Science.gov

Sample records for ag nanoparticles ag

  1. NMR investigation of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Son, Kwanghyo; Jang, Zeehoon

    2013-01-01

    109Ag nuclear magnetic resonance (NMR) and relaxation measurements have been performed on two powder samples of Ag nanoparticles with average sizes of 20 nm and 80 nm. The measurements have been done in an external field of 9.4 T and in the temperature range 10 K < T < 280 K. The 109Ag NMR spectra for both samples have close to Lorentzian shapes and turn out to be mixtures of homogeneous and inhomogeneous lines. The linewidth Δ ν at room temperature is 1.3 kHz for both samples and gradually increases with decreasing temperature. Both the Knight shift ( K) and the nuclear spin-lattice relaxation rate (1/ T 1) are observed to be almost identical to the values reported for the bulk Ag metal, whereby the Korringa ratio R(= K 2 T 1 T/S) is found to be 2.0 for both samples in the investigated temperature range.

  2. Bimetallic Pt-Ag and Pd-Ag nanoparticles

    SciTech Connect

    Lahiri, Debdutta; Bunker, Bruce; Mishra, Bhoopesh; Zhang, Zhenyuan; Meisel, Dan; Doudna, C. M.; Bertino, M. F.; Blum, Frank D.; Tokuhiro, A. T.; Chattopadhyay, Soma; Shibata, Tomohiro; Terry, Jeff

    2005-04-19

    We report studies of bimetallic nanoparticles with 15%–16% atomic crystal parameters size mismatch. The degree of alloying was also probed in a 2-nm Pt core ssmallest attainable core sized of Pt–Ag nanoparticles scompletely immiscible in bulkd and 20-nm-diameter Pd–Ag nanowires scompletely miscible in bulkd. Particles were synthesized radiolytically, and depending on the initial parameters, they assume spherical or cylindrical snanowired morphologies. In all cases, the metals are seen to follow their bulk alloying characteristics. Also, Pt and Ag segregate in both spherical and wire forms, which indicates that strain due to crystallographic mismatch overcomes the excess surface free energy in the small particles. The Pd–Ag nanowires alloy similar to previously reported spherical Pd–Ag particles of similar diameter and composition

  3. Bimetallic Pt-Ag and Pd-Ag nanoparticles

    SciTech Connect

    Lahiri, Debdutta; Bunker, Bruce; Mishra, Bhoopesh; Zhang, Zhenyuan; Meisel, Dan; Doudna, C.M.; Bertino, M. F.; Blum, Frank D.; Tokuhiro, A.T.; Chattopadhyay, Soma; Shibata, Tomohiro; Terry, Jeff

    2005-05-01

    We report studies of bimetallic nanoparticles with 15%-16% atomic crystal parameters size mismatch. The degree of alloying was probed in a 2-nm Pt core (smallest attainable core size) of Pt-Ag nanoparticles (completely immiscible in bulk) and 20-nm-diameter Pd-Ag nanowires (completely miscible in bulk). Particles were synthesized radiolytically, and depending on the initial parameters, they assume spherical or cylindrical (nanowire) morphologies. In all cases, the metals are seen to follow their bulk alloying characteristics. Pt and Ag segregate in both spherical and wire forms, which indicates that strain due to crystallographic mismatch overcomes the excess surface free energy in the small particles. The Pd-Ag nanowires alloy similar to previously reported spherical Pd-Ag particles of similar diameter and composition.

  4. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  5. Spin coating of Ag nanoparticles: Effect of reduction

    SciTech Connect

    Ansari, A. A. Sartale, S. D.

    2014-04-24

    A surfactant free method for the growth of Ag nanoparticles on glass substrate by spin coating of Ag ions solution followed by chemical reduction in aqueous hydrazine hydrate (HyH) solution has been presented. Appearance of surface plasmon resonance confirms the formation of Ag nanoparticles. Morphology and absorbance spectra of Ag nanoparticles films are used to examine effect of hydrazine concentration on the growth of Ag nanoparticles. SEM images show uniformly distributed Ag nanoparticles. Rate constant was found to be dependent on HyH concentration as a consequence influence particle size.

  6. Study of structural modification of PVA by incorporating Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Saini, Isha; Sharma, Annu; Rozra, Jyoti; Aggarwal, Sanjeev; Dhiman, Rajnish; Sharma, Pawan K.

    2016-05-01

    Nanocomposites of PVA with Ag nanoparticles dispersed in it were synthesized using solution casting method. The morphology and size distribution of Ag nanoparticles embedded in PVA matrix were obtained by transmission electron microscopy (TEM) and Field emission scanning electron microscopy (FE-SEM). Raman spectroscopy was used to examine structural changes taking place inside polyvinyl alcohol (PVA) matrix due to incorporation of Ag nanoparticle. Raman analysis indicates that Ag nanoparticles interact with PVA through H-bonding.

  7. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    PubMed Central

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  8. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  9. Studies on electronic structure of interfaces between Ag and gelatin for stabilization of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Uchida, Takayuki

    2015-06-01

    Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst’s equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix.

  10. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Mehdipour Moghaddam, M. J.; Sadeghi, A.

    2015-02-01

    Silver carbonate and silver nanoparticles (NPs) over of stabilizer montmorillonite (MMT) have been synthesized in aqueous and polyol solvent, respectively. Dispersions of silver nanoparticles have been prepared by the reduction of silver nitrate over of MMT in presence and absence of Na2CO3 compound in ethylene glycol. It was observed that montmorillonite was capable of stabilizing formed Ag nanoparticles through the reduction of Ag+ ions in ethylene glycol. Na2CO3 was used as carbonate source in synthesis of Ag2CO3 NPs in water solvent and also for controlling of Ag nanoparticles size in ethylene glycol medium. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The TEM images showed that Ag NPs size in presence Na2CO3 salts was smaller than without that. The results indicated intercalation of Ag and Ag2CO3 nanoparticles into the montmorillonite clay layers. The diffuse reflectance spectra exhibited a strong surface plasmon resonance (SPR) adsorption peak in the visible region, resulting from Ag nanoparticles. The antibacterial testing results showed that the Ag2CO3-MMT nanocomposite exhibited an antibacterial activity higher than Ag-MMT sample against Escherichia coli.

  11. Laser generated Ag and Ag-Au composite nanoparticles for refractive index sensor

    NASA Astrophysics Data System (ADS)

    Navas, M. P.; Soni, R. K.

    2014-09-01

    Localized surface plasmon resonance (LSPR) wavelength of metal nanoparticles (NPs) is highly sensitive to size, shape and the surrounding medium. Metal targets were laser ablated in liquid for preparation of spherical Ag and Ag@Au core-shell NP colloidal solution for refractive index sensing. The LSPR peak wavelength and broadening of the NPs were monitored in different refractive index liquid. Quasi-static Mie theory simulation results show that refractive index sensitivity of Ag, Ag-Au alloy and Ag@Au core-shell NPs increases nearly linearly with size and shell thickness. However, the increased broadening of the LSPR peak with size, alloy concentration and Au shell thickness restricts the sensing resolution of these NPs. Figure-of-merit (FOM) was calculated to optimize the size of Ag NPs, concentration of Ag-Au alloy NPs and Au shell thickness of Ag@Au core-shell NPs. The refractive index sensitivity (RIS) and FOM were optimum in the size range 20-40 nm for Ag NPs. Laser generated Ag@Au NPs of Au shell thickness in the range of 1-2 nm showed optimum FOM, where thin layer of Au coating can improve the stability of Ag NPs.

  12. Beet Juice-Induced Green Fabrication of Plasmonic AgCl/Ag Nanoparticles

    EPA Science Inventory

    A simple, green, and fast approach (complete within 5 min) was explored for the fabrication of hybrid AgCl/Ag plasmonic nanoparticles under microwave (MW) irradiation. In this method, beet juice served as a reducing reagent, which is an abundant sugar-rich agricultural produce. I...

  13. Extranuclear dynamics of 111Ag(→111Cd) doped in AgI nanoparticles

    NASA Astrophysics Data System (ADS)

    Sato, W.; Mizuuchi, R.; Irioka, N.; Komatsuda, S.; Kawata, S.; Taoka, A.; Ohkubo, Y.

    2014-08-01

    Dynamic behavior of the extranuclear field relative to the 111Ag(→111Cd) probe nucleus introduced in a superionic conductor silver iodide (AgI) was investigated by means of the time-differential perturbed angular correlation technique. For poly-N-vinyl-2-pyrrolidone (PVP)-coated AgI nanoparticles, we observed nuclear spin relaxation of the probe at room temperature. This result signifies that Ag+ ions in the polymer-coated sample make hopping motion from site to site at this low temperature. The activation energy for the dynamic motion was successfully estimated to be 46(10) meV. The first atomic-level observation of the temperature-dependent dynamic behavior of Ag+ ions in the polymer-coated AgI is reported.

  14. Spectroscopic Study on Eu3+ Doped Borate Glasses Containing Ag Nanoparticles and Ag Aggregates.

    PubMed

    Fu, Shaobo; Zheng, Hui; Zhang, Jinsu; Li, Xiangping; Sun, Jiashi; Hua, Ruinian; Dong, Bin; Xia, Haiping; Chen, Baojiu

    2015-01-01

    Transparent Eu(3+)-doped borate glasses containing Ag nanoparticles and Ag aggregates with composition (40 - x) CaO-59.5B2O3-0.5Eu2O3-xAgNO3 were prepared by a simple one-step melt-quenching technique. The X-ray diffraction (XRD) patterns of the glasses reveal amorphous structural properties and no diffraction peaks belonging to metal Ag particles. Ag particles and Ag aggregates were observed from the absorption spectra. Effective energy transfers from the Ag aggregates to the Eu3+ ions were observed in the excitation spectra from monitoring the intrinsic emission of Eu3+x .5D0 --> 7F2. The glasses with higher Ag content can be effectively excited by light in a wide wavelength region, indicating that these glasses have potential application in the solid state lighting driven by semiconductor light emitting diodes (LEDs). The emission spectra of the samples with higher Ag contents exhibit plenteous spectral components covering the full visible region from violet to red, thus indicating that these glass materials possess an excellent and tunable color rendering index. The color coordinates for all the glass samples were calculated by using the intensity-corrected emission spectra and the standard data issued by the CIE (Commission International de l' Eclairage) in 1931. It was found that the color coordinates for most samples with higher Ag contents fall into the white region in the color space. PMID:26328363

  15. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-01

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10‑5 Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  16. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum.

    PubMed

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-16

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10(-5) Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains. PMID:27487089

  17. Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol

    NASA Astrophysics Data System (ADS)

    An, Changhua; Wang, Jizhuang; Jiang, Wen; Zhang, Meiyu; Ming, Xijuan; Wang, Shutao; Zhang, Qinhui

    2012-08-01

    Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO2. For example, reduction of CO2 under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO2 into useful organic compounds.Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO2. For example, reduction of CO2 under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO2

  18. Surface spin polarization induced ferromagnetic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsun; Li, Wen-Hsien; Wu, Sheng Yun

    2016-05-01

    We report on the observation of ferromagnetic spin polarized moments in 4.5 nm Ag nanoparticles. Both ferromagnetic and diamagnetic responses to an applied magnetic field were detected. The spin polarized moments shown under non-linear thermoinduced magnetization appeared on the surface atoms, rather than on all the atoms in particles. The saturation magnetization departed substantially from the Bloch T3/2-law, showing the existence of magnetic anisotropy. The Heisenberg ferromagnetic spin wave model for Ha-aligned moments was then employed to identify the magnetic anisotropic energy gap of ~0.12 meV. Our results may be understood by assuming the surface magnetism model, in which the surface atoms give rise to polarized moments while the core atoms produce diamagnetic responses.

  19. Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods

    NASA Astrophysics Data System (ADS)

    Choudhury, Rupasree; Majumder, Manna; Roy, Dijendra Nath; Basumallick, Srijita; Misra, Tarun Kumar

    2016-06-01

    Silver nanoparticles (Ag NPs) are now widely used as antibacterial and antifungal materials in different consumer products. We report here the preparation of Ag NPs by neem leaves extract (Azadirachta) reduction and trisodium citrate-sodium borohydride reduction methods, and study of their phytotoxicity. The nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and atomic force microscopy (AFM) techniques. Both neem-coated and citrate-coated Ag NPs exhibit surface plasmon around 400 nm, and their average sizes measured by AFM are about 100 and 20 nm, respectively. Antibacterial and antifungal activities of these nanomaterials have been studied by simple pea seed germination and disk diffusion methods. It has been observed from the growth of root and shoot, citrate-coated Ag NPs significantly affect seedling growth, but neem-coated Ag NPs exhibit somehow mild toxicity toward germination process due to the nutrient supplements from neem. On the other hand, antifungal activity of neem-coated Ag NPs has been found much higher than that of citrate-coated Ag NPs due to the combined effects of antifungal activity of neem and Ag NPs. Present research primarily indicates a possible application of neem-coated Ag NPs as a potential fungicide.

  20. Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods

    NASA Astrophysics Data System (ADS)

    Choudhury, Rupasree; Majumder, Manna; Roy, Dijendra Nath; Basumallick, Srijita; Misra, Tarun Kumar

    2016-06-01

    Silver nanoparticles (Ag NPs) are now widely used as antibacterial and antifungal materials in different consumer products. We report here the preparation of Ag NPs by neem leaves extract ( Azadirachta) reduction and trisodium citrate-sodium borohydride reduction methods, and study of their phytotoxicity. The nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and atomic force microscopy (AFM) techniques. Both neem-coated and citrate-coated Ag NPs exhibit surface plasmon around 400 nm, and their average sizes measured by AFM are about 100 and 20 nm, respectively. Antibacterial and antifungal activities of these nanomaterials have been studied by simple pea seed germination and disk diffusion methods. It has been observed from the growth of root and shoot, citrate-coated Ag NPs significantly affect seedling growth, but neem-coated Ag NPs exhibit somehow mild toxicity toward germination process due to the nutrient supplements from neem. On the other hand, antifungal activity of neem-coated Ag NPs has been found much higher than that of citrate-coated Ag NPs due to the combined effects of antifungal activity of neem and Ag NPs. Present research primarily indicates a possible application of neem-coated Ag NPs as a potential fungicide.

  1. Ag/FeCo/Ag core/shell/shell magnetic nanoparticles with plasmonic imaging capability.

    PubMed

    Takahashi, Mari; Mohan, Priyank; Nakade, Akiko; Higashimine, Koichi; Mott, Derrick; Hamada, Tsutomu; Matsumura, Kazuaki; Taguchi, Tomohiko; Maenosono, Shinya

    2015-02-24

    Magnetic nanoparticles (NPs) have been used to separate various species such as bacteria, cells, and proteins. In this study, we synthesized Ag/FeCo/Ag core/shell/shell NPs designed for magnetic separation of subcellular components like intracellular vesicles. A benefit of these NPs is that their silver metal content allows plasmon scattering to be used as a tool to observe detection by the NPs easily and semipermanently. Therefore, these NPs are considered a potential alternative to existing fluorescent probes like dye molecules and colloidal quantum dots. In addition, the Ag core inside the NPs suppresses the oxidation of FeCo because of electron transfer from the Ag core to the FeCo shell, even though FeCo is typically susceptible to oxidation. The surfaces of the Ag/FeCo/Ag NPs were functionalized with ε-poly-L-lysine-based hydrophilic polymers to make them water-soluble and biocompatible. The imaging capability of the polymer-functionalized NPs induced by plasmon scattering from the Ag core was investigated. The response of the NPs to a magnetic field using liposomes as platforms and applying a magnetic field during observation by confocal laser scanning microscopy was assessed. The results of the magnetophoresis experiments of liposomes allowed us to calculate the magnetic force to which each liposome was subjected. PMID:25614919

  2. Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail

    USGS Publications Warehouse

    Luoma, Samuel N.; Tasha Stoiber; Croteau, Marie-Noele; Isabelle Romer; Ruth Merrifeild; Jamie Lead

    2016-01-01

    Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.

  3. Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages

    NASA Astrophysics Data System (ADS)

    Veronesi, G.; Aude-Garcia, C.; Kieffer, I.; Gallon, T.; Delangle, P.; Herlin-Boime, N.; Rabilloud, T.; Carrière, M.

    2015-04-01

    Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag+ ions in cellulo; the chemical environment of recombined Ag+ ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides the fraction of Ag+ ions released from the AgNPs under a given exposure condition and highlights their complexation with thiolate groups; the ab initio modelling of the extended spectra allows measuring the Ag-S bond length in cellulo. Dissolution rates depend on the exposure scenario, chronicity leading to higher Ag+ release than acute exposure; Ag-S bond lengths are 2.41 +/- 0.03 Å and 2.38 +/- 0.01 Å in acute and chronic exposure respectively, compatible with digonal AgS2 coordination. Glutathione is identified as the most likely putative ligand for Ag+. The proposed method offers a scope for the investigation of metallic nanoparticle dissolution and recombination in cellular models.Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag+ ions in cellulo; the chemical environment of recombined Ag+ ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides

  4. Transport of stabilized engineered silver (Ag) nanoparticles through porous sandstones

    NASA Astrophysics Data System (ADS)

    Neukum, Christoph; Braun, Anika; Azzam, Rafig

    2014-03-01

    Engineered nanoparticles are increasingly applied in consumer products and concerns are rising regarding their risk as potential contaminants or carriers for colloid-facilitated contaminant transport. Engineered silver nanoparticles (AgNP) are among the most widely used nanomaterials in consumer products. However, their mobility in groundwater has been scarcely investigated. In this study, transport of stabilized AgNP through porous sandstones with variations in mineralogy, pore size distribution and permeability is investigated in laboratory experiments with well-defined boundary conditions. The AgNP samples were mainly characterized by asymmetric flow field-flow fractionation coupled to a multi-angle static laser light detector and ultraviolet-visible spectroscopy for determination of particle size and concentration. The rock samples are characterized by mercury porosimetry, flow experiments and solute tracer tests. Solute and AgNP breakthrough was quantified by applying numerical models considering one kinetic site model for particle transport. The transport of AgNP strongly depends on pore size distribution, mineralogy and the solution ionic strength. Blocking of attachment sites results in less reactive transport with increasing application of AgNP mass. AgNPs were retained due to physicochemical filtration and probably due to straining. The results demonstrate the restricted applicability of AgNP transport parameters determined from simplified experimental model systems to realistic environmental matrices.

  5. Stability of Ag nanoparticles dispersed in amphiphilic organic matrix

    NASA Astrophysics Data System (ADS)

    Suvorova, Elena I.; Klechkovskaya, Vera V.; Kopeikin, Victor V.; Buffat, Philippe A.

    2005-02-01

    Nano- and thin-film technologies based on novel systems associating metals particles to polymer matrix open a broad range of different applications. Such composites were found to be more efficient and safe, for instance, in biomedical needs. The Ag/poly(N-vinyl-2-pyrrolidone) (Ag/PVP) composite investigated in the present work is a new bactericide mean applied in complicated cases of infected burns and purulent wounds. High-resolution transmission electron microscopy (HRTEM) and X-ray energy-dispersive (EDS) microanalysis were used to bring chemical and structural information in a study of the properties and stability of thin-film nanocomposite whih consisted of Ag nanoparticles dispersed in water-soluble organic matrix poly(N-vinyl-2-pyrrolidone). The nanostructural investigation of Ag/PVP composite by HRTEM and EDS exposed to SO 2 and H 2S from the atmosphere and some traces of S-containing substances explains the limited stability of this system by a structural modification associated with a phase change and formation of Ag 2S and Ag 2SO 3. However, formation of the hardly water-soluble Ag 2S and Ag 2SO 3 salts may play an important role in the suppression of bacterial growth. On the one hand, silver could block S-H groups in vital proteins and conduced to their destruction, in that way revealing the antibacterial power. On the other hand, antiseptic properties of Ag consist in binding the products of the protein decay.

  6. Transport of silver nanoparticles (AgNPs) in soil.

    PubMed

    Sagee, Omer; Dror, Ishai; Berkowitz, Brian

    2012-07-01

    The effect of soil properties on the transport of silver nanoparticles (AgNPs) was studied in a set of laboratory column experiments, using different combinations of size fractions of a Mediterranean sandy clay soil. The AgNPs with average size of ~30nm yielded a stable suspension in water with zeta potential of -39mV. Early breakthrough of AgNPs in soil was observed in column transport experiments. AgNPs were found to have high mobility in soil with outlet relative concentrations ranging from 30% to 70%, depending on experimental conditions. AgNP mobility through the column decreased when the fraction of smaller soil aggregates was larger. The early breakthrough pattern was not observed for AgNPs in pure quartz columns nor for bromide tracer in soil columns, suggesting that early breakthrough is related to the nature of AgNP transport in natural soils. Micro-CT and image analysis used to investigate structural features of the soil, suggest that soil aggregate size strongly affects AgNP transport in natural soil. The retention of AgNPs in the soil column was reduced when humic acid was added to the leaching solution, while a lower flow rate (Darcy velocity of 0.17cm/min versus 0.66cm/min) resulted in higher retention of AgNPs in the soil. When soil residual chloride was exchanged by nitrate prior to column experiments, significantly improved mobility of AgNPs was observed in the soil column. These findings point to the importance of AgNP-soil chemical interactions as a retention mechanism, and demonstrate the need to employ natural soils rather than glass beads or quartz in representative experimental investigations. PMID:22516207

  7. Transient electron energy distribution in supported Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Merschdorf, M.; Kennerknecht, C.; Willig, K.; Pfeiffer, W.

    2002-11-01

    The electron relaxation in Ag nanoparticles supported on graphite is investigated by time-resolved multiphoton photoemission spectroscopy. The photoemission spectra map the transient electron energy distribution in the nanoparticles and reveal the internal thermalization and cooling of the electron gas. The excess energy stored in the electron gas is calculated using the free-electron model. In contrast to the behaviour of isolated nanoparticles the energy loss rate from the electron gas increases with the pump fluence. This indicates that the electron gas equilibration in Ag nanoparticles on graphite is modified by excited electron transport.

  8. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation

    NASA Astrophysics Data System (ADS)

    González-Castillo, Jr.; Rodriguez, E.; Jimenez-Villar, E.; Rodríguez, D.; Salomon-García, I.; de Sá, Gilberto F.; García-Fernández, T.; Almeida, DB; Cesar, CL; Johnes, R.; Ibarra, Juana C.

    2015-10-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag+ concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM).

  9. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation.

    PubMed

    González-Castillo, J R; Rodriguez, E; Jimenez-Villar, E; Rodríguez, D; Salomon-García, I; de Sá, Gilberto F; García-Fernández, T; Almeida, D B; Cesar, C L; Johnes, R; Ibarra, Juana C

    2015-12-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag(+) concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM). PMID:26464175

  10. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract.

    PubMed

    Philip, Daizy

    2009-07-15

    Integration of green chemistry principles to nanotechnology is one of the key issues in nanoscience research. There is growing need to develop environmentally benign metal nanoparticle synthesis process that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on extracellular synthesis method for the preparation of Au, Ag and Au-Ag nanoparticles in water, using the extract of Volvariella volvacea, a naturally occurring edible mushroom, as reducing and protecting agents. Gold nanoparticles of different sizes (20-150 nm) and shapes from triangular nanoprisms to nearly spherical and hexagonal are obtained by this novel method. The size and shape of gold nanoparticles are also found to depend on temperature of the extract. The silver nanoparticles are spherical with size approximately 15 nm. There is increased productivity of nanoparticles as shown by sharp and intense surface plasmon resonance bands for the nanoparticles prepared using an excess of the extract. The Au-Ag nanoparticles prepared by co-reduction has only one plasmon band due to alloying of the constituents. All the synthesized nanoparticles are found to be photoluminescent and are highly crystalline as shown by SAED and XRD patterns with fcc phase oriented along the (111) plane. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. It is found that Au nanoparticles are bound to proteins through free amino groups and silver nanoparticles through the carboxylate group of the amino acid residues. The position and intensity of the emission band is found to depend on composition of the nanoparticles indicating the possible use in therapeutic applications. PMID:19324587

  11. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract

    NASA Astrophysics Data System (ADS)

    Philip, Daizy

    2009-07-01

    Integration of green chemistry principles to nanotechnology is one of the key issues in nanoscience research. There is growing need to develop environmentally benign metal nanoparticle synthesis process that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on extracellular synthesis method for the preparation of Au, Ag and Au-Ag nanoparticles in water, using the extract of Volvariella volvacea, a naturally occurring edible mushroom, as reducing and protecting agents. Gold nanoparticles of different sizes (20-150 nm) and shapes from triangular nanoprisms to nearly spherical and hexagonal are obtained by this novel method. The size and shape of gold nanoparticles are also found to depend on temperature of the extract. The silver nanoparticles are spherical with size ˜15 nm. There is increased productivity of nanoparticles as shown by sharp and intense surface plasmon resonance bands for the nanoparticles prepared using an excess of the extract. The Au-Ag nanoparticles prepared by co-reduction has only one plasmon band due to alloying of the constituents. All the synthesized nanoparticles are found to be photoluminescent and are highly crystalline as shown by SAED and XRD patterns with fcc phase oriented along the (1 1 1) plane. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. It is found that Au nanoparticles are bound to proteins through free amino groups and silver nanoparticles through the carboxylate group of the amino acid residues. The position and intensity of the emission band is found to depend on composition of the nanoparticles indicating the possible use in therapeutic applications.

  12. Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida).

    PubMed

    Shoults-Wilson, W A; Zhurbich, Oksana I; McNear, David H; Tsyusko, Olga V; Bertsch, Paul M; Unrine, Jason M

    2011-03-01

    Silver nanoparticles have been incorporated into a wide variety of consumer products, ideally acting as antimicrobial agents. Silver exposure has long been known to cause toxic effects to a wide variety of organisms, making large scale production of silver nanoparticles a potential hazard to environmental systems. Here we describe the first evidence that an organism may be able to sense manufactured nanoparticles in a complex, environmentally relevant exposure and that the presence of nanoparticles alters the organism's behavior. We found that earthworms (Eisenia fetida) consistently avoid soils containing silver nanoparticles and AgNO(3) at similar concentrations of Ag. However, avoidance of silver nanoparticles occurred over 48 h, while avoidance of AgNO(3) was immediate. It was determined that avoidance of silver nanoparticles could not be explained by release of silver ions or any changes in microbial communities caused by the introduction of Ag. This leads us to conclude that the earthworms were in some way sensing the presence of nanoparticles over the course of a 48 h exposure and choosing to avoid exposure to them. Our results demonstrate that nanoparticle interactions with organisms may be unpredictable and that these interactions may result in ecologically significant effects on behavior at environmentally relevant concentrations. PMID:21229389

  13. Highly luminescent material based on Alq3:Ag nanoparticles.

    PubMed

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2013-09-01

    Tris (8-hydroxyquinoline) aluminum (Alq3) is an organic semiconductor molecule, widely used as an electron transport layer, light emitting layer in organic light-emitting diodes and a host for fluorescent and phosphorescent dyes. In this work thin films of pure and silver (Ag), cupper (Cu), terbium (Tb) doped Alq3 nanoparticles were synthesized using the physical vapor condensation method. They were fabricated on glass substrates and characterized by X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectroscopy, atomic force microscope (AFM), UV-visible absorption spectra and studied for their photoluminescence (PL) properties. SEM and AFM results show spherical nanoparticles with size around 70-80 nm. These nanoparticles have almost equal sizes and a homogeneous size distribution. The maximum absorption of Alq3 nanoparticles is observed at 300 nm, while the surface plasmon resonant band of Ag doped sample appears at 450 nm. The PL emission spectra of Tb, Cu and Ag doped Alq3 nanoparticles show a single broad band at around 515 nm, which is similar to that of the pure one, but with enhanced PL intensity. The sample doped with Ag at a concentration ratio of Alq3:Ag = 1:0.8 is found to have the highest PL intensity, which is around 2 times stronger than that of the pure one. This enhancement could be attributed to the surface plasmon resonance of Ag ions that might have increased the absorption and then the quantum yield. These remarkable result suggest that Alq3 nanoparticles incorporated with Ag ions might be quite useful for future nano-optoelectronic devices. PMID:23653126

  14. Nanoparticle Ag-enhanced textured-powder Bi-2212/Ag wire technology

    NASA Astrophysics Data System (ADS)

    Kellams, J. N.; McIntyre, P.; Pogue, N.; Vandergrifft, J.

    2015-12-01

    A new approach to the preparation of cores for Bi-2212/Ag wire is being developed. Nanoparticle Ag is homogeneously dispersed in Bi-2212 fine powder, and the mixture is uniaxially compressed to form highly textured, cold-sintered core rods. The rods can be assembled in a silver matrix, drawn to form multifilament wire, and restacked and drawn to form multifilament wire. Preliminary studies using tablet geometry demonstrate that a nonmelt heat treatment produces densification, grain growth, intergrowth among grains, and macroscopic current transport. The status of the development is reported.

  15. Heat-induced spinodal decomposition of Ag-Cu nanoparticles.

    PubMed

    Sopoušek, Jiří; Zobač, Ondřej; Buršík, Jiří; Roupcová, Pavla; Vykoukal, Vít; Brož, Pavel; Pinkas, Jiří; Vřešt'ál, Jan

    2015-11-14

    Solvothermal synthesis was used for Ag-Cu nanoparticle (NP) preparation from metallo-organic precursors. The detailed NP characterization was performed to obtain information about nanoparticle microstructure and both phase and chemical compositions. The resulting nanoparticles exhibited chemical composition inside a FCC_Ag + FCC_Cu two-phase region. The microstructure study was performed by various methods of electron microscopy including high-resolution transmission electron microscopy (HRTEM) at an atomic scale. The HRTEM and X-ray diffraction studies showed that the prepared nanoparticles form the face centred cubic (FCC) crystal lattice where the silver atoms are randomly mixed with copper. The CALPHAD approach was used for predicting the phase diagram of the Ag-Cu system in both macro- and nano-scales. The predicted spinodal decomposition of the metastable Ag-Cu nanoparticles was experimentally induced by heating on an X-ray powder diffractometer (HT XRD). The nucleation of the Cu-rich phase was detected and its growth was studied. Changes in the Ag-rich phase were observed in situ by X-ray diffraction under vacuum. The heat treatment was conducted at different maximum temperatures up to 450 °C and the resulting particle product was analysed. The experiments were complemented by differential scanning calorimetry (DSC) measurements up to liquidus temperature. The start temperatures of the spinodal phase transformation and particle aggregation were evaluated. PMID:25929324

  16. Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol.

    PubMed

    An, Changhua; Wang, Jizhuang; Jiang, Wen; Zhang, Meiyu; Ming, Xijuan; Wang, Shutao; Zhang, Qinhui

    2012-09-21

    Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO(2). For example, reduction of CO(2) under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO(2) into useful organic compounds. PMID:22869008

  17. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles.

    PubMed

    San-Miguel, Miguel A; da Silva, Edison Z; Zannetti, Sonia M; Cilense, Mario; Fabbro, Maria T; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-06-01

    Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements. PMID:27114472

  18. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles

    NASA Astrophysics Data System (ADS)

    San-Miguel, Miguel A.; da Silva, Edison Z.; Zannetti, Sonia M.; Cilense, Mario; Fabbro, Maria T.; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-06-01

    Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements.

  19. Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method

    NASA Astrophysics Data System (ADS)

    Chook, Soon Wei; Chia, Chin Hua; Zakaria, Sarani; Ayob, Mohd Khan; Chee, Kah Leong; Huang, Nay Ming; Neoh, Hui Min; Lim, Hong Ngee; Jamal, Rahman; Rahman, Raha Mohd Fadhil Raja Abdul

    2012-09-01

    Silver nanoparticles and silver-graphene oxide nanocomposites were fabricated using a rapid and green microwave irradiation synthesis method. Silver nanoparticles with narrow size distribution were formed under microwave irradiation for both samples. The silver nanoparticles were distributed randomly on the surface of graphene oxide. The Fourier transform infrared and thermogravimetry analysis results showed that the graphene oxide for the AgNP-graphene oxide (AgGO) sample was partially reduced during the in situ synthesis of silver nanoparticles. Both silver nanoparticles and AgGO nanocomposites exhibited stronger antibacterial properties against Gram-negative bacteria ( Salmonella typhi and Escherichia coli) than against Gram-positive bacteria ( Staphyloccocus aureus and Staphyloccocus epidermidis). The AgGO nanocomposites consisting of approximately 40 wt.% silver can achieve antibacterial performance comparable to that of neat silver nanoparticles.

  20. Surface-enhanced Raman scattering from Ag nanoparticles formed by visible laser irradiation of thermally annealed AgO{sub x} thin films

    SciTech Connect

    Fujimaki, Makoto; Awazu, Koichi; Tominaga, Junji; Iwanabe, Yasuhiko

    2006-10-01

    Visible laser irradiation of AgO{sub x} thin films forms Ag nanoparticles, which then results in surface-enhanced Raman scattering (SERS). The efficiency of this Ag nanoparticle formation strongly depends on the properties of the AgO{sub x} thin films. Thermal annealing causes changes in physical properties such as deoxidization of the films and aggregation of Ag atoms in the films. In the present research, the effects of the changes induced by thermal annealing on SERS efficiency were examined. It was found that AgO{sub x} thin films annealed at 300 deg. C for 5 min in a N{sub 2} atmosphere were suitable for the formation of Ag nanoparticles effective for SERS, while films that were not annealed were not. From these results, it was deduced that the Ag aggregation resulting from thermal annealing in AgO{sub x} thin films promotes the Ag nanoparticle formation.

  1. Reducing Strength Prevailing at Root Surface of Plants Promotes Reduction of Ag+ and Generation of Ag0/Ag2O Nanoparticles Exogenously in Aqueous Phase

    PubMed Central

    Pardha-Saradhi, Peddisetty; Yamal, Gupta; Peddisetty, Tanuj; Sharmila, Peddisetty; Nagar, Shilpi; Singh, Jyoti; Nagarajan, Rajamani; Rao, Kottapalli S.

    2014-01-01

    Potential of root system of plants from wide range of families to effectively reduce membrane impermeable ferricyanide to ferrocyanide and blue coloured 2,6-dichlorophenol indophenol (DCPIP) to colourless DCPIPH2 both under non-sterile and sterile conditions, revealed prevalence of immense reducing strength at root surface. As generation of silver nanoparticles (NPs) from Ag+ involves reduction, present investigations were carried to evaluate if reducing strength prevailing at surface of root system can be exploited for reduction of Ag+ and exogenous generation of silver-NPs. Root system of intact plants of 16 species from 11 diverse families of angiosperms turned clear colorless AgNO3 solutions, turbid brown. Absorption spectra of these turbid brown solutions showed silver-NPs specific surface plasmon resonance peak. Transmission electron microscope coupled with energy dispersive X-ray confirmed the presence of distinct NPs in the range of 5–50 nm containing Ag. Selected area electron diffraction and powder X-ray diffraction patterns of the silver NPs showed Bragg reflections, characteristic of crystalline face-centered cubic structure of Ag0 and cubic structure of Ag2O. Root system of intact plants raised under sterile conditions also generated Ag0/Ag2O-NPs under strict sterile conditions in a manner similar to that recorded under non-sterile conditions. This revealed the inbuilt potential of root system to generate Ag0/Ag2O-NPs independent of any microorganism. Roots of intact plants reduced triphenyltetrazolium to triphenylformazon and impermeable ferricyanide to ferrocyanide, suggesting involvement of plasma membrane bound dehydrogenases in reduction of Ag+ and formation of Ag0/Ag2O-NPs. Root enzyme extract reduced triphenyltetrazolium to triphenylformazon and Ag+ to Ag0 in presence of NADH, clearly establishing potential of dehydrogenases to reduce Ag+ to Ag0, which generate Ag0/Ag2O-NPs. Findings presented in this manuscript put forth a novel, simple

  2. Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells

    PubMed Central

    Katsumiti, Alberto; Gilliland, Douglas; Arostegui, Inmaculada; Cajaraville, Miren P.

    2015-01-01

    Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag. PMID:26061169

  3. Preparation, characterization, and photocatalytic activity of porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Tian, Baozhu; Zhang, Jinlong; Xiong, Tianqing; Wang, Tingting

    2014-02-01

    Porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts were synthesized by a multistep route, including a dealloying method to prepare porous Ag, a transformation from Ag to AgBr and AgBrI, and a photo-reduction process to form Ag nanoparticles on the surface of AgBr and AgBrI. It was found that the porous structure kept unchanged during Ag was transferred into AgBr, AgBrI, AgBr@Ag, and AgBrI@Ag. Both porous AgBr@Ag and porous AgBrI@Ag showed much higher visible-light photocatalytic activity than cubic AgBr@Ag for the degradation of methyl orange, which is because the interconnected pore channels not only provide more reactive sites but also favor the transportation of photo-generated electrons and holes. For AgBrI@Ag, AgBrI solid solution formed at the interface of AgBr and AgI, and the phase junction can effectively separate the photo-generated electrons and holes, favorable to the improvement of photocatalytic activity. The optimal I content for obtaining the highest activity is ∼10 at.%.

  4. [Ag25(SR)18](-): The "Golden" Silver Nanoparticle.

    PubMed

    Joshi, Chakra P; Bootharaju, Megalamane S; Alhilaly, Mohammad J; Bakr, Osman M

    2015-09-16

    Silver nanoparticles with an atomically precise molecular formula [Ag25(SR)18](-) (-SR: thiolate) are synthesized, and their single-crystal structure is determined. This synthesized nanocluster is the only silver nanoparticle that has a virtually identical analogue in gold, i.e., [Au25(SR)18](-), in terms of number of metal atoms, ligand count, superatom electronic configuration, and atomic arrangement. Furthermore, both [Ag25(SR)18](-) and its gold analogue share a number of features in their optical absorption spectra. This unprecedented molecular analogue in silver to mimic gold offers the first model nanoparticle platform to investigate the centuries-old problem of understanding the fundamental differences between silver and gold in terms of nobility, catalytic activity, and optical property. PMID:26322865

  5. Accelerated CO2 transport on surface of AgO nanoparticles in ionic liquid BMIMBF4

    PubMed Central

    Ji, Dahye; Kang, Yong Soo; Kang, Sang Wook

    2015-01-01

    The AgO nanoparticles were utilized for a CO2 separation membrane. The AgO nanoparticles were successfully generated in ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF4) by favorable interaction between the surface of particles and the counteranion of BMIMBF4. The generated AgO nanoparticles were confirmed by TEM, and the average size was 20 nm. Coordinative interactions of dissociated AgO particles with BMIM+BF4− were investigated by FT-Raman spectroscopy. When the ionic liquid BMIMBF4 containing AgO nanoparticles was utilized as a CO2 separation membrane, the separation performance was largely enhanced. PMID:26549605

  6. Synthesis of Cu core Ag shell nanoparticles using chemical reduction method

    NASA Astrophysics Data System (ADS)

    Chinh Trinh, Dung; Dung Dang, Thi My; Khanh Huynh, Kim; Fribourg-Blanc, Eric; Chien Dang, Mau

    2015-01-01

    A simple chemical reduction method is used to prepare colloidal bimetallic Cu-Ag core-shell (Cu@Ag) nanoparticles. Polyvinyl pyrrolidone (PVP) was used as capping agent, and ascorbic acid (C6H8O6) and sodium borohydride (NaBH4) were used as reducing agents. The obtained Cu@Ag nanoparticles were characterized by powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectrophotometry. The influence of [Ag]/[Cu] molar ratios on the formation of Ag coatings on the Cu particles was investigated. From the TEM results we found that the ratio [Ag+]/[Cu2+] = 0.2 is the best for the stability of Cu@Ag nanoparticles with an average size of 22 nm. It is also found out that adding ammonium hydroxide (NH4OH) makes the obtained Cu@Ag nanoparticles more stable over time when pure deionized water is used as solvent.

  7. Synthesis of polydopamine at the femtoliter scale and confined fabrication of Ag nanoparticles on surfaces.

    PubMed

    Guardingo, M; Esplandiu, M J; Ruiz-Molina, D

    2014-10-25

    Nanoscale polydopamine motifs are fabricated on surfaces by deposition of precursor femtolitre droplets using an AFM tip and employed as confined reactors to fabricate Ag nanoparticle patterns by in situ reduction of a Ag(+) salt. PMID:25195667

  8. Oxidative Stress Mechanisms Caused by Ag Nanoparticles (NM300K) are Different from Those of AgNO3: Effects in the Soil Invertebrate Enchytraeus crypticus

    PubMed Central

    Ribeiro, Maria J.; Maria, Vera L.; Scott-Fordsmand, Janeck J.; Amorim, Mónica J. B.

    2015-01-01

    The mechanisms of toxicity of Ag nanoparticles (NPs) are unclear, in particular in the terrestrial environment. In this study the effects of AgNP (AgNM300K) were assessed in terms of oxidative stress in the soil worm Enchytraeus crypticus, using a range of biochemical markers [catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR), total glutathione (TG), metallothionein (MT), lipid peroxidation (LPO)]. E. crypticus were exposed during 3 and 7 days (d) to the reproduction EC20, EC50 and EC80 levels of both AgNP and AgNO3. AgNO3 induced oxidative stress earlier (3 d) than AgNP (7 d), both leading to LPO despite the activation of the anti-redox system. MT increased only for AgNP. The Correspondence Analysis showed a clear separation between AgNO3 and AgNP, with e.g., CAT being the main descriptor for AgNP for 7 d. LPO, GST and GPx were for both 3 and 7 d associated with AgNO3, whereas MT and TG were associated with AgNP. These results may reflect a delay in the effects of AgNP compared to AgNO3 due to the slower release of Ag+ ions from the AgNP, although this does not fully explain the observed differences, i.e., we can conclude that there is a nanoparticle effect. PMID:26287225

  9. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions

    PubMed Central

    Hsueh, Yi-Huang; Lin, Kuen-Song; Ke, Wan-Ju; Hsieh, Chien-Te; Chiang, Chao-Lung; Tzou, Dong-Ying; Liu, Shih-Tung

    2015-01-01

    The superior antimicrobial properties of silver nanoparticles (Ag NPs) are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI) staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10–50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation. PMID:26669836

  10. Transformation of AgCl nanoparticles in a sewer system--A field study.

    PubMed

    Kaegi, Ralf; Voegelin, Andreas; Sinnet, Brian; Zuleeg, Steffen; Siegrist, Hansruedi; Burkhardt, Michael

    2015-12-01

    Silver nanoparticles (Ag-NP) are increasingly used in consumer products and their release during the use phase may negatively affect aquatic ecosystems. Research efforts, so far, have mainly addressed the application and use of metallic Ag(0)-NP. However, as shown by recent studies on the release of Ag from textiles, other forms of Ag, especially silver chloride (AgCl), are released in much larger quantities than metallic Ag(0). In this field study, we report the release of AgCl-NP from a point source (industrial laundry that applied AgCl-NP during a piloting phase over a period of several months to protect textiles from bacterial regrowth) to the public sewer system and investigate the transformation of Ag during its transport in the sewer system and in the municipal wastewater treatment plant (WWTP). During the study period, the laundry discharged ~85 g of Ag per day, which dominated the Ag loads in the sewer system from the respective catchment (72-95%) and the Ag in the digested WWTP sludge (67%). Combined results from electron microscopy and X-ray absorption spectroscopy revealed that the Ag discharged from the laundry to the sewer consisted of about one third AgCl and two thirds Ag2S, both forms primarily occurring as nanoparticles with diameters<100 nm. During the 800 m transport in the sewer channel to the nearby WWTP, corresponding to a travel time of ~30 min, the remaining AgCl was transformed into nanoparticulate Ag2S. Ag2S-NP also dominated the Ag speciation in the digested sludge. In line with results from earlier studies, the very low Ag concentrations measured in the effluent of the WWTP (<0.5 μg L(-1)) confirmed the very high removal efficiency of Ag from the wastewater stream (>95%). PMID:25582606

  11. One pot green synthesis of Ag, Au and Au-Ag alloy nanoparticles using isonicotinic acid hydrazide and starch.

    PubMed

    Malathi, Sampath; Ezhilarasu, Tamilarasu; Abiraman, Tamilselvan; Balasubramanian, Sengottuvelan

    2014-10-13

    Gold-silver alloy nanoparticles were synthesized via chemical reduction of varying mole fractions of chloroauric acid (HAuCl4) and silver nitrate (AgNO3) by environmentally benign isonicotinic acid hydrazide (INH) in the presence of starch as a capping agent in aqueous medium. The absorption spectra of Au-Ag nanoparticles show blue shift with increasing silver content indicating the formation of alloy nanoparticles. When the Ag content in the alloy decreases the size of the nanoparticles increases and as a result of which the oxidation potential also increases. The emission maximum undergoes a red shift from 443 to 614 nm. The nanoparticles are monodisperse and spherical with an average particle size of 3-18 nm. The catalytic behavior of alloy nanoparticles indicate that the rate constant for the reduction of 4-nitro phenol to 4-amino phenol increases exponentially from metallic Ag to metallic Au as Au content increases in the Au-Ag alloy nanoparticles. PMID:25037410

  12. Highly quasi-monodisperse ag nanoparticles on titania nanotubes by impregnative aqueous ion exchange.

    PubMed

    Toledo-Antonio, J A; Cortes-Jácome, M A; Angeles-Chavez, C; López-Salinas, E; Quintana, P

    2009-09-01

    Silver nanoparticles were homogenously dispersed on titania nanotubes (NT), which were prepared by alkali hydrothermal methodology and dried at 373 K. Ag(+) incorporation was done by impregnative ion exchange of aqueous silver nitrate onto NT. First, Ag(+) ions incorporate into the layers of nanotube walls, and then, upon heat treatment under N(2) at 573 and 673 K, they migrate and change into Ag(2)O and Ag(0) nanoparticles, respectively. In both cases, Ag nanoparticles are highly dispersed, decorating the nanotubes in a polka-dot pattern. The Ag particle size distribution is very narrow, being ca. 4 +/- 2 nm without any observable agglomeration. The reduction of Ag(2)O into Ag(0) octahedral nanoparticles occurs spontaneously and topotactically when annealing, without the aid of any reducing agent. The population of Ag(0) nanoparticles can be controlled by adjusting the annealing temperature. An electron charge transfer from NT support to Ag(0) nanoparticles, because of a strong interaction, is responsible for considerable visible light absorption in Ag(0) nanoparticles supported on NT. PMID:19485374

  13. Fabrication of plasmonic AgBr/Ag nanoparticles-sensitized TiO2 nanotube arrays and their enhanced photo-conversion and photoelectrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Wang, Qingyao; Qiao, Jianlei; Jin, Rencheng; Xu, Xiaohui; Gao, Shanmin

    2015-03-01

    Plasmonic photosensitizer AgBr/Ag nanospheres supported on TiO2 nanotube arrays (TiO2 NTs) are prepared by successive ionic layer adsorption and reaction (SILAR) technique followed by photoreduction methods. The structural and surface morphological properties of AgBr/Ag nanoparticles sensitized TiO2 NTs and their photoelectrochemical performance are investigated and discussed. A detailed formation mechanism of the TiO2 NTs/AgBr/Ag is proposed. The TiO2 NTs/AgBr/Ag exhibit excellent photocurrent and photoelectrocatalytic activities under visible light irradiation. Efficient utilization of solar energy to create electron-hole pairs is attributed to the significant visible light response and surface plasmon resonance of Ag nanoparticles. This finding indicates that the high photosensitivity of the TiO2 NTs-based surface plasmon resonance materials could be applied toward the development of new plasmonic visible-light-sensitive photovoltaic fuel cells and photocatalysts.

  14. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves.

    PubMed

    Mondal, Samiran; Roy, Nayan; Laskar, Rajibul A; Sk, Ismail; Basu, Saswati; Mandal, Debabrata; Begum, Naznin Ara

    2011-02-01

    In this paper, we have demonstrated for the first time, the superb efficiency of aqueous extract of dried leaves of mahogany (Swietenia mahogani JACQ.) in the rapid synthesis of stable monometallic Au and Ag nanoparticles and also Au/Ag bimetallic alloy nanoparticles having spectacular morphologies. Our method was clean, nontoxic and environment friendly. When exposed to aqueous mahogany leaf extract, competitive reduction of Au(III) and Ag(I) ions present simultaneously in same solution leads to the production of bimetallic Au/Ag alloy nanoparticles. UV-visible spectroscopy was used to monitor the kinetics of nanoparticles formation. UV-visible spectroscopic data and TEM images revealed the formation of bimetallic Au/Ag alloy nanoparticles. Mahogany leaf extract contains various polyhydroxy limonoids which are responsible for the reduction of Au(III) and Ag(I) ions leading to the formation and stabilization of Au and Ag nanopaticles. PMID:21030220

  15. Functionalization of Ag nanoparticles using local hydrophilic pool segment designed on their particle surface

    NASA Astrophysics Data System (ADS)

    Iijima, Motoyuki; Kurumiya, Aki; Esashi, Junki; Miyazaki, Hayato; Kamiya, Hidehiro

    2014-10-01

    The preparation of SiO2-coated Ag nanoparticles dispersible in various organic solvents has been achieved using a solgel reaction of tetraethylorthosilicate (TEOS), in the localized hydrophilic pool segments designed on Ag nanoparticle surfaces. First, oleylamine-capped core Ag nanoparticles were synthesized, followed by ligand exchange with polyethyleneimine (PEI) and further adsorption of an anionic surfactant comprising hydrophilic polyethylene glycol (PEG) chains and hydrophobic alkyl chains, which has previously been reported to improve the stability of nanoparticles in various solvents. Then, a reaction of TEOS with the localized hydrophilic PEI layer on the Ag nanoparticles' surface was conducted by stirring a toluene/TEOS solution of surface-modified Ag nanoparticles at various temperatures. It was found that a SiO2 layer was successfully formed on Ag nanoparticles when the reaction temperature was increased to 60 °C. It was also found, however, that at this elevated temperature, the primary particle size of Ag nanoparticles increased to several tens of nm, attributable to the dissolution and re-reduction of Ag+. Because the surface modifier, PEI and anionic surfactant all remained on the nanoparticle surface during the SiO2 coating process, the prepared SiO2-coated Ag nanoparticles were found to be dispersible in various organic solvents near to their primary particle size.

  16. Thermal Behavior of Ag Micro/Nano Wires Formed by Low-Temperature Sintering of Ag Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Zhong, Yinghui; Li, Dongxue; Wang, Pan; Cai, Yuwei; Duan, Zhiyong

    2015-12-01

    Ag nanoparticles of 30 nm size were deposited onto a Si substrate to form Ag microwires. The nanoparticles were transformed into continuous Ag wires with low-temperature heat treatment at temperatures not higher than 200°C. The morphology, electrical properties, and interface of the sintered Ag nanoparticle wires are described. It is shown that the neck between the nanoparticles begins to form at 150°C, and obvious metallization was found at 170°C. The changes of the crystal structure of the Ag wires at different sintering temperatures were analyzed by x-ray diffractometry. The grain boundary resistance decreased as the crystal grain size increased above 130 nm. The corresponding resistivity of the microstructure is close to that of the bulk. Through the comparison between the Mayadas-Shatzkes's model and experimental data, the range of the grain boundary reflection coefficient C at different temperatures is obtained. This research lays the foundation for the study of nanoimprint lithography with a pseudoplastic metal nanoparticle fluid.

  17. In Situ EXAFS and TEM Investigations of Ag Nanoparticles in Glass

    SciTech Connect

    Schneider, R.; Dubiel, M.; Haug, J.; Hofmeister, H.

    2007-02-02

    Ag particle-glass composites produced by ion exchange processes of soda-lime glasses were investigated by EXAFS spectroscopy at the Ag K-edge. The spectra measured at 10 K were used to characterize the structure of nanoparticles as a result of ion exchange. The evolution of Ag K-edge EXAFS oscillations measured by in situ heating at 823 K as a function of time clearly shows an increase of Ag-Ag distance and coordination number caused by annealing. Together with transmission electron microscopy characterization a preferred growth of Ag particles with respect to nucleation has been found that leads to increased particle sizes in deeper glass regions.

  18. Enhanced photochemistry of ethyl chloride on Ag nanoparticles.

    PubMed

    Toker, Gil; Bespaly, Alexander; Zilberberg, Liat; Asscher, Micha

    2015-02-11

    Enhanced photodecomposition of ethyl chloride (EC) adsorbed on SiO2/Si (100) supported silver nanoparticles (Ag NPs) under ultrahigh vacuum (UHV) conditions has been studied in order to assess the potential contribution of plasmonic effects. The cross section for photodecomposition of EC and overall photoyield were found to increase with increasing photon energy regardless of the plasmon resonant wavelength and with Ag coverage without any noticeable particle size effect. The influence of EC-Ag NPs separation distance on the rate of EC decomposition was studied in order to examine potential local electric field influence on the photodissociation process. Long (∼5 nm) photoactivity decay distance has been observed which excludes local surface plasmon dominance in the photodecomposition event. These findings suggest that the alignment of excited electron energy and adsorbate affinity levels is central for efficient photochemical reactions, whereas short-range electric field enhancement by plasmon excitation on top and at the immediate vicinity of silver nanoparticles does not have any measurable effect. PMID:25555201

  19. Raman gas sensing of modified Ag nanoparticle SERS

    NASA Astrophysics Data System (ADS)

    Myoung, NoSoung; Yoo, Hyung Keun; Hwang, In-Wook

    2014-03-01

    Recent progress in modified Surface Enhanced Raman Scattering (SERS) using Ag nanoparticles makes them promising optical technique for direct gas sensing of interest. However, SERS has been shown to provide sub ppb level detection of the compounds in the vapor phase. The major problem with the sensitivity scaling-up was in the development of fabrication technology for stability and reproducibility of SERS substrates. We report an optimization of 1-propanethiol coated multiple Ag nanoparticle layers on SiO2 substrate as well as new records of real-time, simultaneous vapor phase detection of toluene and 1-2 dichlorobenzene by the radiation of fiber optic coupled 785 nm diode laser and spectrograph. Multiple depositions of Ag NPs were loaded on SiO2 and soaked in 1-propanethiol solution for 24 hours to modify the surface into hydrophobic due to the characteristics of vapor phase of our interests. Raman bands at 1003 cm-1 and 1130 cm-1 for toluene and 12DCB, respectively were compared to 1089 cm-1 and each gas concentration in 1000 mL flask were calculated as a function of each vapor phase ratio. The saturation of toluene and 12DCB were limited only by 800 ppm and the detectable range was 0.6-800 ppm.

  20. Facile Decoration of Polyaniline Fiber with Ag Nanoparticles for Recyclable SERS Substrate.

    PubMed

    Mondal, Sanjoy; Rana, Utpal; Malik, Sudip

    2015-05-20

    Facile synthesis of polyaniline@Ag composite has been successfully demonstrated by a simple solution-dipping method using high-aspect-ratio benzene tetracarboxylic acid-doped polyaniline (BDP) fiber as a nontoxic reducing agent as well as template cum stabilizer. In BDP@Ag composite, BDP fibers are decorated with spherical Ag nanoparticles (Ag NPs), and the population of Ag NPs on BDP fibers is controlled by changing the molar concentration of AgNO3. Importantly, Ag-NP-decorated BDP fibers (BDP@Ag composites) have been evolved as a sensitive materials for the detection of trace amounts of 4-mercaptobenzoic acid and rhodamine 6G as an analyte of surface-enhanced Raman scattering (SERS), and the detection limit is down to nanomolar concentrations with excellent recyclability. Furthermore, synthesized BDP@Ag composites are applied simultaneously as an active SERS substrate and a superior catalyst for reduction of 4-nitrothiophenol. PMID:25912640

  1. SERS detection and antibacterial activity from uniform incorporation of Ag nanoparticles with aligned Si nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yun; Hsu, Li-Jen; Hsiao, Po-Hsuan; Yu, Chang-Tze Ricky

    2015-11-01

    We present a facile, reliable and controllable two-steps electroless deposition for uniformly decorating the silver (Ag) nanoparticles (NPs) on the highly aspect ratio of silicon (Si) nanowire arrays. Different from the direct Ag-loading process, which is normally challenged by the non-uniform coating of Ag, the formation of Ag NPs using such innovative electroless process is no longer to be limited at top nanowire surfaces solely; instead, each Ag+/Si interface can initiate the galvanic reduction of Ag+ ions, thus resulting in the uniform formation of Ag NPs on the entire Si nanowire arrays. In addition, systematic explorations of surface-enhanced Raman scattering (SERS) capability as well as antibacterial activity of the Ag/Si-incorporated nanostructures were performed, and the optimized Ag loadings on Si nanowire-based substrates along with the kinetic investigations were further revealed, which may benefit their practical applications in sensing, medical and biological needs.

  2. Synthesis of triangular Au core-Ag shell nanoparticles

    SciTech Connect

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali . E-mail: msastry@tatachemicals.com

    2007-07-03

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

  3. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film

    NASA Astrophysics Data System (ADS)

    Wang, Long-De; Zhang, Tong; Zhang, Xiao-Yang; Song, Yuan-Jun; Li, Ruo-Zhou; Zhu, Sheng-Qing

    2014-03-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence.

  4. Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola)

    PubMed Central

    Mendes, Luís André; Maria, Vera L.; Scott-Fordsmand, Janeck J.; Amorim, Mónica J. B.

    2015-01-01

    The effects of nanomaterials have been primarily assessed based on standard ecotoxicity guidelines. However, by adapting alternative measures the information gained could be enhanced considerably, e.g., studies should focus on more mechanistic approaches. Here, the environmental risk posed by the presence of silver nanoparticles (Ag NM300K) in soil was investigated, anchoring population and cellular level effects, i.e., survival, reproduction (28 days) and oxidative stress markers (0, 2, 4, 6, 10 days). The standard species Folsomia candida was used. Measured markers included catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), total glutathione (TG), metallothionein (MT) and lipid peroxidation (LPO). Results showed that AgNO3 was more toxic than AgNPs at the population level: reproduction EC20 and EC50 was ca. 2 and 4 times lower, respectively. At the cellular level Correspondence Analysis showed a clear separation between AgNO3 and AgNP throughout time. Results showed differences in the mechanisms, indicating a combined effect of released Ag+ (MT and GST) and of AgNPs (CAT, GR, TG, LPO). Hence, clear advantages from mechanistic approaches are shown, but also that time is of importance when measuring such responses. PMID:26473892

  5. Morphological and electrochemical characterization of electrodeposited Zn–Ag nanoparticle composite coatings

    SciTech Connect

    Punith Kumar, M.K.; Srivastava, Chandan

    2013-11-15

    Silver nanoparticles with an average size of 23 nm were chemically synthesized and used to fabricate Zn–Ag composite coatings. The Zn–Ag composite coatings were generated by electrodeposition method using a simple sulfate plating bath dispersed with 0.5, 1 and 1.5 g/l of Ag nanoparticles. Scanning electron microscopy, X-ray diffraction and texture co-efficient calculations revealed that Ag nanoparticles appreciably influenced the morphology, micro-structure and texture of the deposit. It was also noticed that agglomerates of Ag nanoparticles, in the case of high bath load conditions, produced defects and dislocations on the deposit surface. Ag nanoparticles altered the corrosion resistance property of Zn–Ag composite coatings as observed from Tafel polarization, electrochemical impedance analysis and an immersion test. Reduction in corrosion rate with increased charge transfer resistance was observed for Zn–Ag composite coatings when compared to a pure Zn coating. However, the particle concentration in the plating bath and their agglomeration state directly influenced the surface morphology and the subsequent corrosion behavior of the deposits. - Highlights: • Synthesis of Ag nanoparticles with an average size of 23 nm • Fabrication of Zn/nano Ag composite coating on mild steel • Composite coatings showed better corrosion resistance. • Optimization of particle concentration is necessary.

  6. Application of a new coordination compound for the preparation of AgI nanoparticles

    SciTech Connect

    Mohandes, Fatemeh; Salavati-Niasari, Masoud

    2013-10-15

    Graphical abstract: Silver iodide nanoparticles have been sonochemically synthesized by using silver salicylate complex, [Ag(HSal)], as silver precursor. A series of control experiments were carried out to investigate the effects of solvent, surfactant concentration, sonication time and temperature on the morphology of AgI nanostructures. - Highlights: • Silver salicylate as a new precursor was applied to fabricate γ-AgI nanoparticles. • To further decrease the particle size of AgI, SDS was used as surfactant. • The effect of preparation parameters on the particle size of AgI was investigated. - Abstract: AgI nanoparticles have been sonochemically synthesized by using silver salicylate, [Ag(HSal)], as silver precursor. To investigate the effects of solvent, surfactant concentration, sonication time and temperature on the morphology of AgI nanostructures, several experiments were carried out. The products were characterized by SEM, TEM, XRD, TGA/DTA, UV–vis, and FT-IR. Based on the experimental findings in this research, it was found that the size of AgI nanoparticles was dramatically dependent on the silver precursor, sonochemical irradiation, and surfactant concentration. Sodium dodecyl sulfate (SDS) was applied as surfactant. When the concentration of SDS was 0.055 mM, very uniform sphere-like AgI nanoparticles with grain size of about 25–30 nm were obtained. These results indicated that the high concentration of SDS could prevent the aggregation between colloidal nanoparticles due to its steric hindrance effect.

  7. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    DOE PAGESBeta

    Paik, Haemin; Choi, Yoon -Young; Hong, Seungbum; No, Kwangsoo

    2015-09-04

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increasemore » of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. The enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles.« less

  8. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    SciTech Connect

    Paik, Haemin; Choi, Yoon -Young; Hong, Seungbum; No, Kwangsoo

    2015-09-04

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increase of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. The enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles.

  9. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    PubMed Central

    Paik, Haemin; Choi, Yoon-Young; Hong, Seungbum; No, Kwangsoo

    2015-01-01

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increase of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. These enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles. PMID:26336795

  10. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae.

    PubMed

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-01-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag(+), C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag(+), and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs. PMID:27615743

  11. Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale

    NASA Astrophysics Data System (ADS)

    Sheny, D. S.; Mathew, Joseph; Philip, Daizy

    2011-06-01

    Present study reports a green chemistry approach for the biosynthesis of Au, Ag, Au-Ag alloy and Au core-Ag shell nanoparticles using the aqueous extract and dried powder of Anacardium occidentale leaf. The effects of quantity of extract/powder, temperature and pH on the formation of nanoparticles are studied. The nanoparticles are characterized using UV-vis and FTIR spectroscopies, XRD, HRTEM and SAED analyses. XRD studies show that the particles are crystalline in the cubic phase. The formation of Au core-Ag shell nanoparticles is evidenced by the dark core and light shell images in TEM and is supported by the appearance of two SPR bands in the UV-vis spectrum. FTIR spectra of the leaf powder before and after the bioreduction of nanoparticles are used to identify possible functional groups responsible for the reduction and capping of nanoparticles. Water soluble biomolecules like polyols and proteins are expected to bring about the bio-reduction.

  12. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    NASA Astrophysics Data System (ADS)

    Ambaye, Almaz

    Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa are the etiological agents of several infectious diseases. Antibiotic resistance by these three microbes has emerged as a prevalent problem due in part to the misuse of existing antibiotics and the lack of novel antibiotics. Nanoparticles have emerged as an alternative antibacterial agents to conventional antibiotics owing to their high surface area to volume ratio and their unique chemical and physical properties. Among the nanoparticles, silver nanoparticles have gained increasing attention because silver nanoparticles exhibit antibacterial activity against a range of gram positive and gram negative bacteria. Nanoparticles of well-defined chemistry and morphology can be used in broad biomedical applications, especially in bone tissue engineering applications, where bone infection by bacteria can be acute and lethal. It is commonly noted in the literature that the activity of nanoparticles against microorganisms is dependent upon the size and concentration of the nanoparticles as well as the chemistry of stabilizing agent. To the best of our knowledge, a comprehensive study that evaluates the antibacterial activity of well characterized silver nanoparticles in particular Bovine Serum Albumin (BSA) stabilized against S. aureus and E. coli and cytotoxicity level of BSA stabilized silver nanoparticles towards osteoblast cells (MC3T3-E1) is currently lacking. Therefore, the primary objective of this study was to characterize protein conjugated silver nanoparticles prepared by chemical reduction of AgNO3 and BSA mixture. The formation of Ag/BSA nanoparticles was studied by UV-Vis spectroscopy. The molar ratio of silver to BSA in the Ag/BSA nanoparticles was established to be 27+/- 3: 1, based on Thermogravimetric Analysis and Atomic Absorption Spectroscopy. Based on atomic force microscopy, dynamic light scattering,and transmission electron microscopy(TEM) measurements, the particle size (diameter) of

  13. Spectral investigation of nonlinear local field effects in Ag nanoparticles

    SciTech Connect

    Sato, Rodrigo Takeda, Yoshihiko; Ohnuma, Masato; Oyoshi, Keiji

    2015-03-21

    The capability of Ag nanoparticles to modulate their optical resonance condition, by optical nonlinearity, without an external feedback system was experimentally demonstrated. These optical nonlinearities were studied in the vicinity of the localized surface plasmon resonance (LSPR), using femtosecond pump-and-probe spectroscopy with a white-light continuum probe. Transient transmission changes ΔT/T exhibited strong photon energy and particle size dependence and showed a complex and non-monotonic change with increasing pump light intensity. Peak position and change of sign redshift with increasing pump light intensity demonstrate the modulation of the LSPR. These features are discussed in terms of the intrinsic feedback via local field enhancement.

  14. Reversibly phototunable TiO{sub 2} photonic crystal modulated by Ag nanoparticles' oxidation/reduction

    SciTech Connect

    Liu Jian; Zhou Jinming; Ye Changqing; Li Mingzhu; Wang Jingxia; Jiang Lei; Song Yanlin

    2011-01-10

    We report a reversibly phototunable photonic crystal system whose reflectance at the stop band position can be modulated by alternating UV/visible (UV/Vis) irradiation. The phototunable system consists of Ag nanoparticles and TiO{sub 2} photonic crystal. The stop bands intensity of Ag loaded TiO{sub 2} photonic crystals were found to be dependent on the redox states of Ag nanoparticles. The quasi 'on' and 'off' states of the stop band were reversibly modulated by the Ag nanoparticles' oxidation/reduction through alternating UV/Vis light irradiation.

