples was observed to be prolonged compared to that of the unimplanted stainless steel control. La and Nd ion implantations can be used to improve the surface corrosion resistance and biomedical properties of 316 stainless steels.

  20. Critical problems of ion implantation in processing small geometry integrated devices

    NASA Astrophysics Data System (ADS)

    Tokuyama, Takashi

    1989-02-01

    A brief review is described on the critical problems of ion implantation in processing small geometry integrated devices. The commonly recognized critical paths of the technology, i.e. formation of shallow junctions, impurity doping of vertical side walls, shadowing and the scattering effect of the incident beam are discussed based on recent data. Discussion is also given of the annealing behavior and residual defects of small and isolated implanted regions, and the considerable difference from those of the continuous implanted layers is shown. These problems are more or less related to the fundamental principles of implantation that impurities are doped by the incidence of energetic ions. Based on these facts, attempts are made to estimate the final size of the future devices to which implantation can be applied.

  1. Ion implantation in ices and its relevance to the icy moons of the external planets

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Baratta, G. A.; Fulvio, D.; Garozzo, M.; Leto, G.; Palumbo, M. E.; Spinella, F.

    2007-08-01

    Solid, atmosphere-less objects in the Solar System are continuously irradiated by energetic ions mostly in the keV-MeV energy range. Being the penetration depth of the incoming ions usually much lower than the thickness of the target, they are stopped into the ice. They deposit energy in the target induce the breaking of molecular bonds. The recombination of fragments produce different molecules. Reactive ions (e.g., H, C, N, O, S) induce all of the effects of any other ion, but in addition have a chance, by implantation in the target, to form new species containing the projectile. An ongoing research program performed at our laboratory has the aim to investigate ion implantation of reactive ions in many relevant ice mixtures. The results obtained so far indicate that some molecular species observed on icy planetary surfaces could not be native of that object but formed by implantation of reactive ions. In particular we present data obtained after: • C, N and S implantation in water ice • H implantation in carbon and sulfur dioxide

  2. Decrease of Staphylococcal adhesion on surgical stainless steel after Si ion implantation

    NASA Astrophysics Data System (ADS)

    Braceras, Iñigo; Pacha-Olivenza, Miguel A.; Calzado-Martín, Alicia; Multigner, Marta; Vera, Carolina; Broncano, Luis Labajos-; Gallardo-Moreno, Amparo M.; González-Carrasco, José Luis; Vilaboa, Nuria; González-Martín, M. Luisa

    2014-08-01

    316LVM austenitic stainless steel is often the material of choice on temporal musculoskeletal implants and surgical tools as it combines good mechanical properties and acceptable corrosion resistance to the physiologic media, being additionally relatively inexpensive. This study has aimed at improving the resistance to bacterial colonization of this surgical stainless steel, without compromising its biocompatibility and resistance. To achieve this aim, the effect of Si ion implantation on 316LVM has been studied. First, the effect of the ion implantation parameters (50 keV; fluence: 2.5-5 × 1016 ions/cm2; angle of incidence: 45-90°) has been assessed in terms of depth profiling of chemical composition by XPS and nano-topography evaluation by AFM. The in vitro biocompatibility of the alloy has been evaluated with human mesenchymal stem cells. Finally, bacterial adhesion of Staphylococcus epidermidis and Staphylococcus aureus on these surfaces has been assessed. Reduction of bacterial adhesion on Si implanted 316LVM is dependent on the implantation conditions as well as the features of the bacterial strains, offering a promising implantable biomaterial in terms of biocompatibility, mechanical properties and resistance to bacterial colonization. The effects of surface composition and nano-topography on bacterial adhesion, directly related to ion implantation conditions, are also discussed.

  3. Crystallization kinetics and phase transformations in aluminum ion-implanted electrospun TiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Albetran, H.; Low, I. M.

    2016-12-01

    Electrospun TiO2 nanofibers were implanted with aluminum ions, and their crystallization kinetics, phase transformations, and activation energies were investigated from 25 to 900 °C by in situ high-temperature synchrotron radiation diffraction. The amorphous non-implanted and Al ion-implanted TiO2 nanofibers transformed to crystalline anatase at 600 °C and to rutile at 700 °C. The TiO2 phase transformation of the Al ion-implanted material was accelerated relative to non-implanted sample. Compared with non-implanted nanofibers, the Al-implanted materials yielded a decreased activation energies from 69(17) to 29(2) kJ/mol for amorphous-to-anatase transformation and from 112(15) to 129(5) kJ/mol for anatase-to-rutile transformation. A substitution of smaller Al ions for Ti in the TiO2 crystal structure results in accelerated titania phase transformation and a concomitant reduction in the activation energies.

  4. In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C₃N₄ porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis.

    PubMed

    Zhang, Shouwei; Li, Jiaxing; Wang, Xiangke; Huang, Yongshun; Zeng, Meiyi; Xu, Jinzhang

    2014-12-24

    A novel efficient Ag@AgCl/g-C3N4 plasmonic photocatalyst was synthesized by a rational in situ ion exchange approach between exfoliated g-C3N4 nanosheets with porous 2D morphology and AgNO3. The as-prepared Ag@AgCl-9/g-C3N4 plasmonic photocatalyst exhibited excellent photocatalytic performance under visible light irradiation for rhodamine B degradation with a rate constant of 0.1954 min(-1), which is ∼41.6 and ∼16.8 times higher than those of the g-C3N4 (∼0.0047 min(-1)) and Ag/AgCl (∼0.0116 min(-1)), respectively. The degradation of methylene blue, methyl orange, and colorless phenol further confirmed the broad spectrum photocatalytic degradation abilities of Ag@AgCl-9/g-C3N4. These results suggested that an integration of the synergetic effect of suitable size plasmonic Ag@AgCl and strong coupling effect between the Ag@AgCl nanoparticles and the exfoliated porous g-C3N4 nanosheets was superior for visible-light-responsive and fast separation of photogenerated electron-hole pairs, thus significantly improving the photocatalytic efficiency. This work may provide a novel concept for the rational design of stable and high performance g-C3N4-based plasmonic photocatalysts for unique photochemical reaction.

  5. Ion implantation for high performance III-V JFETS and HFETS

    SciTech Connect

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-06-01

    Ion implantation has been an enabling technology for realizing many high performance electronic devices in III-V semiconductor materials. We report on advances in ion implantation processing for GaAs JFETs (joint field effect transistors), AlGaAs/GaAs HFETs (heterostructure field effect transistors), and InGaP or InAlP-barrier HFETs. The GaAs JFET has required the development of shallow p-type implants using Zn or Cd with junction depths down to 35 nm after the activation anneal. Implant activation and ionization issues for AlGaAs are reported along with those for InGaP and InAlP. A comprehensive treatment of Si-implant doping of AlGaAs is given based on donor ionization energies and conduction band density-of-states dependence on Al-composition. Si and Si+P implants in InGaP are shown to achieve higher electron concentrations than for similar implants in AlGaAs due to absence of the deep donor level. An optimized P co- implantation scheme in InGaP is shown to increase the implanted donor saturation level by 65%.

  6. Microstructural and mechanical characterization of nitrogen ion implanted layer on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Öztürk, O.

    2009-05-01

    Nitrogen ion implantation can be used to improve surface mechanical properties (hardness, wear, friction) of stainless steels by modifying the near-surface layers of these materials. In this study, a medical grade FeCrNi alloy (316L stainless steel plate) was implanted with 85 keV nitrogen ions to a high fluence of 1 × 1018N2+ /cm2 at a substrate temperature <200 °C in an industrial implantation facility. The N implanted layer microstructures, thicknesses and strengths were studied by a combination of X-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS), atomic force microscopy (AFM) and nanohardness measurements. AFM was also used for the surface roughness analysis of the implanted as well as polished materials. The CEMS analysis indicate that the N implanted layer is ∼200 nm thick and is composed of ε-(Fe,Cr,Ni)2+xN-like nitride phase with mainly paramagnetic characteristics. The nanohardness measurements clearly indicate an enhanced hardness behaviour for the N implanted layer. It is found that the implanted layer hardness is increased by a factor of 1.5 in comparison to that of the substrate material. The increased hardness resulting from nitrogen implantation is attributed to the formation of ε nitride phase.

  7. Temperature dependent surface modification of T91 steel under 3.25 MeV Fe-ion implantation

    NASA Astrophysics Data System (ADS)

    Zhu, Huiping; Wang, Zhiguang; Cui, Minghuan; Li, Bingsheng; Gao, Xing; Sun, Jianrong; Yao, Cunfeng; Wei, Kongfang; Shen, Tielong; Pang, Lilong; Zhu, Yabin; Li, Yuanfei; Wang, Ji; Xie, Erqing

    2015-01-01

    Ion implantation is an established technique for modifying the surface properties of a wide range of materials. In this research, temperature dependent surface modification induced by Fe-ion implantation in T91 steel was investigated. The T91 samples were implanted with 3.25 MeV Fe-ions to fluence of 1.7 × 1016 ions/cm2 at room temperature, 300 and 450 °C, respectively. After implantation, the T91 samples were characterized by means of positron annihilation Doppler broadening spectroscopy (PADBS) and nano-indention technology (NIT). It was found that the concentration of open-volume defects in T91 samples decreased with increasing implantation temperature. From NIT analysis, it was found that all the samples were hardened after implantation and the hardness of the implanted T91 samples increased with increasing implantation temperature.

  8. Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten

    SciTech Connect

    Armstrong, D. E. J.; Edmondson, P. D.; Roberts, S. G.

    2013-06-24

    To simulate neutron and helium damage in a fusion reactor first wall sequential self-ion implantation up to 13 dpa followed by helium-ion implantation up to 3000 appm was performed to produce damaged layers of {approx}2 {mu}m depth in pure tungsten. The hardness of these layers was measured using nanoindentation and was studied using transmission electron microscopy. Substantial hardness increases were seen in helium implanted regions, with smaller hardness increases in regions which had already been self-ion implanted, thus, containing pre-existing dislocation loops. This suggests that, for the same helium content, helium trapped in distributed vacancies gives stronger hardening than helium trapped in vacancies condensed into dislocation loops.

  9. Plasma source ion implantation to increase the adhesion of subsequently deposited coatings

    SciTech Connect

    Wood, B.P.; Walter, K.C.; Taylor, T.N.

    1997-10-01

    In Plasma Source Ion Implantation (PSII) an object is placed in a plasma and pulse biased to a high negative potential, so as to implant the plasma ions into the surface of the object. Although ion implantation, by itself, can yield desirable surface modification, it is even more useful as a method of creating a functionally graded interface between the substrate material and a subsequently deposited coating, which may be produced by altering operating conditions on the same plasma source. Although this interfacial region is very thin - as little as 20 nm - it can greatly increase the adhesion of the deposited coatings. We present here a description of this process, and compare a simulation of the graded interface with an XPS depth profile of the interfacial region for erbium metal implanted into steel.

  10. Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten

    NASA Astrophysics Data System (ADS)

    Armstrong, D. E. J.; Edmondson, P. D.; Roberts, S. G.

    2013-06-01

    To simulate neutron and helium damage in a fusion reactor first wall sequential self-ion implantation up to 13 dpa followed by helium-ion implantation up to 3000 appm was performed to produce damaged layers of ˜2 μm depth in pure tungsten. The hardness of these layers was measured using nanoindentation and was studied using transmission electron microscopy. Substantial hardness increases were seen in helium implanted regions, with smaller hardness increases in regions which had already been self-ion implanted, thus, containing pre-existing dislocation loops. This suggests that, for the same helium content, helium trapped in distributed vacancies gives stronger hardening than helium trapped in vacancies condensed into dislocation loops.

  11. Synthesis of (SiC){sub 3}N{sub 4} thin films by ion implantation

    SciTech Connect

    Uslu, C.; Lee, D.H.; Berta, Y.; Park, B.; Thadhani, N.N.; Poker, D.B.

    1993-12-31

    We have investigated the synthesis of carbon-silicon-nitride compounds by ion implantation. In these experiments, 100 keV nitrogen ions were implanted into polycrystalline {beta}-SiC (cubic phase) at various substrate temperatures and ion doses. These thin films were characterized by x-ray diffraction with a position-sensitive detector, transmission electron microscopy with chemical analysis, and Rutherford backscattering spectroscopy. The as-implanted samples show a buried amorphous layer at a depth of 170 nm. Peak concentration of nitrogen saturates at approximately 45 at. % with doses above {approximately} 9.0 {times} 10{sup 17} N/cm{sup 2} at 860{degree}C. These results suggest formation of a new phase by nitrogen implantation into {beta}-SiC.

  12. Fabrication and Characterization of Thin Film Ion Implanted Composite Materials for Integrated Nonlinear Optical Devices

    NASA Technical Reports Server (NTRS)

    Sarkisov, S.; Curley, M.; Williams, E. K.; Wilkosz, A.; Ila, D.; Poker, D. B.; Hensley, D. K.; Smith, C.; Banks, C.; Penn, B.; Clark, R.

    1998-01-01

    Ion implantation has been shown to produce a high density of metal colloids within the layer regions of glasses and crystalline materials. The high-precipitate volume fraction and small size of metal nanoclusters formed leads to values for the third-order susceptibility much greater than those for metal doped solids. This has stimulated interest in use of ion implantation to make nonlinear optical materials. On the other side, LiNbO3 has proved to be a good material for optical waveguides produced by MeV ion implantation. Light confinement in these waveguides is produced by refractive index step difference between the implanted region and the bulk material. Implantation of LiNbO3 with MeV metal ions can therefore result into nonlinear optical waveguide structures with great potential in a variety of device applications. We describe linear and nonlinear optical properties of a waveguide structure in LiNbO3-based composite material produced by silver ion implantation in connection with mechanisms of its formation.

  13. Selective nucleation induced by defect nanostructures: A way to control cobalt disilicide precipitation during ion implantation

    SciTech Connect

    Fortuna, F.; Nguyen, M.-A.; Ruault, M.-O.; Kirk, M. A.; Borodin, V. A.; Ganchenkova, M. G.

    2012-12-15

    In this paper, we show a way to control cobalt disilicide precipitation during Co ion implantation at high temperatures (650 Degree-Sign C) by affecting radiation defects involved in precipitate nucleation and growth. We demonstrate that the relative shares of different precipitate types nucleated by implantation are strongly affected by defect microstructures deliberately created in investigated samples prior to cobalt implantation. Especially interesting is the effect of a dense ensemble of extremely small (1-3 nm) cavities, which promotes the formation of a relatively uniform layer of coherent cobalt disilicide precipitates with a narrow size distribution. In order to better understand the mechanism of the microstructural influence on the precipitate nucleation modes during Co implantation, we investigate the disilicide precipitation using different implantation setups and compare the results with those for cavity-free Si specimens implanted in similar conditions.

  14. Electrical conductivity of MgO crystals implanted with lithium ions

    NASA Astrophysics Data System (ADS)

    Tardío, M.; Ramírez, R.; González, R.; Chen, Y.; Alves, E.

    2002-05-01

    MgO single crystals were implanted with a fluence of 1×10 17 Li +/cm 2 with 175 keV. Using ac and dc techniques, the electrical conductivity of these crystals was investigated in the temperature range 296-440 K. The electrical conductivity of the implanted region was 14 orders of magnitude higher than the unimplanted area. Measurements at different temperatures suggest a thermally activated process with an activation energy of about 0.33 eV. In the implanted area, electrical contacts are found to be ohmic whereas contacts are blocking in unimplanted crystals. Removal of thin layers of the implanted region by immersing the crystal in hot phosphoric acid suggests that the enhancement in conductivity in the implanted region is associated with the intrinsic defects created by the implantation, rather than with the Li ions.

  15. Surface modification of polymeric substrates by plasma-based ion implantation

    NASA Astrophysics Data System (ADS)

    Okuji, S.; Sekiya, M.; Nakabayashi, M.; Endo, H.; Sakudo, N.; Nagai, K.

    2006-01-01

    Plasma-based ion implantation (PBII) as a tool for polymer modification is studied. Polymeric films have good performances for flexible use, such as food packaging or electronic devices. Compared with inorganic rigid materials, polymers generally have large permeability for gases and moisture, which causes packaged contents and devices to degrade. In order to add a barrier function, surface of polymeric films are modified by PBII. One of the advantageous features of this method over deposition is that the modified surface does not have peeling problem. Besides, micro-cracks due to mechanical stress in the modified layer can be decreased. From the standpoint of mass production, conventional ion implantation that needs low-pressure environment of less than 10-3 Pa is not suitable for continuous large-area processing, while PBII works at rather higher pressure of several Pa. In terms of issues mentioned above, PBII is one of the most expected techniques for modification on flexible substrates. However, the mechanism how the barrier function appears by ion implantation is not well explained so far. In this study, various kinds of polymeric films, including polyethyleneterephthalate (PET), are modified by PBII and their barrier characteristics that depend on the ion dose are evaluated. In order to investigate correlations of the barrier function with implanted ions, modified surface is analyzed with X-ray photoelectron spectroscopy (XPS). It is assumed that the diffusion and sorption coefficients are changed by ion implantation, resulting in higher barrier function.

  16. Impact of Ion Implantation on Licorice (Glycyrrhiza uralensis Fisch) Growth and Antioxidant Activity Under Drought Stress

    NASA Astrophysics Data System (ADS)

    Liu, Jingnan; Tong, Liping; Shen, Tongwei; Li, Jie; Wu, Lijun; Yu, Zengliang

    2007-06-01

    Low energy ion beams are known to have stimulation effects on plant generation and to improve plants' intrinsic quality. In the present study, the growth and physiological index of licorice implanted with 0, 8, 10, 12 and 14× (2.6×1015) ions/cm2 were investigated under well-watered and drought-stress conditions. The results showed that a proper dose of ion implantation was particularly efficient in stimulating the licorice growth and improving the plant biomass significantly in both the well-watered and drought-stress conditions. The physiological results of licorice measured by leaf water potential, lipid oxidation, soluble protein and antioxidant system showed a significant correlation between ion implantation and water regime except for leaf water potential. Therefore, the study indicated that ion implantation can enhance licorice's drought tolerance by increasing the activity of superoxide dismutase (SOD), catalase (CAT) and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging ability to lower oxidative damage to lipids in plants. Ion beam implantation, therefore, provides an alternative method to enhance licorice drought tolerance.

  17. Influence of ion source configuration and its operation parameters on the target sputtering and implantation process.

    PubMed

    Shalnov, K V; Kukhta, V R; Uemura, K; Ito, Y

    2012-06-01

    In the work, investigation of the features and operation regimes of sputter enhanced ion-plasma source are presented. The source is based on the target sputtering with the dense plasma formed in the crossed electric and magnetic fields. It allows operation with noble or reactive gases at low pressure discharge regimes, and, the resulting ion beam is the mixture of ions from the working gas and sputtering target. Any conductive material, such as metals, alloys, or compounds, can be used as the sputtering target. Effectiveness of target sputtering process with the plasma was investigated dependently on the gun geometry, plasma parameters, and the target bias voltage. With the applied accelerating voltage from 0 to 20 kV, the source can be operated in regimes of thin film deposition, ion-beam mixing, and ion implantation. Multi-component ion beam implantation was applied to α-Fe, which leads to the surface hardness increasing from 2 GPa in the initial condition up to 3.5 GPa in case of combined N(2)-C implantation. Projected range of the implanted elements is up to 20 nm with the implantation energy 20 keV that was obtained with XPS depth profiling.

  18. Use of low-energy hydrogen ion implants in high-efficiency crystalline-silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.; Sigh, R.; Mu, H. C.

    1986-01-01

    The use of low-energy hydrogen implants in the fabrication of high-efficiency crystalline silicon solar cells was investigated. Low-energy hydrogen implants result in hydrogen-caused effects in all three regions of a solar cell: emitter, space charge region, and base. In web, Czochralski (Cz), and floating zone (Fz) material, low-energy hydrogen implants reduced surface recombination velocity. In all three, the implants passivated the space charge region recombination centers. It was established that hydrogen implants can alter the diffusion properties of ion-implanted boron in silicon, but not ion-implated arsenic.

  19. Structural and Thermal Characterization of Ti+O Ion Implanted UltraHigh Molecular Weight Polyethylene (UHMWPE)

    SciTech Connect

    Oztarhan, A.; Urkac, E. Sokullu; Kaya, N.; Tihminlioglu, F.; Ila, D.; Chhay, B.; Muntele, C.; Budak, S.; Oks, E.; Nikolaev, A.

    2009-03-10

    In this work, Metal-Gas Hybrid Ion Implantation technique was used as a tool for the surface modification of Ultra High Molecular Weight Polyethylene (UHMWPE). Samples were Ti+O ion implanted by using Metal-Vapour Vacuum Arc (MEVVA) ion implanter to a fluence of 5x10{sup 16} ion/cm{sup 2} for each species and extraction voltage of 30 kV. Untreated and surface treated samples were investigated by Rutherford Back Scattering (RBS) Spectrometry, Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy, Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Results indicate that Ti+O ion implantation can be applied on UHMWPE surfaces successfully. ATR-FTIR spectra indicate that the C-H concentration on the surface decreased after Ti+O implantation. Thermal characterization with TGA and DSC shows that polymeric decomposition temperature is shifted after ion implantation.

  20. Investigation of Donor and Acceptor Ion Implantation in AlN

    SciTech Connect

    Osinsky, Andrei

    2015-09-16

    AlGaN alloys with high Al composition and AlN based electronic devices are attractive for high voltage, high temperature applications, including microwave power sources, power switches and communication systems. AlN is of particular interest because of its wide bandgap of ~6.1eV which is ideal for power electronic device applications in extreme environments which requires high dose ion implantation. One of the major challenges that need to be addressed to achieve full utilization of AlN for opto and microelectronic applications is the development of a doping strategy for both donors and acceptors. Ion implantation is a particularly attractive approach since it allows for selected-area doping of semiconductors due to its high spatial and dose control and its high throughput capability. Active layers in the semiconductor are created by implanting a dopant species followed by very high temperature annealing to reduce defects and thereby activate the dopants. Recovery of implant damage in AlN requires excessively high temperature. In this SBIR program we began the investigation by simulation of ion beam implantation profiles for Mg, Ge and Si in AlN over wide dose and energy ranges. Si and Ge are implanted to achieve the n-type doping, Mg is investigated as a p-type doping. The simulation of implantation profiles were performed in collaboration between NRL and Agnitron using a commercial software known as Stopping and Range of Ions in Matter (SRIM). The simulation results were then used as the basis for ion implantation of AlN samples. The implanted samples were annealed by an innovative technique under different conditions and evaluated along the way. Raman spectroscopy and XRD were used to determine the crystal quality of the implanted samples, demonstrating the effectiveness of annealing in removing implant induced damage. Additionally, SIMS was used to verify that a nearly uniform doping profile was achieved near the sample surface. The electrical characteristics

  1. Influence of Si ion implantation on structure and morphology of g-C3N4

    NASA Astrophysics Data System (ADS)

    Varalakshmi, B.; Sreenivasulu, K. V.; Asokan, K.; Srikanth, V. V. S. S.

    2016-07-01

    Effect of Si ion implantation on structural and morphological features of graphite-like carbon nitride (g-C3N4) was investigated. g-C3N4 was prepared by using a simple atmospheric thermal decomposition process. The g-C3N4 pellets were irradiated with a Si ion beam of energy 200 keV with different fluencies. Structural, morphological and elemental, and phase analysis of the implanted samples in comparison with the pristine samples was carried out by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) with energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques, respectively. The observations revealed that Si ion implantation results in a negligible change in the crystallite size and alteration of the network-like to the sheet-like morphology of g-C3N4 and Si ions in the g-C3N4 network.

  2. Broadband luminescence of Cu nanoparticles fabricated in SiO2 by ion implantation.

    PubMed

    Nguyen, Truong Khang; Le, Khai Q; Canimoglu, Adil; Can, Nurdogan

    2016-09-01

    In this study, we investigate optical properties of metal nanoparticle crystals fabricated by implanting copper (Cu) ions into single silica (SiO2) crystals with 400keV at various ion doses. The Cu implanted SiO2 (SiO2:Cu) crystal produces a broadband luminescence emission, ranging from blue to yellow, and having a blue luminescence peak at 546nm. Such anomalous luminescence emission bands suggest that the ion implantation may give rise to aggregation of Cu nanoparticles in the host matrix. The boundary element method-based modelling of a given Cu nanoparticle aggregation was employed to justify the broadband luminescence emission. Formation of Cu nanoparticles in SiO2 is predicted through their optical absorption data. The experimental results are compared with results of Mie calculations and we observe that the higher ion dose produces the larger particle size.

  3. Long-range effect in nitrogen ion-implanted AISI 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Budzynski, P.

    2015-01-01

    The effect of nitrogen ion implantation on AISI 316L stainless steel was investigated. The microstructure and composition of an N implanted layer were studied by RBS, GIXRD, SEM, and EDX measurements. Friction and wear tests were also performed. The discrepancy between the measured and calculated stopped ion maximum range does not exceed 0.03 μm. After nitrogen implantation with a fluence of 5 × 1017 ion/cm2, additional phases of expanded austenite were detected. At a 5-fold larger depth than the maximum ion range, improvement in the coefficient of friction and wear was detected. We have shown, for the first time, the long-range effect in tribological investigations. The long-range effect is caused by movement of not only defects along the depth of the sample, as assumed so far, but also nitrogen atoms.

  4. Radiation Hardening of Ni-Ti Alloy Under Implantation of Inert Gases Heavy Ions

    NASA Astrophysics Data System (ADS)

    Poltavtseva, V.; Larionov, A.; Satpaev, D.; Gyngazova, M.

    2016-02-01

    The consistent patterns of changes in nano- and micro-hardness of Ni-Ti alloy with the shape memory effect after implantation of 40Ar8+ and 84Kr15+ ions depending on phase composition and implantation parameters have been experimentally studied. It has been shown that softening by 4 and 14% near the surface of the two-phase Ni-Ti alloy after implantation of 40Ar8+ and 84Kr15+ ions is connected with the differences in the nanostructure. Hardening of the near-surface layer of this alloy maximum by 118% at h = ∼3 pm and single-phase alloy in the entire region of the 40Ar8+ and 84Kr15+ ions range and in the out-range (h > Rp) area have been detected. The role of the current intensity of the ions beam in the change of nanohardness for the two-phase Ni-Ti alloy has been established.

  5. Patterned ion beam implantation of Co ions into a SiO2 thin film via ordered nanoporous alumina masks.

    PubMed

    Guan, Wei; Ghatak, Jay; Peng, Yong; Peng, Nianhua; Jeynes, Chris; Inkson, Beverley; Möbus, Günter

    2012-02-03

    Spatially patterned ion beam implantation of 190 keV Co(+) ions into a SiO(2) thin film on a Si substrate has been achieved by using nanoporous anodic aluminum oxide with a pore diameter of 125 nm as a mask. The successful synthesis of periodic embedded Co regions using pattern transfer is demonstrated for the first time using cross-sectional (scanning) transmission electron microscopy (TEM) in combination with analytical TEM. Implanted Co regions are found at the correct relative lateral periodicity given by the mask and at a depth of about 120 nm.

  6. Biofunctionalization of surfaces by energetic ion implantation: Review of progress on applications in implantable biomedical devices and antibody microarrays

    NASA Astrophysics Data System (ADS)

    Bilek, Marcela M. M.

    2014-08-01

    Despite major research efforts in the field of biomaterials, rejection, severe immune responses, scar tissue and poor integration continue to seriously limit the performance of today's implantable biomedical devices. Implantable biomaterials that interact with their host via an interfacial layer of active biomolecules to direct a desired cellular response to the implant would represent a major and much sought after improvement. Another, perhaps equally revolutionary, development that is on the biomedical horizon is the introduction of cost-effective microarrays for fast, highly multiplexed screening for biomarkers on cell membranes and in a variety of analyte solutions. Both of these advances will rely on effective methods of functionalizing surfaces with bioactive molecules. After a brief introduction to other methods currently available, this review will describe recently developed approaches that use energetic ions extracted from plasma to facilitate simple, one-step covalent surface immobilization of bioactive molecules. A kinetic theory model of the immobilization process by reactions with long-lived, mobile, surface-embedded radicals will be presented. The roles of surface chemistry and microstructure of the ion treated layer will be discussed. Early progress on applications of this technology to create diagnostic microarrays and to engineer bioactive surfaces for implantable biomedical devices will be reviewed.