  15. Dendritic macromolecules supported Ag nanoparticles as efficient catalyst for the reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Safari, Javad; Zarnegar, Zohre; Sadeghi, Masoud; Enayati-Najafabadi, Azadeh

    2016-12-01

    Polymer supported Ag nanoparticles, generated in situ by silver nitrate (AgNO3) reduction under reaction conditions, catalyzed the hydrogenation of 4-nitrophenol with high efficiency in water at room temperature in the presence of an excess amount of NaBH4. Amphiphilic linear-dendritic copolymers containing a poly(ethylene glycol) (PEG) core and poly(2-ethyl-2-oxazoline)-poly(ε-caprolactone) arms were able to load the Ag nanoparticles. The Ag nanoparticles with a diameter of 8-10 nm were found to show a comparable catalytic activity towards formation of the aromatic amine as single product with short reaction time.

  16. M4Ag44(p-MBA)30 Molecular Nanoparticles

    NASA Astrophysics Data System (ADS)

    Conn, Brian E.

    In recent years, molecular nanoparticles have attracted much attention due to their unique physical, optical, and electronic properties. The properties of molecular nanoparticles are shown to deviate from their larger bulk counterparts, due to quantum confinement effects and large surface-to-volume ratios. As the size of the nanoparticle shrinks to a cluster of metal atoms (<3 nm in diameter), there is an emergence of a HOMO-LUMO band gap, which is not present in transitional d-block metals. The HOMO-LUMO band gap gives rise to discrete electronic states, leading to new chemical and physical properties. Molecular nanoparticles have had a substantial impact across a diverse range of fields, including catalysis, sensing, photochemistry, optoelectronic, energy conversion, and medicine. Currently many of the synthetic procedures for molecular nanoparticles require low temperatures, long incubation times, multistep purification and hazardous reagents that produce low yields and polydisperse molecular nanoparticles with poor stability. Although silver has very desirable physical properties, good relative abundance and low cost, gold molecular nanoparticles have been widely favored owing to their proved stability and ease of use. Unlike gold, silver is notorious for its susceptibility to oxidation, i.e., tarnishing, which has limited the development of silver-based nanotechnologies. Despite two decades of synthetic efforts, silver molecular nanoparticles that are inert or have long-term stability have remained unrealized. Herein we report a simple synthetic protocol for producing ultrastable M4Ag44(p-MBA)30 nanoparticles as a single-sized molecular product and in exceptionally large quantities. The stability, purity, and yield are substantially better than other metal nanoparticles, including gold, due to several stabilization mechanisms. Also, reported are the structural and mechanical properties of extended crystalline solids of Na4Ag44(p-MBA)30 from large-scale quantum

  17. Preparation and antibacterial performance testing of Ag nanoparticles embedded biological materials

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyun; Gao, Guanhui; Sun, Chengjun; Zhu, Yaoyao; Qu, Lingyun; Jiang, Fenghua; Ding, Haibing

    2015-03-01

    In this study, we developed an environmentally friendly chemistry strategy to synthesize Ag nanoparticles (Ag-NPs) embedded biological material, powdered mussel shell (PMS). With the PMS as scaffolds and surfactant, Ag nanoparticles of controllable size dispersed uniformly on it via liquid chemical reduction approach. Morphologies and characteristics of synthesized Ag-NPs/PMS hybrids were analyzed with TEM, SEM and XPS. Antibacterial properties were investigated with Gram-positive bacteria (Arthrobacter sulfureus (A. sulfureus) YACS14, Staphylococcus aureus (S. aureus)) and Gram-negative bacteria (Vibrio anguillarum (V. anguillarum) MVM425, Escherichia coli (E. coli)). The antimicrobial results illustrated that Ag-NPs/PMS composites have antibacterial effect on both sea water and fresh water bacteria with a better effect on sea water bacteria. The degree of antibacterial effect is directly related to the amount of Ag released from Ag-NPs/PMS.

  18. Effects of soil and dietary exposures to Ag nanoparticles and AgNO₃ in the terrestrial isopod Porcellionides pruinosus.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Jurkschat, Kerstin; Soares, Amadeu M V M; Loureiro, Susana

    2015-10-01

    The effects of Ag-NPs and AgNO3 on the isopod Porcellionides pruinosus were determined upon soil and dietary exposures. Isopods avoided Ag in soil, with EC50 values of ∼16.0 and 14.0 mg Ag/kg for Ag-NPs and AgNO3, respectively. Feeding inhibition tests in soil showed EC50s for effects on consumption ratio of 127 and 56.7 mg Ag/kg, respectively. Although similar EC50s for effects on biomass were observed for nanoparticulate and ionic Ag (114 and 120 mg Ag/kg dry soil, respectively), at higher concentrations greater biomass loss was found for AgNO3. Upon dietary exposure, AgNO3 was more toxic, with EC50 for effects on biomass change being >1500 and 233 mg Ag/kg for Ag-NPs and AgNO3, respectively. The difference in toxicity between Ag-NPs and AgNO3 could not be explained from Ag body concentrations. This suggests that the relation between toxicity and bioavailability of Ag-NPs differs from that of ionic Ag in soils. PMID:26071943

  19. Photo-catalytic activity of Plasmonic Ag@AgCl nanoparticles (synthesized via a green route) for the effective degradation of Victoria Blue B from aqueous phase.

    PubMed

    Devi, Th Babita; Begum, Shamima; Ahmaruzzaman, M

    2016-07-01

    This study reports a green process for the fabrication of Ag@AgCl (silver@silver chloride) nanoparticles by using Aquilaria agallocha (AA) leaves juice without using any external reagents. The effect of various reaction parameters, such as reaction temperature, reaction time and concentration of Aquilaria agallocha leaves juice in the formation of nanoparticles have also been investigated. From the FTIR spectra of leaves juice and phytochemicals test, it was found that flavonoids present in the leaves are responsible for the reduction of Ag(+) ions to Ag(0) species and leads to the formation of Ag@AgCl NPs. The synthesized Ag@AgCl NPs were utilized for the removal of toxic and hazardous dyes, such as Victoria Blue B from aqueous phase. Approximately, 99.46% degradation of Victoria Blue B dye were observed with Ag@AgCl NPs. Furthermore, the photocatalytic activity of the Ag@AgCl nanoparticles was unchanged after 5cycles of operation. PMID:27152674

  20. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza.

    PubMed

    Jiang, Hong-Sheng; Li, Ming; Chang, Feng-Yi; Li, Wei; Yin, Li-Yan

    2012-08-01

    Silver nanoparticles (AgNPs) are commonly used in consumer products for their antibacterial activity. Silver nanoparticles may adversely influence organisms when released into the environment. The present study investigated the effect of AgNPs on the growth, morphology, and physiology of the aquatic plant duckweed (Spirodela polyrhiza). The toxicity of AgNPs and AgNO(3) was also compared. The results showed that silver content in plant tissue increased significantly with higher concentrations of AgNPs and AgNO(3) . Silver nanoparticles and AgNO(3) significantly decreased plant biomass, caused colonies of S. polyrhiza to disintegrate, and also resulted in root abscission. Physiological analysis showed that AgNPs and AgNO(3) significantly decreased plant tissue nitrate-nitrogen content, chlorophyll a (Chl a) content, chlorophyll a/b (Chl a/b), and chlorophyll fluorescence (Fv/Fm). Changes in soluble carbohydrate and proline content were also detected after both AgNO(3) and AgNPs treatment. However, after 192 h of recovery, total chlorophyll content increased, and Fv/Fm returned to control level. Median effective concentration (EC50) values for Chl a and phosphate content showed that AgNO(3) was more toxic than AgNPs (EC50 values: 16.10 ± 0.75 vs 7.96 ± 0.81 and 17.33 ± 4.47 vs 9.14 ± 2.89 mg Ag L(-1) , respectively), whereas dry-weight EC50 values showed that AgNPs were more toxic than AgNO(3) (13.39 ± 1.06 vs 17.67 ± 1.16 mg Ag L(-1) ). PMID:22639346

  1. Speciation and Lability of Ag-, AgCl- and Ag2S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films

    EPA Science Inventory

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...

  2. Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola).

    PubMed

    Mendes, Luís André; Maria, Vera L; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2015-10-01

    The effects of nanomaterials have been primarily assessed based on standard ecotoxicity guidelines. However, by adapting alternative measures the information gained could be enhanced considerably, e.g., studies should focus on more mechanistic approaches. Here, the environmental risk posed by the presence of silver nanoparticles (Ag NM300K) in soil was investigated, anchoring population and cellular level effects, i.e., survival, reproduction (28 days) and oxidative stress markers (0, 2, 4, 6, 10 days). The standard species Folsomia candida was used. Measured markers included catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), total glutathione (TG), metallothionein (MT) and lipid peroxidation (LPO). Results showed that AgNO₃ was more toxic than AgNPs at the population level: reproduction EC₂₀ and EC₅₀ was ca. 2 and 4 times lower, respectively. At the cellular level Correspondence Analysis showed a clear separation between AgNO₃ and AgNP throughout time. Results showed differences in the mechanisms, indicating a combined effect of released Ag⁺ (MT and GST) and of AgNPs (CAT, GR, TG, LPO). Hence, clear advantages from mechanistic approaches are shown, but also that time is of importance when measuring such responses. PMID:26473892

  3. Enhanced performances in inverted small molecule solar cells by Ag nanoparticles.

    PubMed

    Jin, Fangming; Chu, Bei; Li, Wenlian; Su, Zisheng; Zhao, Haifeng; Lee, C S

    2014-12-15

    We demonstrate a highly efficient inverted small molecular solar cell with integration of Ag nanoparticles (NPs) into the devices. The optimized device based on thermal evaporated Ag NPs provides a power conversion efficiency (PCE) of 4.87%, which offers 33% improvement than that of the reference device without Ag NPs. Such a high efficiency is mainly attributed to the improved electrical properties by virtue of the modification of the surface of ITO with Ag NPs and the enhanced light harvesting due to localized surface plasmon resonance (LSPR). The more detail enhanced mechanism of the PCE by introduction of Ag NPs is also discussed. PMID:25607480

  4. Solution structure of peptide AG4 used to form silver nanoparticles

    SciTech Connect

    Lee, Eunjung; Kim, Dae-Hee; Woo, Yoonkyung; Hur, Ho-Gil; Lim, Yoongho

    2008-11-21

    The preparation of silver nanoparticles (AgNPs) is of great interest due to their various biological activities, such as observed in their antimicrobial and wound healing actions. Moreover, the formation of AgNPs using silver-binding peptide has certain advantages because they can be made in aqueous solution at ambient temperature. The solution structure of the silver-binding peptide AG4 was determined using nuclear magnetic resonance spectroscopy, and the site of the AG4 interaction with AgNPs was elucidated.

  5. Real-Time Imaging of the Formation of Au-Ag Core-Shell Nanoparticles.

    PubMed

    Tan, Shu Fen; Chee, See Wee; Lin, Guanhua; Bosman, Michel; Lin, Ming; Mirsaidov, Utkur; Nijhuis, Christian A

    2016-04-27

    We study the overgrowth process of silver-on-gold nanocubes in dilute, aqueous silver nitrate solution in the presence of a reducing agent, ascorbic acid, using in situ liquid-cell electron microscopy. Au-Ag core-shell nanostructures were formed via two mechanistic pathways: (1) nuclei coalescence, where the Ag nanoparticles absorbed onto the Au nanocubes, and (2) monomer attachment, where the Ag atoms epitaxially deposited onto the Au nanocubes. Both pathways lead to the same Au-Ag core-shell nanostructures. Analysis of the Ag deposition rate reveals the growth modes of this process and shows that this reaction is chemically mediated by the reducing agent. PMID:27043921

  6. Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic.

    PubMed

    Wang, Peng; Menzies, Neal W; Lombi, Enzo; Sekine, Ryo; Blamey, F Pax C; Hernandez-Soriano, Maria C; Cheng, Miaomiao; Kappen, Peter; Peijnenburg, Willie J G M; Tang, Caixian; Kopittke, Peter M

    2015-01-01

    Silver nanoparticles (NPs) are used in more consumer products than any other nanomaterial and their release into the environment is unavoidable. Of primary concern is the wastewater stream in which most silver NPs are transformed to silver sulfide NPs (Ag2S-NPs) before being applied to agricultural soils within biosolids. While Ag2S-NPs are assumed to be biologically inert, nothing is known of their effects on terrestrial plants. The phytotoxicity of Ag and its accumulation was examined in short-term (24 h) and longer-term (2-week) solution culture experiments with cowpea (Vigna unguiculata L. Walp.) and wheat (Triticum aestivum L.) exposed to Ag2S-NPs (0-20 mg Ag L(-1)), metallic Ag-NPs (0-1.6 mg Ag L(-1)), or ionic Ag (AgNO3; 0-0.086 mg Ag L(-1)). Although not inducing any effects during 24-h exposure, Ag2S-NPs reduced growth by up to 52% over a 2-week period. This toxicity did not result from their dissolution and release of toxic Ag(+) in the rooting medium, with soluble Ag concentrations remaining below 0.001 mg Ag L(-1). Rather, Ag accumulated as Ag2S in the root and shoot tissues when plants were exposed to Ag2S-NPs, consistent with their direct uptake. Importantly, this differed from the form of Ag present in tissues of plants exposed to AgNO3. For the first time, our findings have shown that Ag2S-NPs exert toxic effects through their direct accumulation in terrestrial plant tissues. These findings need to be considered to ensure high yield of food crops, and to avoid increasing Ag in the food chain. PMID:25686712

  7. Preparation of conducting silver paste with Ag nanoparticles prepared by e-beam irradiation

    NASA Astrophysics Data System (ADS)

    Sohn, Jong Hwa; Pham, Long Quoc; Kang, Hyun Suk; Park, Ji Hyun; Lee, Byung Cheol; Kang, Young Soo

    2010-11-01

    Conducting silver paste was prepared by using Ag nanoparticles which were synthesized by e-beam irradiation method (from KAERI); its conductivity was comparatively determined with Ag nanoparticles which were prepared by thermolysis method (commercial). The silver nanoparticles with the diameter of approximately 150 nm size prepared by e-beam irradiation were mixed with glass frit and sintered for 1 h at 500 °C. It is presumably concluded that the wt% of silver nanoparticle, size distribution and homogenous dispersibility of Ag nanoparticles in the pastes are the critical factors for the high conductivity of the paste. Among the various wt% of silver nanoparticle in the conducting silver pastes, silver paste with 90 wt% of silver nanoparticle has the highest conductivity as 1.6×10 4 S cm -1. This conductivity value is 1.6 times higher than the Ag pastes which were prepared with silver nanoparticles obtained by thermolysis method.

  8. Photocurrent enhancements of organic solar cells by altering dewetting of plasmonic Ag nanoparticles

    PubMed Central

    Fleetham, Tyler; Choi, Jea-Young; Choi, Hyung Woo; Alford, Terry; Jeong, Doo Seok; Lee, Taek Sung; Lee, Wook Seong; Lee, Kyeong-Seok; Li, Jian; Kim, Inho

    2015-01-01

    Incorporation of metal nanoparticles into active layers of organic solar cells is one of the promising light trapping approaches. The size of metal nanoparticles is one of key factors to strong light trapping, and the size of thermally evaporated metal nanoparticles can be tuned by either post heat treatment or surface modification of substrates. We deposited Ag nanoparticles on ITO by varying nominal thicknesses, and post annealing was carried out to increase their size in radius. PEDOT:PSS was employed onto the ITO substrates as a buffer layer to alter the dewetting behavior of Ag nanoparticles. The size of Ag nanoparticles on PEDOT:PSS were dramatically increased by more than three times compared to those on the ITO substrates. Organic solar cells were fabricated on the ITO and PEDOT:PSS coated ITO substrates with incorporation of those Ag nanoparticles, and their performances were compared. The photocurrents of the cells with the active layers on PEDOT:PSS with an optimal choice of the Ag nanoparticles were greatly enhanced whereas the Ag nanoparticles on the ITO substrates did not lead to the photocurrent enhancements. The origin of the photocurrent enhancements with introducing the Ag nanoparticles on PEDOT:PSS are discussed. PMID:26388104

  9. Photocurrent enhancements of organic solar cells by altering dewetting of plasmonic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Fleetham, Tyler; Choi, Jea-Young; Choi, Hyung Woo; Alford, Terry; Jeong, Doo Seok; Lee, Taek Sung; Lee, Wook Seong; Lee, Kyeong-Seok; Li, Jian; Kim, Inho

    2015-09-01

    Incorporation of metal nanoparticles into active layers of organic solar cells is one of the promising light trapping approaches. The size of metal nanoparticles is one of key factors to strong light trapping, and the size of thermally evaporated metal nanoparticles can be tuned by either post heat treatment or surface modification of substrates. We deposited Ag nanoparticles on ITO by varying nominal thicknesses, and post annealing was carried out to increase their size in radius. PEDOT:PSS was employed onto the ITO substrates as a buffer layer to alter the dewetting behavior of Ag nanoparticles. The size of Ag nanoparticles on PEDOT:PSS were dramatically increased by more than three times compared to those on the ITO substrates. Organic solar cells were fabricated on the ITO and PEDOT:PSS coated ITO substrates with incorporation of those Ag nanoparticles, and their performances were compared. The photocurrents of the cells with the active layers on PEDOT:PSS with an optimal choice of the Ag nanoparticles were greatly enhanced whereas the Ag nanoparticles on the ITO substrates did not lead to the photocurrent enhancements. The origin of the photocurrent enhancements with introducing the Ag nanoparticles on PEDOT:PSS are discussed.

  10. Preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels.

    PubMed

    Im, Hee-Jung; Lee, Byung Cheol; Yeon, Jei-Won

    2013-11-01

    Ag nanoparticles, used for halogen (especially iodine) adsorption and an evaluation of halogen behavior, were embedded in synthesized inorganic-organic hybrid gels. In particular, an irradiation method using an electron beam plays a part in introducing Ag nanoparticles to the organofunctionalized silica gels from AgNO3 solutions in a simple way at atmospheric pressure and room temperature. For preparation of the Ag nanoparticle-embedded inorganic-organic hybrid gels, ligands of ethylenediamine (NH2CH2CH2NH-, TMSen) and mercapto (HS-) functionalized three-dimensional porous SiO2 sol-gels were first synthesized through hydrolysis and condensation reactions, and Ag nanoparticles were then embedded into the ethylenediamine- and mercapto-anchored silica gels each, through electron-beam irradiation. The addition of ligands yielded larger average pore sizes than the absence of any ligand. Moreover, the ethylenediamine ligand led to looser structures and better access of the Ag nanoparticles to the ethylenediamine-anchored gel. As a result, more Ag nanoparticles were introduced into the ethylenediamine-anchored gel. The preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels are discussed in detail. PMID:24245307

  11. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles.

    PubMed

    Chaffin, Elise; O'Connor, Ryan T; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ∼410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods. PMID:27497571

  12. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaffin, Elise; O'Connor, Ryan T.; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ˜410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods.

  13. Formation of Ag Nanoparticles on β-Ag2WO4 through Electron Beam Irradiation: A Synergetic Computational and Experimental Study.

    PubMed

    Roca, Roman A; Gouveia, Amanda F; Lemos, Pablo S; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-09-01

    In the present work, a combined theoretical and experimental study was performed on the structure, optical properties, and growth of Ag nanoparticles in metastable β-Ag2WO4 microcrystals. This material was synthesized using the precipitation method without the presence of surfactants. The structural behavior was analyzed using X-ray diffraction and Raman and infrared spectroscopy. Field-emission scanning electron microscopy revealed the presence of irregular spherical-like Ag nanoparticles on the β-Ag2WO4 microcrystals, which were induced by electron beam irradiation under high vacuum conditions. A detailed analysis of the optimized β-Ag2WO4 geometry and theoretical results enabled interpretation of both the Raman and infrared spectra and provided deeper insight into rationalizing the observed morphology. In addition, first-principles calculations, within the quantum theory of atoms in molecules framework, provided an in-depth understanding of the nucleation and early evolution of Ag nanoparticles. The Ag nucleation and formation is the result of structural and electronic changes of the [AgO6] and [AgO5] clusters as a constituent building block of β-Ag2WO4, which is consistent with Ag metallic formation. PMID:27533109

  14. Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS

    PubMed Central

    Liu, Fanxin; Tang, Chaojun; Zhan, Peng; Chen, Zhuo; Ma, Hongtao; Wang, Zhenlin

    2014-01-01

    We have demonstrated the plasmonic characteristics of an ultrathin tetrahedral amorphous carbon (ta-C) film coated with Ag nanoparticles. The simulation result shows that, under resonant and non-resonant excitations, the strongest plasmonic electric field of 1 nm ta-C coated Ag nanoparticle is not trapped within the ta-C layer but is released to its outside surface, while leaving the weaker electric field inside ta-C layer. Moreover, this outside plasmonic field shows higher intensity than that of uncoated Ag nanoparticle, which is closely dependent on the excitation wavelength and size of Ag particles. These observations are supported by the SERS measurements. We expect that the ability for ultrathin ta-C coated Ag nanoparticles as the SERS substrates to detect low concentrations of target biomolecules opens the door to the applications where it can be used as a detection tool for integrated, on-chip devices. PMID:24675437

  15. Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle.

    PubMed

    Sakai, Hideki; Kanda, Takashi; Shibata, Hirobumi; Ohkubo, Takahiro; Abe, Masahiko

    2006-04-19

    Core/shell-type titania nanocapsules containing a single Ag nanoparticle were prepared. Ag nanoparticles were prepared using the reduction of silver nitrate with hydrazine in the presence of cetyltrimethylammonium bromide (CTAB) as protective agent. The sol-gel reaction of titanium tetraisopropoxide (TTIP) was used to prepare core/shell-type titania nanocapsules with CTAB-coated Ag nanoparticles as the core. TEM observations revealed that the size of the core (Ag particle) and the thickness of the shell (titania) of the core/shell particles obtained are about 10 nm and 5-10 nm, respectively. In addition, the nanocapsules were found to be dispersed in the medium as individual particles without aggregation. Moreover, titania coating caused the surface plasmon absorption of Ag nanoparticles to shift toward the longer wavelength side. PMID:16608315

  16. Bio-inspired sustainable and green synthesis of plasmonic Ag/AgCl nanoparticles for enhanced degradation of organic compound from aqueous phase.

    PubMed

    Devi, Th Babita; Ahmaruzzaman, M

    2016-09-01

    In the current study, we report the utilization of the biogenic potential of Benincasa hispida (ash gourd) peel extract for the synthesis of Ag embedded AgCl nanoparticles nanoparticles (Ag/AgCl NPs) without the use of any external organic solvents. The appearance of dark brown color from the pale yellow color confirmed the formation of Ag/AgCl nanoparticles which was further validated by absorbance peak using UV-visible spectroscopy. The phytochemicals (flavones) present in the B. hispida peel extract acts as a reducing/stabilizing agents. The morphology and size of the synthesized NPs were characterized by transmission electron microscope (TEM), selected area electron microscope (SAED) and high resolution transmission electron microscope (HR-TEM). FT-IR spectra of the B. hispida peel extract and after the development of nanoparticles are determined to identify the functional groups responsible for the conversion of metal ions to metal nanoparticles. The synthesized nanoparticles showed an excellent photocatalytic property in the degradation of toxic dye like malachite green oxalate under sunlight irradiation. For the first time, malachite green oxalate dye was degraded by Ag/AgCl nanoparticles under sunlight irradiation. PMID:27246560

  17. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics

    NASA Astrophysics Data System (ADS)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Jong Lee, Yung; Lee, Hyuck Mo

    2015-11-01

    In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

  18. Mixed-valence metal oxide nanoparticles as electrochemical half-cells: substituting the Ag/AgCl of reference electrodes by CeO(2-x) nanoparticles.

    PubMed

    Nagarale, Rajaram K; Hoss, Udo; Heller, Adam

    2012-12-26

    Cations of mixed valence at surfaces of metal oxide nanoparticles constitute electrochemical half-cells, with potentials intermediate between those of the dissolved cations and those in the solid. When only cations at surfaces of the particles are electrochemically active, the ratio of electrochemically active/all cations is ~0.1 for 15 nm diameter CeO(2-x) particles. CeO(2-x) nanoparticle-loaded hydrogel films on printed carbon and on sputtered gold constitute reference electrodes having a redox potential similar to that of Ag/AgCl in physiological (0.14 M) saline solutions. In vitro the characteristics of potentially subcutaneously implantable glucose monitoring sensors made with CeO(2-x) nanoparticle reference electrodes are undistinguishable from those of sensors made with Ag/AgCl reference electrodes. Cerium is 900 times more abundant than silver, and commercially produced CeO(2-x) nanoparticle solutions are available at prices well below those of the Ag/AgCl pastes used in the annual manufacture of ~10(9) reference electrodes of glucose monitoring strips for diabetes management. PMID:23171288

  19. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    NASA Astrophysics Data System (ADS)

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-03-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system.

  20. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    PubMed Central

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system. PMID:24608736

  1. The effect of Ag nanoparticles on PC3 cells ultraweak bioluminescence

    NASA Astrophysics Data System (ADS)

    Hossu, Marius; Zou, Xiaoju; Ma, Lun; Chen, Wei

    2011-03-01

    Ultraweak intrinsic bioluminescence of cancer cell is a noninvasive method of assessing bioenergetic status of the investigated cells. This weak emission generated by PC3 cell line was measured during various stages of growth with or without the presence of Ag nanoparticles. The comparison between nanoparticles concentration, bioluminescence and cell survival showed that even though Ag nanoparticles doesn't significantly affect cell survival at used concentration it affects cell metabolism, possibly making them more susceptible to other form of therapies.

  2. Luminescence of fixed site Ag nanoclusters in a simple oxyfluoride glass host and plasmon absorption of amorphous Ag nanoparticles in a complex oxyfluoride glass host

    NASA Astrophysics Data System (ADS)

    Shestakov, Mikhail V.; Meledina, Maria; Turner, Stuart; Baekelant, Wouter; Verellen, Niels; Chen, Xianmei; Hofkens, Johan; Van Tendeloo, Gustaaf; Moshchalkov, Victor V.

    2015-01-01

    Ag nanocluster-doped glasses have been prepared by a conventional melt-quenching method. The effect of melt temperature and dwell time on the formation of Ag nanoclusters and Ag nanoparticles in simple host oxyfluoride glasses has been studied. The increase of melt temperature and dwell time results in the dissolution of Ag nanoparticles and substantial red-shift of absorption and photoluminescence spectra of the prepared glasses. The quantum yield of the glasses is ~ 5% and does not depend on melt temperature and dwell time. The prepared glasses may be used as red phosphors or down-conversion layers for solar-cells.

  3. Synthesis and characterization of AgCl nanoparticles produced by laser ablation of Ag in NaCl solution

    NASA Astrophysics Data System (ADS)

    Mahmoodi, Afsaneh; Shoorshinie, Seyedeh Zahra; Dorranian, Davoud

    2016-04-01

    In this work, the structural and optical properties of silver chloride nanoparticles produced by laser ablation of Ag plate in NaCl solution were investigated. Five different concentrations of NaCl solution were used as the ablation environment. The beam of a Q-switched Nd:YAG laser of 1064 nm wavelength and 7 ns pulse width was employed to irradiate the Ag target in NaCl solutions. Fluence of laser pulse was 1.5 J/cm2, and repetition rate was 5 Hz. Samples were prepared using 1500 pulses. Produced nanoparticles were characterized using UV-visible-NIR absorption, and transmission spectrum, transmission electron microscopy, scanning electron microscopy, X-ray diffraction pattern, photoluminescence spectrum, and dynamic light scattering method. Results show that laser ablation is a promising method to produce AgCl nanoparticles. Size of nanoparticles, their lattice structure, and bandgap energy as well as the production rate may be controlled by the concentration of NaCl in the ablation environment.

  4. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.

    PubMed

    Haldar, Krishna Kanta; Kundu, Simanta; Patra, Amitava

    2014-12-24

    Bimetallic core-shell nanoparticles have recently emerged as a new class of functional materials because of their potential applications in catalysis, surface enhanced Raman scattering (SERS) substrate and photonics etc. Here, we have synthesized Au/Ag bimetallic core-shell nanoparticles with varying the core diameter. The red-shifting of the both plasmonic peaks of Ag and Au confirms the core-shell structure of the nanoparticles. Transmission electron microscopy (TEM) analysis, line scan EDS measurement and UV-vis study confirm the formation of core-shell nanoparticles. We have examined the catalytic activity of these core-shell nanostructures in the reaction between 4-nitrophenol (4-NP) and NaBH4 to form 4-aminophenol (4-AP) and the efficiency of the catalytic reaction is found to be increased with increasing the core size of Au/Ag core-shell nanocrystals. The catalytic efficiency varies from 41.8 to 96.5% with varying core size from 10 to 100 nm of Au/Ag core-shell nanoparticles, and the Au100/Ag bimetallic core-shell nanoparticle is found to be 12-fold more active than that of the pure Au nanoparticles with 100 nm diameter. Thus, the catalytic properties of the metal nanoparticles are significantly enhanced because of the Au/Ag core-shell structure, and the rate is dependent on the size of the core of the nanoparticles. PMID:25456348

  5. Microwave-assisted rapid synthesis of anisotropic Ag nanoparticles by solid state transformation

    NASA Astrophysics Data System (ADS)

    Navaladian, S.; Viswanathan, B.; Varadarajan, T. K.; Viswanath, R. P.

    2008-01-01

    Anisotropic silver nanoparticles (NPs) have been synthesized rapidly using microwave irradiation by the decomposition of silver oxalate in a glycol medium using polyvinyl pyrolidone (PVP) as the capping agent. The obtained Ag nanoparticles have been characterized by UV-visible spectroscopy, powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) studies. Anisotropic Ag nanoparticles of average size around 30 nm have been observed in the case of microwave irradiation for 75 s whereas spherical particles of a size around 5-6 nm are formed for 60 s of irradiation. The texture coefficient and particle size calculated from XRD patterns of anisotropic nanoparticles reveal the preferential orientation of (111) facets in the Ag sample. Ethylene glycol is found to be a more suitable medium than diethylene glycol. A plausible mechanism has been proposed for the formation of anisotropic Ag nanoparticles from silver oxalate.

  6. Controlled formation of ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution.

    PubMed

    Huber, Klaus; Witte, Thomas; Hollmann, Jutta; Keuker-Baumann, Susanne

    2007-02-01

    A new tool is presented to control formation of Ag nanoparticles. Small amounts of silver ions were added to dilute solutions of long-chain sodium polyacrylates (NaPA). Four NaPA samples covering a molar mass regime of 97 kD < or = Mw < or = 650 kD have been used. With amounts of added Ag(+) as low as 1-2% of the COO(-) groups of the polyanionic chains, significant changes could already be induced in the NaPA coils with 650 kD. If the NaPA concentration was kept below 0.1 g/L, the coils with 650 kD exhibited a significant coil shrinking in stable solutions. At larger NaPA concentrations, addition of Ag+ initiates an aggregation of the polyacrylate coils toward compact structures. Coil shrinking and aggregation was revealed by means of time-resolved static light scattering. If exposed to UV-radiation, small Ag particles formed within the shrunken anionic polyacrylate coils. The Ag nanoparticles were identified by means of an enhanced light scattering and a characteristic plasmon absorption band around 410 nm. No such Ag particle formation could be observed even at 5 times larger concentrations of Ag(+) and NaPA if the two smallest polyacrylate samples have been used under otherwise equal conditions. This molar mass sensitive response of NaPA to Ag(+)-addition suggests an interesting phenomenon: if the coil size of the NaPa chains, which act as Ag(+) collectors, is large enough, local Ag(+) concentration in these coil-shaped Ag(+) containers exceeds a critical value, and irradiation with UV generates Ag nanoparticles. PMID:17263389

  7. Growth of Ag nanoparticles using plasma-modified multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tseng, Chun-Hao; Chen, Chuh-Yung

    2008-01-01

    This study presents a novel method for preparing multi-walled carbon nanotubes (MWNTs) grafted with a poly(2-hydroxyethyl methacrylate) (HEMA)-silver complex (CNTs-HEMA-Ag complex) through plasma-induced grafting polymerization. The characteristics of the MWNTs after being grafted with HEMA polymer are monitored by Fourier transform infrared (FT-IR) spectroscopy. The chelating groups in the HEMA polymer grafted on the surface of the CNTs-HEMA are the coordination sites for chelating silver ions, and are further used as nanotemplates for the growing of Ag nanoparticles (quantum dots). Transmission electron microscopy (TEM) reveals that the particle size of Ag nanoparticles on the CNT surfaces increases with the Ag+ chelating concentration, reaction time, and reaction temperature. Moreover, the crystalline phase of Ag nanoparticles is identified by using x-ray diffraction (XRD). In addition, high-resolution x-ray photoelectron spectroscopy (XPS) is used to characterize the functional groups on the surface of the MWNTs after chemical modification through plasma treatment; it demonstrates that the growing amount of the Ag nanoparticles on the nanotubes increases with the Ag+ chelating concentration due to the blocking effect of the Ag particles forming on the MWNTs.

  8. Deposition of Au and Ag nanoparticles on PEDOT.

    PubMed

    Danieli, Tamar; Colleran, John; Mandler, Daniel

    2011-12-01

    The deposition of Au and Ag, locally and from bulk solution, on poly(3,4-ethylenedioxythiophene) (PEDOT) was studied. Specifically, PEDOT was electrochemically polymerized onto a glassy carbon (GC) electrode and used for bulk deposition of Au and Ag from their respective ions dissolved in the solution as well as for the local deposition of these metals using scanning electrochemical microscopy (SECM). These two sets of experiments were utilized to investigate the difference between Au and Ag electrochemical deposition on PEDOT. In particular, SECM experiments, which were conducted by the controlled anodic dissolution of Au and Ag microelectrodes close to GC/PEDOT, probed the effect of different PEDOT oxidation states on local deposition. The current-time transients recorded during the deposition, combined with scanning electron microscopy and EDX analysis provided insight into the reduction processes. AuCl(4)(-) and Ag(+) ions were electrochemically reduced at a potential equal to and more negative than the ions redox potentials (0.4 and 0.2 V, respectively) and more positive than -0.7 V, where the PEDOT starts transforming into the reduced, i.e. insulating, state. We found that the electroreduction of Ag(+) ions was diffusion-controlled and the PEDOT film served as a simple conductor. On the other hand, the reduction of AuCl(4)(-) ions was enhanced on GC/PEDOT as compared with bare GC, indicating that PEDOT catalyzes the reduction of AuCl(4)(-) to Au. PMID:21993698

  9. Ag(I)-triggered one-pot synthesis of Ag nanoparticles onto natural nanorods as a multifunctional nanocomposite for efficient catalysis and adsorption.

    PubMed

    Tian, Guangyan; Wang, Wenbo; Mu, Bin; Kang, Yuru; Wang, Aiqin

    2016-07-01

    A multifunctional palygorskite/polyaniline/Ag nanoparticles (PAL/PANI/AgNPs) nanocomposite was prepared at room temperature using a simple one-pot in-situ polymerization reaction of aniline monomers triggered by Ag(I) on the surface of natural PAL nanorods. Ag(I) served as both the oxidant and the precursor of the AgNPs, which initiated the polymerization of aniline monomers on PAL nanorods while simultaneously being reduced to form Ag(0) nanoparticles (AgNPs). The in-situ formed AgNPs were evenly distributed on the surface of the PAL nanorods because the interfacial effect of PAL prevents their aggregation. The density and size of the AgNPs and the catalytic activity of the nanocomposites could be controlled by altering the molar ratio of aniline to Ag(I). The performance evaluation revealed that the nanocomposites could be used as highly active catalysts, which rapidly catalyzed the reduction of 4-nitrophenol (4-NP) within 2min and Congo red (CR) within 10min. The nanocomposites are also an effective adsorbent for H2PO4(-) able to remove 99.40% of H2PO4(-) (only 61.77% for raw PAL) from a solution with an initial concentration of 50mg/L. This multifunctional nanocomposite synthesized by a simple one-pot approach is a promising material for environmental applications. PMID:27054770

  10. Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria

    NASA Astrophysics Data System (ADS)

    Cui, Li; Chen, Shaode; Zhang, Kaisong

    2015-02-01

    Ag nanoparticles (NPs) have been extensively utilized in surface-enhanced Raman scattering (SERS) spectroscopy for bacterial identification. However, Ag NPs are toxic to bacteria. Whether such toxicity can affect SERS features of bacteria and interfere with bacterial identification is still unknown and needed to explore. Here, by carrying out a comparative study on non-toxic Au NPs with that on toxic Ag NPs, we investigated the influence of nanoparticle concentration and incubation time on bacterial SERS spectral variance, both of which were demonstrated to be closely related to the toxicity of Ag NPs. Sensitive spectral alterations were observed on Ag NPs with increase of NPs concentration or incubation time, accompanied with an obvious decrease in number of viable bacteria. In contrast, SERS spectra and viable bacterial number on Au NPs were rather constant under the same conditions. A further analysis on spectral changes demonstrated that it was cell response (i.e. metabolic activity or death) to the toxicity of Ag NPs causing spectral variance. However, biochemical responses to the toxicity of Ag were very different in different bacteria, indicating the complex toxic mechanism of Ag NPs. Ag NPs are toxic to a great variety of organisms, including bacteria, fungi, algae, protozoa etc., therefore, this work will be helpful in guiding the future application of SERS technique in various complex biological systems.

  11. Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria.

    PubMed

    Cui, Li; Chen, Shaode; Zhang, Kaisong

    2015-02-25

    Ag nanoparticles (NPs) have been extensively utilized in surface-enhanced Raman scattering (SERS) spectroscopy for bacterial identification. However, Ag NPs are toxic to bacteria. Whether such toxicity can affect SERS features of bacteria and interfere with bacterial identification is still unknown and needed to explore. Here, by carrying out a comparative study on non-toxic Au NPs with that on toxic Ag NPs, we investigated the influence of nanoparticle concentration and incubation time on bacterial SERS spectral variance, both of which were demonstrated to be closely related to the toxicity of Ag NPs. Sensitive spectral alterations were observed on Ag NPs with increase of NPs concentration or incubation time, accompanied with an obvious decrease in number of viable bacteria. In contrast, SERS spectra and viable bacterial number on Au NPs were rather constant under the same conditions. A further analysis on spectral changes demonstrated that it was cell response (i.e. metabolic activity or death) to the toxicity of Ag NPs causing spectral variance. However, biochemical responses to the toxicity of Ag were very different in different bacteria, indicating the complex toxic mechanism of Ag NPs. Ag NPs are toxic to a great variety of organisms, including bacteria, fungi, algae, protozoa etc., therefore, this work will be helpful in guiding the future application of SERS technique in various complex biological systems. PMID:25291503

  12. Morphology and electrochemical behavior of Ag-Cu nanoparticle-doped amalgams.

    PubMed

    Chung, Kwok-Hung; Hsiao, Li-Yin; Lin, Yu-Sheng; Duh, Jenq-Gong

    2008-05-01

    The aim of this study was to introduce Ag-Cu phase nanopowder as an additive to improve the corrosion behavior of dental amalgams. A novel Ag-Cu nanopowder was synthesized by the precipitation method. An amalgam alloy powder (World-Cap) was added and mixed with 5 wt.% and 10 wt.% of Ag-Cu nanopowders, respectively, to form experimental amalgam alloy powders. The original alloy powder was used as a control. Alloy powders were examined using X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy and electron probe microanalysis. Amalgam disk specimens of metallurgically prepared were tested in 0.9% NaCl solution using electrochemical methods. The changes in the corrosion potential and anodic polarization characteristics were determined. Corrosion potential data were analyzed statistically (n=3, analysis of variance, Tukey's test, p<0.05). The diameters of lamellar structure Ag-Cu nanoparticles were measured to be approximately 30 nm. The composition of the Ag-Cu nanoparticles determined by TEM-energy-dispersive spectroscopy was 56.28 at.% Ag-43.72 at.% Cu. A light-shaded phase was found mixing with dark Cu-Sn reaction particles in the reaction zones of Ag-Cu nanoparticle-doped amalgams. The Ag-Cu nanoparticle-doped amalgams exhibited zero current potentials more positive than the control (p<0.05) and no current peak was observed at -325mV that related to Ag-Hg phase and Cu6Sn5 phase in anodic polarization curves. The results indicated that the corrosion resistance of high-copper single-composition amalgam could be improved by Ag-Cu nanoparticle-doping. PMID:18321799

  13. The disinfection performance and mechanisms of Ag/lysozyme nanoparticles supported with montmorillonite clay.

    PubMed

    Jiang, Jing; Zhang, Chang; Zeng, Guang-Ming; Gong, Ji-Lai; Chang, Ying-Na; Song, Biao; Deng, Can-Hui; Liu, Hong-Yu

    2016-11-01

    The fabrication of montmorillonite (Mt) decorated with lysozyme-modified silver nanoparticles (Ag/lyz-Mt) was reported. The lysozyme (lyz) was served as both reducing and capping reagent. Coupling the bactericidal activity of the lyz with AgNPs, along with the high porous structure and large specific surface area of the Mt, prevented aggregation of AgNPs and promoted nanomaterial-bacteria interactions, resulting in a greatly enhanced bactericidal capability against both Gram positive and Gram negative bacteria. This paper systematically elucidated the bactericidal mechanisms of Ag/lyz-Mt. Direct contact between the Ag/lyz-Mt surface and the bacterial cell was essential to the disinfection. Physical disruption of bacterial membrane was considered to be one of the bactericidal mechanisms of Ag/lyz-Mt. Results revealed that Ag(+) was involved in the bactericidal activity of Ag/lyz-Mt via tests conducted using Ag(+) scavengers. A positive ROS (reactive oxygen species) scavenging test indirectly confirmed the involvement of ROS (O2(-), H2O2, and OH) in the bactericidal mechanism. Furthermore, the concentrations of individual ROS were quantified. Results showed that Ag/lyz-Mt nanomaterial could be a promising bactericide for water disinfection. PMID:27318738

  14. Ag/Pd core-shell nanoparticles by a successive method: Pulsed laser ablation of Ag in water and reduction reaction of PdCl2

    NASA Astrophysics Data System (ADS)

    Mottaghi, N.; Ranjbar, M.; Farrokhpour, H.; Khoshouei, M.; Khoshouei, A.; Kameli, P.; Salamati, H.; Tabrizchi, M.; Jalilian-Nosrati, M.

    2014-02-01

    In this study Ag/Pd nanoparticles (NPs) have been fabricated by a successive method; first, colloids of Ag nanoparticles (NPs) have been prepared in water by pulsed laser ablation in liquid (PLAL) method. Then PdCl2 solution (up to 0.2 g/l) were added to the as-prepared or aged colloidal Ag NPs. Characterizations were done using UV-vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmissions electron microscopy (TEM) techniques. Spectroscopy data showed that surface plasmon resonance (SPR) peaks of as-prepared Ag NPs at about λ = 400 nm were completely extinguished after addition of PdCl2 solution while this effect was not observed when aged Ag NPs are used. XRD and XPS results revealed that by addition of the PdCl2 solution into the as-prepared Ag NPs, metallic palladium, and silver chloride composition products are generated. TEM images revealed that as a result of this reaction, single and core-shell nanoparticles are obtained and their average sizes are 2.4 nm (Ag) and 3.2 nm (Ag/Pd). The calculated d-spacing values form XRD data with observations on high magnification TEM images were able to explain the chemical nature of different parts of Ag/Pd NPs.

  15. Exposure Medium: Key in Identifying Free Ag+ as the Exclusive Species of Silver Nanoparticles with Acute Toxicity to Daphnia magna

    PubMed Central

    Shen, Mo-Hai; Zhou, Xiao-Xia; Yang, Xiao-Ya; Chao, Jing-Bo; Liu, Rui; Liu, Jing-Fu

    2015-01-01

    It is still not very clear what roles the various Ag species play in the toxicity of silver nanoparticles (AgNPs). In this study, we found that traditional exposure media result in uncontrollable but consistent physicochemical transformation of AgNPs, causing artifacts in determination of median lethal concentration (LC50) and hindering the identification of Ag species responsible for the acute toxicity of AgNPs to Daphnia magna. This obstacle was overcome by using 8 h exposure in 0.1 mmol L−1 NaNO3 medium, in which we measured the 8-h LC50 of seven AgNPs with different sizes and coatings, and determined the concentrations of various Ag species. The LC50 as free Ag+ of the seven AgNPs (0.37–0.44 μg L−1) agreed very well with that of AgNO3 (0.40 μg L−1), and showed the lowest value compared to that as total Ag, total Ag+, and dissolved Ag, demonstrating free Ag+ is exclusively responsible for the acute toxicity of AgNPs to D. magna, while other Ag species in AgNPs have no contribution to the acute toxicity. Our results demonstrated the great importance of developing appropriate exposure media for evaluating risk of nanomaterials. PMID:25858866

  16. Exposure Medium: Key in Identifying Free Ag+ as the Exclusive Species of Silver Nanoparticles with Acute Toxicity to Daphnia magna

    NASA Astrophysics Data System (ADS)

    Shen, Mo-Hai; Zhou, Xiao-Xia; Yang, Xiao-Ya; Chao, Jing-Bo; Liu, Rui; Liu, Jing-Fu

    2015-04-01

    It is still not very clear what roles the various Ag species play in the toxicity of silver nanoparticles (AgNPs). In this study, we found that traditional exposure media result in uncontrollable but consistent physicochemical transformation of AgNPs, causing artifacts in determination of median lethal concentration (LC50) and hindering the identification of Ag species responsible for the acute toxicity of AgNPs to Daphnia magna. This obstacle was overcome by using 8 h exposure in 0.1 mmol L-1 NaNO3 medium, in which we measured the 8-h LC50 of seven AgNPs with different sizes and coatings, and determined the concentrations of various Ag species. The LC50 as free Ag+ of the seven AgNPs (0.37-0.44 μg L-1) agreed very well with that of AgNO3 (0.40 μg L-1), and showed the lowest value compared to that as total Ag, total Ag+, and dissolved Ag, demonstrating free Ag+ is exclusively responsible for the acute toxicity of AgNPs to D. magna, while other Ag species in AgNPs have no contribution to the acute toxicity. Our results demonstrated the great importance of developing appropriate exposure media for evaluating risk of nanomaterials.

  17. Loading Ag nanoparticles on Cd(II) boron imidazolate framework for photocatalysis

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zhang, De-Xiang; Chen, Shumei; Wen, Tian

    2016-05-01

    An amine-functionalized Cd(II) boron imidazolate framework (BIF-77) with three-dimensional open structure has been successfully synthesized, which can load Ag nanoparticles (NPs) for photocatalytic degradation of methylene blue (MB).

  18. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi

    PubMed Central

    Kim, Sang Woo; Jung, Jin Hee; Lamsal, Kabir; Kim, Yun Seok; Min, Ji Seon

    2012-01-01

    This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs. PMID:22783135

  19. Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Hariharan, R.; Rajarajan, M.; Suganthi, A.

    2013-07-01

    Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur-Ag-SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV-visible diffuse reflectance spectra (UV-vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag-SnO2 and Cur-Ag-SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur-Ag-SnO2 shows better photocatalytic activity than that of Ag-SnO2 and SnO2. The superior photocatalytic activity of Cur-Ag-SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur-Ag-SnO2 were tested.

  20. The role of Ag nanoparticles in inverted polymer solar cells: Surface plasmon resonance and backscattering centers

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Shen, Liang; Meng, Fanxu; Zhang, Jiaqi; Xie, Wenfa; Yu, Wenjuan; Guo, Wenbin; Jia, Xu; Ruan, Shengping

    2013-03-01

    Here, we demonstrate silver (Ag) nanoparticles (NPs) existing in molybdenum trioxide (MoO3) buffer layers can improve the photocurrent by surface plasmon resonance (SPR) and backscattering enhancement. The device structure is glass/indium tin oxides/titanium dioxide (TiO2)/regioregular poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester/MoO3/Ag NPs/MoO3/Ag. Compared to the device without Ag NPs, the short current density (Jsc) is improved from 7.76 ± 0.14 mA/cm2 to 8.89 ± 0.12 mA/cm2, and the power conversion efficiency is also enhanced from 2.70% ± 0.11% to 3.35% ± 0.08%. The transmittance spectra show that the device with Ag NPs has weaker transmittance than the device without, which could be attributed to the photons absorption of Ag NPs and light scattering by Ag NPs. The absorption profile of the devices with or without Ag NPs is simulated using finite-difference time-domain methods. It is approved that the Ag NPs result in the absorption improvement by SPR and backscattering enhancement.

  1. Mildly reduced graphene oxide-Ag nanoparticle hybrid films for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Li, Xiaocheng; Tay, Beng Kang; Li, Junshuai; Tan, Dunlin; Tan, Chong Wei; Liang, Kun

    2012-04-01

    Large-area mildly reduced graphene oxide (MR-GO) monolayer films were self-assembled on SiO2/Si surfaces via an amidation reaction strategy. With the MR-GO as templates, MR-GO-Ag nanoparticle (MR-GO-Ag NP) hybrid films were synthesized by immersing the MR-GO monolayer into a silver salt solution with sodium citrate as a reducing agent under UV illumination. SEM image indicated that Ag NPs with small interparticle gap are uniformly distributed on the MR-GO monolayer. Raman spectra demonstrated that the MR-GO monolayer beneath the Ag NPs can effectively quench the fluorescence signal emitted from the Ag films and dye molecules under laser excitation, resulting in a chemical enhancement (CM). The Ag NPs with narrow gap provided numerous hot spots, which are closely related with electromagnetic mechanism (EM), and were believed to remarkably enhance the Raman signal of the molecules. Due to the co-contribution of the CM and EM effects as well as the coordination mechanism between the MR-GO and Ag NPs, the MR-GO-Ag NP hybrid films showed more excellent Raman signal enhancement performance than that of either Ag films or MR-GO monolayer alone. This will further enrich the application of surface-enhanced Raman scattering in molecule detection.

  2. Synthesis and biosensor application of Ag@Au bimetallic nanoparticles based on localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Arsalani, S.; Neishaboorynejad, T.

    2014-05-01

    This work demonstrates a simple method for synthesizing gold-silver bimetallic nanoparticles (Ag@Au BNPs). Ag@Au BNPs on the carbon thin film are prepared by co-deposition of RF-sputtering and RF-PECVD using acetylene gas and gold-silver target. X-ray diffraction analysis indicates that Au and Ag NPs with FCC crystal structure are formed in our samples. From AFM image and data, average particles size of gold and silver are estimated to be about 5 and 8 nm, respectively. XRD profile and localized surface plasmon resonance (LSPR) spectroscopy indicate that Ag NPs in Ag@Au BNPs composite have a more chemical activity with respect to bare Ag NPs. Biosensor application of Ag@Au BNPs without probe immobilization is introduced too. The change in LSPR absorption peak of Ag@Au BNPs in presence of DNA primer decamer (ten-deoxycytosine) at fM concentrations is investigated. The LSPR absorption peak of Au NPs has a blue shift and the LSPR absorption peak of Ag NPs has a red shift by addition of DNA primer and under DNA exposure up to 1 h. Our sample shows a good response to low concentration of DNA and has a short response time. Both of these are prerequisite for applying this sample as LSPR biosensor chip.

  3. Green synthesis of halloysite nanotubes supported Ag nanoparticles for photocatalytic decomposition of methylene blue

    NASA Astrophysics Data System (ADS)

    Zou, MeiLing; Du, MingLiang; Zhu, Han; Xu, CongSheng; Fu, YaQin

    2012-08-01

    Using tea polyphenols (TPs) as a reductant, Ag nanoparticles (AgNPs) supported on halloysite nanotubes (HNTs) were simply and greenly synthesized for the photocatalytic decomposition of methylene blue (MB). HNTs were initially functionalized by N-β-aminoethyl-γ-aminopropyl trimethoxysilane (AEAPTMS) to introduce amino groups to form N-HNTs to fasten the AgNPs; then AgNPs were synthesized and ‘anchored’ on the surface of the HNTs. Fourier transform infrared spectroscopy was employed to testify the amino groups on the surface of the HNTs. Transmission electron microscopy, field-emission scanning electron microscopy and x-ray diffraction were utilized to characterize the structure and morphology of the synthesized HNTs supported by the AgNPs (AgNPs@N-HNTs). The results showed that the AgNPs had been synthesized and ‘anchored’ onto the surface of the HNTs with a diameter of about 20-30 nm. X-ray photoelectron spectroscopy analysis revealed the chelating interaction between the AgNPs and N atoms together with the TP molecular. The photocatalytic activity of the as-prepared AgNPs@N-HNTs catalyst was evaluated by decomposition of MB; the results showed that the prepared catalyst exhibited excellent catalytic activity and high adsorption capability to MB.

  4. Fractal structure formation from Ag nanoparticle films on insulating substrates.

    PubMed

    Tang, Jing; Li, Zhiyong; Xia, Qiangfei; Williams, R Stanley

    2009-07-01

    Two dimensional (2D) fractal structures were observed to form from fairly uniform Ag island films (equivalent mass thicknesses of 1.5 and 5 nm) on insulating silicon dioxide surfaces (thermally grown silicon oxide on Si or quartz) upon immersion in deionized water. This result is distinctly different from the previously observed three-dimensional (3D) growth of faceted Ag nanocrystals on conductive surfaces (ITO and graphite) as the result of an electrochemical Ostwald ripening process, which also occurs on native oxide covered silicon surfaces as reported here. The fractal structures formed by diffusion-limited aggregation (DLA) of Ag species on the insulating surfaces. We present the experimental observation of this phenomenon and discuss some possible mechanisms for the DLA formation. PMID:19496573

  5. Study of thermal diffusivity of nanofluids with bimetallic nanoparticles with Au(core)/Ag(shell) structure

    NASA Astrophysics Data System (ADS)

    Gutierrez Fuentes, R.; Pescador Rojas, J. A.; Jiménez-Pérez, J. L.; Sanchez Ramirez, J. F.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.

    2008-11-01

    The thermal diffusivity of Au/Ag nanoparticles with core/shell structure, at different compositions (Au/Ag = 3/1, 1/1, 1/3, 1/6), was measured by using the mismatched mode of the dual-beam thermal lens (TL) technique. This study determines the effect of the bimetallic composition on the thermal diffusivity of the nanofluids. In these results we find a lineal increment of the nanofluid it thermal diffusivity when the Ag shell thickness is increased. Our results show that the nanoparticle structure is an important parameter to improve the heat transport in composites and nanofluids. These results could have importance for applications in therapies and photothermal deliberation of drugs. Complementary measurements with UV-vis spectroscopy and TEM, were used to characterize the Au(core)/Ag(shell) nanoparticles.

  6. 1,10-Phenanthroline as an accelerator for Ag nanoparticle-catalysed electroless copper deposition

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Ru; Chou, Nan-Kuang; Li, Cheng-Hsing; Chen, Ho-Rei; Lee, Chien-Liang

    2014-10-01

    1,10-Phenanthroline (phen) can be successfully used as an accelerator for Ag-catalysed electroless copper deposition (ECD) processes. Electrochemical quartz crystal microbalance analyses indicate that the mass activity in terms of thickness of deposited Cu layer and average ECD rate within a deposition time of 110 s for Ag nanoparticles activated by phen are 7.86 × 10-3 μm μg-1 and 1.43 × 10-4 μm μg-1 s-1, respectively, whereas Ag nanoparticles without phen cannot catalyse the reaction. Furthermore, Tafel and cyclic voltammetric results show that the addition of phen to the ECD bath significantly enhances the ability of the Ag nanoparticles to catalyse the oxidation of HCHO and suppresses the formation of CuO.

  7. [Effect of Eu ions on the Ag nanoparticles precipitation and their optical properties in borate glasses].

    PubMed

    Liu, Zhi-liang; Jiao, Qing; Qiu, Jian-bei

    2014-08-01

    Eu-Ag co-doped borate glasses were prepared by the high temperature solid method in the present work. Absorption and emission spectra were employed to investigate the precipitation of Ag nanoparticles, which is influenced by the network form B2O3 and the co-doped Eu ions. It was found in the absorption spectra of Eu-Ag co-doped sample that a broad band centered at about 410 nm emerged and their intensity decreased with the increase in the BZ 03 concentration. Meanwhile, under the excitation of 340 nm, a broad emission band was observed in the wavelength range of 350-600 nm, which belongs to the blue-green light of Ag aggregates. The intensity of the Ag aggregates presented an increasing tendency with the increase in the B2O3 contents. The weak characteristic emission of Ag aggregates and Eu3+ was observed respectively in their singly doped samples. It is concluded that both their emissions get significant enhancement when Eu ions and Ag ions are used for co-doping the sample. In addition, the increased absorption of Ag nanoparticles was detected with the increase in the Eu ions concentration. Herein, the mechanism behind Eu3+ contribution to the precipitation of Ag nanoparticles is discussed in detail. The luminescence properties of borate glasses can be controlled by the microstructure of the borate glasses. Therefore, the white emission can be realized by the adjustment of glass structure and Eu ions concentration, owing to the red light from Eu3+ : (5)D0-->(7)Fj electronic transition and the blue-green light form the broad emission of Ag aggregates. The borate glasses are expected to be the candidates for the light-emission diode (LED) luminescent materials. PMID:25508714

  8. [Effect of Eu ions on the Ag nanoparticles precipitation and their optical properties in borate glasses].

    PubMed

    Liu, Zhi-liang; Jiao, Qing; Qiu, Jian-bei

    2014-08-01

    Eu-Ag co-doped borate glasses were prepared by the high temperature solid method in the present work. Absorption and emission spectra were employed to investigate the precipitation of Ag nanoparticles, which is influenced by the network form B2O3 and the co-doped Eu ions. It was found in the absorption spectra of Eu-Ag co-doped sample that a broad band centered at about 410 nm emerged and their intensity decreased with the increase in the BZ 03 concentration. Meanwhile, under the excitation of 340 nm, a broad emission band was observed in the wavelength range of 350-600 nm, which belongs to the blue-green light of Ag aggregates. The intensity of the Ag aggregates presented an increasing tendency with the increase in the B2O3 contents. The weak characteristic emission of Ag aggregates and Eu3+ was observed respectively in their singly doped samples. It is concluded that both their emissions get significant enhancement when Eu ions and Ag ions are used for co-doping the sample. In addition, the increased absorption of Ag nanoparticles was detected with the increase in the Eu ions concentration. Herein, the mechanism behind Eu3+ contribution to the precipitation of Ag nanoparticles is discussed in detail. The luminescence properties of borate glasses can be controlled by the microstructure of the borate glasses. Therefore, the white emission can be realized by the adjustment of glass structure and Eu ions concentration, owing to the red light from Eu3+ : (5)D0-->(7)Fj electronic transition and the blue-green light form the broad emission of Ag aggregates. The borate glasses are expected to be the candidates for the light-emission diode (LED) luminescent materials. PMID:25474935

  9. Bimetallic PdAg nanoparticle arrays from monolayer films of diblock copolymer micelles

    NASA Astrophysics Data System (ADS)

    Ehret, E.; Beyou, E.; Mamontov, G. V.; Bugrova, T. A.; Prakash, S.; Aouine, M.; Domenichini, B.; Cadete Santos Aires, F. J.

    2015-07-01

    The self-assembly technique provides a highly efficient route to generate well-ordered structures on a nanometer scale. In this paper, well-ordered arrays of PdAg alloy nanoparticles on flat substrates with narrow distributions of particle size (6-7 nm) and interparticle spacing (about 60 nm) were synthesized by the block copolymer micelle approach. A home-made PS-b-P4VP diblock copolymer was prepared to obtain a micellar structure in toluene. Pd and Ag salts were then successfully loaded in the micellar core of the PS-b-P4VP copolymer. A self-assembled monolayer of the loaded micelles was obtained by dipping the flat substrate in the solution. At this stage, the core of the micelles was still loaded with the metal precursor rather than with a metal. Physical and chemical reducing methods were used to reduce the metal salts embedded in the P4VP core into PdAg nanoparticles. HRTEM and EDX indicated that Pd-rich PdAg alloy nanoparticles were synthesized by chemical or physical reduction; UV-visible spectroscopy observations confirmed that metallic PdAg nanoparticles were quickly formed after chemical reduction; XPS measurements revealed that the PdAg alloy nanoparticles were in a metallic state after a short time of exposure to O2 plasma and after hydrazine reduction.

  10. Wet chemical synthesis and characterization of AgGaSe{sub 2} nanoparticles

    SciTech Connect

    Sugan, S.; Dhanasekaran, R.

    2013-06-03

    AgGaSe{sub 2} compound semiconductor nanoparticles were synthesized by wet chemical method using mercaptoacetic acid as a capping agent at room temperature. The synthesized powders belong to chalcopyrite structure confirmed by powder XRD. The surface morphology and crystalline size were observed by high resolution scanning electron microscope (HR-SEM). The stoichiometric composition of AgGaSe{sub 2} nanoparticles was confirmed by Energy dispersive X-ray (EDX) analysis. Different functional group vibrations of mercaptoacetic acid capped nanoparticles were studied using FT-IR spectrum. The absorbance and optical bandgap of the nanoparticles were determined using diffuse reflectance spectroscopy (DRS).

  11. Halloysite nanotube supported Ag nanoparticles heteroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres.

    PubMed

    Li, Cuiping; Li, Xueyuan; Duan, Xuelan; Li, Guangjie; Wang, Jiaqiang

    2014-12-15

    Halloysite nanotube supported Ag nanoparticles heteroarchitectures have been prepared through a very simple electroless plating method. Robust Ag nanocrystals can be reproducibly fabricated by soaking halloysite nanotubes in ethanolic solutions of AgNO3 and butylamine. By simply adjusting the molar ratio of AgNO3 and butylamine, Ag nanoparticles with tunable size and quantity on halloysite nanotube are achieved. It reveals that the Ag nanoparticles are well-dispersed on the surface of halloysite nanotubes. The halloysite nanotube supported Ag nanoparticles heteroarchitectures can serve as active catalysts for the polymerization of an alkylsilane C18H37SiH3 with water to form silanol/siloxane composite microspheres and exhibit interesting superhydrophobicity ascribed to the micro/nanobinary structure. PMID:25268813

  12. Noble metals (Ag, Au) nanoparticles addition effects on superconducting properties of CuTl-1223 phase

    NASA Astrophysics Data System (ADS)

    Jabbar, Abdul; Mumtaz, Muhammad; Nadeem, Kashif

    2015-03-01

    Low anisotropic (Cu0.5Tl0.5) Ba2Ca2Cu3O10 - δ (CuTl-1223) high temperature superconducting phase was synthesized by solid-state reaction, silver (Ag) nanoparticles were prepared by sol-gel method and gold (Au) nanoparticles were extracted from colloidal solution. We added Ag and Au nanoparticles in CuTl-1223 matrix separately with same concentration during the final sintering process to get (M)x/CuTl-1223; M = Ag nanoparticles or Au nanoparticles (x = 0 and 1.0 wt.%) nano-superconductor composites. We investigated and compared the effects of these noble metals nanoparticles addition on structural, morphological and superconducting transport properties of CuTl-1223 phase. The crystal structure of the host CuTl-1223 superconducting phase was not affected significantly after the addition of these nanoparticles. The enhancement of superconducting properties was observed after the addition of both Ag and Au nanoparticles, which is most probably due to improved inter-grains weak-links and reduction of defects such as oxygen deficiencies, etc. The reduction of normal state room temperature resistivity is the finger prints of the reduction of barriers and facilitation to the carriers transport across the inter-crystallite sites due to improved inter-grains weak-links. The greater improvement of superconducting properties in Ag nanoparticles added samples is attributed to the higher conductivity of silver as compared to gold, which also suits for practical applications due to lower cost and easy synthesis of Ag nanoparticles as compared to Au nanoparticles.

  13. Chemical and phase distributions in a multilayered organic matter-Ag nanoparticle thin film system

    NASA Astrophysics Data System (ADS)

    Michel, F. M.; Levard, C.; Wang, Y.; Choi, Y.; Eng, P.; Brown, G. E.

    2010-12-01

    Rapid development of nanotechnologies raises concern regarding the environmental impact of nanoparticles on ecosystems. Among the types of nanoparticles currently in production, metallic silver is the most widely used in nanotechnology (1). Synthetic Ag nanoparticles (Ag-NPs) are most often used for their antimicrobial and antifungal properties that are, in part, explained by the release of highly toxic Ag+ species (2). While such properties are desirable in certain applied cases, the release of Ag-NPs and soluble Ag+ species to the environment is expected to impact biota as well as soil and water quality (3). With the production of Ag-NPs projected to increase (1), the amount of Ag-NPs that will be released to the environment through waste streams is also likely to increase. As such, a deeper understanding of the fundamental processes associated with Ag-NPs toxicity and reactivity is needed to evaluate their impact on the environment. We have studied the interaction during aging of poly-acrylic acid (PAA) and Ag-NPs with average particle sizes of 20 ±5 nm. The sample studied was composed of thin films of PAA and Ag-NPs deposited on a Si-wafer support. PAA served as a model compound and a simplified surrogate for exopolysaccharide, an organic substance produced through metabolic activity by most microorganisms. We applied a novel combination of long-period x-ray standing wave fluorescence yield (XSW-FY) spectroscopy, grazing-incidence x-ray diffraction (GI-XRD), and XRD-based standing wave profiles (XSW-XRD) to obtain chemical- and phase-specific information on this sample. After 24 hours, we observed the formation of AgCl(s) in the PAA film of the sample, which suggests oxidation and dissolution of a portion of the Ag-NPs during aging, resulting in the release of Ag+. In addition, we see partitioning of Cl and Br, both present initially in the PAA, to the intact Ag-NPs thin film. To our knowledge, this is the first application of this suite of techniques to this

  14. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film

    PubMed Central

    2014-01-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence. PMID:24685186

  15. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film.

    PubMed

    Wang, Long-De; Zhang, Tong; Zhang, Xiao-Yang; Song, Yuan-Jun; Li, Ruo-Zhou; Zhu, Sheng-Qing

    2014-01-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence. PMID:24685186

  16. Low-temperature ferromagnetic properties in Co-doped Ag{sub 2}Se nanoparticles

    SciTech Connect

    Yang, Fengxia E-mail: xia9020@hust.edu.cn; Yu, Gen; Han, Chong; Liu, Tingting; Zhang, Duanming; Xia, Zhengcai E-mail: xia9020@hust.edu.cn

    2014-01-06

    β-Ag{sub 2}Se is a topologically nontrivial insulator. The magnetic properties of Co-doped Ag{sub 2}Se nanoparticles with Co concentrations up to 40% were investigated. The cusp of zero-field-cooling magnetization curves and the low-temperature hysteresis loops were observed. With increasing concentration of Co{sup 2+} ions mainly substituting Ag{sub I} sites in the Ag{sub 2}Se structure, the resistivity, Curie temperature T{sub c}, and magnetization increased. At 10 T, a sharp drop of resistance near T{sub c} was detected due to Co dopants. The ferromagnetic behavior in Co-doped Ag{sub 2}Se might result from the intra-layer ferromagnetic coupling and surface spin. This magnetic semiconductor is a promising candidate in electronics and spintronics.