  7. Silicon defects characterization for low temperature ion implantation and RTA process

    NASA Astrophysics Data System (ADS)

    Martirani Paolillo, Diego; Margutti, Giovanni; De Biase, Marco; Barozzi, Mario; Giubertoni, Damiano; Spaggiari, Claudio

    2015-12-01

    In the last years a lot of effort has been directed in order to reduce silicon defects eventually formed during the ion implantation/anneal sequence used in the fabrication of CMOS devices. In this work we explored the effect of ion implant dose rate and temperature on the formation of silicon defects for high fluence 49BF2 implantations. The considered processes (implantation and annealing) conditions are those typically used to form the source/drain regions of p-channel transistors in the submicron technology node and will be detailed in the document. Characterization of implant damage and extended silicon defects left after anneal has been performed by TEM. Dopant distribution and dopant activation has been investigated by SIMS and SRP analysis. We have verified that implant dose rate and temperature modulate the thickness of the amorphous silicon observed after implant, as well as the concentrations of silicon defects left after anneal. Effect of high dose rate low temperature implantation on product device was also evaluated, showing a reduction of leakage current on p-channel transistors. Experimental set up, results and possible explanation will be reported and discussed in the paper.

  8. Ion implantation and dynamic recovery of tin-doped indium oxide films

    SciTech Connect

    Shigesato, Yuzo; Paine, D.C.; Haynes, T.E.

    1993-09-01

    The effect of O{sup +} on implantation on the electronic (carrier density, mobility), resistivity and microstructural properties of thin film Sn-doped In{sub 2}O{sub 3} (ITO) was studied. Both polycrystalline (c-) and amorphous (a-) ITO thin films, 200 nm thick, were implanted at substrate temperatures ranging from {minus}196 to 300{degrees} C with 80 keV O{sup +} at doses ranging from 0 to 4.0{times}10{sup 15} cm{sup {minus}2}. X-ray diffraction studies show that polycrystalline ITO remains crystalline even after implantation with 80 keV O{sup +} at {minus}196{degrees}C to a dose of 4.0{times}10{sup 15} cm{sup {minus}2} which suggests that dynamic recovery processes are active in ITO at this low temperature. Although the x-ray diffraction pattern of the polycrystalline ITO remains unchanged with implant dose, the electrical properties were seen to degrade when implanted to a dose of 1.0{times}10{sup 15}cm{sup {minus}2} below 200{degrees}C. In contrast, amorphous ITO films remains amorphous upon ion implantation and shows almost no degradation in resistivity when implanted below 16{degrees}C. The recrystallization temperature of amorphous ITO is about 150{degrees}C in the absence of ion implantation.

  9. Ag(nic)2 (nic = nicotinate): a spin-canted quasi-2D antiferromagnet composed of square-planar S = 1/2 Ag(II) ions.

    PubMed

    Manson, Jamie L; Woods, Toby J; Lapidus, Saul H; Stephens, Peter W; Southerland, Heather I; Zapf, Vivien S; Singleton, John; Goddard, Paul A; Lancaster, Tom; Steele, Andrew J; Blundell, Stephen J

    2012-02-20

    Square-planar S = 1/2 Ag(II) ions in polymeric Ag(nic)(2) are linked by bridging nic monoanions to yield 2D corrugated sheets. Long-range magnetic order occurs below T(N) = 11.8(2) K due to interlayer couplings that are estimated to be about 30 times weaker than the intralayer exchange interaction.

  10. First order Raman scattering analysis of transition metal ions implanted GaN

    NASA Astrophysics Data System (ADS)

    Majid, Abdul; Rana, Usman Ali; Shakoor, Abdul; Ahmad, Naeem; Hassan, Najam al; Khan, Salah Ud-Din

    2016-03-01

    Transition Metal (TM) ions V, Cr, Mn and Co were implanted into GaN/sapphire films at fluences 5×1014, 5×1015 and 5×1016 cm-2. First order Raman Scattering (RS) measurements were carried out to study the effects of ion implantation on the microstructure of the materials, which revealed the appearance of disorder and new phonon modes in the lattice. The variations in characteristic modes 1GaN i.e. E2(high) and A1(LO), observed for different implanted samples is discussed in detail. The intensity of nitrogen vacancy related vibrational modes appearing at 363 and 665 cm-1 was observed for samples having different fluences. A gallium vacancy related mode observed at 277/281 cm-1 for TM ions implanted at 5×1014 cm-2 disappeared for all samples implanted with rest of fluences. The fluence dependent production of implantation induced disorder and substitution of TM ions on cationic sites is discussed, which is expected to provide necessary information for the potential use of these materials as diluted magnetic semiconductors in future spintronic devices.

  11. Persistent photoconductivity in oxygen-ion implanted KNbO3 bulk single crystal

    NASA Astrophysics Data System (ADS)

    Tsuruoka, R.; Shinkawa, A.; Nishimura, T.; Tanuma, C.; Kuriyama, K.; Kushida, K.

    2016-12-01

    Persistent Photoconductivity (PPC) in oxygen-ion implanted KNbO3 ([001] oriented bulk single crystals; perovskite structure; ferroelectric with a band gap of 3.16 eV) is studied in air at room temperature to prevent the degradation of its crystallinity caused by the phase transition. The residual hydrogens in un-implanted samples are estimated to be 5×1014 cm-2 from elastic recoil detection analysis (ERDA). A multiple-energy implantation of oxygen ions into KNbO3 is performed using energies of 200, 400, and 600 keV (each ion fluence:1.0×1014 cm-2). The sheet resistance varies from >108 Ω/□ for an un-implanted sample to 1.9×107 Ω/□ for as-implanted one, suggesting the formation of donors due to hydrogen interstitials and oxygen vacancies introduced by the ion implantation. The PPC is clearly observed with ultraviolet and blue LEDs illumination rather than green, red, and infrared, suggesting the release of electrons from the metastable conductive state below the conduction band relating to the charge states of the oxygen vacancy.

  12. Germanium ion implantation to Improve Crystallinity during Solid Phase Epitaxy and the effect of AMU Contamination

    SciTech Connect

    Lee, K. S.; Yoo, D. H.; Son, G. H.; Lee, C. H.; Noh, J. H.; Han, J. J.; Yu, Y. S.; Hyung, Y. W.; Kim, Y. K.; Lee, S. C.; Lee, H. D.; Moon, J. T.; Yang, J. K.; Song, D. G.; Lim, T. J.

    2006-11-13

    Germanium ion implantation was investigated for crystallinity enhancement during solid phase epitaxial regrowth (SPE) using high current implantation equipment. Electron back-scatter diffraction(EBSD) measurement showed numerical increase of 19 percent of <100> signal, which might be due to pre-amorphization effect on silicon layer deposited by LPCVD process with germanium ion implantation. On the other hand, electrical property such as off-leakage current of NMOS transistor degraded in specific regions of wafers, which implied non-uniform distribution of donor-type impurities into channel area. It was confirmed that arsenic atoms were incorporated into silicon layer during germanium ion implantation. Since the equipment for germanium pre-amorphization implantation(PAI) was using several source gases such as BF3 and AsH3, atomic mass unit(AMU) contamination during PAI of germanium with AMU 74 caused the incorporation of arsenic with AMU 75 which resided in arc-chamber and other parts of the equipment. It was effective to use germanium isotope of AMU 72 to suppress AMU contamination, however it led serious reduction of productivity because of decrease in beam current by 30 percent as known to be difference in isotope abundance. It was effective to use enriched germanium source gas with AMU 72 in order to improve productivity. Spatial distribution of arsenic impurities in wafers was closely related to hardware configuration of ion implantation equipment.

  13. Critical issues in the formation of quantum computer test structures by ion implantation

    SciTech Connect

    Schenkel, T.; Lo, C. C.; Weis, C. D.; Schuh, A.; Persaud, A.; Bokor, J.

    2009-04-06

    The formation of quantum computer test structures in silicon by ion implantation enables the characterization of spin readout mechanisms with ensembles of dopant atoms and the development of single atom devices. We briefly review recent results in the characterization of spin dependent transport and single ion doping and then discuss the diffusion and segregation behaviour of phosphorus, antimony and bismuth ions from low fluence, low energy implantations as characterized through depth profiling by secondary ion mass spectrometry (SIMS). Both phosphorus and bismuth are found to segregate to the SiO2/Si interface during activation anneals, while antimony diffusion is found to be minimal. An effect of the ion charge state on the range of antimony ions, 121Sb25+, in SiO2/Si is also discussed.

  14. Application of ion implantation to wear protection of materials

    NASA Astrophysics Data System (ADS)

    Hubler, O. K.; Smidt, F. A.

    1985-03-01

    Key results from the literature for the wear behavior of N- and Ti-implanted steels are reviewed. A qualitative model which rationalizes the mechanisms producing improvements in the sliding wear resistance of steels is presented. In the limited regime of low sliding velocities the model provides guidelines for choosing the experimental conditions of applied load, composition, hardness and heat treatment of the steel under which implantation will improve wear resistance.

  15. Effect of Grazing Angle Cross-Ion Irradiation on Ag Thin Films

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Jangid, Teena; Panchal, Vandana; Kumar, Praveen; Pathak, Abhishek

    2016-10-01

    Apart from the spherical shape, control over other shapes is a technical challenge in synthesis approaches of nanostructures. Here, we studied the effect of grazing angle cross-irradiation Ag thin films for the nanostructures evolution from a top-down approach. Ag thin films of different thicknesses were deposited on Si (100) and glass substrates by electron beam evaporation system and subsequently irradiated at grazing angle ions by 80 keV Ar+ in two steps (to induce effectively a cross-ion irradiation). Pristine films exhibited dense and uniform distribution of Ag nanoparticles with their characteristic surface plasmon resonance-induced absorption peak around 420 nm. When the film surfaces were treated with cross-grazing angle irradiation of Ar ions with varying effective fluences from 0.5 × 1017 ions/cm2 to 2.0 × 1017 ions/cm2, it was found that fluence values governed the competition of sputtering and sputter re-deposition of Ag. As a result, lower irradiation fluence favoured the formation of cone-like nanostructures, whereas high fluence values demonstrated dominant sputtering. Fluence-dependent modification of surface features was studied through the Fourier transform infrared spectroscopy and the Rutherford backscattering spectroscopy. Theoretical justifications for the underlying mechanisms are presented to justify the experimental results.

  16. Method and means of directing an ion beam onto an insulating surface for ion implantation or sputtering

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Siskind, Barry

    1981-01-01

    A beam of ions is directed under control onto an insulating surface by supplying simultaneously a stream of electrons directed at the same surface in a quantity sufficient to neutralize the overall electric charge of the ion beam and result in a net zero current flow to the insulating surface. The ion beam is adapted particularly both to the implantation of ions in a uniform areal disposition over the insulating surface and to the sputtering of atoms or molecules of the insulator onto a substrate.

  17. Effect of ion-implantation enhanced intermixing on luminescence of InAs/InP quantum dots

    NASA Astrophysics Data System (ADS)

    Li, Q.; Barik, S.; Tan, H. H.; Jagadish, C.

    2008-10-01

    Temperature dependent photoluminescence spectra of ion implanted InAs/InP quantum dots (QDs) followed by rapid thermal annealing were studied. By employing a recently developed luminescence model for localized states ensemble, the broadening of the distribution of the localized QD states was determined from the fitting to the luminescence peak energy positions. The broadening of the distribution of the localized QD states reduces due to ion-implantation enhanced intermixing. The contribution of carrier distribution within the localized QD states to the luminescence linewidth decreases after ion-implantation enhanced intermixing. The effect of doses and types of ions used for implantation were also investigated.

  18. Effects of Mo ion implantation on rolling contact fatigue behavior of carbon steel

    SciTech Connect

    Yang, D.; Zhou, J.

    1996-11-01

    Rolling Contact Fatigue (RCF) is one of the most serious material surface damage problems encountered by many critical components, especially in ball-bearing applications. RCF is sensitive to the material strength, hardness, surface morphology, microstructure and stress status, which may be dramatically changed by surface modifications. In present work, the surface modification of molybdenum ion implantation into quenched carbon steel was employed, and RCF tests on the implanted specimens, as well as the unimplanted, were performed. It was found out that carbon steel specimens, with and without ion implantation, have the same fatigue damage characteristics. They both have circular and fan-like pits on the fatigue failed surfaces, with many spherical debris existing in the fan-like pits. However, molybdenum ion implantation reduced the rolling contact fatigue life of quenched carbon steel. The possible reasons are the following: the ion beam current is too large, which causes the specimen to undergo the annealing process and soften during the implantation process; the incident angles of ions are different for different spots of curve specimen surface, which causes the uneven distribution of residual stress. These will promote the crack initiation and propagation.

  19. PROGRESS IN CHARACTERIZATION OF PRECIPITATES AND DEFECT STRUCTURES IN Mg+ ION IMPLANTED CUBIC SILICON CARBIDE

    SciTech Connect

    Jiang, Weilin; Zhang, Jiandong; Zhu, Zihua; Roosendaal, Timothy J.; Hu, Shenyang Y.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2015-09-01

    This report describes the progress of our current experimental effort on Mg+ ion implanted 3C-SiC. Following our initial study [ ] that suggests possible formation of Mg2Si and MgC2 precipitates as well as tetrahedral voids in 24Mg+ ion implanted 3C-SiC, we have designed specific experiments to confirm the results and examine the inclusions and defects. Relatively low fluence (5.0×1015 24Mg+/cm2) implantation in 3C-SiC was performed to reduce defect concentrations and isolate individual defect features for characterization. In addition, 25Mg+ isotope was implanted in 3C-SiC to the same previously applied ion fluence (9.6×1016 ions/cm2) for atom probe tomography (APT) study of precipitates. Each set of the samples was annealed at 1573 K for 2, 6 and 12 h, respectively. The depth profiles of the implanted Mg were measured using secondary ion mass spectrometry (SIMS) before and after the annealing steps. The samples are currently being analyzed using transmission electron microscopy (TEM) and APT.

  20. Monitoring of ion implantation in microelectronics production environment using multi-channel reflectometry

    NASA Astrophysics Data System (ADS)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitry; Hartig, Carsten

    2016-03-01

    Optical metrology techniques such as ellipsometry and reflectometry are very powerful for routine process monitoring and control in the modern semiconductor manufacturing industry. However, both methods rely on optical modeling therefore, the optical properties of all materials in the stack need to be characterized a priori or determined during characterization. Some processes such as ion implantation and subsequent annealing produce slight variations in material properties within wafer, wafer-to-wafer, and lot-to-lot; such variation can degrade the dimensional measurement accuracy for both unpatterned optical measurements as well as patterned (2D and 3D) scatterometry measurements. These variations can be accounted for if the optical model of the structure under investigation allows one to extract not just dimensional but also material information already residing within the optical spectra. This paper focuses on modeling of ion implanted and annealed poly Si stacks typically used in high-k technology. Monitoring of ion implantation is often a blind spot in mass production due to capability issues and other limitations of common methods. Typically, the ion implantation dose can be controlled by research-grade ellipsometers with extended infrared range. We demonstrate that multi-channel spectroscopic reflectometry can also be used for ion implant monitoring in the mass-production environment. Our findings are applicable across all technology nodes.

  1. Raman scattering probe of ion-implanted and pulse laser annealed GaAs

    NASA Astrophysics Data System (ADS)

    Verma, Prabhat; Jain, K. P.; Abbi, S. C.

    1996-04-01

    We report Raman scattering studies of phosphorus-ion-implanted and subsequently pulse laser annealed (PLA) GaAs. The threshold value of implantation fluence for the disappearance of one-phonon modes in the Raman spectrum of ion-implanted GaAs sample is found to be greater than that for the two-phonon modes by an order of magnitude. The phonon correlation length decreases with increasing disorder. The lattice reconstruction process during PLA creates microcrystallites for incomplete annealing, whose sizes can be given by the phonon correlation lengths, and are found to increase with the annealing power density. The intensity ratio of the Raman spectra corresponding to the allowed longitudinal-optical (LO)-phonon mode to the forbidden transverse-optical (TO)-phonon mode, ILO/ITO, is used as a quantitative measure of crystallinity in the implantation and PLA processes. The threshold annealing power density is estimated to be 20 MW/cm2 for 70 keV phosphorus-ion-implanted GaAs at a fluence of 5×1015 ions/cm2. The localized vibrational mode of phosphorus is observed in PLA samples for fluences above 1×1015 ions/cm2.

  2. Plasma immersion ion implantation for the efficient surface modification of medical materials

    SciTech Connect

    Slabodchikov, Vladimir A. Borisov, Dmitry P. Kuznetsov, Vladimir M.

    2015-10-27

    The paper reports on a new method of plasma immersion ion implantation for the surface modification of medical materials using the example of nickel-titanium (NiTi) alloys much used for manufacturing medical implants. The chemical composition and surface properties of NiTi alloys doped with silicon by conventional ion implantation and by the proposed plasma immersion method are compared. It is shown that the new plasma immersion method is more efficient than conventional ion beam treatment and provides Si implantation into NiTi surface layers through a depth of a hundred nanometers at low bias voltages (400 V) and temperatures (≤150°C) of the substrate. The research results suggest that the chemical composition and surface properties of materials required for medicine, e.g., NiTi alloys, can be successfully attained through modification by the proposed method of plasma immersion ion implantation and by other methods based on the proposed vacuum equipment without using any conventional ion beam treatment.

  3. Effect of carbon ion irradiation on Ag diffusion in SiC

    NASA Astrophysics Data System (ADS)

    Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; Deng, Jie; Giordani, Andrew J.; Hunter, Jerry L.; Morgan, Dane; Szlufarska, Izabela; Sridharan, Kumar

    2016-04-01

    Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C-SiC, as well as Ag and single crystalline 4H-SiC samples before and after irradiation with C2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). Diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.

  4. Effect of carbon ion irradiation on Ag diffusion in SiC

    DOE PAGES

    Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; ...

    2015-11-14

    Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with C2+more » ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.« less

  5. Effect of carbon ion irradiation on Ag diffusion in SiC

    SciTech Connect

    Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; Deng, Jie; Giordani, Andrew J.; Hunter, Jerry L.; Morgan, Dane; Szlufarska, Izabela; Sridharan, Kumar

    2015-11-14

    Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with C2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.

  6. Experimental status of the AGS Relativistic Heavy Ion Program

    NASA Astrophysics Data System (ADS)

    Sangster, T. Craig

    1994-10-01

    The universal motivation for colliding large nuclei at relativistic energies is the expectation that a small volume of the primordial quark soup, generally referred to as the Quark-Gluon Plasma (QGP), can be created and studied. The QGP is formed via a phase transition caused by either the extreme baryon densities and/or the extreme temperatures achieved in the overlap zone of the two colliding nuclei. Experiments at the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS) using a beam of Si nuclei at 14.6 GeV per nucleon on various nuclear targets have been completed. These same experiments are now actively searching for signatures of QGP formation using a beam of Au nuclei at 11.7 GeV per nucleon. This paper briefly summarizes some of the key results from the Si beam program and the current status of the experimental Au beam program at the AGS.

  7. Structural disorder in hard amorphous carbon films implanted with nitrogen ions

    SciTech Connect

    Freire, F.L. Jr.; Franceschini, D.F.; Achete, C.A.; Brusa, R.S.; Mariotto, G.; Karwasz, G.P.; Canteri, R.

    1996-12-31

    Hard amorphous hydrogenated carbon films deposited by self-bias glow discharge were implanted at room temperature with 70 keV-nitrogen ions at fluences between 2.0 and 9.0 {times} 10{sup 16} N/cm{sup 2}. The implanted samples were analyzed by Raman spectroscopy, SIMS and positron annihilation spectroscopy (Doppler broadening technique with the determination of the parameter S). For samples implanted with 2.0 {times} 10{sup 16} N/cm{sup 2} the S parameter follows the vacancies depth profile predicted by Monte Carlo simulation. For higher fluences the authors observed a reduction in the measured value of S. This result is discussed in terms of both hydrogen loss and structural modifications (increase of disorder at local scale and of the number of graphitic domains) induced in the carbon film by ion implantation.

  8. Selective Growth of Graphene by Pulsed Laser Annealing Ion Implanted SiC

    NASA Astrophysics Data System (ADS)

    Berke, Kara; Wang, Xiaotie; Rudawski, Nick; Venkatachalam, Dinesh; Fridmann, Joel; Gila, Brent; Ren, Fan; Elliman, Rob; Hebard, Arthur; Appleton, Bill

    2014-03-01

    We report a method for site-selective graphene growth on SiC for direct nano-scale patterning of graphene. Crystalline SiC was implanted with Si and C ions to amorphize the sample surface, then subjected to pulsed laser annealing (PLA); graphene growth occurred only where ions were implanted. PLA parameters including the fluence, number of pulses, and annealing environment were investigated to optimize the growth process. Our previous work involving Au, Cu, and Ge implants in SiC suggested that both the implanted species and surface amorphization affect graphene growth. In this work, we show that surface amorphization alone, without the presence of foreign ionic species, can be used with PLA to create site-selective graphene growth on SiC. Samples were characterized using Raman spectroscopy and cross-sectional transmission electron microscopy. also affiliated with Raith USA, Incorporated.

  9. Pulsed laser annealing of ion-implanted semiconducting GaAs for homojunction solar cells

    NASA Astrophysics Data System (ADS)

    Lowndes, D. H.; Cleland, J. W.; Fletcher, J.; Narayan, J.; Westbrook, R. D.; Wood, R. F.; Christie, W. H.; Eby, R. E.

    The results of a study whose purpose was to evaluate the combination of ion implantation followed by pulsed ruby laser annealing (II/PLA), as a method for shallow p-n junction formation in semiconducting GaAs substrates, are reported. High dose Zn, Mg, Si and Se implants were used. PLA was carried out in air without encapsulation, and with thin sputtered SiO2 encapsulation layers. The combination of I-V, C-V, SEM, TEM and SIMS measurements that were carried out have important implications for photovoltaic applications including the possibility of forming planar junctions, the choice of implanted ions to obtain high electrical activation, the optimum pulsed laser energy density range, the resultant junction depth and electrical characteristics, and the presence of laser- and implantation-induced residual defects

  10. Application of Coaxial Ion Gun for Film Generation and Ion Implantation

    NASA Astrophysics Data System (ADS)

    Takatsu, Mikio; Asai, Tomohiko; Kurumi, Satoshi; Suzuki, Kaoru; Hirose, Hideharu; Masutani, Shigeyuki

    A magnetized coaxial plasma gun (MCPG) is here utilized for deposition on high-melting-point metals. MCPGs have hitherto been studied mostly in the context of nuclear fusion research, for particle and magnetic helicity injection and spheromak formation. During spheromak formation, the electrode materials are ionized and mixed into the plasmoid. In this study, this ablation process by gun-current sputtering is enhanced for metallic thin-film generation. In the proposed system geometry, only ionized materials are electromagnetically accelerated by the self-Lorentz force, with ionized operating gas as a magnetized thermal plasmoid, contributing to the thin-film deposition. This reduces the impurity and non-uniformity of the deposited thin-film. Furthermore, as the ions are accelerated in a parallel direction to the injection axis, vertical implantation of the ions into the substrate surface is achieved. To test a potential application of the developed system, experiments were conducted involving the formation of a buffer layer on hard ceramics, for use in dental materials.

  11. Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers.

    PubMed

    Mu, Wanjun; Li, Xingliang; Liu, Guoping; Yu, Qianhong; Xie, Xiang; Wei, Hongyuan; Jian, Yuan

    2016-01-14

    Radioactive iodine isotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials, and have negative effects on organisms living within the ecosystem. Thus, safe disposal of radioactive iodine is necessary and crucial. For this reason, the uptake of iodide ions was investigated in Ag2O nanocrystal grafted sodium niobate nanofibers, which were prepared by forming a well-matched phase coherent interface between them. The resulting composite was applied as an efficient adsorbent for I(-) anions by forming an AgI precipitate, which also remained firmly attached to the substrates. Due to their one-dimensional morphology, the new adsorbents can be easily dispersed in liquids and readily separated after purification. This significantly enhances the adsorption efficiency and reduces the separation costs. The change in structure from the pristine sodium niobate to Ag2O anchored sodium niobate and to the used adsorbent was examined by using various characterization techniques. The effects of Ag(+) concentration, pH, equilibration time, ionic strength and competing ions on the iodide ion removal ability of the composite were studied. The Ag2O nanocrystal grafted sodium niobate adsorbent showed a high adsorption capacity and excellent selectivity for I(-) anions in basic solutions. Our results are useful for the further development of improved adsorbents for removing I(-) anions from basic wastewater.

  12. Effects of high-dose hydrogen implantation on defect formation and dopant diffusion in silver implanted ZnO crystals

    NASA Astrophysics Data System (ADS)

    Yaqoob, Faisal; Huang, Mengbing

    2016-07-01

    This work reports on the effects of a deep high-dose hydrogen ion implant on damage accumulation, defect retention, and silver diffusion in silver implanted ZnO crystals. Single-crystal ZnO samples were implanted with Ag ions in a region ˜150 nm within the surface, and some of these samples were additionally implanted with hydrogen ions to a dose of 2 × 1016 cm-2, close to the depth ˜250 nm. Rutherford backscattering/ion channeling measurements show that crystal damage caused by Ag ion implantation and the amount of defects retained in the near surface region following post-implantation annealing were found to diminish in the case with the H implantation. On the other hand, the additional H ion implantation resulted in a reduction of substitutional Ag atoms upon post-implantation annealing. Furthermore, the presence of H also modified the diffusion properties of Ag atoms in ZnO. We discuss these findings in the context of the effects of nano-cavities on formation and annihilation of point defects as well as on impurity diffusion and trapping in ZnO crystals.

  13. Irradiation effect of carbon negative-ion implantation on polytetrafluoroethylene for controlling cell-adhesion property

    NASA Astrophysics Data System (ADS)

    Sommani, Piyanuch; Tsuji, Hiroshi; Kojima, Hiroyuki; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo; Takaoka, Gikan H.

    2010-10-01

    We have investigated the irradiation effect of negative-ion implantation on the changes of physical surface property of polytetrafluoroethylene (PTFE) for controlling the adhesion property of stem cells. Carbon negative ions were implanted into PTFE sheets at fluences of 1 × 10 14-1 × 10 16 ions/cm 2 and energies of 5-20 keV. Wettability and atomic bonding state including the ion-induced functional groups on the modified surfaces were investigated by water contact angle measurement and XPS analysis, respectively. An initial value of water contact angles on PTFE decreased from 104° to 88° with an increase in ion influence to 1 × 10 16 ions/cm 2, corresponding to the peak shifting of XPS C1s spectra from 292.5 eV to 285 eV with long tail on the left peak-side. The change of peak position was due to decrease of C-F 2 bonds and increase of C-C bonds with the formation of hydrophilic oxygen functional groups of OH and C dbnd O bonds after the ion implantation. After culturing rat mesenchymal stem cells (MSC) for 4 days, the cell-adhesion properties on the C --patterned PTFE were observed by fluorescent microscopy with staining the cell nuclei and their actin filament (F-actin). The clear adhesion patterning of MSCs on the PTFE was obtained at energies of 5-10 keV and a fluence of 1 × 10 15 ions/cm 2. While the sparse patterns and the uncontrollable patterns were found at a low fluence of 3 × 10 14 ions/cm 2 and a high fluence of 3 × 10 15 ions/cm 2, respectively. As a result, we could improve the surface wettability of PTFE to control the cell-adhesion property by carbon negative-ion implantation.

  14. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell.

    PubMed

    Kim, Beom-Su; Kim, Jin Seong; Park, Young Min; Choi, Bo-Young; Lee, Jun

    2013-04-01

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3×10(16) ions/cm(2) was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity.

  15. PMOS integrated circuit fabrication using BF3 plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Pico, Carey A.; Lieberman, Michael A.; Cheung, Nathan W.

    1992-01-01

    The feasibility of plasma immersion ion implantation (PHI) for multi-implant integrated circuit fabrication is demonstrated. Patterned Si wafers were immersed in a BF3 plasma for p-type doping steps. Boron implants of up to 3 × 1015 atoms/cm2 were achieved by applying microsecond negative voltage (-2 to -30 kV) pulses to the wafers at a frequency of 100 Hz to 1 kHz. After implantation the wafers were annealed using rapid thermal annealing (RTA) at 1060° C for 20 sec to activate the dopants and to recrystallize the implant damaged Si. For the PMOS process sequence both the Si source-drain and polycrystalline Si (poly-Si) gate doping steps were performed using PIII. The functionality of several types of devices, including diodes, capacitors, and transistors, were electrically measured to evaluate the compatibility of PIII with MOS process integration.

  16. Non-mass-analyzed ion implantation equipment for high volume solar cell production

    NASA Technical Reports Server (NTRS)

    Armini, A. J.; Bunker, S. N.; Spitzer, M. B.

    1982-01-01

    Equipment designed for junction formation in silicon solar cells is described. The equipment, designed for a production level of approximately one megawatt per year, consists of an ion implanter and annealer. Low cost is achieved by foregoing the use of mass analysis during the implantation, and by the use of a belt furnace for annealing. Results of process development, machine design and cost analysis are presented.