  17. The enhanced SERS effect of Ag/ZnO nanoparticles through surface hydrophobic modification

    NASA Astrophysics Data System (ADS)

    Li, Zhenjiang; Zhu, Kaixing; Zhao, Qian; Meng, Alan

    2016-07-01

    Ag/ZnO nanocomposites modified by a mixture of stearic acid (SA) and polyvinylpyrrolidone (PVP) were obtained using a heating reflux method. Fourier transform infrared spectroscopy (FT-IR) suggests that organic SA/PVP was bonded onto the surface of Ag/ZnO nanocrystals, converting the wettability property of the nanostructures from hydrophilic to hydrophobic. The modified Ag/ZnO nanostructures were confirmed as effective Raman substrates, with a 3-fold signal enhancement compared to the ordinary hydrophilic Ag/ZnO substrate for detecting Rh B molecules due to the hydrophobic condensation effect. It is expected that the modified Ag/ZnO nanoparticles have potential for SERS-based rapid detection of molecules.

  18. Synthesis of silver nanoparticles deposited on silica by γ-irradiation and preparation of PE/Ag nano compound masterbatches

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Kim Lan; Trinh Nguyen, Thuy Ai; Phu Dang, Van; Duy Nguyen, Ngoc; Le, Anh Quoc; Hien Nguyen, Quoc

    2013-12-01

    Silver nanoparticles (AgNPs) deposited on silica were synthesized by gamma Co-60 irradiation of Ag+ dispersion in silica/ethanol/water mixture (9/80/20:w/v/v). The reduction of Ag+ is occurred by hydrated electron (e-aq) and hydrogen atom (H•) generated during radiolysis of ethanol/water. The conversion doses (Ag+ → Ag0) were determined by UV-Vis spectroscopy. The synthesized AgNPs/silica were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD), which showed the size of AgNPs to be in the range of 5-40 nm for Ag+ concentrations from 5 to 20 mM. Masterbatches of PE/AgNPs/silica compound with silver content from 250 to 1000 mg kg-1 were also prepared. These masterbatches can be suitably used for various applications such as antimicrobial food containers and packing films, etc.

  19. Controlled preparation of Ag nanoparticle films by a modified photocatalytic method on TiO2 films with Ag seeds for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Fu, Xin; Pan, Lujun; Li, Shuai; Wang, Qiao; Qin, Jun; Huang, Yingying

    2016-02-01

    Uniform Ag nanoparticle (NP) films were synthesized by a modified photocatalytic method on TiO2 films with Ag seeds for surface-enhanced Raman scattering, which combine the advantages of the spurting method (high nucleation density) and the traditional photocatalytic method (suitable particle size). The Ag seeds were prepared by magnetron sputtering with different time, which would adjust the distribution and transfer of electrons on the surface of TiO2 film in the process of photocatalytic reduction. The distribution and morphology of Ag NP films can be adjusted by the sputtering time and the UV irradiation time. The Raman enhancement of as-prepared Ag NP films was calculated by finite-difference time-domain to validate the experiment data. It is found that the Ag NP films synthesized on TiO2 films with suitable pre-deposited Ag seeds exhibit a much higher Raman enhancement activity than the optimum Ag NP film synthesized directly on the TiO2 film without Ag seeds.

  20. Thermal degradation mechanism of triangular Ag@SiO2 nanoparticles.

    PubMed

    Gangishetty, Mahesh K; Scott, Robert W J; Kelly, Timothy L

    2016-06-14

    Triangular silver nanoparticles are promising materials for light harvesting applications because of their strong plasmon bands; these absorption bands are highly tunable, and can be varied over the entire visible range based on the particle size. A general concern with these materials is that they are unstable at elevated temperatures. When thermally annealed, they suffer from changes to the particle morphology, which in turn affects their optical properties. Because of this stability issue, these materials cannot be used in applications requiring elevated temperatures. In order to address this problem, it is important to first understand the degradation mechanism. Here, we measure the changes in particle morphology, oxidation state, and coordination environment of Ag@SiO2 nanotriangles caused by thermal annealing. UV-vis spectroscopy and TEM reveal that upon annealing the Ag@SiO2 nanotriangles in air, the triangular cores are truncated and smaller nanoparticles are formed. Ag K-edge X-ray absorption spectroscopy (XANES and EXAFS) shows that the small particles consist of Ag(0), and that there is a decrease in the Ag-Ag coordination number with an increase in the annealing temperature. We hypothesize that upon annealing Ag in air, it is first oxidized to AgxO, after which it subsequently decomposes back to well-dispersed Ag(0) nanoparticles. In contrast, when the Ag@SiO2 nanotriangles are annealed in N2, since there is no possibility of oxidation, no small particles are formed. Instead, the triangular core rearranges to form a disc-like shape. PMID:26875498

  1. The IP6 micelle-stabilized small Ag cluster for synthesizing Ag-Au alloy nanoparticles and the tunable surface plasmon resonance effect

    NASA Astrophysics Data System (ADS)

    Wang, Na; Wen, Ying; Wang, Yao; Zhang, Rui; Chen, Xiyao; Ling, Bo; Huan, Shuangyan; Yang, Haifeng

    2012-04-01

    The stable small Ag seeds (size in diameter < 10 nm) were obtained in the presence of inositol hexakisphosphoric (IP6) micelles. Then Ag-Au bimetallic nanoparticles were synthesized through a replacement reaction with the rapid interdiffusion process between such small Ag seeds in nanoclusters and HAuCl4. Adjusting the dosage of HAuCl4 resulted in different products, which possessed unique surface plasmon resonances (SPR). The morphologies of the as-made nanoparticles were observed using transmission electron microscopy and field emission scanning electron microscopy and their compositions were determined by energy-dispersive x-ray spectroscopy. Among them, the Ag-Au alloy nanoparticles with the cauliflower-like structure had a suitable SPR for highly sensitive Raman detection application as a surface-enhanced Raman scattering (SERS) substrate with a long-term stability of six months.

  2. Ag nanoparticles generated using bio-reduction and -coating cause microbial killing without cell lysis.

    PubMed

    Gade, Aniket; Adams, Joshua; Britt, David W; Shen, Fen-Ann; McLean, Joan E; Jacobson, Astrid; Kim, Young-Cheol; Anderson, Anne J

    2016-04-01

    Cost-effective "green" methods of producing Ag nanoparticles (NPs) are being examined because of the potential of these NPs as antimicrobials. Ag NPs were generated from Ag ions using extracellular metabolites from a soil-borne Pythium species. The NPs were variable in size, but had one dimension less than 50 nm and were biocoated; aggregation and coating changed with acetone precipitation. They had dose-dependent lethal effects on a soil pseudomonad, Pseudomonas chlororaphis O6, and were about 30-fold more effective than Ag(+) ions. A role of reactive oxygen species in cell death was demonstrated by use of fluorescent dyes responsive to superoxide anion and peroxide accumulation. Also mutants of the pseudomonad, defective in enzymes that protect against oxidative stress, were more sensitive than the wild type strain; mutant sensitivity differed between exposure to Ag NPs and Ag(+) ions demonstrating a nano-effect. Imaging of bacterial cells treated with the biocoated Ag NPs revealed no cell lysis, but there were changes in surface properties and cell height. These findings support that biocoating the NPs results in limited Ag release and yet they retained potent antimicrobial activity. PMID:26805711

  3. Polyvinyl alcohol electrospun nanofibers containing Ag nanoparticles used as sensors for the detection of biogenic amines

    NASA Astrophysics Data System (ADS)

    Marega, Carla; Maculan, Jenny; Rizzi, Gian Andrea; Saini, Roberta; Cavaliere, Emanuele; Gavioli, Luca; Cattelan, Mattia; Giallongo, Giuseppe; Marigo, Antonio; Granozzi, Gaetano

    2015-02-01

    Polyvinyl alcohol (PVA) electrospun nanofibers containing Ag nanoparticles (NPs) have been deposited on glass substrates. The aim of the work was to test the feasibility of this approach for the detection of biogenic amines by using either the Ag localized surface plasmon resonance quenching caused by the adsorption of amines on Ag NPs or by detecting the amines by surface enhanced Raman spectroscopy (SERS) after adsorption, from the gas phase, on the metal NPs. Two different approaches have been adopted. In the first one an ethanol/water solution containing AgNO3 was used directly in the electrospinning apparatus. In this way, a simple heat treatment of the nanofibers mat was sufficient to obtain the formation of Ag NPs inside the nanofibers and a partial cross-link of PVA. In the second procedure, the Ag NPs were deposited on PVA nanofibers by using the supersonic cluster beam deposition method, so that a beam of pure Ag NPs of controlled size was obtained. Exposure of the PVA mat to the beam produced a uniform distribution of the NPs on the nanofibers surface. Ethylendiamine vapors and volatile amines released from fresh shrimp meat were chemisorbed on the nanofibers mats. A SERS spectrum characterized by a diagnostic Ag-N stretching vibration at 230 cm-1 was obtained. The results allow to compare the two different approaches in the detection of ammines.

  4. Structural evolution of Ag nanoparticles during electron driven synthesis of Ag filaments on Ag2WO4: In situ observation and theoretical supporting evidence

    NASA Astrophysics Data System (ADS)

    da Silva, Edison Z.; da Silva Pereira, Wyllamanney; Andrés, Juan; Gracia, Lourdes; San-Miguel, Miguel; Longo, Elson; Longo, Valeria M.

    2015-03-01

    α - Ag2WO4 crystals irradiated by an electron beam from an electron microscope under high vacuum, nucleate metallic Ag, and form Ag metallic nanowires on the α crystals surface. In order to understand this interesting and complex behavior of the formation and growth of Ag nanowires on α-Ag2WO4 we investigated by detailed in situ transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) studies, density functional theory calculations and ab initio molecular dynamics (MD) simulations. First principle calculations point out that Ag-3 and Ag-4 atoms, located on the (100) surface, are the most energetically favorable to undergo the diffusion process to form metallic Ag. Ab initio MD simulations and nudged elastic band (NEB) method were used to investigate the minimum energy pathways for diffusion of Ag atoms to outward sites on the (100) surface. The results point out that the injection of electrons decreases the activation barrier for this diffusion step and this unusual behavior results from the presence of a lower energy barrier process. Financial support FAPESP, Project 2010/16970-0, grant (2013/02032-7), calculations performed at CENAPAD-SP.

  5. Preparation and catalytic ability to reduce hydrogen peroxide of Ag nanoparticles highly dispersed via hyperbranched copolymer

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Yang, Weiying; Yang, Jie; He, Linghao; Sun, Jing; Song, Rui; Ma, Zhi; Huang, Wei

    2011-03-01

    Highly dispersed Ag nanoparticles, stabilized by hyperbranched copolymers (HPCs), were prepared by chemical reduction in toluene. These Ag NPs were used further for the fabrication of a hydrogen peroxide (H2O2) sensor, by which a good catalytic ability for the reduction of H2O2 was found.Highly dispersed Ag nanoparticles, stabilized by hyperbranched copolymers (HPCs), were prepared by chemical reduction in toluene. These Ag NPs were used further for the fabrication of a hydrogen peroxide (H2O2) sensor, by which a good catalytic ability for the reduction of H2O2 was found. Electronic supplementary information (ESI) available: Structure and structure parameters of the HPCs, and UV-vis and XPS spectra of the NPs . See DOI: 10.1039/c0nr00567c

  6. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: A green approach

    SciTech Connect

    Valodkar, Mayur; Modi, Shefaly; Pal, Angshuman; Thakore, Sonal

    2011-03-15

    Research highlights: {yields} Synthesis of novel nanosized copper-silver alloys of different compositions. {yields} Completely green approach for synthesis of water soluble bimetallic nanoparticle. {yields} Interesting anti-bacterial activity of as synthesized metal and alloy nanoparticle. -- Abstract: Metallic and bimetallic nanoparticles of copper and silver in various proportions were prepared by microwave assisted chemical reduction in aqueous medium using the biopolymer, starch as a stabilizing agent. Ascorbic acid was used as the reducing agent. The silver and copper nanoparticles exhibited surface plasmon absorption resonance maxima (SPR) at 416 and 584 nm, respectively; while SPR for the Cu-Ag alloys appeared in between depending on the alloy composition. The SPR maxima for bimetallic nanoparticles changes linearly with increasing copper content in the alloy. Transmission electron micrograph (TEM) showed monodispersed particles in the range of 20 {+-} 5 nm size. Both silver and copper nanoparticles exhibited emission band at 485 and 645 nm, respectively. The starch-stabilized nanoparticles exhibited interesting antibacterial activity with both gram positive and gram negative bacteria at micromolar concentrations.

  7. Evaluation of the Cytotoxic Behavior of Fungal Extracellular Synthesized Ag Nanoparticles Using Confocal Laser Scanning Microscope

    PubMed Central

    Salaheldin, Taher A.; Husseiny, Sherif M.; Al-Enizi, Abdullah M.; Elzatahry, Ahmed; Cowley, Alan H.

    2016-01-01

    Silver nanoparticles have been synthesized by subjecting a reaction medium to a Fusarium oxysporum biomass at 28 °C for 96 h. The biosynthesized Ag nanoparticles were characterized on the basis of their anticipated peak at 405 nm using UV-Vis-NIR spectroscopy. Structural confirmation was evident from the characteristic X-ray diffraction (XRD) pattern, high-resolution transmission electron Microscopy (HRTEM) and the particle size analyzer. The Ag nanoparticles were of dimension 40 ± 5 nm and spherical in shape. The study mainly focused on using the confocal laser scanning microscope (CLSM) to examine the cytotoxic activities of fungal synthesized Ag nanoparticles on a human breast carcinoma cell line MCF7 cell, which featured remarkable vacuolation, thus indicating a potent cytotoxic activity. PMID:26950118

  8. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.

  9. Evaluation of the Cytotoxic Behavior of Fungal Extracellular Synthesized Ag Nanoparticles Using Confocal Laser Scanning Microscope.

    PubMed

    Salaheldin, Taher A; Husseiny, Sherif M; Al-Enizi, Abdullah M; Elzatahry, Ahmed; Cowley, Alan H

    2016-01-01

    Silver nanoparticles have been synthesized by subjecting a reaction medium to a Fusarium oxysporum biomass at 28 °C for 96 h. The biosynthesized Ag nanoparticles were characterized on the basis of their anticipated peak at 405 nm using UV-Vis-NIR spectroscopy. Structural confirmation was evident from the characteristic X-ray diffraction (XRD) pattern, high-resolution transmission electron Microscopy (HRTEM) and the particle size analyzer. The Ag nanoparticles were of dimension 40 ± 5 nm and spherical in shape. The study mainly focused on using the confocal laser scanning microscope (CLSM) to examine the cytotoxic activities of fungal synthesized Ag nanoparticles on a human breast carcinoma cell line MCF7 cell, which featured remarkable vacuolation, thus indicating a potent cytotoxic activity. PMID:26950118

  10. Contribution of Eu ions on the precipitation of silver nanoparticles in Ag-Eu co-doped borate glasses

    SciTech Connect

    Jiao, Qing; Qiu, Jianbei; Zhou, Dacheng; Xu, Xuhui

    2014-03-01

    Graphical abstract: - Highlights: • Silver nanoparticles are precipitated from the borate glasses during the melting process without any further heat treatment. • The reduction of Eu{sup 3+} ions to Eu{sup 2+} ions is presented in this material. • The intensity of Ag{sup +} luminescence. • The introduction of Eu ions accelerated the reaction between Eu{sup 2+} ions and silver ions inducing the silver clusters formation. - Abstract: Ag{sup +} doped sodium borate glasses with different Eu ions concentration were prepared by the melt-quenching method. The absorption at about 410 nm which was caused by the surface plasmon resonance (SPR) of Ag nanoparticles (NPs) is promoted with increasing of Eu ions concentration. Meanwhile, the luminescent spectra showed that the emission intensity of Ag{sup +} decreased while that of the Ag aggregates increased simultaneously. The results indicated that the Ag ions intend to form the high-polymeric state such as Ag aggregates and nanoparticles with increasing of europium ions. Owing to the self-reduction of Eu{sup 3+} to Eu{sup 2+} in our glass system, it revealed that Ag{sup +} has been reduced by the neighboring Eu{sup 2+} which leads to the formation of Ag aggregates and the precipitation of Ag NPs in the matrix. In addition, energy transfer (ET) process from Ag{sup +}/Ag aggregates to the Eu{sup 3+} was investigated for the enhancement of Eu{sup 3+} luminescence.

  11. Immobilization of Highly Dispersed Ag Nanoparticles on Carbon Nanotubes Using Electron-Assisted Reduction for Antibacterial Performance.

    PubMed

    Yan, Xiaoliang; Li, Sha; Bao, Jiehua; Zhang, Nan; Fan, Binbin; Li, Ruifeng; Liu, Xuguang; Pan, Yun-Xiang

    2016-07-13

    Silver nanoparticles (Ag NPs) supported on certain materials have been widely used as disinfectants. Yet, to date, the antibacterial activity of the supported Ag NPs is still far below optimum. This is mainly associated with the easy aggregation of Ag NPs on the supporting materials. Herein, an electron-assisted reduction (EAR) method, which is operated at temperatures as low as room temperature and without using any reduction reagent, was employed for immobilizing highly dispersed Ag NPs on aminated-CNTs (Ag/A-CNTs). The average Ag NPs size on the EAR-prepared Ag/A-CNTs is only 3.8 nm, which is much smaller than that on the Ag/A-CNTs fabricated from the traditional thermal calcination (25.5 nm). Compared with Ag/A-CNTs fabricated from traditional thermal calcination, EAR-prepared Ag/A-CNTs shows a much better antibacterial activity to E. coli/S. aureus and antifouling performance to P. subcordiformis/T. lepidoptera. This is mainly originated from the significantly enhanced Ag(+) ion releasing rate and highly dispersed Ag NPs with small size on the EAR-prepared Ag/A-CNTs. The findings from the present work are helpful for fabricating supported Ag NPs with small size and high dispersion for efficient antibacterial process. PMID:27327238

  12. Bioaccumulation of Zn and Ag Nanoparticles in the Earthworms (Eisenia fetida)

    NASA Astrophysics Data System (ADS)

    Ha, Lee Seung; Sung-Dae, Kim; Yi, Yang Song; Byeong-Gweon, Lee

    2014-05-01

    Many studies are carried out to evaluate environmental effects of engineered nanoparticles (ENPs). Most of the previous studies primarily focused on the effects of nanoparticles into the aquatic environment and human. Model studies predict that ENPs released into environment would transferred primarily to the soil of the terrestrial environment. Despite this prediction, biogeochemical behavior of ENPs in soil environment as well as bioavailability of ENPs to soil-dwelling organisms such as earthworm, springtail, isopod and nematodes are poorly understood. The main goal of this study was to compare the bioaccumulation factor (BAFs) and subcellular partitioning of nanoparticles in the soil-dwelling earthworm (Eisenia fetida) from ENP (ZnO and Ag nanoparticles) or ionic metal (Zn2+, Ag+) contaminated soil. And the sequential extraction was also used to determine the mobility of metals in soil which could be used as to predict bioavailability and compare that with bioaccumulation factor. The radiotracer method was employed to trace the transfer of ENPs and ionic metal among different environmental media and animals. Radiolabeled 65ZnO, 110mAgNPs coated with PVP or citrate were synthesized in the laboratory and their chemical and biological behavior was compared to ionic 65Zn and 110mAg. The BAFs of Zn and Ag in the earthworms were determined after animals exposed to the contaminated soils. After the 7 days of elimination phase, subcellular partitioning of metals were also obtained. BAF for ZnO(0.06) was 31 times lower than that for Zn ion (1.86), suggesting that ZnO was less bioavailable than its ionic form from contaminated soil. On the other hands, BAFs for AgNPs coated with PVP (0.12) or with citrate (0.11) were comparable to those for Ag ion (0.17), indicating that Ag from contaminated soil was bioavailable in a similar rate regardless of chemical forms. The subcellular partitioning results showed that bioaccumulated Zn from Zn ion and ZnO contaminated soil were

  13. Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena).

    PubMed

    Cruz, Diana; Falé, Pedro L; Mourato, Ana; Vaz, Pedro D; Serralheiro, M Luisa; Lino, Ana Rosa L

    2010-11-01

    The purpose of this study was to develop a simple biological method for the synthesis of Ag nanoparticles (AgNPs) using Lippia citriodora leaves aqueous extract as reducing agent. Transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), and visible absorption spectroscopy (UV-vis) confirmed the reduction of silver ions to AgNPs. Stable, spherical crystalline AgNPs with well defined dimensions (average size of 15-30 nm) were obtained, on treating aqueous silver nitrate with the plant leaf aqueous extract. The kinetic of particles formation was proportional to the effect of reducing agent concentration and was enhanced by the increase of temperature from 25 degrees C to 95 degrees C. Time, temperature and extract concentration did not influence significantly the shape and size of nanoparticles. In order to identify the compounds responsible for the bioreduction of silver ions and stabilization of the AgNPs formed, we investigated the constituents of L. citriodora aqueous extract by high performance liquid chromatography (HPLC) and mass spectrometry (MS). The main compounds found were verbascoside, isoverbascoside, chrysoeriol-7-O-diglucoronide and luteonin-7-O-diglucoronide. The data obtained suggests that the isoverbascoside compound is responsible for Ag(+) ions reduction and act as capping agents of the nanoparticles afterwards. PMID:20655710

  14. Gamma ray irradiated AgFeO{sub 2} nanoparticles with enhanced gas sensor properties

    SciTech Connect

    Wang, Xiuhua; Shi, Zhijie; Yao, Shangwu; Liao, Fan; Ding, Juanjuan; Shao, Mingwang

    2014-11-15

    AgFeO{sub 2} nanoparticles were synthesized via a facile hydrothermal method and irradiated by various doses of gamma ray. The products were characterized with X-ray powder diffraction, UV–vis absorption spectrum and transmission electron microscope. The results revealed that the crystal structure, morphology and size of the samples remained unchanged after irradiation, while the intensity of UV–Vis spectra increased with irradiation dose increasing. In addition, gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including the optimum operating temperature and sensitivity, which might be ascribed to the generation of defects. - Graphical abstract: Gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including sensitivity and optimum operating temperature, which might be ascribed to the generation of defects. - Highlights: • AgFeO{sub 2} nanoparticles were synthesized and irradiated with gamma ray. • AgFeO{sub 2} nanoparticles were employed to fabricate gas sensors to detect ethanol. • Gamma ray irradiation improved the sensitivity and optimum operating temperature.

  15. Subsurface Synthesis and Characterization of Ag Nanoparticles Embedded in MgO

    SciTech Connect

    Vilayur Ganapathy, Subramanian; Devaraj, Arun; Colby, Robert J.; Pandey, Archana; Varga, Tamas; Shutthanandan, V.; Manandhar, Sandeep; El-Khoury, Patrick Z.; Kayani, Asghar N.; Hess, Wayne P.; Thevuthasan, Suntharampillai

    2013-03-08

    Metal nanoparticles exhibit localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the dielectric medium surrounding it. LSPR causes field enhancement near the surface of the nanoparticle making them interesting candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix form hotspots which are prime locations for LSPR spectroscopy and sensing. This study involves synthesizing partially buried Ag nanoparticles in MgO and investigating the characteristics of this material system. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 10000C for 10 and 30 hours. A detailed optical and structural characterization was carried out to understand the evolution of Ag nanoparticle microstructure and size distribution inside the MgO matrix. Micro x-ray diffraction (MicroXRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes as seen from aberration corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  16. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO.

    PubMed

    Vilayurganapathy, S; Devaraj, A; Colby, R; Pandey, A; Varga, T; Shutthanandan, V; Manandhar, S; El-Khoury, P Z; Kayani, Asghar; Hess, W P; Thevuthasan, S

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag(+) ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles. PMID:23403363

  17. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    NASA Astrophysics Data System (ADS)

    Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P. Z.; Kayani, Asghar; Hess, W. P.; Thevuthasan, S.

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  18. Surface modification of oleylamine-capped Ag-Cu nanoparticles to fabricate low-temperature-sinterable Ag-Cu nanoink.

    PubMed

    Kim, Na Rae; Lee, Yung Jong; Lee, Changsoo; Koo, Jahyun; Lee, Hyuck Mo

    2016-08-26

    By treating oleylamine (OA)-capped Ag-Cu nanoparticles with tetramethylammonium hydroxide (TMAH), we obtained metal nanoparticles that are suspended in polar solvents and sinterable at low temperatures. The simple process with ultra sonication enables synthesis of monodispersed and high purity nanoparticles in an organic base, where the resulting nanoparticles are dispersible in polar solvents such as ethanol and isopropyl alcohol. To investigate the surface characteristics, we conducted Fourier-transform infrared and zeta-potential analyses. After thermal sintering at 200 °C, which is approximately 150 °C lower than the thermal decomposition temperature of OA, an electrically conductive thin film was obtained. Electrical resistivity measurements of the TMAH-treated ink demonstrate that surface modified nanoparticles have a low resistivity of 13.7 × 10(-6) Ω cm. These results confirm the prospects of using low-temperature sinterable nanoparticles as the electrode layer for flexible printed electronics without damaging other stacked polymer layers. PMID:27454465

  19. Prediction of size distribution of Ag nanoparticles synthesized via gamma-ray radiolysis

    NASA Astrophysics Data System (ADS)

    Liang, Jia-liang; Shen, Sheng-wen; Ye, Sheng-ying; Ye, Lü-meng

    2015-09-01

    The spherical shape Ag nanoparticles synthesized via gamma-ray radiolysis were observed with the transmission electron microscope (TEM). Diameters of Ag nanoparticles were measured from the TEM photographs. Statistical analysis showed that the particle diameter complied with a linear-converted Poisson distribution. The distribution parameter, which was the average of diameters, was related to the ultraviolet-visible spectrum peak position of the nanosilver collosol. An empirical equation was established to predicting size distribution of Ag nanoparticles with the peak position. Nanosilver of different sizes could be synthesized by adjusting the intensity of γ-irradiation, the kind and the addition amount of the stabilizing agent. Because particle size affects the physiochemical properties of nanosilver material, results of this paper would be of practical significance for the application of nanosilver.

  20. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity

    PubMed Central

    Prasad, TNVKV; Elumalai, EK

    2011-01-01

    Objective To formulate a simple rapid procedure for bioreduction of silver nanoparticles using aqueous leaves extract of Moringa oleifera (M. oleifera). Methods 10 mL of leaf extract was mixed to 90 mL of 1 mM aqueous of AgNO3 and was heated at 60 - 80 °C for 20 min. A change from brown to reddish color was observed. Characterization using UV-Vis spectrophotometry, Transmission Electron Microscopy (TEM) was performed. Results TEM showed the formation of silver nanoparticles with an average size of 57 nm. Conclusions M. oleifera demonstrates strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0). Biological methods are good competents for the chemical procedures, which are eco-friendly and convenient. PMID:23569809

  1. Ag Nanoparticle-Sensitized WO3 Hollow Nanosphere for Localized Surface Plasmon Enhanced Gas Sensors.

    PubMed

    Yao, Yao; Ji, Fangxu; Yin, Mingli; Ren, Xianpei; Ma, Qiang; Yan, Junqing; Liu, Shengzhong Frank

    2016-07-20

    Ag nanoparticle (NP)-sensitized WO3 hollow nanospheres (Ag-WO3-HNSs) are fabricated via a simple sonochemical synthesis route. It is found that the Ag-WO3-HNS shows remarkable performance in gas sensors. Field-emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) images reveal that the Agx-WO3 adopts the HNS structure in which WO3 forms the outer shell framework and the Ag NPs are grown on the inner wall of the WO3 hollow sphere. The size of the Ag NPs can be controlled by adjusting the addition amount of WCl6 during the reaction. The sensor Agx-WO3 exhibits extremely high sensitivity and selectivity toward alcohol vapor. In particular, the Ag(15nm)-WO3 sensor shows significantly lower operating temperature (230 °C), superior detection limits as low as 0.09 ppb, and faster response (7 s). Light illumination was found to boost the sensor performance effectively, especially at 405 and 900 nm, where the light wavelength resonates with the absorption of Ag NPs and the surface oxygen vacancies of WO3, respectively. The improved sensor performance is attributed to the localized surface plasmon resonance (LSPR) effect. PMID:27348055

  2. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity.

    PubMed

    Kang, Fuxing; Alvarez, Pedro J; Zhu, Dongqiang

    2014-01-01

    Whereas the antimicrobial mechanisms of silver have been extensively studied and exploited for numerous applications, little is known about the associated bacterial adaptation and defense mechanisms that could hinder disinfection efficacy or mitigate unintended impacts to microbial ecosystem services associated with silver release to the environment. Here, we demonstrate that extracellular polymeric substances (EPS) produced by bacteria constitute a permeability barrier with reducing constituents that mitigate the antibacterial activity of silver ions (Ag(+)). Specifically, manipulation of EPS in Escherichia coli suspensions (e.g., removal of EPS attached to cells by sonication/centrifugation or addition of EPS at 200 mg L(-1)) demonstrated its critical role in hindering intracellular silver penetration and enhancing cell growth in the presence of Ag(+) (up to 0.19 mg L(-1)). High-resolution transmission electron microscopy (HRTEM) combined with X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectrometry (EDS) analyses showed that Ag(+) was reduced to silver nanoparticles (AgNPs; 10-30 nm in diameter) that were immobilized within the EPS matrix. Fourier transform infrared (FTIR) and (13)C nuclear magnetic resonance (NMR) spectra suggest that Ag(+) reduction to AgNPs by the hemiacetal groups of sugars in EPS contributed to immobilization. Accordingly, the amount and composition of EPS produced have important implications on the bactericidal efficacy and potential environmental impacts of Ag(+). PMID:24328348

  3. Large range localized surface plasmon resonance of Ag nanoparticles films dependent of surface morphology

    NASA Astrophysics Data System (ADS)

    Yan, Lijuan; Yan, Yaning; Xu, Leilei; Ma, Rongrong; Jiang, Fengxian; Xu, Xiaohong

    2016-03-01

    Noble metal nanoparticles (NPs) have received enormous attention since it displays uniquely optical and electronic properties. In this work, we study localized surface plasmon resonances (LSPR) at different thicknesses and substrate temperatures of Ag NPs films grown by Laser Molecule Beam Epitaxy (LMBE). The LSPR wavelength can be largely tuned in the visible light range of 470 nm to 770 nm. The surface morphology is characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The average size of Ag NPs increased with the thickness increased which leading to the LSPR band broaden and wavelength red-shift. As the substrate temperature is increased from RT to 200 °C, the Ag NPs size distribution becomes homogeneous and particle shape changes from oblate spheroid to sphere, the LSPR band displays sharp, blue-shift and significantly symmetric. Obviously, the morphology of Ag NPs films is important for tuning absorption position. We obtain the cubic crystal structure of Ag NPs with a (1 1 1) main diffraction peak from the X-ray diffraction (XRD) spectra. The high resolution TEM (HR-TEM) and selected area electron diffraction (SAED) prove that Ag NPs is polycrystal structure. The Ag NPs films with large range absorption in visible light region can composite with semiconductor to apply in various optical or photoelectric devices.

  4. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF. PMID:26035249

  5. One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers.

    PubMed

    Celebioglu, Asli; Aytac, Zeynep; Umu, Ozgun C O; Dana, Aykutlu; Tekinay, Turgay; Uyar, Tamer

    2014-01-01

    One-step synthesis of size-tunable silver nanoparticles (Ag-NP) incorporated into electrospun nanofibers was achieved. Initially, in situ reduction of silver salt (AgNO3) to Ag-NP was carried out in aqueous solution of polyvinyl alcohol (PVA). Here, PVA was used as reducing agent and stabilizing polymer as well as electrospinning polymeric matrix for the fabrication of PVA/Ag-NP nanofibers. Afterwards, hydroxypropyl-beta-cyclodextrin (HPβCD) was used as an additional reducing and stabilizing agent in order to control size and uniform dispersion of Ag-NP. The size of Ag-NP was ∼8 nm and some Ag-NP aggregates were observed for PVA/Ag-NP nanofibers, conversely, the size of Ag-NP decreased from ∼8 nm down to ∼2 nm within the fiber matrix without aggregation were attained for PVA/HPβCD nanofibers. The PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibers exhibited surface enhanced Raman scattering (SERS) effect. Moreover, antibacterial properties of PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibrous mats were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. PMID:24274573

  6. Enhanced formation of silver nanoparticles in Ag+-NOM-iron(II, III) systems and antibacterial activity studies.

    PubMed

    Adegboyega, Nathaniel F; Sharma, Virender K; Siskova, Karolina M; Vecerova, Renata; Kolar, Milan; Zbořil, Radek; Gardea-Torresdey, Jorge L

    2014-03-18

    This work reports the role of iron redox pair (Fe(3+)/Fe(2+)) in the formation of naturally occurring silver nanoparticles (AgNPs) in the aquatic environment. The results showed that Fe(3+) or Fe(2+) ions in the mixtures of Ag(+) and natural organic matter enhanced the formation of AgNPs. The formation of AgNPs depended on pH and types of organic matter. Increase in pH enhanced the formation of AgNPs, and humic acids as ligands showed higher formation of AgNPs compared to fulvic acids. The observed results were described by considering the potentials of redox pairs of silver and iron species and the possible species involved in reducing silver ions to AgNPs. Dynamic light scattering and transmission electron microscopy measurements of AgNPs revealed mostly bimodal size distribution with decrease in size of AgNPs due to iron species in the reaction mixture. Minimum inhibitory concentration of AgNPs needed to inhibit the growth of various bacterial species suggested the role of surfaces of tested Gram-positive and Gram-negative bacteria. Stability study of AgNPs, formed in Ag(+)-humic acid/fulvic acids-Fe(3+) mixtures over a period of several months showed high stability of the particles with significant increase in surface plasmon resonance peak. The environmental implications of the results in terms of fate, transport, and ecotoxicity of organic-coated AgNPs are briefly presented. PMID:24524189

  7. Energetics of the formation of Cu-Ag core–shell nanoparticles

    SciTech Connect

    Chandross, Michael

    2014-10-06

    Our work presents molecular dynamics and Monte Carlo simulations aimed at developing an understanding of the formation of core–shell Cu-Ag nanoparticles. The effects of surface and interfacial energies were considered and used to form a phenomenological model that calculates the energy gained upon the formation of a core–shell structure from two previously distinct, non-interacting nanoparticles. In most cases, the core–shell structure was found to be energetically favored. Specifically, the difference in energy as a function of the radii of the individual Cu and Ag particles was examined, with the assumption that a core–shell structure forms. In general, it was found that the energetic gain from forming such a structure increased with increasing size of the initial Ag particle. This result was interpreted as a result of the reduction in surface energy. Moreover, for two separate particles, both Cu and Ag contribute to the surface energy; however, for a core–shell structure, the only contribution to the surface energy is from the Ag shell and the Cu contribution is changed to a Cu–Ag interfacial energy, which is always smaller.

  8. Energetics of the formation of Cu-Ag core–shell nanoparticles

    DOE PAGESBeta

    Chandross, Michael

    2014-10-06

    Our work presents molecular dynamics and Monte Carlo simulations aimed at developing an understanding of the formation of core–shell Cu-Ag nanoparticles. The effects of surface and interfacial energies were considered and used to form a phenomenological model that calculates the energy gained upon the formation of a core–shell structure from two previously distinct, non-interacting nanoparticles. In most cases, the core–shell structure was found to be energetically favored. Specifically, the difference in energy as a function of the radii of the individual Cu and Ag particles was examined, with the assumption that a core–shell structure forms. In general, it was foundmore » that the energetic gain from forming such a structure increased with increasing size of the initial Ag particle. This result was interpreted as a result of the reduction in surface energy. Moreover, for two separate particles, both Cu and Ag contribute to the surface energy; however, for a core–shell structure, the only contribution to the surface energy is from the Ag shell and the Cu contribution is changed to a Cu–Ag interfacial energy, which is always smaller.« less

  9. AGS II

    SciTech Connect

    Palmer, R.B.

    1984-01-01

    Interest in rare K decays, neutrino oscillations and other fields have generated an increasing demand for running, and improved intensity and duty cycle, at the AGS. Current projects include acceleration of polarized protons and light ions (up to mass 32). Future plans are for a booster to increase intensity and allow heavy ions (up to mass 200), and a stretcher to give 100% duty cycle. A later upgrade could yield an average current of 32 ..mu.. amps. 6 figures, 2 tables.

  10. Beet juice utilization: Expeditious green synthesis of nobel metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves

    EPA Science Inventory

    Metal nanoparticles of Ag, Au, Pt, and Pd were prepared in aqueous solutions via a rapid microwave-assisted green method using beet juice, an abundant sugar-rich agricultural produce, served as both a reducing and a capping reagent. The Ag nanoparticles with capping prepared by b...

  11. Fabrication of high aspect ratio nanogrid transparent electrodes via capillary assembly of Ag nanoparticles.

    PubMed

    Kang, Juhoon; Park, Chang-Goo; Lee, Su-Han; Cho, Changsoon; Choi, Dae-Geun; Lee, Jung-Yong

    2016-06-01

    In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq(-1) and an optical transmittance of 85.4%. PMID:27187802

  12. Photostability of gold nanoparticles with different shapes: the role of Ag clusters.

    PubMed

    Attia, Yasser A; Buceta, David; Requejo, Félix G; Giovanetti, Lisandro J; López-Quintela, M Arturo

    2015-07-14

    Anisotropic gold nanostructures prepared by the seed method in the presence of Ag ions have been used to study their photostability to low-power UV irradiation (254 nm) at room temperature. It has been observed that, whereas spheres are very stable to photoirradiation, rods and prisms suffer from photocorrosion and finally dissolve completely with the production of Au(III) ions. Interpretation of these differences is based on the presence of semiconductor-like Ag clusters, adsorbed onto rods and prisms, able to photocorrode the Au nanoparticles, which are absent in the case of Au spheres. We further show direct evidence of the presence of Ag clusters in Au nanorods by XANES. These results confirm a previous hypothesis (J. Am. Chem. Soc., 2014, 136, 1182-1185) about the major influence of very stable small Ag clusters, not only on the anisotropic formation of nanostructures but also on their photostability. PMID:26068070

  13. Resonant surface enhancement of Raman scattering of Ag nanoparticles on silicon substrates fabricated by dc sputtering

    SciTech Connect

    Fang Yingcui; Li Xiaxi; Blinn, Kevin; Mahmoud, Mahmoud A.; Liu Meilin

    2012-09-15

    Ag nanoparticles (AgNPs) were deposited onto silicon substrates by direct current (dc) magnetron sputtering. The influences of sputtering power and sputtering time on the AgNP film morphology were studied using atomic force microscopy. The particle size was successfully tuned from 19 nm to 53 nm by varying the sputtering time at a dc power of 10 W. When Rhodamine 6 G (R6G) was used as the probe molecule, the AgNP films showed significant surface enhanced Raman scattering effect. In particular, it is found that larger particles show stronger enhancement for lower concentrations of R6G while smaller particles display stronger enhancement for higher concentrations of R6G.

  14. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Ye, Feng; Yao, Qiaofeng; Cao, Hongbin; Xie, Jianping; Lee, Jim Yang; Yang, Jun

    2014-02-01

    The usefulness of Pt-based nanomaterials for catalysis can be greatly enhanced by coupling morphology engineering to the strategic presence of a second or even third metal. Here we demonstrate the design and preparation of stellated Ag-Pt bimetallic nanoparticles where significant activity difference between the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) may be realized by relegating Ag to the core or by hollowing out the core. In particular the stellated Pt surface, with an abundance of steps, edges, corner atoms, and {111} facets, is highly effective for the ORR but is ineffective for MOR. MOR activity is only observed in the presence of a Ag core through electronic coupling to the stellated Pt shell. The bimetallic Ag-Pt stellates therefore demonstrate the feasibility of tuning a Pt surface for two very different structure sensitive catalytic reactions. Stellated bimetallics may therefore be an effective platform for highly tunable catalyst designs.

  15. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning

    PubMed Central

    Liu, Hui; Ye, Feng; Yao, Qiaofeng; Cao, Hongbin; Xie, Jianping; Lee, Jim Yang; Yang, Jun

    2014-01-01

    The usefulness of Pt-based nanomaterials for catalysis can be greatly enhanced by coupling morphology engineering to the strategic presence of a second or even third metal. Here we demonstrate the design and preparation of stellated Ag-Pt bimetallic nanoparticles where significant activity difference between the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) may be realized by relegating Ag to the core or by hollowing out the core. In particular the stellated Pt surface, with an abundance of steps, edges, corner atoms, and {111} facets, is highly effective for the ORR but is ineffective for MOR. MOR activity is only observed in the presence of a Ag core through electronic coupling to the stellated Pt shell. The bimetallic Ag-Pt stellates therefore demonstrate the feasibility of tuning a Pt surface for two very different structure sensitive catalytic reactions. Stellated bimetallics may therefore be an effective platform for highly tunable catalyst designs. PMID:24495979

  16. Sequential laser and ultrasonic wave generation of TiO2@Ag core-shell nanoparticles and their anti-bacterial properties.

    PubMed

    Hamad, Abubaker Hassan; Li, Lin; Liu, Zhu; Zhong, Xiang Li; Wang, Tao

    2016-02-01

    Core-shell nanoparticles have unusual physical, chemical and biological properties. Until now, for the Ag and TiO2 combination, only Ag core and TiO2 shell nanoparticles have been practically demonstrated. In this investigation, novel TiO2@Ag core-shell (TiO2 core and Ag shell) nanoparticles were produced via ultrasonic vibration of Ag-TiO2 compound nanoparticles. A bulk Ti/Ag alloy plate was used to generate colloidal Ag-TiO2 compound nanoparticles via picosecond laser ablation in deionised water. The colloidal nanoparticles were then sonicated in an ultrasonic bath to generate TiO2@Ag core-shell nanoparticles. They were characterised using a UV-VIS spectrometer, transmission electron microscopy (TEM), high-angle annular dark-field-Scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The Ag-TiO2 compound and the TiO2@Ag core-shell nanoparticles were examined for their antibacterial activity against Escherichia coli (E. coli) JM109 strain bacteria and compared with those of Ag and TiO2 nanoparticles. The antibacterial activity of the core-shell nanoparticles was slightly better than that of the compound nanoparticles at the same concentration under standard laboratory light conditions and both were better than the TiO2 nanoparticles but not as good as the Ag nanoparticles. PMID:26714980

  17. The characteristics of novel bimodal Ag-TiO2 nanoparticles generated by hybrid laser-ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Hamad, Abubaker; Li, Lin; Liu, Zhu; Zhong, Xiang Li; Burke, Grace; Wang, Tao

    2016-04-01

    Silver-titania (Ag-TiO2) nanoparticles with smaller Ag nanoparticles attached to larger TiO2 nanoparticles were generated by hybrid ultrasonic vibration and picosecond laser ablation of Ag and Ti bulk targets in deionised water, for the first time. The laser has a wavelength of 1064 nm and a pulse duration of 10 ps. It was observed that without the ultrasonic vibration, Ag and TiO2 nanoparticles did not combine, thus the role of ultrasonic vibration is essential. In addition, colloidal TiO2 and Ag nanoparticles were generated separately for comparison under the same laser beam characteristics and process conditions. The absorption spectra of colloidal Ag-TiO2 cluster nanoparticles were examined by UV-Vis spectroscopy, and size distribution was characterised using transmission electron microscopy. The morphology and composition of Ag-TiO2 nanoparticles were examined using scanning transmission electron microscopy in high-angle annular dark field, and energy-dispersive X-ray spectroscopy. The crystalline structures were investigated by X-ray diffraction. The size of larger TiO2 particles was in the range 30-150 nm, and the smaller-sized Ag nanoparticles attached to the TiO2 was mainly in the range of 10-15 nm. The yield is more than 50 % with the remaining nanoparticles in the form of uncombined Ag and TiO2. The nanoparticles generated had strong antibacterial effects as tested against E. coli. A discussion is given on the role of ultrasonic vibration in the formation of Ag-TiO2 hybrid nanoparticles by picosecond laser ablation.

  18. Fabrication of high aspect ratio nanogrid transparent electrodes via capillary assembly of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Juhoon; Park, Chang-Goo; Lee, Su-Han; Cho, Changsoon; Choi, Dae-Geun; Lee, Jung-Yong

    2016-05-01

    In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%.In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01896c

  19. Toxicological Effects of Caco-2 Cells Following Short-Term and Long-Term Exposure to Ag Nanoparticles

    PubMed Central

    Chen, Ni; Song, Zheng-Mei; Tang, Huan; Xi, Wen-Song; Cao, Aoneng; Liu, Yuanfang; Wang, Haifang

    2016-01-01

    Extensive utilization increases the exposure of humans to Ag nanoparticles (NPs) via the oral pathway. To comprehensively address the action of Ag NPs to the gastrointestinal systems in real situations, i.e., the long-term low-dose exposure, we evaluated and compared the toxicity of three Ag NPs (20–30 nm with different surface coatings) to the human intestine cell Caco-2 after 1-day and 21-day exposures, using various biological assays. In both the short- and long-term exposures, the variety of surface coating predominated the toxicity of Ag NPs in a descending order of citrate-coated Ag NP (Ag-CIT), bare Ag NP (Ag-B), and poly (N-vinyl-2-pyrrolidone)-coated Ag NP (Ag-PVP). The short-term exposure induced cell growth inhibition and death. The cell viability loss appeared after cells were exposed to 0.7 μg/mL Ag-CIT, 0.9 μg/mL Ag-B or >1.0 μg/mL Ag-PVP for 24 h. The short-term and higher-dose exposure also induced reactive oxygen species (ROS) generation, mitochondrial damage, cell membrane leakage, apoptosis, and inflammation (IL-8 level). The long-term exposure only inhibited the cell proliferation. After 21-day exposure to 0.4 μg/mL Ag-CIT, the cell viability dropped to less than 50%, while cells exposed to 0.5 μg/mL Ag-PVP remained normal as the control. Generally, 0.3 μg/mL is the non-toxic dose for the long-term exposure of Caco-2 cells to Ag NPs in this study. However, cells presented inflammation after exposure to Ag NPs with the non-toxic dose in the long-term exposure. PMID:27338357

  20. Influence of size, shape and core–shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiOx

    PubMed Central

    Pinotti, Daniele; Spadaro, Maria Chiara; Paolicelli, Guido; Grillo, Vincenzo; Valeri, Sergio; Pasquali, Luca; Bergamini, Luca; Corni, Stefano

    2015-01-01

    Summary Ag and Ag@MgO core–shell nanoparticles (NPs) with a diameter of d = 3–10 nm were obtained by physical synthesis methods and deposited on Si with its native ultrathin oxide layer SiOx (Si/SiOx). Scanning electron microscopy and transmission electron microscopy (TEM) images of bare Ag NPs revealed the presence of small NP aggregates caused by diffusion on the surface and agglomeration. Atomic resolution TEM gave evidence of the presence of crystalline multidomains in the NPs, which were due to aggregation and multitwinning occurring during NP growth in the nanocluster source. Co-deposition of Ag NPs and Mg atoms in an oxygen atmosphere gave rise to formation of a MgO shell matrix surrounding the Ag NPs. The behaviour of the surface plasmon resonance (SPR) excitation in surface differential reflectivity (SDR) spectra with p-polarised light was investigated for bare Ag and Ag@MgO NPs. It was shown that the presence of MgO around the Ag NPs caused a red shift of the plasmon excitation, and served to preserve its existence after prolonged (five months) exposure to air, realizing the possibility of technological applications in plasmonic devices. The Ag NP and Ag@MgO NP film features in the SDR spectra could be reproduced by classical electrodynamics simulations by treating the NP-containing layer as an effective Maxwell Garnett medium. The simulations gave results in agreement with the experiments when accounting for the experimentally observed aggregation. PMID:25821680

  1. Novel method for the preparation of core-shell nanoparticles with movable Ag core and polystyrene loop shell

    SciTech Connect

    Liu Weijun; Zhang Zhicheng . E-mail: lwj3600@ustc.edu; He Weidong; Zheng Cheng; Ge Xuewu; Li, Jian; Liu Huarong; Jiang Hao

    2006-04-15

    Core/shell nanoparticles with movable silver (Ag) core and polystyrene (PSt) shell (Ag at PSt nanoparticle) were successfully synthesized at room temperature and under ambient pressure via two steps: {gamma}-irradiation and interfacial-initiated polymerization. Firstly, mono-dispersed Ag nanoparticles with diameters 20 nm were synthesized in inversed microemulsion by reducing silver nitrate under {gamma}-irradiation. Then, Ag nanoparticles were coated with PSt via interfacial-initiated polymerization with cumene hydroperoxide/ferrous sulfate/disodium ethylenediaminetetraacetate/sodium formaldehyde sulfoxylate (CHPO-Fe {sup 2+}-EDTA-SFS) as the redox initiation pair. The resulted Ag at PSt nanoparticles were identified by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS)

  2. Monodispersed bimetallic PdAg nanoparticles with twinned structures: formation and enhancement for the methanol oxidation.

    PubMed

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd₈₀Ag₂₀, Pd₆₅Ag₃₅ and Pd₄₆Ag₅₄ can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd₈₀Ag₂₀ nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system. PMID:24608736

  3. Impact of ZnO and Ag Nanoparticles on Bacterial Growth and Viability

    NASA Astrophysics Data System (ADS)

    Olson, M. S.; Digiovanni, K. A.

    2007-12-01

    Hundreds of consumer products containing nanomaterials are currently available in the U.S., including computers, clothing, cosmetics, sports equipment, medical devices and product packaging. Metallic nanoparticles can be embedded in or coated on product surfaces to provide antimicrobial, deodorizing, and stain- resistant properties. Although these products have the potential to provide significant benefit to the user, the impact of these products on the environment remains largely unknown. The purpose of this project is to study the effect of metallic nanoparticles released to the environment on bacterial growth and viability. Inhibition of bacterial growth was tested by adding doses of suspended ZnO and Ag nanoparticles into luria broth prior to inoculation of Escherichia coli cells. ZnO particles (approximately 40 nm) were obtained commercially and Ag particles (12-14 nm) were fabricated by reduction of silver nitrate with sodium borohydride. Toxicity assays were performed to test the viability of E. coli cells exposed to both ZnO and Ag nanoparticles using the LIVE/DEAD BacLight bacterial viability kit (Invitrogen). Live cells stain green whereas cells with compromised membranes that are considered dead or dying stain red. Cells were first grown, stained, and exposed to varying doses of metallic nanoparticles, and then bacterial viability was measured hourly using fluorescence microscopy. Results indicate that both ZnO and Ag nanoparticles inhibit the growth of E. coli in liquid media. Preliminary results from toxicity assays confirm the toxic effect of ZnO and Ag nanoparticles on active cell cultures. Calculated death rates resulting from analyses of toxicity studies will be presented.

  4. Redox-Robust Pentamethylferrocene Polymers and Supramolecular Polymers, and Controlled Self-Assembly of Pentamethylferricenium Polymer-Embedded Ag, AgI, and Au Nanoparticles.

    PubMed

    Gu, Haibin; Ciganda, Roberto; Castel, Patricia; Vax, Amélie; Gregurec, Danijela; Irigoyen, Joseba; Moya, Sergio; Salmon, Lionel; Zhao, Pengxiang; Ruiz, Jaime; Hernández, Ricardo; Astruc, Didier

    2015-12-01

    We report the first pentamethylferrocene (PMF) polymers and the redox chemistry of their robust polycationic pentamethylferricenium (PMFium) analogues. The PMF polymers were synthesized by ring-opening metathesis polymerization (ROMP) of a PMF-containing norbornene derivative by using the third-generation Grubbs ruthenium metathesis catalyst. Cyclic voltammetry studies allowed us to determine confidently the number of monomer units in the polymers through the Bard-Anson method. Stoichiometric oxidation by using ferricenium hexafluorophosphate quantitatively and instantaneously provided fully stable (even in aerobic solutions) blue d(5) Fe(III) metallopolymers. Alternatively, oxidation of the PMF-containing polymers was conducted by reactions with Ag(I) or Au(III) , to give PMFium polymer-embedded Ag and Au nanoparticles (NPs). In the presence of I2 , oxidation by using Ag(I) gave polymer-embedded Ag/AgI NPs and AgNPs at the surface of AgI NPs. Oxidation by using Au(III) also produced an Au(I) intermediate that was trapped and characterized. Engineered single-electron transfer reactions of these redox-robust nanomaterial precursors appear to be a new way to control their formation, size, and environment in a supramolecular way. PMID:26494439

  5. In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: green chemistry approach.

    PubMed

    Tamuly, Chandan; Hazarika, Moushumi; Borah, Sarat Ch; Das, Manash R; Boruah, Manas P

    2013-02-01

    The synthesis of Ag, Au and Ag-Au bimetallic nanoparticles using Piper pedicellatum C.DC leaf extract is demonstrated here. The rapid formation of stable Ag and Au nanoparticles has been found using P. pedicellatum C.DC leaf extract in aqueous medium at normal atmospheric condition. Competitive reduction of Ag(+) and Au(3+) ions present simultaneously in solution during exposure to P. pedicellatum C.DC leaf extract leads to the synthesis of bimetallic Ag-Au nanoparticles in solution. Transmission electron microscopy (TEM) analysis revealed that the Ag nanoparticles predominantly form spherical in shape with the size range of 2.0±0.5-30.0±1.2 nm. In case of Au nanoparticles, the particles are spherical in shape along with few triangular, hexagonal and pentagonal shaped nanoparticles also observed. X-ray diffraction (XRD) studies revealed that the nanoparticles were face centered cubic (fcc) in shape. Fourier transform infrared spectroscopy (FTIR) showed nanoparticles were capped with plant compounds. The chemical constituents, viz. catechin, gallic acid, courmaric acid and protocatechuic acid of the leaf extract were identified which may act as a reducing, stabilizing and capping agent. The expected reaction mechanism in the formation of Ag and Au nanoparticles is also reported. PMID:23107941

  6. W{sub 18}O{sub 49} nanorods decorated with Ag/AgCl nanoparticles as highly-sensitive gas-sensing material and visible-light-driven photocatalyst

    SciTech Connect

    Sun Shibin; Chang Xueting; Dong Lihua; Zhang Yidong; Li Zhenjiang; Qiu Yanyan

    2011-08-15

    A novel gas-sensing material and photocatalyst was successfully obtained by decorating Ag/AgCl nanoparticles on the W{sub 18}O{sub 49} nanorods through a clean photochemical route. The as-prepared samples were characterized using combined techniques of X-ray diffractometry, electron microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. Gas-sensing measurements indicate that the Ag/AgCl/W{sub 18}O{sub 49} NRs sensors exhibit superior reducing gas-sensing properties to those of bare W{sub 18}O{sub 49} NRs, and they are highly selective and sensitive to NH{sub 3}, acetone, and H{sub 2}S with short response and recovery times. The Ag/AgCl/W{sub 18}O{sub 49} NRs photocatlysts also possess higher photocatalytic performance than bare W{sub 18}O{sub 49} NRs for degradation of methyl orange under simulated sunlight irradiation. Possible mechanisms concerning the enhancement of gas-sensing and photocatalytic activities of the Ag/AgCl/W{sub 18}O{sub 49} NRs composite were proposed. - Graphical Abstract: The Ag/AgCl nanoparticles adhered well to the W{sub 18}O{sub 49} nanorod. The Ag could act as transfer center of the photoexcited carriers, prohibiting their recombinations in both W{sub 18}O{sub 49} and AgCl. Highlights: > Ag/AgCl/W{sub 18}O{sub 49} NRs were successfully obtained via a clean photochemical route. > The Ag/AgCl nanoparticles decorated on the W{sub 18}O{sub 49} NRs possessed cladding structure. > The Ag/AgCl/W{sub 18}O{sub 49} NRs exhibited excellent gas-sensing and photocatalytic properties.

  7. Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island.

    PubMed

    Xu, Jinxia; Xiao, Xiangheng; Ren, Feng; Wu, Wei; Dai, Zhigao; Cai, Guangxu; Zhang, Shaofeng; Zhou, Juan; Mei, Fei; Jiang, Changzhong

    2012-01-01

    In order to overcome the low utilization ratio of solar light and high electron-hole pair recombination rate of TiO2, the triangular Ag nanoparticle island is covered on the surface of the TiO2 thin film. Enhancement of the photocatalytic activity of the Ag/TiO2 nanocomposite system is observed. The increase of electron-hole pair generation is caused by the enhanced near-field amplitudes of localized surface plasmon of the Ag nanoparticles. The efficiently suppressed recombination of electron-hole pair caused by the metal-semiconductor contact can also enhance the photocatalytic activity of the TiO2 film. PMID:22548875

  8. Thermally switchable dispersions of thermochromic Ag2HgI4 nanoparticles.

    PubMed

    Schwiertz, Janine; Geist, André; Epple, Matthias

    2009-04-28

    Thermochromic Ag(2)HgI(4) nanoparticles were prepared by rapid precipitation from aqueous solution. Stable colloids were formed by coating the particles with four different polymers, respectively. The four resulting systems of functionalised Ag(2)HgI(4) nanoparticles were characterised with respect to their polymer content (elemental analysis), particle size (dynamic light scattering, scanning electron microscopy), optical properties in dispersion (UV spectroscopy), crystallinity (X-ray powder diffraction), and thermochromic transition temperature (differential scanning calorimetry) and also compared to the unfunctionalised bulk phase Ag(2)HgI(4). Stable dispersions with a reversible temperature-induced colour change from yellow to orange (T(trs) = 25-40 degrees C) were obtained. PMID:19352519

  9. Enhanced resistive switching effect in Ag nanoparticle embedded BaTiO{sub 3} thin films

    SciTech Connect

    Au, K.; Wang, Juan; Bao, Z. Y.; Dai, J. Y.; Gao, X. S.; Liu, J. M.

    2013-07-14

    Ag nanoparticle (NP) embedded BaTiO{sub 3} (BTO) thin films on SrRuO{sub 3}-coated SrTiO{sub 3} (STO) substrates are prepared by the integrated nanocluster beam deposition and laser-molecular beam epitaxy. Enhanced resistive switching, up to an ON/OFF ration of 10{sup 4}, has been achieved at low switching voltage (less than 1 V) without a forming voltage. These characteristics make such nanocomposite film very promising for application of low voltage non-volatile random access memory. The enhanced resistive switching effect may be attributed to the charge storage effect of the Ag nanoparticles and easy formation of Ag filament inside the BTO film.

  10. In situ preparation of monodispersed Ag/polyaniline/Fe3O4 nanoparticles via heterogeneous nucleation

    PubMed Central

    2013-01-01

    Acrylic acid and styrene were polymerized onto monodispersed Fe3O4 nanoparticles using a grafting copolymerization method. Aniline molecules were then bonded onto the Fe3O4 nanoparticles by electrostatic self-assembly and further polymerized to obtain uniform polyaniline/Fe3O4 (PANI/Fe3O4) nanoparticles (approximately 35 nm). Finally, monodispersed Ag/PANI/Fe3O4 nanoparticles were prepared by an in situ reduction reaction between emeraldine PANI and silver nitrate. Fourier transform infrared and UV-visible spectrometers and a transmission electron microscope were used to characterize both the chemical structure and the morphology of the resulting nanoparticles. PMID:23819820

  11. Size and alloying induced shift in core and valence bands of Pd-Ag and Pd-Cu nanoparticles

    SciTech Connect

    Sengar, Saurabh K.; Mehta, B. R.; Govind

    2014-03-28

    In this report, X-ray photoelectron spectroscopy studies have been carried out on Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles having identical sizes corresponding to mobility equivalent diameters of 60, 40, and 20 nm. The nanoparticles were prepared by the gas phase synthesis method. The effect of size on valence and core levels in metal and alloy nanoparticles has been studied by comparing the values to those with the 60 nm nanoparticles. The effect of alloying has been investigated by comparing the valence and core level binding energies of Pd-Cu and Pd-Ag alloy nanoparticles with the corresponding values for Pd, Ag, and Cu nanoparticles of identical sizes. These effects have been explained in terms of size induced lattice contractions, alloying induced charge transfer, and hybridization effects. The observation of alloying and size induced binding energy shifts in bimetallic nanoparticles is important from the point of view of hydrogen reactivity.

  12. A composition and size controllable approach for Au-Ag alloy nanoparticles

    PubMed Central

    2012-01-01

    A capillary micro-reaction was established for the synthesis of Au-Ag alloy nanoparticles (NPs) with a flexible and controllable composition and grain size by tuning the synthesis temperature, the residence time, or the mole ratio of Au3+:Ag+. By extending the residence time from 5 to 900 s, enhancing the temperature from 120°C to 160°C, or decreasing the mole ratio of Au3+:Ag+ from 1:1 to 1:20, the composition of samples was changed continuously from Au-rich to Ag-rich. The particles became large with the increase of the residence time; however, synthesis temperatures showed less effect on the particle size change. The particle size of the Au-Ag alloy NPs with various composition could be kept by adjusting the mole ratio of Au3+:Ag+. TEM observation displayed that the as-obtained NPs were sphere-like with the smallest average size of 4.0 nm, which is half of those obtained by the traditional flask method. PMID:22513005

  13. Exchange bias in Ag/FeCo/Ag core/shell/shell nanoparticles due to partial oxidation of FeCo intermediate shell

    NASA Astrophysics Data System (ADS)

    Takahashi, Mari; Mohan, Priyank; Mott, Derrick M.; Maenosono, Shinya

    2016-03-01

    Recently we developed magnetic-plasmonic Ag/FeCo/Ag core/shell/shell nanoparticles for the purpose of biological applications. In these heterostructured nanoparticles, exchange bias is observed as a result of the formation of an interface between ferromagnetic FeCo and antiferromagnetic CoxFe1-xO due to the partial oxidation of the FeCo intermediate shell. In this study we thoroughly characterized the surface oxide layer of the FeCo shell by XPS, XRD and SQUID magnetometer.

  14. Studies on interaction of colloidal Ag nanoparticles with Bovine Serum Albumin (BSA).

    PubMed

    Ravindran, Aswathy; Singh, Anupam; Raichur, Ashok M; Chandrasekaran, N; Mukherjee, Amitava

    2010-03-01

    Biofunctionalization of noble metal nanoparticles like Ag, Au is essential to obtain biocompatibility for specific biomedical applications. Silver nanoparticles are being increasingly used in bio-sensing applications owing to excellent optoelectronic properties. Among the serum albumins, the most abundant proteins in plasma, a wide range of physiological functions of Bovine Serum Albumin (BSA) has made it a model system for biofunctionalization. In absence of adequate prior reports, this study aims to investigate the interaction between silver nanoparticles and BSA. The interaction of BSA [0.05-0.85% concentrations] with Ag nanoparticles [50ppm concentration] in aqueous dispersion was studied through UV-vis spectral changes, morphological and surface structural changes. At pH 7, which is more than the isoelectric point of BSA, a decrease in absorbance at plasmon peak of uninteracted nanoparticles (425nm) was noted till 0.45% BSA, beyond that a blue shift towards 410nm was observed. The blue shift may be attributed to enhanced electron density on the particle surfaces. Increasing pH to 12 enhanced the blue shift further to 400nm. The conformational changes in BSA at alkaline pH ranges and consequent hydrophobic interactions also played an important role. The equilibrium adsorption data fitted better to Freundlich isotherm compared to Langmuir curve. The X-ray diffraction study revealed complete coverage of Ag nanoparticles by BSA. The scanning electron microscopic study of the interacted nanoparticles was also carried out to decipher morphological changes. This study established that tailoring the concentration of BSA and pH of the interaction it was possible to reduce aggregation of nanoparticles. Biofunctionalized Ag nanoparticles with reduced aggregation will be more amenable towards bio-sensing applications. PMID:19896812

  15. Rapid synthesis of ordered hexagonal mesoporous silica and their incorporation with Ag nanoparticles by solution plasma

    SciTech Connect

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang Yul

    2012-10-15

    Graphical abstract: Overall reactions of mesoporous silica and AgNPs-incorporated mesoporous silica syntheses by solution plasma process (SPP). Highlights: ► SPP for rapid synthesis of mesoporous silica. ► SPP for rapid synthesis of mesoporous silica and AgNPs incorporation. ► Higher surface area and larger pore diameter of mesoporous silica synthesized by SPP. -- Abstract: Rapid synthesis of silica with ordered hexagonal mesopore arrangement was obtained using solution plasma process (SPP) by discharging the mixture of P123 triblock copolymer/TEOS in acid solution. SPP, moreover, was utilized for Ag nanoparticles (AgNPs) incorporation in silica framework as one-batch process using silver nitrate (AgNO{sub 3}) solution as precursor. The turbid silicate gel was clearly observed after discharge for 1 min and the white precipitate formed at 3 min. The mesopore with hexagonal arrangement and AgNPs were observed in mesoporous silica. Two regions of X-ray diffraction patterns (2θ < 2° and 2θ = 35–90°) corresponded to the mesoporous silica and Ag nanocrystal characteristics. Comparing with mesoporous silica prepared by a conventional sol–gel route, surface area and pore diameter of mesoporous silica prepared by solution plasma were observed to be larger. In addition, the increase in Ag loading resulted in the decrease in surface area with insignificant variation in the pore diameter of mesoporous silica. SPP could be successfully utilized not only to enhance gelation time but also to increase surface area and pore diameter of mesoporous silica.

  16. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    NASA Astrophysics Data System (ADS)

    Rubina, M. S.; Kamitov, E. E.; Zubavichus, Ya. V.; Peters, G. S.; Naumkin, A. V.; Suzer, S.; Vasil'kov, A. Yu.

    2016-03-01

    Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  17. Ag Nanoparticle/Polydopamine-Coated Inverse Opals as Highly Efficient Catalytic Membranes.