  17. RTV silicone rubber surface modification for cell biocompatibility by negative-ion implantation

    NASA Astrophysics Data System (ADS)

    Zheng, Chenlong; Wang, Guangfu; Chu, Yingjie; Xu, Ya; Qiu, Menglin; Xu, Mi

    2016-03-01

    A negative cluster ion implantation system was built on the injector of a GIC4117 tandem accelerator. Next, the system was used to study the surface modification of room temperature vulcanization silicone rubber (RTV SR) for cell biocompatibility. The water contact angle was observed to decrease from 117.6° to 99.3° as the C1- implantation dose was increased to 1 × 1016 ions/cm2, and the effects of C1-, C2- and O1- implantation result in only small differences in the water contact angle at 3 × 1015 ions/cm2. These findings indicate that the hydrophilicity of RTV SR improves as the dose is increased and that the radiation effect has a greater influence than the doping effect on the hydrophilicity. There are two factors influence hydrophilicity of RTV: (1) based on the XPS and ATR-FTIR results, it can be inferred that ion implantation breaks the hydrophobic functional groups (Sisbnd CH3, Sisbnd Osbnd Si, Csbnd H) of RTV SR and generates hydrophilic functional groups (sbnd COOH, sbnd OH, Sisbnd (O)x (x = 3,4)). (2) SEM reveals that the implanted surface of RTV SR appears the micro roughness such as cracks and wrinkles. The hydrophilicity should be reduced due to the lotus effect (Zhou Rui et al., 2009). These two factors cancel each other out and make the C-implantation sample becomes more hydrophilic in general terms. Finally, cell culture demonstrates that negative ion-implantation is an effective method to improve the cell biocompatibility of RTV SR.

  18. Plasma-based fluorine ion implantation into dental materials for inhibition of bacterial adhesion.

    PubMed

    Nurhaerani; Arita, Kenji; Shinonaga, Yukari; Nishino, Mizuho

    2006-12-01

    The aims of this study were to evaluate the fluorine depth profiles of pure titanium (Ti), stainless steel (SUS), and polymethyl methacrylate (PMMA) modified by plasma-based fluorine ion implantation and the effects of fluorine ion implantation on contact angle, fluoride ion release, and S. mutans adhesion. Fluorine-based gases used were Ar+F2 and CF4. By means of SIMS, it was found that the peak count of PMMA was the lowest while that of Ti was the highest. Then, up to one minute after Ar sputtering, the presence of fluorine and chromic fluoride could be detected by XPS in the surface and subsurface layer. As for the effects of using CF4 gas for fluorine ion implantation into SUS substrate, the results were: contact angle was significantly increased; no fluoride ion release was detected; antibacterial activity was significantly increased while initial adhesion was decreased. These findings thus indicated that plasma-based fluorine ion implantation into SUS with CF4 gas provided surface antibacterial activity which was useful in inhibiting bacterial adhesion.

  19. Method for Providing Semiconductors Having Self-Aligned Ion Implant

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor)

    2011-01-01

    A method is disclosed that provides a self-aligned nitrogen-implant particularly suited for a Junction Field Effect Transistor (JFET) semiconductor device preferably comprised of a silicon carbide (SiC). This self-aligned nitrogen-implant allows for the realization of durable and stable electrical functionality of high temperature transistors such as JFETs. The method implements the self-aligned nitrogen-implant having predetermined dimensions, at a particular step in the fabrication process, so that the SiC junction field effect transistors are capable of being electrically operating continuously at 500.degree. C. for over 10,000 hours in an air ambient with less than a 10% change in operational transistor parameters.

  20. Method for Providing Semiconductors Having Self-Aligned Ion Implant

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor)

    2014-01-01

    A method is disclosed that provides a self-aligned nitrogen-implant particularly suited for a Junction Field Effect Transistor (JFET) semiconductor device preferably comprised of a silicon carbide (SiC). This self-aligned nitrogen-implant allows for the realization of durable and stable electrical functionality of high temperature transistors such as JFETs. The method implements the self-aligned nitrogen-implant having predetermined dimensions, at a particular step in the fabrication process, so that the SiC junction field effect transistors are capable of being electrically operating continuously at 500.degree. C. for over 10,000 hours in an air ambient with less than a 10% change in operational transistor parameters.

  1. Radial 32P ion implantation using a coaxial plasma reactor: Activity imaging and numerical integration

    NASA Astrophysics Data System (ADS)

    Fortin, M. A.; Dufresne, V.; Paynter, R.; Sarkissian, A.; Stansfield, B.

    2004-12-01

    Beta-emitting biomedical implants are currently employed in angioplasty, in the treatment of certain types of cancers, and in the embolization of aneurysms with platinum coils. Radioisotopes such as 32P can be implanted using plasma-based ion implantation (PBII). In this article, we describe a reactor that was developed to implant radioisotopes into cylindrical metallic objects. The plasma first ionizes radioisotopes sputtered from a target, and then acts as the source of particles to be implanted into the biased biomedical device. The plasma therefore plays a major role in the ionization/implantation process. Following a sequence of implantation tests, the liners protecting the interior walls of the reactor were changed and the radioactivity on them measured. This study demonstrates that the radioactive deposits on these protective liners, adequately imaged by radiography, can indicate the distribution of the radioisotopes that are not implanted. The resulting maps give unique information about the activity distribution, which is influenced by the sputtering of the 32P-containing fragments, their ionization in the plasma, and also by the subsequent ion transport mechanisms. Such information can be interpreted and used to significantly improve the efficiency of the implantation procedure. Using a surface barrier detector, a comparative study established a relationship between the gray scale of radiographs of the liners, and activity measurements. An integration process allows the quantification of the activities on the walls and components of the reactor. Finally, the resulting integral of the 32P activity is correlated to the sum of the radioactivity amounts that were sputtered from radioactive targets inside the implanter before the dismantling procedure. This balance addresses the issue of security regarding PBII technology and confirms the confinement of the radioactivity inside the chamber.

  2. Charge transport and storage in ion implanted metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Augulis, L.; Pranevičius, L.; Vosylius, J.

    A physical model that predicts charge accumulation in MOS structures with implanted SiO 2 is investigated theoretically and experimentally. It is shown that, to achieve memory effects, MOS structures have to include a SiO 2 layer with different conduction mechanism along its thickness. The sign of the flat-band voltage shift depends on the localization of traps in oxide created by ion implantation. The time characteristics of charge accumulation and discharging of implanted SiO 2 by the pulses of applied voltage are similar to those observed in MNOS structures.

  3. Behavior of ion-implanted junction diodes in 3C SiC

    NASA Technical Reports Server (NTRS)

    Avila, R. E.; Kopanski, J. J.; Fung, C. D.

    1987-01-01

    p-n junction diodes have been formed by ion implantation of B or Al in 3C SiC and annealing at 1365 C. The current-voltage characteristics of the Al-implanted structures show little rectification. The B-implanted diodes show rectification, with ideality factors of 2.2 and higher, breakdown voltages between 5 and 10 V, and a series resistance of the order of 20 kohm. The current-voltage characteristics were measured between room temperature and 270 C. The extracted ideality factors increase with temperature.

  4. Microstructural investigation of alumina implanted with 30 keV nitrogen ions

    NASA Astrophysics Data System (ADS)

    Shikha, Deep; Jha, Usha; Sinha, S. K.; Barhai, P. K.; Sarkhel, G.; Nair, K. G. M.; Dash, S.; Tyagi, A. K.; Kothari, D. C.

    2007-11-01

    Among ceramics, alumina is being widely used as biomaterials now these days. It is being used as hip joints, tooth roots etc. Ion implantation has been employed to modify its surface without changing it bulk properties. 30 keV nitrogen with varying ion dose ranging from 5 × 10 15 ions/cm 2 to 5 × 10 17 ions/cm 2 is implanted in alumina. Surface morphology has been studied with optical microscope and atomic force microscope (AFM). Improvement in brittleness has been observed with the increase in ion dose. Compound formation and changes in grain size have been studied using X-Ray diffraction (XRD). AlN compound formation is also observed by Fourier transform infrared spectroscopy (FTIR). The change in the grain size is related with the nanohardness and Hall-Petch relationship is verified.

  5. Comparison of surface characteristics of retrieved cobalt-chromium femoral heads with and without ion implantation.

    PubMed

    McGrory, Brian J; Ruterbories, James M; Pawar, Vivek D; Thomas, Reginald K; Salehi, Abraham B

    2012-01-01

    Nitrogen ion implantation of CoCr is reported to produce increased surface hardness and a lower friction surface. Femoral heads with and without ion implantation retrieved from 1997 to 2003 were evaluated for surface roughness (average surface roughness [Ra], mean peak height [Rpm], and maximum distance from peak to valley [Rmax]), nanohardness, and the ion-treated layer thickness. The difference in average Rmax (P = .033) and average Rpm (P = .008) was statistically significant, but there was no correlation between the average or maximum roughness parameters (average surface roughness, Rmax, and Rpm) and time in vivo (P > .05). Overall, nanohardness was greater for the low-friction ion-treated heads (P < .001); and it decreased with increasing time in vivo (P = .01). Ion treatment produces an increased surface hardness, but the advantage of this increased hardness appears to dissipate over time in vivo.

  6. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    NASA Astrophysics Data System (ADS)

    Markwitz, A.; Mohr, B.; Leveneur, J.

    2014-07-01

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C3Hy+ ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm-3. Raman spectroscopy was performed to probe for sp2/sp3 bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp3 content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  7. DLTS of low-energy hydrogen ion implanted n-Si

    NASA Astrophysics Data System (ADS)

    Deenapanray, Prakash N. K.

    2003-12-01

    We have used deep level transient spectroscopy and capacitance-voltage measurements to study the influence of low-energy hydrogen ion implantation on the creation of defects in n-Si. In particular, we have studied the ion fluence dependence of the free carrier compensation at room temperature, and we have measured the generation of VO-H complex and VP-pair in ion implanted samples. The 7.5 keV H ions created defects in the top 0.3 μm of samples, which resulted in carrier compensation to depths exceeding 1 μm. This effect is not due to defects created by ion channeling but is rather due to the migration of defects as demonstrated using binary collision code MARLOWE.

  8. Application of laser driven fast high density plasma blocks for ion implantation

    NASA Astrophysics Data System (ADS)

    Sari, Amir H.; Osman, F.; Doolan, K. R.; Ghoranneviss, M.; Hora, H.; Höpfl, R.; Benstetter, G.; Hantehzadeh, M. H.

    2005-10-01

    The measurement of very narrow high density plasma blocks of high ion energy from targets irradiated with ps-TW laser pulses based on a new skin depth interaction process is an ideal tool for application of ion implantation in materials, especially of silicon, GaAs, or conducting polymers, for micro-electronics as well as for low cost solar cells. A further application is for ion sources in accelerators with most specifications of many orders of magnitudes advances against classical ion sources. We report on near band gap generation of defects by implantation of ions as measured by optical absorption spectra. A further connection is given for studying the particle beam transforming of n-type semiconductors into p-type and vice versa as known from sub-threshold particle beams. The advantage consists in the use of avoiding aggressive or rare chemical materials when using the beam techniques for industrial applications.

  9. Thermal annealing of waveguides formed by ion implantation of silica-on-Si

    NASA Astrophysics Data System (ADS)

    Johnson, C. M.; Ridgway, M. C.; Kurver, A.; Leech, P. W.; Simpson, P. J.

    1998-05-01

    Buried channel waveguides have been fabricated by ion implantation of Plasma-enhanced chemical vapour deposition (PECVD)-grown silica-on-Si. Post-implantation annealing was observed to have a significant influence on waveguide loss as measured at a wavelength of 1550 nm-loss decreased abruptly from an as-implanted value of ˜1 dB/cm to ˜0.15 dB/cm following a 400°C/ h annealing cycle. However, annealing at greater temperatures (500°C) yielded a value comparable to the as-implanted result. For the present paper, the various factors that potentially influenced the observed loss behaviour have been addressed. Such factors included thermally-induced changes to density and refractive index, mode profile spreading and subsequent interaction with the waveguide surface, precipitation of the implanted ions and annealing of both intrinsic and implantation-induced defects. The observed loss behaviour has been attributed to a combination of effects dominated by a reduction in implantation-induced defect concentrations (300-400°C), where such defects acted as scattering and/or absorption centres, and mode profile spreading (400-600°C) due to a reduction in refractive index.

  10. Molecular ion implantation technique for obtaining the same depth profile for the component atoms

    SciTech Connect

    Ishikawa, Junzo; Tsuji, Hiroshi; Mimura, Masakazu; Gotoh, Yasuhito

    1996-12-31

    The molecular ion implantation, in which the ions of polyatomic molecule are used as an implantation particle, is expected to have two main advantages: (1) obtaining the similar depth profiles of implanted component atoms of different elements at a single implantation, and (2) achieving simultaneous implantation of different atoms at the same position. In this paper, we have showed these advantages by an analytical estimation of the projected ranges for each implanted atoms of a polyatomic molecule, and then, by the computer simulation by TRIM. In addition, the experimental results obtained by SIMS were also presented. As for the evaluation of depth profiles, the overlap areas between two depth distributions were calculated by a numerical integration as a degree of the similarity between two depth profiles of different atoms. As a result, the projected ranges and overlap areas showed that depth profiles are almost the same in a usual implantation energy range, except of hydrogen due to the lack of neutron in the nucleus. For the simple evaluation for the similarity of two depth profiles, a factor S was proposed instead of the overlap area.

  11. A modified broad beam ion source for low-energy hydrogen implantation

    NASA Astrophysics Data System (ADS)

    Otte, K.; Schindler, A.; Bigl, F.; Schlemm, H.

    1998-03-01

    A modified broad beam ion source for low-energy hydrogen ion implantation of semiconductors is described. Based on a Kaufman type ion source two different solutions are presented: (a) an ion source with an extraction system consisting of two molybdenum grids with a low gas flow conductance reworked for hydrogen operation, and (b) a ten-grid mass separating ion beam system which enables the mass selection of H+, H2+, and H3+. The ion energy could be set in the range of 200-500 eV with a current density reaching from 1 to 100 μA/cm2. It is shown that at higher pressure the main ion created in the ion source is H3+ due to ion-molecule processes, whereas at lower pressure only H2+ and H+ are produced. Special consideration is given to the ion beam analysis of the two grid ion source operating in the 10-3 mbar range allowing to explain the different peak structures by the potential distribution across the ion source and different charge transfer processes. In addition, the analysis reveals neutral and ionized collision products in the ion beam. The ten-grid mass separating ion source could be operated in the 10-4 mbar range resulting in a nearly collision free ion beam which permits the generation of a mass separated hydrogen ion beam.

  12. FY2014 Parameters for Gold Ions in Booster, AGS, and RHIC

    SciTech Connect

    Gardner, C. J.

    2014-07-30

    The nominal parameters for gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are worked out using various formulas to derive mass, kinetic parameters, RF parameters, ring parameters, etc.. The ''standard setup'', ''medium-energy'', and ''low-energy'' parameters are summarized in separate sections.

  13. FY2014 Parameters for Helions and Gold Ions in Booster, AGS, and RHIC

    SciTech Connect

    Gardner, C. J.

    2014-08-15

    The nominal parameters for helions (helion is the bound state of two protons and one neutron, the nucleus of a helium-3 atom) and gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are found using various formulas to derive mass, helion anomalous g-factor, kinetic parameters, RF parameters, ring parameters, etc..

  14. Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys.

    PubMed

    Poon, R W Y; Yeung, K W K; Liu, X Y; Chu, P K; Chung, C Y; Lu, W W; Cheung, K M C; Chan, D

    2005-05-01

    Nickel-titanium (NiTi) shape memory alloys possess super-elasticity in addition to the well-known shape memory effect and are potentially suitable for orthopedic implants. However, a critical concern is the release of harmful Ni ions from the implants into the living tissues. We propose to enhance the corrosion resistance and other surface and biological properties of NiTi using carbon plasma immersion ion implantation and deposition (PIII&D). Our corrosion and simulated body fluid tests indicate that either an ion-mixed amorphous carbon coating fabricated by PIII&D or direct carbon PIII can drastically improve the corrosion resistance and block the out-diffusion of Ni from the materials. Our tribological tests show that the treated surfaces are mechanically more superior and cytotoxicity tests reveal that both sets of plasma-treated samples favor adhesion and proliferation of osteoblasts.

  15. Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation

    NASA Astrophysics Data System (ADS)

    Wu, Guosong; Xu, Ruizhen; Feng, Kai; Wu, Shuilin; Wu, Zhengwei; Sun, Guangyong; Zheng, Gang; Li, Guangyao; Chu, Paul K.

    2012-07-01

    Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.

  16. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    PubMed Central

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-01-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants. PMID:26527099

  17. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  18. Use of low energy hydrogen ion implants in high efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.; Singh, R.

    1985-01-01

    This program is a study of the use of low energy hydrogen ion implantation for high efficiency crystalline silicon solar cells. The first quarterly report focuses on two tasks of this program: (1) an examination of the effects of low energy hydrogen implants on surface recombination speed; and (2) an examination of the effects of hydrogen on silicon regrowth and diffusion in silicon. The first part of the project focussed on the measurement of surface properties of hydrogen implanted silicon. Low energy hydrogen ions when bombarded on the silicon surface will create structural damage at the surface, deactivate dopants and introduce recombination centers. At the same time the electrically active centers such as dangling bonds will be passivated by these hydrogen ions. Thus hydrogen is expected to alter properties such as the surface recombination velocity, dopant profiles on the emitter, etc. In this report the surface recombination velocity of a hydrogen emplanted emitter was measured.

  19. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    DOE PAGES

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; ...

    2015-11-03

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less

  20. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    SciTech Connect

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-03

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  1. Photoemission studies of amorphous silicon induced by P + ion implantation

    NASA Astrophysics Data System (ADS)

    Petö, G.; Kanski, J.

    1995-12-01

    An amorphous Si layer was formed on a Si (1 0 0) surface by P + implantation at 80 keV. This layer was investigated by means of photoelectron spectroscopy. The resulting spectra are different from earlier spectra on amorphous Si prepared by e-gun evaporation or cathode sputtering. The differences consist of a decreased intensity in the spectral region corresponding to p-states, and appearace of new states at higher binding energy. Qualitativity similar results have been reported for Sb implanted amorphous Ge and the modification seems to be due to the changed short range order.

  2. Study of Nickel Ion Release in Simulated Body Fluid from C+-IMPLANTED Nickel Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Shafique, Muhammad Ahsan; Murtaza, G.; Saadat, Shahzad; Zaheer, Zeeshan; Shahnawaz, Muhammad; Uddin, Muhammad K. H.; Ahmad, Riaz

    2016-05-01

    Nickel ion release from NiTi shape memory alloy is an issue for biomedical applications. This study was planned to study the effect of C+ implantation on nickel ion release and affinity of calcium phosphate precipitation on NiTi alloy. Four annealed samples are chosen for the present study; three samples with oxidation layer and the fourth without oxidation layer. X-ray diffraction (XRD) spectra reveal amorphization with ion implantation. Proton-induced X-ray emission (PIXE) result shows insignificant increase in Ni release in simulated body fluid (SBF) and calcium phosphate precipitation up to 8×1013ions/cm2. Then Nickel contents show a sharp increase for greater ion doses. Corrosion potential decreases by increasing the dose but all the samples passivate after the same interval of time and at the same level of VSCE in ringer lactate solution. Hardness of samples initially increases at greater rate (up to 8×1013ions/cm2) and then increases with lesser rate. It is found that 8×1013ions/cm2 (≈1014) is a safer limit of implantation on NiTi alloy, this limit gives us lesser ion release, better hardness and reasonable hydroxyapatite incubation affinity.

  3. Hybrid gas-metal co-implantation with a modified vacuum arc ion source

    SciTech Connect

    Oks, E.M.; Yushkov, G.Y.; Evans, P.J.; Oztarhan, A.; Brown, I.G.; Dickinson, M.R.; Liu, F.; MacGill, R.A.; Monteiro, O.R.; Wang, Z.

    1996-08-01

    Energetic beams of mixed metal and gaseous ion species can be generated with a vacuum arc ion source by adding gas to the arc discharge region. This could be an important tool for ion implantation research by providing a method for forming buried layers of mixed composition such as e.g. metal oxides and nitrides. In work to date, we have formed a number of mixed metal-gas ion beams including Ti+N, Pt+N, Al+O, and Zr+O. The particle current fractions of the metal-gas ion components in the beam ranged from 100% metallic to about 80% gaseous, depending on operational parameters. We have used this new variant of the vacuum arc ion source to carry out some exploratory studies of the effect of Al+O and Zr+O co-implantation on tribology of stainless steel. Here we describe the ion source modifications, species and charge state of the hybrid beams produced, and results of preliminary studies of surface modification of stainless steel by co-implantation of mixed Al/O or Zr/O ion beams. 5 figs, 21 refs.

  4. Oxygen ion implantation induced microstructural changes and electrical conductivity in Bakelite RPC detector material

    NASA Astrophysics Data System (ADS)

    Kumar, K. V. Aneesh; Ranganathaiah, C.; Kumarswamy, G. N.; Ravikumar, H. B.

    2016-05-01

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite Resistive Plate Chamber (RPC) detector materials were exposed to 100 keV Oxygen ion in the fluences of 1012, 1013, 1014 and 1015 ions/cm2. Ion implantation induced microstructural changes have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and X-Ray Diffraction (XRD) techniques. Positron lifetime parameters viz., o-Ps lifetime and its intensity shows the deposition of high energy interior track and chain scission leads to the formation of radicals, secondary ions and electrons at lower ion implantation fluences (1012 to1014 ions/cm2) followed by cross-linking at 1015 ions/cm2 fluence due to the radical reactions. The reduction in electrical conductivity of Bakelite detector material is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate implantation energy and fluence of Oxygen ion on polymer based Bakelite RPC detector material may reduce the leakage current, improves the efficiency, time resolution and thereby rectify the aging crisis of the RPC detectors.

  5. Evaluation of the ion implantation process for production of solar cells from silicon sheet materials

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.

    1983-01-01

    The objective of this program is the investigation and evaluation of the capabilities of the ion implantation process for the production of photovoltaic cells from a variety of present-day, state-of-the-art, low-cost silicon sheet materials. Task 1 of the program concerns application of ion implantation and furnace annealing to fabrication of cells made from dendritic web silicon. Task 2 comprises the application of ion implantation and pulsed electron beam annealing (PEBA) to cells made from SEMIX, SILSO, heat-exchanger-method (HEM), edge-defined film-fed growth (EFG) and Czochralski (CZ) silicon. The goals of Task 1 comprise an investigation of implantation and anneal processes applied to dendritic web. A further goal is the evaluation of surface passivation and back surface reflector formation. In this way, processes yielding the very highest efficiency can be evaluated. Task 2 seeks to evaluate the use of PEBA for various sheet materials. A comparison of PEBA to thermal annealing will be made for a variety of ion implantation processes.

  6. Peculiarities and application perspectives of metal-ion implants in glasses

    SciTech Connect

    Mazzoldi, P.; Gonella, F.; Arnold, G.W.; Battaglin, G.; Bertoncello, R.

    1993-12-31

    Ion implantation in insulators causes modifications in the refractive-index as a result of radiation damage, phase separation, or compound formation. As a consequence, light waveguides may be formed with interesting applications in the field of optoelectronics. Recently implantation of metals ions (e.g. silver, copper, gold, lead,...) showed the possibility of small radii colloidal particles formation, in a thin surface layer of the glass substrate. These particles exhibit an electron plasmon resonance which depends on the optical constants of the implanted metal and on the refractive-index of the glass host. The non-linear optical properties of such colloids, in particular the enhancement of optical Kerr susceptibility, suggest that the, ion implantation technique may play an important role for the production of all-optical switching devices. In this paper an analysis of the state-of-the-art of the research in this field will be presented in the framework of ion implantation in glass physics and chemistry.

  7. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    NASA Astrophysics Data System (ADS)

    Popova, Natalya; Nikonenko, Elena; Yurev, Ivan; Kalashnikov, Mark; Kurzina, Irina

    2016-01-01

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.

  8. Surface morphology of RF plasma immersion H+ ion implanted and oxidized Si(100) surface

    NASA Astrophysics Data System (ADS)

    Anastasescu, M.; Stoica, M.; Gartner, M.; Bakalova, S.; Szekeres, A.; Alexandrova, S.

    2014-05-01

    The surface morphology of p-Si(100) wafers after RF plasma immersion (PII) H+ ion implantation into a shallow Si surface layer and after subsequent thermal oxidation was studied by atomic-force microscopic (AFM) imaging. After PII implantation of hydrogen ions with an energy of 2 keV and fluences ranging from 1013 cm-2 to 1015 cm-2 the Si wafers were oxidized in dry O2 at temperatures ranging from 700 °C to 800 °C. From the analysis of the AFM images, the surface amplitude parameters were evaluated and considered in terms of the technological conditions. The amplitude parameters showed a clear dependence on the H+ dose and the oxidation temperature, with the tendency of increasing with the increase of both the H+ ion fluence and the oxidation temperature. The implantation causes surface roughening, changing the RMS roughness value from 0.15 nm (typical for a polished Si(100) surface) to the highest value 0.6 nm for the H+ fluence of 1015 ions/cm2. Oxidation of the H+ implanted Si region, as the oxide is growing inward into Si, levels away the pits created by implants and results in a smoother surface, although keeping the RMS values larger than 0.2 nm.

  9. Method For Plasma Source Ion Implantation And Deposition For Cylindrical Surfaces

    DOEpatents

    Fetherston, Robert P. , Shamim, Muhammad M. , Conrad, John R.

    1997-12-02

    Uniform ion implantation and deposition onto cylindrical surfaces is achieved by placing a cylindrical electrode in coaxial and conformal relation to the target surface. For implantation and deposition of an inner bore surface the electrode is placed inside the target. For implantation and deposition on an outer cylindrical surface the electrode is placed around the outside of the target. A plasma is generated between the electrode and the target cylindrical surface. Applying a pulse of high voltage to the target causes ions from the plasma to be driven onto the cylindrical target surface. The plasma contained in the space between the target and the electrode is uniform, resulting in a uniform implantation or deposition of the target surface. Since the plasma is largely contained in the space between the target and the electrode, contamination of the vacuum chamber enclosing the target and electrodes by inadvertent ion deposition is reduced. The coaxial alignment of the target and the electrode may be employed for the ion assisted deposition of sputtered metals onto the target, resulting in a uniform coating of the cylindrical target surface by the sputtered material. The independently generated and contained plasmas associated with each cylindrical target/electrode pair allows for effective batch processing of multiple cylindrical targets within a single vacuum chamber, resulting in both uniform implantation or deposition, and reduced contamination of one target by adjacent target/electrode pairs.

  10. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    SciTech Connect

    Popova, Natalya; Yurev, Ivan; Kalashnikov, Mark

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.

  11. Fe ion-implanted TiO2 thin film for efficient visible-light photocatalysis

    NASA Astrophysics Data System (ADS)

    Impellizzeri, G.; Scuderi, V.; Romano, L.; Sberna, P. M.; Arcadipane, E.; Sanz, R.; Scuderi, M.; Nicotra, G.; Bayle, M.; Carles, R.; Simone, F.; Privitera, V.

    2014-11-01

    This work shows the application of metal ion-implantation to realize an efficient second-generation TiO2 photocatalyst. High fluence Fe+ ions were implanted into thin TiO2 films and subsequently annealed up to 550 °C. The ion-implantation process modified the TiO2 pure film, locally lowering its band-gap energy from 3.2 eV to 1.6-1.9 eV, making the material sensitive to visible light. The measured optical band-gap of 1.6-1.9 eV was associated with the presence of effective energy levels in the energy band structure of the titanium dioxide, due to implantation-induced defects. An accurate structural characterization was performed by Rutherford backscattering spectrometry, transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and UV/VIS spectroscopy. The synthesized materials revealed a remarkable photocatalytic efficiency in the degradation of organic compounds in water under visible light irradiation, without the help of any thermal treatments. The photocatalytic activity has been correlated with the amount of defects induced by the ion-implantation process, clarifying the operative physical mechanism. These results can be fruitfully applied for environmental applications of TiO2.

  12. Performance improvement of silicon nitride ball bearings by ion implantation. CRADA final report

    SciTech Connect

    Williams, J.M.; Miner, J.