    PubMed

    Choi, Gwan H; Rhee, Do Kyung; Park, A Reum; Oh, Min Jun; Hong, Sunghwan; Richardson, Joseph J; Guo, Junling; Caruso, Frank; Yoo, Pil J

    2016-02-10

    Polymeric three-dimensional inverse-opal (IO) structures provide unique structural properties useful for various applications ranging from optics to separation technologies. Despite vast needs for IO functionalization to impart additional chemical properties, this task has been seriously challenged by the intrinsic limitation of polymeric porous materials that do not allow for the easy penetration of waterborne moieties or precursors. To overcome this restriction, we present a robust and straightforward method of employing a dipping-based surface modification with polydopamine (PDA) inside the IO structures, and demonstrate their application to catalytic membranes via synthetic incorporation of Ag nanoparticles. The PDA coating offers simultaneous advantages of achieving the improved hydrophilicity required for the facilitated infiltration of aqueous precursors and successful creation of nucleation sites for a reduction of growth of the Ag nanoparticles. The resulting Ag nanoparticle-incorporated IO structures are utilized as catalytic membranes for the reduction of 4-nitrophenol to its amino derivatives in the presence of NaBH4. Synergistically combined characteristics of high reactivity of Ag nanoparticles along with a greatly enhanced internal surface area of IO structures enable the implementation of remarkably improved catalytic performance, exhibiting a good conversion efficiency greater than 99% while minimizing loss in the membrane permeability. PMID:26780371

  18. Trimetallic nanostructures: the case of AgPd/Pt multiply twinned nanoparticles

    PubMed Central

    Khanal, Subarna; Bhattarai, Nabraj; Velázquez-Salazar, J. Jesús; Bahena, Daniel; Soldano, German; Ponce, Arturo; Mariscal, Marcelo M.; Mejía-Rosales, Sergio; José-Yacamán, Miguel

    2013-01-01

    We report the synthesis, structural characterization, and atomistic simulations of AgPd/Pt trimetallic (TM) nanoparticles. Two types of structure were synthesized using a relatively facile chemical method: multiply twinned core-shell, and hollow particles. The nanoparticles were small in size, with an average diameter of 11 nm and a narrow distribution, and their characterization by aberration corrected scanning transmission electron microscopy allowed us to probe the structure of the particles at atomistic level. In some nanoparticles, the formation of a hollow structure was also observed, that facilitates the alloying of Ag and Pt in the shell region and the segregation of Ag atoms in the surface, affecting the catalytic activity and stability. We also investigated the growth mechanism of the nanoparticles using grand canonical Monte Carlo simulations, and we have found that Pt regions grow at overpotentials on the AgPd nanoalloys, forming 3D islands at the early stages of the deposition process. We found very good agreement between the simulated structures and those observed experimentally. PMID:24165796

  19. Photocatalytic action of AgCl nanoparticles and its antibacterial activity.

    PubMed

    Ashok Kumar, Deenadayalan; Palanichamy, V; Roopan, Selvaraj Mohana

    2014-09-01

    The scientific community is searching for biosynthetic methods for the production of metallic nanoparticles. Biogenic pathway has now become a vast developing area of research. A novel route biological synthesis of silver chloride nanoparticles (AgCI-NPs) using aqueous leaf extract of Morindacitrifolia under ambient conditions were evaluated. Synthesized nanoparticles were confirmed by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of pH on biosynthesis of AgCI-NPs were investigated using UV-vis spectroscopy. TEM images showed that the diameter of stable AgCI-NPs were approximately 12 nm. FTIR spectra provide the evidence for the presence of protein as possible biomolecules responsible for reduction and capping of nanoparticles. The synthesized AgCI-NPs were observed to have a good catalytic activity on the reduction of methylene blue (MB) dye by M.citrifolia extract which has been confirmed by decrease in absorbance maximum values of methylene blue with respect to time using UV-vis spectroscopy and was attributed to the electron relay effect. PMID:25022464

  20. Sequential repetitive chemical reduction technique to study size-property relationships of graphene attached Ag nanoparticle

    NASA Astrophysics Data System (ADS)

    Haider, M. Salman; Badejo, Abimbola Comfort; Shao, Godlisten N.; Imran, S. M.; Abbas, Nadir; Chai, Young Gyu; Hussain, Manwar; Kim, Hee Taik

    2015-06-01

    The present study demonstrates a novel, systematic and application route synthesis approach to develop size-property relationship and control the growth of silver nanoparticles (AgNPs) embedded on reduced graphene oxide (rGO). A sequential repetitive chemical reduction technique to observe the growth of silver nanoparticles (AgNPs) attached to rGO, was performed on a single solution of graphene oxide (GO) and silver nitrate solution (7 runs, R1-R7) in order to manipulate the growth and size of the AgNPs. The physical-chemical properties of the samples were examined by RAMAN, XPS, XRD, SEM-EDAX, and HRTEM analyses. It was confirmed that AgNPs with diameter varying from 4 nm in first run (R1) to 50 nm in seventh run (R7) can be obtained using this technique. A major correlation between particle size and activities was also observed. Antibacterial activities of the samples were carried out to investigate the disinfection performance of the samples on the Gram negative bacteria (Escherichia coli). It was suggested that the sample obtained in the third run (R3) exhibited the highest antibacterial activity as compared to other samples, toward disinfection of bacteria due to its superior properties. This study provides a unique and novel application route to synthesize and control size of AgNPs embedded on graphene for various applications.

  1. Synthesis and the enhanced visible-light-driven photocatalytic activity of BiVO4 nanocrystals coupled with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, W. Z.; Meng, Shan; Tan, Miao; Jia, L. J.; Zhou, Y. X.; Wu, Shuang; Huang, X. W.; Liang, Y. J.; Shi, H. L.

    2015-03-01

    BiVO4 nanocrystals coupled with Ag nanoparticles (Ag-BiVO4 heterogeneous nanostructures) have been prepared by a new strategy via combining a hydrothermal route with a polyol process, in which BiVO4 nanocrystals were first synthesized by a hydrothermal route, and then, Ag nanoparticles were grown on the surfaces of the presynthesized BiVO4 nanocrystals through a polyol process. The photocatalytic evaluations demonstrate that BiVO4 nanocrystals coupled with Ag nanoparticles exhibit the enhanced visible-light-driven photocatalytic activity for the degradation of methylene blue (MB) and rhodamine B (RhB). The energy alignment and diffuse reflectance property of Ag-BiVO4 heterogeneous nanostructures demonstrate that Ag nanoparticles attached on the surfaces of BiVO4 nanocrystals play double roles for the enhanced visible-light-driven photocatalytic activity. First, the Ag nanoparticles grown on the surfaces of BiVO4 nanocrystals may act as electron sinks to retard the recombination of the photogenerated electrons and holes in BiVO4 so as to improve the charge separation on its surfaces. Second, the Ag nanoparticles increase the visible light absorption of the Ag-BiVO4 photocatalyst due to surface plasmon resonance (SPR) of Ag nanoparticles. These double roles of Ag nanoparticles make Ag-BiVO4 heterogeneous nanostructures to exhibit the enhanced photocatalytic activity to decompose MB and RhB under visible light irradiation, compared to the pure BiVO4 nanocrystals. The enhanced photocatalytic activity is attributed to the charge transfer from BiVO4 to the attached Ag nanoparticles as well as SPR absorption of Ag nanoparticles. The present work not only provides an efficient route to enhance visible-light-driven photocatalytic activity of BiVO4, but also offers a new strategy for fabricating metal-semiconductor heterogeneous nanostructure photocatalysts, which are expected to show considerable potential applications in solar-driven wastewater treatment and water

  2. Decoration of crumpled rGO sheets with Ag nanoparticles by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Papailias, I.; Giannouri, M.; Trapalis, A.; Todorova, N.; Giannakopoulou, T.; Boukos, N.; Lekakou, C.

    2015-12-01

    In this work, crumpled reduced graphene oxide (rGO) nanostructures were produced using spray pyrolysis technique. Graphite oxide (GtO) prepared through a modified Hummers method was used as starting material. Water dispersions of graphene oxide (GO) were prepared and sprayed in a tube furnace at 300 °C, 500 °C and 700 °C using Argon (Ar) as carrier gas. Also, precursor dispersions with different AgNO3 concentrations were processed at the same conditions. During the treatment, the sprayed droplets underwent rapid heating and then gradual cooling until the exit of the oven, where crumpled rGO and Ag/rGO powders were collected. The prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and FT-IR spectroscopy. It was established that the crumpling of the nanosheets was slightly affected by the increase of the process temperature. Crumpled morphologies were obtained even at low temperature of 300 °C. In contrast, the degree of GO reduction was temperature dependent and increased with the increase of the temperature. The incorporation of Ag nanoparticles was evidenced by the XRD and TEM analysis with the size of the Ag nanoparticles to grow as the concentration of AgNO3 and/or the process temperature increased. SERS effect in the Raman spectra of the Ag/rGO materials was observed that reached a maximum at 500 °C. Spray pyrolysis was suggested as a simple, controllable and scalable route for the instantaneous crumpling, reduction and decoration of GO nanosheets with metal/metal oxide nanoparticles.

  3. Spectroscopic monitoring on irradiation-induced formation of AuAg alloy nanoparticles by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Herbani, Yuliati; Nakamura, Takahiro; Sato, Shunichi

    2016-02-01

    The interaction of an intense femtosecond laser pulses with a neat liquid solvent has been known to produce a number of highly reactive species that are useful to induce chemical reactions in the solution through the nonlinear absorption processes. When metal ions are present in the solution, they are assumed to readily reduce by ions, radicals, molecules or excited states generated photolytically from the solvent resulting in the formation of zerovalent metal nanoalloys. If two kinds of metal precursors are involved in a reduction process, the alloying process is expected. In this work, irradiation-induced synthesis of AuAg bimetallic nanoparticle at different laser-pulse energies was examined to investigate the formation mechanism in the presence of NH4OH in the initial solution. At a given laser pulse energy (5.8 mJ/pulse), the time evolution of the UV-visible absorption spectra showed that the formation of AuAg nanoalloys most likely begin with the formation of Ag-riched alloy nanoparticles. As the reduction is started, the absorption spectrum of solution was closer to that of pure Ag nanoparticles. This indicates that the reduction rate of Ag is relatively greater than that of Au nanoparticle in the presence of ammonia. The single peak position then shifts to the red region as the irradiation time increases. After 10 min, the peak positions are between pure silver and gold peaks indicating the alloying process occurs at this stage. At low pulse energy (1.0 mJ/pulse), there was an induction time for several minutes before the absorption is detectable, and hence the alloying process is also delayed (after 20 minutes irradiation). While the formation rate of nanoparticles is more pronounced at high laser pulse energy, the formation yield is relatively the same for both laser pulse energies.

  4. One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance

    SciTech Connect

    Tian Chungui; Li Wei; Pan Kai; Zhang Qi; Tian Guohui; Zhou Wei; Fu Honggang

    2010-11-15

    Ag nanoparticles (NPs) modified ZnO microspheres (Ag/ZnO microspheres) were prepared by a facile one pot strategy in ethylene glycol (EG) medium. The EG played two important roles in the synthesis: it could act as a reaction media for the formation of ZnO and reduce Ag{sup +} to Ag{sup 0}. A series of the characterizations indicated the successful combination of Ag NPs with ZnO microspheres. It was shown that Ag modification could greatly enhance the photocatalytic efficiency of ZnO microspheres by taking the photodegradation of Rhodamine B as a model reaction. With appropriate ratio of Ag and ZnO, Ag/ZnO microspheres showed the better photocatalytic performance than commercial Degussa P-25 TiO{sub 2}. Photoluminescence and surface photovoltage spectra demonstrated that Ag modification could effectively inhibit the recombination of the photoinduced electron and holes of ZnO. This is responsible for the higher photocatalytic activity of Ag/ZnO composites. -- Graphical abstract: A 'one-pot' strategy was developed for preparing the Ag/ZnO microspheres in ethylene glycol. The composites exhibited superior photocatalytic performance for photodegradation of Rhodamine B dye in water. Display Omitted

  5. An ultrasensitive, uniform and large-area surface-enhanced Raman scattering substrate based on Ag or Ag/Au nanoparticles decorated Si nanocone arrays

    NASA Astrophysics Data System (ADS)

    Zhang, P. P.; Gao, J.; Sun, X. H.

    2015-01-01

    Large-area and highly ordered Si nanocone arrays decorated with Ag or Au/Ag nanoparticles have been fabricated via a mask-free lithography with reaction ion etching, followed by metal deposition process. Ultrasensitive surface enhanced Raman scattering signals with an enhancement factor of 1012 were achieved even at the concentration of the Rhodamine 6G as low as 10-15 M. The surface-enhanced Raman spectroscopy (SERS) substrate was also applied on the detection of Sudan I dye and the Raman signals were substantially enhanced as well. The stability of the SERS substrate can be significantly improved by covering Ag nanoparticles with Au thin layer, which maintain a high SERS performance even after one month storage. This nanofabrication process appears to be a feasible approach to prepare uniform and reproducible SERS-active substrates with high sensitivity and stability for practical SERS applications.

  6. Magnetic properties of Co/Ag core/shell nanoparticles prepared by successive reactions in microemulsions

    NASA Astrophysics Data System (ADS)

    Rivas, J.; Garcia-Bastida, A. J.; Lopez-Quintela, M. A.; Ramos, C.

    2006-05-01

    Co nanoparticles with an Ag covering layer have been prepared by successive reactions in microemulsions. Their magnetic behavior was studied as a function of heat treatment. It was confirmed that, under the experimental conditions of this study, the size of the Co nuclei is limited by the reactant concentration, whereas the Ag covering is fixed by microemulsion droplet size. The as-prepared particles contain mainly Co 3O 4 nuclei, and present high effective moments that agree with the spin state of Co 3+. The observed magnetic behaviors were explained taking into account the intra- and inter-particle structural evolution of the particle assemblies annealed under different experimental conditions.

  7. Green and Tunable Decoration of Graphene with Spherical Nanoparticles Based on Laser Ablation in Water: A Case of Ag Nanoparticle/Graphene Oxide Sheet Composites.

    PubMed

    He, Hui; Wang, Haibo; Li, Kai; Zhu, Jun; Liu, Jianshuang; Meng, Xiangdong; Shen, Xiaoshuang; Zeng, Xianghua; Cai, Weiping

    2016-02-23

    A simple and green strategy is presented to decorate graphene with nanoparticles, based on laser ablation of targets in graphene auqeous solution. Ag and graphene oxide (GO) are chosen as model materials. The surface of GO sheets is strongly anchored with spherical Ag nanoparticles. The density and size of the Ag nanoparticles can be easily tuned by laser ablation conditions. Further, the GO sheets can be decorated with other nanoparticles from simple metals or semiconductors to multicomponent hybrids. Additionally, the Ag nanoparticle/GO sheet colloids can be utilized as blocks to build three-dimensional structures, such as sandwich membranes by evaporation-induced self-assembly. These graphene-based composite materials could be very useful in catalysis, sensors, and nanodevices. Particularly, the Ag nanoparticle/GO sheet sandwich composite membranes exhibit excellent surface-enhanced Raman scattering performance and possess the huge potential in trace-detecting persistent organic pollutants in the environment. PMID:26840791

  8. Synthesis of rGO-Ag nanoparticles for high-performance SERS and the adsorption geometry of 2-mercaptobenzimidazole on Ag surface

    NASA Astrophysics Data System (ADS)

    Zheng, H. L.; Yang, S. S.; Zhao, J.; Zhang, Z. C.

    2014-03-01

    The sliver nanoparticles (AgNPs) with diameters of 30˜50 nm were self-assembled onto the surfaces of reduced graphene oxide (rGO) sheets simply by mixing AgNO3 aqueous solution and GO dispersion via a synchronous reduction process. Structure and morphology of the rGO-AgNPs hybrids were well characterized. More significantly, the surface-enhanced Raman scattering (SERS) spectrum of 2-mercaptobenzimidazole (MBI) adsorbed on the solid rGO-AgNPs surface shown that the rGO-AgNPs system gives a very strong SERS intensity at in-plane vibrational modes in comparison to the out-of-plane vibrational modes. This large enhancement effect is most likely a result of charge-transfer (CT) mechanism. Based on the surface selection rules and the information provided by the highly enhanced in-plane vibrational modes, it can be found that MBI molecule was adsorbed on AgNPs surface as a thiol form via the sulphur and nitrogen atoms with a slightly tilted geometric conformation.

  9. A low-cost, environment-friendly and solvent-free route for synthesis of AgBr nanoparticles

    NASA Astrophysics Data System (ADS)

    Shahsavani, Ensieh; Khalaji, Aliakbar Dehno; Feizi, Nourollah; Das, Debasis; Matalobos, Jesus Sanmartin; Kučeráková, Monika; Dušek, Michal

    2015-06-01

    We report on the synthesis of AgBr nanoparticles average size below 20 nm by from AgNO3 and a thiosemicarbazone ligand, Brcatsc [Brcatsc = 2-bromo-3-phenylpropenalthiosemicarbazone]. Brcatsc was prepared by reacting α-bromocinnam-aldehyde and thiosemicarbazide (1:1, molar ratio) in hot ethanol characterized by elemental analyses (CHN), FT-IR, 1H NMR spectroscopy and single crystal X-ray diffraction. AgBr nanoparticles were prepared by heating the mixture of AgNO3 and Brcatsc at 600 °C for 3 h under aerobic condition, and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD pattern clearly indicates the formation of AgBr nanoparticles while SEM and TEM results reveal their uniformity and purity.

  10. Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles

    NASA Astrophysics Data System (ADS)

    Grammatikopoulos, Panagiotis; Kioseoglou, Joseph; Galea, Antony; Vernieres, Jerome; Benelmekki, Maria; Diaz, Rosa E.; Sowwan, Mukhles

    2016-05-01

    In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two separate sputter targets allows for good control over composition. Simultaneously, it involves fast kinetics and non-equilibrium processes, which can trap the nascent NPs into metastable configurations. In this study, we observed such configurations in immiscible, bi-metallic Ag-Cu NPs by scanning transmission electron microscopy (S/TEM) and electron energy-loss spectroscopy (EELS), and noticed a marked difference in the shape of NPs belonging to Ag- and Cu-rich samples. We explained the formation of Janus or Ag@Cu core/shell metastable structures on the grounds of in-flight mixed NP coalescence. We utilised molecular dynamics (MD) and Monte Carlo (MC) computer simulations to demonstrate that such configurations cannot occur as a result of nanoalloy segregation. Instead, sintering at relatively low temperatures can give rise to metastable structures, which eventually can be stabilised by subsequent quenching. Furthermore, we compared the heteroepitaxial diffusivities along various surfaces of both Ag and Cu NPs, and emphasised the differences between the sintering mechanisms of Ag- and Cu-rich NP compositions: small Cu NPs deform as coherent objects on large Ag NPs, whereas small Ag NPs dissolve into large Cu NPs, with their atoms diffusing along specific directions. Taking advantage of this observation, we propose controlled NP coalescence as a method to engineer mixed NPs of a unique, patterned core@partial-shell structure, which we refer to as a ``glass-float'' (ukidama) structure.In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two

  11. Production of antibacterial colored viscose fibers using in situ prepared spherical Ag nanoparticles.

    PubMed

    Emam, Hossam E; Mowafi, Salwa; Mashaly, Hamada M; Rehan, Mohamed

    2014-09-22

    In situ incorporation technique was used for coloration and acquiring excellent antibacterial properties for viscose fibers by silver nanoparticles (AgNPs). AgNPs were prepared in situ and incorporated in viscose matrix directly without using any other reducing and stabilizing agents. The main objective of this research was to successfully employ the reducing and stabilizing features of cellulose to produce nanosilver-viscose composites. Coloration of fibers after in situ AgNPs incorporation is related to surface plasmon resonance of silver. Colorimetric data were recorded as a function of washings to characterize the final colored fibers. Fastness properties and silver release were all measured to study the washable and wear off properties. Depending on the silver concentration, yellowish colored fibers with different shades were produced. Good fastness properties were obtained after 20 washings without using any crosslinker or binder. The colored fibers had excellent antibacterial activities against Escherichia coli, even after 20 washings. PMID:24906741

  12. Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles.

    PubMed

    Grammatikopoulos, Panagiotis; Kioseoglou, Joseph; Galea, Antony; Vernieres, Jerome; Benelmekki, Maria; Diaz, Rosa E; Sowwan, Mukhles

    2016-05-14

    In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two separate sputter targets allows for good control over composition. Simultaneously, it involves fast kinetics and non-equilibrium processes, which can trap the nascent NPs into metastable configurations. In this study, we observed such configurations in immiscible, bi-metallic Ag-Cu NPs by scanning transmission electron microscopy (S/TEM) and electron energy-loss spectroscopy (EELS), and noticed a marked difference in the shape of NPs belonging to Ag- and Cu-rich samples. We explained the formation of Janus or Ag@Cu core/shell metastable structures on the grounds of in-flight mixed NP coalescence. We utilised molecular dynamics (MD) and Monte Carlo (MC) computer simulations to demonstrate that such configurations cannot occur as a result of nanoalloy segregation. Instead, sintering at relatively low temperatures can give rise to metastable structures, which eventually can be stabilised by subsequent quenching. Furthermore, we compared the heteroepitaxial diffusivities along various surfaces of both Ag and Cu NPs, and emphasised the differences between the sintering mechanisms of Ag- and Cu-rich NP compositions: small Cu NPs deform as coherent objects on large Ag NPs, whereas small Ag NPs dissolve into large Cu NPs, with their atoms diffusing along specific directions. Taking advantage of this observation, we propose controlled NP coalescence as a method to engineer mixed NPs of a unique, patterned core@partial-shell structure, which we refer to as a "glass-float" (ukidama) structure. PMID:27119383

  13. Fluorescence turn-on detection of glucose via the Ag nanoparticle mediated release of a perylene probe.

    PubMed

    Li, Juanmin; Li, Yongxin; Shahzad, Sohail Anjum; Chen, Jian; Chen, Yang; Wang, Yan; Yang, Meiding; Yu, Cong

    2015-04-14

    A novel fluorescence turn-on strategy for glucose sensing is demonstrated. The fluorescence of a perylene probe could be quenched by the silver nanoparticles (Ag NPs). The Ag NPs could be etched by H2O2 generated from the enzymatic oxidation of glucose. And efficient probe fluorescence recovery was detected. PMID:25763414

  14. Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis.

    PubMed

    Shih, Shao-Ju; Tzeng, Wei-Lung; Jatnika, Rifqi; Shih, Chi-Jen; Borisenko, Konstantin B

    2015-05-01

    Mesoporous bioactive glasses (MBGs) have become important bone implant materials because of their high specific surface area resulting in high bioactivity. Doping MBGs with Ag removes one of the remaining challenges to their applications, namely their lack of intrinsic antibacterial properties. In present work we demonstrate that Ag-doped MBGs can be prepared in one-step spray pyrolysis (SP) process. The SP preparation method offers the advantages of short processing times and continuous production over the sol-gel method previously used to prepare MBGs. Using scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction we demonstrate that the synthesized MBG particles have amorphous structure with nanocrystalline Ag inclusions. The scanning transmission electron microscopy-X-ray energy dispersive spectrometry of cross-sectional samples shows that the distribution of the Ag dopant nanoparticles within MBGs can be controlled by using the appropriate formulation of the precursors. The distribution of the Ag dopant nanoparticles within the MBG particles was found to affect their surface areas, bioactivities and antibacterial properties. Based on the observations, we propose a mechanism describing MBG particle formation and controlling dopant distribution. PMID:25171327

  15. Size dependent thermalization time of Ag nanoparticles and the surface density profile

    NASA Astrophysics Data System (ADS)

    Lopez-Bastidas, Catalina

    2009-03-01

    It is well known that the lack of d-electron screening in the s-electron spill-out region at the surface of Ag nanoparticles increases the electron-electron interaction in this region compared to the bulk. Therefore when comparing the electron-electron interaction contribution to the thermalization time of Ag nanoparticles of varying radius, smaller particles thermalize faster due to the increased surface to bulk ratio. One aspect which has not been addressed is the effect of the spatial distribution of charge at the surface of the nanoparticle. In this work it is shown that the size dependence of the thermalization time is very sensitive to the surface density profile. The electron thermalization time of conduction electrons in Ag nanoparticles as a function of the radius is calculated. The sensitivity of the scattering rate to the spatial distribution of charge at the surface of the nanostructure is analyzed using several model surface profiles. The change in surface charge distribution via charging or coating of the nanospheres is shown to be a tool for control and probing of the ultra-fast electron-electron dynamics in metallic nanoparticles.

  16. Effect of Synthesis Techniques on Crystallization and Optical Properties of Ag-Cu Bimetallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Xiong, Ziye; Qin, Fen; Huang, Po-Shun; Nettleship, Ian; Lee, Jung-Kun

    2016-04-01

    Silver (Ag)-copper (Cu) bimetallic nanoparticles (NPs) were synthesized by the reduction of silver nitrate and copper (II) acetate monohydrate using ethylene glycol in a microwave (MW) heating system with controlled reaction times ranging from 5 min to 30 min. The molar ratio Ag/Cu was varied from 1:1 to 1:3. The effect of reaction conditions on the bimetallic NPs structures and compositions were characterized by x-ray photoelectron spectroscopy, x-ray diffraction and transmission electron microscopy. The average particle size was approximately 150 nm. The surface plasmon resonance (SPR) of Ag-Cu bimetallic NPs was investigated by monitoring the SPR band peak behavior via UV/Vis spectrophotometry. The resonance peak positions and peak widths varied due to the different structures of the bimetallic NPs created under the synthesis conditions. In the MW heating method, the reduction of Cu was increased and Cu was inhomogeneously deposited over the Ag cores. As the composition of Cu becoming higher in the Ag-Cu bimetallic NPs, the absorption between 400 nm to 600 nm was greatly enhanced.

  17. Study of Ag-Pd bimetallic nanoparticles modified glassy carbon electrode for detection of L-cysteine

    NASA Astrophysics Data System (ADS)

    Murugavelu, M.; Karthikeyan, B.

    2014-11-01

    Ag-Pd bimetallic nanoparticles (Ag-Pd BNPs) as an enhanced sensing material with improved electronic transmission rates in the electrochemical sensing of L-cysteine (L-cys) has been reported. The morphology of Ag-Pd BNPs was characterized with X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and cyclic voltammetry (CV). Oxidation of L-cys on Ag-Pd BNPs is investigated in detail by discussing the effect of the structure and from the electrocatalytic oxidation of L-cys. We found that the Ag-Pd BNPs exhibited high electrocatalytic activity towards L-cys oxidation in neutral condition and could be used for the development of nonenzymatic L-cys sensor. Based on the efficient catalytic ability of Ag-Pd BNPs, the fabricated biosensor exhibited a wide linear range of responses to the L-cys with the concentration detection limit of nearly down to 2 mM with fast response time.

  18. Effect of incorporated PVP/Ag nanoparticles on ZnPc/C60 organic solar cells.

    PubMed

    Heo, Ilsu; Kim, Jinhyun; Yim, Sanggyu

    2013-06-01

    Various sizes of PVP-capped Ag nanoparticles were incorporated in the PEDOT:PSS layer of ZnPc/C60-based small-molecule organic solar cells. The incorporated nanoparticles partially block the incident light, but this was offset by the scattering effect and consequent increase in path lengths through the active organic layers. As a result, the overall power conversion efficiency of the cell increased by approximately 15% when nanoparticles with an average diameter of 24 nm were used. PMID:23862493

  19. Magnetic hyperthermia in brick-like Ag@Fe3O4 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Brollo, M. E. F.; Orozco-Henao, J. M.; López-Ruiz, R.; Muraca, D.; Dias, C. S. B.; Pirota, K. R.; Knobel, M.

    2016-01-01

    Heating efficiency of multifunctional Ag@Fe3O4 brick-like nanoparticles under alternating magnetic field was investigated by means of specific absorption rate (SAR) measurements, and compared with equivalent measurements for plain magnetite and dimer heteroparticles. The samples were synthesized by thermal decomposition reactions and present narrow size polydispersity and high degree of crystallinity. The SAR values are analyzed using the superparamagnetic theory, in which the basic morphology, size and dispersion of sizes play key roles. The results suggest that these novel brick-like nanoparticles are good candidates for hyperthermia applications, displaying heating efficiencies comparable with the most efficient plain nanoparticles.

  20. Synthesis, Characterizations of Superparamagnetic Fe3O4-Ag Hybrid Nanoparticles and Their Application for Highly Effective Bacteria Inactivation.

    PubMed

    Tung, Le Minh; Cong, Nguyen Xuan; Huy, Le Thanh; Lan, Nguyen Thi; Phan, Vu Ngoc; Hoa, Nguyen Quang; Vinh, Le Khanh; Thinh, Nguyen Viet; Tai, Le Thanh; Ngo, Duc-The; Mølhave, Kristian; Huy, Tran Quang; Le, Anh-Tuan

    2016-06-01

    In recent years, outbreaks of infectious diseases caused by pathogenic micro-organisms pose a serious threat to public health. In this work, Fe3O4-Ag hybrid nanoparticles were synthesized by simple chemistry method and these prepared nanoparticles were used to investigate their antibacterial properties and mechanism against methicilline-resistant Staphylococcus aureus (MRSA) pathogen. The formation of dimer-like nanostructure of Fe3O4-Ag hybrid NPs was confirmed by X-ray diffraction and High-resolution Transmission Electron Microscopy. Our biological analysis revealed that the Fe3O4-Ag hybrid NPs showed more noticeable bactericidal activity than that of plain Fe3O4 NPs and Ag-NPs. We suggest that the enhancement in bactericidal activity of Fe3O4-Ag hybrid NPs might be likely from main factors such as: (i) enhanced surface area property of hybrid nanoparticles; (ii) the high catalytic activity of Ag-NPs with good dispersion and aggregation stability due to the iron oxide magnetic carrier, and (iii) large direct physical contacts between the bacterial cell membrane and the hybrid nanoparticles. The superparamagnetic hybrid nanoparticles of iron oxide magnetic nanoparticles decorated with silver nanoparticles can be a potential candidate to effectively treat infectious MRSA pathogen with recyclable capability, targeted bactericidal delivery and minimum release into environment. PMID:27427651

  1. A facile and controllable strategy to synthesize Au-Ag alloy nanoparticles within polyelectrolyte multilayer nanoreactors upon thermal reduction.

    PubMed

    Shang, Li; Jin, Lihua; Guo, Shaojun; Zhai, Junfeng; Dong, Shaojun

    2010-05-01

    A new synthesis strategy has been developed for the preparation of bimetallic gold-silver (Au-Ag) alloy nanoparticles by the virtue of polyelectrolyte multilayer (PEM) nanoreactors. By controlling the assembly conditions, gold and silver ions can be effectively loaded onto the PEM composed of polyethylenimine (PEI) and poly(acrylic acid) (PAA) simultaneously. Upon further thermal treatment, Au-Ag alloy nanoparticles with sizes of ca. 3.8 nm formed in the PEM, which were characterized in detail by UV-vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) analysis. Appearance of a single plasmon band in the visible region and lack of apparent core-shell structures in the TEM images confirm the formation of homogeneous Au-Ag alloy nanoparticles. In addition, the surface plasmon absorption band of the Au-Ag alloy nanoparticles shows linear blue-shift with increasing Ag content, which also supported the formation of alloy nanoparticles. Several key parameters of the present strategy have been investigated, which showed that pH of both the assembly solution and gold salt solution and the choice of polymers for constructing PEM, as well as the reduction approach, all played an important role in successfully synthesizing bimetallic Au-Ag nanoparticles. The formation mechanism of alloy nanoparticles has also been discussed based on the spectral evolution during the thermal reduction. PMID:20017511

  2. Breathing Raman modes in Ag2S nanoparticles obtained from F9 zeolite matrix

    NASA Astrophysics Data System (ADS)

    Delgado-Beleño, Y.; Cortez-Valadez, M.; Martinez-Nuñez, C. E.; Britto Hurtado, R.; Alvarez, Ramón A. B.; Rocha-Rocha, O.; Arizpe-Chávez, H.; Perez-Rodríguez, A.; Flores-Acosta, M.

    2015-12-01

    Ag2S nanoparticles were synthesized with a combination of synthetic F9, silver nitrate (AgNO3) and monohydrated sodium sulfide (Na2S9H2O). An ionic exchange was achieved via hydrothermal reaction. Nanoparticles with a predominant size ranging from 2 to 3 nm were obtained through Transmission Electron Microscopy (TEM). The nanoparticles feature a phase P21/n (14) monoclinic structure. A Raman band can be observed at around 250 cm-1 in the nanoparticles. Furthermore, the vibrational properties and stability parameters of the clusters (AgS)n, (with n = 2-9) were studied by the Density Functional Theory (DFT). The approximation levels used with DFT were: Local Spin Density Approximation (LSDA) and Becke's three-parameter and the gradient corrected functional of Lee, Yang and Puar (B3LYP) in combination with the basis set LANL2DZ (the effective core potentials and associated double-zeta valence). The Radial Breathing Mode (RBM) for B3LYP was found between 227 and 295 cm-1 as well as in longer wavelengths for LSDA.

  3. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications.

    PubMed

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Vinogradova, Ekaterina; Ayon, Arturo A

    2014-09-10

    In recent years, there has been considerable interest in the use of plasmons, that is, free electron oscillations in conductors, to boost the performance of both organic and inorganic thin film solar cells. This has been driven by the possibility of employing thin active layers in solar cells in order to reduce materials costs, and is enabled by significant advances in fabrication technology. The ability of surface plasmons in metallic nanostructures to guide and confine light in the nanometer scale has opened up new design possibilities for solar cell devices. Here, we report the synthesis and characterization of highly monodisperse, reasonably stable, multipode Au/Ag bimetallic nanostructures using an inorganic additive as a ligand for photovoltaic applications. A promising surface enhanced Raman scattering (SERS) effect has been observed for the synthesized bimetallic Au/Ag multispiked nanoparticles, which compare favorably well with their Au and Ag spherical nanoparticle counterparts. The synthesized plasmonic nanostructures were incorporated on the rear surface of an ultrathin planar c-silicon/organic polymer hybrid solar cell, and the overall effect on photovoltaic performance was investigated. A promising enhancement in solar cell performance parameters, including both the open circuit voltage (VOC) and short circuit current density (JSC), has been observed by employing the aforementioned bimetallic multispiked nanoparticles on the rear surface of solar cell devices. A power conversion efficiency (PCE) value as high as 7.70% has been measured in a hybrid device with Au/Ag multispiked nanoparticles on the rear surface of an ultrathin, crystalline silicon (c-Si) membrane (∼ 12 μm). This value compares well to the measured PCE value of 6.72% for a similar device without nanoparticles. The experimental observations support the hope for a sizable PCE increase, due to plasmon effects, in thin-film, c-Si solar cells in the near future. PMID:25137194

  4. Three-Dimensional Ordered Mesoporous MnO2-Supported Ag Nanoparticles for Catalytic Removal of Formaldehyde.

    PubMed

    Bai, Bingyang; Qiao, Qi; Arandiyan, Hamidreza; Li, Junhua; Hao, Jiming

    2016-03-01

    Three-dimensional (3D) ordered mesoporous Ag/MnO2 catalyst was prepared by impregnation method based on 3D-MnO2 and used for catalytic oxidation of HCHO. Ag nanoparticles are uniformly distributed on the polycrystalline wall of 3D-MnO2. The addition of Ag does not change the 3D ordered mesoporous structure of the Ag/MnO2, but does reduce the pore size and surface area. Ag nanoparticles provide sufficient active site for the oxidation reaction of HCHO, and Ag (111) crystal facets in the Ag/MnO2 are active faces. The 8.9% Ag/MnO2 catalyst shows a higher normalized rate (10.1 nmol·s(-1)·m(-2) at 110 °C) and TOF (0.007 s(-1) at 110 °C) under 1300 ppm of HCHO and 150 000 h(-1) of GHSV, and its apparent activation energy of the reaction is the lowest (39.1 kJ/mol). More Ag active sites, higher low-temperature reducibility, more abundant surface lattice oxygen species, oxygen vacancies, and lattice defects generated from interaction Ag with MnO2 are responsible for the excellent catalytic performance of HCHO oxidation on the 8.9% Ag/MnO2 catalyst. The 8.9% Ag/MnO2 catalyst remained highly active and stable under space velocity increasing from 60 000 to 150 000 h(-1), under initial HCHO concentration increasing from 500 to 1300 ppm, and under the presence of humidity, respectively. PMID:26629972

  5. Ag nanoparticles-embedded surface plasmonic InGaN-based solar cells via scattering and localized field enhancement.

    PubMed

    Shim, Jae-Phil; Choi, Sang-Bae; Kong, Duk-Jo; Seo, Dong-Ju; Kim, Hyung-Jun; Lee, Dong-Seon

    2016-07-11

    Ag nanoparticles are embedded in intentionally etched micro-circle p-GaN holes by means of a thermal agglomeration process to enhance the light absorption efficiency in InGaN/GaN multi-quantum-well (MQW) solar cells. The Ag nanoparticles are theoretically and experimentally verified to generate the plasmon light scattering and the localized field enhancement near the MQW absorption layer. The external quantum efficiency enhancement at a target wavelength region is demonstrated by matching the plasmon resonance of Ag nanoparticles, resulting in a Jsc improvement of 9.1%. Furthermore, the Ag-nanoparticle-embedded InGaN solar cell is effectively fabricated considering the carrier extraction that more than 70% of F.F. and 2.2 V of high Voc are simultaneously attained. PMID:27410903

  6. Investigating the pharmacokinetics and biological distribution of silver-loaded polyphosphoester-based nanoparticles using 111Ag as a radiotracer

    PubMed Central

    Aweda, Tolulope A.; Zhang, Shiyi; Mupanomunda, Chiedza; Burkemper, Jennifer; Heo, Gyu Seong; Bandara, Nilantha; Lin, Mai; Cutler, Cathy S.; Cannon, Carolyn L.; Youngs, Wiley; Wooley, Karen L.; Lapi, Suzanne E.

    2015-01-01

    Purified 111Ag was used as a radiotracer to investigate silver loading and release, pharmacokinetics and biodistribution of polyphosphoester-based degradable shell crosslinked knedel-like (SCK) nanoparticles as a comparison to the previously reported small molecule, N-heterocyclic silver carbene complex analogue (SCC1) for the delivery of therapeutic silver ions in mouse models. Biodistribution studies were conducted by aerosol administration of 111Ag acetate, [111Ag]SCC1 and [111Ag]SCK doses directly into the lungs of C57BL/6 mice. Nebulization of the 111Ag antimicrobials resulted in an average uptake of 1.07 ± 0.12% of the total aerosolized dose given per mouse. The average dose taken into the lungs of mice was estimated to be 2.6 ± 0.3% of the dose inhaled per mouse for [111Ag]SCC1 and twice as much dose was observed for the [111Ag]SCKs (5.0 ± 0.3% and 5.9 ± 0.8% for [111Ag]aSCK and [111Ag]zSCK, respectively) at 1 h post administration (p.a.). [111Ag]SCKs also exhibited higher dose retention in the lungs; 62 – 68% for [111Ag]SCKs and 43% for [111Ag]SCC1 of the initial 1 h dose was observed in the lungs at 24 h post administration (p.a.). This study demonstrates the utility of 111Ag as a useful tool for monitoring the pharmacokinetics of silver loaded antimicrobials in vivo. PMID:25952472

  7. Investigating the pharmacokinetics and biological distribution of silver-loaded polyphosphoester-based nanoparticles using (111) Ag as a radiotracer.

    PubMed

    Aweda, Tolulope A; Zhang, Shiyi; Mupanomunda, Chiedza; Burkemper, Jennifer; Heo, Gyu Seong; Bandara, Nilantha; Lin, Mai; Cutler, Cathy S; Cannon, Carolyn L; Youngs, Wiley J; Wooley, Karen L; Lapi, Suzanne E

    2015-05-30

    Purified (111) Ag was used as a radiotracer to investigate silver loading and release, pharmacokinetics, and biodistribution of polyphosphoester-based degradable shell crosslinked knedel-like (SCK) nanoparticles as a comparison to the previously reported small molecule, N-heterocyclic silver carbene complex analog (SCC1) for the delivery of therapeutic silver ions in mouse models. Biodistribution studies were conducted by aerosol administration of (111) Ag acetate, [(111) Ag]SCC1, and [(111) Ag]SCK doses directly into the lungs of C57BL/6 mice. Nebulization of the (111) Ag antimicrobials resulted in an average uptake of 1.07 ± 0.12% of the total aerosolized dose given per mouse. The average dose taken into the lungs of mice was estimated to be 2.6 ± 0.3% of the dose inhaled per mouse for [(111) Ag]SCC1 and twice as much dose was observed for the [(111) Ag]SCKs (5.0 ± 0.3% and 5.9 ± 0.8% for [(111) Ag]aSCK and [(111) Ag]zSCK, respectively) at 1 h post administration (p.a.). [(111) Ag]SCKs also exhibited higher dose retention in the lungs; 62-68% for [(111) Ag]SCKs and 43% for [(111) Ag]SCC1 of the initial 1 h dose were observed in the lungs at 24 h p.a.. This study demonstrates the utility of (111) Ag as a useful tool for monitoring the pharmacokinetics of silver-loaded antimicrobials in vivo. PMID:25952472

  8. Unaffected features of BSA stabilized Ag nanoparticles after storage and reconstitution in biological relevant media.

    PubMed

    Valenti, Laura E; Giacomelli, Carla E

    2015-08-01

    Silver-coated orthopedic implants and silver composite materials have been proposed to produce local biocidal activity at low dose to reduce post-surgery infection that remains one of the major contributions to the patient morbidity. This work presents the synthesis combined with the characterization, colloidal stability in biological relevant media, antimicrobial activity and handling properties of silver nanoparticles (Ag-NP) before and after freeze dry and storage. The nanomaterial was synthesized in aqueous solution with simple, reproducible and low-cost strategies using bovine serum albumin (BSA) as the stabilizing agent. Ag-NP were characterized by means of the size distribution and morphology (UV-vis spectra, dynamic light scattering measurements and TEM images), charge as a function of the pH (zeta potential measurements) and colloidal stability in biological relevant media (UV-vis spectra and dynamic light scattering measurements). Further, the interactions between the protein and Ag-NP were evaluated by surface enhanced Raman spectroscopy (SERS) and the antimicrobial activity was tested with two bacteria strains (namely Staphylococcus aureus and Staphylococcus epidermidis) mainly present in the infections caused by implants and prosthesis in orthopedic surgery. Finally, the Ag-NP dispersed in aqueous solution were dried and stored as long-lasting powders that were easily reconstituted without losing their stability and antimicrobial properties. The proposed methods to stabilize Ag-NP not only produce stable dispersions in media of biological relevance but also long-lasting powders with optimal antimicrobial activity in the nanomolar range. This level is much lower than the cytotoxicity determined in vitro on osteoblasts, osteoclasts and osteoarthritic chondrocytes. The synthesized Ag-NP can be incorporated as additive of biomaterials or pharmaceutical products to confer antimicrobial activity in a powdered form in different formulations, dispersed in

  9. Synthesis of Ag-doped TiO2 nanoparticles by combining laser decomposition of titanium isopropoxide and ablation of Ag for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Al-Kamal, Ahmed Kamal

    Nanostructured powders of TiO2 and Ag-doped TiO2 are synthesized by a novel pulsed-laser process that combines laser ablation of a silver (Ag) disc with laser decomposition of a titanium tetra-isopropoxide (TTIP) solution. Nanoparticles are formed by rapid condensation of vaporized species in the plasma plume generated by the high power laser, resulting in the formation of rapidly quenched Ag-doped TiO2 nanoparticles that have far-from-equilibrium or metastable structures. The uniqueness of the new ablation process is that it is a one-step process, in contrast to the two-step process developed by previous researchers in the field. Moreover, its ability to synthesize an extended-solid solution phase of Ag in TiO 2 may also be unique. The present work implies that other oxide phases, such as Al2O3, MgO and MgAl2O4, can be doped with normally insoluble metals, such as Pt and Ir, thus opening new opportunities for catalytic applications. Again, there is the prospect of being able to synthesize nanopowders of diamond, c-BN, and mixtures thereof, which are of interest for applications in machine tools, rock-drill bits, and lightweight armor. A wet-chemistry method is also investigated, which has much in common with that adopted by previous workers in the field. However, photo-voltaic properties do not measure up to expectations based on published data. A possible explanation is that the selected Ag concentrations are too high, so that recombination of holes and electrons occurs via a quantum-tunneling mechanism reduces photo-activity. Future work, therefore, will investigate lower concentrations of Ag dopant in TiO2, while also examining the effects of metastable states, including extended solid solution, amorphous, and semi-crystalline structures.

  10. Synthesis of Ag(2) S-Ag nanoprisms and their use as DNA hybridization probes.

    PubMed

    Liu, Bing; Ma, Zhanfang

    2011-06-01

    A simple synthetic route to prepare Ag(2) S-Ag nanoprisms consists of the facile addition of Na(2) S to a solution of triangular Ag nanoprisms. The resulting Ag(2) S-Ag nanoparticles are more stable in solution than the original Ag nanoprisms, and two surface plasmon resonance (SPR) bands of the original Ag nanoprisms still remain. In addition, the SPR bands of the Ag(2) S-Ag nanoprisms are tunable over a wide range. The Ag(2) S-Ag nanoprisms can be directly bioconjugated via well-established stable Ag(2) S surface chemistry with readily available sulfur coupling agents. The nanoprisms are used in the hybridization of functionalized oligonucleotides, and show promise as probes for future biosensing applications. PMID:21538868

  11. Tuning the properties of ZnO, hematite, and Ag nanoparticles by adjusting the surface charge.

    PubMed

    Zhang, Jianhui; Dong, Guanjun; Thurber, Aaron; Hou, Yayi; Gu, Min; Tenne, Dmitri A; Hanna, C B; Punnoose, Alex

    2012-03-01

    A poly (acryl acid) (PAA) post-treatment method is performed to modify the surface charge of ZnO nanospheres, hematite nanocubes, and Ag nanoprisms from highly positive to very negative by adjusting the PAA concentration, to and greatly modify their photoluminescence, cytotoxicity, magnetism, and surface plasmon resonance. This method provides a general way to tune the nanoparticle properties for broad physicochemical and biological applications. PMID:22298490

  12. Size and alloying induced changes in lattice constant, core, and valance band binding energy in Pd-Ag, Pd, and Ag nanoparticles: Effect of in-flight sintering temperature

    NASA Astrophysics Data System (ADS)

    Sengar, Saurabh K.; Mehta, B. R.; Govind

    2012-07-01

    In the present study, we report the growth of size selected Pd, Ag, and Pd-Ag alloy nanoparticles by an integrated method comprising of the gas phase synthesis, electrical mobility size selection, and in-flight sintering steps. Effect of temperature during in-flight sintering on nanoparticle size, crystal structure, and electronic properties has been studied. XRD studies show lattice expansion in Pd and Ag nanoparticles and lattice contraction in Pd-Ag alloy nanoparticles on increasing the sintering temperatures. In case of Pd and Ag nanoparticles, size induced changes in lattice constants are consistent with the changes in the binding energy positions with respect to bulk values. In case of Pd-Ag alloy nanoparticles, change in nanoparticle size and composition on sintering affect the lattice constant and binding energy positions. Large changes in Pd4d valance band centroid in Pd-Ag nanoparticles are due to size and alloying effects. The results of this study are important for understanding the correlation between electronic properties and Pd-H interaction in Pd alloy nanoparticles.

  13. Characterization and Evaluation of Reverse Osmosis Membranes Modified with Ag2O Nanoparticles to Improve Performance.

    PubMed

    Al-Hobaib, Abdullah S; Al-Sheetan, Khalid M; Shaik, Mohammed Rafi; Al-Andis, Naser M; Al-Suhybani, M S

    2015-12-01

    The objective of this work was to prepare and characterize a new and highly efficient modified membrane by in situ interfacial polymerization on porous polysulfone supports. The process used m-phenylenediamine and trimesoyl chloride in hexane, incorporating silver oxide Ag2O nanoparticles of varied concentrations from 0.001 to 0.1 wt%. Ag2O nanoparticles were prepared at different sizes varying between 20 and 50 nm. The modified membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), transmission electron microscopy (TEM), and contact angle measurement. The results showed a smooth membrane surface and average surface roughness from 31 to 74 nm. Moreover, hydrophilicity improved and the contact angle decreased to 41° at 0.009 wt% silver oxide. The performances of the developed membranes were investigated by measuring permeate fluxes and salt rejection capability by passing NaCl solutions (2000 ppm) through the membranes at 225 psi. The results showed that the flux increased from 26 to 40.5 L/m(2) h, while the salt rejection was high, at 99 %, with 0.003 wt% Ag2O nanoparticles. PMID:26428014

  14. Anisotropic effective medium properties from interacting Ag nanoparticles in silicon dioxide.

    PubMed

    Menegotto, Thiago; Horowitz, Flavio

    2014-05-01

    Films containing a layer of Ag nanoparticles embedded in silicon dioxide were produced by RF magnetron sputtering. Optical transmittance measurements at several angles of incidence (from normal to 75°) revealed two surface plasmon resonance (SPR) peaks, which depend on electric field direction: one in the ultraviolet and another red-shifted from the dilute Ag/SiO₂ system resonance at 410 nm. In order to investigate the origin of this anisotropic behavior, the structural properties were determined by transmission electron microscopy, revealing the bidimensional plane distribution of Ag nanoparticles with nearly spherical shape as well as the filling factor of metal in the composite. A simple model linked to these experimental parameters allowed description of the most relevant features of the SPR positions, which, depending on the field direction, were distinctly affected by the coupling of oscillations between close nanoparticles, as described by a modified Drude-Lorentz dielectric function introduced into the Maxwell-Garnett relation. This approach allowed prediction of the resonance for light at 75° incidence from the SPR position for light at normal incidence, in good agreement with experimental observation. PMID:24921871

  15. Characterization and Evaluation of Reverse Osmosis Membranes Modified with Ag2O Nanoparticles to Improve Performance

    NASA Astrophysics Data System (ADS)

    Al-Hobaib, Abdullah S.; AL-Sheetan, Khalid M.; Shaik, Mohammed Rafi; Al-Andis, Naser M.; Al-Suhybani, M. S.

    2015-09-01

    The objective of this work was to prepare and characterize a new and highly efficient modified membrane by in situ interfacial polymerization on porous polysulfone supports. The process used m-phenylenediamine and trimesoyl chloride in hexane, incorporating silver oxide Ag2O nanoparticles of varied concentrations from 0.001 to 0.1 wt%. Ag2O nanoparticles were prepared at different sizes varying between 20 and 50 nm. The modified membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), transmission electron microscopy (TEM), and contact angle measurement. The results showed a smooth membrane surface and average surface roughness from 31 to 74 nm. Moreover, hydrophilicity improved and the contact angle decreased to 41° at 0.009 wt% silver oxide. The performances of the developed membranes were investigated by measuring permeate fluxes and salt rejection capability by passing NaCl solutions (2000 ppm) through the membranes at 225 psi. The results showed that the flux increased from 26 to 40.5 L/m2 h, while the salt rejection was high, at 99 %, with 0.003 wt% Ag2O nanoparticles.

  16. The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells

    NASA Astrophysics Data System (ADS)

    Urbańska, Kaja; Pająk, Beata; Orzechowski, Arkadiusz; Sokołowska, Justyna; Grodzik, Marta; Sawosz, Ewa; Szmidt, Maciej; Sysa, Paweł

    2015-03-01

    Recently, it has been shown that silver nanoparticles (AgNPs) provide a unique approach to the treatment of tumors, especially those of neuroepithelial origin. Thus, the aim of this study was to evaluate the impact of AgNPs on proliferation and activation of the intrinsic apoptotic pathway of glioblastoma multiforme (GBM) cells cultured in an in ovo model. Human GBM cells, line U-87, were placed on chicken embryo chorioallantoic membrane. After 8 days, the tumors were divided into three groups: control (non-treated), treated with colloidal AgNPs (40 μg/ml), and placebo (tumors supplemented with vehicle only). At the end of the experiment, all tumors were isolated. Assessment of cell proliferation and cell apoptosis was estimated by histological, immunohistochemical, and Western blot analyses. The results show that AgNPs can influence GBM growth. AgNPs inhibit proliferation of GBM cells and seem to have proapoptotic properties. Although there were statistically significant differences between control and AgNP groups in the AI and the levels of active caspase 9 and active caspase 3, the level of these proteins in GBM cells treated with AgNPs seems to be on the border between the spontaneous apoptosis and the induced. Our results indicate that the antiproliferative properties of silver nanoparticles overwhelm proapoptotic ones. Further research focused on the cytotoxic effect of AgNPs on tumor and normal cells should be conducted.

  17. [Three-dimensional vertically aligned CNTs coated by Ag nanoparticles for surface-enhanced Raman scattering].

    PubMed

    Zhang, Xiao-Lei; Zhang, Jie; Fan, Tuo; Ren, Wen-Jie; Lai, Chun-Hong

    2014-09-01

    In order to make surface-enhanced Raman scattering (SERS) substrates contained more "hot spots" in a three-dimensional (3D) focal volume, and can be adsorbed more probe molecules and metal nanoparticles, to obtain stronger Raman spectral signal, a new structure based on vertically aligned carbon nanotubes (CNTs) coated by Ag nanoparticles for surface Raman enhancement is presented. The vertically aligned CNTs are synthesized by chemical vapor deposition (CVD). A silver film is first deposited on the vertically aligned CNTs by magnetron sputtering. The samples are then annealed at different temperature to cause the different size silver nanoparticles to coat on the surface and sidewalls of vertically aligned CNTs. The result of scanning electron microscopy(SEM) shows that Ag nanoparticles are attached onto the sidewalls and tips of the vertically aligned CNTs, as the annealing temperature is different , pitch size, morphology and space between the silver nanoparticles is vary. Rhodamine 6G is served as the probe analyte. Raman spectrum measurement indicates that: the higher the concentration of R6G, the stronger the Raman intensity, but R6G concentration increase with the enhanced Raman intensity varies nonlinearly; when annealing temperature is 450 °C, the average size of silver nanoparticles is about 100 to 120 nm, while annealing temperature is 400 °C, the average size is about 70 nm, and the Raman intensity of 450 °C is superior to the annealing temperature that of 400 °C and 350 °C. PMID:25532342

  18. Non-covalent functionalization of graphene oxide by polyindole and subsequent incorporation of Ag nanoparticles for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Dubey, Prashant; Kumar, Ashish; Prakash, Rajiv

    2015-11-01

    Reduced graphene oxide (r-GO) sheets have been modified by polyindole (PIn) via in situ chemical oxidation method to obtain stable dispersion in water and furthermore incorporation of Ag nanoparticles (Ag NPs); the resulting Ag NPs/PIn-r-GO nanocomposite is demonstrated for electrochemical applications. Ag NPs/r-GO and PIn/GO nanocomposites have also been prepared for its comparative study with Ag NPs/PIn-r-GO. Non-covalent functionalization of GO by PIn polymer leads to PIn-GO dispersion, which is stable for several months without any precipitation. This dispersed solution is used for formation of Ag NPs/PIn-r-GO nanocomposite. Various experimental tools like UV-vis, FTIR and TEM have been used to characterize as-synthesized materials. Thereafter electrochemical performance of as-synthesized nanocomposites have been compared for their charge capacitive behaviour (without its poisoning compared to Ag NPs/r-GO) which leads to be an excellent candidate for the possible applications such as electrocatalysis, charge storage devices, etc. We observed that Ag NPs/PIn-r-GO nanocomposite exhibits better processability and electroactivity as electrode material in comparison to Ag NPs/r-GO and PIn/GO nanocomposites due to synergistic effect of individual components.

  19. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation.

    PubMed

    Larue, Camille; Castillo-Michel, Hiram; Sobanska, Sophie; Cécillon, Lauric; Bureau, Sarah; Barthès, Véronique; Ouerdane, Laurent; Carrière, Marie; Sarret, Géraldine

    2014-01-15

    The impact of engineered nanomaterials on plants, which act as a major point of entry of contaminants into trophic chains, is little documented. The foliar pathway is even less known than the soil-root pathway. However, significant inputs of nanoparticles (NPs) on plant foliage may be expected due to deposition of atmospheric particles or application of NP-containing pesticides. The uptake of Ag-NPs in the crop species Lactuca sativa after foliar exposure and their possible biotransformation and phytotoxic effects were studied. In addition to chemical analyses and ecotoxicological tests, micro X-ray fluorescence, micro X-ray absorption spectroscopy, time of flight secondary ion mass spectrometry and electron microscopy were used to localize and determine the speciation of Ag at sub-micrometer resolution. Although no sign of phytotoxicity was observed, Ag was effectively trapped on lettuce leaves and a thorough washing did not decrease Ag content significantly. We provide first evidence for the entrapment of Ag-NPs by the cuticle and penetration in the leaf tissue through stomata, for the diffusion of Ag in leaf tissues, and oxidation of Ag-NPs and complexation of Ag(+) by thiol-containing molecules. Such type of information is crucial for better assessing the risk associated to Ag-NP containing products. PMID:24275476

  20. Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits.

    PubMed

    Gudadhe, Janhavi A; Yadav, Alka; Gade, Aniket; Marcato, Priscyla D; Durán, Nelson; Rai, Mahendra

    2014-12-01

    Preparation of protective coating possessing antimicrobial properties is present day need as they increase the shelf life of fruits and vegetables. In the present study, preparation of agar-silver nanoparticle film for increasing the shelf life of fruits is reported. Silver nanoparticles (Ag-NPs) biosynthesised using an extract of Ocimum sanctum leaves, were mixed with agar-agar to prepare an agar-silver nanoparticles (A-AgNp) film. This film was surface-coated over the fruits, Citrus aurantifolium (Thornless lime) and Pyrus malus (Apple), and evaluated for the determination of antimicrobial activity of A-AgNp films using disc diffusion method, weight loss and shelf life of fruits. This study demonstrates that these A-AgNp films possess antimicrobial activity and also increase the shelf life of fruits. PMID:25429496

  1. Dielectric performance of polymer-based composites containing core-shell Ag@TiO2 nanoparticle fillers

    NASA Astrophysics Data System (ADS)

    Liang, Fei; Zhang, Lu; Lu, Wen-Zhong; Wan, Qian-Xing; Fan, Gui-Fen

    2016-02-01

    This paper reports composites prepared by embedding core-shell Ag@TiO2 fillers into polytetrafluoroethylene. Ag nanoparticles were homogeneously coated with TiO2, to give a shell thickness of approximately ˜8-10 nm. The composite containing Ag@TiO2 nanoparticles with rutile shells exhibited better dielectric properties than the composite containing Ag@TiO2 nanoparticles with anatase shells. The relative permittivity (ɛr) of the composite containing 70 vol. % filler was approximately 240 at 100 Hz, which was more than 100 times higher than that of pure polytetrafluoroethylene (ɛr = 2.1). An effective medium percolation theory model is used to account for the dielectric constant of the composite.

  2. Low temperature crystalline Ag-Ni alloy formation from silver and nickel nanoparticles entrapped in a fatty acid composite film

    NASA Astrophysics Data System (ADS)

    Kumar, Ashavani; Damle, Chinmay; Sastry, Murali

    2001-11-01

    Nanoparticles of silver and nickel were grown in thermally evaporated fatty acid (stearic acid) films by immersion of the film sequentially in solutions containing Ag+ ions and Ni2+ ions. Attractive electrostatic interaction between the metal cations and the carboxylate ions in the fatty acid film leads to entrapment of the cations in the film. Thereafter, the metal ions were reduced in situ to yield nanoparticles of Ag and Ni of ˜30 nm diameter within the fatty acid matrix. Thermal treatment of the stearic acid-(silver+nickel) nanocomposite films led to the formation of a Ni-Ag alloy at ˜100 °C. Prolonged heat treatment at this temperature resulted in the phase separation of the alloy and the reformation of individual Ag and Ni nanoparticles.

  3. Magnetic anisotropy and magnetization dynamics of Fe nanoparticles embedded in Cr and Ag matrices

    NASA Astrophysics Data System (ADS)

    Peddis, D.; Qureshi, M. T.; Baker, S. H.; Binns, C.; Roy, M.; Laureti, S.; Fiorani, D.; Nordblad, P.; Mathieu, R.

    2015-11-01

    Static and dynamical magnetic properties of Fe nanoparticles (NPs) embedded in non-magnetic (Ag) and antiferromagnetic (Cr) matrices with a volume filling fraction (VFF) of 10% have been investigated. In both Fe@Ag and Fe@Cr nanocomposites, the Fe NPs have a narrow size distribution, with a mean particle diameter around 2 nm. In both samples, the saturation magnetization reaches that of Fe bulk bcc, suggesting the absence of alloying with the matrices. The coercivity at 5 K is much larger in Fe@Cr than in Fe@Ag as a result of the strong interaction between the Fe NPs and the Cr matrix. Temperature-dependent magnetization and ac-susceptibility measurements point out further evidence of the enhanced interparticle interaction in the Fe@Cr system. While the behaviour of Fe@Ag indicates the presence of weakly interacting magnetic monodomain particles with a wide distribution of blocking temperatures, Fe@Cr behaves like a superspin glass produced by the magnetic interactions between NPs.

  4. Blood surface-enhanced Raman spectroscopy based on Ag and Au nanoparticles for nasopharyngeal cancer detection

    NASA Astrophysics Data System (ADS)

    Lin, Duo; Ge, Xiaosong; Lin, Xueliang; Chen, Guannan; Chen, Rong

    2016-05-01

    This study aims to evaluate and compare the utility of blood surface-enhanced Raman spectroscopy (SERS) based on Au or Ag nanoparticles (NPs), respectively, for detection of nasopharyngeal cancer (NPC). A rapid home-made Raman system was employed for SERS measurement, and high quality SERS spectra can be recorded from blood plasma samples belonging to 60 healthy volunteers and 100 NPC patients, using both metallic NPs. The spectral differences under Ag-SERS measurement between the normal and cancer groups are more significant than Au-SERS. Principal component analysis combined with linear discriminant analysis (PCA-LDA) was used for differentiating the two blood groups with a diagnostic sensitivity and specificity of 90% and 95%, respectively, using Ag-SERS method, which has almost a 20% improvement in diagnostic specificity in comparison to Au-SERS. This exploratory study demonstrates that blood SERS based on Ag NPs is capable of achieving a better diagnostic performance for NPC detection, and has promising potential for improving NPC screening.

  5. Size-Selected Ag Nanoparticles with Five-Fold Symmetry

    PubMed Central

    2009-01-01

    Silver nanoparticles were synthesized using the inert gas aggregation technique. We found the optimal experimental conditions to synthesize nanoparticles at different sizes: 1.3 ± 0.2, 1.7 ± 0.3, 2.5 ± 0.4, 3.7 ± 0.4, 4.5 ± 0.9, and 5.5 ± 0.3 nm. We were able to investigate the dependence of the size of the nanoparticles on the synthesis parameters. Our data suggest that the aggregation of clusters (dimers, trimer, etc.) into the active zone of the nanocluster source is the predominant physical mechanism for the formation of the nanoparticles. Our experiments were carried out in conditions that kept the density of nanoparticles low, and the formation of larges nanoparticles by coalescence processes was avoided. In order to preserve the structural and morphological properties, the impact energy of the clusters landing into the substrate was controlled, such that the acceleration energy of the nanoparticles was around 0.1 eV/atom, assuring a soft landing deposition. High-resolution transmission electron microscopy images showed that the nanoparticles were icosahedral in shape, preferentially oriented with a five-fold axis perpendicular to the substrate surface. Our results show that the synthesis by inert gas aggregation technique is a very promising alternative to produce metal nanoparticles when the control of both size and shape are critical for the development of practical applications. PMID:20596397

  6. Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell

    PubMed Central

    Xin, Le; Zhang, Zhiyong; Wang, Zhichao; Qi, Ji; Li, Wenzhen

    2013-01-01

    A solution phase-based nanocapsule method was successfully developed to synthesize non-platinum metal catalyst—carbon supported Ag nanoparticles (Ag/C). XRD patterns and TEM image show Ag nanoparticles with a small average size (5.4 nm) and narrow size distribution (2–9 nm) are uniformly dispersed on the carbon black Vulcan XC-72 support. The intrinsic activity and pathway of oxygen reduction reaction (ORR) on the Ag/C and commercial Pt/C were investigated using rotating ring disk electrode (RRDE) tests at room temperature. The results confirmed that the 4-electron pathway of ORR proceeds on small Ag nanoparticles, and showed comparable ORR activities on the self-prepared Ag/C and a commercial Pt/C. A single H2-O2 anion exchange membrane fuel cell (AEMFC) with the Ag/C cathode catalyst exhibited an open circuit potential of 0.98 V and a peak power density of 190 mW/cm2 at 80°C. PMID:24790944

  7. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite.

    PubMed

    Bai, Yu-Yang; Lu, Yi; Liu, Jin-Ku

    2016-04-15

    The Ag2MoO4-AgBr composite was prepared by a facile in-situ anion-exchange method, then the Ag nanoparticles were coated on this composite through photodeposition route to form a novel Ag@Ag2MoO4-AgBr composite. The in-situ Br(-) replacement in a crystal lattice node position of Ag2MoO4 crystal allows for overcoming the resistance of electron transition effectively. Meanwhile silver nano-particles on the surface of Ag@Ag2MoO4-AgBr composite could act as electron traps to intensify the photogeneration electron-hole separation and the subsequent transfer of the trapped electron to the adsorbed O2 as an electron acceptor. As an efficient visible light catalyst, the Ag@Ag2MoO4-AgBr composite exhibited superior photocatalytic activity for the degradation of various organic dyes. The experimental results demonstrated superior photocatalytic rate of Ag@Ag2MoO4-AgBr composite compared to pure AgBr and Ag2MoO4 crystals (37.6% and 348.4% enhancement respectively). The Ag@Ag2MoO4-AgBr composite cloud degraded Rhodamin B, bromophenol blue, and amino black 10b completed in 7min. PMID:26775100

  8. Enhanced hydrogenation and reduced lattice distortion in size selected Pd-Ag and Pd-Cu alloy nanoparticles

    SciTech Connect

    Sengar, Saurabh K.; Mehta, B. R.; Kulriya, P. K.; Khan, S. A.

    2013-10-21

    Important correlation between valence band spectra and hydrogenation properties in Pd alloy nanoparticles is established by studying the properties of size selected and monocrystalline Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles. The X-ray photoelectron spectroscopy and elastic recoil detection analysis show that size induced Pd4d centroid shift is related to enhanced hydrogenation with H/Pd ratio of 0.57 and 0.49 in Pd-Ag and Pd-Cu nanoparticles in comparison to reported bulk values of 0.2 and 0.1, respectively. Pd-alloy nanoparticles show lower hydrogen induced lattice distortion. The reduced distortion and higher hydrogen reactivity of Pd-alloy nanoparticles is important for numerous hydrogen related applications.

  9. Internally dispersed synthesis of uniform silver nanoparticles via in situ reduction of [Ag(NH3)2]+ along natural microfibrillar substructures of cotton fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silver nanoparticles (Ag NPs) are known to have efficient antimicrobial properties, but the direct application of Ag NPs onto the surface of textiles has shown to be ineffective and raise environmental concerns because Ag NPs leach out during washing. In this study, non-leaching and stable Agcotton ...

  10. Optical Properties of Rhodamine 6G Laser Dye and Ag-Nanoparticle Aggregates

    NASA Astrophysics Data System (ADS)

    Noginov, M. A.; Drachev, V. P.

    2005-03-01

    Optical absorption and luminescence spectra of Rhodamine 6G (Rh6G) laser dye of different concentration with a solution of aggregated silver nanoparticles are studied. New emission band located near 610 nm is found at very high concentration of Rh6G and/or in a solution of Rh6G and Ag nanoparticles. Electron energy structure and optical functions of single Rh6G molecules, molecular complexes, and Rh6G molecules adsorbed on Ag(111) surface are studied by generalized gradient approximation method within density functional theory using ab initio pseudopotentials. Equilibrium geometries of the systems studied are obtained from both molecular dynamics simulations and X-ray diffraction measurements. Electronic structure of J-type molecular complexes (when two molecules aligned along their dipole moment axes) substantially differs from that of H-type aggregates (with parallel and anti-parallel molecular dipole moments). It is demonstrated that new luminescence line is associated with J-type molecular complexes. Observed modifications of optical properties of Rh6G and Rh6G+Ag complexes are explained in terms of both the changes of electronic structure of the systems and due to the electromagnetic interactions of dipole-dipole and dipole-surface types.

  11. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    NASA Astrophysics Data System (ADS)

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-07-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.

  12. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    PubMed Central

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-01-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet–visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films. PMID:26156001

  13. Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures

    NASA Astrophysics Data System (ADS)

    Tsai, Chi-Hang; Chen, Shih-Yun; Song, Jenn-Ming; Haruta, Mitsutaka; Kurata, Hiroki

    2015-11-01

    Au-Ag alloy nanostructures with various shapes were synthesized using a successive reduction method in this study. By means of galvanic replacement, twined Ag nanoparticles (NPs) and single-crystalline Ag nanowires (NWs) were adopted as templates, respectively, and alloyed with the same amount of Au+ ions. High angle annular dark field-scanning TEM (HAADF-STEM) images observed from different rotation angles confirm that Ag NPs turned into AuAg alloy rings with an Au/Ag ratio of 1. The shifts of surface plasmon resonance and chemical composition reveal the evolution of the alloy ring formation. On the other hand, single-crystalline Ag NWs became Ag@AuAg core-shell wires instead of hollow nanostructure through a process of galvanic replacement. It is proposed that in addition to the ratio of Ag templates and Au ion additives, the twin boundaries of the Ag templates were the dominating factor causing hollow alloy nanostructures.

  14. Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures.

    PubMed

    Tsai, Chi-Hang; Chen, Shih-Yun; Song, Jenn-Ming; Haruta, Mitsutaka; Kurata, Hiroki

    2015-12-01

    Au-Ag alloy nanostructures with various shapes were synthesized using a successive reduction method in this study. By means of galvanic replacement, twined Ag nanoparticles (NPs) and single-crystalline Ag nanowires (NWs) were adopted as templates, respectively, and alloyed with the same amount of Au(+) ions. High angle annular dark field-scanning TEM (HAADF-STEM) images observed from different rotation angles confirm that Ag NPs turned into AuAg alloy rings with an Au/Ag ratio of 1. The shifts of surface plasmon resonance and chemical composition reveal the evolution of the alloy ring formation. On the other hand, single-crystalline Ag NWs became Ag@AuAg core-shell wires instead of hollow nanostructure through a process of galvanic replacement. It is proposed that in addition to the ratio of Ag templates and Au ion additives, the twin boundaries of the Ag templates were the dominating factor causing hollow alloy nanostructures. PMID:26563266

  15. Effect of ultraviolet irradiation on luminescence properties of undoped ZnS and ZnS:Ag nanoparticles

    SciTech Connect

    Qu Hua; Cao Lixin; Su Ge; Liu Wei; Sun Yuanguang; Dong Bohua

    2009-11-01

    Undoped ZnS and ZnS:Ag nanoparticles have been prepared through hydrothemal synthesis. The changes of luminescence properties induced by ultraviolet irradiation have been investigated. For both samples, the initial slight increase in luminescence is ascribed to the fast electron filling, while the succedent decrease is supposed to be caused by nonradiative pathways originating from some unknown photochemical products. The more remarkable decrease in ZnS:Ag is put down to the segregation of Ag on the surfaces of ZnS:Ag nanoparticles. Multipeaks Gaussian fitting is applied to the emission spectra. The fitting peaks around 490 nm in both samples are related with the surface states emission and the fitting peaks around 456 nm in ZnS nanoparticles and 443 nm in ZnS:Ag nanoparticles are attributed to the type of donor-acceptor pair luminescence, which corresponds to the transition between different donor levels and acceptor levels in different samples. A model of stretched exponential function is used to fit the fluorescence decay spectra. Result shows that the introduction of Ag{sup +} ions causes a spectacular lifetime shortening of ZnS. Experiment result also verifies the model as that the lifetimes of both samples are notably shortened after irradiation for 2 h.

  16. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate.

    PubMed

    Wolf, Steffen; Rensberg, Jura; Johannes, Andreas; Thomae, Rainer; Smit, Frederick; Neveling, Retief; Moodley, Mathew; Bierschenk, Thomas; Rodriguez, Matias; Afra, Boshra; Bin Hasan, Shakeeb; Rockstuhl, Carsten; Ridgway, Mark; Bharuth-Ram, Krish; Ronning, Carsten

    2016-04-01

    Spherical silver nanoparticles were prepared by means of ion beam synthesis in lithium niobate. The embedded nanoparticles were then irradiated with energetic (84)Kr and (197)Au ions, resulting in different electronic energy losses between 8.1 and 27.5 keV nm(-1) in the top layer of the samples. Due to the high electronic energy losses of the irradiating ions, molten ion tracks are formed inside the lithium niobate in which the elongated Ag nanoparticles are formed. This process is strongly dependent on the initial particle size and leads to a broad aspect ratio distribution. Extinction spectra of the samples feature the extinction maximum with shoulders on either side. While the maximum is caused by numerous remaining spherical nanoparticles, the shoulders can be attributed to elongated particles. The latter could be verified by COMSOL simulations. The extinction spectra are thus a superposition of the spectra of all individual particles. PMID:26902734

  17. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate

    NASA Astrophysics Data System (ADS)

    Wolf, Steffen; Rensberg, Jura; Johannes, Andreas; Thomae, Rainer; Smit, Frederick; Neveling, Retief; Moodley, Mathew; Bierschenk, Thomas; Rodriguez, Matias; Afra, Boshra; Hasan, Shakeeb Bin; Rockstuhl, Carsten; Ridgway, Mark; Bharuth-Ram, Krish; Ronning, Carsten

    2016-04-01

    Spherical silver nanoparticles were prepared by means of ion beam synthesis in lithium niobate. The embedded nanoparticles were then irradiated with energetic 84Kr and 197Au ions, resulting in different electronic energy losses between 8.1 and 27.5 keV nm-1 in the top layer of the samples. Due to the high electronic energy losses of the irradiating ions, molten ion tracks are formed inside the lithium niobate in which the elongated Ag nanoparticles are formed. This process is strongly dependent on the initial particle size and leads to a broad aspect ratio distribution. Extinction spectra of the samples feature the extinction maximum with shoulders on either side. While the maximum is caused by numerous remaining spherical nanoparticles, the shoulders can be attributed to elongated particles. The latter could be verified by COMSOL simulations. The extinction spectra are thus a superposition of the spectra of all individual particles.

  18. Single molecule detection using SERS study in PVP functionalized Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Garg, Parul; Dhara, S.

    2013-02-01

    Non-spherical functionalized Ag nanoparticles (NPs) with homogenous size ˜ 40 nm have been grown using soft chemical route. Solution of silver nitrate and polyvinylpyrrolidone is reduced in excess of ethylene glycol for the preparation of the NPs. Substrates has been prepared by dip coating of the NPs on c-Si for Raman studies. Rhodamine (R6G) is used as a test molecule to study the surface enhanced Raman spectroscopy (SERS) effect. A single molecule detection of R6G along with an enhancement factor of ˜ 4×103 orders of magnitude in the intensity, for the concentration as low as 10-12 M using polymer coated Ag NPs as SERS substrates, has been achieved.

  19. Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons

    PubMed Central

    2013-01-01

    Background Silver nanoparticles (AgNPs), owing to their effective antimicrobial properties, are being widely used in a broad range of applications. These include, but are not limited to, antibacterial materials, the textile industry, cosmetics, coatings of various household appliances and medical devices. Despite their extensive use, little is known about AgNP safety and toxicity vis-à-vis human and animal health. Recent studies have drawn attention towards potential neurotoxic effects of AgNPs, however, the primary cellular and molecular targets of AgNP action/s remain to be defined. Results Here we examine the effects of ultra fine scales (20 nm) of AgNPs at various concentrations (1, 5, 10 and 50 μg/ml) on primary rat cortical cell cultures. We found that AgNPs (at 1-50 μg/ml) not only inhibited neurite outgrowth and reduced cell viability of premature neurons and glial cells, but also induced degeneration of neuronal processes of mature neurons. Our immunocytochemistry and confocal microscopy studies further demonstrated that AgNPs induced the loss of cytoskeleton components such as the β-tubulin and filamentous actin (F-actin). AgNPs also dramatically reduced the number of synaptic clusters of the presynaptic vesicle protein synaptophysin, and the postsynaptic receptor density protein PSD-95. Finally, AgNP exposure also resulted in mitochondria dysfunction in rat cortical cells. Conclusions Taken together, our data show that AgNPs induce toxicity in neurons, which involves degradation of cytoskeleton components, perturbations of pre- and postsynaptic proteins, and mitochondrial dysfunction leading to cell death. Our study clearly demonstrates the potential detrimental effects of AgNPs on neuronal development and physiological functions and warns against its prolific usage. PMID:23782671

  20. Facile synthesis of S–Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S–Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70–160 nm and lengths of 200–360 nm. X-ray diffraction of the S–Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag+ plays an important role in controlling the size and morphology of the S–Ag nanocomposites. When the molar ratio of PVP to Ag+ was 10:1, smaller sizes, better dispersibility and narrower distribution of S–Ag nanocomposites with diameters of 10–40 nm were obtained. The formation mechanism of the S–Ag nanocomposites was studied by designing a series of experiments using ultraviolet–visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag+ becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S–Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S–Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles.

  1. Fabrication of SWCNT-Ag Nanoparticle Hybrid Included Self-Assemblies for Antibacterial Applications

    PubMed Central

    Brahmachari, Sayanti; Mandal, Subhra Kanti; Das, Prasanta Kumar

    2014-01-01

    The present article reports the development of soft nanohybrids comprising of single walled carbon nanotube (SWCNT) included silver nanoparticles (AgNPs) having superior antibacterial property. In this regard aqueous dispersing agent of carbon nanotube (CNT) containing a silver ion reducing unit was synthesised by the inclusion of tryptophan and tyrosine within the backbone of the amphiphile. The dispersions were characterized spectroscopically and microscopically using TEM, AFM and Raman spectroscopy. The nanotube-nanoparticle conjugates were prepared by the in situ photoreduction of AgNO3. The phenolate residue and the indole moieties of tyrosine and tryptophan, respectively reduces the sliver ion as well as acts as stabilizing agents for the synthesized AgNPs. The nanohybrids were characterized using TEM and AFM. The antibacterial activity of the nanohybrids was studied against Gram-positive (Bacillus subtilis and Micrococcus luteus) and Gram-negative bacteria (Escherichia coli and Klebsiella aerogenes). The SWCNT dispersions showed moderate killing ability (40–60%) against Gram-positive bacteria however no antibacterial activity was observed against the Gram negative ones. Interestingly, the developed SWCNT-amphiphile-AgNP nanohybrids exhibited significant killing ability (∼90%) against all bacteria. Importantly, the cell viability of these newly developed self-assemblies was checked towards chinese hamster ovarian cells and high cell viability was observed after 24 h of incubation. This specific killing of bacterial cells may have been achieved due to the presence of higher –SH containing proteins in the cell walls of the bacteria. The developed nanohybrids were subsequently infused into tissue engineering scaffold agar-gelatin films and the films similarly showed bactericidal activity towards both kinds of bacterial strains while allowing normal growth of eukaryotic cells on the surface of the films. PMID:25191756

  2. Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials

    NASA Astrophysics Data System (ADS)

    Yallappa, S.; Manjanna, J.; Dhananjaya, B. L.

    2015-02-01

    A green chemistry approach for the synthesis of Au, Ag and Au-Ag alloy nanoparticles (NPs) using the corresponding metal precursors and Jasminum sambac leaves extract as both reducing and capping media, under microwave irradiation, is reported. During the formation, as expected, the reaction mixture shows marginal decrease in pH and an increase in solution potential. The formation of NPs is evident from their surface plasmon resonance (SPR) peak observed at ∼555 nm for Au, ∼435 nm for Ag and ∼510 nm for Au-Ag alloy. The XRD pattern shows fcc structure while the FTIR spectra indicate the presence of plant residues adsorbed on these NPs. Such a bio-capping of NPs is characterized by their weight loss, ∼35% due to thermal degradation of biomass, as observed in TG analysis. The colloidal dispersion of NPs is stable for about 6 weeks. The near spherical shape of NPs (ϕ20-50 nm) is observed by FE-SEM/TEM images and EDAX gives the expected elemental composition. Furthermore, these NPs showed enhanced antimicrobial activity (∼1-4-fold increase in zone of inhibition) in combination with antimicrobials against test strains. Thus, the phytosynthesized NPs could be used as effective growth inhibitors for various microorganisms.

  3. Core-shell AgSiO2-protoporphyrin IX nanoparticle: Effect of the Ag core on reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Lismont, M.; Pá; ez-Martinez, C.; Dreesen, L.

    2015-03-01

    Photodynamic therapy (PDT) for cancer is based on the use of a light sensitive molecule to produce, under specific irradiation, toxic reactive oxygen species (ROS). A way to improve the therapy efficiency is to increase the amount of produced ROS near cancer cells. This aim can be achieved by using a metal enhanced process arising when an optically active molecule is located near a metallic nanoparticle (NP). Here, the coupling effect between silver (Ag) NPs and protoporphyrin IX (PpIX) molecules, a clinically approved photosensitizer, is studied compared first, to PpIX fluorescence yield and second, to ROS production efficiency. By applying a modified Stöber process, PpIX was encapsulated into a silica (SiO2) shell, surrounding a 60 nm sized Ag core. We showed that, compared to SiO2-PpIX NPs, Ag coated SiO2-PpIX NPs dramatically decreased PpIX fluorescence together with singlet oxygen production efficiency. However, after incubation time in the dark, the amount of superoxide anions generated by the Ag doped sample was higher than the control sample one.

  4. Simple and Sensitive Colorimetric Assay for Pb2+ Based on Glutathione Protected Ag Nanoparticles by Salt Amplification.

    PubMed

    Chen, Zhang; Li, Huidong; Chu, Lin; Liu, Chenbin; Luo, Shenglian

    2015-02-01

    A simple and sensitive colorimetric assay for Pb2+ detection has been reported using glutathione protected silver nanoparticles (AgNPs) by salt amplification. The naked AgNPs aggregate under the influence of salt. Glutathione (GSH) can bind to AgNPs via Ag-S bond, helping AgNPs to against salt-induced aggregation. However, GSH binding to AgNPs can be compromised by the interaction between Pb2+ and GSH. As a result, Pb2+-mediated aggregation of AgNPs under the influence of salt is reflected by the UV-Visible spectrum, and the qualitative and quantitative detection for Pb2+ is accomplished, with the detection range 0.5-4 µM and a detection limit of 0.5 µM. At the same time, Pb2+ in real water sample is detected. Furthermore, the high selectivity and low cost of the assay means it is promising for enviromental applications. PMID:26353676

  5. Hydroquinone-assisted synthesis of branched au-ag nanoparticles with polydopamine coating as highly efficient photothermal agents.

    PubMed

    Li, Jing; Wang, Wenjing; Zhao, Liang; Rong, Li; Lan, Shijie; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2015-06-01

    Despite the success of galvanic replacement in preparing hollow nanostructures with diversified morphologies via the replacement reaction between sacrificial metal nanoparticles (NPs) seeds and less active metal ions, limited advances are made for producing branched alloy nanostructures. In this paper, we report an extended galvanic replacement for preparing branched Au-Ag NPs with Au-rich core and Ag branches using hydroquinone (HQ) as the reductant. In the presence of HQ, the preformed Ag seeds are replaceable by Au and, in turn, supply the growth of Ag branches. By altering the feed ratio of Ag seeds, HAuCl4, and HQ, the size and morphology of the NPs are tunable. Accordingly, the surface plasmon resonance absorption is tuned to near-infrared (NIR) region, making the branched NPs as potential materials in photothermal therapy. The branched NPs are further coated with polydopamine (PDA) shell via dopamine polymerization at room temperature. In comparison with bare NPs, PDA-coated branched Au-Ag (Au-Ag@PDA) NPs exhibit improved stability, biocompatibility, and photothermal performance. In vitro experiments indicate that the branched Au-Ag@PDA NPs are competitive agents for photothermal ablation of cancer cells. PMID:25969998

  6. Evaluation of AgClNPs@SBA-15/IL nanoparticle-induced oxidative stress and DNA mutation in Escherichia coli.

    PubMed

    Karimi, Farrokh; Dabbagh, Somayyeh; Alizadeh, Sina; Rostamnia, Sadegh

    2016-08-01

    The bactericidal effects of silver nanoparticles have been demonstrated in the past years. Recently, the new antimicrobial compounds of silver nanoparticles with different formulations have been developed. In this work, AgClNPs@SBA-15/IL as a new compound of Ag nanoparticles, was synthesized and characterized by XRD, TEM, SEM, FTIR, and EDX. The antibacterial activity and the molecular mechanism effects of AgClNPs@SBA-15/IL nanoparticles (SNPs) on Escherichia coli DH5α cells were investigated by analyzing the growth inhibitory, H2O2 level, catalase activity, DNA mutation, and plasmid copy number following treatment with AgClNPs@SBA-15/IL nanoparticles. In experimental results, the minimum inhibitory concentration (MIC) was observed in 75 μg/ml and the antibacterial efficacy (ABE) in CFU analysis was estimated 95.3 %. In bacterial cells treated with 75 and 100 μg/ml, H2O2 level significantly increased and catalase activity decreased compared with control. The random amplified polymorphic DNA (RAPD) was used to evaluate the effect of AgClNPs@SBA-15/IL nanoparticles in DNA damages and mutation in E. coli genome. RADP-PCR results indicated different banding patterns including appearance or disappearance of bands and differences in their intensity. Cluster analysis of the RAPD-PCR results based on genetic similarity showed genetic difference between E. coli cells treated with AgClNPs@SBA-15/IL nanoparticles, and control and phylogenetic tree were divided to two clusters. Plasmid copy number analysis indicated that after 8 h incubation of E. coli cells with 50, 75, and 100 μg/ml AgClNPs@SBA-15/IL nanoparticles, copy number of pET21a (+) significantly decreased compared with control which indicating DNA replication inhibition by Ag nanoparticles. In conclusion, the results of this study indicated that AgClNPs@SBA-15/IL nanoparticles can be used as an effective bactericidal agent against bacterial cells. PMID:27209037

  7. Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kawamura, Go; Ohmi, Hayato; Tan, Wai Kian; Lockman, Zainovia; Muto, Hiroyuki; Matsuda, Atsunori

    2015-05-01

    Dye-sensitized solar cells composed of a photoanode of Ag nanoparticle (NP)-deposited TiO2 nanotube (TNT) arrays were fabricated. The TNT arrays were prepared by anodizing Ti films on fluorine-doped tin oxide (FTO)-coated glass substrates. Efficient charge transportation through the ordered nanostructure of TNT arrays should be carried out compared to conventional particulate TiO2 electrodes. However, it has been a big challenge to grow TNT arrays on FTO glass substrates with the lengths needed for sufficient light-harvesting (tens of micrometers). In this work, we deposited Ag nanoparticles (NPs) on the wall of TNT arrays to enhance light-harvesting property. Dye-sensitized solar cells with these Ag NP-deposited TNT arrays yielded a higher power conversion efficiency (2.03 %) than those without Ag NPs (1.39 %).

  8. LSP spectral changes correlating with SERS activation and quenching for R6G on immobilized Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Futamata, M.; Maruyama, Y.

    2008-10-01

    In terms of chemical enhancement in Surface Enhanced Raman Scattering (SERS), we investigated the effect of halide and other anions to rhodamine 6G (R6G) adsorbed Ag particles that were immobilized on the substrates. The residual species on chemically prepared Ag particles such as citrate or a-carbon were thoroughly substituted by various anions, e.g., Cl-, Br-, I-, SCN-, CN-, or S2O3 2- anions, whose adsorption features are elucidated by the formation constants for AgX2 ( m-1)-, here X denotes the above anions. In particular, Cl-, Br-, or SCN- ions activated SERS of R6G via intrinsic electronic interaction with Ag, whereas CN-, S2O3 2-, or I- anions quenched it due to their exclusive adsorption onto the Ag surfaces. We found that the activation process with the anions commonly yields a marked blue-shift of the coupled plasmon peak from ca. 650-700 to 500-550 nm in elastic scattering. It is rationalized by slight increase of the gap size between adjacent Ag nanoparticles by only ca. 1 nm based on theoretical simulations. This is probably caused by slight dissolution, oxidative etching, of the particles according to large formation constants of the complexes. Consequently, partly remaining negative charges on the Ag surface, and a slight increase in the gap size, providing huge electric field, facilitated R6G cations to adsorb on the nanoparticles, especially at the junction.

  9. Comparison between Ag (I) and Ni (II) removal from synthetic nuclear power plant coolant water by iron oxide nanoparticles

    PubMed Central

    2013-01-01

    The impact of effective parameters such as iron oxide nanoparticles dosage, contact time and solution pH was optimized for removal of Ag(I) and Ni(II) in the nuclear cooling system and the best conditions were compared. Nearly complete removal (97%) of Ni(II) and Ag(I) were obtained at adsorbent dosage of 40 and 20 g/L, respectively. Experiments showed that 4 hours was a good choice as optimum contact time for two ions removal. The effective parameter was pH, so that maximum removal efficiency was obtained for Ag(I) in acidic pH=3 and for Ni(II) in basic pH=10. It seems that removal of Ag(I) was controlled by adsorption-reduction mechanism, but Ni(II) could place only adsorption. Langmuir and Freundlich model was more suitable for nickel and silver removal by this adsorbent, respectively. Ag(I) and Ni(II) removal efficiency trend by this adsorbent is similar at periods but different in the concentrations, pHs and equilibrium model. The obtained results were very promising, as both Ag(I) and Ni(II) were effectively removed from synthetic wastewater and there was a possibility to remove Ag(I) very fast. Hence, the idea of using nanoparticles for application of metal ions removal from wastewaters seems to be very efficient and quite promising. PMID:24499654

  10. Drastic nickel ion removal from aqueous solution by curcumin-capped Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Bettini, S.; Pagano, R.; Valli, L.; Giancane, G.

    2014-08-01

    A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%.A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02583k

  11. Green synthesis and applications of Au-Ag bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena Kumari, M.; Jacob, John; Philip, Daizy

    2015-02-01

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenol < k2-nitrophenol < k3-nitrophenol. Thermal conductivity is measured as a function of volume fraction and it is observed that the incorporation of the alloy nanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field.

  12. Green synthesis and applications of Au-Ag bimetallic nanoparticles.

    PubMed

    Meena Kumari, M; Jacob, John; Philip, Daizy

    2015-02-25

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenolnanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field. PMID:25218228

  13. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.

    PubMed

    Kim, Richard S; Zhu, Jinfeng; Park, Jeung Hun; Li, Lu; Yu, Zhibin; Shen, Huajun; Xue, Mei; Wang, Kang L; Park, Gyechoon; Anderson, Timothy J; Pei, Qibing

    2012-06-01

    We report the plasmon-assisted photocurrent enhancement in Ag-nanoparticles (Ag-NPs) embedded PEDOT:PSS/P3HT:PCBM organic solar cells, and systematically investigate the causes of the improved optical absorption based on a cylindrical Ag-NPs optical model which is simulated with a 3-Dimensional finite difference time domain (FDTD) method. The proposed cylindrical Ag-NPs optical model is able to explain the optical absorption enhancement by the localized surface plasmon resonance (LSPR) modes, and to provide a further understanding of Ag-NPs shape parameters which play an important role to determine the broadband absorption phenomena in plasmonic organic solar cells. A significant increase in the power conversion efficiency (PCE) of the plasmonic solar cell was experimentally observed and compared with that of the solar cells without Ag-NPs. Finally, our conclusion was made after briefly discussing the electrical effects of the fabricated plasmonic organic solar cells. PMID:22714293

  14. Ferritin-mediated biomimetic synthesis of bimetallic Au-Ag nanoparticles on graphene nanosheets for electrochemical detection of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Jiku; Ni, Pengjuan; Li, Zhuang

    2015-03-01

    We demonstrated a biomimetic green synthesis of bimetallic Au-Ag nanoparticles (NPs) on graphene nanosheets (GNs). The spherical protein, ferritin (Fr), was bound onto GNs and served as the template for the synthesis of GN/Au-Ag nanohybrids. The created GN/Au-Ag nanohybrids were further utilized to fabricate a non-enzymatic amperometric biosensor for the sensitive detection of hydrogen peroxide (H2O2), and this biosensor displayed high performances to determine H2O2 with a detection limit of 20.0 × 10-6 M and a linear detection range from 2.0 μM to 7.0 mM.

  15. Antibacterial activity and reusability of CNT-Ag and GO-Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Kim, Ji Dang; Yun, Hyosuk; Kim, Gwui Cheol; Lee, Chul Won; Choi, Hyun Chul

    2013-10-01

    A facile approach to the synthesis of novel CNT-Ag and GO-Ag antibacterial materials, in which thiol groups are utilized as linkers to secure silver (Ag) nanoparticles to the CNT and GO surfaces without agglomeration, is reported. The resulting CNT-Ag and GO-Ag samples were characterized by performing TEM, XRD, Auger, XPS, and Raman measurements, which revealed that in these antibacterial materials size-similar and quasi-spherical Ag nanoparticles are anchored to the CNT and GO surfaces. The Ag nanoparticles in CNT-Ag and GO-Ag have narrow size distributions with average diameters of 2.6 and 3.5 nm respectively. The antibacterial activities of CNT-Ag and GO-Ag against Escherichia coli were assessed with the paper-disk diffusion method and by determining the minimal inhibitory concentrations (MICs). CNT-Ag was found to have higher antibacterial activity than the reference Ag colloid. Moreover, both CNT-Ag and GO-Ag retain more than 50% of their original antibacterial activities after 20 washes with detergent, which indicates their potential as antibacterial materials for laboratory and medical purposes.

  16. Fabrication of Ag-Decorated CaTiO₃ Nanoparticles and Their Enhanced Photocatalytic Activity for Dye Degradation.

    PubMed

    Xian, T; Yang, H; Huo, Y S; Ma, J Y; Zhang, H M; Su, J Y; Feng, W J

    2016-01-01

    CaTiO₃nanoparticles of 30-40 nm in size were synthesized via a polyacrylamide gel route. Ag nanoparticles with size of 8-16 nm were deposited onto CaTiO₃particles by a photochemical reduction method to yield CaTiO₃@Ag composites. The photocatalytic activity of prepared samples was evaluated by degrading methyl orange under ultraviolet irradiation. It is demonstrated that Ag-decorated CaTiO₃ particles exhibit an enhanced photocatalytic activity compared to bare CaTiO₃ particles. After 60 min of photocatalysis, the degradation percentage of MO increases from 54% for bare CaTiO₃particles to 72% for CaTiO₃@Ag composites. This can be explained by the fact that photogenerated electrons are captured by Ag nanoparticles and photogenerated holes are therefore increasingly available to react with OH⁻/H₂O to generate hydroxyl (·OH) radicals. ·OH radicals were detected by fluorimetry using terephthalic acid as a probe molecule, revealing an enhanced yield on the irradiated CaTiO₃@Ag composites. In addition, it is found that the addition of ethanol, which acts as an ·OH scavenger, leads to a quenching of ·OH radicals and simultaneous decrease in the photocatalytic efficiency. This suggests that ·OH radicals are the dominant active species responsible for the dye degradation. PMID:27398489

  17. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles.

    PubMed

    Guo, Shaojun; Zhang, Xu; Zhu, Wenlei; He, Kai; Su, Dong; Mendoza-Garcia, Adriana; Ho, Sally Fae; Lu, Gang; Sun, Shouheng

    2014-10-22

    Controlling the electronic structure and surface strain of a nanoparticle catalyst has become an important strategy to tune and to optimize its catalytic efficiency for a chemical reaction. Using density functional theory (DFT) calculations, we predicted that core/shell M/CuPd (M = Ag, Au) NPs with a 0.8 or 1.2 nm CuPd2 shell have similar but optimal surface strain and composition and may surpass Pt in catalyzing oxygen reduction reactions. We synthesized monodisperse M/CuPd NPs by the coreduction of palladium acetylacetonate and copper acetylacetonate in the presence of Ag (or Au) nanoparticles with controlled shell thicknesses of 0.4, 0.75, and 1.1 nm and CuPd compositions and evaluated their catalysis for the oxygen reduction reaction in 0.1 M KOH solution. As predicted, our Ag/Cu37Pd63 and Au/Cu40Pd60 catalysts with 0.75 and 1.1 nm shells were more efficient catalysts than the commercial Pt catalyst (Fuel Cells Store), with their mass activity reaching 0.20 A/mg of noble metal at -0.1 V vs Ag/AgCl (4 M KCl); this was over 3 times higher than that (0.06 A/mg Pt) from the commercial Pt. These Ag(Au)/CuPd nanoparticles are promising non-Pt catalysts for oxygen reduction reactions. PMID:25279704

  18. Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles

    PubMed Central

    2013-01-01

    Background Knowledge about silver nanoparticles in soils is limited even if soils are a critical pathway for their environmental fate. In this paper, speciation results have been acquired using a silver ion selective electrode in three different soils. Results Soil organic matter and pH were the most important soil properties controlling the occurrence of silver ions in soils. In acidic soils, more free silver ions are available while in the presence of organic matter, ions were tightly bound in complexes. The evolution of the chemical speciation of the silver nanoparticles in soils was followed over six months. Conclusion During the first few hours, there appeared to be a strong sorption of the silver with soil ligands, whereas over time, silver ions were released, the final concentration being approximately 10 times higher than at the beginning. Ag release was associated with either the oxidation of the nanoparticles or a dissociation of adsorbed silver from the soil surfaces. PMID:23617903

  19. Development of Novel Cadmium-Free AgInS2 Semiconductor Nanoparticles.

    PubMed

    Yang, Wentao; Gong, Xiaoqun; Chang, Jin

    2016-03-01

    AgInS2 (AIS) semiconductor nanoparticles as the novel alternatives to cadmium- or lead-containing semiconductors have attracted much attention both on the theory and application research, based on their tunable fluorescence emission wavelengths, high photostability and low toxicity of chemical composition. The bandgap of AIS nanoparticles can be adjusted from 1.54 to 2.03 eV, which makes AIS nanocrystalline suitable for applications in solar energy conversion. Moreover, the fluorescence emission wavelengths can be tuned in the near-infrared regions, and thus make it the next-generation low-toxicity materials for the applications in bioimaging. In this review, the research progress of the AIS nanoparticles is summarized, including synthetic methods, properties and the possibilities to influence their shape and crystallographic structure. Furthermore, we discuss the potential applications of this novel material in photocatalysis, solar energy conversion and biological area. PMID:27455616

  20. Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant

    NASA Astrophysics Data System (ADS)

    Bocarando-Chacon, J.-G.; Cortez-Valadez, M.; Vargas-Vazquez, D.; Rodríguez Melgarejo, F.; Flores-Acosta, M.; Mani-Gonzalez, P. G.; Leon-Sarabia, E.; Navarro-Badilla, A.; Ramírez-Bon, R.

    2014-05-01

    Silver nanoparticles have been obtained in an extract of Opuntia ficus-indica plant. The size and distribution of nanoparticles were quantified by atomic force microscopy (AFM). The diameter was estimated to be about 15 nm. In addition, energy dispersive X-ray spectroscopy (EDX) peaks of silver were observed in these samples. Three Raman bands have been experimentally detected at 83, 110 and 160 cm-1. The bands at 83 and 110 cm-1 are assigned to the silver-silver Raman modes (skeletal modes) and the Raman mode located at 160 cm-1 has been assigned to breathing modes. Vibrational assignments of Raman modes have been carried out based on the Density Functional Theory (DFT) quantum mechanical calculation. Structural and vibrational properties for small Agn clusters with 2≤n≤9 were determined. Calculated Raman modes for small metal clusters have an approximation trend of Raman bands. These Raman bands were obtained experimentally for silver nanoparticles (AgNP).

  1. Covalently-layers of PVA and PAA and in situ formed Ag nanoparticles as versatile antimicrobial surfaces.

    PubMed

    Fragal, Vanessa H; Cellet, Thelma S P; Pereira, Guilherme M; Fragal, Elizângela H; Costa, Marco Antonio; Nakamura, Celso Vataru; Asefa, Tewodros; Rubira, Adley F; Silva, Rafael

    2016-10-01

    The in situ synthesis of silver nanoparticles (AgNPs) within covalently-modified poly(ethylene terephthalate) (PET) films possessing ultra-thin layer of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) is successfully demonstrated. The resulting polymeric films are shown to exhibit antimicrobial activities toward Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungus (Candida albicans). To make the films, first PET surfaces were subject to photo-oxidation and subsequent solid-state grafting to attach a PVA layer, followed by a PAA layer. To synthesize the AgNPs inside the films, the PVA and PAA-modified PET was soaked in AgNO3 solution and the polymeric film was modified with the Ag(+) ions via Ag(+)-carboxylate interaction, and then the Ag(+) ions-containing polymer film was subject to either photo-reduction or thermal reduction processes. The PVA and PAA thin layers attached by covalent bonds to the PET surface uniquely promoted not only the in situ synthesis but also the stabilization of AgNPs. The formation of the AgNPs was confirmed by UV-vis spectroscopy or by monitoring the surface plasmon resonance (SPR) peak associated with AgNPs. The resulting PVA and PAA ultrathin layers modified and AgNPs containing PET served as bactericide and fungicide, inhibiting the growth of bacteria and fungi on the surfaces. Given PET's versatility and common use in many commercial processes, the method can be used for producing plastic surfaces with versatile antimicrobial and antibacterial properties. PMID:27196366

  2. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release

    PubMed Central

    2014-01-01

    Background Silver nanoparticles (AgNPs) are currently one of the most manufactured nanomaterials. A wide range of toxicity studies have been performed on various AgNPs, but these studies report a high variation in toxicity and often lack proper particle characterization. The aim of this study was to investigate size- and coating-dependent toxicity of thoroughly characterized AgNPs following exposure of human lung cells and to explore the mechanisms of toxicity. Methods BEAS-2B cells were exposed to citrate coated AgNPs of different primary particle sizes (10, 40 and 75 nm) as well as to 10 nm PVP coated and 50 nm uncoated AgNPs. The particle agglomeration in cell medium was investigated by photon cross correlation spectroscopy (PCCS); cell viability by LDH and Alamar Blue assay; ROS induction by DCFH-DA assay; genotoxicity by alkaline comet assay and γH2AX foci formation; uptake and intracellular localization by transmission electron microscopy (TEM); and cellular dose as well as Ag release by atomic absorption spectroscopy (AAS). Results The results showed cytotoxicity only of the 10 nm particles independent of surface coating. In contrast, all AgNPs tested caused an increase in overall DNA damage after 24 h assessed by the comet assay, suggesting independent mechanisms for cytotoxicity and DNA damage. However, there was no γH2AX foci formation and no increased production of intracellular reactive oxygen species (ROS). The reasons for the higher toxicity of the 10 nm particles were explored by investigating particle agglomeration in cell medium, cellular uptake, intracellular localization and Ag release. Despite different agglomeration patterns, there was no evident difference in the uptake or intracellular localization of the citrate and PVP coated AgNPs. However, the 10 nm particles released significantly more Ag compared with all other AgNPs (approx. 24 wt% vs. 4–7 wt%) following 24 h in cell medium. The released fraction in cell medium did not induce any

  3. Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag(I) contaminated waters.

    PubMed

    Hanks, Nicole A; Caruso, Joseph A; Zhang, Peng

    2015-12-01

    To study the phytoremediation capabilities of Pistia stratiotes in silver nanoparticle (AgNP) and silver ion contaminated wastewaters, individual plants were grown in media spiked with different concentrations of silver nanoparticle and silver ions (0.02, 0.2, and 2 mg L(-1)). Control experiments were carried out at the same time for comparison purposes. Visual changes in the plants were also recorded periodically during each experiment. Total silver concentrations were monitored in the media before, during, and at the termination of the experiments. In addition, analysis of total silver in plant root and leaf samples after termination were carried out to determine the effect of the different media concentrations. The results showed that P. stratiotes can survive in AgNP and ions under 0.02 mg L(-1) and contaminants are retained within the plant. The use of P. stratiotes as a phytoremediator shows potential in removing heavy metal nanoparticles and is competitive in its removal of the ion counterpart. Even higher concentrations of silver, regardless of form, can be reduced to lower levels than the World Health Organization's maximum contamination limit. PMID:26342265

  4. Polymer Assisted Core-shell Ag-C nanoparticles Synthesis via Green hydrothermal Technique

    NASA Astrophysics Data System (ADS)

    Williams, James; Mishra, Sanjay

    2009-03-01

    Core-Shell Ag-C nanoparticles were synthesized in the presence of glucose through a one-pot green hydrothermal wet chemical process. An aqueous solution of glucose and Ag nitrate was hydrothermally treated to produce porous carbonaceous shell over silver core nanoparticles. The growth of carbon shells was regulated by either of the polymers (poly) vinyl pyrrolidone (PVP) or poly vinyl alcohol (PVA). The two polymers were compared to take a measure of different tunable sizes of cores, and shells. The effects of hydrothermal temperature, time, and concentration of reagents on the final formation of nanostructures were studied using UV-vis extinction spectra, transmission electron microscope, and Raman spectroscopy. The polymer molecules were found to be incorporated into carbonaceous shell. The resulting opacity of the shell was found to be hydrothermal time and temperature dependent. The shell structure was found to be more uniform with PVP than PVA. Furthermore, the polymer concentration was found to influence size and shape of the core-silver particles as well. The core-shelled nanoparticles have surfaces with organic groups capable of assembling with different reagents that could be useful in drug-delivery, optical nanodevices or biochemistry.

  5. Designed synthesis of Au/Ag/Pd trimetallic nanoparticle-based catalysts for Sonogashira coupling reactions.

    PubMed

    Venkatesan, P; Santhanalakshmi, J

    2010-07-20

    Pdnp and Pd containing trimetallic nanoparticles (tnp) are synthesized by chemical method with cetyltrimethylammonium bromide as the capping agent. Compositionally, four different tnp are prepared and the particle sizes are characterized by UV-vis spectra, HR-TEM, and XRD measurements. The catalytic activities of Pdnp and tnp are tested using the Sonogashira C-C coupling reaction. The product yield and recyclability of the recovered catalysts are studied. tnp (1:1:1) exhibited better catalysis than Pdnp, which may be due to the concerted electronic effects of the Au-Ag core onto the Pd shell atoms. PMID:20462280

  6. Influence of temperature and precursor concentration on the synthesis of HDA-capped Ag{sub 2}Se nanoparticles

    SciTech Connect

    Mlambo, M.; Moloto, M.J.; Moloto, N.; Mdluli, P.S.

    2013-06-01

    Graphical abstract: The temperature effect on the growth and size of silver selenide nanoparticles with the size distribution and XRD patterns. Highlights: ► The HDA-capped Ag{sub 2}Se nanoparticles were synthesized via the colloidal route. ► Temperature and monomer concentration of the reaction were varied. ► The concentration as a factor influenced particles with a decrease observed as the amount of Ag{sup +} ion source is increased. ► Temperature has expected influence on the growth of particles resulting in increase as the temperature is increased. ► TEM images shows spherical particles and their orthorhombic phase from structural analysis by XRD. - Abstract: The size dependent of temperature and precursor concentration on the synthesis of hexadecylamine capped Ag{sub 2}Se nanoparticles via the colloidal route were studied using the combination of optical and structural analysis. The as-prepared Ag{sub 2}Se nanoparticles showed the quantum confinement with all the obtained absorption band edges blue-shifted from the bulk and their corresponding emission maxima displaying a red-shift from band edges characterised by UV–vis absorption and photoluminescence spectroscopy. The particle sizes were obtained from transmission electron microscopy analysis. The increase in precursor concentration resulted in a decrease in nanoparticle sizes. The increase in reaction temperature showed an increase in the nanoparticle sizes, when the critical temperature at 160 °C was reached, the nanoparticle sizes decreased.

  7. AGS experiments - 1994, 1995, 1996

    SciTech Connect

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here.

  8. Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration.

    PubMed

    Pang, Chengfang; Brunelli, Andrea; Zhu, Conghui; Hristozov, Danail; Liu, Ying; Semenzin, Elena; Wang, Wenwen; Tao, Wuqun; Liang, Jingnan; Marcomini, Antonio; Chen, Chunying; Zhao, Bin

    2016-03-01

    With the advance in material science and the need to diversify market applications, silver nanoparticles (AgNPs) are modified by different surface coatings. However, how these surface modifications influence the effects of AgNPs on human health is still largely unknown. We have evaluated the uptake, toxicity and pharmacokinetics of AgNPs coated with citrate, polyethylene glycol, polyvinyl pyrolidone and branched polyethyleneimine (Citrate AgNPs, PEG AgNPs, PVP AgNPs and BPEI AgNPs, respectively). Our results demonstrated that the toxicity of AgNPs depends on the intracellular localization that was highly dependent on the surface charge. BPEI AgNPs (ζ potential = +46.5 mV) induced the highest cytotoxicity and DNA fragmentation in Hepa1c1c7. In addition, it showed the highest damage to the nucleus of liver cells in the exposed mice, which is associated with a high accumulation in liver tissues. The PEG AgNPs (ζ potential = -16.2 mV) showed the cytotoxicity, a long blood circulation, as well as bioaccumulation in spleen (34.33 µg/g), which suggest better biocompatibility compared to the other chemically modified AgNPs. Moreover, the adsorption ability with bovine serum albumin revealed that the PEG surface of AgNPs has an optimal biological inertia and can effectively resist opsonization or non-specific binding to protein in mice. The overall results indicated that the biodistribution of AgNPs was significantly dependent on surface chemistry: BPEI AgNPs > Citrate AgNPs = PVP AgNPs > PEG AgNPs. This toxicological data could be useful in supporting the development of safe AgNPs for consumer products and drug delivery applications. PMID:25962681

  9. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration

    NASA Astrophysics Data System (ADS)

    Lee, S.-H.; Bae, J.; Lee, S. W.; Jang, J.-W.

    2015-10-01

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). To take advantage of plasmon-exciton coupling in the photocurrent of the device, 80 nm of Ag NPs (454 nm = λmax) were chosen for matching the maximum absorption with PPy NWs (442 nm = λmax). The photocurrent density is remarkably improved, up to 25.3 times (2530%), by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light (λ = 425-475 nm) illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ~ Vm) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation under blue light illumination. These results prove that the performance of non-single crystallized polymer nanowire devices can also be improved by plasmonic enhancement.In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). To take advantage of plasmon-exciton coupling in the photocurrent of the device, 80 nm of Ag NPs (454 nm = λmax) were chosen for matching the maximum absorption with PPy NWs (442 nm = λmax). The photocurrent density is remarkably improved, up to 25.3 times

  10. Electrocatalytic activity of alkyne-functionalized AgAu alloy nanoparticles for oxygen reduction in alkaline media

    NASA Astrophysics Data System (ADS)

    Hu, Peiguang; Song, Yang; Chen, Limei; Chen, Shaowei

    2015-05-01

    1-Dodecyne-functionalized AgAu alloy nanoparticles were synthesized by chemical reduction of metal salt precursors at varied initial feed ratios. Transmission electron microscopic measurements showed that the nanoparticles were all rather well dispersed with the average core diameter in the narrow range of 3 to 5 nm. X-ray photoelectron spectroscopic studies confirmed the formation of AgAu alloy nanoparticles with the gold concentration ranging from approximately 25 at% to 55 at%. Consistent results were obtained in UV-vis spectroscopic measurements where the nanoparticle surface plasmon resonance red-shifted almost linearly with increasing gold concentrations. The self-assembly of 1-dodecyne ligands on the nanoparticle surface was manifested in infrared spectroscopic measurements. Importantly, the resulting nanoparticles exhibited apparent electrocatalytic activity for oxygen reduction in alkaline media, and the performance was found to show a volcano variation in the Au content in the alloy nanoparticles, with the best performance observed for the samples with ca. 35.5 at% Au. The enhanced catalytic activity, as compared to pure Ag nanoparticles or even commercial Pt/C catalysts, was accounted for by the unique metal-ligand interfacial bonding interactions as well as alloying effects that increased metal-oxygen affinity.1-Dodecyne-functionalized AgAu alloy nanoparticles were synthesized by chemical reduction of metal salt precursors at varied initial feed ratios. Transmission electron microscopic measurements showed that the nanoparticles were all rather well dispersed with the average core diameter in the narrow range of 3 to 5 nm. X-ray photoelectron spectroscopic studies confirmed the formation of AgAu alloy nanoparticles with the gold concentration ranging from approximately 25 at% to 55 at%. Consistent results were obtained in UV-vis spectroscopic measurements where the nanoparticle surface plasmon resonance red-shifted almost linearly with increasing gold

  11. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles.

    PubMed

    Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2015-03-19

    The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO₂.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles. PMID:25757694

  12. A new dielectric ta-C film coating of Ag-nanoparticle hybrids to enhance TiO2 photocatalysis.

    PubMed

    Liu, Fanxin; Tang, Chaojun; Wang, Zhenlin; Sui, Chenghua; Ma, Hongtao

    2014-03-28

    We have demonstrated a novel method to enhance TiO₂ photocatalysis by adopting a new ultrathin tetrahedral-amorphous-carbon (ta-C) film coating on Ag nanoparticles to create strong plasmonic near-field enhancement. The result shows that the decomposition rate of methylene blue on the Ag/10 Å ta-C/TiO₂ composite photocatalyst is ten times faster than that on a TiO₂ photocatalyst and three times faster than that on a Ag/TiO₂ photocatalyst. This can be ascribed to the simultaneous realization of two competitive processes: one that excites the surface plasmons (SPs) of the ta-C-film/Ag-nanoparticle hybrid and provides a higher electric field near the ta-C/TiO₂ interface compared to Ag nanoparticles alone, while the other takes advantage of the dense diamond-like ta-C layer to help reduce the transfer of photogenerated electrons from the conduction band of TiO₂ to the metallic surface, since any electron transfer will suppress the excitation of SP modes in the metal nanoparticles. PMID:24572147

  13. Ag Nanoparticles-enhanced Fluorescence of Terbium-Deferasirox Complexes for the Highly Sensitive Determination of Deferasirox.

    PubMed

    Abolhasani, Jafar; Naderali, Roza; Hassanzadeh, Javad

    2016-01-01

    We describe the effect of different sized gold and silver nanoparticles on the terbium sensitized fluorescence of deferasirox. It is indicated that silver nanostructures, especially 18 nm Ag nanoparticles (AgNPs), have a remarkable amplifying effect compared to Au nanoparticles. Based on this observation, a highly sensitive and selective method was developed for the determination of deferasirox. Effects of various parameters like AgNPs and Tb(3+) concentration and pH of media were investigated. Under the optimal conditions, a calibration curve was plotted as the fluorescence intensities versus the concentration of deferasirox in the range of 0.1 to 200 nmol L(-1), and detection limit of 0.03 nmol L(-1) was obtained. The method has good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of deferasirox in urine and pharmaceutical samples. PMID:27063708

  14. Self-organization and photo-induced formation of cyanine dye aggregates on the plasmonic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Starovoytov, Anton A.; Nabiullina, Rezida D.; Toropov, Nikita A.

    2016-04-01

    The optical properties of hybrid film based on plasmon Ag nanoparticles of different size and cyanine dyes with different length of conjugation chain depending on the relative position of the plasmon resonance and the absorption of organic molecules were studied. The absorption spectra of the films revealed several molecular forms, such as all-trans- and cisisomers, dimers and J-aggregate, which also exist in pure organic films without Ag nanoparticles. It's shown that the absorption of aggregate bands increased after exposure by nanosecond laser on the hybrid films due to photo-induced additional self-organization of aggregates. In the presence of Ag nanoparticles, laser radiation leads to the change of molecular forms at a comparatively low threshold.

  15. Enhancement of Processability and Electrical Resistance by Use of Ag-Based Composite Inks Containing Ultrafine SAC305 Alloy Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shin, Yong Moo; Kim, Hyun-Jin; Jang, Seok Pil; Lee, Jong-Hyun

    2014-09-01

    We propose use of Ag/Sn-3.0 (wt.%) Ag-0.5 Cu (SAC305) composite ink to reduce sintering temperature, sintering time, and material costs. The SAC305 nanoparticle (NP) surfaces were not capped by any stabilizers, which are detrimental to the resistivity of the sintered tracks. Compared with commercial pure Ag ink, use of Ag/3.2 (vol.%) SAC305 composite ink containing ultrafine SAC305 NPs resulted in outstandingly enhanced processability, enabling faster sintering at low temperatures. The average sheet resistance of composite ink samples sintered for 25 min at 170°C was as low as 0.011 Ω/□, comparable with that of a pure Ag sample sintered for over 30 min at 220°C. The morphology and the differential scanning calorimetry curves enabled explanation of the changes in the sintering behavior and sheet resistance. The Ag/SAC305 clusters in the composite ink sintered at 170°C grew, on average, to ~201.1-226.1 nm as a result of faster local liquid-phase sintering, and most of the Ag particles were mutually linked, dramatically changing the microstructure.

  16. UV-assisted photocatalytic synthesis of highly dispersed Ag nanoparticles supported on DNA decorated graphene for quantitative iodide analysis.

    PubMed

    Kong, Fen-Ying; Li, Wei-Wei; Wang, Jing-Yi; Wang, Wei

    2015-07-15

    Herein, we report, for the first time, the synthesis of reduced graphene oxide-DNA-Ag (RGO-DNA-Ag) nanohybrids by ultraviolet (UV) irradiation of aqueous solutions of GO and Ag ions in the presence of DNA. The morphology and microstructure characterizations of the resultant nanohybrids reveal that the proposed method leads to the simultaneous reduction of GO and Ag ions together with efficient dispersion of Ag nanoparticles on the surface of RGO sheets. This simple and fast synthesis route is carried out at ambient conditions without using any additional chemical reducing agents, which has the potential to provide new avenues for the green fabrication of various RGO-based nanomaterials. Additionally, the RGO-DNA-Ag nanohybrids can be utilized as a novel sensing interfacial for direct determination of iodide by simple differential pulse voltammetry (DPV), without requiring any preceding preconcentration of the analyte. Based on the RGO-DNA-Ag nanohybrids modified electrode, a wide linear range of 1μM-1mM and a low detection limit of 0.2μM were obtained. This sensitive and direct method of analysis can be applied successfully to the determination of iodide in real samples. PMID:25747505

  17. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration.

    PubMed

    Lee, S-H; Bae, J; Lee, S W; Jang, J-W

    2015-11-01

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). To take advantage of plasmon-exciton coupling in the photocurrent of the device, 80 nm of Ag NPs (454 nm = λmax) were chosen for matching the maximum absorption with PPy NWs (442 nm = λmax). The photocurrent density is remarkably improved, up to 25.3 times (2530%), by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light (λ = 425-475 nm) illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ∼ V(m)) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation under blue light illumination. These results prove that the performance of non-single crystallized polymer nanowire devices can also be improved by plasmonic enhancement. PMID:26413791

  18. Ag-Ag2S Hybrid Nanoprisms: Structural versus Plasmonic Evolution.

    PubMed

    Shahjamali, Mohammad M; Zhou, Yong; Zaraee, Negin; Xue, Can; Wu, Jinsong; Large, Nicolas; McGuirk, C Michael; Boey, Freddy; Dravid, Vinayak; Cui, Zhifeng; Schatz, George C; Mirkin, Chad A

    2016-05-24

    Recently, Ag-Ag2S hybrid nanostructures have attracted a great deal of attention due to their enhanced chemical and thermal stability, in addition to their morphology- and composition-dependent tunable local surface plasmon resonances. Although Ag-Ag2S nanostructures can be synthesized via sulfidation of as-prepared anisotropic Ag nanoparticles, this process is poorly understood, often leading to materials with anomalous compositions, sizes, and shapes and, consequently, optical properties. In this work, we use theory and experiment to investigate the structural and plasmonic evolution of Ag-Ag2S nanoprisms during the sulfidation of Ag precursors. The previously observed red-shifted extinction of the Ag-Ag2S hybrid nanoprism as sulfidation occurs contradicts theoretical predictions, indicating that the reaction does not just occur at the prism tips as previously speculated. Our experiments show that sulfidation can induce either blue or red shifts in the extinction of the dipole plasmon mode, depending on reaction conditions. By elucidating the correlation with the final structure and morphology of the synthesized Ag-Ag2S nanoprisms, we find that, depending on the reaction conditions, sulfidation occurs on the prism tips and/or the (111) surfaces, leading to a core(Ag)-anisotropic shell(Ag2S) prism nanostructure. Additionally, we demonstrate that the direction of the shift in the dipole plasmon is a function of the relative amounts of Ag2S at the prism tips and Ag2S shell thickness around the prism. PMID:27148792

  19. The fabrication and photocatalytic performances of flower-like Ag nanoparticles/ZnO nanosheets-assembled microspheres

    NASA Astrophysics Data System (ADS)

    Deng, Quan; Tang, Haibin; Liu, Gang; Song, Xiaoping; Xu, Guoping; Li, Qian; Ng, Dickon H. L.; Wang, Guozhong

    2015-03-01

    A new micro/nanostructure photocatalyst, Ag nanoparticles decorated ZnO nanosheets-assembled microspheres (Ag-NPs/ZnOs), was synthesised by a two-step method. The flower-like micron-sized ZnO spheres assembled with ∼25 nm thick ZnO nanosheets were initially fabricated via a facile solvothermal method. Then, highly dispersed Ag nanoparticles (Ag-NPs) with dimension ranging from 15 to 50 nm were anchored onto the surface of the each ZnO nanosheet by the Sn(II) ion activation method. The as-prepared Ag-NPs/ZnOs demonstrated enhanced photocatalytic performance in eliminating methylene blue and methyl orange aqueous solutions under UV irradiation, showing twice faster reaction rate than the bare ZnOs. The enhanced photocatalytic activity was due to the suppression of electron/hole pair recombination and the acceleration of surface charge transfer induced by the highly dispersive Ag-NPs, which was further demonstrated by the cyclic voltammetry and impedance spectra measurements.

  20. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Shin, Ki Ryong; Kim, Yeon Sung; Kim, Gye Won; Yang, Hae Woong; Ko, Young Gun; Shin, Dong Hyuk

    2015-08-01

    This study was to investigate how Ag nanoparticles with various concentrations affect the surface structure and in vitro biological properties of oxide layers on the pure titanium produced by a plasma electrolytic oxidation (PEO) process. For this aim, PEO processes were carried out at an AC current density of 100 mA/cm2 for 300 s in potassium pyrophosphate (K4P2O7) electrolytes containing 0, 0.1, 0.3 and 0.5 g/l Ag nanoparticles. Structural investigations using scanning electron microscopy evidenced that the oxide layers showed the successful incorporation of Ag nanoparticles, and the topographical deformation of the porous surface was found when the concentration of Ag nanoparticles was more than 0.1 g/l. Based on the anti-bacterial activity of all oxide layers, the Ag nanoparticles uniformly spread were of considerable importance in triggering the disinfection of E. coli bacteria. The bone forming abilities and cell (MC3T3-E1) proliferation rates of oxide layers produced in electrolytes containing 0 and 0.1 g/l Ag nanoparticles were higher than those containing 0.3 and 0.5 g/l Ag nanoparticles. Consequently, the oxide layer on pure titanium via PEO process in the electrolyte with 0.1 g/l Ag nanoparticles exhibited better the bioactivity accompanying the anti-bacterial activity.

  1. Fabrication of AgAu alloy-TiO2 core-shell nanoparticles and their photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-yu; Yuan, Shu-long; Yuan, Yu-zhen; Li, Xue

    2015-01-01

    In this paper, for improving the photocatalytic efficiency of titania (TiO2) nanoparticles (NPs), AgAu alloy-TiO2 core-shell NPs are fabricated via a sol-gel (SG) process in the presence of AgAu alloy NPs with block copolymer shells as templates. The photocatalytic activities of the AgAu-TiO2 NPs on the photodecomposition of methylene blue (MB) are investigated. The AgAu-TiO2 composite NPs coated with 5.0% titania related to block copolymers show higher photocatalytic activity than the other samples in which the titania contents are larger than 5.0%. The results indicate that the increase of the thickness of the TiO2 shell leads to the decrease of the photocatalytic activity.

  2. Preparation of Ag nanoparticle-decorated poly(m-phenylenediamine) microparticles and their application for hydrogen peroxide detection.

    PubMed

    Tian, Jingqi; Li, Hailong; Lu, Wenbo; Luo, Yonglan; Wang, Lei; Sun, Xuping

    2011-05-01

    The chemical oxidation polymerization of m-phenylenediamine (MPD) by ammonium persulfate (APS) at room temperature results in the formation of poly(m-phenylenediamine) (PMPD) microparticles. The subsequent treatment of such microparticles with an aqueous AgNO(3) solution produces Ag nanoparticle (AgNP)-decorated PMPD microparticles. It was found that as-formed AgNPs exhibited remarkable catalytic performance toward the reduction of hydrogen peroxide (H(2)O(2)). The enzymeless H(2)O(2) sensor constructed with such composites showed a fast amperometric response time of less than 5 s, and the corresponding linear range and detection limit were estimated to be from 0.1 to 30 mM and 4.7 µM, respectively, at a signal-to-noise ratio of 3. PMID:21387026

  3. Ag nanoparticle-ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach

    NASA Astrophysics Data System (ADS)

    Li, Zhou; Tang, Haoying; Yuan, Weiwei; Song, Wei; Niu, Yongshan; Yan, Ling; Yu, Min; Dai, Ming; Feng, Siyu; Wang, Menghang; Liu, Tengjiao; Jiang, Peng; Fan, Yubo; Wang, Zhong Lin

    2014-04-01

    A new approach for fabrication of a long-term and recoverable antimicrobial nanostructure/textile hybrid without increasing the antimicrobial resistance is demonstrated. Using in situ synthesized Ag nanoparticles (NPs) anchored on ZnO nanowires (NWs) grown on textiles by a ‘dip-in and light-irradiation’ green chemical method, we obtained ZnONW@AgNP nanocomposites with small-size and uniform Ag NPs, which have shown superior performance for antibacterial applications. These new Ag/ZnO/textile antimicrobial composites can be used for wound dressings and medical textiles for topical and prophylactic antibacterial treatments, point-of-use water treatment to improve the cleanliness of water and antimicrobial air filters to prevent bioaerosols accumulating in ventilation, heating, and air-conditioning systems.

  4. Ag nanoparticle-ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach.

    PubMed

    Li, Zhou; Tang, Haoying; Yuan, Weiwei; Song, Wei; Niu, Yongshan; Yan, Ling; Yu, Min; Dai, Ming; Feng, Siyu; Wang, Menghang; Liu, Tengjiao; Jiang, Peng; Fan, Yubo; Wang, Zhong Lin

    2014-04-11

    A new approach for fabrication of a long-term and recoverable antimicrobial nanostructure/textile hybrid without increasing the antimicrobial resistance is demonstrated. Using in situ synthesized Ag nanoparticles (NPs) anchored on ZnO nanowires (NWs) grown on textiles by a 'dip-in and light-irradiation' green chemical method, we obtained ZnONW@AgNP nanocomposites with small-size and uniform Ag NPs, which have shown superior performance for antibacterial applications. These new Ag/ZnO/textile antimicrobial composites can be used for wound dressings and medical textiles for topical and prophylactic antibacterial treatments, point-of-use water treatment to improve the cleanliness of water and antimicrobial air filters to prevent bioaerosols accumulating in ventilation, heating, and air-conditioning systems. PMID:24622377

  5. The valence band structure of Ag{sub x}Rh{sub 1–x} alloy nanoparticles

    SciTech Connect

    Yang, Anli; Sakata, Osami; Kusada, Kohei; Kobayashi, Hirokazu; Yayama, Tomoe; Ishimoto, Takayoshi; Yoshikawa, Hideki; Koyama, Michihisa; and others

    2014-10-13

    The valence band (VB) structures of face-centered-cubic Ag-Rh alloy nanoparticles (NPs), which are known to have excellent hydrogen-storage properties, were investigated using bulk-sensitive hard x-ray photoelectron spectroscopy. The observed VB spectra profiles of the Ag-Rh alloy NPs do not resemble simple linear combinations of the VB spectra of Ag and Rh NPs. The observed VB hybridization was qualitatively reproduced via a first-principles calculation. The electronic structure of the Ag{sub 0.5}Rh{sub 0.5} alloy NPs near the Fermi edge was strikingly similar to that of Pd NPs, whose superior hydrogen-storage properties are well known.

  6. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Hahm, Eunil; Jeong, Daham; Cha, Myeong Geun; Choi, Jae Min; Pham, Xuan-Hung; Kim, Hyung-Mo; Kim, Hwanhee; Lee, Yoon-Sik; Jeong, Dae Hong; Jung, Seunho; Jun, Bong-Hyun

    2016-05-01

    We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs. The assembled Ag NPs on silica NPs were confirmed by TEM and the presence of β-CD dimer on Ag@SiO2 was confirmed by UV-vis and attenuated total reflection-Fourier transform infrared spectroscopy. The β-CD dimer@Ag@SiO2 NPs were used as SERS substrate for detecting perylene, a PAH, directly and in a wide linearity range of 10‑7 M to 10‑2 M with a low detection limit of 10‑8 M. Also, the β-CD dimer@Ag@SiO2 NPs exhibited 1000-fold greater sensitivity than Ag@SiO2 NPs in terms of their perylene detection limit. Furthermore, we demonstrated the possibility of detecting various PAH compounds using the β-CD dimer@Ag@SiO2 NPs as a multiplex detection tool. Various PAH compounds with the NPs exhibited their distinct SERS bands by the ratio of each PAHs. This approach of utilizing the assembled structure and the ligands to recognize target has potential for use in sensitive analytical sensors.

  7. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Hahm, Eunil; Jeong, Daham; Cha, Myeong Geun; Choi, Jae Min; Pham, Xuan-Hung; Kim, Hyung-Mo; Kim, Hwanhee; Lee, Yoon-Sik; Jeong, Dae Hong; Jung, Seunho; Jun, Bong-Hyun

    2016-01-01

    We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs. The assembled Ag NPs on silica NPs were confirmed by TEM and the presence of β-CD dimer on Ag@SiO2 was confirmed by UV-vis and attenuated total reflection-Fourier transform infrared spectroscopy. The β-CD dimer@Ag@SiO2 NPs were used as SERS substrate for detecting perylene, a PAH, directly and in a wide linearity range of 10(-7) M to 10(-2) M with a low detection limit of 10(-8) M. Also, the β-CD dimer@Ag@SiO2 NPs exhibited 1000-fold greater sensitivity than Ag@SiO2 NPs in terms of their perylene detection limit. Furthermore, we demonstrated the possibility of detecting various PAH compounds using the β-CD dimer@Ag@SiO2 NPs as a multiplex detection tool. Various PAH compounds with the NPs exhibited their distinct SERS bands by the ratio of each PAHs. This approach of utilizing the assembled structure and the ligands to recognize target has potential for use in sensitive analytical sensors. PMID:27184729

  8. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Hahm, Eunil; Jeong, Daham; Cha, Myeong Geun; Choi, Jae Min; Pham, Xuan-Hung; Kim, Hyung-Mo; Kim, Hwanhee; Lee, Yoon-Sik; Jeong, Dae Hong; Jung, Seunho; Jun, Bong-Hyun

    2016-01-01

    We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs. The assembled Ag NPs on silica NPs were confirmed by TEM and the presence of β-CD dimer on Ag@SiO2 was confirmed by UV-vis and attenuated total reflection-Fourier transform infrared spectroscopy. The β-CD dimer@Ag@SiO2 NPs were used as SERS substrate for detecting perylene, a PAH, directly and in a wide linearity range of 10−7 M to 10−2 M with a low detection limit of 10−8 M. Also, the β-CD dimer@Ag@SiO2 NPs exhibited 1000-fold greater sensitivity than Ag@SiO2 NPs in terms of their perylene detection limit. Furthermore, we demonstrated the possibility of detecting various PAH compounds using the β-CD dimer@Ag@SiO2 NPs as a multiplex detection tool. Various PAH compounds with the NPs exhibited their distinct SERS bands by the ratio of each PAHs. This approach of utilizing the assembled structure and the ligands to recognize target has potential for use in sensitive analytical sensors. PMID:27184729

  9. Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish.