    1998-03-01

    The present report summarizes technical results of CRADA No. ORNL 92-128 with the Pratt and Whitney Division of United Technologies Corporation. The stated purpose of the program was to assess the 3effect of ion implantation on the rolling contact performance of engineering silicon nitride bearings, to determine by post-test analyses of the bearings the reasons for improved or reduced performance and the mechanisms of failure, if applicable, and to relate the overall results to basic property changes including but not limited to swelling, hardness, modulus, micromechanical properties, and surface morphology. Forty-two control samples were tested to an intended runout period of 60 h. It was possible to supply only six balls for ion implantation, but an extended test period goal of 150 h was used. The balls were implanted with C-ions at 150 keV to a fluence of 1.1 {times} 10{sup 17}/cm{sup 2}. The collection of samples had pre-existing defects called C-cracks in the surfaces. As a result, seven of the control samples had severe spalls before reaching the goal of 60 h for an unacceptable failure rate of 0.003/sample-h. None of the ion-implanted samples experienced engineering failure in 150 h of testing. Analytical techniques have been used to characterize ion implantation results, to characterize wear tracks, and to characterize microstructure and impurity content. In possible relation to C-cracks. It is encouraging that ion implantation can mitigate the C-crack failure mode. However, the practical implications are compromised by the fact that bearings with C-cracks would, in no case, be acceptable in engineering practice, as this type of defect was not anticipated when the program was designed. The most important reason for the use of ceramic bearings is energy efficiency.

  13. Comparison Between Simulated And Experimental Au-ion Profiles Implanted in nanocrystalline ceria

    SciTech Connect

    Moll, Sandra J.; Zhang, Yanwen; Zhu, Zihua; Edmondson, Philip D.; Namavar, Fereydoon; Weber, William J.

    2013-07-15

    Radiation response of nanocrystalline ceria films deposited on a silicon substrate was investigated under a 3-MeV Au-ion irradiation at 300 K. A uniform grain growth cross the ceria films is observed and effective densification of the ceria thin films occurs during irradiation. The Au ion profiling was measured by secondary ion mass spectrometry (SIMS) and compared to the Au ion distribution predicted by the Stopping and Range of Ions in Solids (SRIM) code. It is observed that the Au-ion penetration depth is underestimated in comparison with the SIMS measurements. An overestimation of the electronic stopping power for heavy incident ions in the SRIM program may account for the discrepancies between the calculations and the SIMS experimental results. This work presents an approach to compensate the overestimation of the electronic stopping powers in the SRIM program by adjusting the nanocrystalline ceria target density to better predict the ion implantation profile.

  14. Comparison between simulated and experimental Au-ion profiles implanted in nanocrystalline ceria

    SciTech Connect

    Moll, Sandra; Zhang, Yanwen; Zhu, Zihua; Edmondson, Dr. Philip; Namavar, Fereydoon; Weber, William J

    2013-01-01

    Radiation response of nanocrystalline ceria films deposited on a silicon substrate was investigated under a 3-MeV Au-ion irradiation at 300 K. A uniform grain growth cross the ceria films is observed and effective densification of the ceria thin films occurs during irradiation. The Au ion profiling was measured by secondary ion mass spectrometry (SIMS) and compared to the Au ion distribution predicted by the Stopping and Range of Ions in Solids (SRIM) code. It is observed that the Au-ion penetration depth is underestimated in comparison with the SIMS measurements. An overestimation of the electronic stopping power for heavy incident ions in the SRIM program may account for the discrepancies between the calculations and the SIMS experimental results. This work presents an approach to compensate the overestimation of the electronic stopping powers in the SRIM program by adjusting the nanocrystalline ceria target density to better predict the ion implantation profile.

  15. Guided ion beam and theoretical studies of the reaction of Ag{sup +} with CS{sub 2}: Gas-phase thermochemistry of AgS{sup +} and AgCS{sup +} and insight into spin-forbidden reactions

    SciTech Connect

    Armentrout, P. B.; Kretzschmar, Ilona

    2010-01-14

    The gas-phase reactivity of the atomic transition metal cation, Ag{sup +}, with CS{sub 2} is investigated using guided-ion beam mass spectrometry. Endothermic reactions forming AgS{sup +} and AgCS{sup +} are observed but are quite inefficient. This observation is largely attributed to the stability of the closed shell Ag{sup +}({sup 1}S,4d{sup 10}) ground state, but is also influenced by the fact that the reactions producing ground state AgS{sup +} and AgCS{sup +} products are both spin forbidden. Analysis of the kinetic energy dependence of the cross sections for formation of these two products yields the 0 K bond energies of D{sub 0}(Ag{sup +}-S)=1.40{+-}0.12 eV and D{sub 0}(Ag{sup +}-CS)=1.98{+-}0.14 eV. Quantum chemical calculations are used to investigate the electronic structure of the two product ions as well as the potential energy surfaces for reaction. The primary mechanism involves oxidative addition of a CS bond to the metal cation followed by simple Ag-S or Ag-CS bond cleavage. Crossing points between the singlet and triplet surfaces are located near the transition states for bond activation. Comparison with analogous work on other late second-row transition metal cations indicates that the location of the crossing points bears directly on the efficiency of these spin-forbidden processes.

  16. Optical planar waveguide in magnesium aluminate spinel crystal using oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Song, Hong-Lian; Yu, Xiao-Fei; Zhang, Lian; Wang, Tie-Jun; Qiao, Mei; Liu, Peng; Zhao, Jin-Hua; Wang, Xue-Lin

    2015-07-01

    A planar optical waveguide in MgAl2O4 crystal sample was fabricated using 6.0 MeV oxygen ion implantation at a fluence of 1.5 × 1015 ions/cm2 at room temperature. The optical modes were measured at a wavelength of 633 nm using a model 2010 prism coupler. The near-field intensity files in the visible band were measured and simulated with end-face coupling and FD-BPM methods, respectively. The absorption spectra show that the implantation process has almost no effect on the visible and near-infrared band absorption.

  17. Plasma immersion ion implantation for surface treatment of complex branched structures

    NASA Astrophysics Data System (ADS)

    Kashin, Oleg A.; Lotkov, Alexander I.; Borisov, Dmitry P.; Slabodchikov, Vladimir A.; Kuznetsov, Vladimir M.; Kudryashov, Andrey N.; Krukovsky, Konstantin V.

    2016-11-01

    The paper presents experimental results demonstrating the capabilities of plasma immersion ion implantation of silicon (Si) for surface treatment of complex branched structures such are self-expanding intravascular nickel-titanium (NiTi) stents. Using NiTi stents of diameter 4 and 8 mm, it is shown that plasma immersion ion implantation can provide rather homogeneous doping of their outer and inner surfaces with Si atoms. Also presented are research data on the processes that determine the thickness, composition, and structure of surface layers subjected to this type of treatment.

  18. Nanostructure of NiTi surface layers after Ta ion implantation

    NASA Astrophysics Data System (ADS)

    Girsova, S. L.; Poletika, T. M.; Meisner, L. L.; Schmidt, E. Yu.

    2016-11-01

    The elemental and phase composition and structure of the surface and near-surface layers of NiTi specimens after the Ta ion implantation with the fluency D = 3 × 1017 and 6 × 1017 cm-2 are examined. The methods of Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and electron dispersion analysis (EDS) are used. It is found that a nonuniform distribution of elements along the depth of the surface layer after the ion implantation of NiTi specimens, regardless of the regime, is accompanied by the formation of a number of sublayer structures.

  19. Ion-implantation effect on time-dependent breakdown in SiO2

    NASA Technical Reports Server (NTRS)

    Li, S. P.

    1975-01-01

    It was experimentally demonstrated that the field emission of positive ions from the metal SiO2 interface in MOS structures can be controlled by introducing a positive charge in a small ion-implantation dose to a shallow depth below the metal electrode. Considerable improvement of time-dependent breakdown was noted in structures implanted in this manner as opposed to nonimplanted ones. This experiment confirms the model proposed by Li and Maserjian (1975) for radiation effect on time-dependent breakdown.

  20. A diffraction grating created in diamond substrate by boron ion implantation

    NASA Astrophysics Data System (ADS)

    Stepanov, A. L.; Nuzhdin, V. I.; Galyautdinov, M. F.; Kurbatova, N. V.; Valeev, V. F.; Vorobev, V. V.; Osin, Yu. N.

    2017-01-01

    This work is devoted to new method of manufacturing of diffractive optical elements (gratings). A grating was formed in a diamond substrate by implantation with boron ions through a mask. Ion implantation led to the graphitization of diamond in unmasked regions and resulted in swelling of the irradiated layer. The formation of periodic graphitized surface microstructures on the diamond substrate was confirmed by optical, electron, and atomic force microscopy. The efficiency of operation of the obtained diffractive optical element was demonstrated by probing with He-Ne laser radiation.

  1. Basic Aspects of the Formation and Activation of Boron Junctions Using Plasma Immersion Ion Implantation

    SciTech Connect

    Zschaetzsch, G.; Vandervorst, W.; Hoffmann, T.; Goossens, J.; Everaert, J.-L.; Agua Borniquel, J. I. del; Poon, T.

    2008-11-03

    This study investigates the basic aspects of junction formation using Plasma Immersion Ion Implantation using BF{sub 3} and addresses the role of (pre)amorphization, C(F)-co-implantation, plasma parameters (bias, dose) and the thermal anneal cycle (spike versus msec laser anneal). The basic physics are studied using Secondary Ion Mass Spectrometry, sheet resistance and using four point probe and RsL. Profiles with junction depths ranging from 10-12 nm and sheet resistance values below 800 Ohm/sq are readily achievable.

  2. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    SciTech Connect

    Reichel, Christian; Feldmann, Frank; Müller, Ralph; Hermle, Martin; Glunz, Stefan W.; Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul

    2015-11-28

    Passivated contacts (poly-Si/SiO{sub x}/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF{sub 2}), the ion implantation dose (5 × 10{sup 14 }cm{sup −2} to 1 × 10{sup 16 }cm{sup −2}), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iV{sub oc}) of 725 and 720 mV, respectively. For p-type passivated contacts, BF{sub 2} implantations into intrinsic a-Si yield well passivated contacts and allow for iV{sub oc} of 690 mV, whereas implanted B gives poor passivation with iV{sub oc} of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved V{sub oc} of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF{sub 2} implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with V{sub oc} of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.

  3. Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles

    NASA Astrophysics Data System (ADS)

    Bai, Zhitong; Zhang, Lin; Liu, Ling

    2016-04-01

    Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically analyzing the effects of the incident angle and ion energy in determining the probabilities of six distinct types of physics that may occur in an ion bombardment event, including reflection, absorption, substitution, single vacancy, double vacancy, and transmission. By analyzing the atomic trajectories from 576 000 simulations, we identified three single vacancy creation mechanisms and four double vacancy creation mechanisms, and quantified their probability distributions in the angle-energy space. These findings further open the door for improved control of ion implantation towards a wide range of applications of graphene.Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically

  4. Controlled removal of ceramic surfaces with combination of ions implantation and ultrasonic energy

    DOEpatents

    Boatner, Lynn A.; Rankin, Janet; Thevenard, Paul; Romana, Laurence J.

    1995-01-01

    A method for tailoring or patterning the surface of ceramic articles is provided by implanting ions to predetermined depth into the ceramic material at a selected surface location with the ions being implanted at a fluence and energy adequate to damage the lattice structure of the ceramic material for bi-axially straining near-surface regions of the ceramic material to the predetermined depth. The resulting metastable near-surface regions of the ceramic material are then contacted with energy pulses from collapsing, ultrasonically-generated cavitation bubbles in a liquid medium for removing to a selected depth the ion-damaged near-surface regions containing the bi-axially strained lattice structure from the ceramic body. Additional patterning of the selected surface location on the ceramic body is provided by implanting a high fluence of high-energy, relatively-light ions at selected surface sites for relaxing the bi-axial strain in the near-surface regions defined by these sites and thereby preventing the removal of such ion-implanted sites by the energy pulses from the collapsing ultrasonic cavitation bubbles.

  5. A spectroscopic study of the near-surface layers of a glass modified by ion implantation

    SciTech Connect

    Deshkovskaya, A.A.; Komar, V.P.; Skornyakov, I.V.

    1985-07-01

    The mechanism of the complex physiocochemical processes leading to the structural changes in glass under ion implantation is discussed in this paper. Specimens of Pyrex-type silicate glasses manufactured in the form of polished, plane-parallel plates 10 x 10 x 1 mm were studied. As the doping impurities singly charged ions B/sup +/, N/sup +/, O/sup +/, P/sup +/, Ar/sup +/, BF/sub 2//sup +/, As/sup +/, Sb/sup +/, and Pb/sup +/ were used and also the double charged P/sup + +/ ions. The implantation was done at room temperature on a ''Vesuvius-1'' type of equipment with an attachment that makes it possible to obtain high-energy ions beams. When studying the structural damage, the implanted glasses and the mechanism by which it is caused, the authors used infrared spectroscopy of the multiple frustrated total internal reflection (MFTIR) which makes it possible to analyze the deeper surface layers of the material in addition to the use of IR spectroscopy which gives information on the surface of the glass. Of all the possible reasons for the structural damage in a Pyrex glass caused by ion implantation, the dominant role is shown to itself is not so important as its capacity for interaction with its environment.

  6. Magnetization control for bit pattern formation of spinel ferromagnetic oxides by Kr ion implantation

    SciTech Connect

    Kita, Eiji Suzuki, Kazuya Z.; Liu, Yang; Utsumi, Yuji; Morishita, Jumpei; Niizeki, Tomohiko; Yanagihara, Hideto; Oshima, Daiki; Kato, Takeshi; Mibu, Ko

    2014-05-07

    As a first step toward the development of bit-patterned magnetic media made of oxides, we investigated the effectiveness of magnetism control by Kr implantation in a typical spinel ferromagnetic oxide, Fe{sub 3}O{sub 4}. We implanted Kr ions accelerated at 30 kV on 13-nm-thick Fe{sub 3}O{sub 4} thin films at dosages of (1–40) × 10{sup 14} ions/cm{sup 2}. Magnetization decreased with increase in ion dosages and disappeared when irradiation was greater than 2 × 10{sup 15} ions/cm{sup 2} of Kr ions. These dosages are more than ten times smaller than that used in the N{sub 2} implantation for metallic and oxide ferromagnets. Both the temperature dependence of magnetization and the Mössbauer study suggest that the transition of Fe{sub 3}O{sub 4} from ferromagnetic to paramagnetic took place sharply due to Kr ion irradiation, which produces two-phase separation—ferromagnetic and nonmagnetic with insufficient dosage of Kr ions.

  7. Plasma immersion ion implantation for sub-22 nm node devices: FD-SOI and Tri-Gate

    SciTech Connect

    Duchaine, J.; Milesi, F.; Coquand, R.; Barraud, S.; Reboh, S.; Gonzatti, F.; Mazen, F.; Torregrosa, Frank

    2012-11-06

    Here, we present and discuss the electrical characteristics of fully depleted MOSFET transistors of planar and tridimensional architecture, doped by Plasma Immersion Ion Implantation (PIII) or Beam Line Ion Implantation (BLII). Both techniques delivered similar and satisfactory results in considering the planar architecture. For tri-dimensional Tri-Gate transistors, the results obtained with PIII are superior.