    PubMed

    Osborne, Olivia J; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Yu, Xuechen; Wang, Xiang; Lin, Shuo; Xia, Tian; Nel, André E

    2015-10-27

    We studied adult zebrafish to determine whether the size of 20 and 110 nm citrate-coated silver nanoparticles (AgC NPs) differentially impact the gills and intestines, known target organs for Ag toxicity in fish. Following exposure for 4 h, 4 days, or 4 days plus a 7 day depuration period, we obtained different toxicokinetic profiles for different particle sizes, as determined by Ag content of the tissues. Ionic AgNO3 served as a positive control. The gills showed a significantly higher Ag content for the 20 nm particles at 4 h and 4 days than the 110 nm particles, while the values were more similar in the intestines. Both particle types were retained in the intestines even after depuration. These toxicokinetics were accompanied by striking size-dependent differences in the ultrastructural features and histopathology in the target organs in response to the particulates. Ag staining of the gills and intestines confirmed prominent Ag deposition in the basolateral membranes for the 20 nm but not for the 110 nm particles. Furthermore, it was possible to link the site of tissue deposition to disruption of the Na(+)/K(+) ion channel, which is also localized to the basolateral membrane. This was confirmed by a reduction in ATPase activity and immunohistochemical detection of the α subunit of this channel in both target organs, with the 20 nm particles causing significantly higher inhibition and disruption than the larger size particles or AgNO3. These results demonstrate the importance of particle size in determining the hazardous impact of AgNPs in the gills and intestines of adult zebrafish. PMID:26327297

  10. Aggregation of Congo red with surfactants and Ag-nanoparticles in an aqueous solution

    NASA Astrophysics Data System (ADS)

    AL-Thabaiti, Shaeel Ahmed; Aazam, Elham Shafik; Khan, Zaheer; Bashir, Ommer

    2016-03-01

    Self aggregation, sorption, and interaction of Congo red, with cetyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS), Ag+ ions and silver nanoparticles have been determined spectrophotometrically. Congo red self-aggregation was identified from UV-visible spectra due to the shrinkage in an absorption band at 495 nm. The shape of the absorbance spectrum changed entirely with increasing [Congo red] but wavelength maxima remain unchanged. The molar absorptivity was found to be 9804 mol- 1 dm3 cm- 1 at 495 nm. Absorption spectra of Congo red with Ag+ ions show an isosbestic point. The complex formation constant and difference in absorption coefficients were found to be 8.5 × 104 mol- 1 dm3 and 11,764 mol- 1 dm3 cm- 1, respectively. Silver nano-particles could not be used for the catalytic degradation of Congo red because it results in the formation of a strong complex with them. Sodium dodecylsulfate did not show any significant interaction with this dye. Congo red was also used as a probe to determine the critical micellar concentration of CTAB.

  11. Coating geometry of Ag, Ti, Co, Ni, and Al nanoparticles on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Stranges, F.; Xu, F.

    2015-04-01

    We present a morphology study on laser ablation produced metal nanoparticles (NPs) deposited on carbon nanotube (CNT) substrates. We analyzed the coating geometry and topography by processing AFM and SEM images. Our results show that Ag NPs aggregate together to form large agglomerates, that Ti NPs are well dispersed on the substrate surface forming a quasi-continuous layer, and that Co, Ni, and Al NPs coat quite uniformly CNTs and locally grow in a layer like fashion. We interpret the coating and clustering geometries in terms of cohesion, surface, and interfacial energies and diffusion barriers. Fractal analysis of composites morphology suggests the formation of structures with a smoother topography relative to pure carbon nanotubes for reactive metal nanoparticles.

  12. A Metal Bump Bonding Method Using Ag Nanoparticles as Intermediate Layer

    NASA Astrophysics Data System (ADS)

    Fu, Weixin; Nimura, Masatsugu; Kasahara, Takashi; Mimatsu, Hayata; Okada, Akiko; Shoji, Shuichi; Ishizuka, Shugo; Mizuno, Jun

    2015-11-01

    The future development of low-temperature and low-pressure bonding technology is necessary for fine-pitch bump application. We propose a bump structure using Ag nanoparticles as an intermediate layer coated on a fine-pitch Cu pillar bump. The intermediate layer is prepared using an efficient and cost-saving squeegee-coating method followed by a 100°C baking process. This bump structure can be easily flattened before the bonding process, and the low-temperature sinterability of the nanoparticles is retained. The bonding experiment was successfully performed at 250°C and 39.8 MPa and the bonding strength was comparable to that achieved via other bonding technology utilizing metal particles or porous material as bump materials.

  13. Synthesis of rattle-type Ag@Al2O3 nanostructure by laser-induced heating of Ag and Al nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Rina; Soni, R. K.

    2015-10-01

    A simple and flexible method has been presented for the fabrication of rattle-type Ag@Al2O3 nanostructures in water and polyvinyl pyrrolidone polymer solution based on laser-induced heating of mixture of silver (Ag) and aluminium (Al) nanoparticles by 532-nm laser. Silver and aluminium nanoparticles were prepared by pulsed laser ablation in liquid using same laser wavelength. The transmission electron micrographs revealed morphological changes from sintered-/intermediate-type structure in water medium and jointed structure (heterostructures) in polymer solution to rattle-type structure with changing irradiation time. At longer irradiation time, the Kirkendall effect becomes dominant due to diffusion rate mismatch between the two metals at the interface and facilitates the formation of porous alumina shell over silver core. The morphology and chemical composition of the nanostructures were characterized by transmission electron micrograph, high-resolution transmission electron micrograph and energy-dispersive X-ray analysis. The melting response of alumina (Al2O3), aluminium and silver nanoparticles with 532-nm laser wavelength provides novel pathway for rattle-type formation.

  14. Ultrafine Au and Ag Nanoparticles Synthesized from Self-Assembled Peptide Fibers and Their Excellent Catalytic Activity.

    PubMed

    Xu, Wenlong; Hong, Yue; Hu, Yuanyuan; Hao, Jingcheng; Song, Aixin

    2016-07-18

    The self-assembly of an amphiphilic peptide molecule to form nanofibers facilitated by Ag(+) ions was investigated. Ultrafine AgNPs (NPs=nanoparticles) with an average size of 1.67 nm were synthesized in situ along the fibers due to the weak reducibility of the -SH group on the peptide molecule. By adding NaBH4 to the peptide solution, ultrafine AgNPs and AuNPs were synthesized with an average size of 1.35 and 1.18 nm, respectively. The AuNPs, AgNPs, and AgNPs/nanofibers all exhibited excellent catalytic activity toward the reduction of 4-nitrophenol, with turnover frequency (TOF) values of 720, 188, and 96 h(-1) , respectively. Three dyes were selected for catalytic degradation by the prepared nanoparticles and the nanoparticles showed selective catalysis activity toward the different dyes. It was a surprising discovery that the ultrafine AuNPs in this work had an extremely high catalytic activity toward methylene blue, with a reaction rate constant of 0.21 s(-1) and a TOF value of 1899 h(-1) . PMID:27028550

  15. Synthesis of reduced graphene oxide and enhancement of its electrical and optical properties by attaching Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Khan, Sunny; Ali, Javid; Harsh; Husain, M.; Zulfequar, M.

    2016-07-01

    Graphene has attracted the attention of the scientists and researchers because of its peculiar properties. Because of various unique properties, graphene can be used in sensing device applications, solar cells and liquid crystal display devices etc. In this research paper, we present a chemical route towards bulk production of r-GO (reduced graphene oxide). We have employed a modified method to achieve better results which is often termed as modified Hummer's and Offeman method. It is modified in terms of filtration technique. We have also attached silver nanoparticles (Ag-NP) to as synthesised r-GO. After successful growth, silver nanoparticles have been attached to r-GO by suitable treatment with AgNO3 (aq.) N/50 solution. The as grown samples were characterised by FESEM, Raman Spectroscopy and EDS to make sure that r-GO and r-GO-Ag-NP have been successfully synthesised. The electrical and optical studies of the as grown samples were performed by dc conductivity measurements and UV visible spectroscopy. The conductivity was found to have increased with attachment of Ag-NP. The optical transmittance also improved to 90% as against 70% before Ag-NP attachment. The reduced graphene oxide attached with silver nanoparticles could find promising applications in synthesis of transparent electrode materials and optoelectronic devices.

  16. State-resolved investigation of the photodesorption dynamics of NO from (NO){sub 2} on Ag nanoparticles of various sizes in comparison with Ag(111)

    SciTech Connect

    Mulugeta, Daniel; Watanabe, Kazuo; Menzel, Dietrich; Freund, Hans-Joachim

    2011-04-28

    The translational and internal state energy distributions of NO desorbed by laser light (2.3, 3.5, and 4.7 eV) from adsorbed (NO){sub 2} on Ag nanoparticles (NPs) (mean diameters, D= 4, 8, and 11 nm) have been investigated by the (1 + 1) resonance enhanced multiphoton ionization technique. For comparison, the same experiments have also been carried out on Ag(111). Detected NO molecules are hyperthermally fast and both rotationally and vibrationally hot, with temperatures well above the sample temperature. The translational and rotational excitations are positively correlated, while the vibrational excitation is decoupled from the other two degrees of freedom. Most of the energy content of the desorbing NO is contained in its translation. The translational and internal energy distributions of NO molecules photodesorbed by 2.3, 3.5, and in part also 4.7 eV light are approximately constant as a function of Ag NPs sizes, and they are the same on Ag(111). This suggests that for these excitations a common mechanism is operative on the bulk single crystal and on NPs, independent of the size regime. Notably, despite the strongly enhanced cross section seen on NP at 3.5 eV excitation energy in p-polarization, i.e., in resonance with the plasmon excitation, the mechanism is also unchanged. At 4.7 eV and for small particles, however, an additional desorption channel is observed which results in desorbates with higher energies in all degrees of freedom. The results are well compatible with our earlier measurements of size-dependent translational energy distributions. We suggest that the broadly constant mechanism over most of the investigated range runs via a transient negative ion state, while at high excitation energy and for small particles the transient state is suggested to be a positive ion.

  17. Synthesis of ZnS:Ag,Co water-soluble blue afterglow nanoparticles and application in photodynamic activation.

    PubMed

    Ma, Lun; Zou, Xiaoju; Hossu, Marius; Chen, Wei

    2016-08-01

    Silver and cobalt co-doped ZnS (ZnS:Ag,Co) water-soluble afterglow nanoparticles were synthesized using a wet chemistry method followed by aging at room temperature. The nanoparticles had a cubic zinc blende structure with average sizes of approximately 4 nm and emitted a blue fluorescence emission centered at 441 nm due to radiative transitions from surface defects to Ag(+) luminescent centers. Intense afterglow emission peaking at 475 nm from the obtained nanoparticles was observed and was red-shifted compared to the fluorescence emission peak. X-ray photoelectron spectroscopy revealed a large increase of O/S ratio, indicating a surface oxidation process during aging. The S vacancies produced accordingly may contribute to form more electron traps and enhance afterglow. The ZnS:Ag,Co afterglow nanoparticles have a very low dark-toxicity and are applied as a light source for photodynamic therapy activation by conjugating with protoporphyrin together. Our preliminary study has shown that the ZnS:Ag,Co afterglow nanoparticles can significantly reduce the x-ray dosage used in activation and thus may be a very promising candidate for future x-ray excited photodynamic therapy in deep cancer treatment. PMID:27345100

  18. Synthesis of ZnS:Ag,Co water-soluble blue afterglow nanoparticles and application in photodynamic activation

    NASA Astrophysics Data System (ADS)

    Ma, Lun; Zou, Xiaoju; Hossu, Marius; Chen, Wei

    2016-08-01

    Silver and cobalt co-doped ZnS (ZnS:Ag,Co) water-soluble afterglow nanoparticles were synthesized using a wet chemistry method followed by aging at room temperature. The nanoparticles had a cubic zinc blende structure with average sizes of approximately 4 nm and emitted a blue fluorescence emission centered at 441 nm due to radiative transitions from surface defects to Ag+ luminescent centers. Intense afterglow emission peaking at 475 nm from the obtained nanoparticles was observed and was red-shifted compared to the fluorescence emission peak. X-ray photoelectron spectroscopy revealed a large increase of O/S ratio, indicating a surface oxidation process during aging. The S vacancies produced accordingly may contribute to form more electron traps and enhance afterglow. The ZnS:Ag,Co afterglow nanoparticles have a very low dark-toxicity and are applied as a light source for photodynamic therapy activation by conjugating with protoporphyrin together. Our preliminary study has shown that the ZnS:Ag,Co afterglow nanoparticles can significantly reduce the x-ray dosage used in activation and thus may be a very promising candidate for future x-ray excited photodynamic therapy in deep cancer treatment.

  19. Spectral anion sensing and γ-radiation induced magnetic modifications of polyphenol generated Ag-nanoparticles

    NASA Astrophysics Data System (ADS)

    Ansari, Zarina; Dhara, Susmita; Bandyopadhyay, Bilwadal; Saha, Abhijit; Sen, Kamalika

    2016-03-01

    A fast one step bio-synthesis for in situ preparation of silver nanoparticles is proposed. The method involves reduction of AgNO3 with an aqueous extract of peanut skin, which is a good source of polyphenols. The silver nanoparticles thus synthesized were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis absorption spectroscopy, Fourier Transform infrared (FTIR) spectroscopy and magnetic measurements. Effect of low dose γ irradiation during the synthesis was studied and their physico-chemical properties were compared with those produced without irradiation. On the contrary to the diamagnetic behavior of bulk silver, the silver nanoparticles thus prepared show a significant ferromagnetic moment component. Variable time exposure to γ-irradiation results in an exponential decay of ferromagnetic component. A freshly prepared solution of silver nanoparticles shows selective spectral changes towards iodide ions at trace concentration (below 50 μM) among a series of 16 other competing anions. The prepared nanoparticles are therefore suitable for anion sensing application.

  20. Toward revealing the controversy of bacterial biosynthesis versus bactericidal properties of silver nanoparticles (AgNPs): bacteria and other microorganisms do not per se viably synthesize AgNPs.

    PubMed

    Morsy, Fatthy Mohamed

    2015-06-01

    In the last two decades, a large number of literature had focused on the biosynthesis of silver nanoparticles (AgNPs) from silver ions by bacteria and other microorganisms. This study infers that bacteria and other microorganisms do not per se synthesize AgNPs. All tested auto- and heterotrophic microorganisms in this study were killed by silver ions and could not as viable cells produce AgNPs. Microbial cell viability represented in colony-forming units and metabolic viability represented in aerobic respiration in all investigated microorganisms as well as photosynthesis in photoautotrophic microorganisms ceased by silver ions too early before AgNPs formation. The time required for AgNPs synthesis inversely related to the incubation temperature of the investigated microorganisms with silver ions where it requires only few minutes for nanoparticles formation at high temperature or autoclaving. The minimum inhibitory and minimum bactericidal and fungicidal concentrations of silver ions were significantly lower than AgNPs, indicating that silver ions are more efficient antimicrobial. The results presented in this study indicate that formation of AgNPs by eubacteria, cyanobacteria and fungi is not a vitally regulated cellular metabolic process and the mechanism occurs via bioreduction of silver ions to nanoparticles by organics released from the dead cells. PMID:25724923

  1. Synthesis of Ag/CNT hybrid nanoparticles and fabrication of their nylon-6 polymer nanocomposite fibers for antimicrobial applications.

    PubMed

    Rangari, Vijaya K; Mohammad, Ghouse M; Jeelani, Shaik; Hundley, Angel; Vig, Komal; Singh, Shree Ram; Pillai, Shreekumar

    2010-03-01

    Ag-coated CNTs hybrid nanoparticles (Ag/CNTs) were prepared by ultrasonic irradiation of dimethylformamide (DMF) and silver (I) acetate precursors in the presence of CNTs. The morphology of Ag/CNTs was characterized using x-ray diffraction and transmission electron microscopy (TEM) techniques. The Nylon-6 powder and 1 wt% Ag/CNTs mixture was dispersed uniformly using a noncontact spinning technique. The dried mixture was melted in a single screw extrusion machine and then extruded through an orifice. Extruded filaments were later stretched and stabilized by sequentially passing them through a set of tension adjusters and a secondary heater. The Nylon-6/Ag/CNT hybrid polymer nanocomposite (HPNC) fibers, which were of approximately 80 microm size, were tested for their tensile properties. The failure stress and modulus of the extruded HPNC fibers (doped with 1% Ag/CNTs) was about 72.19 % and 342.62% higher than the neat extruded Nylon-6 fiber, respectively. DSC results indicated an increase in the thermal stability and crystallization for HPNC fibers. The antibacterial activity of the Ag-coated CNTs, commercial Ag, neat Nylon-6 and plain CNTs were evaluated. Ag-coated CNTs at 25 microg demonstrated good antimicrobial activity against four common bacterial pathogens as tested by the Kirby-Bauer assay. The mean diameters of the zones of inhibition were 27.9 +/- 6.72 mm, 19.4 +/- 3.64 mm, 21.9 +/- 4.33 mm, and 24.1 +/- 4.14 mm, respectively, for Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli and Salmonella enterica serovar Typhimurium. By comparison, those obtained using the broad spectrum antibiotic amoxicillin-clavulanic acid were 37.7 +/- 2.13 mm, 28.6 +/- 4.27 mm, 22.6 +/- 1.27 mm, and 27.0 +/- 1.41 mm, respectively, for the same strains. The zones of inhibition obtained for Nylon-6 Ag-coated CNT powder at 25 microg were also high, ranging from 15.2 to 25.3 mm in contrast to commercial silver or neat Nylon-6, which did not inhibit the bacterial

  2. Synthesis of Ag/CNT hybrid nanoparticles and fabrication of their Nylon-6 polymer nanocomposite fibers for antimicrobial applications

    NASA Astrophysics Data System (ADS)

    Rangari, Vijaya K.; Mohammad, Ghouse M.; Jeelani, Shaik; Hundley, Angel; Vig, Komal; Ram Singh, Shree; Pillai, Shreekumar

    2010-03-01

    Ag-coated CNTs hybrid nanoparticles (Ag/CNTs) were prepared by ultrasonic irradiation of dimethylformamide (DMF) and silver (I) acetate precursors in the presence of CNTs. The morphology of Ag/CNTs was characterized using x-ray diffraction and transmission electron microscopy (TEM) techniques. The Nylon-6 powder and 1 wt% Ag/CNTs mixture was dispersed uniformly using a noncontact spinning technique. The dried mixture was melted in a single screw extrusion machine and then extruded through an orifice. Extruded filaments were later stretched and stabilized by sequentially passing them through a set of tension adjusters and a secondary heater. The Nylon-6/Ag/CNT hybrid polymer nanocomposite (HPNC) fibers, which were of ~ 80 µm size, were tested for their tensile properties. The failure stress and modulus of the extruded HPNC fibers (doped with 1% Ag/CNTs) was about 72.19 % and 342.62% higher than the neat extruded Nylon-6 fiber, respectively. DSC results indicated an increase in the thermal stability and crystallization for HPNC fibers. The antibacterial activity of the Ag-coated CNTs, commercial Ag, neat Nylon-6 and plain CNTs were evaluated. Ag-coated CNTs at 25 µg demonstrated good antimicrobial activity against four common bacterial pathogens as tested by the Kirby-Bauer assay. The mean diameters of the zones of inhibition were 27.9 ± 6.72 mm, 19.4 ± 3.64 mm, 21.9 ± 4.33 mm, and 24.1 ± 4.14 mm, respectively, for Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli and Salmonella enterica serovar Typhimurium. By comparison, those obtained using the broad spectrum antibiotic amoxicillin-clavulanic acid were 37.7 ± 2.13 mm, 28.6 ± 4.27 mm, 22.6 ± 1.27 mm, and 27.0 ± 1.41 mm, respectively, for the same strains. The zones of inhibition obtained for Nylon-6 Ag-coated CNT powder at 25 µg were also high, ranging from 15.2 to 25.3 mm in contrast to commercial silver or neat Nylon-6, which did not inhibit the bacterial strains tested. Further, the

  3. One-pot synthesis of Ag nanoparticle-coated Pb-based glass frit used in crystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Gan, Weiping; Tang, Hongbo; Li, Yingfen; Yang, Chao

    2015-03-01

    Deposition of Ag nanoparticles onto the surface of commercial Pb-based glass frit was conducted via a novel and facile one-pot procedure—a modified polyol process. The procedure included two steps: a 5-min pretreatment of the glass frit at 25 °C in a sonication bath and a 1-h electroless plating at 75 °C in a water bath, which only involved AgNO3 and ethylene glycol but without stabilizing agent. The silver-coated glass frit particles were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma emission spectrometer and energy dispersive spectroscopy. It was found that the glass frit particles were homogeneously coated with dense crystalline Ag nanoparticles with an average diameter of 15 nm on the surfaces. Electrical performance of the solar cells was improved after the deposition.

  4. Low cost, ultra-thin films of reduced graphene oxide-Ag nanoparticle hybrids as SERS based excellent dye sensors

    NASA Astrophysics Data System (ADS)

    Kavitha, C.; Bramhaiah, K.; John, Neena S.; Ramachandran, B. E.

    2015-06-01

    We have employed low cost-thin films of reduced graphene oxide (rGO) with Ag nanoparticle hybrids as surface enhanced Raman scattering (SERS) substrates. The hybrids are prepared by a simple one step liquid/liquid interface method. These hybrid films offer SERS hotspots to detect Rhodamine 6G (R6G) molecules till 1 nM concentration with 1 second accumulation time. The enhancement factor is of the order 108. This excellent SERS enhancement is due to coupled mechanism of surface plasmon, charge transfer and molecular resonances of Ag and R6G along with the synergic effect contributed by rGO and Ag nanoparticles in the hybrid thin film.

  5. The effect of Ni pre-implantation on surface morphology and optical absorption properties of Ag nanoparticles embedded in SiO2

    NASA Astrophysics Data System (ADS)

    Shen, Yanyan; Qi, Ting; Qiao, Yu; Yu, Shengwang; Hei, Hongjun; He, Zhiyong

    2016-02-01

    The effect of Ni ion fluence on Ag nucleation and particle growth was investigated by sequentially implantation of 60 keV Ni ions at fluences of 1 × 1016, 5 × 1016, 1 × 1017 ions/cm2 and 70 keV Ag ions at a fluence of 5 × 1016 ions/cm2. Due to the modification of the deposition and accumulation process of Ag implants caused by Ni pre-implantation, the surface morphology, structures, and optical absorption properties of the Ag nanoparticles (NPs) depends strongly on the Ni fluences. UV-vis absorption spectroscopy study showed that the introducing of Ni atoms lead to intensity decrease in the Ag SPR band. Remarkable local concentration increase of Ag profiles appeared for the sample pre-implanted by Ni ions of 5.0 × 1016 ions/cm2. In particular, the AgNi alloy NPs with dual absorption peaks centered at 406 nm and 563 nm have been formed after 600 °C annealing in Ar atmosphere. However, at a low fluence of 1.0 × 1016 ions/cm2, only small increase of the local Ag concentration than the Ag ions singly implanted sample can be observed. At a high fluence of 1.0 × 1017 ions/cm2, lots Ag atoms are trapped close to the surface, which result in heavy sputtering loss of Ag atoms and the sublimation of Ag atoms after 600 °C annealing.

  6. Co-assembled thin films of Ag nanowires and functional nanoparticles at the liquid-liquid interface by shaking

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-Yi; Liu, Jian-Wei; Zhang, Chuan-Ling; Yu, Shu-Hong

    2013-05-01

    In this paper, we report the fabrication of co-assembled thin films composed of silver nanowires (NWs) and Au nanoparticles (NPs) at the liquid-liquid interface (water-chloroform) by vigorous shaking. The composition of co-assembled thin films can be controlled by adjusting the concentration of the nanosized building blocks. As a versatile interfacial assembly method, other nanoparticles such as Ag2S and Fe3O4 NPs can also be co-assembled with Ag NWs using the same procedure. Meanwhile, the co-assembly state of the obtained Au NPs and Ag NWs makes a significant contribution to the high sensitivity of surface-enhanced Raman scattering (SERS) to model the molecule 3,3'-diethylthiatricarbocyanine iodide (DTTCI). The SERS intensities show high dependence on the molar ratio of Au NPs and Ag NWs and the layer number of the co-assembled thin films. This shaking-assisted liquid-liquid assembly system has been proved to be a facile way for co-assembling nanowires and nanoparticles, and will pave a way for further applications of the macroscopic co-assemblies with novel functionalities.In this paper, we report the fabrication of co-assembled thin films composed of silver nanowires (NWs) and Au nanoparticles (NPs) at the liquid-liquid interface (water-chloroform) by vigorous shaking. The composition of co-assembled thin films can be controlled by adjusting the concentration of the nanosized building blocks. As a versatile interfacial assembly method, other nanoparticles such as Ag2S and Fe3O4 NPs can also be co-assembled with Ag NWs using the same procedure. Meanwhile, the co-assembly state of the obtained Au NPs and Ag NWs makes a significant contribution to the high sensitivity of surface-enhanced Raman scattering (SERS) to model the molecule 3,3'-diethylthiatricarbocyanine iodide (DTTCI). The SERS intensities show high dependence on the molar ratio of Au NPs and Ag NWs and the layer number of the co-assembled thin films. This shaking-assisted liquid-liquid assembly system

  7. Plasmonic properties of Ag nanoparticles embedded in GeO2-SiO2 matrix by atom beam sputtering.

    PubMed

    Mohapatra, Satyabrata

    2016-02-01

    Nanocomposite thin films containing Ag nanoparticles embedded in the GeO2-SiO2 matrix were synthesized by the atom beam co-sputtering technique. The structural, optical and plasmonic properties and the chemical composition of the nanocomposite thin films were studied by transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX), UV-visible absorption spectroscopy and X-ray photoelectron spectroscopy (XPS). UV-visible absorption studies on Ag-SiO2 nanocomposites revealed the presence of a strong localized surface plasmon resonance (LSPR) peak characteristic of Ag nanoparticles at 413 nm, which showed a blue shift of 26 nm (413 to 387 nm) along with a significant broadening and drastic decrease in intensity with the incorporation of 16 at% of Ge into the SiO2 matrix. TEM studies on Ag-GeO2-SiO2 nanocomposite thin films confirmed the presence of Ag nanoparticles with an average size of 3.8 nm in addition to their aggregates with an average size of 16.2 nm. Thermal annealing in air resulted in strong enhancement in the intensity of the LSPR peak, which showed a regular red shift of 51 nm (from 387 to 438 nm) with the increase in annealing temperature up to 500 °C. XPS studies showed that annealing in air resulted in oxidation of excess Ge atoms in the nanocomposite into GeO2. Our work demonstrates the possibility of controllably tuning the LSPR of Ag nanoparticles embedded in the GeO2-SiO2 matrix by single-step thermal annealing, which is interesting for optical applications. PMID:26766559

  8. Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Daima, Hemant K.; Selvakannan, P. R.; Kandjani, Ahmad E.; Shukla, Ravi; Bhargava, Suresh K.; Bansal, Vipul

    2013-12-01

    We illustrate a new strategy to improve the antibacterial potential of silver nanoparticles (AgNPs) by their surface modification with the surface corona of biologically active polyoxometalates (POMs). The stable POM surface corona was achieved by utilising zwitterionic tyrosine amino acid as a pH-switchable reducing and capping agent of AgNPs. The general applicability of this approach was demonstrated by developing surface coronas of phosphotungstic acid (PTA) and phosphomolybdic acid (PMA) around AgNPs. Our investigations on Gram negative bacterium Escherichia coli demonstrate that in conjugation with AgNPs, the surface corona of POMs enhances the physical damage to the bacterial cells due to synergistic antibacterial action of AgNPs and POMs, and the ability of tyrosine-reduced AgNPs (AgNPsY) to act as an excellent carrier and stabiliser for the POMs. The further extension of this study towards Gram positive bacterium Staphylococcus albus showed a similar toxicity pattern, whereas these nanomaterials were found to be biocompatible for PC3 epithelial mammalian cells, suggesting the potential of these materials towards specific antimicrobial targeting for topical wound healing applications. The outcomes of this work show that facile tailorability of nanostructured surfaces may play a considerable role in controlling the biological activities of different nanomaterials.We illustrate a new strategy to improve the antibacterial potential of silver nanoparticles (AgNPs) by their surface modification with the surface corona of biologically active polyoxometalates (POMs). The stable POM surface corona was achieved by utilising zwitterionic tyrosine amino acid as a pH-switchable reducing and capping agent of AgNPs. The general applicability of this approach was demonstrated by developing surface coronas of phosphotungstic acid (PTA) and phosphomolybdic acid (PMA) around AgNPs. Our investigations on Gram negative bacterium Escherichia coli demonstrate that in conjugation

  9. Surface modification of additive manufactured Ti6Al4V alloy with Ag nanoparticles: wettability and surface morphology study

    NASA Astrophysics Data System (ADS)

    Chudinova, E.; Surmeneva, M.; Koptioug, A.; Sharonova, A.; Loza, K.; Surmenev, R.

    2016-02-01

    In this work, the use of electrophoretic deposition to modify the surface of Ti6Al4V alloy fabricated via additive manufacturing technology is reported. Poly(vinylpyrrolidone) (PVP)-stabilized silver nanoparticles (AgNPs) had a spherical shape with a diameter of the metallic core of 100±20 nm and ζ -potential -15 mV. The AgNPs- coated Ti6Al4V alloy was studied in respect with its chemical composition and surface morphology, water contact angle, hysteresis, and surface free energy. The results of SEM microphotography analysis showed that the AgNPs were homogeneously distributed over the surface. Hysteresis and water contact angle measurements revealed the effect of the deposited AgNPs layer, namely an increased water contact angle and decreased contact angle hysteresis. However, the average water contact angle was 125° for PVP-stabilized-AgNPs-coated surface, whereas ethylene glycol gave the average contact angle of 17°. A higher surface energy is observed for AgNPs-coated Ti6Al4V surface (70.17 mN/m) compared with the uncoated surface (49.07 mN/m).

  10. Characteristics of localized surface plasmons excited on mixed monolayers composed of self-assembled Ag and Au nanoparticles.

    PubMed

    Tanaka, Daisuke; Imazu, Keisuke; Sung, Jinwoo; Park, Cheolmin; Okamoto, Koichi; Tamada, Kaoru

    2015-10-01

    The fundamental characteristics of localized surface plasmon resonance (LSPR) excited on mixed monolayers composed of self-assembled Ag and Au nanoparticles (AgNPs and AuNPs, respectively) were investigated. Mixed monolayered films were fabricated at the air-water interface at different mixing ratios. The films retained their phase-segregated morphologies in which AuNPs formed several 10 to 100 nm island domains in a homogeneous AgNP matrix phase. The LSPR bands originating from the self-assembled domains shifted to longer wavelengths as the domain size increased, as predicted by a finite-difference time-domain (FDTD) simulation. The FDTD simulation also revealed that even an alternating-lattice-structured two-dimensional (2D) AgNP/AuNP film retained two isolated LSPR bands, revealing that the plasmon resonances excited on each particle did not couple even in a continuous 2D sheet, unlike in the homologous NP system. The fluorescence quenching test of Cy3 and Cy5 dyes confirmed that the independent functions of AuNPs and AgNPs remained in the mixed films, whereas the AuNPs exhibited significantly higher quenching efficiency for the Cy3 dye compared with AgNPs due to the overlap of the excitation/emission bands of the dyes with the AuNP LSPR band. Various applications can be considered using this nanoheterostructured plasmonic assembly to excite spatially designed, high-density LSPR on macroscopic surfaces. PMID:26332039

  11. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hoon; Lee, Seung Woo; Jang, Jaw-Won

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). The photocurrent density is remarkably improved, up to 25.3 times, by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ~Vm) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation. Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. 2013K1A3A1A32035429 and 2015R1A1A1A05027681).

  12. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties.

    PubMed

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-01-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells. PMID:25852401

  13. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions

    PubMed Central

    Chen, Dong; Li, Chengyin; Liu, Hui; Ye, Feng; Yang, Jun

    2015-01-01

    Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shells made of Ag/Pd alloy by galvanic replacement reaction between the Ag shells and Pd2+ precursors. Subsequently, the Ag component is removed from the alloy shell using saturated NaCl solution to form core-shell Au@Pd nanoparticles with an Au core and a Pd shell. In comparison with the core-shell Au@Pd nanoparticles upon directly depositing Pd shell on the Au seeds and commercial Pd/C catalysts, the core-shell Au@Pd nanoparticles via their core-shell Au@Ag/Pd templates display superior activity and durability in catalyzing oxygen reduction reaction, mainly due to the larger lattice tensile effect in Pd shell induced by the Au core and Ag removal. PMID:26144550

  14. Self-assembled Ag nanoparticle network passivated by a nano-sized ZnO layer for transparent and flexible film heaters

    SciTech Connect

    Seo, Ki-Won; Kim, Han-Ki; Kim, Min-Yi; Chang, Hyo-Sik

    2015-12-15

    We investigated a self-assembled Ag nanoparticle network electrode passivated by a nano-sized ZnO layer for use in high-performance transparent and flexible film heaters (TFFHs). The low temperature atomic layer deposition of a nano-sized ZnO layer effectively filled the uncovered area of Ag network and improved the current spreading in the self-assembled Ag network without a change in the sheet resistance and optical transmittance as well as mechanical flexibility. The time-temperature profiles and heat distribution analysis demonstrate that the performance of the TFTH with the ZnO/Ag network is superior to that of a TFFH with Ag nanowire electrodes. In addition, the TFTHs with ZnO/Ag network exhibited better stability than the TFFH with a bare Ag network due to the effective current spreading through the nano-sized ZnO layer.

  15. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens.

    PubMed

    Boxi, Siddhartha Sankar; Mukherjee, Khushi; Paria, Santanu

    2016-02-26

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated (•)OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling. PMID:26808118

  16. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens

    NASA Astrophysics Data System (ADS)

    Sankar Boxi, Siddhartha; Mukherjee, Khushi; Paria, Santanu

    2016-02-01

    Chemical-based pesticides are widely used in agriculture to protect crops from insect infestation and diseases. However, the excessive use of highly toxic pesticides causes several human health (neurological, tumor, cancer) and environmental problems. Therefore nanoparticle-based green pesticides have become of special importance in recent years. The antifungal activities of pure and Ag doped (solid and hollow) TiO2 nanoparticles are studied against two potent phytopathogens, Fusarium solani (which causes Fusarium wilt disease in potato, tomato, etc) and Venturia inaequalis (which causes apple scab disease) and it is found that hollow nanoparticles are more effective than the other two. The antifungal activities of the nanoparticles were further enhanced against these two phytopathogens under visible light exposure. The fungicidal effect of the nanoparticles depends on different parameters, such as particle concentration and the intensity of visible light. The minimum inhibitory dose of the nanoparticles for V. inaequalis and F. solani are 0.75 and 0.43 mg/plate. The presence of Ag as a dopant helps in the formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, which leads to cell damage. During photocatalysis generated •OH radicals loosen the cell wall structure and this finally leads to cell death. The mechanisms of the fungicidal effect of nanoparticles against these two phytopathogens are supported by biuret and triphenyl tetrazolium chloride analyses and field emission electron microscopy. Apart from the fungicidal effect, at a very low dose (0.015 mg/plate) the nanoparticles are successful in arresting production of toxic napthoquinone pigment for F. solani which is related to the fungal pathogenecity. The nanoparticles are found to be effective in protecting potatoes affected by F. solani or other fungi from spoiling.

  17. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2015-03-01

    The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles.The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For

  18. Metal-Semiconductor Hybrid Aerogels: Evolution of Optoelectronic Properties in a Low-Dimensional CdSe/Ag Nanoparticle Assembly.

    PubMed

    Nahar, Lamia; Esteves, Richard J Alan; Hafiz, Shopan; Özgür, Ümit; Arachchige, Indika U

    2015-10-27

    Hybrid nanomaterials composed of metal-semiconductor components exhibit unique properties in comparison to their individual counterparts, making them of great interest for optoelectronic applications. Theoretical and experimental studies suggest that interfacial interactions of individual components are of paramount importance to produce hybrid electronic states. The direct cross-linking of nanoparticles (NPs) via controlled removal of the surfactant ligands provides a route to tune interfacial interactions in a manner that has not been thoroughly investigated. Herein, we report the synthesis of CdSe/Ag heteronanostructures (aerogels) via oxidation induced self-assembly of thiol-coated NPs and the evolution of optical properties as a function of composition. Three hybrid systems were investigated, where the first and second excitonic energies of CdSe were matched with plasmonic energy of Au or Ag NPs and Ag hollow NPs. Physical characterization of the aerogels suggests the presence of an interconnected network of hexagonal CdSe and cubic Ag NPs. The optical properties of hybrids were systematically examined through UV-vis, photoluminescence (PL), and time-resolved (TR) PL spectroscopic studies that indicate the generation of alternate radiative decay pathways. A new emission (640 nm) from CdSe/Ag aerogels emerged at Ag loading as low as 0.27%, whereas absorption band tailing and PL quenching effects were observed at higher Ag and Au loading, respectively. The TRPL decay time of the new emission (∼600 ns) is markedly different from those of the band-edge (1.83 ± 0.03 ns) and trap-state (1190 ± 120 ns) emission maxima of phase pure CdSe, supporting the existence of alternate radiative relaxation pathways in sol-gel derived CdSe/Ag hybrids. PMID:26389642

  19. Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions.

    PubMed

    Tan, Siliu; Erol, Melek; Attygalle, Athula; Du, Henry; Sukhishvili, Svetlana

    2007-09-11

    Branched polyethyleneimine (BPEI) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were used collaboratively to reduce silver nitrate under UV irradiation for the synthesis of positively charged silver nanoparticles. The effects of molar ratio of the ingredients and the molecular weight of BPEI on the particle size and distribution were investigated. The mechanism for the reduction of Ag+ ions in the BPEI/HEPES mixtures entails oxidative cleavage of BPEI chains that results in the formation of positively charged BPEI fragments enriched with amide groups as well as in the production of formaldehyde, which serves as a reducing agent for Ag+ ions. The resultant silver nanoparticles are positively charged due to protonation of surface amino groups. Importantly, these positively charged Ag nanoparticles demonstrate superior SERS activity over negatively charged citrate reduced Ag nanoparticles for the detection of thiocyanate and perchlorate ions; therefore, they are promising candidates for sensing and detection of a variety of negatively charged analytes in aqueous solutions using surface-enhanced Raman spectroscopy (SERS). PMID:17705409

  20. Simplifying the growth of hybrid single-crystals by using nanoparticle precursors: the case of AgI

    NASA Astrophysics Data System (ADS)

    Xu, Biao; Wang, Ruji; Wang, Xun

    2012-03-01

    We report the synthesis of a series of AAgmIn single-crystals within 24 h, at room temperature, utilizing AgI nanoparticles (NPs) as the precursor. The AgI NPs impart high reactivity under mild conditions and favor the growth kinetics. 0D, 1D and 2D iodoargentate crystals can be obtained. This work represents the first application of NPs in the field of organo-metal-halide crystals and will inspire the design of other AMmXn crystals.We report the synthesis of a series of AAgmIn single-crystals within 24 h, at room temperature, utilizing AgI nanoparticles (NPs) as the precursor. The AgI NPs impart high reactivity under mild conditions and favor the growth kinetics. 0D, 1D and 2D iodoargentate crystals can be obtained. This work represents the first application of NPs in the field of organo-metal-halide crystals and will inspire the design of other AMmXn crystals. Electronic supplementary information (ESI) available: XPS spectra of AgI NPs, schematic representation of the formation process of [Ag4I8]4- in 2, UV-Vis spectra of the DTMA-Ag-I clusters, analysis of force balance of a crystal at the interface between H2O and CH2Cl2 and crystal structure depiction of 1-4. CIF files of 1-4 are also provided. CCDC reference numbers 863848, 863849, 863850 and 863851. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30139c

  1. Intensification of surface enhanced Raman scattering of thiol-containing molecules using Ag@Au core@shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Prerna; Thuy, Nguyen T. B.; Aoki, Yoshiya; Mott, Derrick; Maenosono, Shinya

    2011-05-01

    In this paper, we study the relationship between nanoparticles' structure/composition and the chemical nature of the molecules to be identified in surface enhanced Raman scattering (SERS) spectroscopy. Three types of nanoparticles (NPs) were synthesized, including Ag, Au, and silver coated by gold (Ag@Au), in order to study the resulting enhancement effects. When a rhodamine 6G dye molecule was used to assemble the NPs, it was found that Ag NPs exhibited the highest enhancement activity. However, when a thiol containing 3-amino-1,2,4-triazole-5-thiol molecule was used to assemble the NPs, it was found that the Ag@Au NPs exhibited high Raman activity as well as the Ag NPs. The results give insight into how the chemical properties of the molecules to be analyzed play an important role in the SERS detection. An additional parameter of the analysis reveals the relative stability of the three types of NP probes synthesized with regard to oxidation in the presence of different mediating molecules and varying salt concentrations. The results are of interest in designing and employing NP probes to detect biological molecules using colorimetric and SERS based approaches.

  2. Ultrasensitive and Rapid Determination of Folic Acid Using Ag Nanoparticles Enhanced 1, 10-Phenantroline-Terbium (III) Sensitized Fluorescence.

    PubMed

    Hassanzadeh, Robab; Lotfi, Ali; Bagheri, Nafiseh; Hassanzadeh, Javad

    2016-09-01

    A novel spectrofluorimetric probe based on Ag nanoparticle (AgNPs)-enhanced terbium (III) (Tb) fluorescence was introduced for the sensitive determination of folic acid (FA). The effect of gold and silver nanoparticles in different size was investigated on the well-known Tb sensitized fluorescence emission of 1, 10-phenantroline (Phen). The greatest fluorescence intensity was observed in the presence of AgNPs with a diameter of ~6 nm maybe due to their highest surface area. Furthermore, it's discovered that FA can form Tb-Phen -FA ternary complexes and cause a notable diminution in this enhanced fluorescence system. Based on this finding, a high sensitive and selective method was developed for the determination of FA. Effects of various parameters like Ag NPs, Phen and Tb(3+) concentration and pH of media were investigated. In the optimum circumstances, the fluorescence emission of AgNPs-Phen-Tb collection was declined linearly by increasing the concentration of FA in the range of 0.5 to 110 nmol L(-1). Limits of detection and quantification were achieved to be 0.21 and 0.62 nmol  L(-1), respectively. The method has good linearity, recovery, reproducibility and sensitivity, and was adequately exploited to follow FA content in pharmaceutical, fortified flour and human urine samples. PMID:27448225

  3. Sensitive and selective detection of Ag+ in aqueous solutions using Fe3O4@Au nanoparticles as smart electrochemical nanosensors.

    PubMed

    Yang, Huicui; Liu, Xiaoxiao; Fei, Ruihua; Hu, Yonggang

    2013-11-15

    Owing to the selective deposition reaction on the surface of magnetic nanoparticles, we reported a simple and selective magnetic electrochemical method for the detection of Ag(+) ions in aqueous solutions. The analyte deposited on the nanoparticles was brought to the surface of a homemade magnetic electrode and detected electrochemically in 0.1 mol/L KCl solution based on the reaction of Ag0 transferred to AgCl. Under the optimal conditions, the linear response range of Ag(+) ions was 0.117-17.7 μmol/L (R(2)=0.9909) with a detection limit of 59 nmol/L (S/N=3). A series of repeatability measurements 1.0 μmol/L Ag(+) gave reproducible results with a relative standard deviation (RSD) of 4.5% (n=11). The interference from other metal cations can be eliminated by adding EDTA as a co-additive to mask the metal cations. The recoveries ranging from 98.6% to 103.99% after standard additions demonstrate that this sensor has great potential in practical applications. The advantages of this developed method include remarkable simplicity, low cost, and no requirement for probe preparation, among others. PMID:24148443

  4. AgI/Ag{sub 3}PO{sub 4} hybrids with highly efficient visible-light driven photocatalytic activity

    SciTech Connect

    Katsumata, Hideyuki; Hayashi, Takahiro; Taniguchi, Masanao; Suzuki, Tohru; Kaneco, Satoshi

    2015-03-15

    Highlights: • AgI/Ag{sub 3}PO{sub 4} hybrid was prepared via an in situ anion-exchange method. • AgI/Ag{sub 3}PO{sub 4} displays the excellent photocatalytic activity under visible light. • AgI/Ag{sub 3}PO{sub 4} readily transforms to be Ag@AgI/Ag{sub 3}PO{sub 4} system. • h{sup +} and O{sub 2}{sup ·−} play the major role in the AO 7 decolorization over AgI/Ag{sub 3}PO{sub 4}. • The activity enhancement is ascribed to a Z-scheme system composed of Ag{sub 3}PO{sub 4}, Ag and AgI. - Abstract: Highly efficient visible-light-driven AgI/Ag{sub 3}PO{sub 4} hybrid photocatalysts with different mole ratios of AgI were prepared via an in situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgI/Ag{sub 3}PO{sub 4} photocatalysts displayed the higher photocatalytic activity than pure Ag{sub 3}PO{sub 4} and AgI for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgI/Ag{sub 3}PO{sub 4} with 80% of AgI exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgI/Ag{sub 3}PO{sub 4} readily transformed to be Ag@AgI/Ag{sub 3}PO{sub 4} system while the photocatalytic activity of AgI/Ag{sub 3}PO{sub 4} remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h{sup +} and O{sub 2}{sup ·−} play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgI/Ag{sub 3}PO{sub 4} hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag{sub 3}PO{sub 4}, Ag and AgI, in which Ag nanoparticles act as the charge separation center.

  5. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity

    NASA Astrophysics Data System (ADS)

    Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.; Bald, I.

    2016-03-01

    DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled.DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. Electronic supplementary information (ESI) available: Additional information about materials and methods, designs of DNA origami templates, height profiles, additional SERS spectra, assignment of DNA

  6. Novel magnetite nanoparticle based on BODIPY as fluorescent hybrid material for Ag(I) detection in aqueous medium.

    PubMed

    Kursunlu, Ahmed Nuri; Ozmen, Mustafa; Guler, Ersin

    2016-06-01

    This manuscript describes a highly selective and ultra-sensitive detection of Ag(I) in aqueous solution using amine coated magnetite nanoparticles modified boron-dipyrromethene by spectrofluorometer. Fe3O4 nanoparticles were synthesized by co-precipitation of Fe(2+)and Fe(3+)in an ammonia solution. Amine modified Fe3O4 was prepared by using (3-aminopropyl)triethoxysilane as silanization agent. The covalent binding of boron-dipyrromethene to amine modified Fe3O4 was confirmed by means of Fourier Transform infrared spectroscopy, transmission electron microscopy, dynamic light scattering, UV-vis and fluorimeter measurements and obtained nanoparticle-boron dipyrromethene structure. The binding abilities of nanoparticle-boron dipyrromethene towards different metal ions have been investigated by some spectroscopic methods as UV-vis, fluorescence spectroscopy, Job plot, etc. and the novel surface displayed high selectivity and sensitivity for Ag(I) among all tested metals. PMID:27130108

  7. Synthesis of Ag/Pd nanoparticles via reactive micelles as templates and its application to electroless copper deposition.

    PubMed

    Yang, Chia-Cheng; Wan, Chi-Chao; Wang, Yung-Yun

    2004-11-15

    Ag/Pd nanoparticles have been synthesized with a reactive alcohol-type surfactant, sodium dodecyl sulfate (SDS), without the presence of an external reducing agent. Both UV-vis absorption spectra and X-ray diffraction patterns for the bimetallic and physical mixtures of individual nanoparticles revealed the formation of a bimetallic structure. Based on this method, an ordered 3D grapelike nanostructure was formed, possibly due to transformation of the liquid crystal phase of the micelles. Data from the energy-dispersive X-ray analysis show that the composition of bimetallic nanoparticle is approximately equal to the feeing solution. Furthermore, the Ag/Pd nanoparticles exhibit distinct catalyst for electroless copper deposition and may be a substitute for the conventional palladium system, which is expensive and unstable in operation. PMID:15464808

  8. Surface-enhanced Raman scattering of a Ag/oligo(phenyleneethynylene)/Ag sandwich

    NASA Astrophysics Data System (ADS)

    Fletcher, Melissa; Alexson, D. M.; Prokes, Sharka; Glembocki, Orest; Vivoni, Alberto; Hosten, Charles

    2011-02-01

    α,ω-Dithiols are a useful class of compounds in molecular electronics because of their ability to easily adsorb to two metal surfaces, producing a molecular junction. We have prepared Ag nanosphere/oligo(phenyleneethynylene)/Ag sol (AgNS/OPE/Ag sol) and Ag nanowire/oligo(phenyleneethynylene)/Ag sol (AgNW/OPE/Ag sol) sandwiches to simulate the architecture of a molecular electronic device. This was achieved by self-assembly of OPE on the silver nanosurface, deprotection of the terminal sulfur, and deposition of Ag sol atop the monolayer. These sandwiches were then characterized by surface-enhanced Raman scattering (SERS) spectroscopy. The resulting spectra were compared to the bulk spectrum of the dimer and to the Ag nanosurface/OPE SERS spectra. The intensities of the SERS spectra in both systems exhibit a strong dependence on Ag deposition time and the results are also suggestive of intense interparticle coupling of the electromagnetic fields in both the AgNW/OPE/Ag and the AgNS/OPE/Ag systems. Three previously unobserved bands (1219, 1234, 2037 cm -1) arose in the SER spectra of the sandwiches and their presence is attributed to the strong enhancement of the electromagnetic field which is predicted from the COSMOL computational package. The 544 cm -1 disulfide bond which is observed in the spectrum of solid OPE but is absent in the AgNS/OPE/Ag and AgNW/OPE/Ag spectra is indicative of chemisorption of OPE to the nanoparticles through oxidative dissociation of the disulfide bond.

  9. The AgNORs.

    PubMed

    Derenzini, M

    2000-04-01

    The structure and the function of interphase AgNORs and the importance of the "AgNOR" parameter in tumor pathology have been reviewed. Interphase AgNORs are structural-functional units of the nucleolus in which all the components necessary for ribosomal RNA synthesis are located. Two argyrophilic proteins involved in rRNA transcription and processing, nucleolin and nucleophosmin, are associated with interphase AgNORs and are responsible for their stainability with silver methods, thus allowing interphase AgNORs to be visulaized at light microscopic level, also in routine cyto-histopathological preparations. The number of interphase AgNORs is strictly related to rRNA transcriptional activity and, in continuously proliferating cells, to the rapidity of cell proliferation. Evaluation of the quantitative distribution of interphase AgNORs has been applied in tumor pathology both for diagnostic and prognostic purposes. The "AgNOR" parameter has been proved to represent a reliable tool for defining the clinical outcome of cancer disease, being an independent prognostic factor in many types of tumors. PMID:10588056

  10. AgRISTARS

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An introduction to the overall AgRISTARS program, a general statement on progress, and separate summaries of the activities of each project, with emphasis on the technical highlights are presented. Organizational and management information on AgRISTARS is included in the appendices, as is a complete bibliography of publication and reports.

  11. Microscopic Investigation of Chemoselectivity in Ag-Pt-Fe3O4 Heterotrimer Formation: Mechanistic Insights and Implications for Controlling High-Order Hybrid Nanoparticle Morphology.

    PubMed

    Hodges, James M; Morse, James R; Williams, Mary Elizabeth; Schaak, Raymond E

    2015-12-16

    Three-component hybrid nanoparticle heterotrimers, which are important multifunctional constructs that underpin diverse applications, are commonly synthesized by growing a third domain off of a two-component heterodimer seed. However, because heterodimer seeds expose two distinct surfaces that often can both support nucleation and growth, selectively targeting one particular surface is critical for exclusively accessing a desired configuration. Understanding and controlling nucleation and growth therefore enables the rational formation of high-order hybrid nanoparticles. Here, we report an in-depth microscopic investigation that probes the chemoselective addition of Ag to Pt-Fe3O4 heterodimer seeds to form Ag-Pt-Fe3O4 heterotrimers. We find that the formation of the Ag-Pt-Fe3O4 heterotrimers initiates with indiscriminate Ag nucleation onto both the Pt and Fe3O4 surfaces of Pt-Fe3O4, followed by surface diffusion and coalescence of Ag onto the Pt surface to form the Ag-Pt-Fe3O4 product. Control experiments reveal that the size of the Ag domain of Ag-Pt-Fe3O4 correlates with the overall surface area of the Pt-Fe3O4 seeds, which is consistent with the coalescence of Ag through a surface-mediated process and can also be exploited to tune the size of the Ag domain. Additionally, we observe that small iron oxide islands on the Pt surface of the Pt-Fe3O4 seeds, deposited during the formation of Pt-Fe3O4, define the morphology of the Ag domain, which in turn influences its optical properties. These results provide unprecedented microscopic insights into the pathway by which Ag-Pt-Fe3O4 heterotrimer nanoparticles form and uncover new design guidelines for the synthesis of high-order hybrid nanoparticles with precisely targeted morphologies and properties. PMID:26599998

  12. AGS experiments: 1993 - 1994 - 1995

    SciTech Connect

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition.

  13. Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF4: Yb(3+), Er(3+) Nanoparticles.

    PubMed

    Shao, Bo; Yang, Zhengwen; Wang, Yida; Li, Jun; Yang, Jianzhi; Qiu, Jianbei; Song, Zhiguo

    2015-11-18

    Rare-earth-ion-doped upconversion (UC) nanoparticles have generated considerable interest because of their potential application in solar cells, biological labeling, therapeutics, and imaging. However, the applications of UC nanoparticles were still limited because of their low emission efficiency. Photonic crystals and noble metal nanoparticles are applied extensively to enhance the UC emission of rare earth ions. In the present work, a novel substrate consisting of inverse opal photonic crystals and Ag nanoparticles was prepared by the template-assisted method, which was used to enhance the UC emission of NaYF4: Yb(3+), Er(3+) nanoparticles. The red or green UC emissions of NaYF4: Yb(3+), Er(3+) nanoparticles were selectively enhanced on the inverse opal substrates because of the Bragg reflection of the photonic band gap. Additionally, the UC emission enhancement of NaYF4: Yb(3+), Er(3+) nanoparticles induced by the coupling of metal nanoparticle plasmons and photonic crystal effects was realized on the Ag nanoparticles included in the inverse opal substrate. The present results demonstrated that coupling of Ag nanoparticle with inverse opal photonic crystals provides a useful strategy to enhance UC emission of rare-earth-ion-doped nanoparticles. PMID:26496243

  14. Localized Surface Plasmon-Enhanced Electroluminescence in OLEDs by Self-Assembly Ag Nanoparticle Film.

    PubMed

    He, Xiaoxiao; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Zheng, Wanquan; Shi, Qiang; Liu, Yunlong

    2015-12-01

    We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and exciton, which decreases the nonradiative decay rate of OLEDs. PMID:26631223

  15. Localized Surface Plasmon-Enhanced Electroluminescence in OLEDs by Self-Assembly Ag Nanoparticle Film

    NASA Astrophysics Data System (ADS)

    He, Xiaoxiao; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Zheng, Wanquan; Shi, Qiang; Liu, Yunlong

    2015-12-01

    We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and exciton, which decreases the nonradiative decay rate of OLEDs.

  16. New SERS-active alumina-based sorbents containing Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Yurova, Nadezhda S.; Markina, Natalia E.; Galushka, Victor V.; Burashnikova, Marina M.; Zakharevich, Andrey M.; Markin, Alexey V.; Rusanova, Tatiana Y.

    2016-04-01

    New SERS-active materials were obtained by preparation of alumina with embedded silver nanoparticles and their application both as sorbents for pre-concentration and SERS platforms was studied. The influence of ionic strength on Ag NPs size, absorption spectra and SERS signal was investigated. Synthesized materials were examined by Raman spectroscopy, scanning electron microscopy, and UV-visible spectroscopy. The optimal conditions for SERSmeasurements were chosen. Synthesized materials were applied for pre-concentration of model analytes (Rhodamine 6G, folic acid and pyrene) and their SERS detection directly within the sorbent. It was shown that the recovery of analytes could be improved by alumina modification. The combination of surface-enhanced Raman spectroscopy with preconcentration is a promising instrument for analytical applications.

  17. Ag@poly(m-phenylenediamine) core-shell nanoparticles for highly selective, multiplex nucleic acid detection.

    PubMed

    Zhang, Yingwei; Wang, Lei; Tian, Jingqi; Li, Hailong; Luo, Yonglan; Sun, Xuping

    2011-03-15

    In this letter, we report on the one-step synthesis of Ag@poly(m-phenylenediamine) core-shell nanoparticles (APCSNPs), carried out by direct mixing of aqueous silver nitrate and m-phenylenediamine solutions at room temperature. We further demonstrate the use of APCSNP as a novel fluorescent sensing platform for nucleic acid detection. In this regard, the detection of DNA is accomplished in two steps. First, APCSNP absorbs and quenches the fluorescence of dye-labeled single-stranded DNA (ssDNA) as a probe. Second, hybridizing of the probe with its target produces a double-stranded DNA (dsDNA) that detaches from APCSNP, resulting in the recovery of dye fluorescence. It suggests that this sensing system has a high selectivity down to single-base mismatch, and the results exhibit good reproducibility. Furthermore, we also demonstrate its application for the multiplex detection of nucleic acid sequences. PMID:21302954

  18. Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy.

    PubMed

    Song, Fengqi; Wang, Tingyu; Wang, Xuefeng; Xu, Changhui; He, Longbing; Wan, Jianguo; Van Haesendonck, Christian; Ringer, Simon P; Han, Min; Liu, Zongwen; Wang, Guanghou

    2010-02-01

    Anisotropic plasmon coupling in closely spaced chains of Ag nanoparticles is visualized using electron energy-loss spectroscopy in a scanning transmission electron microscope. For dimers as the simplest chain, mapping the plasmon excitations with nanometer spatial resolution and an energy resolution of 0.27 eV intuitively identifies two coupling plasmons. The in-phase mode redshifts from the ultraviolet region as the interparticle spacing is reduced, reaching the visible range at 2.7 eV. Calculations based on the discrete-dipole approximation confirm its optical activeness, where the longitudinal direction is constructed as the path for light transportation. Two coupling paths are then observed in an inflexed four-particle chain. PMID:20077517

  19. Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Qianwen; Zheng, Xuanli; He, Jialun; Wang, Weiping; Fu, Mingming; Cao, Yiyan; Li, Heng; Wu, Yaping; Chen, Ting; Zhang, Chunmiao; Chen, Xiaohong; Yu, Binbin; Li, Shuping; Kang, Junyong; Wu, Zhiming

    2016-07-01

    Nanostructures decorated with noble metal nanoparticles (NPs) exhibit potential for use in highly sensitive optoelectronic devices through the localized surface plasmon resonance (LSPR) effect. In this study, Faraday rotation was significantly enhanced through the structural optimization of ferromagnetic (FM)/semiconductor composite nanostructures. Experimental and theoretical results revealed that the position of noble metal NPs significantly influenced the coupling of the LSPR-enhanced electromagnetic field with FM materials. Furthermore, nanostructures embedded with noble metals demonstrated an improved capability to efficiently use the electromagnetic field compared to other structures. The Faraday rotation of ZnO/Ag(NPs)/Fe was enhanced 58 fold compared to that of the ZnO(film)/Fe. This work provides a basis for the design of nanoarchitectures for miniaturized high-performance magneto-optical devices.

  20. Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles.

    PubMed

    Liu, Qianwen; Zheng, Xuanli; He, Jialun; Wang, Weiping; Fu, Mingming; Cao, Yiyan; Li, Heng; Wu, Yaping; Chen, Ting; Zhang, Chunmiao; Chen, Xiaohong; Yu, Binbin; Li, Shuping; Kang, Junyong; Wu, Zhiming

    2016-01-01

    Nanostructures decorated with noble metal nanoparticles (NPs) exhibit potential for use in highly sensitive optoelectronic devices through the localized surface plasmon resonance (LSPR) effect. In this study, Faraday rotation was significantly enhanced through the structural optimization of ferromagnetic (FM)/semiconductor composite nanostructures. Experimental and theoretical results revealed that the position of noble metal NPs significantly influenced the coupling of the LSPR-enhanced electromagnetic field with FM materials. Furthermore, nanostructures embedded with noble metals demonstrated an improved capability to efficiently use the electromagnetic field compared to other structures. The Faraday rotation of ZnO/Ag(NPs)/Fe was enhanced 58 fold compared to that of the ZnO(film)/Fe. This work provides a basis for the design of nanoarchitectures for miniaturized high-performance magneto-optical devices. PMID:27403716

  1. Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles

    PubMed Central

    Liu, Qianwen; Zheng, Xuanli; He, Jialun; Wang, Weiping; Fu, Mingming; Cao, Yiyan; Li, Heng; Wu, Yaping; Chen, Ting; Zhang, Chunmiao; Chen, Xiaohong; Yu, Binbin; Li, Shuping; Kang, Junyong; Wu, Zhiming

    2016-01-01

    Nanostructures decorated with noble metal nanoparticles (NPs) exhibit potential for use in highly sensitive optoelectronic devices through the localized surface plasmon resonance (LSPR) effect. In this study, Faraday rotation was significantly enhanced through the structural optimization of ferromagnetic (FM)/semiconductor composite nanostructures. Experimental and theoretical results revealed that the position of noble metal NPs significantly influenced the coupling of the LSPR-enhanced electromagnetic field with FM materials. Furthermore, nanostructures embedded with noble metals demonstrated an improved capability to efficiently use the electromagnetic field compared to other structures. The Faraday rotation of ZnO/Ag(NPs)/Fe was enhanced 58 fold compared to that of the ZnO(film)/Fe. This work provides a basis for the design of nanoarchitectures for miniaturized high-performance magneto-optical devices. PMID:27403716

  2. Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications.

    PubMed

    Haider, M Salman; Shao, Godlisten N; Imran, S M; Park, Sung Soo; Abbas, Nadir; Tahir, M Suleman; Hussain, Manwar; Bae, Wookeun; Kim, Hee Taik

    2016-05-01

    The present study reports the antibacterial disinfection properties of a series of silver nanoparticle (AgNP) immobilized membranes. Initially, polyethersulfone (PES) was functionalized through the introduction of amino groups to form aminated polyethersulfone (NH2-PES, APES). AgNPs were then coordinately immobilized on the surface of the APES composite membrane to form AgNPs-APES. The properties of the obtained membrane were examined by FT-IR, XPS, XRD, TGA, ICP-OES and SEM-EDAX analyses. These structural characterizations revealed that AgNPs ranging from 5 to 40nm were immobilized on the surface of the polymer membrane. Antibacterial tests of the samples showed that the AgNPs-APES exhibited higher activity than the AgNPs-PES un-functionalized membrane. Generally, the AgNPs-APES 1cm×3cm strip revealed a four times longer life than the un-functionalized AgNPs polymer membranes. The evaluation of the Ag(+) leaching properties of the obtained samples indicated that approximately 30% of the AgNPs could be retained, even after 12days of operation. Further analysis indicated that silver ion release can be sustained for approximately 25days. The present study provides a systematic and novel approach to synthesize water treatment membranes with controlled and improved silver (Ag(+)) release to enhance the lifetime of the membranes. PMID:26952479

  3. Influence of electron beam irradiation on structural and optical properties of α-Ag2WO4 nanoparticles.

    PubMed

    A, Sreedevi; K P, Priyanka; K K, Babitha; S, Ganesh; Varghese, T

    2016-09-01

    The influence of 8MeV electron beam irradiation on the structural and optical properties of silver tungstate (α-Ag2WO4) nanoparticles synthesized by chemical precipitation method was investigated. The dose dependent effect of electron irradiation was investigated by various characterization techniques such as, X-ray diffraction, scanning electron microscopy, UV-vis absorption spectroscopy, photoluminescence and Raman spectroscopy. Systematic studies confirm that electron beam irradiation induces non-stoichiometry, defects and particle size variation on α-Ag2WO4, which in turn results changes in optical band gap, photoluminescence spectra and Raman bands. PMID:27223824

  4. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    SciTech Connect

    Singh, Manish Kumar; Mandal, R. K.; Manda, Premkumar; Singh, A. K.

    2015-10-15

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ∼9 atom per cent; 8 atom per cent and Ag ∼ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phases arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.

  5. Synergistic effect of Ag nanoparticle-decorated graphene oxide and carbon fiber on electrical actuation of polymeric shape memory nanocomposites

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Liang, Fei; Gou, Jihua; Leng, Jinsong; Du, Shanyi

    2014-08-01

    This study reports an effective approach of significantly improving electrical properties and recovery performance of shape memory polymer (SMP) nanocomposite, of which its shape recovery was triggered by electrically resistive Joule heating. Reduced graphene oxide (GOs) self-assembled and grafted onto carbon fiber, were used to enhance the interfacial bonding with the SMP matrix via van der Waals force and covalent bond, respectively. A layer of Ag nanoparticles was synthesized from Ag+ solution and chemically deposited onto GO assemblies. These Ag nanoparticles were expected to bridge the gap between GO and improve the electrical conductivity. The experimental results reveal that the electrical conductivity of the SMP nanocomposite was significantly improved via the synergistic effect between Ag nanoparticle-decorated GO and carbon fiber. Finally, the electrically induced shape memory effect of the SMP nanocomposite was achieved, and the temperature distribution in the SMP nanocomposites was recorded and monitored. An effective approach was demonstrated to produce the electro-activated SMP nanocomposites and the resistive Joule heating was viable at a low electrical voltage below 10 V.

  6. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    NASA Astrophysics Data System (ADS)

    Singh, Manish Kumar; Manda, Premkumar; Singh, A. K.; Mandal, R. K.

    2015-10-01

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ˜9 atom per cent; 8 atom per cent and Ag ˜ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phases arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.

  7. Effect of electrode material on characteristics of non-volatile resistive memory consisting of Ag2S nanoparticles

    NASA Astrophysics Data System (ADS)

    Jang, Jaewon

    2016-07-01

    In this study, Ag2S nanoparticles are synthesized and used as the active material for two-terminal resistance switching memory devices. Sintered Ag2S films are successfully crystallized on plastic substrates with synthesized Ag2S nanoparticles, after a relatively low-temperature sintering process (200 °C). After the sintering process, the crystallite size is increased from 6.8 nm to 80.3 nm. The high ratio of surface atoms to inner atoms of nanoparticles reduces the melting point temperature, deciding the sintering process temperature. In order to investigate the resistance switching characteristics, metal/Ag2S/metal structures are fabricated and tested. The effect of the electrode material on the non-volatile resistive memory characteristics is studied. The bottom electrochemically inert materials, such as Au and Pt, were critical for maintaining stable memory characteristics. By using Au and Pt inert bottom electrodes, we are able to significantly improve the memory endurance and retention to more than 103 cycles and 104 sec, respectively.

  8. Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNO₃ via soil and food.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Morgan, A John; Kille, Peter; Svendsen, Claus; Jurkschat, Kerstin; Mosselmans, J Fred W; Soares, Amadeu M V M; Loureiro, Susana

    2016-03-01

    Silver nanoparticles (Ag NPs) have been used in numerous consumer products and may enter the soil through the land application of biosolids. However, little is known about the relationship between Ag NP exposure and their bioavailability for soil organisms. This study aims at comparing the uptake and elimination kinetics of Ag upon exposures to different Ag forms (NPs and ionic Ag (as AgNO3)) in the isopod Porcellionides pruinosus. Isopods were exposed to contaminated Lufa 2.2 soil or alder leaves as food. Uptake and elimination rate constants for soil exposure did not significantly differ between Ag NPs and ionic Ag at 30 and 60 mg Ag/kg. For dietary exposure, the uptake rate constant was up to 5 times higher for Ag NPs than for AgNO3, but this was related to feeding activity and exposure concentrations, while no difference in the elimination rate constants was found. When comparing both routes, dietary exposure resulted in lower Ag uptake rate constants but elimination rate constants did not differ. A fast Ag uptake was observed from both routes and most of the Ag taken up seemed not to be eliminated. Synchrotron X-ray fluorescence showed Ag in the S-cells of the hepatopancreas, thus supporting the observations from the kinetic experiment (i.e. low elimination). In addition, our results show that isopods have an extremely high Ag accumulation capacity, suggesting the presence of an efficient Ag storage compartment. PMID:26581474

  9. Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Sweatlock, L. A.; Maier, S. A.; Atwater, H. A.; Penninkhof, J. J.; Polman, A.

    2005-06-01

    Linear arrays of very small Ag nanoparticles (diameter ˜10nm , spacing 0-4nm ) were fabricated in sodalime glass using an ion irradiation technique. Optical extinction spectroscopy of the arrays reveals a large polarization-dependent splitting of the collective plasmon extinction band. Depending on the preparation condition, a redshift of the longitudinal resonance as large as 1.5eV is observed. Simulations of the three-dimensional electromagnetic field evolution are used to determine the resonance energy of idealized nanoparticle arrays with different interparticle spacings and array lengths. Using these data, the experimentally observed redshift is attributed to collective plasmon coupling in touching particles and/or in long arrays of strongly coupled particles. The simulations also indicate that for closely coupled nanoparticles ( 1-2nm spacing) the electromagnetic field is concentrated in nanoscale regions ( 10dB radius: 3nm ) between the particles, with a 5000-fold local field intensity enhancement. In arrays of 1-nm -spaced particles the dipolar particle interaction extends to over 10 particles, while for larger spacing the interaction length decreases. Spatial images of the local field distribution in 12-particle arrays of touching particles reveal a particlelike coupled mode with a resonance at 1.8eV and a wirelike mode at 0.4eV .

  10. Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Yao, Tongjie; Wang, Chuanxi; Lin, Quan; Li, Xiao; Chen, Xiaolu; Wu, Jie; Zhang, Junhu; Yu, Kui; Yang, Bai

    2009-02-01

    Superhydrophobic films with excellent flexibility have been fabricated by combining the lift-up soft-lithography technique and chemical reduction of [Ag(NH3)2]+ ions to Ag nanoparticles (NPs) on the surface of silica spheres which are patterned on the polydimethylsiloxane (PDMS) films. Scanning electron microscopy (SEM) images reveal the presence of raspberry-like hierarchical structures on the PDMS films. The influence of the amount of Ag NPs and the size of the silica spheres on the wettability of the soft films is investigated carefully. Because PDMS films are elastomeric materials, our superhydrophobic films offer great flexibility. The resulting films can be easily transferred from one substrate surface to another without destroying their superhydrophobicity. These flexible and superhydrophobic films can be used repeatedly to satisfy a wide range of applications.

  11. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Wang, Huiqiao; Liu, Jinbin; Wu, Xuan; Tong, Zhonghua; Deng, Zhaoxiang

    2013-05-01

    Water-dispersible two-dimensional (2D) assemblies of Au@Ag core-shell nanoparticles are obtained through a highly selective electroless silver deposition on pre-assembled gold nanoparticles on bovine serum albumin (BSA)-coated graphene oxide (BSA-GO). While neither BSA-GO nor AuNP-decorated BSA-GO shows any antibacterial ability, the silver-coated GO@Au nanosheets (namely GO@Au@Ag) exhibit an enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) bacteria, superior to unassembled Au@Ag nanoparticles and even ionic Ag. Such an improvement may be attributed to the increased local concentration of silver nanoparticles around a bacterium and a polyvalent interaction with the bacterial surface. In addition, the colloidal stability of this novel nano-antimicrobial against the formation of random nanoparticle aggregates guarantees a minimized activity loss of the Au@Ag nanoparticles. The antibacterial efficacy of GO@Au@Ag is less sensitive to the existence of Cl-, in comparison with silver ions, providing another advantage for wound dressing applications. Our research unambiguously reveals a strong and very specific interaction between the GO@Au@Ag nanoassembly and E. coli, which could be an important clue toward a rational design, synthesis and assembly of innovative and highly active antibacterial nanomaterials.

  12. Molecular simulation of AG nanoparticle nucleation from solution: redox-reactions direct the evolution of shape and structure.

    PubMed

    Milek, Theodor; Zahn, Dirk

    2014-08-13

    The association of Ag(+) ions and the early stage of Ag nanoparticle nucleation are investigated from molecular dynamics simulations. Combining special techniques for tackling crystal nucleation from solution with efficient approaches to model redox-reactions, we unravel the structural evolution of forming silver nanoparticles as a function of the redox-potential in the solution. Within a range of only 1 eV, the redox-potential is demonstrated to have a drastic effect on both the inner structure and the overall shape of the forming particles. On the basis of our simulations we identify surface charge and its distribution as an atomic scale mechanism that accounts for creating/avoiding 5-fold coordination polyhedra and thus the degree of (multiple)-twinning in silver nanoparticles. PMID:25078975

  13. Oleate-Assisted Room Temperature Synthesis and High Photocatalytic Activity of Ag3PO4 Nanoparticles for no Decomposition

    NASA Astrophysics Data System (ADS)

    Huang, Lijun; Yin, Shu; Guo, Chongshen; Huang, Yunfang; Wang, Ming; Dong, Qiang; Li, Huihui; Kimura, Takeshi; Tanaka, Miyuki; Sato, Tsugio

    2012-06-01

    An oleate-assisted approach was used to synthesize nanosized spherical silver phosphate (Ag3PO4) in different solvents. The silver phosphate nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible-infrared diffuse reflectance spectroscopy (DRS), thermogravimetric analysis (TDA), and surface area measurement by nitrogen adsorption and decomposition evolution of NOx gas. The as-prepared nanoparticles showed narrow size distribution. The black colored nanoparticles could absorb most of visible light with a wavelength up to 530 nm. The DeNOx experiments revealed that the nanosized Ag3PO4 possessed a photocatalytic ability being superior to commercial P25 sample both in ultraviolet light and visible light regions.

  14. Ag Nanoparticles Decorated Cactus-Like Ag Dendrites/Si Nanoneedles as Highly Efficient 3D Surface-Enhanced Raman Scattering Substrates toward Sensitive Sensing.

    PubMed

    Huang, Jian; Ma, Dayan; Chen, Feng; Bai, Min; Xu, Kewei; Zhao, Yongxi

    2015-10-20

    Surface-enhanced Raman scattering (SERS) has been considered as a promising sensing technique to detect low-level analytes. However, its practical application was hindered owing to the lack of uniform SERS substrates for ultrasensitive and reproducible assay. Herein, inspired by the natural cactus structure, we developed a cactus-like 3D nanostructure with uniform and high-density hotspots for highly efficient SERS sensing by both grafting the silicon nanoneedles onto Ag dendrites and subsequent decoration with Ag nanoparticles. The hierarchical scaffolds and high-density hotspots throughout the whole substrate result in great amplification of SERS signal. A high Raman enhancement factor of crystal violet up to 6.6 × 10(7) was achieved. Using malachite green (MG) as a model target, the fabricated SERS substrates exhibited good reproducibility (RSD ∼ 9.3%) and pushed the detection limit down to 10(-13) M with a wide linear range of 10(-12) M to 10(-7) M. Excellent selectivity was also demonstrated by facilely distinguishing MG from its derivative, some organics, and coexistent metal ions. Finally, the practicality and reliability of the 3D SERS substrates were confirmed by the quantitative analysis of spiked MG in environmental water with high recoveries (91.2% to 109.6%). By virtue of the excellent performance (good reproducibility, high sensitivity, and selectivity), the cactus-like 3D SERS substrate has great potential to become a versatile sensing platform in environmental monitoring, food safety, and medical diagnostics. PMID:26406111

  15. Controlled protein embedment onto Au/Ag core-shell nanoparticles for immuno-labeling of nanosilver surface.

    PubMed

    Lee, In Hwan; Lee, Jeong Min; Jung, Yongwon

    2014-05-28

    Difficulties in stable conjugation of biomolecules to nanosilver surfaces have severely limited the use of silver nanostructures in biological applications. Here, we report a facile antibody conjugation onto gold/silver (Au/Ag) core-shell nanoparticles by stable and uniform embedment of an antibody binding protein, protein G, in silver nanoshells. A rigid helical peptide linker with a terminal cysteine residue was fused to protein G. A mixture of the peptide-fused protein G and space-filling free peptide was reacted with gold nanoparticles (AuNPs) to form a protein G-linked peptide layer on the particle surface. Uniform silver nanoshells were successfully formed on these protein G-AuNPs, while stably embedding protein G-linked peptide layers. Protein G specifically targets the Fc region of an antibody and thus affords properly orientated antibodies on the particle surface. Compared to Au nanoparticles of similar size with randomly adsorbed antibodies, the present immuno-labeled Au/Ag core-shell nanoparticles offered nearly 10-fold higher sensitivities for naked-eye detection of surface bound antigens. In addition, small dye molecules that were bonded to the peptide layer on Au nanoparticles exhibited highly enhanced surface-enhanced Raman scattering (SERS) signals upon Ag shell formation. The present strategy provides a simple but efficient way to conjugate antibodies to nanosilver surfaces, which will greatly facilitate wider use of the superior optical properties of silver nanostructures in biological applications. PMID:24801432

  16. Probing the mechanism of plasma protein adsorption on Au and Ag nanoparticles with FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Mengmeng; Fu, Cuiping; Liu, Xingang; Lin, Zhipeng; Yang, Ning; Yu, Shaoning

    2015-09-01

    Protein-nanoparticle interactions are important in biomedical applications of nanoparticles and for growing biosafety concerns about nanomaterials. In this study, the interactions of four plasma proteins, human serum albumin (HSA), myoglobin (MB), hemoglobin (HB), and trypsin (TRP), with Au and Ag nanoparticles were investigated by FT-IR spectroscopy. The secondary structure of thio-proteins changed with time during incubation with Au and Ag nanoparticles, but the secondary structures of non-thio-proteins remained unchanged. The incubation time for structural changes depended on the sulfur-metal bond energy; the stronger the sulfur-metal energy, the less the time needed. H/D exchange experiments revealed that protein-NP complexes with thio-proteins were less dynamic than free proteins. No measurable dynamic differences were found between free non-thio-proteins and the protein-Au (or Ag) nanoparticle complex. Therefore, the impact of covalent bonds on the protein structure is greater than that of the electrostatic force.

  17. Synthesis of wheatear-like ZnO nanoarrays decorated with Ag nanoparticles and its improved SERS performance through hydrogenation.

    PubMed

    Shan, Yufeng; Yang, Yong; Cao, Yanqin; Fu, Chaoli; Huang, Zhengren

    2016-04-01

    Semiconductor/noble metal composite SERS substrates have been extensively studied due to their unique bifunctionality. In this work, wheatear-like ZnO nanoarrarys have been fabricated via a modified low-temperature solution method. The hierarchical nanostructures that are constructed by stacked nanoflakes and long whiskers of ZnO possess a substantial number of characteristic nano corners and edges, which are proved to be beneficial to deposit more Ag nanoparticles (NPs). Furthermore, hydrogenated wheatear-like ZnO/AgNP composite substrates are achieved via a safe and facile solid hydrogen source (NaBH4). The hydrogenated ZnO/AgNPs (H-ZnO/Ag) substrates exhibit greatly improved SERS activity in detecting R6G molecules with an enhancement factor (EF) up to ∼0.49 × 10(8), over two orders of magnitude higher than that of the substrates before hydrogenation. The outstanding SERS performance of wheatear-like H-ZnO/Ag substrates benefits from the emerging porous structure of ZnO and abundant surface defects introduced by hydrogenation. In addition, the as-prepared substrates also show high detection sensitivity, good repeatability and recyclability, indicating great potential for practical applications. PMID:26916627

  18. Hyperspectral reflected light microscopy of plasmonic Au/Ag alloy nanoparticles incubated as multiplex chromatic biomarkers with cancer cells.

    PubMed

    Patskovsky, Sergiy; Bergeron, Eric; Rioux, David; Simard, Mikaël; Meunier, Michel

    2014-10-21

    A hyperspectral microscopy system based on a reflected light method for plasmonic nanoparticle (NP) imaging was designed and compared with a conventional darkfield method for spatial localization and spectroscopic identification of single Au, Ag and Au/Ag alloy NPs incubated with fixed human cancer cell preparations. A new synthesis protocol based on co-reduction of Au and Ag salts combined with the seeded growth technique was used for the fabrication of monodispersed alloy NPs with sizes ranging from 30 to 100 nm in diameter. We validated theoretically and experimentally the performance of 60 nm Au, Ag and Au/Ag (50 : 50) NPs as multiplexed biological chromatic markers for biomedical diagnostics and optical biosensing. The advantages of the proposed reflected light microscopy method are presented for NP imaging in a complex and highly diffusing medium such as a cellular environment. The obtained information is essential for the development of a high throughput, selective and efficient strategy for cancer detection and treatment. PMID:25133743

  19. A colorimetric assay for measuring iodide using Au@Ag core-shell nanoparticles coupled with Cu(2+).

    PubMed

    Zeng, Jingbin; Cao, Yingying; Lu, Chun-Hua; Wang, Xu-Dong; Wang, Qianru; Wen, Cong-Ying; Qu, Jian-Bo; Yuan, Cunguang; Yan, Zi-Feng; Chen, Xi

    2015-09-01

    Au@Ag core-shell nanoparticles (NPs) were synthesized and coupled with copper ion (Cu(2+)) for the colorimetric sensing of iodide ion (I(-)). This assay relies on the fact that the absorption spectra and the color of metallic core-shell NPs are sensitive to their chemical ingredient and dimensional core-to-shell ratio. When I(-) was added to the Au@Ag core-shell NPs-Cu(2+) system/solution, Cu(2+) can oxidize I(-) into iodine (I2), which can further oxidize silver shells to form silver iodide (AgI). The generated Au@AgI core-shell NPs led to color changes from yellow to purple, which was utilized for the colorimetric sensing of I(-). The assay only took 10 min with a lowest detectable concentration of 0.5 μM, and it exhibited excellent selectivity for I(-) over other common anions tested. Furthermore, Au@Ag core-shell NPs-Cu(2+) was embedded into agarose gels as inexpensive and portable "test strips", which were successfully used for the semi-quantitation of I(-) in dried kelps. PMID:26388386

  20. Ag-nanoparticles on UF-microsphere as an ultrasensitive SERS substrate with unique features for rhodamine 6G detection.

    PubMed

    Hao, Zhixian; Mansuer, Mulati; Guo, Yuqing; Zhu, Zhirong; Wang, Xiaogang

    2016-01-01

    Urea and formaldehyde (UF) microsphere (MS) adsorbing Ag nanoparticles (NPs) was employed as a surface enhanced Raman scattering (SERS) substrate for rhodamine 6G (R6G) detection. The UF MSs and citrate-reduced Ag colloid supplying Ag NPs are synthesized separately and all the subsequent fabrication procedure is then implemented within 2 mL centrifuge tube. Influences of the composition and drying temperature of the UF MSs and the drying method and modification of AgNP/UFMS on the final SERS performance have first been reported. Excess formaldehyde useful in the formation of UF MSs again plays an important role in the SERS detection. Some interesting phenomena in the approach, such as swelling/deswelling of UF MSs and R6G diffusion within hydrophilic environment of UF MSs, are found to be of variable factors affecting the SERS performance. The substrate AgNP/UFMS confidently achieves a detection limit of 10(-13) M R6G and can be used as a simple and effective platform in the SERS spectroscopy. PMID:26695301

  1. Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene.

    PubMed

    Cai, P-F; Su, C-J; Chang, W-T; Chang, F-C; Peng, C-Y; Sun, I-W; Wei, Y-L; Jou, C-J; Wang, H Paul

    2014-08-30

    Drinking water shortage has become worse in recent decades. A new capacitive deionization (CDI) method for increasing water supplies through the effective desalination of seawater has been developed. Silver as nano Ag and Ag@C which was prepared by carbonization of the Ag(+)-β-cyclodextrin complex at 573 K for 30 min can add the antimicrobial function into the CDI process. The Ag@C and Ag nanoparticles dispersed on reduced graphene oxide (Ag@C/rGO and nano Ag/rGO) were used as the CDI electrodes. The nano Ag/rGO and Ag@C/rGO electrodes can reduce the charging resistant, and enhance the electrosorption capability. Better CDI efficiencies with the nano Ag/rGO and Ag@C/rGO electrodes can therefore be obtained. When reversed the voltage, the electrodes can be recovered up to 90% within 5 min. This work presents the feasibility for the nano Ag and Ag@C on rGO electrodes applied in CDI process to produce drinking water from seawater or saline water. PMID:24928455

  2. Enhanced thermoelectric performance of CdO : Ag nanocomposites.

    PubMed

    Gao, Linjie; Wang, Shufang; Liu, Ran; Zha, Xinyu; Sun, Niefeng; Wang, Shujie; Wang, Jianglong; Fu, Guangsheng

    2016-07-26

    CdO : Ag nanocomposites with metallic Ag nanoparticles embedded in the polycrystalline CdO matrix were synthesized by the solid-state reaction method. The addition of Ag led to increased grain boundaries of CdO and created numerous CdO/Ag interfaces. By incorporating Ag into the CdO matrix, the power factor was increased which was probably due to the carrier energy filtering effect induced by the enhanced energy-dependent scattering of electrons. In addition, reduced thermal conductivity was also achieved by stronger phonon scattering from grain boundaries, CdO/Ag interfaces and Ag nanoparticles. These concomitant effects resulted in enhanced ZT values for all CdO : Ag nanocomposites, demonstrating that the strategy of introducing metallic Ag nanoparticles into the CdO host was very effective in optimizing the thermoelectric performance. PMID:27411573

  3. Facile synthesis of sunlight-driven AgCI:Ag plasmonic nanophotocatalyst.

    SciTech Connect

    An, C.; Peng, S.; Sun, Y.; Center for Nanoscale Materials; Univ. of Illinois

    2010-06-18

    Highly efficient plasmonic photocatalysts of AgCl:Ag hybrid nanoparticles are successfully synthesized via a one-pot synthetic approach involving a precipitation reaction followed by polyol reduction. The as-synthesized nanoparticles exhibit high catalytic performance under visible light and sunlight for decomposing organics, such as methylene blue.

  4. Effects of TiO2 and Ag nanoparticles on polyhydroxybutyrate biosynthesis by activated sludge bacteria.

    PubMed

    Priester, John H; Van De Werfhorst, Laurie C; Ge, Yuan; Adeleye, Adeyemi S; Tomar, Shivira; Tom, Lauren M; Piceno, Yvette M; Andersen, Gary L; Holden, Patricia A

    2014-12-16

    Manufactured nanomaterials (MNMs) are increasingly incorporated into consumer products that are disposed into sewage. In wastewater treatment, MNMs adsorb to activated sludge biomass where they may impact biological wastewater treatment performance, including nutrient removal. Here, we studied MNM effects on bacterial polyhydroxyalkanoate (PHA), specifically polyhydroxybutyrate (PHB), biosynthesis because of its importance to enhanced biological phosphorus (P) removal (EBPR). Activated sludge was sampled from an anoxic selector of a municipal wastewater treatment plant (WWTP), and PHB-containing bacteria were concentrated by density gradient centrifugation. After starvation to decrease intracellular PHB stores, bacteria were nutritionally augmented to promote PHB biosynthesis while being exposed to either MNMs (TiO2 or Ag) or to Ag salts (each at a concentration of 5 mg L(-1)). Cellular PHB concentration and PhyloChip community composition were analyzed. The final bacterial community composition differed from activated sludge, demonstrating that laboratory enrichment was selective. Still, PHB was synthesized to near-activated sludge levels. Ag salts altered final bacterial communities, although MNMs did not. PHB biosynthesis was diminished with Ag (salt or MNMs), indicating the potential for Ag-MNMs to physiologically impact EBPR through the effects of dissolved Ag ions on PHB producers. PMID:25409530

  5. Facile synthesis of S-Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400.

    PubMed

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S-Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70-160 nm and lengths of 200-360 nm. X-ray diffraction of the S-Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag(+) plays an important role in controlling the size and morphology of the S-Ag nanocomposites. When the molar ratio of PVP to Ag(+) was 10:1, smaller sizes, better dispersibility and narrower distribution of S-Ag nanocomposites with diameters of 10-40 nm were obtained. The formation mechanism of the S-Ag nanocomposites was studied by designing a series of experiments using ultraviolet-visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag(+) becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S-Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S-Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles. PMID:27109417

  6. Plasmon enhanced CdS-quantum dot sensitized solar cell using ZnO nanorods array deposited with Ag nanoparticles as photoanode

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Ahmadi, V.; Yousefi rad, M.; Kohnehpoushi, S.

    2015-04-01

    CdS-quantum dot sensitized solar cell using ZnO nanorods (ZnO NRs) array deposited with Ag nanoparticles (Ag NPs) as photoanode was fabricated. Light absorption effect of Ag NPs on improvement of the cell performance was investigated. Performance improvement of metal nanoparticles (MNPs) was controlled by the structure design and architecture. Different decorations and densities of Ag NPs were utilized on the photoanode. Results showed that using 5% Ag NPs in the photoanode results in the increased efficiency, fill factor, and circuit current density from 0.28% to 0.60%, 0.22 to 0.29, and 2.18 mA/cm2 to 3.25 mA/cm2, respectively. Also, incident photon-to-current efficiencies (IPCE) results showed that cell performance improvement is related to enhanced absorption in the photoanode, which is because of the surface plasmonic resonance and light scattering of Ag NPs in the photoanode. Measurements of electrochemical impedance spectroscopy revealed that hole transfer kinetics increases with introduction of Ag NPs into photoanode. Also, it is shown that chemical capacitance increases with introduction of Ag NPs. Such increase can be attributed to the surface palsmonic resonance of Ag NPs which leads to absorption of more light in the photoanode and generation of more photoelectron in the photoanode.

  7. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.

    PubMed

    Fang, Hui; Zhang, Chang Xing; Liu, Luo; Zhao, Yong Mei; Xu, Hai Jun

    2015-02-15

    Multifunctional Ag nanoparticle-decorated TiO2 nanorod arrays were prepared by two simple processes. TiO2 nanorod arrays were first fabricated by the hydrothermal route and then Ag nanoparticles were decorated on the nanorods by the chemical reduction impregnation method. Three-dimensional Ag/TiO2 arrays were used as an active substrate for surface-enhanced Raman scattering (SERS). The results show that the detection limit for rhodamine 6G (R6G) was as low as 10(-7)M and the Raman enhancement factor was as large as 10(5). After calibrating the Raman peak intensities of R6G, it could be quantitatively detected. More importantly, the photocatalytic activity of TiO2 provides a self-cleaning capability to the SERS substrate, which can be recycled and used to degrade many Ag surface adsorbates such as R6G, methyl orange, Congo red, and methylene blue after exposure to visible light. The absorbed small molecules can all be rapidly and completely removed from the SERS substrate, which has been successfully reused four times without a decrease in accuracy or sensitivity. Our results reveal that the unique recyclable property not only paves a new way to solve the single-use problem of traditional SERS substrates but also provides more SERS platforms for multiple detections of other organic molecular species. PMID:25282397

  8. The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Zielińska-Jurek, Anna; Wei, Zhishun; Wysocka, Izabela; Szweda, Piotr; Kowalska, Ewa

    2015-10-01

    Ag-Pt-modified TiO2 nanocomposites were synthesized using the sol-gel method. Bimetallic modified TiO2 nanoparticles exhibited improved photocatalytic activity under visible-light irradiation, better than monometallic Ag/TiO2 and Pt/TiO2 nanoparticles (NPs). All modified powders showed localized surface plasmon resonance (LSPR) in visible region. The photocatalysts' characteristics by X-ray diffractometry (XRD), scanning transmission electron microscopy (STEM), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption (BET method for specific surface area) showed that sample with the highest photocatalytic activity had anatase structure, about 93 m2/g specific surface area, maximum plasmon absorption at ca. 420 nm and contained small NPs of silver of 6 nm and very fine platinum NPs of 3 nm. The photocatalytic activity was estimated by measuring the decomposition rate of phenol in 0.2 mM aqueous solution under Vis and UV/vis light irradiation. It was found that size of platinum was decisive for the photocatalytic activity under visible light irradiation, i.e., the smaller Pt NPs were, the higher was photocatalytic activity. While, antimicrobial activities, estimated for bacteria Escherichia coli and Staphylococcus aureus, and pathogenic fungi belonging to Candida family, were only observed for photocatalysts containing silver, i.e., Ag/TiO2 and Ag-Pt/TiO2 nanocomposites.

  9. Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels.

    PubMed

    Jiang, Xiaochun; Chen, Kun; Wang, Jing; Shao, Kang; Fu, Tao; Shao, Feng; Lu, Donglian; Liang, Jiangong; Foda, M Frahat; Han, Heyou

    2013-06-21

    A new electrochemical immunosensor based on solid-state voltammetry was fabricated for the detection of Escherichia coli (E. coli) by using graphene oxide-Ag nanoparticle composites (P-GO-Ag) as labels. To construct the platform, Au nanoparticles (AuNPs) were first self-assembled on an Au electrode surface through cysteamine and served as an effective matrix for antibody (Ab) attachment. Under a sandwich-type immunoassay format, the analyte and the probe (P-GO-Ag-Ab) were successively captured onto the immunosensor. Finally, the bonded AgNPs were detected through a solid-state redox process in 0.2 M of KCl solution. Combining the advantages of the high-loading capability of graphene oxide with promoted electron-transfer rate of AuNPs, this immunosensor produced a 26.92-fold signal enhancement compared with the unamplified protocol. Under the optimal conditions, the immunosensor exhibited a wide linear dependence on the logarithm of the concentration of E. coli ranging from 50 to 1.0 × 10(6) cfu mL(-1) with a detection limit of 10 cfu mL(-1). Moreover, as a practical application, the proposed immunosensor was used to monitor E. coli in lake water with satisfactory results. PMID:23662298

  10. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms

    NASA Astrophysics Data System (ADS)

    Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.

    2015-09-01

    We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.

  11. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    SciTech Connect

    Fujii, S.; Kawamura, S.; Maitani, M. M.; Suzuki, E.; Wada, Y.; Mochizuki, D.

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  12. Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: the importance of their dissolved fraction varying with preparation methods.

    PubMed

    Jo, Hun Je; Choi, Jae Woo; Lee, Sang Hyup; Hong, Seok Won

    2012-08-15

    A variety of methods to prepare nanoparticle suspensions have been employed for aquatic toxicity tests, although they can influence the dispersion property and subsequent toxicity of nanoparticles. Thus, in this study, we prepared stock suspensions of silver (Ag) and copper oxide (CuO) nanoparticles using different methods and compared their acute toxicity against Daphnia magna. The results showed that the dispersion method, filtration and initial concentration largely affected their toxicity, when the toxicity was expressed as the total concentrations of Ag and Cu. In case of Ag nanoparticles, the toxicity was also influenced by their different particle size. However, negligible differences in 24h-median effect concentration (EC(50)) values, which were calculated in terms of their dissolved concentrations, were observed. When expressing toxicity on the basis of dissolved concentrations, 24h-EC(50) values of the Ag and CuO nanoparticles were also found to be similar to those of the counterpart ionic species, i.e., Ag (as AgNO(3)) and Cu (as CuCl(2)·2H(2)O). These findings indicate that the dissolved fraction of nanoparticles largely contributes to their acute toxicity. Our results may help in establishing a useful guideline for preparing nanoparticle suspensions with reproducible toxicity. PMID:22682800

  13. Surface plasmon enhanced near-UV emission in monodispersed ZnO:Ag core-shell type nanoparticles synthesized by a wet chemical method

    NASA Astrophysics Data System (ADS)

    Jadhav, J.; Biswas, S.

    2016-03-01

    Monodispersed core-shell type ZnO:Ag nanoparticles were synthesized by a wet chemical method and their salient properties were reported. The synthesis technique explores a facile route following a chemical reaction between aqueous solutions of poly-vinyl alcohol (PVA), sucrose and Zn2+ salt. The Zn2+-PVA-sucrose polymer precursor powders so obtained after the reaction was further explored for the synthesis of ZnO:Ag nanoparticles. The key part of the process lies in the use of polymer encapsulated ZnO nanoparticles as templates to obtain the ZnO core-Ag shell type nanostructures. Structural, morphological and optical properties of the derived ZnO:Ag core-shell nanoparticles were evaluated with X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), Raman spectroscopy, UV-visible diffuse reflectance spectroscopy, and photoluminescence (PL) spectroscopy. Microstructural analysis revealed monodispersed platelet shaped ZnO nanoparticles with a thin layer of Ag coating on the surface. The surface modified ZnO nanoparticles show colossal enhancement in their near-UV emission characteristics, primarily due to the efficient excitation of surface plasmons and excellent semiconductor-metal interfacing in the ZnO:Ag nanoparticles.

  14. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells.

    PubMed

    Yun, Juyoung; Hwang, Sun Hye; Jang, Jyongsik

    2015-01-28

    Improving the light-harvesting properties of photoanodes is promising way to enhance the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). We synthesized Au@Ag core/shell nanoparticles decorated TiO2 hollow nanoparticles (Au@Ag/TiO2 HNPs) via sol-gel reaction and chemical deposition. The Au@Ag/TiO2 HNPs exhibited multifunctions from Au@Ag core/shell NPs (Au@Ag CSNPs) and TiO2 hollow nanoparticles (TiO2 HNPs). These Au@Ag CSNPs exhibited strong and broadened localized surface plasmon resonance (LSPR), together with a large specific surface area of 129 m(2) g(-1), light scattering effect, and facile oxidation-reduction reaction of electrolyte from TiO2 HNPs, which resulted in enhancement of the light harvesting. The optimum PCE of η = 9.7% was achieved for the DSSCs using photoanode materials based on TiO2 HNPs containing Au@Ag/TiO2 HNPs (0.2 wt % Au@Ag CSNPs with respect to TiO2 HNPs), which outperformed by 24% enhancement that of conventional photoanodes formed using P25 (η = 7.8%). PMID:25562329

  15. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.

    PubMed

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. PMID:27612736

  16. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization

    PubMed Central

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-01-01

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (106 ~ 109 Ω/◻). PMID:26839126

  17. Three Dimensional Hybrids of Vertical Graphene-nanosheet Sandwiched by Ag-nanoparticles for Enhanced Surface Selectively Catalytic Reactions

    PubMed Central

    Zhao, Jing; Sun, Mentao; Liu, Zhe; Quan, Baogang; Gu, Changzhi; Li, Junjie

    2015-01-01

    Three dimensional (3D) plasmonic nanostructure is perfect for the surface-enhanced Raman scattering (SERS) and also very suitable for surface catalytic reaction, but how to design and fabricate is still a robust task. Here, we show a 3D plasmonic nanohybrid of vertical graphene-nanosheet sandwiched by Ag-nanoparticles on the silicon nanocone array substrate for enhanced surface catalytic reaction. By SERS detection, we find that this hierarchical nanohybrid structure is highly efficient in the enhancement of catalytic reaction, even at a very low concentration of 10−11 M, which is far better than previous reports by four orders of magnitude. A strong electric field enhancement produced in the 3D framework nanohybrids of graphene nanosheet/Ag-nanoparticles is responsible for this great enhancement of catalytic reaction, due to larger electron collective oscillation in the composite system. Especially the oxygen adsorbed on the graphene and Ag nanoparticles can be excited to triplet excited states, and the electrons on the graphene and the nanoparticles can be effectively transferred to the oxygen, which plays very important role in molecular catalytic reactions. Our results demonstrate the contribution of graphene in plasmon-driven catalytic reactions, revealing a co-driven reaction process.This excellent SERS substrate can be used for future plasmon and graphene co-catalytic surface catalytic reactions, graphene-based surface plasmon sensors and so on. PMID:26522142

  18. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization.

    PubMed

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-01-01

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻). PMID:26839126

  19. Three Dimensional Hybrids of Vertical Graphene-nanosheet Sandwiched by Ag-nanoparticles for Enhanced Surface Selectively Catalytic Reactions

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Sun, Mentao; Liu, Zhe; Quan, Baogang; Gu, Changzhi; Li, Junjie

    2015-11-01

    Three dimensional (3D) plasmonic nanostructure is perfect for the surface-enhanced Raman scattering (SERS) and also very suitable for surface catalytic reaction, but how to design and fabricate is still a robust task. Here, we show a 3D plasmonic nanohybrid of vertical graphene-nanosheet sandwiched by Ag-nanoparticles on the silicon nanocone array substrate for enhanced surface catalytic reaction. By SERS detection, we find that this hierarchical nanohybrid structure is highly efficient in the enhancement of catalytic reaction, even at a very low concentration of 10-11 M, which is far better than previous reports by four orders of magnitude. A strong electric field enhancement produced in the 3D framework nanohybrids of graphene nanosheet/Ag-nanoparticles is responsible for this great enhancement of catalytic reaction, due to larger electron collective oscillation in the composite system. Especially the oxygen adsorbed on the graphene and Ag nanoparticles can be excited to triplet excited states, and the electrons on the graphene and the nanoparticles can be effectively transferred to the oxygen, which plays very important role in molecular catalytic reactions. Our results demonstrate the contribution of graphene in plasmon-driven catalytic reactions, revealing a co-driven reaction process.This excellent SERS substrate can be used for future plasmon and graphene co-catalytic surface catalytic reactions, graphene-based surface plasmon sensors and so on.

  20. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay.

    PubMed

    Motshekga, Sarah C; Ray, Suprakas S; Onyango, Maurice S; Momba, Maggie N B

    2013-11-15

    Composites of silver-zinc oxide nanoparticles supported on bentonite clay were synthesized by the microwave-assisted synthesis method for use as an antibacterial material. Silver nitrate was used as the precursor of silver nanoparticles while zinc oxide nanoparticles were commercially sourced. The composites were characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared (FTIR) and BET surface area measurements. XRD spectra showed peaks of silver confirming the formation of the silver and not of the silver nitrate or any other impurity of the metal. Meanwhile TEM confirmed the formation of silver and zinc oxide nanoparticles on the clay layers, with particle sizes ranging from 9-30 nm and 15-70 nm, respectively. The antibacterial activities of the composites were evaluated against Gram negative Escherichia coli bacteria and Gram positive Enterococcus faecalis bacteria by the disc diffusion method. Whereas both composites of Ag-clay and ZnO-clay showed good antibacterial activity against bacteria, a better antibacterial activity was observed with Ag/ZnO-clay composite. The results therefore reveal that Ag/ZnO-clay composite is a promising bactericide that can be used for deactivating microbes in water. PMID:24076479

  1. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization

    NASA Astrophysics Data System (ADS)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-01

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (106 ~ 109 Ω/◻).

  2. Enhancement of photoluminescence of different quantum dots by Ag@SiO{sub 2} core–shell nanoparticles

    SciTech Connect

    Chang, Ya-Hsing; Lu, Yu-Chieh; Chou, Kan-Sen

    2013-06-01

    Highlights: ► Enhancement effects of CdS/ZnS, Cd{sub 0.3}Pb{sub 0.7}S and ZnS QDs linked to Ag@SiO{sub 2} nanoparticles were studied. ► There existed an optimal thickness of SiO{sub 2} shell on the enhancement. ► The enhancement factor was in the range of 2.5–3 for CdS/ZnS and Cd{sub 0.3}Pb{sub 0.7}S QDs. ► The PL intensity of ZnS QD was totally quenched due to absorption by silver particles. - Abstract: The enhancement of photoluminescence of several quantum dots, namely CdS/ZnS, Cd{sub 0.3}Pb{sub 0.7}S and pure ZnS, by Ag@SiO{sub 2} core–shell nanoparticles is studied and reported in this work. 3-Aminopropyltriethoxysilane (APS) was used to link QDs to the core–shell nanoparticles. For CdS/ZnS, the Ag@SiO{sub 2} nanoparticles showed a maximum enhancement of about 2.5 due to surface plasmon resonance of silver particles when the shell thickness was 16 nm. When the shell thickness increased to 30 nm, the enhancement effect became negligible. Conversely, when the thickness decreased to 6 nm, the effect was also smaller due to possible capture of excited electrons by silver particles. For Cd{sub 0.3}Pb{sub 0.7}S, a similar enhancement effect was observed. However when pure ZnS was the QD, the photoluminescence went zero after the QD was linked to Ag@SiO{sub 2} nanoparticles. This was caused by the fact that for ZnS QDs, the emission wavelength was 415 nm, which also corresponds to the absorbance peak of silver particles.

  3. Extracellular Polymeric Substances (EPS) of Freshwater Biofilms Stabilize and Modify CeO2 and Ag Nanoparticles

    PubMed Central

    Kroll, Alexandra; Behra, Renata; Kaegi, Ralf; Sigg, Laura

    2014-01-01

    Streams are potential receiving compartments for engineered nanoparticles (NP). In streams, NP may remain dispersed or settle to the benthic compartment. Both dispersed and settling NP can accumulate in benthic biofilms called periphyton that are essential to stream ecosystems. Periphytic organisms excrete extracellular polymeric substances (EPS) that interact with any material reaching the biofilms. To understand the interaction of NP with periphyton it is therefore crucial to study the interaction of NP with EPS. We investigated the influence of EPS on the physicochemical properties of selected NP (CeO2, Ag) under controlled conditions at pH 6, 7.6, 8.6 and light or dark exposure. We extracted EPS from five different periphyton communities, characterized the extracts, and exposed CeO2 and carbonate-stabilized Ag NP (0.5 and 5 mg/L, both 25 nm primary particle size) and AgNO3 to EPS (10 mg/L) over two weeks. We measured NP size distribution, shape, primary particle size, surface plasmon resonance, and dissolution. All EPS extracts were composed of biopolymers, building blocks of humic substances, low molecular weight (Mr) acids, and small amphiphilic or neutral compounds in varying concentrations. CeO2 NP were stabilized by EPS independent of pH and light/dark while dissolution increased over time in the dark at pH 6. EPS induced a size increase in Ag NP in the light with decreasing pH and the formation of metallic Ag NP from AgNO3 at the same conditions via EPS-enhanced photoreduction. NP transformation and formation were slower in the extract with the lowest biopolymer and low Mr acid concentrations. Periphytic EPS in combination with naturally varying pH and light/dark conditions influence the properties of the Ag and CeO2 NP tested and thus the exposure conditions within biofilms. Our results indicate that periphytic organisms may be exposed to a constantly changing mixture of engineered and naturally formed Ag NP and Ag+. PMID:25333364

  4. Extracellular polymeric substances (EPS) of freshwater biofilms stabilize and modify CeO2 and Ag nanoparticles.

    PubMed

    Kroll, Alexandra; Behra, Renata; Kaegi, Ralf; Sigg, Laura

    2014-01-01

    Streams are potential receiving compartments for engineered nanoparticles (NP). In streams, NP may remain dispersed or settle to the benthic compartment. Both dispersed and settling NP can accumulate in benthic biofilms called periphyton that are essential to stream ecosystems. Periphytic organisms excrete extracellular polymeric substances (EPS) that interact with any material reaching the biofilms. To understand the interaction of NP with periphyton it is therefore crucial to study the interaction of NP with EPS. We investigated the influence of EPS on the physicochemical properties of selected NP (CeO2, Ag) under controlled conditions at pH 6, 7.6, 8.6 and light or dark exposure. We extracted EPS from five different periphyton communities, characterized the extracts, and exposed CeO2 and carbonate-stabilized Ag NP (0.5 and 5 mg/L, both 25 nm primary particle size) and AgNO3 to EPS (10 mg/L) over two weeks. We measured NP size distribution, shape, primary particle size, surface plasmon resonance, and dissolution. All EPS extracts were composed of biopolymers, building blocks of humic substances, low molecular weight (Mr) acids, and small amphiphilic or neutral compounds in varying concentrations. CeO2 NP were stabilized by EPS independent of pH and light/dark while dissolution increased over time in the dark at pH 6. EPS induced a size increase in Ag NP in the light with decreasing pH and the formation of metallic Ag NP from AgNO3 at the same conditions via EPS-enhanced photoreduction. NP transformation and formation were slower in the extract with the lowest biopolymer and low Mr acid concentrations. Periphytic EPS in combination with naturally varying pH and light/dark conditions influence the properties of the Ag and CeO2 NP tested and thus the exposure conditions within biofilms. Our results indicate that periphytic organisms may be exposed to a constantly changing mixture of engineered and naturally formed Ag NP and Ag+. PMID:25333364

  5. A simple and large-scale strategy for the preparation of Ag nanoparticles supported on resin-derived carbon and their antibacterial properties

    NASA Astrophysics Data System (ADS)

    Wang, Baoli; Tian, Chungui; Zheng, Chunying; Wang, Lei; Fu, Honggang

    2009-01-01

    A simple strategy was developed for preparing stable Ag nanoparticles supported on carbon by carbonizing Ag+/acrylic acid type ion-exchange resin complexes under N2 atmosphere. The products were characterized by x-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-visible absorption spectroscopy. The results indicated that the Ag nanoparticles were well dispersed on the surface of carbon, and their size could be regulated by tuning the carbonization temperature. The antibacterial assay showed that the Ag/C composites possess good antibacterial properties that are determined largely by the Ag particle size. Furthermore, the composites are very stable and they do not show obviously change even after storing at ambient conditions for more than one year.

  6. Identifying and rationalizing the morphological, structural, and optical properties of {\\boldsymbol{\\beta }}-Ag2MoO4 microcrystals, and the formation process of Ag nanoparticles on their surfaces: combining experimental data and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Fabbro, Maria T.; Saliby, Carla; Rios, Larissa R.; La Porta, Felipe A.; Gracia, Lourdes; Li, Máximo S.; Andrés, Juan; Santos, Luís P. S.; Longo, Elson

    2015-12-01

    We present a combined theoretical and experimental study on the morphological, structural, and optical properties of β-Ag2MoO4 microcrystals. β-Ag2MoO4 samples were prepared by a co-precipitation method. The nucleation and formation of Ag nanoparticles on β-Ag2MoO4 during electron beam irradiation were also analyzed as a function of electron beam dose. These events were directly monitored in real-time using in situ field emission scanning electron microscopy (FE-SEM). The thermodynamic equilibrium shape of the β-Ag2MoO4 crystals was built with low-index surfaces (001), (011), and (111) through a Wulff construction. This shape suggests that the (011) face is the dominating surface in the ideal morphology. A significant increase in the values of the surface energy for the (011) face versus those of the other surfaces was observed, which allowed us to find agreement between the experimental and theoretical morphologies. Our investigation of the different morphologies and structures of the β-Ag2MoO4 crystals provided insight into how the crystal morphology can be controlled so that the surface chemistry of β-Ag2MoO4 can be tuned for specific applications. The presence of structural disorder in the tetrahedral [MoO4] and octahedral [AgO6] clusters, the building blocks of β-Ag2MoO4, was used to explain the experimentally measured optical properties.

  7. Enhanced ferroelectric photoelectrochemical properties of polycrystalline BiFeO3 film by decorating with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Zhou, Yang; You, Lu; Wang, Junling; Shen, Mingrong; Fang, Liang

    2016-01-01

    Polycrystalline BiFeO3 (BFO) films are fabricated on Pt/Ti/SiO2/Si(100) substrate as photoelectrode using sol-gel method. The microstructure, optical, and photoelectrochemical (PEC) properties of the films are characterized and optimized by controlling the film thickness. Moreover, the PEC properties of the BFO films are dependent on ferroelectric polarization, which is mainly ascribed to the modulation of band structure at the BFO/electrolyte interface by the polarization. Further enhancement of PEC properties is obtained by decorating the samples with appropriate amounts of Ag nanoparticles, which is attributed to the reduced electron-hole recombination, and localized surface plasmon resonance effect of Ag nanoparticles.

  8. Random lasing in Eu3+ doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation

    NASA Astrophysics Data System (ADS)

    Xu, Xuhui; Zhang, Wenfei; Jin, Limin; Qiu, Jianbei; Yu, Siu Fung

    2015-10-01

    We report the observation of random lasing from Eu3+ doped borate glass ceramic films embedded with Ag nanoparticles through three-photon absorption at room temperature. Under 1179 nm ultrashort femtosecond pulse excitation, discrete sharp peaks with linewidth ~0.4 nm emerge randomly from a broad emission band with peak wavelength at ~612 nm. In addition, the number of sharp peaks increases with the increase of excitation power. We also show that the emission spectrum varies with different observation angles and the corresponding lasing threshold is dependent on the excitation area. Hence, we verify unambiguously that the Eu3+ doped borate glass ceramic film supports random lasing action via three-photon absorption excitation. In addition, Ag nanoparticles, which act as light scatterers, allow the formation of random microcavities inside the bulk film.

  9. Sensitive electrochemical detection of copper ions based on the copper(II) ion assisted etching of Au@Ag nanoparticles.

    PubMed

    Wu, Tianxiang; Xu, Teng; Ma, Zhanfang

    2015-12-01

    A new sensitive electrochemical sensor for the detection of copper ions based on the copper ion assisted etching of Au@Ag nanoparticles was developed in this work. Since copper ions could greatly catalyze the etching process of the silver shell of Au@Ag nanoparticles in the presence of thiosulfate solutions, leading to an obvious decrease of the linear sweep voltammetry (LSV) signals of silver, the concentration of the copper ions, therefore, can be measured. Under the optimized conditions, the electrochemical sensor exhibited excellent sensitivity and selectivity for Cu(2+), with wide linear ranges of 1 nM to 100 μM, and the detection limit of 0.3 nM. In addition, this method was successfully applied for the analysis of Cu(2+) in river water and exhibited good analytical performance. PMID:26501137

  10. Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon

    PubMed Central

    2014-01-01

    Due to the localized surface plasmon (LSP) effect induced by Ag nanoparticles inside black silicon, the optical absorption of black silicon is enhanced dramatically in near-infrared range (1,100 to 2,500 nm). The black silicon with Ag nanoparticles shows much higher absorption than black silicon fabricated by chemical etching or reactive ion etching over ultraviolet to near-infrared (UV-VIS-NIR, 250 to 2,500 nm). The maximum absorption even increased up to 93.6% in the NIR range (820 to 2,500 nm). The high absorption in NIR range makes LSP-enhanced black silicon a potential material used for NIR-sensitive optoelectronic device. PACS 78.67.Bf; 78.30.Fs; 78.40.-q; 42.70.Gi PMID:25285058

  11. Colorimetric Detection of an Airborne Remote Photocatalytic Reaction Using a Stratified Ag Nanoparticle Sheet.

    PubMed

    Degawa, Ryo; Wang, Pangpang; Tanaka, Daisuke; Park, Susie; Sakai, Nobuyuki; Tatsuma, Tetsu; Okamoto, Koichi; Tamada, Kaoru

    2016-08-16

    Photocatalysts are practically used for decomposition of harmful and fouling organic compounds. Among the photocatalytic reactions, remote oxidation via airborne species is a relatively slow process, so that a sensitive technique for its detection has been awaiting. Here, we investigated an airborne remote photocatalytic reaction of a TiO2 photocatalyst modified with Pt nanoparticles as co-catalysts via the color change caused by a decomposition of a multilayered silver nanoparticle sheet. The silver nanoparticle sheet fabricated by the Langmuir-Schaefer method on a gold substrate exhibits a unique multicolor depending upon the number of layers. The color originates from multiple light trapping in the stratified sheets that has a metamaterial characteristic along with an intra- and interlayer coupling of localized surface plasmon resonance (LSPR). The stepwise decomposition of the sheets was confirmed by the colorimetric data, which exhibited not only a monotonic decrease but also a maximized absorption of light when the film thickness reached the optimal thickness for light trapping or when the oxidation of the Ag core started. Scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and surface plasmon resonance (SPR) spectroscopy data provided a complete view of the decomposition process of this inorganic-organic nanocomposite film, and simulation by the transfer-matrix method explained a simultaneous plasmonic response rationally. The influence of the humidity and gas flow rate on the airborne remote photocatalytic reaction kinetics was examined by this colorimetric detection method, and it suggests that H2O in air plays an essential role in the reaction. PMID:27445001

  12. Chromatographic analysis of phytochemicals components present in mangifera indica leaves for the synthesis of silver nanoparticles by AgNO3 reduction

    NASA Astrophysics Data System (ADS)

    Martínez-Bernett, D.; Silva-Granados, A.; Correa-Torres, S. N.; Herrera, A.

    2016-02-01

    It was studied the green synthesis of silver nanoparticles (AgNPs) from the reduction of a silver nitrate solution (1 and 10mM) in the presence of an extract of mangifera indica leaves. Phytochemicals components present in extracts of mango leaves were determined using a GC-MS chromatograph. The results showed the presence of the phenolic compound pyrogallol (26.9% wt/5mL of extract) and oleic acid (29.1% wt/5mL of extract), which are useful for the reduction of the metallic salt AgNO3 and the stabilization of silver nanoparticles. The synthesized nanoparticles were characterized by UV visible spectroscopy (UV-vis), evidencing absorbances at wavelengths of 417nm (AgNPs-1) and 414nm (AgNPs- 10), which are characteristic peaks of this metallic nanoparticles. Scanning Electron Microscopy (SEM) was used to determine the size of the synthesized nanoparticles. A particle size of about 28±7nm was observed for the AgNPs-1 sample and 26±5nm for the AgNPs-10. This suggests the advantages of green chemistry to obtain silver nanoparticles with a narrow size distribution.

  13. Y{sub 2}O{sub 3}:Eu{sup 3+} (5 mol%) with Ag nanoparticles prepared by citrate precursor

    SciTech Connect

    Ferrari, J.L.; Cebim, M.A.; Pires, A.M.; Couto dos Santos, M.A.

    2010-09-15

    Y{sub 2}O{sub 3}:Eu{sup 3+} (5 mol% Eu{sup 3+}) and Y{sub 2}O{sub 3}:Eu{sup 3+} (5 mol% Eu{sup 3+}) containing 1 mol% of Ag nanoparticles were prepared by heat treatment of a viscous resin obtained via citrate precursor. TEM and EDS analyses showed that Y{sub 2}O{sub 3}:Eu{sup 3+} (5 mol% Eu{sup 3+}) is formed by nanoparticles with an average size of 12 nm, which increases to 30 nm when Ag is present because the effect of metal induced crystallization occurs. Ag nanoparticles with a size of 9 nm dispersed in Y{sub 2}O{sub 3}:Eu{sup 3+} (5 mol% Eu{sup 3+}) were obtained and the surface plasmon effect on Ag nanoparticles was observed. The emission around 612 nm assigned to the Eu{sup 3+} ({sup 5}D{sub 0{yields}}{sup 7}F{sub 2}) transition enhanced when the Ag nanoparticles were present in the Y{sub 2}O{sub 3}:Eu{sup 3+} luminescent material. - Graphical abstract: The presence of Ag nanoparticles together Y{sub 2}O{sub 3}:Eu{sup 3+} 5 mol% phosphor showed to affect directly the optical and crystallinity of the material. Luminescence spectra show directly the effect observed.

  14. In Situ Photocatalytic Synthesis of Ag Nanoparticles (nAg) by Crumpled Graphene Oxide Composite Membranes for Filtration and Disinfection Applications.

    PubMed

    Jiang, Yi; Liu, Di; Cho, Minjung; Lee, Seung Soo; Zhang, Fuzhong; Biswas, Pratim; Fortner, John D

    2016-03-01

    Graphene oxide (GO) materials have demonstrated considerable potential in next-generation water treatment membrane-based technologies, which include antimicrobial applications. GO antimicrobial properties can be further enhanced by preloading or chemically generating surface-associated nanoscale silver particles (nAg). However, for these systems, enhanced antimicrobial functionality decreases over time as a function of Ag mass loss via dissolution (as Ag(+)). In this work, we demonstrate facile photocatalytic in situ synthesis of nAg particles by crumpled GO-TiO2 (GOTI) nanocomposites as an approach to (re)generate, and thus maintain, enhanced antimicrobial activity over extended operation times. The described photocatalytic formation process is highly efficient and relatively fast, producing nAg particles over a size range of 40 to 120 nm and with active (111) planes. Additionally, we show in situ surface-based photocatalyzed synthesis of nAg particles at the surface of GOTI nanocomposite membrane assemblies, allowing for simultaneous filtration and disinfection. With ca. 3 log inactivation for both Escherichia coli and Bacillus subtilis, the described membrane assemblies with in situ formed nAg demonstrate enhanced antimicrobial activity compared to the GOTI membrane surface or the support membrane alone. Under typical conditions, the working and operational time (Ag dissolution time) is calculated to be over 2 orders of magnitude higher than the loading (synthesis) time (e.g., 123 h versus 0.5 h, respectively). Taken together, results highlight the described material-based process as a potentially novel antifouling membrane technology. PMID:26824511

  15. Rapid chromatographic separation of dissoluble Ag(I) and silver-containing nanoparticles of 1-100 nanometer in antibacterial products and environmental waters.

    PubMed

    Zhou, Xiao-Xia; Liu, Rui; Liu, Jing-Fu

    2014-12-16

    Sensitive and rapid methods for speciation analysis of nanoparticulate Ag (NAg) and Ag(I) in complex matrices are urgently needed for understanding the environmental effects and biological toxicity of silver nanoparticles (AgNPs). Herein we report the development of a universal liquid chromatography (LC) method for rapid and high resolution separation of dissoluble Ag(I) from nanoparticles covering the entire range of 1-100 nm in 5 min. By using a 500 Å poresize amino column, and an aqueous mobile phase containing 0.1% (v/v) FL-70 (a surfactant) and 2 mM Na2S2O3 at a flow rate of 0.7 mL/min, all the nanoparticles of various species such as Ag and Ag2S were eluted in one fraction, while dissoluble Ag(I) was eluted as a baseline separated peak. The dissoluble Ag(I) was quantified by the online coupled ICP-MS with a detection limit of 0.019 μg/L. The NAg was quantified by subtracting the dissoluble Ag(I) from the total Ag content, which was determined by ICP-MS after digestion of the sample without LC separation. While the addition of FL-70 and Na2S2O3 into the mobile phase is essential to elute NAg and Ag(I) from the column, the use of 500 Å poresize column is the key to baseline separation of Ag(I) from ∼ 1 nm AgNPs. The feasibility of the proposed method was demonstrated in speciation analysis of dissoluble Ag(I) and NAg in antibacterial products and environmental waters, with very good chromatographic repeatability (relative standard deviations) in both peak area (<2%) and retention time (<0.6%), excellent spiked recoveries in the range of 84.7-102.7% for Ag(I) and 81.3-106.3% for NAg. Our work offers a novel approach to rapid and baseline separation of dissoluble metal ions from their nanoparticulate counterparts covering the whole range of 1-100 nm. PMID:25417798

  16. Plasmonic TiO2/AgBr/Ag ternary composite nanosphere with heterojunction structure for advanced visible light photocatalyst

    NASA Astrophysics Data System (ADS)

    Dai, Kai; Li, Dongpei; Lu, Luhua; Liu, Qi; Liang, Changhao; Lv, Jiali; Zhu, Guangping

    2014-09-01

    In this work, TiO2/AgBr/Ag ternary composite nanosphere photocatalyst has been synthesized by in situ deposition of AgBr onto hollow spherical TiO2 template and followed by sun light reduction of AgBr into AgBr/Ag. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images have shown that the diameter of hollow TiO2 nanospheres is 250-350 nm and AgBr/Ag nanoparticles are well dispersed on the outer surface of TiO2 nanosphere. UV-vis spectrum analysis has shown largely improved visible light absorption of this ternary composite, in comparison to pure TiO2 and AgBr. The building-in AgBr/Ag, TiO2/AgBr and TiO2/Ag junctions within the ternary composite enhanced the visible light absorption because of plasmonic resonance and narrow bandgap. The pseudo-first-order rate constant kapp of the TiO2/AgBr/Ag ternary composite for methylene blue photodegradation displays 24.5 times and 3.3 times than the pure TiO2 nanosphere and AgBr/Ag nanoparticles, respectively. Furthermore, the stability of TiO2/AgBr/Ag ternary composite is characterized through cyclic photocatalytic test. Results indicate that 92.7% of photocatalytic degradation can be achieved by TiO2/AgBr/Ag ternary composite even after five recycles.

  17. Core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses: Preparation and their effects on photoluminescence of lanthanide complexes

    SciTech Connect

    Kang, Jie; Li, Yuan; Chen, Yingnan; Wang, Ailing; Yue, Bin; Qu, Yanrong; Zhao, Yongliang; Chu, Haibin

    2015-11-15

    Highlights: • Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses were prepared via the Stöber process. • Sm and Dy complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. • The complex-doped Ag@SiO{sub 2} composites show stronger luminescent intensities than pure complexes. • The luminescent intensities of the composites strongly depend on the SiO{sub 2} shell thickness. - Abstract: Three kinds of almost spherical core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses (10, 25 and 80 nm) were prepared via the Stöber process. The Ag core nanoparticles were prepared by reducing silver nitrate with sodium citrate. The size, morphology and structure of core–shell Ag@SiO{sub 2} nanoparticles were characterized by transmission electron microscopy. Subsequently, eight kinds of lanthanide complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. The composition of the lanthanide complexes was characterized by elemental analysis, IR and UV spectra. Finally, lanthanide complexes were attached to the surface of Ag@SiO{sub 2} nanoparticles to form lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites. The results show that the complex-doped Ag@SiO{sub 2} nanocomposites display much stronger luminescence intensities than the lanthanide complexes. Furthermore, the luminescence intensities of the lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites with SiO{sub 2} shell thickness of 25 nm are stronger than those of the nanocomposites with SiO{sub 2} shell thickness of 10 and 80 nm.

  18. Spectroscopic investigations on the interactions of AgTiO2 nanoparticles with lysozyme and its influence on the binding of lysozyme with drug molecule

    NASA Astrophysics Data System (ADS)

    Revathi, R.; Rameshkumar, A.; Sivasudha, T.

    2016-01-01

    Binding of lysozyme with AgTiO2 nanoparticles was analyzed by using absorption, fluorescence, time resolved and synchronous fluorescence measurements. In the presence of AgTiO2 nanoparticles, the fluorescence intensity of lysozyme was decreased. Static type of binding was confirmed through lifetime and ground state absorption measurements. From the fluorescence quenching data, the binding constant and the number of binding sites were found to be 1.5 × 104 M-1 and 1.03, respectively. From the synchronous fluorescence spectroscopic measurements, tryptophan residue in lysozyme was found to have interaction with the nanoparticles. Further, the influence of AgTiO2 nanoparticles on the binding strength of lysozyme with a drug molecule was analyzed through fluorescence quenching methods. The presence of nanoparticles decreases the binding capability of drug with protein. Overall, the observed results will provide basic insights on the utilization of nanoparticles in drug delivery applications.

  19. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film.

    PubMed

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-22

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance. PMID:26939539

  20. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film

    NASA Astrophysics Data System (ADS)

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-01

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance.

  1. Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Li, Tao; Chen, Qianqian; Gao, Jiabing; Fan, Bingbing; Li, Jian; Li, Xinjian; Zhang, Rui; Sun, Jing; Gao, Lian

    2012-08-01

    The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in situ. WO3 nanocrystals with various shapes (i.e., nanoplates, nanorods, and nanoparticles) were used as the substrates to synthesize Ag/AgCl@WO3 photocatalysts, and the effects of the WO3 contents and photoreduction times on their visible-light-driven photocatalytic performance were investigated. The techniques of TEM, SEM, XPS, EDS, XRD, N2 adsorption-desorption and UV-vis DR spectra were used to characterize the compositions, phases and microstructures of the samples. The RhB aqueous solutions were used as the model system to estimate the photocatalytic performance of the as-obtained Ag/AgCl@WO3 nanostructures under visible light (λ >= 420 nm) and sunlight. The results indicated that the hierarchical Ag/AgCl@plate-WO3 photocatalyst has a higher photodegradation rate than Ag/AgCl, AgCl, AgCl@WO3 and TiO2 (P25). The contents and morphologies of the WO3 substrates in the Ag/AgCl@plate-WO3 photocatalysts have important effects on their photocatalytic performance. The related mechanisms for the enhancement in visible-light-driven photodegradation of RhB molecules were analyzed.The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in

  2. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting

    NASA Astrophysics Data System (ADS)

    Ge, Ming-Zheng; Cao, Chun-Yan; Li, Shu-Hui; Tang, Yu-Xin; Wang, Lu-Ning; Qi, Ning; Huang, Jian-Ying; Zhang, Ke-Qin; Al-Deyab, S. S.; Lai, Yue-Kun

    2016-02-01

    An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ >= 420 nm). It was found that the hydrogen production rate of the Ag@TiO2 NTAs prepared with ultrasonication-assisted deposition for 5 min was approximately 15 times higher than that of its pristine TiO2 NTAs counterpart. The highly efficient photocatalytic hydrogen evolution is attributed to the SPR effect of Ag for enhanced visible light absorption and boosting the photogenerated electron-hole separation/transfer. This strategy is promising for the design and construction of high efficiency TiO2 based photocatalysts for solar energy conversion.An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ >= 420 nm

  3. Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: An interlaboratory case study.

    PubMed

    Heinlaan, Margit; Muna, Marge; Knöbel, Melanie; Kistler, David; Odzak, Niksa; Kühnel, Dana; Müller, Josefine; Gupta, Govind Sharan; Kumar, Ashutosh; Shanker, Rishi; Sigg, Laura

    2016-09-01

    Engineered nanoparticles (NPs) have realistic potential of reaching natural waterbodies and of exerting toxicity to freshwater organisms. The toxicity may be influenced by the composition of natural waters as crucial NP properties are influenced by water constituents. To tackle this issue, a case study was set up in the framework of EU FP7 NanoValid project, performing an interlaboratory hazard evaluation of NPs in natural freshwater. Ag and CuO NPs were selected as model NPs because of their potentially high toxicity in the freshwater. Daphnia magna (OECD202) and Danio rerio embryo (OECD236) assays were used to evaluate NP toxicity in natural water, sampled from Lake Greifen and Lake Lucerne (Switzerland). Dissolution of the NPs was evaluated by ultrafiltration, ultracentrifugation and metal specific sensor bacteria. Ag NP size was stable in natural water while CuO NPs agglomerated and settled rapidly. Ag NP suspensions contained a large fraction of Ag(+) ions and CuO NP suspensions had low concentration of Cu(2+) ions. Ag NPs were very toxic (48 h EC50 1-5.5 μg Ag/L) to D. magna as well as to D. rerio embryos (96 h EC50 8.8-61 μg Ag/L) in both standard media and natural waters with results in good agreement between laboratories. CuO NP toxicity to D. magna differed significantly between the laboratories with 48 h EC50 0.9-11 mg Cu/L in standard media, 5.7-75 mg Cu/L in Lake Greifen and 5.5-26 mg Cu/L in Lake Lucerne. No toxicity of CuO NP to zebrafish embryos was detected up to 100 mg/L independent of the medium used. The results show that Ag and CuO NP toxicity may be higher in natural water than in the standard media due to differences in composition. NP environmental hazard evaluation can and should be carried out in natural water to obtain more realistic estimates on the toxicity. PMID:27357482

  4. Dual layer hollow fiber PVDF ultra-filtration membranes containing Ag nano-particle loaded zeolite with longer term anti-bacterial capacity in salt water.

    PubMed

    Shi, Huyan; Xue, Lixin; Gao, Ailin; Zhou, Qingbo

    2016-01-01

    Dual layer polyvinylidene fluoride (PVDF), antibacterial, hollow fiber, ultra-filtration composite membranes with antibacterial particles (silver (Ag) nano-particles loaded zeolite (Z-Ag)) in the outer layer were prepared with high water flux and desired pore sizes. The amounts of Ag(+) released from the composite membranes, freshly made and stored in water and salt solution, were measured. The result indicated that dual layer PVDF antibacterial hollow fiber containing Z-Ag (M-1-Ag) still possessed the ability of continuous release of Ag(+) even after exposure to water with high ionic content, showing a longer term resistance to bacterial adhesion and antibacterial activity than membrane doped with Z-Ag(+) (M-1). Results from an anti-adhesion and bacteria killing test with Escherichia coli supported that the antibacterial efficiency of dual hollow fiber PVDF membranes with Z-Ag was much higher than those with Z-Ag(+) after long time storage in water or exposure to phosphate buffered saline (PBS) solution. This novel hollow fiber membrane may find applications in constructing sea water pretreatment devices with long term antifouling capability for the desalination processes. PMID:27148717

  5. β-Cyclodextrin coated SiO₂@Au@Ag core-shell nanoparticles for SERS detection of PCBs.