  8. Ion Implantation of In0.53Ga0.47As

    SciTech Connect

    Almonte, Marlene Isabel

    1999-05-01

    Studies of the effects of implanation in In0.53Ga0.47As due to damage by implantation of Ne+ ions and to compensation by implantation of Fe+ ions are reported in this thesis.

  9. Thermodynamic properties of the specific binding between Ag+ ions and C:C mismatched base pairs in duplex DNA.

    PubMed

    Torigoe, Hidetaka; Miyakawa, Yukako; Ono, Akira; Kozasa, Tetsuo

    2011-02-01

    Metal-mediated base pairs formed by the interaction between metal ions and artificial bases in oligonucleotides have been developed for potential applications in nanotechnology. We recently found that a natural C:C mismatched base pair bound to an Ag(+) ion to generate a novel metal-mediated base pair in duplex DNA. Preparation of the novel C-Ag-C base pair involving natural bases is more convenient than that of metal-mediated base pairs involving artificial bases because time-consuming base synthesis is not required. Here, we examined the thermodynamic properties of the binding between the Ag(+) ion and each of single and double C:C mismatched base pair in duplex DNA by isothermal titration calorimetry. The Ag(+) ion specifically bound to the C:C mismatched base pair at a 1:1 molar ratio with 10(6) M(-1) binding constant, which was significantly larger than those for nonspecific metal ion-DNA interactions. The specific binding between the Ag(+) ion and the single C:C mismatched base pair was mainly driven by the positive dehydration entropy change and the negative binding enthalpy change. In the interaction between the Ag(+) ion and each of the consecutive and interrupted double C:C mismatched base pairs, stoichiometric binding at a 1:1 molar ratio was achieved in each step of the first and second Ag(+) binding. The binding affinity for the second Ag(+) binding was similar to that for the first Ag(+) binding. Stoichiometric binding without interference and negative cooperativity may be favorable for aligning multiple Ag(+) ions in duplex DNA for applications of the metal-mediated base pairs in nanotechnology.

  10. I. Heteroepitaxy on Silicon. I. Ion Implantation in Silicon and Heterostructures

    NASA Astrophysics Data System (ADS)

    Bai, Gang

    The themes of this thesis, heteroepitaxy and ion implantation, are two areas that have been very actively researched in the last two decades. Heterostructures made of III-V compound semiconductors by MBE and OMVPE have been used extensively in the fabrication of optoelectronics devices such as high-speed transistors and semiconductor lasers. Heterostructures on Si, which is the focus of part I of this thesis, have the advantage of compatibility with Si-based VLSI and promise to have impact on the microelectronics industry. Studies on the structural, elastic, thermal, and electrical properties of heteroepitaxial CoSi_2, ReSi _2, and GeSi films grown on Si constitute the backbone of this thesis. Some new characteristics of heterostructures were discovered as a result of this investigation. Among them are the observation and modeling of misorientation effects on an epitaxial film grown on a vicinal substrate; the misorientation induced by interfacial misfit dislocation arrays; the experimental measurements and phenomenological analysis of thermal strain, dislocation generation, and strain relaxation; and illustrative measurements of elastic, thermal, and structural properties of epitaxial films. Ion implantation is an important process in the fabrication of integrated circuits. The second part of this thesis deals with the production and annealing of damage produced by ion implantation in semiconductors. The defect production, stability, microstructure, and the induced strain in implanted bulk Si crystals were quantitatively investigated as a function of ion species, dose, and implantation temperature. Many new features, such as the rapid rise of damage near the amorphization threshold, the correlation between the strain and defect concentration, and the scaling behavior of the damage with ion species and implantation temperature, are revealed. The last chapter concerns the effects of ion implantation in CoSi_2, ReSi_2 , and GeSi/Si heterostructures, which is a

  11. Nitrogen- Doped Graphene Quantum Dots: "Turn-off" Fluorescent Probe for Detection of Ag(+) Ions.

    PubMed

    Tabaraki, Reza; Nateghi, Ashraf

    2016-01-01

    Highly luminescent nitrogen-doped graphene quantum dots (N-GQDs) were prepared from glucose and ammonia as carbon and nitrogen sources, respectively. The N-GQDs showed a strong emission at 458 nm with excitation at 360 nm. The N-GQDs exhibited analytical potential as sensing probes for silver ions determination. Factors affecting the fluorescence sensing of Ag(+) ions such as pH, N-GQDs concentration and incubation time were studied using Box-Behnken experimental design. The optimum conditions were determined as pH 7, N-GQDs concentration 1 mg/mL and time 60 min. It suggested that N-GQDs exhibited high sensitivity and selectivity toward Ag(+). The linear range of N-GQDs and the limit of detection (LOD) were 0.2-40 μM and 168 nM, respectively. The N-GQDs-based Ag(+) ions sensor was successfully applied to the determination of Ag(+) in tap water and real river water samples.

  12. Sensitive and selective detection of Hg2+ and Cu2+ ions by fluorescent Ag nanoclusters synthesized via a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Ren, Xiangling; Meng, Xianwei; Fang, Zheng; Tang, Fangqiong

    2013-09-01

    An easily prepared fluorescent Ag nanoclusters (Ag NCs) probe for the sensitive and selective detection of Hg2+ and Cu2+ ions was developed here. The Ag NCs were synthesized by using polymethacrylic acid sodium salt as a template via a convenient hydrothermal process. The as-prepared fluorescent Ag NCs were monodispersed, uniform and less than 2 nm in diameter, and can be quenched in the presence of mercury (Hg2+) or copper (Cu2+) ions. Excellent linear relationships existed between the quenching degree of the Ag NCs and the concentrations of Hg2+ or Cu2+ ions in the range of 10 nM to 20 μM or 10 nM to 30 μM, respectively. By using ethylenediaminetetraacetate (EDTA) as the masking agent of Cu2+, Hg2+ was exclusively detected in coexistence with Cu2+ with high sensitivity (LOD = 10 nM), which also provided a reusable detection method for Cu2+. Furthermore, the different quenching phenomena caused by the two metals ions such as changes in visible colour, shifts of UV absorbance peaks and changes in size of Ag NCs make it easy to distinguish between them. Therefore the easily synthesized fluorescent Ag NCs may have great potential as Hg2+ and Cu2+ ions sensors.An easily prepared fluorescent Ag nanoclusters (Ag NCs) probe for the sensitive and selective detection of Hg2+ and Cu2+ ions was developed here. The Ag NCs were synthesized by using polymethacrylic acid sodium salt as a template via a convenient hydrothermal process. The as-prepared fluorescent Ag NCs were monodispersed, uniform and less than 2 nm in diameter, and can be quenched in the presence of mercury (Hg2+) or copper (Cu2+) ions. Excellent linear relationships existed between the quenching degree of the Ag NCs and the concentrations of Hg2+ or Cu2+ ions in the range of 10 nM to 20 μM or 10 nM to 30 μM, respectively. By using ethylenediaminetetraacetate (EDTA) as the masking agent of Cu2+, Hg2+ was exclusively detected in coexistence with Cu2+ with high sensitivity (LOD = 10 nM), which also provided a

  13. Influence of surface modification of nitinol with silicon using plasma-immersion ion implantation on the alloy corrosion resistance in artificial physiological solutions

    NASA Astrophysics Data System (ADS)

    Kashin, O. A.; Borisov, D. P.; Lotkov, A. I.; Abramova, P. V.; Korshunov, A. V.

    2015-10-01

    Cyclic voltammetry and potentiostatic polarization have been applied to study electrochemical behavior and to determine corrosion resistance of nitinol, which surface was modified with silicon using plasma-immersion ion implantation, in 0.9% NaCl solution and in artificial blood plasma. It was found out that continuous, and also homogeneous in composition, thin Si-containing layers are resistant to corrosion damage at high positive potentials in artificial physiological solutions due to formation of stable passive films. Breakdown potential Eb of Si-modified NiTi depends on the character of silicon and Ni distribution at the alloy surface, Eb values amounted to 0.9-1.5 V (Ag/AgCl/KCl sat.) for the alloy samples with continuous Si-containing surface layers and with decreased Ni surface concentration.

  14. Atomistic modeling of ion implantation technologies in silicon

    NASA Astrophysics Data System (ADS)

    Marqués, Luis A.; Santos, Iván; Pelaz, Lourdes; López, Pedro; Aboy, María

    2015-06-01

    Requirements for the manufacturing of electronic devices at the nanometric scale are becoming more and more demanding on each new technology node, driving the need for the fabrication of ultra-shallow junctions and finFET structures. Main implantation strategies, cluster and cold implants, are aimed to reduce the amount of end-of-range defects through substrate amorphization. During finFET doping the device body gets amorphized, and its regrowth is more problematic than in the case of conventional planar devices. Consequently, there is a renewed interest on the modeling of amorphization and recrystallization in the front-end processing of Si. We present multi-scale simulation schemes to model amorphization and recrystallization in Si from an atomistic perspective. Models are able to correctly predict damage formation, accumulation and regrowth, both in the ballistic and thermal-spike regimes, in very good agreement with conventional molecular dynamics techniques but at a much lower computational cost.

  15. Preparation of graphene on Cu foils by ion implantation with negative carbon clusters

    NASA Astrophysics Data System (ADS)

    Li, Hui; Shang, Yan-Xia; Zhang, Zao-Di; Wang, Ze-Song; Zhang, Rui; Fu, De-Jun

    2015-01-01

    We report on few-layer graphene synthesized on Cu foils by ion implantation using negative carbon cluster ions, followed by annealing at 950 °C in vacuum. Raman spectroscopy reveals IG/I2D values varying from 1.55 to 2.38 depending on energy and dose of the cluster ions, indicating formation of multilayer graphene. The measurements show that the samples with more graphene layers have fewer defects. This is interpreted by graphene growth seeded by the first layers formed via outward diffusion of C from the Cu foil, though nonlinear damage and smoothing effects also play a role. Cluster ion implantation overcomes the solubility limit of carbon in Cu, providing a technique for multilayer graphene synthesis. Project supported by the National Natural Science Foundation of China (Grant Nos. 11105100, 11205116, and 11375135) and the State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, China (Grant No. AWJ-M13-03).

  16. Photoluminescence in silicon implanted with erbium ions at an elevated temperature

    SciTech Connect

    Sobolev, N. A. Kalyadin, A. E.; Shek, E. I.; Sakharov, V. I.; Serenkov, I. T.; Vdovin, V. I.; Parshin, E. O.; Makoviichuk, M. I.

    2011-08-15

    Photoluminescence spectra of n-type silicon upon implantation with erbium ions at 600 Degree-Sign C and oxygen ions at room temperature and subsequent annealings at 1100 Degree-Sign C in a chlorine-containing atmosphere have been studied. Depending on the annealing duration, photoluminescence spectra at 80 K are dominated by lines of the Er{sup 3+} ion or dislocation-related luminescence. The short-wavelength shift of the dislocation-related luminescence line observed at this temperature is due to implantation of erbium ions at an elevated temperature. At room temperature, lines of erbium and dislocation-related luminescence are observed in the spectra, but lines of near-band-edge luminescence predominate.

  17. Gettering of transition metals by cavities in silicon formed by helium ion implantation

    SciTech Connect

    Petersen, G.A.; Myers, S.M.; Follstaedt, D.M.

    1996-09-01

    We have recently completed studies which quantitatively characterize the ability of nanometer-size cavities formed by He ion implantation to getter detrimental metal impurities in Si. Cavity microstructures formed in Si by ion implantation of He and subsequent annealing have been found to capture metal impurities by two mechanisms: (1) chemisorption on internal walls at low concentrations and (2) silicide precipitation at concentrations exceeding the solid solubility. Experiments utilizing ion-beam analysis, cross-sectional transmission electron microscopy, and secondary ion mass spectrometry were performed to quantitatively characterize the gettering effects and to determine the free energies associated with the chemisorbed metal atoms as a function of temperature. Mathematical models utilizing these results have been developed to predict gettering behavior.

  18. Electrical and optical properties of nitrile rubber modified by ion implantation

    SciTech Connect

    S, Najidha; Predeep, P.

    2014-10-15

    Implantation of N{sup +} ion beams are performed on to a non-conjugated elastomer, acrylonirtle butadiene rubber (NBR) with energy 60 keV in the fluence range of 10{sup 14} to 10{sup 16} ions/cm{sup 2}. A decrease in the resistivity of the sample by about eight orders of magnitude is observed in the implanted samples along with color changes. The ion exposed specimens were characterized by means of UV/Vis spectroscopy which shows a shift in the absorption edge value for the as deposited polymer towards higher wavelengths. The band gap is evaluated from the absorption spectra and is found to decrease with increasing fluence. This study can possibly throw light on ion induced changes in the polymer surface.

  19. Formation of c-BN nanoparticles by helium, lithium and boron ion implantation

    NASA Astrophysics Data System (ADS)

    Aradi, Emily; Erasmus, Rudolph M.; Derry, Trevor E.

    2012-02-01

    Ion induced phase transformation from the soft graphitic hexagonal boron nitride ( h-BN) to ultrahard cubic boron nitride ( c-BN) nanoparticles is presented in the work herein. Ion implantation was used as a technique to introduce boron lithium and helium ions, at the energy of 150 keV and fluences ranging from 1 × 10 14 to 1 × 10 16 ions/cm 2, into hot pressed, polycrystalline h-BN. Analyses using Raman Spectroscopy showed that He +, Li + and B + led to a h-BN to c-BN phase transition, evident from the longitudinal optical (LO) Raman phonon features occurring in the implanted samples' spectra. The nature of these phonon peaks and their downshifting is explained using the spatial phonon correlation model.

  20. Influence of Cu ion implantation on the microstructure and cathodoluminescence of ZnS nanostructures

    NASA Astrophysics Data System (ADS)

    Shang, L. Y.; Zhang, D.; Liu, B. Y.

    2016-07-01

    The microstructure and optical properties of as-synthesized and Cu ion implanted ZnS nanostructures with branched edges are studied by using high-resolution transmission electron microscope (TEM) and spatially-resolved cathodoluminescence measurement. Obvious crystalline deterioration has been observed in Cu-doped ZnS nanostructures due to the invasion of Cu ions into ZnS lattice. It was found that the optical emissions of ZnS nanostructures can be selectively modified through the control of Cu ion dose and subsequent heat treatment. An increase of Cu dopant content will lead to an apparent red-shift of the intrinsic band-gap emission in the UV range and the broadening of defect-related emission in visible range. The influences of Cu ion implantation on the microstructure and related optical properties were discussed.