    PubMed

    Lu, Yilin; Yao, Guohua; Sun, Kexi; Huang, Qing

    2015-09-01

    A new type of surface-enhanced Raman scattering (SERS) substrate consisting of β-cyclodextrin (β-CD) coated SiO2@Au@Ag nanoparticles (SiO2@Au@Ag@CD NPs) has been achieved. Our protocol was a simplified approach as the fabrication and modification of the silver shell were realized in a single-step reaction by taking advantage of β-CD as both the reducing and stabilizing agents. The as-synthesized SiO2@Au@Ag@CD NPs were uniform in size and demonstrated high SERS activity and reproducibility. The substrates consisting of the SiO2@Au@Ag@CD NPs were employed for SERS detection of polychlorinated biphenyls (PCBs) including PCB-3, PCB-29 and PCB-77. The SERS detection sensitivity was significantly improved due to enrichment of more PCB molecules captured by β-CD on the substrate surface, as confirmed by the appearance of the new Raman bands which are attributed to the complexes between β-CD and PCBs according to the theoretical simulation. Therefore, this work presents a novel approach to the fabrication of effective SERS substrates that can be employed for rapid determination of trace amounts of PCBs in the environment with high detection sensitivity and recognition selectivity. PMID:25478906

  6. Amperometric detection of Sudan I in red chili powder samples using Ag nanoparticles decorated graphene oxide modified glassy carbon electrode.

    PubMed

    Prabakaran, E; Pandian, K

    2015-01-01

    A simple and sensitive electrochemical method was developed to determine the concentration of Sudan I in chili powder based on silver nanoparticles decorated graphene oxide modified glassy carbon electrode (AgNPs@GO/GCE). The voltammetry behaviour of Sudan I on modified GCE was investigated in phosphate buffer medium (PBS) with various pH ranges and the electron transfer properties were studied. It is found that the AgNPs@GO/GCE can catalyse the reduction of azo group, -N=N- followed by electrochemical oxidation of (-)OH group present in Sudan I dye molecule. Quantitative detection of Sudan I present in food products was carried out by amperometry method in which reduction potential was fixed at -0.77 V vs. Ag/AgCl. The amperometry method showed an excellent performance with a sensitivity of 6.83 μA mM(-1) and a detection limit of 11.4 × 10(-7)ML(-1). A linear calibration graph was constructed in the ranging 3.90 × 10(-6) to 3.19 × 10(-5)ML(-1). The method was successfully applied for the determination of Sudan I in red chili powder samples. PMID:25053046

  7. Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates.

    PubMed

    Wang, Zhiwei; Meng, Guowen; Huang, Zhulin; Li, Zhongbo; Zhou, Qitao

    2014-12-21

    We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS "hot spots" are generated from the electromagnetic coupling of the densely distributed Ag-NPs, and the semiconducting ZnO-mesoporous-NSs also have chemical supporting enhancement and distinct molecule adsorbing abilities, the composite SERS-substrates demonstrate high SERS-sensitivity with good signal reproducibility. As a trial for potential applications, the composite SERS-substrates were used to identify pesticides and highly toxic polychlorinated biphenyls (PCBs), and low concentrations down to 10(-7) M for methyl parathion and 5 × 10(-6) M for PCB-77 were reached, respectively, showing promising potential for the SERS-based rapid detection of toxic organic pollutants in the environment. PMID:25382607

  8. Silver Nanoparticles Entering Soils via the Wastewater-Sludge-Soil Pathway Pose Low Risk to Plants but Elevated Cl Concentrations Increase Ag Bioavailability.

    PubMed

    Wang, Peng; Menzies, Neal W; Dennis, Paul G; Guo, Jianhua; Forstner, Christian; Sekine, Ryo; Lombi, Enzo; Kappen, Peter; Bertsch, Paul M; Kopittke, Peter M

    2016-08-01

    The widespread use of silver nanoparticles (Ag-NPs) results in their movement into wastewater treatment facilities and subsequently to agricultural soils via application of contaminated sludge. On-route, the chemical properties of Ag may change, and further alterations are possible upon entry to soil. In the present study, we examined the long-term stability and (bio)availability of Ag along the "wastewater-sludge-soil" pathway. Synchrotron-based X-ray absorption spectroscopy (XAS) revealed that ca. 99% of Ag added to the sludge reactors as either Ag-NPs or AgNO3 was retained in sludge, with ≥79% of this being transformed to Ag2S, with the majority (≥87%) remaining in this form even after introduction to soils at various pH values and Cl concentrations for up to 400 days. Diffusive gradients in thin films (DGT), chemical extraction, and plant uptake experiments indicated that the potential (bio)availability of Ag in soil was low but increased markedly in soils with elevated Cl, likely due to the formation of soluble AgClx complexes in the soil solution. Although high Cl concentrations increased the bioavailability of Ag markedly, plant growth was not reduced in any treatment. Our results indicate that Ag-NPs entering soils through the wastewater-sludge-soil pathway pose low risk to plants due to their conversion to Ag2S in the wastewater treatment process, although bioavailability may increase in saline soils or when irrigated with high-Cl water. PMID:27380126

  9. Controlled preparation of Au/Ag/SnO2 core-shell nanoparticles using a photochemical method and applications in LSPR based sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Na; Ye, Chen; Polavarapu, Lakshminarayana; Xu, Qing-Hua

    2015-05-01

    A photochemical method for the controlled preparation of core-shell Au/Ag/SnO2 nanorods (NRs) and nanospheres (NSs) has been developed based on photo-induced electron transfer processes in the plasmonic metal-semiconductor system. Au/AgNR/SnO2 and Au/AgNS/SnO2 were prepared by the UV irradiation of a mixture of mesoporous SnO2 coated AuNRs, or AuNSs, and AgNO3, in which AgNO3 was reduced by electrons transferred from the photo-excited mesoporous SnO2 (semiconductor) to the gold (metal). This method allows precise control over the composition and optical properties of the obtained nanoparticles. The LSPR refractive index sensitivity of the obtained Au/AgNR/SnO2 nanoparticles has been optimized to obtain a refractive index sensitivity of ~442 nm RIU-1. The optimized nanoparticles were subsequently chosen for the LSPR based sensing of glutathione (GSH) with the limit of detection of ~7.5 × 10-7 M. This photochemical method allows the controlled preparation of various Au/Ag/SnO2 nanoparticles to adjust their LSPR to suit various applications.A photochemical method for the controlled preparation of core-shell Au/Ag/SnO2 nanorods (NRs) and nanospheres (NSs) has been developed based on photo-induced electron transfer processes in the plasmonic metal-semiconductor system. Au/AgNR/SnO2 and Au/AgNS/SnO2 were prepared by the UV irradiation of a mixture of mesoporous SnO2 coated AuNRs, or AuNSs, and AgNO3, in which AgNO3 was reduced by electrons transferred from the photo-excited mesoporous SnO2 (semiconductor) to the gold (metal). This method allows precise control over the composition and optical properties of the obtained nanoparticles. The LSPR refractive index sensitivity of the obtained Au/AgNR/SnO2 nanoparticles has been optimized to obtain a refractive index sensitivity of ~442 nm RIU-1. The optimized nanoparticles were subsequently chosen for the LSPR based sensing of glutathione (GSH) with the limit of detection of ~7.5 × 10-7 M. This photochemical method allows

  10. Laser induced forward transfer of Ag nanoparticles ink deposition and characterization

    NASA Astrophysics Data System (ADS)

    Makrygianni, M.; Kalpyris, I.; Boutopoulos, C.; Zergioti, I.

    2014-04-01

    In this work, we report on the printing of silver nanoparticles (Ag NPs) ink by means of laser-induced forward transfer (LIFT) process. The optimum conditions for printing circular shaped features using a Nd:YAG laser at 266 nm have been examined. A study of the influence of the laser fluence and the use of a pre-coated intermediate layer (sacrificial layer) on the donor substrate was performed in order to understand how these parameters affect the printed droplets morphology. We also provide a detailed discussion of the influence of the annealing temperature on the printed features morphology and on their resistivity. Based on these results, the conditions have been determined for printing uniform circular shaped droplets with a diameter as small as 25 μm and an average thickness of 150 nm. Atomic force microscopy on the cured printed droplets revealed a uniform surface morphology with no coffee ring effect. Finally, conductive features with reasonably low resistivity (approximately eleven times that of bulk silver) and at sufficiently low sintering temperatures (100-150 °C) were produced on silicon oxide on silicon and flexible polyimide substrates.

  11. Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 1

    NASA Astrophysics Data System (ADS)

    Pech-Pech, I. E.; Gervasio, Dominic F.; Godínez-Garcia, A.; Solorza-Feria, O.; Pérez-Robles, J. F.

    2015-02-01

    Silver (Ag) nanoparticles enriched with platinum (Pt) and palladium (Pd) on their surfaces (Ag@Pt0.1Pd0.1) are supported on Vulcan XC-72 carbon (C) to form a new catalyst (Ag@Pt0.1Pd0.1/C) for the oxygen reduction reaction (ORR) in acid electrolytes. This catalyst is prepared in one pot by reducing Ag and then Pt and Pd metal salts with sodium borohydride in the presence of trisodium citrate then adding XC-72 while applying intense ultrasound. The metallic Ag@Pt0.1Pd0.1 nanoparticles contain 2 weight percent of Pt, are spherical and have an average size less than 10 nm as determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). At the ORR potentials, Ag nanoparticles on carbon (Ag/C) rapidly lose Ag by dissolution and show no more catalytic activity for the ORR than the carbon support, whereas Ag@Pt0.1Pd0.1/C is a stable catalyst and exhibits 1.4 and 1.6 fold greater specific activity, also 3.6 and 2.8 fold greater mass activity for ORR in 0.5 M H2SO4 solution than comparable Pt/C and Pt0.5Pd0.5/C catalysts with the same Pt loading as determined for thin-films of these catalysts on a rotating-disk electrode (TF-RDE). Using silver nanoparticles increases Pt utilization and therefore decreases Pt-loading and cost of a catalyst for a proton exchange membrane fuel cell (PEMFC) electrode.

  12. Highly luminescent Ag+ nanoclusters for Hg2+ ion detection

    NASA Astrophysics Data System (ADS)

    Yuan, Xun; Yeow, Teik Jin; Zhang, Qingbo; Lee, Jim Yang; Xie, Jianping

    2012-03-01

    A simple, low-cost and label-free Hg2+ ion sensor has been developed by using novel luminescent Ag+ nanoclusters (NCs) with an excellent optical property (quantum yield = 15%), an ultra-high ratio of active Ag+ species in the NC surface (~100%), and an ultra-short diffusion path length of Hg2+ ions to access the NC surface (~0.5 nm).A simple, low-cost and label-free Hg2+ ion sensor has been developed by using novel luminescent Ag+ nanoclusters (NCs) with an excellent optical property (quantum yield = 15%), an ultra-high ratio of active Ag+ species in the NC surface (~100%), and an ultra-short diffusion path length of Hg2+ ions to access the NC surface (~0.5 nm). Electronic supplementary information (ESI) available: Experimental details of the synthesis of b-Ag NCs; time-resolved evolution of photoemission spectra of the b-Ag NCs in toluene; photoexcitation spectrum of the b-Ag NCs in toluene; comparison of the luminescence of b-Ag NCs at different temperatures (4 and 25 °C) TEM image of the b-Ag NCs in toluene; optical properties of r-Ag NCs obtained by the reduction of b-Ag NCs in toluene; XPS spectra of b-Ag NCs, thiolate-Ag+ complexes, r-Ag NCs, and large Ag nanoparticles; TEM image of the Hg2+-Ag NCs; photostability of the b-Ag NCs; tolerance studies of the b-Ag NCs over other metal ions; tolerance studies of the b-Ag NCs over common thiol ligands (e.g., GSH) and anions; relative luminescence of the b-Ag NCs in different real water samples in the presence of Hg2+ ions; and relative luminescence of the b-Ag NCs in NaCl solution with different concentrations. See DOI: 10.1039/c2nr11999d

  13. One-pot synthesis of ternary Ag₂CO₃/Ag/AgCl photocatalyst in natural geothermal water with enhanced photocatalytic activity under visible light irradiation.

    PubMed

    Yao, Xiaxi; Liu, Xiaoheng

    2014-09-15

    Geothermal water is a clean, cheap and renewable resource and it is widely distributed all over the world. In this work, ternary Ag2CO3/Ag/AgCl photocatalyst has been successfully synthesized via a one-pot precipitation method in natural geothermal water at room temperature, wherein the geothermal water serves as the source of chlorine and carbonate. The results suggest that the Ag/AgCl nanoparticles are anchored on the surface of Ag2CO3 and Ag2CO3/Ag/AgCl composite shows strong absorption ability in the visible light region. The evaluation of the photocatalytic activity indicates that the as-synthesized Ag2CO3/Ag/AgCl photocatalyst exhibits higher photocatalytic performance for the degradation of methylene blue (MB) aqueous solution under visible light irradiation than one-component (Ag2CO3), two-component (Ag/AgCl, Ag2CO3/AgCl) and the mechanical mixture of Ag2CO3 and Ag/AgCl. The trapping experiments confirmed that holes (h(+)) and (•)O2(-) were the two main active species in the photocatalytic process. Finally, a possible Z-scheme photocatalytic mechanism of the charge transfer was proposed for the enhanced photocatalytic performance. This work may open up new insights into the application of cheap geothermal water resources in the word and provide new opportunities for facile fabrication of Ag/AgCl-based photocatalysts. PMID:25164388

  14. Enhancing photocatalysis in SrTiO{sub 3} by using Ag nanoparticles: A two-step excitation model for surface plasmon-enhanced photocatalysis

    SciTech Connect

    Ma, Lei; Sun, Tao; Cai, Hua; Zhou, Zhi-Quan; Sun, Jian E-mail: minglu55@fudan.edu.cn; Lu, Ming E-mail: minglu55@fudan.edu.cn

    2015-08-28

    Surface plasmon (SP)-enhanced ultraviolet and visible photocatalytic activities of SrTiO{sub 3} (STO) are observed after incorporating Ag nanoparticles (Ag-NPs) on STO surfaces. A two-step excitation model is proposed to explain the SP-enhanced photocatalysis. The point of the model is that an electron at the valence band of STO is first excited onto the Fermi level of Ag-NP by the SP field generated on the Ag-NP, and then injected into the conduction band of STO from the SP band, leaving a hole at the valence band of STO. A full redox catalytic reaction at the surface of STO is then available. For Ag-NP incorporated STO, up-converted and inter-band photoluminescence emissions of STO are observed, and nonlinear evolutions of photocatalytic activity with illumination light powers are found. Furthermore, near infrared photocatalysis is detected. These results support the proposed model.

  15. Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites.

    PubMed

    Allahverdiyev, Adil M; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-08-01

    Nanotechnology is the creation of functional materials, devices and systems at atomic and molecular scales (1-100 nm), where properties differ significantly from those at a larger scale. The use of nanotechnology and nanomaterials in medical research is growing rapidly. Recently, nanotechnologic developments in microbiology have gained importance in the field of chemotherapy. Bacterial strains that are resistant to current antibiotics have become serious public health problems that raise the need to develop new bactericidal materials. Metal oxide nanoparticles, especially TiO(2) and Ag(2)O nanoparticles, have demonstrated significant antibacterial activity. Therefore, it is thought that this property of metal oxide nanoparticles could effectively be used as a novel solution strategy. In this review, we focus on the unique properties of nanoparticles, their mechanism of action as antibacterial agents and recent studies in which the effects of visible and UV-light induced TiO(2) and Ag(2)O nanoparticles on drug-resistant bacteria have been documented. In addition, from to previous results of our studies, antileishmanial effects of metal oxide nanoparticles are also demonstrated, indicating that metal oxide nanoparticles can also be effective against eukaryotic infectious agents. Conversely, despite their significant potential in antimicrobial applications, the toxicity of metal oxide nanoparticles restricts their use in humans. However, recent studies infer that metal oxide nanoparticles have considerable potential to be the first-choice for antibacterial and antiparasitic applications in the future, provided that researchers can bring new ideas in order to cope with their main problem of toxicity. PMID:21861623

  16. Immunoassay for tumor markers in human serum based on Si nanoparticles and SiC@Ag SERS-active substrate.

    PubMed

    Zhou, Lu; Zhou, Jun; Feng, Zhao; Wang, Fuyan; Xie, Shushen; Bu, Shizhong

    2016-04-21

    Based on a sandwich structure consisting of nano-Si immune probes and a SiC@Ag SERS-active immune substrate, a kind of ultra-sensitive immunoassay protocol is presented to detect tumor markers in human serum. The nano-Si immune probes were prepared by immobilizing the detecting antibodies onto the surfaces of SiO2-coated Si nanoparticles (NPs) which were modified with 3-(aminopropyl)trimethoxysilane, and the SiC@Ag SERS-active immune substrates were prepared by immobilizing the captured antibodies on Ag film sputtered on SiC sandpaper. To the best of our knowledge, it is the first time that Si NPs are directly used as Raman tags in an immunoassay strategy. And, the SiC@Ag SERS-active substrates exhibit excellent surface enhanced Raman scattering (SERS) performances with an enhancement factor of ∼10(5), owing to the plasmonic effect of the Ag film on the rough surface of the SiC sandpaper. In our experiments, the sandwich immunoassay structure has been successfully applied to detect prostate specific antigen (PSA), α-fetoprotein (AFP) and carbohydrate antigen 19-9 (CA19-9) in a human serum sample and the limit of detections are as low as 1.79 fg mL(-1), 0.46 fg mL(-1) and 1.3 × 10(-3) U mL(-1), respectively. It reveals that the proposed immunoassay protocol has demonstrated a high sensitivity for tumor markers in human serum and a potential practicability in biosensing and clinical diagnostics. PMID:27003871

  17. Ultrasensitive electrochemical sensor for Hg(2+) by using hybridization chain reaction coupled with Ag@Au core-shell nanoparticles.

    PubMed

    Li, Zongbing; Miao, Xiangmin; Xing, Ke; Peng, Xue; Zhu, Aihua; Ling, Liansheng

    2016-06-15

    A novel electrochemical biosensor for Hg(2+) detection was reported by using DNA-based hybridization chain reaction (HCR) coupled with positively charged Ag@Au core-shell nanoparticles ((+)Ag@Au CSNPs) amplification. To construct the sensor, capture probe (CP ) was firstly immobilized onto the surface of glass carbon electrode (GCE). In the presence of Hg(2+), the sandwiched complex can be formed between the immobilized CP on the electrode surface and the detection probe (DP) modified on the gold nanoparticles (AuNPs) based on T-Hg(2+)-T coordination chemistry. The carried DP then opened two ferrocene (Fc) modified hairpin DNA (H1 and H2) in sequence and propagated the happen of HCR to form a nicked double-helix. Numerous Fc molecules were formed on the neighboring probe and produced an obvious electrochemical signal. Moreover, (+)Ag@Au CSNPs were assembly onto such dsDNA polymers as electrochemical signal enhancer. Under optimal conditions, such sensor presents good electrochemical responses for Hg(2+) detection with a detection limit of 3.6 pM. Importantly, the methodology has high selectivity for Hg(2+) detection. PMID:26852203

  18. Synthesis, characterizations and anti-bacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method

    NASA Astrophysics Data System (ADS)

    Sivakumar, S.; Venkatesan, A.; Soundhirarajan, P.; Khatiwada, Chandra Prasad

    2015-02-01

    In the present study, synthesized pure and Ag (1%, 2%, and 3%) doped Cadmium Oxide (CdO) nanoparticles by chemical precipitation method. Then, the synthesized products were characterized by thermo gravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy, Ultra violet-Vis diffused reflectance spectroscopy (UV-Vis-DRS), Scanning electron microscopy (SEM), Energy dispersive X-rays (EDX) spectroscopy, and anti-bacterial activities, respectively. The transition temperatures and phase transitions of Cd(OH)2 to CdO at 400 °C was confirmed by TG-DTA analysis. The XRD patterns show the cubic shape and average particle sizes are 21, 40, 34, and 37 nm, respectively for pure and Ag doped samples. FT-IR study confirmed the presence of CdO and Ag at 677 and 459 cm-1, respectively. UV-Vis-DRS study shows the variation on direct and indirect band gaps. The surface morphologies and elemental analysis have been confirmed from SEM and with EDX. In addition, the synthesized products have been characterized by antibacterial activities against Gram-positive and negative bacteria. Further, the present investigation suggests that CdO nanoparticles have the great potential applications on various industrial and medical fields of research.

  19. A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, Sada; Natesh Kumar, B.; Prathima, B.; Anitha, K.; Jyothi, N. V. V.

    2015-01-01

    We described a novel and eco-friendly method for preparing Fe3O4-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe3O4-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV-vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe3O4-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe3O4-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe3O4-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe3O4-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property.

  20. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting.

    PubMed

    Ge, Ming-Zheng; Cao, Chun-Yan; Li, Shu-Hui; Tang, Yu-Xin; Wang, Lu-Ning; Qi, Ning; Huang, Jian-Ying; Zhang, Ke-Qin; Al-Deyab, S S; Lai, Yue-Kun

    2016-03-01

    An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ ≥ 420 nm). It was found that the hydrogen production rate of the Ag@TiO2 NTAs prepared with ultrasonication-assisted deposition for 5 min was approximately 15 times higher than that of its pristine TiO2 NTAs counterpart. The highly efficient photocatalytic hydrogen evolution is attributed to the SPR effect of Ag for enhanced visible light absorption and boosting the photogenerated electron-hole separation/transfer. This strategy is promising for the design and construction of high efficiency TiO2 based photocatalysts for solar energy conversion. PMID:26878901

  1. In vitro and in vivo study of hazardous effects of Ag nanoparticles and Arginine-treated multi walled carbon nanotubes on blood cells: application in hemodialysis membranes.

    PubMed

    Zare-Zardini, Hadi; Amiri, Ahmad; Shanbedi, Mehdi; Taheri-Kafrani, Asghar; Kazi, S N; Chew, B T; Razmjou, Amir

    2015-09-01

    One of the novel applications of the nanostructures is the modification and development of membranes for hemocompatibility of hemodialysis. The toxicity and hemocompatibility of Ag nanoparticles and arginine-treated multiwalled carbon nanotubes (MWNT-Arg) and possibility of their application in membrane technology are investigated here. MWNT-Arg is prepared by amidation reactions, followed by characterization by FTIR spectroscopy, Raman spectroscopy, and thermogravimetric analysis. The results showed a good hemocompatibility and the hemolytic rates in the presence of both MWNT-Arg and Ag nanoparticles. The hemolytic rate of Ag nanoparticles was lower than that of MWNT-Arg. In vivo study revealed that Ag nanoparticle and MWNT-Arg decreased Hematocrit and mean number of red blood cells (RBC) statistically at concentration of 100 µg mL(-1) . The mean decrease of RBC and Hematocrit for Ag nanoparticles (18% for Hematocrit and 5.8 × 1,000,000/µL) was more than MWNT-Arg (20% for Hematocrit and 6 × 1000000/µL). In addition, MWNT-Arg and Ag nanoparticles had a direct influence on the White Blood Cell (WBC) drop. Regarding both nanostructures, although the number of WBC increased in initial concentration, it decreased significantly at the concentration of 100 µg mL(-1) . It is worth mentioning that the toxicity of Ag nanoparticle on WBC was higher than that of MWNT-Arg. Because of potent antimicrobial activity and relative hemocompatibility, MWNT-Arg could be considered as a new candidate for biomedical applications in the future especially for hemodialysis membranes. PMID:25690431

  2. Si NW network by Ag nanoparticle assisted etching and TiO2/Si NWs as photodetector

    NASA Astrophysics Data System (ADS)

    Bhowmik, Kishan; Mondal, Aniruddha

    2015-03-01

    Glancing angle deposited silver (Ag) nanoparticles (NPs) were employed to fabricate the silicon (Si) nanowire (NW) network on p-type Si substrate. The Si NWs were characterized by X-ray diffraction, which shows the (311) oriented single crystalline nature. The FEG-SEM images show that the nanowire diameters are in the order of 60-180 nm. The photoluminescence emission at 525 nm was recognized from the Si NWs. The Ag-TiO2 contacts exhibit Schottky behavior and higher photoconduction was observed for TiO2-Si NW detector than that of TiO2 Thin film under illumination up to 2.5 V applied potential. A threefold enhanced photodetection for the Silicon nanowire device was observed compared to the TiO2 thin film device, under applied voltages of 0.4-1.5 V. [Figure not available: see fulltext.

  3. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2013-07-01

    In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths. The power conversion efficiency (PCE) of DSCs is enhanced by 16% from 5.26% to 6.09% by incorporating 2.38 wt% Au-Ag alloy popcorn NPs. Moreover, by adding a scattering layer on the exterior of the counter electrode, the popcorn NPs demonstrate an even stronger ability to increase the PCE by 32% from 5.94% to 7.85%, which results from the more efficient excitation of the LSP mode on the popcorn NPs.

  4. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution.

    PubMed

    Sivashanmugan, Kundan; Liao, Jiunn-Der; Liu, Bernard Haochih; Yao, Chih-Kai

    2013-10-24

    A well-ordered Au-nanorod array with a controlled tip ring diameter (Au_NRsd) was fabricated using the focused ion beam method. Au_NRsd was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au_NRsd and Ag NPs/Au_NRsd was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on Au_NRsd was estimated by an enhancement factor of ≈10(7) in magnitude, which increased ≈10(12) in magnitude for that on Ag NPs/Au_NRsd. A highly SERS-active Ag NPs/Au_NRsd was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10(-3) to 10(-12)M) in water or milk solution upon Au_NRsd or Ag NPs/Au_NRsd were well distinguished. The peaks at 680 and 702 cm(-1) for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm(-1) was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., Au_NRsd) or Ag (i.e., Ag NPs/Au_NRsd) surface. At the interface of Ag NPs/Au_NRsd and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and competent to sense low-concentration MEL molecules interacting with Ag and Au surfaces. Accordingly, Ag NPs/Au_NRsd is very promising to be used as a fast and sensitive tool for screening MEL in complex matrices such as adulteration in e.g., food and pharmaceutical products. PMID:24120168

  5. Plasmid DNA linearization in the antibacterial action of a new fluorescent Ag nanoparticle-paracetamol dimer composite

    NASA Astrophysics Data System (ADS)

    Sahoo, Amaresh Kumar; Sk, Md Palashuddin; Ghosh, Siddhartha Sankar; Chattopadhyay, Arun

    2011-10-01

    Herein, we report the generation of a composite comprised of p-hydroxyacetanilide dimer and Ag nanoparticles (NPs) by reaction of AgNO3 and p-hydroxyacetanilide. The formation of the composite was established by UV-vis, FTIR and NMR spectroscopy, transmission electron microscopy and X-ray diffraction along with substantiation by mass spectrometry. Interestingly, the composite exhibited an emission spectrum with a peak at 435 nm when excited by light of wavelength 320 nm. The composite showed superior antimicrobial activity with respect to its individual components against a wide range of Gram positive and Gram negative bacteria at relatively low concentrations of Ag NPs and at which there was no apparent cytotoxicity against mammalian cells. Our results suggest that the composite strongly interacted with the bacterial cell walls leading to cell bursting. Interestingly, enhancement in the reactive oxygen species (ROS) generation in bacteria was observed in the presence of the composite. It is proposed that the ROS generation led to oxidation of the dimer to N-acetyl-p-benzoquinone imine (NAPQI). The generated NAPQI acted as a DNA gyrase inhibitor causing cell death following linearization of DNA.Herein, we report the generation of a composite comprised of p-hydroxyacetanilide dimer and Ag nanoparticles (NPs) by reaction of AgNO3 and p-hydroxyacetanilide. The formation of the composite was established by UV-vis, FTIR and NMR spectroscopy, transmission electron microscopy and X-ray diffraction along with substantiation by mass spectrometry. Interestingly, the composite exhibited an emission spectrum with a peak at 435 nm when excited by light of wavelength 320 nm. The composite showed superior antimicrobial activity with respect to its individual components against a wide range of Gram positive and Gram negative bacteria at relatively low concentrations of Ag NPs and at which there was no apparent cytotoxicity against mammalian cells. Our results suggest that the

  6. Fabrication of uniformly dispersed Ag nanoparticles loaded TiO{sub 2} nanotube arrays for enhancing photoelectrochemical and photocatalytic performances under visible light irradiation

    SciTech Connect

    Yi, Junhui; Zhang, Shengsen; Wang, Hongjuan; Yu, Hao; Peng, Feng

    2014-12-15

    Graphical abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method, which exhibited the enhanced photoelectrochemical and photocatalytic performances under visible-light irradiation due to the more effective separation of photo-generated electron–hole pairs and faster interfacial charge transfer. - Highlights: • Highly dispersed Ag nanoparticles (NPs) are successfully prepared by polyol method. • Ag NPs are uniformly loaded on the surface of the TiO{sub 2} nanotube arrays (NTs). • Ag/TiO{sub 2}-NTs exhibit the enhanced photocatalytic activity under visible-light. • The enhanced photocurrent is explained by electrochemical impedance spectroscopy. - Abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method. The as-prepared Ag/TiO{sub 2}-NTs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–vis diffusion reflectance spectroscopy. Photoelectrochemical behaviors were investigated via photocurrent response and electrochemical impedance spectroscopy (EIS). Photocatalytic activity of Ag/TiO{sub 2}-NTs was evaluated by degradation of acid orange II under visible light irradiation. The results showed that photocatalytic efficiency of Ag/TiO{sub 2}-NTs is more than 5 times higher than that of pure TiO{sub 2} NTs. Comparing with the electrochemical deposition method, the photocatalytic activity of Ag/TiO{sub 2}-NTs prepared by polyol method has been obviously increased.

  7. Continuous syntheses of Pd@Pt and Cu@Ag core-shell nanoparticles using microwave-assisted core particle formation coupled with galvanic metal displacement.

    PubMed

    Miyakawa, Masato; Hiyoshi, Norihito; Nishioka, Masateru; Koda, Hidekazu; Sato, Koichi; Miyazawa, Akira; Suzuki, Toshishige M

    2014-08-01

    Continuous synthesis of Pd@Pt and Cu@Ag core-shell nanoparticles was performed using flow processes including microwave-assisted Pd (or Cu) core-nanoparticle formation followed by galvanic displacement with a Pt (or Ag) shell. The core-shell structure and the nanoparticle size were confirmed using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) observation and EDS elemental mapping. The Pd@Pt nanoparticles with a particle size of 6.5 ± 0.6 nm and a Pt shell thickness of ca. 0.25 nm were synthesized with appreciably high Pd concentration (Pd 100 mM). This shell thickness corresponds to one atomic layer thickness of Pt encapsulating the Pd core metal. The particle size of core Pd was controlled by tuning the initial concentrations of Na2[PdCl4] and PVP. Core-shell Cu@Ag nanoparticles with a particle size of 90 ± 35 nm and an Ag shell thickness of ca. 3.5 nm were obtained using similar sequential reactions. Oxidation of the Cu core was suppressed by the coating of Cu nanoparticles with the Ag shell. PMID:24948122

  8. Comparative Cytotoxicity Study of Silver Nanoparticles (AgNPs) in a Variety of Rainbow Trout Cell Lines (RTL-W1, RTH-149, RTG-2) and Primary Hepatocytes

    PubMed Central

    Connolly, Mona; Fernandez-Cruz, Maria-Luisa; Quesada-Garcia, Alba; Alte, Luis; Segner, Helmut; Navas, Jose M.

    2015-01-01

    Among all classes of nanomaterials, silver nanoparticles (AgNPs) have potentially an important ecotoxicological impact, especially in freshwater environments. Fish are particularly susceptible to the toxic effects of silver ions and, with knowledge gaps regarding the contribution of dissolution and unique particle effects to AgNP toxicity, they represent a group of vulnerable organisms. Using cell lines (RTL-W1, RTH-149, RTG-2) and primary hepatocytes of rainbow trout (Oncorhynchus mykiss) as in vitro test systems, we assessed the cytotoxicity of the representative AgNP, NM-300K, and AgNO3 as an Ag+ ion source. Lack of AgNP interference with the cytotoxicity assays (AlamarBlue, CFDA-AM, NRU assay) and their simultaneous application point to the compatibility and usefulness of such a battery of assays. The RTH-149 and RTL-W1 liver cell lines exhibited similar sensitivity as primary hepatocytes towards AgNP toxicity. Leibovitz’s L-15 culture medium composition (high amino acid content) had an important influence on the behaviour and toxicity of AgNPs towards the RTL-W1 cell line. The obtained results demonstrate that, with careful consideration, such an in vitro approach can provide valuable toxicological data to be used in an integrated testing strategy for NM-300K risk assessment. PMID:26006119

  9. A green method to prepare Pd-Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Li, Lingzhi; Chen, Mingxi; Huang, Guanbo; Yang, Nian; Zhang, Li; Wang, Huan; Liu, Yu; Wang, Wei; Gao, Jianping

    2014-10-01

    Bimetallic palladium-silver nanoparticles (NPs) supported on reduced oxide graphene (RGO) with different Pd/Ag ratios (Pd-Ag/RGO) were prepared by an easy green method which did not use any additional reducing agents or a dispersing agent. During the process, simultaneous redox reactions between AgNO3, K2PdCl4 and graphene oxide (GO) led to bimetallic Pd-Ag NPs. The morphology and composition of the Pd-Ag/RGO were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis and Raman spectroscopy. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of these Pd-Ag/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. Among the different Pd/Ag ratios, the Pd-Ag (1:1)/RGO had the best catalytic activities and stability. So it is a promising catalyst for direct alcohol fuel cell applications.

  10. Electrochemical reduction of silver vanadium phosphorous oxide, Ag2VO2PO4: the formation of electrically conductive metallic silver nanoparticles

    PubMed Central

    Takeuchi, Esther S.; Marschilok, Amy C.; Tanzil, Kevin; Kozarsky, Eric S.; Zhu, Shali; Takeuchi, Kenneth J.

    2009-01-01

    As a cathode material, silver vanadium phosphorous oxide (Ag2VO2PO4) displays several notable electrochemical properties: large capacity, high current capability, and an effective delivery of high current pulses. These cell performance characteristics can be attributed to the presence of silver nanoparticles formed in-situ during the electrochemical reduction of Ag2VO2PO4. Specifically, changes in the composition and structure of Ag2VO2PO4 with reduction, especially the formation of silver nanoparticles, are detailed to rationalize a 15,000 fold increase in conductivity with initial discharge, which can be related to the power characteristics associated with Ag2VO2PO4 cathodes in primary lithium batteries. PMID:20161435

  11. Decorated TiO2 Nanoparticles with La and Ag Elements to Improve Photocatalytic Activity Under Visible Light for the Degradation of MO.

    PubMed

    Wang, Qinghua; Gao, Xuechuan; Zhang, Renfei; Shen, Beibei; Tan, Zhibing; Li, Zhao; Yu, Shiyong

    2016-04-01

    Visible-light photocatalyst of TiO2/La/Ag nanocomposites were successfully synthesized via the conventional sol-gel method and reducing agent of Ag+. The photocatalytic activities were evaluated by methyl orange (MO) degradation. They have remarkable photocatalytic activities compared to TiO2-Anatase, which is thanks to the separation of electron-hole pairs by Ag nanoparticles and lanthanum. The products were characterized by a series of techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and Uv-vis. The results show that spherical nanocomposites have been prepared with the size 300 nm and Ag nanoparticles (~10 nm) are dispersed uniformly onto the surface of TiO2/La, which forms TiO2/La/Ag nanocomposites. TiO2/La/Ag nanocomposites have good absorption in the visible region (700 nm > λ > 400 nm). The reasons are as follows: (1) the efficient separation of photogenerated electrons and holes of the photocatalysts on the surface of TiO2/La/Ag nanocomposites and (2) a wide visible-light photoabsorption range (700 nm > λ > 400 nm). Therefore, this study may provide some new idea for the rational design and the facile synthesis of composite catalysts with a green, efficient pathway. PMID:27451670

  12. Facile synthesis of monodisperse of hollow mesoporous SiO2 nanoparticles and in-situ growth of Ag nanoparticles for antibacterial.

    PubMed

    Xu, Peng; Liang, Juan; Cao, Xiaoyong; Tang, Jingen; Gao, Juan; Wang, Liying; Shao, Wei; Gao, Qinwei; Teng, Zhaogang

    2016-07-15

    Monodispersed hollow mesoporous silica nanoparticles (HMSNs) are successfully synthesized via a facile dual template method, in which poly(styrene-co-methyl methacrylate-co-methacrylic acid) (PS-PMMA-PMAA) particles are used as hard template for producing the hollow structure and cetyltrimethylammonium bromide (CTAB) used for introducing the mesopores in the silica shells. The obtained HMSNs possess uniform diameter and morphology, and the shell of which could be adjusted by changing the addition of silicon precursor. The synthesized HMSNs have been characterized by transmission electron microscopy (TEM) and nitrogen physisorption. Furthermore, the HMSNs are used as support for in-situ deposition of silver nanoparticles (Ag NPs) using n-butylamine as reducing agent for AgNO3 in ethanol. Significantly, Ag NPs were successfully supported in the HMSNs without any aggregation. The Ag-deposited HMSNs showed excellent dispersibility in ethanol and water, and their antibacterial activity against Escherichia coli (E. coli) ATCC 25922 and Staphylococcus aureus (S. aureus) ATCC 6538 have been demonstrated. Therefore, the unique nanostructure based on the HMSNs provided a useful platform for the fabrication of antibacterial agent with superior activity and accessibility. And also, it is expected to be a significant template for the synthesis of other novel nanostructures. PMID:27115332

  13. SERS detection of bacteria in water by in situ coating with Ag nanoparticles.

    PubMed

    Zhou, Haibo; Yang, Danting; Ivleva, Natalia P; Mircescu, Nicoleta E; Niessner, Reinhard; Haisch, Christoph

    2014-02-01

    The bio-sensing for the convenient detection of bacteria has been widely explored with the use of various sensing materials and techniques. It is still a challenge to achieve an ultrasensitive and selective, but simple, rapid, and inexpensive detection method for bacteria. We report on surface-enhanced Raman scattering (SERS) for the detection of living bacteria in drinking water by employing a synthesis of silver nanoparticles coating the cell wall of bacteria. We found that the Raman signals intensity of bacteria after AgNP synthesis mainly depends on the zeta potential of the cell wall. The enhancement of the Raman signal of bacteria using this strategy is about 30-fold higher than that in the case of a simply mixed colloid-bacterial suspension. The total assay time required is only 10 min and the total reactants' volume needed to analyze bacteria in a real environment is as low as 1 mL. Particularly, only one droplet of 3 μL sample is necessary for each SERS measurement. Furthermore, we can use this novel strategy to discriminate three strains of Escherichia coli and one strain of Staphylococcus epidermidis by hierarchy cluster analysis. Finally, we can detect bacteria down to 2.5 × 10(2) cells/mL on a hydrophobic glass slide by SERS mapping. Thus, our detection method offers prominent advantages, such as reduced assay time, simple handling, low reactant volumes, small amount of sample, and higher sensitivity and selectivity compared to previously reported label free methods. This novel strategy may be extended to open an avenue for developing various SERS-based biosensors. PMID:24387044

  14. Enhanced Raman scattering and photocatalytic activity of Ag/ZnO heterojunction nanocrystals.

    PubMed

    Chen, Chongqi; Zheng, Yuanhui; Zhan, Yingying; Lin, Xingyi; Zheng, Qi; Wei, Kemei

    2011-10-01

    In this work, we study the enhancement of Raman signals and photocatalytic activity of Ag/ZnO heterojunctions with an Ag content of 1 at.%, which were synthesized by photochemical deposition of Ag nanoparticles onto pre-synthesized ZnO nanorods. A strong interaction between Ag and ZnO nanocrystals were evidenced by XPS and UV-vis spectroscopy. The binding energy of Ag nanoparticles shifts toward lower energy compared to that of pure Ag nanoparticles, revealing that electrons transfer from Ag to the ZnO nanocrystals. The red shift of the plasmon absorption peak of Ag nanoparticles in Ag/ZnO heterojunctions further confirms the strong interaction between the two components. This strong interaction, arising from the coupling between Ag and ZnO nanocrystals, is responsible for the enhancement of Raman signals and photocatalytic activity of the Ag/ZnO heterojunctions. PMID:21847472

  15. Hydrogen treatment-improved uniform deposition of Ag nanoparticles on ZnO nanorod arrays and their visible-light photocatalytic and surface-enhanced Raman scattering properties

    PubMed Central

    2013-01-01

    ZnO nanorod arrays were synthesized by chemical bath deposition. After heat treatment in hydrogen or air, Ag nanoparticles were deposited on ZnO nanorod arrays by photo-reduction method. The size of Ag nanoparticles as well as the surface morphology, structure, composition, and optical property of ZnO nanorod arrays before and after the deposition of Ag nanoparticles were characterized by SEM, XRD, EDS, and UV/VIS/NIR spectrophotometer. As compared to the samples with heat treatment in air or without heat treatment, the ZnO nanorod arrays after heat treatment in hydrogen allowed Ag nanoparticles to be deposited more uniformly, densely, and numerously. Also, they exhibited higher efficiency for the visible light-driven photocatalytic degradation of Rhodamine 6G (R6G) dye. The effects of the amount of Ag nanoparticles, initial dye concentration, and temperature on the photocatalytic degradation efficiency were investigated. Furthermore, they also exhibited better surface-enhanced Raman scattering property for the detection of R6G dyes. PMID:23866904

  16. Mussel-inspired green synthesis of polydopamine-Ag-AgCl composites with efficient visible-light-driven photocatalytic activity.

    PubMed

    Cai, Aijun; Wang, Xiuping; Guo, Aiying; Chang, Yongfang

    2016-09-01

    Polydopamine-Ag-AgCl composites (PDA-Ag-AgCl) were synthesized using a mussel-inspired method at room temperature, where PDA acts as a reducing agent to obtain the noble Ag nanoparticles from a precursor. The morphologies and structures of the as-prepared PDA-Ag-AgCl were characterized by several techniques including field emission scanning electron microscopy (FESEM), transmission electron microscopy (SEM), Raman spectra, and X-Ray photoelectron spectrum (XPS). The morphological observation depicts formation of nanoparticles with various micrometer size diameters and surface XPS analysis shows presence of various elements including Ag, N, Cl, and O. The enhanced absorbance of the PDA-Ag-AgCl particles in the visible light region is confirmed through UV-Vis diffuse reflectance spectra (DRS), and the charge transfer is demonstrated by photoluminescence (PL) and photocurrent response. The synthesized PDA-Ag-AgCl composites could be used as visible-light-driven photocatalysts for the degradation of Rhodamine B. The elevated photocatalytic activity is ascribed to the effective charge transfer from plasmon-excited Ag to AgCl that can improve the efficiency of the charge separation during the photocatalytic reaction. Furthermore, differences in the photocatalytic performance among the different PDA-Ag-AgCl composites are noticed that could be attributed to the Brunauer-Emmett-Teller (BET) specific surface area, which benefits to capture the visible light efficiently. The PDA-Ag-AgCl exhibits excellent stability without a significant loss in activity after 5cycles. The proposed method is low-cost and environmentally friendly, hence a promising new way to fabricate plasmon photocatalysts. PMID:27450302

  17. Freeze-dried PVP-Ag+ precursors to novel AgBr/AgCl-Ag hybrid nanocrystals for visible-light-driven photodegradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Chen, Qianqian; Zhang, Wenjie; Ge, Lianfang; Shao, Gang; Fan, Bingbing; Lu, Hongxia; Zhang, Rui; Yang, Daoyuan; Shao, Guosheng

    2015-04-01

    AgBr/AgCl-Ag nanocrystals with various molar Br-to-Ag ratios (RBr/Ag = 0, 1/3, 1/2, 2/3, 1) and different photoreduction times (0-20 min) were synthesized via stepwise liquid-solid reactions using the freeze-dried PVP-Ag+ hybrid as the Ag source, followed by a photoreduction reaction. The AgBr/AgCl-Ag7.5(1:2) nanocrystals obtained take on a spherical morphology with a particle-size range of 58 ± 15 nm. The photocatalytic performance of AgBr/AgCl-Ag nanocrystals was evaluated by photodegrading organic dyes, 4-chlorophenol and isopropanol under artificial visible light (λ ⩾ 420 nm, 100 mW cm-2). For the decomposition of rhodamine B, the AgBr/AgCl-Ag7.5(1:2) nanocrystals has a photodegradation rate of ∼0.87 min-1, ∼159 times higher than that (∼0.0054 min-1) of TiO2 (P25), whereas the AgCl-Ag and AgBr-Ag nanocrystals have photodegradation rates of 0.35 min-1 and 0.45 min-1, respectively. The efficient separation of photogenerated electron-hole pairs in the ternary system consisting of AgBr, AgCl and Ag species plays a key role in the enhancement of photocatalytic performance.

  18. A nanotechnology based new approach for chemotherapy of Cutaneous Leishmaniasis: TIO2@AG nanoparticles - Nigella sativa oil combinations.

    PubMed

    Abamor, Emrah Sefik; Allahverdiyev, Adil M

    2016-07-01

    Since toxicity and resistance are the major drawbacks of current antileishmanial drugs, studies have been recently focused on combination therapy in fight against leishmaniasis. Combination therapy generally provides opportunity to decrease toxicity of applied agents and enhance their antimicrobial performance. Moreover, this method can be effective in preventing drug resistance. Highly antileishmanial effects of silver doped titanium dioxide nanoparticles (TiAgNps) and Nigella sativa oil were demonstrated in previous studies. However, toxicity is still an important factor preventing use of these molecules in clinic. By considering high antileishmanial potential of each agent and basic principles of combination therapy, we propose that use of combinations including non-toxic concentrations of TiAgNps and N. sativa oil may compose more effective and safer formulations against Leishmania parasites. Therefore, the main goal of the present study was to investigate antileishmanial effects of non-toxic concentrations of TiAgNps and Nigella sativa oil combinations on promastigote and amastigote-macrophage culture systems and also to develop nanotechnology based new antileishmanial strategies against Cutaneous Leishmaniasis. Numerous parameters such as proliferation, metabolic activity, apoptosis, amastigote-promastigote conversion, infection index analysis and nitric oxide production were used to detect antileishmanial efficacies of combinations. Investigated all parameters demonstrated that TiAgNps-N. sativa oil combinations had significant antileishmanial effect on each life forms of parasites. Tested combinations were found to decrease proliferation rates of Leishmania tropica promastigotes in a range between 1,5-25 folds and metabolic activity values between 2 and 4 folds indicating that combination applications lead to virtually inhibition of promastigotes and elimination of parasites were directly related to apoptosis manner. TiAgNps-N. sativa combinations also

  19. Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy.

    PubMed

    Liu, Minmin; Chen, Wei

    2013-08-15

    Sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) has attracted considerable attention due to the wide applications of TNT as explosive material. Many efforts have been made to develop various sensors for detecting TNT in recent years. We herein report a novel sensor based on p-aminothiophenol (PATP) functionalized silver nanoparticles supported on graphene nanosheets (Ag/GNs), which was found to be a kind of effective chemosensor for the ultratrace detection of TNT by using surface enhanced Raman scattering (SERS). In the present hybrid material, PATP is paired together to form a corresponding azo compound p, p'-dimercaptoazobenzene (DMAB) and thus can be used as a model Raman probe. The π-donor-acceptor interaction between π-acceptor TNT and π-donor DMAB-Ag/GNs complex can effectively induce the "hot spots" for SERS. The intense spectral resonance from the DMAB-TNT-DMAB bridges formed between the Ag/GNs nanosheets could result in enhanced Raman signals of DMAB molecules with the presence of ultratrace TNT. SERS measurements demonstrated that TNT with concentration as low as 10(-11)M can be detected by using the present SERS platform. The present study not only provides a facile method for ultrasensitive and selective detection of TNT but also could develop a graphene-based SERS platform. PMID:23500479

  20. Invoking Direct Exciton-Plasmon Interactions by Catalytic Ag Deposition on Au Nanoparticles: Photoelectrochemical Bioanalysis with High Efficiency.

    PubMed

    Ma, Zheng-Yuan; Xu, Fei; Qin, Yu; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-04-19

    In this work, direct exciton-plasmon interactions (EPI) between CdS quantum dots (QDs) and Ag nanoparticles (NPs) were invoked ingeniously by catalytic Ag deposition on Au NPs for the stimulation of high efficient damping effect toward the excitonic responses in CdS QDs, on the basis of which a novel photoelectrochemical (PEC) bioanalytical format was achieved for sensitive microRNA detection. Specifically, upon the configurational change from the hairpin probe DNA to the "Y"-shaped ternary conjugate consisting of the original probe DNA, assistant DNA, and the target microRNA, the alkaline phosphatase (ALP) catalytic chemistry would then trigger the transition of the interparticle interplay from the CdS QDs-Au NPs to the CdS QDs-Ag NPs systems for the microRNA detection due to the dependence of the photocurrent quenching on the target concentration. This work not only provided a unique method for EPI generation among the PEC nanosystems but also offered a versatile and general protocol for future PEC bioanalysis development. PMID:27023112

  1. Synthesis of triple-layered Ag@Co@Ni core-shell nanoparticles for the catalytic dehydrogenation of ammonia borane.

    PubMed

    Qiu, Fangyuan; Liu, Guang; Li, Li; Wang, Ying; Xu, Changchang; An, Cuihua; Chen, Chengcheng; Xu, Yanan; Huang, Yanan; Wang, Yijing; Jiao, Lifang; Yuan, Huatang

    2014-01-01

    Triple-layered Ag@Co@Ni core-shell nanoparticles (NPs) containing a silver core, a cobalt inner shell, and a nickel outer shell were formed by an in situ chemical reduction method. The thickness of the double shells varied with different cobalt and nickel contents. Ag0.04 @Co0.48 @Ni0.48 showed the most distinct core-shell structure. Compared with its bimetallic core-shell counterparts, this catalyst showed higher catalytic activity for the hydrolysis of NH3 BH3 (AB). The synergetic interaction between Co and Ni in Ag0.04 @Co0.48 @Ni0.48 NPs may play a critical role in the enhanced catalytic activity. Furthermore, cobalt-nickel double shells surrounding the silver core in the special triple-layered core-shell structure provided increasing amounts of active sites on the surface to facilitate the catalytic reaction. These promising catalysts may lead to applications for AB in the field of fuel cells. PMID:24302541

  2. Direct Cross-Linking of Au/Ag Alloy Nanoparticles into Monolithic Aerogels for Application in Surface-Enhanced Raman Scattering.

    PubMed

    Gao, Xiaonan; Esteves, Richard J Alan; Nahar, Lamia; Nowaczyk, Jordan; Arachchige, Indika U

    2016-05-25

    The direct cross-linking of Au/Ag alloy nanoparticles (NPs) into high surface area, mesoporous Au/Ag aerogels via chemical oxidation of the surface ligands is reported. The precursor alloy NPs with composition-tunable morphologies were produced by galvanic replacement of the preformed Ag hollow NPs. The effect of Au:Ag molar ratio on the NP morphology and surface plasmon resonance has been thoroughly investigated and resulted in smaller Au/Ag alloy NPs (4-8 nm), larger Au/Ag alloy hollow NPs (40-45 nm), and Au/Ag alloy hollow particles decorated with smaller Au NPs (2-5 nm). The oxidative removal of surfactant ligands, followed by supercritical drying, is utilized to construct large (centimeter to millimeter) self-supported Au/Ag alloy aerogels. The resultant assemblies exhibit high surface areas (67-73 m(2)/g), extremely low densities (0.051-0.055 g/cm(3)), and interconnected mesoporous (2-50 nm) networks, making them of great interest for a number of new technologies. The influence of mesoporous gel morphology on surface-enhanced Raman scattering (SERS) has been studied using Rhodamine 101 (Rd 101) as the probe molecule. The alloy aerogels exhibit SERS signal intensities that are 10-42 times higher than those achieved from the precursor Au/Ag alloy NPs. The Au/Ag alloy aerogel III exhibits SERS sensing capability down to 1 nM level. The increased signal intensities attained for alloy aerogels are attributed to highly porous gel morphology and enhanced surface roughness that can potentially generate a large number of plasmonic hot spots, creating efficient SERS substrates for future applications. PMID:27142886

  3. Fibre laser machining for glassy carbon master mould and soft lithography based two-step printing for Ag nanoparticle structures

    NASA Astrophysics Data System (ADS)

    Hu, Qin; Chopra, Pranav

    2011-04-01

    Traditional manufacturing techniques widely used in semiconductor industries involve many processing steps that consume both time and material and lead to high cost. Soft Lithography (SL) offers a new way to print micro/nano structures, which is a fast and low cost alternative to the conventional route, although the high processing temperature of metals, semiconductors and ceramics limits the application SL techniques. In this paper we report the use of Ag nanoparticles as building blocks to make structures by combing the merits of SL, nanotechnology and laser engineering, which provide a simple additive route with low capital investment. Glassy carbon (GC) was chosen as the material for the rigid master mould, as no release coating is needed for replicating the polydimethylsiloxane (PDMS) mould. GC moulds were machined by a nanosecond-pulsed Yb fibre laser. The machined GC moulds were further cleaned by PDMS and the same fibre laser system to remove the process debris. The master mould was further replicated by PDMS. PDMS replicas with either positive or negative features from the master mould were attainable. A two-step strategy was used to print patterns using PDMS mould and Ag nanoparticle paste. Metal patterns were formed on various substrates, and the PDMS mould was left clean and ready for reuse. The resultant printed patterns were found to be uniform over millimetre range, with negligible residual layer, and the thickness of up to several micrometres. The thermal responses of Ag nanoparticles at various sintering temperatures were investigated. The factors affecting the resolution of printed structures were discussed.

  4. Ag K- and L3-edge XAFS study on Ag species in Ag/Ga2O3 photocatalysts

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Yoshida, T.; Yamamoto, N.; Nomoto, T.; Yamamoto, A.; Yoshida, H.; Yagi, S.

    2016-05-01

    Ag loaded Ga2O3 (Ag/Ga2O3) shows photocatalytic activity for reduction of CO2 with water. Ag L3-edge XANES and K-edge EXAFS spectra were measured for various Ag/Ga2O3 samples, which suggested that structural and chemical states of Ag species varied with the loading amount of Ag and the preparation method. The Ag species were metallic Ag particles with an AgGaO2-like interface structure in the sample with high loading amount of Ag while predominantly Ag metal clusters in the sample with low loading amount of Ag. The XANES feature just above the edge represented the interaction between the Ag species and the Ga2O3 surface, showing that the Ag metal clusters had more electrons in the d-orbitals by interacting with the Ga2O3 surface, which would contribute the high photocatalytic activity.

  5. Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates

    NASA Astrophysics Data System (ADS)

    Wang, Zhiwei; Meng, Guowen; Huang, Zhulin; Li, Zhongbo; Zhou, Qitao

    2014-11-01

    We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS ``hot spots'' are generated from the electromagnetic coupling of the densely distributed Ag-NPs, and the semiconducting ZnO-mesoporous-NSs also have chemical supporting enhancement and distinct molecule adsorbing abilities, the composite SERS-substrates demonstrate high SERS-sensitivity with good signal reproducibility. As a trial for potential applications, the composite SERS-substrates were used to identify pesticides and highly toxic polychlorinated biphenyls (PCBs), and low concentrations down to 10-7 M for methyl parathion and 5 × 10-6 M for PCB-77 were reached, respectively, showing promising potential for the SERS-based rapid detection of toxic organic pollutants in the environment.We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS ``hot spots'' are generated from the electromagnetic coupling of the densely

  6. Ag3PO4 nanoparticles loaded on 3D flower-like spherical MoS2: a highly efficient hierarchical heterojunction photocatalyst.

    PubMed

    Wang, Li; Chai, Yuanyuan; Ren, Jia; Ding, Jing; Liu, Qianqian; Dai, Wei-Lin

    2015-09-01

    Novel 3D hierarchical Ag3PO4/MoS2 composites were successfully prepared through a facile and reproducible hydrothermal-in situ precipitation method. The 3D flower-like spherical MoS2 nanoarchitectures acted as an excellent supporting matrix for the in situ growth of Ag3PO4 nanoparticles. The photocatalytic performance of the composites and the effect of the amount of MoS2 were investigated. The obtained hierarchical Ag3PO4/MoS2 composites exhibited significantly enhanced performance for photocatalytic oxidation of Rhodamine B (RhB) compared with pure Ag3PO4 under visible light irradiation. Ag3PO4/MoS2 composites with 15 wt% of MoS2 showed the optimal photoactivity for the degradation of RhB, which was approximately 4.8 times as high as that of pure Ag3PO4. What's more, the optimal Ag3PO4/MoS2 composite also showed better photodegradation efficiency for methyl orange (MO) and p-chlorophenol (4-CP) than pure Ag3PO4. More attractively, the stability of Ag3PO4 was improved after the in situ deposition of Ag3PO4 particles on the surface of MoS2 nanoflakes due to the conductivity of MoS2 itself as electron acceptors. The enhanced performance of the hierarchical Ag3PO4/MoS2 composites under visible light was caused by a synergistic effect including the improved separation of photogenerated charge carriers, boosted light harvesting, a relatively high surface area and matching energy band structures between the two components. Interestingly, the heterostructured Ag3PO4/MoS2 composite reduced the use of the noble metal silver, thereby effectively reducing the cost of the Ag3PO4 based photocatalyst. Ultimately, a MoS2 involved photocatalytic mechanism for the hierarchical Ag3PO4/MoS2 composites was also proposed. PMID:26212501

  7. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles

    SciTech Connect

    Iida, Daisuke; Fadil, Ahmed Ou, Yiyu; Kopylov, Oleksii; Ou, Haiyan; Chen, Yuntian; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2015-09-15

    We report internal quantum efficiency enhancement of thin p-GaN green quantum-well structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhancement factor is investigated. We obtain an internal quantum efficiency enhancement by a factor of 2.3 at 756 W/cm{sup 2}, and a factor of 8.1 at 1 W/cm{sup 2}. A Purcell enhancement up to a factor of 26 is estimated by fitting the experimental results to a theoretical model for the efficiency enhancement factor.

  8. TiO2 modified with Ag nanoparticles synthesized via ultrasonic atomization-UV reduction and the use of kinetic models to determine the acetic acid photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Xu, Yingcao; You, Hong

    2014-12-01

    TiO2 surfaces modified with noble metal nanoparticles have been found to effectively reduce the photogenerated carrier recombination rate and significantly extend the light absorption properties of TiO2, thereby greatly increasing its photocatalytic activity. In this paper, highly ordered, double-sided TiO2 nanotube arrays were prepared using an anodic oxidation method in a home-made reactor using glycerol/water (volume ratio 2:1) and NH4F (0.25 mol/L) as the electrolyte, titanium plates (10 cm × 2 cm × 0.5 mm) as the anode and graphite as the cathode at a constant voltage of 25 V. After a 2-h reaction, anatase TiO2 nanotubes were obtained upon calcination at 450 °C for 4 h. The Ag nanoparticles on the surfaces of the TiO2 were prepared via ultrasonic atomization-ultraviolet light reduction. First, a silver nitrate solution was sputtered into small droplets under ultrasonication. Then, the Ag+ droplets were reduced to Ag nanoparticles. The surface morphologies, structures and elemental compositions were characterized using SEM, EDS, XRD and XPS. The photocatalytic activities were determined in acetic acid solutions (40-200 mg/L), and a mathematical model for catalytic degradation was established based on a hyperbolic model. The SEM results showed that the diameters of the as-prepared Ag/TiO2 are approximately 100 nm and that the lengths are approximately 1.8 μm. The XRD crystal structure analysis shows that the anatase phase of the TiO2 does not change during the Ag modification, and there was a peak from Ag (2 2 0). The XPS determined that the Ag atom percentage was 1.11%. The degradation of acetic acid indicated that Ag/TiO2 has a higher photocatalytic activity than the undoped TiO2.

  9. AGS experiments -- 1995, 1996 and 1997

    SciTech Connect

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  10. AGS experiments -- 1991, 1992, 1993. Tenth edition

    SciTech Connect

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

  11. A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO2 and Au nanoparticles in deionised water

    NASA Astrophysics Data System (ADS)

    Hamad, Abubaker; Li, Lin; Liu, Zhu

    2015-09-01

    Although there have been large quantities of published work in laser generation of nanoparticles, it is still unclear on the comparative role of laser wavelengths and pulse widths in controlling the nanoparticle sizes, morphology and production rate. In this investigation, Ag, Au and TiO2 nanoparticles were synthesised by nanosecond ( λ = 532 nm, τ = 5 ns), picosecond ( λ = 1064 nm, τ = 10 ps) and femtosecond ( λ = 800 nm, τ = <100 fs) pulse lasers in deionised water. They are compared, in terms of their optical absorption spectra, morphology, size distribution and production rates, characterised by UV-Vis spectroscopy and transmission electron microscopy. The ablation rates of both Ag and Ti samples were shown as a function of laser pulse energy and water level above the samples. The average size of nanoparticles (10-50 nm) was found to be smaller for the shorter wavelength (532 nm) nanosecond pulsed laser compared with those of picosecond and femtosecond lasers, demonstrating a more dominating role of laser wavelength than pulse width in particle size control. The ps laser generated more spherical Ag nanoparticles than those with the ns and fs lasers. Under the same laser processing conditions, Au nanoparticles are smaller than Ag and TiO2, with the latter, the largest. The nanoparticle production rate is relatively independent upon laser types, wavelengths and pulse lengths, but largely determined by the laser fluence and energy deposited.

  12. A colorimetric nitrite detection system with excellent selectivity and high sensitivity based on Ag@Au nanoparticles.

    PubMed

    Li, Tianhua; Li, Yonglong; Zhang, Yujie; Dong, Chen; Shen, Zheyu; Wu, Aiguo

    2015-02-21

    Excessive uptake of NO2(-) is detrimental to human health, but the currently available methods used to sensitively detect this ion in the environment are cumbersome and expensive. In this study, we developed an improved NO2(-) detection system based on a redox etching strategy of CTAB-stabilized Ag-Au core-shell nanoparticles (Ag@AuNPs). The detection mechanism was verified by UV-Vis spectroscopy, TEM and XPS. The detection system produces a color change from purple to colorless in response to an increase of NO2(-) concentration. The selectivity of detection of NO2(-), both with the unaided eye and by measurement of UV-Vis spectra, is excellent in relation to other ions, including Cu(2+), Co(2+), Ni(2+), Cr(3+), Al(3+), Pb(2+), Cd(2+), Ca(2+), Ba(2+), Zn(2+), Mn(2+), Mg(2+), Fe(3+), Hg(2+), Ag(+), K(+), F(-), PO4(3-), C2O4(2-), SO3(2-), CO3(2-), SO4(2-), NO3(-) and CH3-COO(-) (Ac(-)). The limit of detection (LOD) for NO2(-) is 1.0 μM by eye and 0.1 μM by UV-Vis spectroscopy. The LOD by eye is lower than the lowest previously reported value (4.0 μM). There is a good linear relationship between A/A0 and the concentration of NO2(-) from 1.0 to 20.0 μM NO2(-), which permits a quantitative assay. The applicability of our detection system was also verified by analysis of NO2(-) in tap water and lake water. The results demonstrate that our Ag@AuNP-based detection system can be used for the rapid colorimetric detection of NO2(-) in complex environmental samples, with excellent selectivity and high sensitivity. PMID:25564225

  13. Generation of Localized Surface Plasmon Resonance Using Hybrid Au-Ag Nanoparticle Arrays as a Sensor of Polychlorinated Biphenyls Detection.

    PubMed

    Liu, Jing; Cai, Haoyuan; Chen, Chaoyang; Yang, Guangsong; Yang, Cheng-Fu

    2016-01-01

    In this study, the hybrid Au-Ag hexagonal lattice of triangular and square lattice of quadrate periodic nanoparticle arrays (PNAs) were designed to investigate their extinction spectra of the localized surface plasmon resonances (LSPRs). First, their simulating extinction spectra were calculated by discrete dipole approximation (DDA) numerical method by changing the media refractive index. Simulation results showed that as the media refractive index was changed from 1.0 to 1.2, the maximum peak intensity of LSPRs spectra had no apparent change and the wavelength to reveal the maximum peak intensity of LSPRs spectra was shifted lower value. Polystyrene (PS) nanospheres with two differently arranged structures were used as the templates to deposit the hybrid Au-Ag hexagonal lattice of triangular and square lattice of quadrate periodic PNAs by evaporation method. The hybrid Au-Ag hexagonal lattice of triangular and square lattice of quadrate PNAs were grown on single crystal silicon (c-Si) substrates, and their measured extinction spectra were compared with the calculated results. Finally, the fabricated hexagonal lattices of triangular PNAs were investigated as a sensor of polychlorinated biphenyl solution (PCB-77) by observing the wavelength to reveal the maximum extinction efficiency (λmax). We show that the adhesion of β-cyclodextrins (SH-β-CD) on the hybrid Au-Ag hexagonal lattice of triangular PNAs could be used to increase the variation of λmax. We also demonstrate that the adhesion of SH-β-CD increases the sensitivity and detection effect of PCB-77 in hexagonal lattice of triangular PNAs. PMID:27527188

  14. Destabilization of Ag nanoislands on Ag(100) by adsorbed sulfur

    SciTech Connect

    Shen, Mingmin; Russell, Selena M.; Liu, Da-Jiang; Thiel, Patricia A.

    2011-10-17

    Sulfur accelerates coarsening of Ag nanoislands on Ag(100) at 300 K, and this effect is enhanced with increasing sulfur coverage over a range spanning a few hundredths of a monolayer, to nearly 0.25 monolayers. We propose that acceleration of coarsening in this system is tied to the formation of AgS{sub 2} clusters primarily at step edges. These clusters can transport Ag more efficiently than can Ag adatoms (due to a lower diffusion barrier and comparable formation energy). The mobility of isolated sulfur on Ag(100) is very low so that formation of the complex is kinetically limited at low sulfur coverages, and thus enhancement is minimal. However, higher sulfur coverages force the population of sites adjacent to step edges, so that formation of the cluster is no longer limited by diffusion of sulfur across terraces. Sulfur exerts a much weaker effect on the rate of coarsening on Ag(100) than it does on Ag(111). This is consistent with theory, which shows that the difference between the total energy barrier for coarsening with and without sulfur is also much smaller on Ag(100) than on Ag(111).

  15. Selective photochemical synthesis of Ag nanoparticles on position-controlled ZnO nanorods for the enhancement of yellow-green light emission

    NASA Astrophysics Data System (ADS)

    Park, Hyeong-Ho; Zhang, Xin; Lee, Keun Woo; Sohn, Ahrum; Kim, Dong-Wook; Kim, Joondong; Song, Jin-Won; Choi, Young Su; Lee, Hee Kwan; Jung, Sang Hyun; Lee, In-Geun; Cho, Young-Dae; Shin, Hyun-Beom; Sung, Ho Kun; Park, Kyung Ho; Kang, Ho Kwan; Park, Won-Kyu; Park, Hyung-Ho

    2015-12-01

    A novel techniq